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The biological sink for atmospheric methane consists of
atmospheric methane-oxidizing bacteria (atmMOB) that
persistently oxidize atmospheric methane as carbon and
energy source and conventional methanotrophs that transiently
oxidize atmospheric methane after exposure to elevated
methane concentrations. The ecology and environmental
activity of atmMOB have been studied for several decades, but
until the first detailed characterization in 2019 of an atmMOB in
pure culture that can grow with air as the sole energy (methane,
carbon monoxide and molecular hydrogen) and carbon
(methane and carbon dioxide) source, their physiology was
mostly unexplored. Here we summarize the available
knowledge about atmMOB physiology, including the kinetics of
atmospheric methane oxidation, energy yields during growth on
methane and other trace gases from air, carbon assimilation
and physiological diversity. We use this background to identify
knowledge gaps that should be targeted to support future
research on atmMOB.
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Atmospheric methane oxidizing bacteria

Biological atmospheric methane (CH,) oxidation is an
important component of the global CHy cycle, primarily
associated with soils and trees. Measurements of atmo-
spheric CHy4 uptake by upland soils and trees indicate a
combined sink strength of up to 100 Tg CHa yr, which
is more than 10% of the atmospheric CHy sink [1,2]. The

process is attributed primarily to atmospheric methane-
oxidizing bacteria (atmMOB), which we define as me-
thanotrophs capable of persistently oxidizing atmo-
spheric CHy (approximately 2 ppm). This distinguishes
them from methanotrophs unable to oxidize atmospheric
CH, and those that may transiently oxidize atmospheric
CHa4 but ultimately depend on elevated CHa
(> >2 ppm) to sustain their metabolic activity, often
called flush-feeders; however, the contribution of flush-
feeders to the size of the atmospheric CHy sink, relative
to that of atmMOB, remains unknown.

Much of our understanding of atmMOB is derived from
in situ activity measurements combined with the detec-
tion of the pmoA gene, which encodes a subunit of the
particulate methane monooxygenase (pMMO) enzyme.
The pMMO enzyme catalyzes the oxidation of CHy to
methanol, the initial step of aerobic methanotrophy, in a
reaction that requires both O, and electrons. The pmoA
gene serves as a phylogenetic marker for methanotrophs,
and soils exhibiting atmospheric CH, uptake were found
to be dominated by pmoA clades that clustered sepa-
rately from known methanotroph genera with cultivated
representatives [3]. This supported the consensus that
atmMOB are specialized CHy4 oxidizers, physiologically,
phylogenetically, and ecologically distinct from cano-
nical methanotrophs [4]. AtmMOB in soils exposed to
low CH,4 concentrations were further indicated to have a
high affinity for CHy, seemingly distinct from the kinetic
properties reflected by CH,4 uptake rates in soils exposed
to higher CHy4 concentrations [5].

Most analyses of pmoA diversity in soils exhibiting at-
mospheric CH,4 uptake identify either upland soil cluster
alpha (USCa) or upland soil cluster gamma (USCy)
[6-8]. USCa is affiliated with the family Beijerinckiaceae
within Alphaproteobacteria and characteristic of neutral
to acidic upland soils [6]. USCy belongs to the Gam-
maproteobacteria and is associated with neutral to alka-
line soils [6]. In addition to USCa and USCy, clades
within the families Methylocystaceae, Beijerinckaceae, Me-
thylococcaceae and Crenotrichaceae have been found in en-
vironments with net atmospheric CH, uptake
[4,6,7,9-15] and may represent hitherto uncultivated
atmMOB. The identity of the methanotrophs re-
sponsible for CH,4 uptake associated with upland trees is
still unresolved.

Aside from some reports of sustained atmospheric CHy
consumption by Methylocystis [16-18], Methylocapsa gor-
gona MGO8, which is closely related to the USCa, was
the first confirmed atmMOB in pure culture, and the first
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Figure 1
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Neighbor-Joining tree of PmoA (protein) sequences showing confirmed
atmMOB (in bold). The tree was constructed using MEGA11 and

contains only a few representative clades for reference and should not
be considered a comprehensive set of PmoA groups or a phylogenetic
analysis. For a comprehensive analysis of pmoA diversity, see Ref. [3].

for which growth on trace gases (CHy, H, and CO) and
other gases (CO;) from air as sole carbon and energy
sources was demonstrated [19,20]. The cultivation
techniques that permitted isolation of M. gorgona MGO8
also confirmed growth on air by the previously isolated
methanotrophs Methylocapsa palsarum NE2, Methylocapsa
aurea KYG and Methylocystis rosea SV97 [20], implying
that the ability to persistently oxidize atmospheric CHy
is not restricted to methanotrophs within the USCa and
USCy (Figure 1). A common feature of these atmMOB
strains is the presence of the membrane-bound pMMO
enzyme, while the cytoplasmic soluble methane mono-
oxygenase (sSMMO) has consistently been absent in all
strains confirmed as atmMOB to date.

Atmospheric CH, oxidation

The first indication of biological atmospheric CHy oxi-
dation was reported in dry swamps in 1982 [21], while
the first evidence for CHy4 assimilation in methanotrophs
at atmospheric CH4 concentrations was published in
2000 [22]. Over the years, atmospheric CHy uptake was
observed in forest soils [4,23], tropical soils [24], grass-
lands and meadows [25], landfill cover soils [26], deserts
[27], heathlands [28], dryland rice soils [29,30], tundra
soils [31], caves [32] and surfaces of birch, spruce
[33] and mosses [34]. In 1992, it was reported that at-
mospheric CHy uptake in soils is characterized by a low
apparent Michaelis kinetic constant (Kppp)) [5], ‘ap-
parent’ meaning that the conditions of the enzyme re-
action are not fully known [35]. The low K upp
indicated that the microorganisms responsible for at-
mospheric CHy uptake may have a higher affinity for

CH, than other methanotrophs [5]. However, as later
discussed by Dunfield, the high affinity hypothesis is
problematic because simple Michaelis—-Menten kinetics
might not be applicable to MMOs because these en-
zymes require three reactants (CHy, O, and reductant
such as reduced cytochromes) [35]. The inappropriate-
ness of Kyapp) a8 @ measure of enzymatic affinity for
CH, is illustrated by the observation that changes in
CHy concentration alter the Ky, appy of Methylocystis strain
LR1 [16]. However, this observation does not exclude
the possibility that there is a difference in enzymatic
affinity for CH4 between methanotrophs that can live on
atmospheric CH4 and those that cannot. To address this,
it is essential to obtain cell-free and stable pMMO en-
zymes from atmMOB for activity assays [36] and further
identify the structural basis for differences in affinity
between atmMOB and other methanotrophs. However,
while the structural properties and active site of
atmMOB pMMO can be studied with current metho-
dology, and recent advances to reconstitute the pMMO
into bicells have been shown to recover the activity, the
activity of reconstituted pMMOs seems to remain lower
than that of cellular pMMOs, suggesting that char-
acterizations of atmMOB pMMO kinetics must await
further methodological development [37,38].

In addition to being an imprecise measure of substrate
affinity, the Ky pp) also fails to provide information
about the rate of substrate uptake at atmospheric CHy
concentrations. The apparent specific affinity (2)) was
suggested as a better way to describe the ability to col-
lect nutrients under limitation [39] than substrate affi-
nity. In terms of methanotrophy, the specific affinity
indicates the rate at which low concentrations of CHy
can be oxidized by a cell [16,35], representing the
pseudo-first-order rate constant of CH, oxidation at low
concentrations (Figure 2). The specific affinity arises
from the combination of the K,pp) and the maximal
obtainable velocity of the reaction (Viyaxapp)) and is ex-

pressed as @) = w [35]. Thus, a high specific affinity,

m(app)

or in other words, a high CH,4 oxidation rate at low CHy4
concentration, can be obtained by both lowering the K,
(app) and increasing the Viax@pp) [35].

Two strains that were shown to grow on air, M. gorgona
MGO8 and M. palsarum NE2, have the two highest
specific affinities for CHy so far demonstrated: 1.01 x
10 L cell™ h™" and 3.30 x 107 L cell™" h™', respec-
tively [20]. A combination of proteomics and kinetics
data indicates that these two strains obtain their high
specific affinities in two different ways. While M. gorgona
MGO08 has a lower Ky,,ppy (48.53 nM), within the range
observed for CH,4 uptake in upland soils [5], M. palsarum
NEZ has a much higher K,;pp) (412 nM), a higher V.«
@appy and a higher a’. The higher Vaxapp) and a’ in .
palsarum NEZ are likely driven by higher cellular
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Figure 2
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Specific affinity as a parameter for evaluating the ability to consume atmospheric CH,. The figure shows methane oxidation rates at different methane
concentrations for two hypothetical methanotrophs, in red and green. These curves demonstrate how two organisms with the same Kapp) can have
very different methane oxidation rates at low methane concentrations, and thus that a low Kmpp) is not a good criterion for the ability to oxidize
atmospheric CH, fast enough to survive or grow. Methane oxidation rates at low concentrations are illustrated by the specific affinity (#3), which
represents the pseudo-first-order rate constant at low methane concentrations and is calculated as Vmaxapp) divided by Knapp)- This means that
atmMOB can obtain high methane oxidation rates at low methane concentrations by both having a low Kiapp) and a high Viyaxapp)-

Figure is modified from Ref. [40].

pMMO content during growth at atmospheric CHy
concentrations, relative to M. gorgona MGO8 [20], but
protein quantification is required to test this hypothesis.
The two strains were cultivated on filter membranes
floating on water during these Kinetics experiments,
meaning that they were not exposed to limitations from
the rate of CH, diffusion in water, but only the solubility
of CH4 in the thin water film that surrounds the cells.
See the work of Schmider and colleagues for examples of
how to perform these kinetics experiments and calculate
the CHy concentrations in the water surrounding the
cells [20]. It is important to note that despite being
provided the same concentrations in the surrounding air,
active cells in larger volumes of water might have lower
concentrations of CHy available than those growing on
surfaces surrounded by a thin water film due to diffusion
limitations.

M. gorgona MGO8 and M. palsarum NE2 grow at both
high (1000 ppm) and atmospheric CHy4 concentrations.
Comparative proteomics revealed that they express the
same pMMO genes at both concentrations [20]. A

different physiology, which may allow growth at both
low (indications for growth at 10ppm) and high
(> 600 ppm) CHy4 concentrations, was observed in Me-
thylocystis strain SC2. This strain carries two pmoCAB
operons with different CHy Kiypp) and 2 of their
pMMO products, pMMO1 and pMMO?2, respectively.
At low CH4 concentration, the SC2 cells upregulated
expression of pMMO?2, resulting in a Ky,,ppy 0of 111 nM,
similar to M. gorgona MGO8. At higher CH4 concentra-
tions, pMMO1 upregulation and a Ky,ppy of 9200 nM
were observed [17]. It should be noted that the experi-
ments with Methylocystis SC2 were done in liquid culture
containing NH4" as a nitrogen source. The NH4" could
have interfered with the estimation of Ky,pp) for CHy,
as indicated by the influence of CHy4 on the Kp,pp) of
ammonia oxidation [41].

In some methanotrophs, possibly including members of
Methylocystis and Methylosarcina, uptake of atmospheric
CH, concentrations was observed for a limited time after
stimulation by higher CH4 concentrations [18,30]. While
this lifestyle, called flush-feeding [35], falls outside our
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definition of atmMOB, they might represent an im-
portant contribution to the biological sink for atmo-
spheric CHy.

Energy yield, maintenance and growth

The CH,4 uptake rate determines how much energy is
available from CHy per unit of time to support main-
tenance and growth at an atmospheric CH, concentra-
tion. Based on estimates of the temperature dependence
of average microbial maintenance energies (Aerobic and
Anaerobic), the value of 2.8 k] per C-mol biomass per
hour at 20°C (4.5k]J at 25°C) [42] became a benchmark
energy vield for evaluating whether a given CH, oxi-
dation rate could support methanotrophic maintenance
[15,18,43,44]. Maintenance energy is the minimum en-
ergy required for a cell to stay alive, and can be defined
by the costs associated with activities such as osmor-
egulation and turnover of macromolecular molecules
[45]. The assumption is that energy yields above that
minimum would allow growth. Around 0.5 k] Cmol™" h™"
(0.38-0.71 k] Cmol™" h™") at 20°C was recently shown to
support methanotrophic growth on CH, CO and H,
from air by M. gorgona MGO08 and other methanotrophic
species [20]. While 0.5 k] Cmol™ h™! to support growth
seems low compared to the earlier benchmark value of
2.8k] Cmol™ h™! to cover maintenance requirements,
life 1s expected to be supported by much lower energy
yields in oxic marine sediments. Here, a median of 2.23
x 107" Watts are available per cell [46], as opposed to
1.1 x 107" Watts per cell for atmMOB growing on air in
pure culture [20] (energy yields for atmMOB converted
from KkJ per cell to Watts per cell without normalization
to C-mol to match environmental data). The reasons
why such low energy yields can support life in sub-
seabed sediments are likely to be low maintenance re-
quirements and low mortality rates, which may allow
generation times as long as thousands of years [47,48].
Essentially, the less energy is required for repairs, and
the lower the mortality, the less energy is required for a
cell to stay alive and to grow fast enough to maintain the
population size. This is also why the energy yields under
close to optimal conditions in atmMOB pure culture are
not sufficient information for evaluating whether growth
can be sustained in nature. We must also consider the
abiotic and biotic factors that influence mortality
(e.g. viral load and predation) [49] and maintenance
energy requirements (e.g. radiation or oxygen radicals
that can cause protein and RNA damage [50]).

In 1999, Conrad theorized that 7.2 x 10" atmMOB cells can
be energetically sustained in a gram of dry soil when pro-
vided with atmospheric CH,4 concentration, and assuming
a maintenance requirement of 2.8k] Cmol™ h™ at 20°C
[43]. Considering the recent empirical evidence for
atmMOB growth at the more than five times lower energy
yield of ~0.5 k] Cmol™ h™", 7.2 x 10 cells is likely to be a
more than fivefold underestimation of a theoretically

sustainable atmMOB population size under ideal en-
vironmental conditions and with constant access to atmo-
spheric CH4 However, environmental quantitative
polymerase chain reaction estimates indicate 0.3x10° to
1.2x10° pmoA genes gDW™" [15], which is in the range of
the population size originally theorized by Conrad. Thus,
since atmMOB seem to require less energy than previously
assumed, but do not reach larger population sizes,
atmMOB in the environment are likely to be constrained
beyond the limitations of the atmospheric CHy4 con-
centration, possibly by CHy diffusion limitations and vari-
ables such as the above-mentioned viral infection,
predation or physical and chemical cellular damage.

To understand the environmental control of atmMOB, it
might be necessary to consider the physiological differ-
ences between atmMOB lineages: Due to differences in
the molecular machinery, maintenance and growth re-
quirements may vary considerably, even between spe-
cies within the same genus. For example, with a higher
number of ATP synthase c-ring subunits, less energy per
proton, and thus a smaller transmembrane concentration
gradient potential is required for ATP production, pos-
sibly favoring growth at low substrate concentrations, but
at the cost of growth efficiency [47]. Also, the size, vo-
lume, and permeability of cells matter because these
variables influence the cost of maintaining ion home-
ostasis and plasmolysis (contracted cytoplasm) that is
considered the major cell maintenance cost during star-
vation [51].

Temperature is an example of an environmental variable
that may influence the maximal population size and ac-
tivity of atmMOB, but where differences between in-
dividual species may occur due to differences in
temperature adaptation. Temperature influences soil
moisture content and the solubility and diffusion of
gases, and therefore CHy4 availability to cells [52] and
atmMOB CH, uptake [35,53]. However, temperature
also controls how much energy is required to support
cellular maintenance [42,54], and how cells distribute
their resources between protein biosynthesis and other
cell functions [55]. Correspondingly, it has been shown
that temperature controls how much CHy is required to
support cell division in methanotrophs [56].

One of the most fundamental properties of atmMOB
that should be studied to understand their environ-
mental dynamics and physiology is growth. AtmMOB
are assumed to grow very slowly. This is partly based on
their extremely slow recovery time after disturbance, for
example, in agriculture, which can be in the range of
decades [57]. It is also based on a more general as-
sumption that atmospheric CHy4 concentrations are low
and limited by the solubility of CHy4 in water and dif-
fusion constraints in soil, and therefore very restrictive
for growth rates and population sizes [53,57]. However,
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to obtain useful predictions of atmMOB responses to
climate change and identify ways to optimize their
growth in agricultural soils or other systems, we need to
move beyond these generalizations and learn to pre-
cisely measure atmMOB growth rates.

Still, no published growth rates of atmMOB at atmo-
spheric CHy4 concentrations exist, in pure culture or in
soil or other environments, and studies of how environ-
mental variables influence atmMOB physiology are
lacking. Estimations of general bacterial growth rates in
upland soils indicate that most populations grow slowly,
with relative rates averaging below 0.05day™' [58,59].
Microbial populations in nature may predominantly be
in states that resemble stationary or near-stationary
growth, where cell division primarily replaces dying cells
and only small increases or decreases in the population
size, if any, occur over time [60]. Furthermore, only
some of the cells within a population may be growing at
any given time. Heterogeneity in cellular functions
within populations is a potential key aspect of slow
growth at low substrate concentrations. For example,
heterogeneity was observed for Saccharomyces cerevisiae,
E. coli and B. subtilis [60], with only subsets of slow-
growing populations retaining the ability to grow under a
given condition. This heterogeneity, which may be
triggered stochastically in genetically identical popula-
tions, may contribute to increasing the chances that a
subset of the population can enter exponential growth
when conditions change [61].

Alternative energy sources and carbon assimilation

In addition to atmospheric CHy, atmMOB are likely to
benefit from CH4 produced by methanogenesis during
anoxic conditions in deeper soil layers, and anoxic
microsites in oxic soil [62]. Nevertheless, the utiliza-
tion of alternative energy sources may have been an
important driver for atmMOB evolution, considering
the low atmospheric CH4 concentrations in present,
preindustrial and earlier times [63,64]. All four known
atmMOB in pure culture, M. rosea SV97, M. gorgona
MGO08, M. palsarum NE2 and M. aurea KYG, oxidize
either atmospheric H, and/or CO in addition to CHy
[19,20,65]. Correspondingly, the utilization of atmo-
spheric H, and CO has been shown to act as energy
sources for a large diversity of microorganisms in soils
and other environments globally [66]. While CH,4 and
H, oxidation by atmMOB corresponded with the
presence of pMMO and hydrogenase (HYD) genes,
the genes encoding carbon monoxide dehydrogenase
(CODH) were only present in M. gorgona MGOS8, but
not in the genome of the CH4 and CO oxidizing M.
palsarum NE2 and only partially in M. rosea SV97 [20].
This suggests that other enzymes can be responsible
for CO oxidation, one possibility being CO oxidation
by pMMO [67]. CO oxidation by pMMO may inhibit

Physiology of atmMOB Tveit, Dumont and Schmider 5

CH,4 oxidation by competitive binding to pMMO,
similar to ammonia [35].

The observations of atmMOB utilization of H, and CO
as alternative energy sources confirmed the hypothesis
that mixotrophy could support atmospheric CH, oxida-
tion, but the candidate molecules originally hypothe-
sized as potential energy sources were short-chain fatty
acids and alcohols [35]. Pratscher and colleagues in-
vestigated this by incubating forest soils with *C-acetate
and trace concentrations of CHy; they detected putative
methanotrophic cells belonging to the USCa that were
labeled with *C [68]. The finding of Pratscher and
colleagues is an indication that atmMOB may harvest
energy and carbon from sources other than trace gases.
"This is in line with the utilization of alternative energy
sources such as acetate and ethanol by members of the
genera Methylocystis and Methylocapsa 3], and methanol
promoting atmospheric CH4 oxidation by pure cultures
and soils [69]. However, whether atmMOB can utilize
acetate and alcohols at 7z situ concentrations to support
growth remains unknown.

Closely related to the question of energy sources is how
atmMOB harvest carbon for growth. Different carbon
assimilation pathways have different efficiencies, and
thus, the type of pathway may be important to explain
the energy-limited growth on atmospheric CHy. For
example, the Calvin cycle is a less efficient route of
carbon assimilation than the serine cycle, which in turn
is less efficient than the ribulose monophosphate
(RuMP) pathway [70]. However, in M. gorgona MGOS,
M. palsarum NE2 and M. rosea SV97, it was the expres-
sion of serine cycle enzymes that was observed during
growth on air [20]. This is in line with the serine cycle
being a known characteristic of alphaproteobacterial
methanotrophs [71]. Gammaproteobacterial atmMOB
(USCy) MAGs (metagenome-assembled genomes) were
shown to encode several genes of both the serine cycle
and the RuMP pathway [72], but as of yet, it is un-
resolved how USCy assimilates carbon.

Physiological diversity of atmMOB

Many clades were indicated by molecular environmental
surveys to be atmMOB, and although most of these
clades have not yet been confirmed to persistently oxi-
dize atmospheric CHy, the surveys do indicate con-
siderable diversity of atmMOB. What this means in
terms of functional diversity is still unknown, but even
among the four closely related confirmed atmMOB,
differences in substrate preferences, whole cell CHy
oxidation kinetics, energy yields and protein expression
patterns were found [20]. We propose that a variety of
physiologies contribute to the biological sink for atmo-
spheric CHy, ranging from mixotrophic atmMOB that
can grow with and without CH,4 and obligate atmMOB
that are entirely dependent on CHy4 for growth, to flush-
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Figure 3

Atmospheric methane oxidizing bacteria (atmMOB)

"“Conventional” MOB |

Obligate methanotrophs Mixotrophs Flush feeder
1.9 ppm CHa e (@ High CHa oxidation
G EibeE Energy sources + fer i di
sole energy . gY R Atm. H: & CO .a Gl per{o i Atm. CHa oxidation
e | SRR in addition to e increase in CHa v
- atm. CHa Organic concentrations aeie
compounds
‘\
\/
Energy requirements Methane oxidation -
By req P T N Affinity for CHa
for growth , N . e
(kJ C-mol™* h* at 20 °C) /10, 2H* 2e H,0 2H* 2e | High specific High affinity
2 + N " ! affinity for for CHa
>0.38 <0.38 B! MDH ; CHa ()
== "
_ = s A : @T CHsOH) —> (CH0 Periplasm |
! | - S 1< |
s '
Additional energy o ! \\\ ! S Cytoplasii |
sources | [f ! 4 / Growth on air as sole
=== B BREE OB T TS carbon and energy source

a-Proteobacteria
Methylocapsa

MOB within
Other a-Proteobacteria

Organic
compounds
SCFAs
Alcohols
CHa ox. inter-
mediates

Enzyme for CHa oxidation

pMMO sMMO Pure culture

?

Confirmed for atmMOB

AtmMOB growth rates

Not confirmed for atmMOB

Methylocystis y-Proteobacteria
Verrucomicrobiota

Actinomycetota

Environment
?

Atmospheric CH, oxidation
by “conventional” MOB
Current Opinion in Microbiology

A summary of knowledge and knowledge gaps related to methanotrophic lifestyles that contribute to atmospheric methane oxidation. Methanotrophs
that can sustain uptake of atmospheric methane indefinitely, and wholly or partially support their energy and carbon needs for growth from
atmospheric methane are referred to as atmospheric methane oxidizing bacteria (atmMOB). Green indicates experimentally confirmed properties of
atmMOB. Yellow indicates unknown or hypothesized properties of atmMOB. Purple indicates how ‘conventional’ MOB have been shown to contribute
to the atmospheric CH, sink. Abbreviations: ppm, parts per million; pMMO, particulate methane monooxygenase; sMMO, soluble methane
monooxygenase; MDH, methanol dehydrogenase; atmMOB, atmospheric methane-oxidizing bacteria; CO, carbon monoxide; H,, molecular
hydrogen; CH,4, methane; CH3;0OH, methanol; CH,O, formaldehyde; kJ, kilojoule; C-mol, moles of carbon; SFCA, short-chain fatty acid.

feeding methanotrophs that can only sustain atmo-
spheric CHy4 oxidation for a limited time after stimula-
tion by high CHy4 concentrations.

Summary and conclusion

In Figure 3, we have summarized the current knowledge
about atmMOB physiology and some of the most im-
portant knowledge gaps. To identify the capacity of
atmMOB for CH, filtration and biomass production at
low CH, concentrations, how their growth can be

stimulated, and how their environmental dynamics will
develop in response to climate change, we think that the
following three actions are particularly important: 1.
Identify the growth rates of atmMOB in pure culture
and nature, and their response to changing energy input;
2. Identify whether compounds such as short-chain fatty
acids, alcohols and sugars supply energy or carbon for
their growth; 3. Identify how changes in the chemical
(e.g. nitrogen availability) and physical (e.g. tempera-
ture) environment of atmMOB influence their growth.
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