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ABSTRACT

An initial feasibility study is presented exploring the use of a pre-trained feature extractor, designed for large-scale
audio classification, applied to the task of predicting the colouration between binaural signals. A multilayer
perceptron (MLP) is trained to predict binaural colouration using feature embeddings obtained from the VGGish
network and data from five previously conducted listening tests. The evaluation compares seven versions of the
network, each trained using different data augmentation methods, to three existing signal processing methods: basic
spectral difference (BSD), log. spectral distance (LSD) and an auditory model for predicting binaural colouration
(PBC-2). Results show that while the MLP networks are comparable to BSD and LSD, further work is needed to
compete with the more accurate PBC-2; such as using specific audio features relevant for colouration.

1 Introduction

Colouration is a perceptual attribute that is central to
spatial audio quality evaluation, and often considered
more important than localisation [1]. As with any per-
ceptual attribute, the most accurate way to measure it is
through controlled listening experiments. However, nu-
merical assessment methods that correctly estimate the
perceived colouration are desirable, since they enable
quick monitoring of the introduced colouration during
development phases of spatial audio systems [2, 3, 4].

A recent study [5] proposed an auditory model that
showed strong correlation between listening test data
and the model predictions. This model follows a tra-
ditional signal processing approach combining signal
rectification, high frequency smoothing, equivalent rect-

angular bandwidth frequency weighting, and signal-
dependent weighting of the left and right colouration
values to produce a single binaural colouration predic-
tion. A Matlab implementation of the resulting auditory
model was made available as part of the Auditory Mod-
eling Toolbox under the model name mckenzie2025
[5].

To the best of the authors’ knowledge, no data-driven
model of colouration has yet been explored. Recently,
data-driven models have been proposed for functions
of auditory processing, often with promising results.
These models are either trained using listening exper-
iment data [6] or with true objective data [7, 8, 9]. In
many cases, the models can capture nuances of audi-
tory processing that are not fully understood from a
psychophysical or neurophysiological point of view,
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generalising to unseen conditions and outperforming
traditional models in certain tasks. A third strategy is
to train data-driven models with estimated data using
existing auditory models [10, 11]. However, while syn-
thetic training data is easy to obtain in these cases, and
while the resulting models may run significantly faster,
their performance is not expected to exceed that of the
original models.

This study presents an initial exploration of a data-
driven method as an alternative to the auditory model
introduced in [5]. The method presented here adopts
a pre-trained feature extractor [12] designed for large-
scale audio classification, whose feature embeddings
are used to train a multilayer perceptron (MLP) regres-
sion model. Since the long-term goal is to obtain better
results than the ones obtained using [5], the model is
trained with listening experiment data as labels. Within
the context of the limited colouration data from listen-
ing experiments and aiming to optimise the amount
of information obtained from them, feature extraction
and data augmentation techniques are evaluated for
their effect on the model predictions. The data-driven
methods explored here are compared against existing
colouration metrics obtained using signal processing
approaches.

The paper is organised as follows. Section 2 presents
a methodology for predicting binaural colouration,
whereby a pre-trained feature extractor is used to train
MLP regression models and the data augmentation
methods are detailed. Section 3 then presents an evalu-
ation of the proposed methods against existing models
on their prediction of colouration using a previously
unseen subset of signals from the listening tests on per-
ceived spectral similarity. The results of the evaluation
are discussed in Section 4, identifying the models that
perform the strongest and suggesting why, as well as
discussing limitations of the current methodology. Fi-
nally, the paper is concluded in Section 5 along with
future work.

2 Methods

This section describes the methodology of this study,
including the pre-trained VGGish feature extraction
model, the multilayer perceptron (MLP) regression
model and the training data, along with details of the
tested data augmentation methods. All audio signals
used in this study are binaural with a sample rate of

48 kHz and 16-bit depth. Fig. 1 presents a block di-
agram illustrating the training pipeline of the MLP
model.

2.1 Listening test data

The dataset used consists of 252 binaural signals,
featuring different audio contents and colouration
types from five previously conducted listening tests
[13, 14, 15, 4, 16]. The number of signals, their au-
dio contents and their colouration types, along with
the number of participants in each listening test, are
summarised in Table 1.

All listening tests followed a paradigm similar to the
multiple stimulus test with hidden reference and anchor
(MUSHRA [17]), whereby the similarity between a
reference and multiple test signals was rated for the
quality of colouration on a scale from 0 to 100, whereby
a rating of 100 means entirely the same (no colouration).
In this study, perceived colouration is therefore derived
as the reversed ratings of perceived similarity (where 0
indicates entirely the same, and 100 means as coloured
as the low anchor). A single result for each stimulus is
taken as the mean of all participants individual ratings.

For each trial in all five listening tests, the reference
stimulus was a convolution of the monophonic audio
content (see again Table 1) with head-related impulse
responses (HRIRs), and anchors were a low-pass fil-
tered version of the reference with a cut-off frequency
fo = 3.5 kHz. Test stimuli were presented statically
(with a fixed head orientation) over open-back head-
phones in quiet listening rooms. While the majority
of stimuli are simple scenes (single stationary sound
sources at a single location), some were complex scenes
utilising a mix of multiple sound sources located at dif-
ferent locations on the sphere [15, 16]. The signals
with pink noise audio content were around one sec-
ond in duration, whereas some of the complex scenes
(e.g. the pink noise bursts with a train station recording
and the percussion recordings) were up to 8 seconds in
duration.

The listening test data was randomised prior to being
divided into subsets for training, validation and testing,
to try and ensure an equal representation of colouration
scores within each set. The randomisation used a fixed
seed to ensure reproducibility between experiments.
The data was then split into training, validation and
test subsets, with a split of 60% : 20% : 20%, meaning
a total of 152 binaural signals reserved for training, 50
for validation and 50 for testing.
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Fig. 1: Block diagram summary of the training of the multilayer perceptron (MLP) models.

Table 1: Brief details of the listening test data used in this study.

Test # Stimuli Audio content Colouration type # Participants

Mc18 [13] 48 Pink noise Equalised Binaural Ambisonic HRIRs 20
Mc19a 1 [14] 42 Pink noise Equalised Binaural Ambisonic HRIRs 20

Mc19a 2 [14] 21
Pink noise bursts and
train station recording Equalised Binaural Ambisonic HRIRs 20

Mc19b 1 [15] 15 Pink noise Pre-processed Binaural Ambisonic HRIRs 20
Mc19b 2 [15] 15 Percussion recordings Pre-processed Binaural Ambisonic HRIRs 20
Mc22 [4] 56 Pink noise 10 band equalised HRIRs 9
Ll22 1 [16] 25 Pink noise HRIRs made wearing different headphones 15
Ll22 2 [16] 25 Speech recordings HRIRs made wearing different headphones 15
Ll22 3 [16] 5 Rainfall recordings HRIRs made wearing different headphones 15

2.2 Feature extraction

Given the limited available data, a pre-trained feature
extractor was employed to leverage the compact repre-
sentations learned from a much larger corpus of general
audio data. This allows the MLP regression model to
be trained on a meaningful, but lower dimensionality,
representation of the dataset. The feature extraction
mechanism aims at reducing the number of input fea-
tures into the MLP while maintaining as much relevant
information as possible.

In this study, the neural network model detailed in Sec-
tion 2.3 was trained using features extracted using the
VGGish network [12]. VGGish, a modified version of
VGG16 architecture, is an 11-layer convolutional neu-
ral network (CNN) that has been pre-trained on audio
data from the YouTube-8M dataset [18], which incor-
porates log-mel spectrogram-based inputs for feature

extraction. The VGGish model produces 128 features
per test signal for each second of audio in a single au-
dio channel. For audio signals that are longer than 1
second, only the first 128 features are used in this study.
This is equivalent to truncating the signal to one second,
and is done to ensure all signal durations produce re-
sults with the same dimensions. It should be adequate,
as colouration in the used listening test data is assumed
to be approximately constant over the entire signal. As
all audio signals are binaural, the left and right channel
features are concatenated, resulting in 256 features per
binaural signal.

2.3 Model

An MLP was trained to predict binaural colouration
using the features extracted using the VGGish extractor
as input. A block diagram illustration of the model is
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Fig. 2: Structure of the multilayer perceptron (MLP) regression model used in this study to predict binaural
colouration.

presented in Fig. 2. The model consists of a feature
input layer, the size of which is equal to the number
of features outputted by the feature extractor, which
in this study was N = 256. The feature input layer is
followed by two fully connected hidden layers, both of
size M = 32, and the final output layer, which consists
of a single unit to predict the final colouration value. A
Rectified Linear Unit (ReLU) activation layer is also
applied to the output of each hidden layer.

The model is optimised using mini-batch Stochastic
Gradient Descent with Momentum (SGDM), with the
mean-squared-error (MSE) between the predicted and
ground truth colouration values as the loss function to
be minimised. The initial learning rate is 5×10−4, the
maximum number of epochs set to 200, and the batch
size is set to 32. The validation loss is calculated every
20 epochs, with a validation patience of 10 to allow
early stopping. The model with the best validation loss
is the one taken forward to be evaluated on the test set.

2.4 Data augmentation

Due to the limited available training data, two data
augmentation methods were explored to investigate
their potential to improve the performance of the model
through effectively increasing the amount of training
data. The results and effects on the validation set are
reported here.

Many established methods for audio data augmenta-
tion either directly or indirectly alter the spectral con-
tent of the data [19]. As such, these methods are not
suitable for this study as they would likely cause a

change in perceived colouration and thus invalidate the
associated ground truth value. Therefore, the options
available were limited and only temporal changes were
employed. The training data was duplicated and aug-
mented, whereas the listening test results were simply
duplicated.

The first augmentation method is a time-reversal of
the signals (herein referred to as ‘reverse’). The dis-
creet time signal x(n), where n denotes the sample, is
reversed by

xrev(n) = x(N−n) (1)

where N is the total number of samples in the signal.

The second augmentation method is a time-rotation of
the signals (herein referred to as ‘circshift’, whereby
the beginning of the signal is moved to the end and the
end is brought forward. A signal x(n) processed with
circshift[M] becomes

xcircshift[m](n) = x(
mN

M+1
+n mod (N)) (2)

where m is the index of the duplication and M is the
total number of duplications. For example, one duplica-
tion of data (denoted here as circshift[1]) would mean
the first half of the signal is swapped in position with
the second half of the signal. For two duplications (circ-
shift[2]), the first duplication moves first third to the
end while the second two thirds are moved to the start;
the second duplication moves the first two thirds to the
end while the last third is moved to the start. While
‘reverse’ can only augment the data once, ‘circshift’
allows for many more augmentations of the data.
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Table 2: Results of initial model training using differ-
ent data augmentation methods. RMSE and
STD denote the mean and standard deviation
of the root-mean-square error between the ten
repeats, respectively.

Training Validation
Augmentation RMSE STD RMSE STD

none 8.51 3.9 13 0.867
reverse 8.66 2.78 13.3 0.849
circshift[1] 8.69 3.21 12.5 1.15
circshift[2] 10.1 2.97 12.2 0.586
circshift[3] 8.03 1.26 11 0.528
circshift[4] 8.77 3 11.5 0.994
circshift[5] 7.77 1.42 10.5 0.56

The configurations of augmentation methods employed
in this study are summarised as follows:

• none: No data augmentation. Training data di-
mensions [152,256]

• reverse: Training data signals duplicated with
signals time-reversed. Training data dimensions
[304,256]

• circshift[1-5]: Training data signals duplicated
with signals time-shifted. Training data dimen-
sions [304,256], [456,256], [608,256], [760,256]
and [912,256], respectively

To evaluate the effects of the different data augmenta-
tion methods, an MLP was trained ten times for each.
To ensure repeatability, the random seed was fixed for
each iteration, such that the first repeat with each aug-
mentation method would use the same seed, and the
next repeat would use a different common seed. Table 2
presents the initial results on the training and valida-
tion data for the models trained using seven training
datasets: one of which is the original without data
augmentation (‘none’), and six with data augmenta-
tion. Two metrics are reported: the mean (RMSE) and
the standard deviation (STD) between the root-mean-
square error (RMSE) of the ten repeats.

The first observation of these initial results is that over-
fitting appears evident from the lower RMSE values
for training than validation (see Table 2). This is likely
due to the small amount of training data. Secondly, the
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Fig. 3: Root-mean-square error (RMSE) between the
validation results with different data augmen-
tation options pre-feature extraction, for 10 re-
peats of training the model with different ran-
dom seeds.

standard deviation between RMSE for each repeat of
the training is far higher than that for validation. A
likely explanation for this was found by observing that
in some training repeats, the loss would briefly jump,
and never recover to the values found in other repeats.
It may also be a result of there being less data in the
validation set.

To look in more detail at the effect of augmentation
methods on the validation set, Fig. 3 presents violin
plots of the validation RMSE. Here it seems that the
first augmentation method, reverse, does not gener-
ally appear to improve the validation loss. The more
promising results seem to be as the number of signals
in the training dataset increases significantly in size
(e.g. for circshift[3-5]): here the validation loss is sig-
nificantly lower than for no data augmentation. These
results helped to inform the evaluation in the following
section.

3 Evaluation

To evaluate the final models, the mean listening test
ratings (perceived colouration) were compared to pre-
dicted colouration values made using the trained neu-
ral networks with the as-before-unseen test subset of
the data. For an additional comparison to the current
state-of-the-art, the results from the proposed neural
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networks are also compared to three signal processing-
based binaural colouration methods. These are basic
spectral difference (BSD), log spectral distance (LSD)
and PBC-2 (mckenzie2025 in the auditory modelling
toolbox):

• BSD: mean absolute difference in dB between the
reference and test spectra

• LSD: Root-mean-square difference in dB between
the reference and test spectra

• PBC-2: Auditory model with features includ-
ing signal rectification, high frequency smooth-
ing, equivalent rectangular bandwidth frequency
weighting, binaural weighting

Fig. 4 and Fig. 5 present block diagrams for the evalua-
tion stage using the trained MLP and the PBC-2 audi-
tory model, respectively. This illustrates the differences
between the two methodologies.

While the MLP networks have been trained to produce
colouration predictions within the same range as the
listening test results, the raw BSD and LSD predictions
require transformation to fit a range of 0-100. This was
done using the linear regression coefficients as calcu-
lated in [5], with respective slope and intercept values
of a = 4.803 and b = 13.379 for BSD, and a = 4.101
and b = 10.252 for LSD. The PBC-2 model already
transforms outputs to fit within this range.
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Fig. 5: Block diagram summary of the PBC-2 auditory
model [5] and its use in this study.

3.1 Results

The predictions are analysed using a linear regression
fitting; the results of which are presented in Table 3.
Three measures are reported: R2

adj, the proportion of
explained variance (the squared correlation coefficient
but corrected for the number of predictors, which is
one in this case); MxAE, the maximum absolute error
between the ratings and predictions; and RMSE, the
root-mean-square error between the ratings and predic-
tions. Note: more accurate predictions of the listening
test results are indicated by higher R2

adj values, and
lower MxAE and RMSE values.

Firstly, all tested models produce a positive correlation
between the predicted and perceived colouration val-
ues, suggesting that VGGish features can be used to
predict binaural colouration. The range in R2

adj values
show that all variants of the MLP networks perform
somewhat comparably to the simple signal-processing
colouration methods BSD and LSD. However, they are
all significantly worse than the more tailored PBC-2.
The best performing network was the one with circ-
shift[4] training data augmentation, which achieved an
R2

adj = 0.639. This demonstrates a notable improve-
ment on BSD and LSD.
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Table 3: Results from the linear regression between the
predicted and perceived colouration, of the
neural networks (top) and signal processing
colouration methods (bottom). R2

adj., MxAE
and RMSE denote adjusted explained vari-
ance, maximum absolute error and root-mean-
square error, respectively.

Processing R2
adj. MxAE RMSE

none 0.549 28.87 12.9
reverse 0.535 36.39 13.1
circshift[1] 0.502 39.83 13.88
circshift[2] 0.531 33.88 13.3
circshift[3] 0.445 37.62 14.38
circshift[4] 0.639 29.59 11.45
circshift[5] 0.541 33.82 13.08

BSD 0.557 34 12.92
LSD 0.521 37.3 13.34
PBC-2 0.901 16.3 6.164

To further understand the results of the regression anal-
ysis and how the different model iterations compare,
Fig. 6 illustrates the predicted versus perceived coloura-
tion and the prediction error. An interesting observa-
tion can be made by comparing the predicted error
plots. While BSD and LSD seem to significantly over-
estimate colouration values below 20, the MLP net-
works and PBC-2 appear somewhat less susceptible to
this trend.

4 Discussion

The results show that feature embeddings from VG-
Gish demonstrate a certain degree of generalisability
and can be applied to specific tasks, such as predicting
binaural colouration. Its performance was comparable
to baseline signal processing methods, such as BSD
and LSD, with some of the tested feature augmenta-
tion and distillation techniques enabling it to outper-
form these approaches. Generally, the models that
better correlated with the listening test results also had
lower maximum and average errors. However, even the
best-performing MLP configurations performed signifi-
cantly poorer than the auditory model PBC-2.

A key limitation observed in the results is the likely
presence of significant overfitting. This is evident from
the pattern of RMSE values across training, validation,

and test sets, which typically increased from the train-
ing to validation to test set. Notably, models that ex-
hibited consistently lower training and validation loss,
such as those employing circshift[3] and circshift[5],
produced higher errors for the unseen test set. To ad-
dress this, future development should employ proce-
dures such as K-fold cross-validation to obtain a more
accurate measure of general model performance.

One of the primary constraints affecting model perfor-
mance is the limited availability of data. The small
dataset likely contributed to overfitting and played a
significant role in the diminished performance observed
on the test set. This suggests that the models were not
generalising well beyond the training and validation
data. Addressing this limitation would require access
to a more extensive dataset, which would be costly and
time consuming to acquire.

Additionally, what data there is is still somewhat lim-
ited in terms of content and colouration type. Almost
75% of sounds use pink noise as the stimulus. A greater
variety is needed with more music and speech, and a
greater range of both transient and periodic sounds.
Over 50% are binaural renders of Ambisonic signals.
Whilst the processing on these signals differs, from
equalisation to different order-dependent colouration to
HRIR pre-processing steps, more variation in types of
colouration should be explored such as between HRIRs
from different heads and degradations from perceptual
coding algorithms (e.g. lossy data compression). More
than 80% are single-source stationary anechoic signals.
Reverberant signals, multiple-source complex scenes,
moving sources, and varying source widths should be
better represented in the data. Finally, the listening tests
used in this study primarily featured male Caucasian
participants between the ages 20 and 40. This is not
representative of the general population and should be
addressed, as models trained on the current data will
be biased.

With regard to data augmentation, the current approach
involved duplicating listening test results. A poten-
tial refinement would be to replace the duplication of
the mean across all participants and repetitions with a
leave-one-out strategy, introducing variation into the
duplicated mean perceptual values. Other audio aug-
mentation methods that do not affect colouration should
continue to be explored too, as it is likely that even a
larger dataset of listening experiment data will be in-
sufficient in many cases.
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Another point of discussion is the suitability of the
used feature extractor. The VGGish network used in
this study was originally trained at a sample rate of
16 kHz on a dataset that may not be directly relevant to
the task at hand (YouTube audio clips). As many of the
important spectral cues in binaural signals are present
at high frequencies (above 5 kHz), and a 16 kHz sam-
ple rate will have a nyquist frequency of 8 kHz, it is
possible that many important spectral features will not
be represented in the extracted VGGish features. Given
these constraints, it is somewhat surprising that VG-
Gish was able to generalise at all. Future developments
will explore alternative feature extraction methods that
are more specifically suited to binaural colouration.
At a minimum, incorporating some form of auditory
front-end modeling prior to feature extraction could be
beneficial. Alternatively, leveraging the PBC-2 model
in conjunction with a neural network could be investi-
gated.

Finally, other avenues for improving the current
methodology include hyperparameter optimisation in
the MLP training process. Fine-tuning the model
parameters could enhance performance and mitigate
some of the observed limitations. However, this is ex-
pected to offer minor improvements when compared
to the other more significant developments such as a
larger and more diverse dataset, greater and more ef-
fective data augmentation methods, and more binaural
colouration-specific feature extraction methods.

5 Summary

This paper has presented an exploratory study into
the use of shallow neural networks in predicting the
colouration between binaural signals, utilising feature
embeddings obtained from a VGGish pre-trained con-
volutional neural network for large-scale audio classi-
fication. Seven versions of the proposed model with
different data augmentation methods have been tested
and compared to three signal processing methods for
predicting binaural colouration. Results show that the
MLP networks offer comparable, and in some cases
improved, performance to the simple signal process-
ing methods BSD and LSD, but fall short of the more
complex PBC-2.

Although the results of this study were not close to
the state-of-the-art PBC-2 model, this approach shows
promise. A number of avenues can be explored to im-
prove the results. First and foremost is the need for a

larger dataset with more diverse signals in areas such
as: complexity of scene (number of sources), reverber-
ance, colouration type, sound source content (transient
and periodic, wide-band and narrow-band), among oth-
ers. Secondly, other features could be explored: while
VGGish does work, using features specific to coloura-
tion may be more appropriate, such as those produced
by the PBC-2 model’s peripheral processing stages.
Additional data augmentation and hyperparameter op-
timisation may serve to improve model performance
with the given data. Finally, future work to reduce
the overfitting will only serve to improve the overall
generalisability of the models.
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