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Abstract

In economically developed countries most lean individuals presenting with insulin-dependent diabetes have autoimmune
type 1 diabetes. However, in many rural areas of low- and middle-income countries (LMIC), 40-50% of individuals with
a similar clinical presentation are negative for diabetes-associated autoantibodies at initial clinical presentation. The phe-
notype differs from the classical presentation of type 1 diabetes even in those with evidence of an autoimmune process:
altered autoantibody profile; later peak age of onset; and, in those with post-pubertal clinical presentation, more marked
male predominance. The incidence of insulin-dependent diabetes in LMIC is low, even when assessing those with and with-
out autoantibodies together. A framework of possible pathophysiological mechanisms underlying the observed phenotypic
differences is presented to explain how chronic undernutrition and micronutrient deficiencies might alter the presentation
of insulin-dependent diabetes. Inhabitants of rural sub-Saharan Africa (SSA) depend almost entirely on staple foods grown
locally in nutrient-deficient soil. The resulting chronic undernutrition, often intergenerational, affects linear growth and
body morphology, and has direct immune and non-immune effects on beta cell development and function. Undernutrition
directly affects thymic function, alters the autoimmune profile and is often associated with social deprivation and parasitic
infection, both of which can delay and modify the (auto)immune response. Non-immune effects of undernutrition include
beta cell stress, associated with apoptosis and formation of neoantigens. That environmental effects of undernutrition and
social deprivation affect the altered insulin-dependent diabetes phenotype is shown by the movement back towards a classi-
cal type 1 diabetes phenotype in offspring of emigrants from SSA who are born in and develop insulin-dependent diabetes
in an economically developed country. The degree of phenotype change depends on how long the parents have lived in their
adopted country. It has recently been proposed that insulin-dependent diabetes in those who are mal/undernourished be called
type 5 diabetes. There is need for clinician recognition of the altered phenotype(s) of insulin-dependent diabetes resulting
from chronic undernutrition in rural LMIC. Additionally, changes in agricultural practice are needed to improve the nutrient
content of food consumed by the rural population.
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The unusual phenotype
of insulin-dependent diabetes
in sub-Saharan Africa

The phenotype of insulin-dependent diabetes has been well
characterised in economically developed countries where
autoimmune type 1 diabetes accounts for the overwhelming
majority of all insulin-dependent diabetes. However, insu-
lin-dependent diabetes (with or without autoimmune input)
has been largely neglected in low- and middle- income
countries (LMIC), although these countries represent 86%
of the world’s population. Published evidence suggests that
people in sub-Saharan Africa (SSA) presenting with clini-
cal features of type 1 diabetes have a phenotype differing
from that of type 1 diabetes in the economically developed
world. In their recent publication on type 1 diabetes phe-
notype in SSA, Katte et al reviewed in detail publications
from a variety of countries, representing widely different
regions of SSA [1]. Most of the people in these regions
are composed of indigenous African ethnic groups. Some
countries, such as Eritrea, Sudan and Mali, have an Arab
admixture while others have had influences from the Indian
subcontinent. In their review, there is a general consensus
on the phenotype of type 1 diabetes with respect to mark-
ers of autoimmunity, peak age of onset and degree of male
predominance in adult-onset diabetes but exceptionally few
published data on the detailed prevalence of HLA class Il
alleles. There are limited data on the occurrence of autoan-
tibodies in newly presenting individuals, necessary as their
prevalence changes with time from first clinical presenta-
tion. Available data, however, do suggest that newly pre-
senting individuals have an autoantibody profile differing

from that found in the economically developed world in
that, while many have anti-GAD antibodies, relatively few
have anti-IA-2 and anti-ZnT8 antibodies [1]. By contrast,
at clinical onset, most individuals with type 1 diabetes who
are of European background have multiple autoantibodies
[2]. Next, the peak age of clinical onset in SSA is in the
mid-20s, a decade later than in economically developed
countries [3—6]; after this early peak, a percentage of indi-
viduals present in later life in both LMIC [3] and European
countries [7, 8]. Finally, although there is no consistent sex
difference in incident cases among pre-pubertal children,
onset in post-pubertal young adults exhibits significant male
predominance both in LMIC [9, 10] and in economically
developed countries [7, 8, 11, 12], with male predominance
being much greater in socially deprived rural communities
of SSA [6]. These sex differences do not appear to be related
to islet cell autoimmunity [12]. In addition to phenotypic
differences, the incidence of type 1 diabetes is lower in SSA
than in economically developed countries [6], in line with
the well-known geoepidemiological gradient of all autoim-
mune diseases that are lower in LMIC than in economically
developed countries [13]. However, specifically in type 1
diabetes, death before getting access to insulin probably also
contributes to the low recorded incidence. One published
exception is Eritrea where the incidence of childhood-onset
type 1 diabetes is moderately high [10]. These presenta-
tional differences in a disease that symptomatically resem-
bles type 1 diabetes at its clinical onset raise questions as
to the aetiology and pathogenesis of the disease in these
mainly thin, Black African communities and whether they
result from differences in the prevalence of high-risk HLA
genes, environmental variation or their interaction.

Phenotype of insulin-dependent diabetes in chronic undernutrition in sub-
Saharan Africa (SSA): type 5 diabetes

Differences vs economically developed countries

e Age of onset: about one decade later

e  Autoimmunity: lower levels of anti-GAD, anti-lIA-2 and anti-ZnT8 autoantibodies. In approximately
40-50% of individuals there is no obvious autoimmune basis for the disease
e Sex: in young adults, the male predominance is greater

Reasons

The phenotype is modified by chronic undernutrition and its effects on beta cell stress and immune function

via environmental and/or genetic influences

Conclusions

Clinicians working in SSA should recognise the different phenotype(s) of insulin-dependent diabetes in the
continent, especially in the rural areas where there is almost total dependency on staple foods grown lo-
cally in nutrient-deficient soil. Modernisation of farming methods and soil enrichment would improve nutri-
tion for the whole community and specifically for women of child-bearing age
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The role of genetics

Tishkoff and colleagues have documented the vast
genetic diversity of SSA, believed to be much greater
than among non-Africans [14, 15]. Some genetic loci
show signatures of adaptation to different environments,
diets and pathogens [15], and are probably combined
with more recent epigenetic changes. Additionally,
in some northern areas close to ancient European and
Arab trade routes, genetic elements from these trading
groups have been incorporated into African genomes
over many centuries [15]. For example, the Amhara of
North-West Ethiopia, who have formed the basis of our
type 1 diabetes studies in Africa, display some features
associated with people of European descent; they have a
distinct genome that, of those African genomes studied
in detail, exhibits fewest differences from non-African
groups [15]. It has been shown that type 1 diabetes in
this group is associated with HLA class II DR3 and DR4
[16] as is the case for those of European background.
However, elsewhere in Africa the situation may be differ-
ent, with differences between West African (Cameroon)
and European (Belgium) individuals [17]. With more in-
depth knowledge of the diverse African genomes, it will
be interesting to see if or how they alter the phenotype
of type 1 diabetes.

There is, however, persuasive evidence that the African
type 1 diabetes phenotype is modified or even disappears
following migration to an economically developed coun-
try, suggesting the operation of environmental rather than
genetic factors in the altered phenotype. When large num-
bers of Ethiopian Jews migrated from the rural Amhara
region of North-West Ethiopia to Israel, there was a slow
decrease in the age of clinical onset of type 1 diabetes (in
those with at least two HLA class II, high-risk alleles), in
relation to the time their Ethiopian-born parents were resi-
dent in Israel [18]. At the same time, the childhood inci-
dence of type 1 diabetes, which had been extremely low in
Ethiopia (2.75/100,000) [9], rose to be one of the highest
among the Jewish communities in Israel (18.2/100,000),
second only to that of Yemenite Jews [19]. A similar effect
on the incidence of type 1 diabetes was reported among
the Swedish-born children of East African migrants. The
offspring of mothers born in East Africa but living in Swe-
den for 11 years or more had a 22% higher incidence of
type 1 diabetes than those with mothers living in Sweden
for 5 years [20]; the risk of type 1 diabetes increased with
the mothers’ duration of stay in this economically devel-
oped country, underscoring the influence of environment
on the incidence of type 1 diabetes.

Putative environmental factors

Evidence from twin concordance studies [21] and epidemio-
logical observations have implicated possible environmental
factors in the development of type 1 diabetes. A wide range
of environmental factors has been investigated, including
nutrition, viral infections and gut microbiota. Several other
factors have received variable support (see Stene et al for
an extensive review [22]). However, most of these studies
have been carried out in the economically developed world
in the context of overnutrition and obesity. Consequently
little is known as to whether these factors are relevant in
the resource-poor world. The effects of nutrition in diabetes
have most commonly been studied in relation to overnutri-
tion and obesity-related type 2 diabetes, reviewed in [23];
additionally, a large body of data from human and animal
studies has shown that adverse early environments interact
with postnatal factors (excess weight gain/obesity, smoking,
poor diets and physical inactivity) to increase the risk of
type 2 diabetes [24]. In some large urban areas where there
is access to western-style energy-dense foods, the ‘double
burden’ of disease occurs [25], that is, obesity and insulin
resistance co-existing with a continuing state of malnutri-
tion. Since much of the diabetes research focus in LMIC has
been on the rapid rise of conventional, obesity-related type
2 diabetes in large urban centres, less attention has been
paid to lean, insulin-dependent diabetes, which is one of the
commoner forms of diabetes in the poorer rural areas where
undernutrition is more or less continuous and the lifestyle
is active [9].

Undernutrition and stunting in SSA

Overall, about 60% of the 1.54 billion population of SSA
comprises rural dwellers, although this varies from country
to country. For example in Ethiopia, with the second-largest
population in SSA (126.5 million), 78% of the population
lives in rural areas (as of 2023), while in Nigeria, with the
largest population in SSA (224 million in 2023), the rural
and urban populations are almost the same. These rural
communities are often poor and depend on unproductive,
subsistence agriculture for their livelihood. Due to repeated
crop failures and outdated farming methods, which have
depleted the soil of important nutrients, locally grown staple
foods and traditional diets are often nutrient deficient. Food
deficits are frequent and there is vulnerability to flooding,
drought and pests. As a result, protein-energy deficiency and
micronutrient deficiency are common. Urban areas are less
affected as they are not totally dependent on locally grown
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foods and have greater dietary diversity [26, 27]. In the rural
communities, chronic undernutrition is frequently associ-
ated with other forms of deprivation, such as lack of access
to clean water and sanitation, conditions where infestation
with parasites is almost universally present and which may
exacerbate nutritional deficiencies [28].

As a result, many mothers in SSA are underweight, with
BMIs <18.5 kg/mz, and have related micronutrient deficien-
cies including zinc, copper, iron, selenium, iodine, vitamins
A, D and B,,, and folic acid. Rural women of child-bearing
age and lactating mothers are particularly affected, and
more so if the mother is poor and uneducated [29-32]. In
these conditions of chronic intergenerational undernutrition
the genomes of both father [33] and mother [34] will have
adapted to the prevalent nutritional conditions and their
altered (epi)genomes will input to the fetal genome. One
important but poorly understood issue is the emerging evi-
dence that changes in parental genomes have a greater effect
on the metabolism of male offspring compared with female
offspring [35], and this difference is greater in poor rural
communities [36]. The effects on child growth and develop-
ment and immunity [37] in this context are complex and will
depend on the degree and chronicity of under/malnutrition,
whether undernutrition is intergenerational (with epigenome
changes in the parents), the timing of undernutrition and on
the elements in which the diet is deficient. Nevertheless,
nutritional stunting is widespread throughout SSA, affecting
36.6% of children under the age of 5 years [36]. Stunting
is a non-invasive, easily accessible indicator of poor nutri-
tion during the growth period and frequently leads to more
detailed investigations, such as those which involve pancre-
atic and hepatic function.

Undernutrition and insulin-dependent
diabetes

There is a long history of moderate to severe malnutrition
being associated with a condition resembling type 1 diabetes
in different parts of the world. This form of diabetes, previ-
ously called malnutrition-related diabetes mellitus has also
been associated with immune dysfunction and has shown
some presentational differences among the different global
regions, such as India [38], Jamaica [39] and SSA [40], and
is still reported from many LMIC [41]. In Ethiopia, insulin-
dependent diabetes is strongly linked with markers of pov-
erty and nutritional stunting. Young adult men presenting
with symptoms indistinguishable from type 1 diabetes were
up to 2 cm shorter than their non-diabetic male control coun-
terparts, and had evidence of skeletal disproportion [42].
Additionally, male individuals with insulin-dependent diabe-
tes in rural areas were more stunted than those in urban areas
[6], although the female sex displayed similar heights for
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those with versus without diabetes. These studies suggest a
greater effect of undernutrition-related stunting in male indi-
viduals with symptoms of type 1 diabetes, especially rural
males in a largely rural community [6]. This is in line with
research which shows that metabolic traits modified by sub-
optimal early environments preferentially affect male indi-
viduals [35]. The IDF has suggested that insulin-dependent
diabetes associated with under/malnutrition be called type 5
diabetes (without reference to whether it is autoimmune or
not) and has set up a working group to establish appropriate
diagnostic criteria (see idf.org/news/new-type-5-diabetes-
working-group/, accessed 29 April 2025).

Possible mechanisms linking undernutrition
with insulin-dependent diabetes

There is increasing evidence that undernutrition at various
stages of life can affect beta cell development and beta cell
function. These alterations result from both (auto)immune
and non-immune mechanisms that combine to modify the
phenotype of type 1 diabetes and increase the development
of antibody-negative insulin-dependent diabetes (summa-
rised in Fig. 1). In animals exposed to early-life undernu-
trition there is epigenetic silencing of transcription factors
important for hepatic and pancreatic development (e.g.
pancreatic and duodenal homeobox 1 [PDX1], insulin-like
growth factor 2 [IGF2] and hepatocyte nuclear factor 4a
[HNF4a]) [43—45]. These changes have been linked to very
restricted replication of beta cells in utero and to reduced
beta cell mass in rodents. It is of interest that mutations in
some of the same transcription factors (e.g. HNF4a and
PDX1) cause MODY [46]. If, in humans, these transcrip-
tion factors (and others) were to undergo epigenetic silenc-
ing in utero (not yet proven), beta cell replication would be
reduced. What is known is that, unlike rodents, humans have
very restricted beta cell replication after 5 years of age [47,
48], except for limited replication in obesity and pregnancy.
Relevant reports on pancreas size in humans are extremely
rare, and show that with or without evidence of autoimmun-
ity, non-diabetic first-degree relatives of individuals with
type 1 diabetes have smaller pancreases than those of the
general population [49]; the reason for this is obscure.

In healthy individuals, glucose metabolism depends on
the regulation of synthesis—secretion coupling in the beta
cell, which has to respond immediately to changes in blood
glucose levels with an up to 50-fold increase in insulin
synthesis. These responses are highly dependent on rapid
increases in oxidative processes in the mitochondria and
the endoplasmic reticulum (ER). The production of energy
(ATP) in the mitochondria is a multi-step oxidative process
that also produces significant amounts of reactive oxygen
species (ROS), with pathways for removal in health [50].
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Fig. 1 Mechanisms involved in beta cell stress and immune dys-
function in chronic intergenerational undernutrition, showing effects
on type 1 diabetes with altered autoantibody profile (T1D*) and
autoantibody-negative insulin-dependent diabetes (Ab-ve IDD). Beta
cell stress: chronic intergenerational undernutrition probably causes
epigenetic silencing of growth and development transcription fac-
tors, thus limiting beta cell mass. It is also associated with mineral
and vitamin deficiencies that reduce antioxidant levels. Both reduced
beta cell mass and lower antioxidant levels are associated with beta
cell stress. Immune dysfunction: undernutrition in utero causes
thymic atrophy with reduction in both T and B cell lineages. In rural
areas, with poor sanitation, parasitic infection is widespread. The
resulting Th2 immune response (e.g. to helminth infection) opposes
the Thl cell response active in the development of type 1 diabetes,
and has an overall negative effect on autoimmune responses. ER: as
beta cell stress increases, the ER is a key site that, due to oxidative
stress, may not be able to fold all the proinsulin molecules arriving

Even in the healthy state, the beta cell is deficient in anti-
oxidants compared with other pancreatic cells, especially
catalase and glutathione peroxidase [51]. Although it can
normally undertake mitophagy in health, the situation is
different in undernutrition with a restricted diet, and where
antioxidant levels are even lower. In these conditions, as
the amount of oxidative stress in the mitochondria aug-
ments, more mitochondria are damaged, the pathways for
mitophagy become overloaded and the damaged mitochon-
dria and beta cells become dysfunctional [50]. Another
major stress occurs when the ER is suddenly flooded with
newly synthesised proinsulin, which requires folding with
the insertion of three disulphide bonds. Producing these
structural changes in proinsulin leaves the ER in a constant
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in it. This activates the UPR, and as stress continues to rise there are
different outcomes. On the one hand, apoptosis occurs, which can
lead to increased production of Ab-ve IDD. On the other hand, RNA
splicing and neoantigen formation occurs from proinsulin fragments
and post-translationally altered molecules; these neoantigens are not
native molecules, are not represented in the thymus and are not rec-
ognised as ‘self’. The neoantigens react with autoreactive T cells. As
apoptosis increases and more beta cells die, Ab-ve IDD increases as a
proportion of total insulin-dependent diabetes. The degree of autoim-
mune type 1 diabetes developing in those with high-risk HLA class
II alleles will depend on several variables, including the degree to
which the thymus has been affected by undernutrition, the reaction of
autoreactive T cells to neoantigens and the degree by which these fac-
tors are opposed by parasitic infections that stimulate a Th2 response.
Type 1 diabetes will have an altered phenotype (T1D¥*), its propor-
tion of total insulin-dependent diabetes decreasing as Ab-ve IDD
increases. This figure is available as a downloadable slide

state of oxidative stress because proper folding requires oxi-
dative processes [52]. The excess unfolded protein has to
be dealt with by a process known as the unfolded protein
response (UPR), which has two modes depending on the
level of stress. At an early stage of the UPR, an important
aim is to lower the level of mRNA translation and reduce
the burden on the ER (adaptive stage). However, if stress is
prolonged or made worse by environmental triggers, such
as a low-energy diet with reduced antioxidant capacity, then
the next stage of the UPR (terminal stage) is activated. This
leads to apoptosis, as reviewed by Piganelli et al [53]. In
circumstances of undernutrition, apoptosis is probably an
early step in the development of lean type 2 diabetes (which
is not the subject of this paper) but when undernutrition is
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more severe, it may lead to autoantibody-negative insulin-
dependent diabetes (Fig. 1).

These abnormal beta cell processes are also involved in
the production of post-translationally modified neoantigens.
Even in healthy individuals, the beta cell may not complete
the folding of all the proinsulin supplied to the ER, suggest-
ing that the cell is frequently working at maximum capacity
[54]. This results not only in apoptosis but also in the pro-
duction of fragments of proinsulin or post-translationally
transformed molecules, which act as neoantigens that are
not recognised as ‘self” and thus evade immune tolerance.
These fragments/molecules are detected by autoreactive T
cells specific for these modified antigens that circulate in
individuals with type 1 diabetes [55]. It is important to note
that autoreactive T cells circulate at low levels even in health
[56]. However, most people with low levels of autoreactive
T cells do not develop diabetes and it may take a trigger,
such as a viral infection or a diet that increases beta cell
stress (as in prolonged undernutrition), to induce the autoim-
mune process in those with high-risk HLA alleles for type
1 diabetes. Unfortunately it is not possible, as yet, to test
routinely for any putative autoantibodies to the neoantigens
nor to quantify the role of increased levels of neoantigens,
as putative triggers, in the autoimmune response. For recent
detailed reviews of the cellular mechanisms by which the
beta cell contributes to its own death, see Piganelli et al [53]
and Roep et al [57]; this idea was first mooted by Bottazzo
40 years ago [58].

Undernutrition and immunity

Immunity is altered by undernutrition in utero; this results in
thymic disorganisation and atrophy, with thymocyte deple-
tion and some loss of the usual cortico-medullary architec-
ture of the thymus [59]. In addition to effects of undernutri-
tion on general immunity [37, 60], there are implications for
T cell selection, immune tolerance and long-term effects on
immunity [61]. Continued undernutrition in postnatal life
negatively affects T cell bioenergetics, metabolism and func-
tion [62]. Additionally, there are many infective agents with
more specific effects on autoimmune responses in type 1
diabetes and other autoimmune diseases [63]; these include
parasites. For the undernourished living with poor sanita-
tion in rural areas of SSA, parasitic infection is common.
As an example, in helminth infections, which are wide-
spread, T cells are stimulated to give a major T helper 2
(Th2) response, thus opposing the T helper 1 (Thl) effects
associated with autoimmune cell death in type 1 diabetes
(Fig. 1). Helminths have been shown to delay the onset or
inhibit the development of type 1 diabetes [64, 65]. Para-
sitic infections were probably more widespread historically
when suboptimal sanitation was the norm and were possibly
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influential in curtailing the global incidence of autoimmune
diseases [63]. However, with better sanitation and fewer
parasitic infections in the economically developed world,
autoimmune diseases have increased and contribute to the
present geoepidemiological gradient for autoimmune disease
[13, 66].

Insulin-dependent diabetes in rural SSA:
autoantibody positive and autoantibody
negative

First, the expected consequence of an increase in non-
immune-related apoptosis is a higher proportion of autoan-
tibody-negative insulin-dependent diabetes. Second, islet
autoimmunity will be modified, especially in those with
high-risk HLA class II susceptibility alleles, due to the
combined effects of undernutrition on thymic function, the
production of post-translationally modified neoantigens,
and the effects of parasitism (see above). Due to wide-
spread parasitic infection, autoimmune processes are also
likely to be (time-)delayed [64, 65]. A recent study was
undertaken in the Amhara of rural North-West Ethiopia
who suffer from chronic intergenerational undernutrition
and presumed thymic dysfunction. Consecutive, unse-
lected individuals who presented clinically with symp-
toms indistinguishable from autoimmune type 1 diabetes
had low C-peptide levels and were insulin-dependent from
their initial presentation [16]. Of these individuals, 60.6%
were autoantibody positive, most had anti-GAD autoan-
tibodies, very few had autoantibodies to IA-2 or ZnT8,
and 39.4% were autoantibody negative; the autoantibody-
positive group were positive for HLA-DRB3 and HLA-
DR4. Although there was evidence of altered B cell func-
tion (autoantibodies), the level of T cell activity was not
known. By contrast, in those with a European background
a higher percentage are positive for autoantibodies at initial
presentation [2]. A study from Vellore (India) also dem-
onstrated heterogeneity with respect to the autoimmune
basis of insulin-dependent diabetes in young adults [67];
the social circumstances of this Indian group were not dis-
similar from those of rural Ethiopia. Autoantibody-nega-
tive insulin-dependent diabetes also occurs in economi-
cally developed countries with good nutrition; however,
the percentage of total insulin-dependent diabetes is much
lower [68] than that in Ethiopia or India at similar ages of
onset [2]. Since in health the beta cell is working at or near
maximum capacity with respect to the ER and proinsulin
folding (see above) [54], there is almost certainly a low
level of apoptosis in those who are not undernourished; this
could contribute to the low level of autoantibody-negative
insulin-dependent diabetes found in economically devel-
oped countries [2].
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In conclusion, we postulate that both autoimmune type 1
diabetes and autoantibody-negative insulin-dependent dia-
betes are altered in conditions of intergenerational undernu-
trition and deprivation by a complex series of pathophysi-
ological mechanisms. Chronic undernutrition in early life
impairs beta cell development and, if continued, predisposes
to beta cell stress. Stress occurs in the mitochondria and the
ER and activates the UPR, which leads to apoptosis and
autoantibody-negative insulin-dependent diabetes. Stress
also leads to the production of proinsulin fragments and
post-translationally modified proteins. These neoantigens,
which are not seen as ‘self’, can escape immune tolerance.
Thymus dysfunction due to in utero undernutrition is likely
to modify the autoimmune response. In rural areas, autoim-
mune dysfunction is further altered by parasitism. However,
the presence of a reduced diabetes-related autoantibody pro-
file in 60% of individuals with insulin-dependent diabetes
suggests that some autoimmunity remains. It is postulated
that undernutrition in utero will cause thymic atrophy and
alter T cell function but it is difficult to quantify the degree
of T cell dysfunction in vivo in humans. When emigration
is associated with better nutrition, access to clean water and
better sanitation there is a gradual change in the phenotype
in those with high-risk HLA class II alleles for type 1 dia-
betes towards a more classical presentation of the disease.
In the disadvantaged areas of SSA there is a need for clini-
cian recognition of the alterations to the phenotype(s) within
insulin-dependent diabetes. Changes are also needed in the
management of soil and soil enrichment in order to improve
the mineral and micronutrient content of locally grown foods
and, thus, reduce undernutrition.
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