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Abstract—Graph Neural Networks (GNNs) have emerged as a
powerful framework for modeling complex interconnected sys-
tems, hence making them particularly well-suited to address the
growing challenges of next-generation Internet of Things (NG-
IoT) networks. Despite increasing interest in this area, existing
studies remain fragmented, and there is a lack of comprehensive
guidance on how GNNs can be systematically applied to NG-IoT
systems. As NG-IoT systems evolve toward 6G, they incorporate
diverse technologies such as massive MIMO, reconfigurable
intelligent surfaces (RIS), terahertz (THz) communication, satel-
lite systems, mobile edge computing (MEC), and ultra-reliable
low-latency communication (URLLC). These advances promise
unprecedented connectivity, sensing, and automation but also
introduce significant complexity, requiring new approaches for
scalable learning, dynamic optimization, and secure, decentral-
ized decision-making. This survey provides a comprehensive and
forward-looking exploration of how GNNs can empower NG-IoT
environments structured as ten open research questions that span
the relevant theoretical foundations, practical deployments, and
emerging integration pathways. We commence by exploring the
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fundamental paradigms of GNNs and articulating the motivation
for their use in NG-IoT networks. Besides, to further justify their
suitability, we intrinsically connect GNNs for the first time with
the family of low-density parity-check (LDPC) codes, modeling
the NG-IoT as dynamic constrainted graphs where GNNs harness
belief propagation for convergence and interpretability through
density evolution and EXIT charts. We highlight the distinct
roles of node-, edge-, and graph-level tasks in tackling key
challenges and demonstrate the GNNs’ ability to overcome the
limitations of traditional optimization methods. Following this,
we examine the application of GNNs across core NG-enabling
technologies and their integration with distributed frameworks
to support privacy preservation and distributed intelligence.
We then delve into the challenges posed by adversarial at-
tacks, offering insights into defense mechanisms to secure GNN-
based NG-IoT networks. Lastly, we examine how GNNs can be
integrated with emerging technologies like integrated sensing
and communication (ISAC), satellite-air-ground-sea integrated
networks (SAGSIN), and quantum computing. Our findings
highlight the transformative potential of GNNs in improving
efficiency, scalability, and security within NG-IoT systems, paving
the way for future advances. Finally, we summarize the key
lessons learned throughout the paper and outline promising
future research directions, along with a set of design guidelines
aimed at facilitating the development of efficient, scalable, and
secure GNN models tailored for NG-IoT applications.

Index Terms—Graph Neural Network, Internet of Things,
Next-generation (NG).

GLOSSARY

6G Sixth Generation
AIoT Artificial Intelligence of Things
APs Access Points
CDF Cumulative Distribution Function
CLOPS Circuit Layer Operations Per Second
D2D Device-to-Device
DDPG Deep Deterministic Policy Gradient
DNN Deep Neural Networks
DP Differential Privacy
DRL Deep Reinforcement Learning
EXIT Extrinsic Information Transfer
FL Federated Learning
GAEs Graph Autoencoders
GATs Graph Attention Networks
GCNs Graph Convolutional Networks
GraphSAGE Graph Sample And Aggregation
GRLO Reinforcement Learning-Based Offloading



2

GRU Gated Recursive Unit
GWCN Graph-Weighted Convolution Network
HeGNNs Heterogeneous Graph Neural Networks
HoGNNs Homogeneous Graph Neural Networks
HQGNN Hybrid Quantum Graph Neural Network
IIoT Industrial Internet of Things
IoT Internet of Things
IoV Internet of Vehicles
ISAC Integrated Sensing And Communication
LDPC Low-Density Parity-Check
LEO Low Earth Orbit
LLM Large Language Model
MEC Mobile Edge Computing
MIMO Multiple Input Multiple Output
NG Next Generation
NISQ Noisy Intermediate-Scale Quantum
QGNNs Quantum Graph Neural Networks
QML Quantum Machine Learning
RIS Reconfigurable Intelligent Surfaces
RL Reinforcement Learning
SAGSINs Satellite-Air-Ground-Sea Integrated Networks
SFCs Service Function Chains
THz Terahertz
UAVs Unmanned Aerial Vehicles
URLLC Ultra-Reliable Low Latency Communications
VQC Variational Quantum Circuits
WMMSE Weighted Minimum Mean Squared Error

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized the way
we interact with our environment, supporting a vast network
of interconnected devices that communicate and exchange
data seamlessly [1], [2]. As we move toward the next-
generation IoT (NG-IoT) paradigm, driven by the emergence
of 6G, the integration of technologies such as massive MIMO,
reconfigurable intelligent surfaces (RIS), satellites, terahertz
(THz) communications, mobile edge computing (MEC), and
ultra-reliable low-latency communication (URLLC) opens up
unprecedented possibilities for intelligent, low-latency, and
context-aware connectivity [3]. At the same time, recent
advances like integrated sensing and communication (ISAC),
satellite-air-ground-sea integrated networks (SAGSINs), and
quantum-enhanced computing will significantly expand the
system scale, heterogeneity, and complexity of NG-IoT en-
vironments. Despite their potential, the rapid development of
NG-IoT networks involves higher complexity and dynamism,
which introduce critical challenges in terms of scalability,
robustness, and real-time decision-making. As network topolo-
gies become increasingly heterogeneous and time-varying,
achieving efficient resource allocation, topology-aware learn-
ing, and resilient inference under dynamic wireless environ-
ments has become essential.

Traditional approaches, such as optimization-based methods
and conventional deep learning, have been at the forefront
of efforts to enhance 6G-IoT technologies [15]–[20]. How-

ever, these methods are increasingly inadequate in addressing
these rapidly evolving multifaceted demands. While these
approaches have yielded notable improvements, these are
often attained at the cost of eroded scalability and excessive
complexity. For instance, MEC and massive MIMO require so-
phisticated resource allocation and interference management,
which are computationally intensive and, hence, challenging to
implement in real-time scenarios. Similarly, the deployment of
RIS and THz communications necessitates agile environmental
adaptation and robust signal processing techniques, which
traditional optimization methods struggle to handle efficiently.

Graph Neural Networks (GNNs) have emerged as a promis-
ing technique of circumventing these limitations, offering a
novel approach to modeling the complex relationships and
dependencies inherent in NG-IoT networks. Unlike traditional
optimization or deep learning methods that operate on struc-
tured, Euclidean data, GNNs are designed to learn over irregu-
lar, non-Euclidean domains such as graphs. This allows GNNs
to naturally represent the complex, multi-hop relationships
among entities in wireless networks, such as IoT devices, edge
servers, UAVs, and base stations, where the data structure
is inherently graph-like [21], [22]. To better understand the
evolution of GNNs and their capabilities, Table I highlights
their evolution from early graph theory to advanced GNN
models.

Furthermore, GNNs can dynamically adapt to evolving
topologies without retraining, handle varying-sized networks,
and support decentralized inference, all of which are critical
for NG-IoT deployments. Their message-passing architecture
captures both local and global contexts, enabling robust pre-
dictions even under partial observability or uncertain channel
conditions. By contrast, traditional optimization techniques
often suffer from high complexity and limited generalization
capability, while deep neural networks lack the inductive
relational biases required for graph-structured environments.
To illustrate this contrast, Table II provides a comparative
analysis of optimization-based approaches, conventional deep
learning, and GNNs in terms of scalability, computational
complexity, integration flexibility, and real-world applicability.

Existing surveys have significantly contributed to the un-
derstanding of GNNs and their application in wireless com-
munications and in the IoT. For example, Lee et al. [23]
discussed the potential of GNNs in wireless communications,
focusing on how graphical models are constructed and on their
application in wireless networks. As a further advance, Ivanov
et al. [24] provided insights into resource allocation using
GNNs for integrated space and terrestrial networks, while Tam
et al. [25] provided a review of GNN applications in areas
such as network management, offloading strategies, routing
optimization, virtual network function orchestration, and re-
source allocation. Additionally, Suarez et al. [26] focused on
specific use cases of GNNs in communication networks. The
most recent survey was offered by Sabarish et al. [27], who
have explored GNN applications in IoT networks, highlighting
their benefits in spectrum awareness, data fusion, and network
intrusion detection. While these surveys have made consid-
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TABLE I: Overview of Developments from Graph Theory to Graph Neural Networks (GNNs)

Year Category Significance Key Application areas Reference
1956 Classical Graph

Theory
Provided foundational algorithms for
pathfinding in graphs

Shortest Path Algorithms (Routing, Logistics) Dijkstra, E. W. [4]

1977 Centrality Mea-
sures

Introduced measures to quantify node
importance in graphs

Network Analysis (Node Importance in Social and
Communication Networks)

Linton C. Freeman
[5]

1996 Spectral Graph
Theory

Leveraged eigenvalues and eigenvectors
for graph partitioning and embedding

Network Partitioning (Clustering, Community Detec-
tion)

Fiedler, M. [6],
Cvetkovic, D.M.
et al. [7]

2005 Graph Neural
Networks

Proposed using neural networks for
general graphs, extending deep learning
to graph-structured data

Machine Learning (Node Classification, Link Predic-
tion, Graph-Level Regression, Network Communica-
tion)

Gori, M. et al. [8]

2014 Random Walks Enabled learning of node embeddings
by random walks, pioneering unsuper-
vised learning on graphs

Extends convolutional neural networks to graph data for
feature learning (Natural Language Processing, Recom-
mender Systems)

Perozzi, B. et al.
[9]

2017 Graph Convolu-
tions

Applied convolution operations to graph
data, revolutionizing graph learning
with scalability and efficiency

Extends convolutional neural networks to graph data for
feature learning (Social Networks, Citation Networks)

Thomas N. Kipf
and Max Welling
[10]

2018 Graph
Attention
Networks

Introduced attention mechanisms to
graph learning for more adaptive rep-
resentation learning

Introduced attention mechanisms for graph learning
(Recommender Systems, Social Networks, Computa-
tional Biology)

Velickovic, P. et al.
[11]

2019 Quantum
GNNs

Integrated quantum computing to im-
prove large-scale graph processing and
optimization

Integrated quantum computing for large-scale graph
processing and optimization (Quantum Computing,
Cryptography, Large-Scale Networks)

Liao, Y. et al. [12]

2023 GraphGPT Combined large language
models(LLMs) with graph structural
learning via instruction tuning, enabling
cross-domain generalization

Generalized graph representation across datasets with
zero-shot and supervised learning using text-graph
alignment (Zero-Shot Learning, Instruction-Tuned
LLMs, Cross-Modal Graph Learning)

Tang, J. et al. [13]

2024 Retrieval-
Augmented
GNNs

Unified retrieval + GNN framework to
inject non-parametric knowledge into
graph learning, improving generaliza-
tion for unseen entities or relations

Knowledge Graphs, Open-World QA, Recommender
Systems

Han, H. et al. [14]

TABLE II: Comparison of Optimization Approaches, Traditional Deep Learning, and GNNs in NG-IoT Networks

Criterion Optimization Approaches Traditional Deep Learning Graph Neural Networks (GNNs)

Scalability Low scalability, often limited by prob-
lem size and complexity.

Limited scalability, the model works on
a trained network size.

High scalability, able to handle variable
network sizes.

Computational
complexity

High, especially for large-scale prob-
lems. High, requires large training datasets.

Moderate to low, efficient at handling
graph-structured data with fewer train-
ing samples.

Practical implementa-
tion

Moderate, difficult for large network
size.

Moderate requires high memory to save
models for different network sizes. Practical and flexible.

Integration with
emerging technologies

Limited requires specific modifications
for different technologies.

Moderate can be adapted, but with sig-
nificant effort and computational cost. High easily integrates.

erable progress, this treatise provides an up-to-date critical
appraisal of the relevant follow-up advances. Besides, these
surveys tend to focus on isolated use cases or specific layers
of the network stack, lacking a holistic exploration of how
GNNs can address the growing complexity of next-generation
IoT (NG-IoT) systems. Most prior studies provided technical
summaries, but fall short of offering a practical framework or
decision-making guide for selecting appropriate GNN models
for different NG-IoT tasks.

Moreover, critical issues such as deployment feasibility,
system cost, energy efficiency, and communication overhead,
which are essential for real-world GNN deployment, have not
been discussed. The role of decentralized structures and fed-
erated learning, which are increasingly important in privacy-
sensitive distributed IoT networks, also remains underex-
plored. Additionally, wireless networks, due to their open and
distributed nature, are particularly vulnerable to threats such
as eavesdropping, jamming, and adversarial attacks [28]–[30].

Yet, most surveys inadequately tackle GNN robustness under
such threats, leaving a critical knowledge gap in the context
of secure and resilient NG-IoT operations.

Furthermore, prior review papers tend to focus on specific
aspects of GNN applications, missing a holistic perspective
that integrates multiple technologies and their interactions.
The future potential and emerging applications of GNNs
are frequently overlooked, limiting the scope to existing
technologies. Importantly, the question of why GNNs are
needed in NG-IoT networks has often been overlooked in
previous studies. In contrast, this paper aims to comprehen-
sively address this gap by presenting an integrated survey that
explores both the theoretical and practical dimensions of GNN
deployment in next-generation IoT systems. We formulate ten
open questions that collectively examine the core challenges
and opportunities of applying GNNs in NG-IoT environments.
These include foundational discussions, including the justifica-
tion for GNNs based on the structural characteristics of NG-
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III. Applications of GNN in 6G-IoT Networks

4. How do GNNs enhance communication and computation efficiency in
massive MIMO, RIS systems, satellites, THz, MEC, and URLLC
systems?
5. How can GNNs enhance integrity, security, and scalability along with
blockchain for IoT systems?
6. How Can GNNs Collaborate with Distributed Systems in NG-IoT
Networks?

9. How can GNNs enhance the performance and scalability of future
integrated sensing and communication and space-air-ground-sea
integrated networks?
10. How can GNNs and future computational technologies, like quantum
computing, work together to enhance the capabilities of NG-IoT
networks?

II. Graph Neural Network and 6G-IoT Network as Graphs

1. What Are Graphs and Graph Neural Networks?
2. Why GNNs for NG-IoT Networks? How Do We Model NG-IoT
Systems as Graphs?
3. How Can GNNs Be Efficiently Implemented and Optimized for
Real-World NG-IoT Systems?

V. The Role of GNNs in Future Integrated Networks and
Quantum Computing

I. Introduction

VI. Generic Design Guidelines

IV. Adversarial Attacks and Defense Mechanisms for
GNN-Based 6G-IoT Networks

7. How do adversarial attacks exploit vulnerabilities in GNN-based NG-
IoT networks?
8. What are the most effective defense techniques against adversarial
attacks in GNN-based NG-IoT networks?

VII. Lessons Learned, Future Research Directions, and 
Conclusions

Fig. 1: Structure of this paper.

IoT networks and a novel theoretical bridge to low-density
parity-check (LDPC) codes, as well as strategies for model
selection, convergence analysis, and interpretability. Moreover,
we investigate real-world deployment challenges, including
scalability, cost-efficiency, security, and application diversity,
along with the role of GNNs in enabling distributed and fed-
erated learning across heterogeneous network infrastructures.
We also examine how GNNs can be integrated with future-
proof technologies such as integrated sensing and communi-
cation, space-air-ground-sea integrated networks, and quantum
computing. Each question is explored in depth, providing an
overview of the existing body of research, open challenges,
and future directions. Through this lens, we aim to equip
researchers and practitioners with a holistic understanding of
how GNNs can empower the next wave of intelligent IoT
systems. A summary of these open questions is provided in
Table III. The main contributions of this paper are summarized
as follows:

• We design an overview of graph neural networks in
NG IoT systems, discussing their definitions, paradigms,
and key use cases. To justify the use of GNNs, we
analyze the unique characteristics of NG-IoT networks
and bridge them to the factor graph with the low-density

parity-check (LDPC) code to show how GNNs serve
as learnable generalizations of belief propagation. This
connection supports exploring the GNN convergence with
density evolution and training interpretability via EXIT
charts. We explain the roles and benefits of node-, edge-
, and graph-level tasks in wireless network problems,
offering practical examples to guide their application in
various NG-IoT scenarios. We compare the performance
of different GNN models, including our proposed hybrid
quantum GNN harnessed for power allocation in cell-free
massive MIMO, demonstrating the efficiency of GNNs
and the potential of quantum GNNs for future research.

• We explore key factors influencing the efficient deploy-
ment of GNNs in real-world NG-IoT environments, in-
cluding on-device implementation, multimodal data inte-
gration, cost considerations, and sustainability.

• We present a comprehensive review of GNN applications,
carefully categorized by the core technologies driving
NG advances. These include massive MIMO schemes,
RIS, Satellite, THz communications, MEC, URLLC, and
blockchain. We also discuss the integration of GNNs
with distributed systems, highlighting how they mutually
enhance scalability, privacy, and collaborative intelligence
in NG-IoT networks.

• To fully harness the advantages of GNNs, we conduct an
in-depth examination of adversarial attacks and defense
techniques in GNNs, providing essential insights into the
security challenges and solutions for deploying GNNs in
NG-IoT networks.

• We explore the potential of GNNs in shaping NG-IoT
networks, focusing on identifying adversarial attacks and
proposing defense techniques. We also examine the use of
GNNs in future integrated networks, including ISAC and
SAGSINs. Additionally, we discuss the role of quantum
computing in NG systems, highlighting how the combina-
tion of quantum and GNN can enhance GNN capabilities
and the challenges of implementing them.

• Table IV offers a detailed comparison between our work
and other state-of-the-art surveys in the field, emphasizing
the unique contributions and advances presented in this
paper.

Paper Organization: The remainder of the paper is orga-
nized as follows. Section II provides an overview of GNNs,
including their definitions and fundamental paradigms. We
highlight the essential role of GNNs in NG-IoT networks
and describe how to represent NG-IoT environments as graph
structures. Various graph task types, including node-, edge-
, and graph-level, are introduced, followed by a simulation
study on power allocation in cell-free massive MIMO systems
to compare the performance of different GNN models. In
Section III, we survey GNN applications across key NG tech-
nologies, including massive MIMO, RIS, satellite communica-
tions, THz, MEC, URLLC, and blockchain, along with their
integration with distributed systems. Section IV delves into
adversarial GNNs, examining potential attack methods and
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TABLE III: Summary of Open Questions on GNN-Based NG-IoT Networks.

Open Questions Background State-of-the-art Challenges and Future Directions
1) What Are Graphs and
Graph Neural Networks?

Graph definition and Graph Neural Networks
(GNNs) paradism • Graph data, GNN Paradigm, and GNN

variants [31]–[33]
• The explainability and scalability of

GNNs [34], [35]

• Model depth and over-smoothing
• Scalability of GNN models
• Security
• Privacy-specific to GNN

2) Why GNNs for NG-IoT
Networks? How Do We
Model NG-IoT Systems as
Graphs?

NG-IoT networks feature dynamic topology,
heterogeneity, and non-Euclidean structures,
making them well-suited for graph modeling.
GNNs enable effective learning at node, edge,
and graph levels to address these complexi-
ties.

• Node-level task [36]–[45]
• Edge-level task [46]–[50]
• Graph-level task [51]–[54]

• High computational and memory require-
ments.

• Divide large graphs into subgraphs for
local learning and then aggregate

• Adapting DE and the EXIT chart to ana-
lyze GNN and model design

3) How Can GNNs Be Ef-
ficiently Implemented and
Optimized for Real-World
NG-IoT Systems?

Deploying GNN in real NG-IoT environ-
ments is affected by multiple aspects, in-
cluding model deployment, multi-modal data,
socio-economic dimensions of GNN, includ-
ing cost consideration and sustainability.

• Model Optimization for Edge and
Cloud Deployment [55]–[58]

• Multi-modal data processing in NG-
IoT networks [59], [60]

• Cost consideration [61]–[64]

• Resource constraints at edge devices
• Need for real-time, scalable inference
• Multimodal data integration
• Deployment cost and energy efficiency

4) How do GNNs enhance
communication and com-
putation efficiency in mas-
sive MIMO, RIS systems,
satellites, THz, MEC, and
URLLC systems?

Massive MIMO, RIS Systems, Satellite, THz
Communication, MEC, and URLLC are es-
sential for enhancing NG-IoT system perfor-
mance, coverage, and efficiency

• Massive MIMO [22], [48], [65]–[70]
• RIS Systems [70]–[73]
• Satellite [74], [75], [75]–[79]
• THz Communication [80]–[82]
• MEC [83]–[91]
• URLLC [92]–[95]

• Heterogeneity of the network’s entities
• Dynamic resource allocation with diverse

constraints
• Scalability

5) How can GNNs en-
hance integrity, security,
and scalability along with
blockchain for IoT sys-
tems?

Blockchain is a promising technology for
ensuring data integrity and security in IoT
systems. GNNs can help enhance blockchain-
based IoT systems by improving node clas-
sification, enhancing security, and supporting
scalable solutions

• User privacy [96]
• Application distribution among IoT

networks [97]
• Malicious node detection [98]

• Computational and communication burden
• Ensuring data integrity and security in

decentralized environments
• Lightweight GNN models design
• Privacy-preserving mechanisms

6) How Can GNNs Collab-
orate with Distributed Sys-
tems in NG-IoT Networks?

Distributed learning and GNNs together
enable scalable, privacy-aware intelligence
across NG-IoT edge devices.

• Distributed architecture for GNN in
NG-IoT networks [99]–[107]

• GNN for the distributed systems in
NG-IoT networks [41], [95], [108],
[109]

• Unstable training and poor convergence.
• Lack scalability in large or dense net-

works.
• Synchronization and consistency
• Evolving graphs demand online updates

due to varying environments.

7) How Do Adversarial At-
tacks Exploit Vulnerabili-
ties in GNN-Based NG-IoT
Networks?

GNN models are vulnerable to adversarial
attacks, where small changes to input data can
degrade performance. In NG-IoT networks,
these attacks threaten data integrity, disrupt
services, and pose security risks in various
applications.

• Adversarial Homogeneous Graph Neu-
ral Network [110]–[114]

• Adversarial Heterogeneous Graph
Neural Network [115], [116]

• Adversarial HoGNN defense
• Trade-off between deconstructing perfor-

mance and computational complexity
• Explore joint attack methods involving

multiple algorithms.

8) What are the most ef-
fective defense techniques
against adversarial attacks
in GNN-based NG-IoT net-
works?

Defense strategies are crucial to safeguarding
GNNs from adversarial threats to ensure ro-
bust deployment of GNNs in critical NG-IoT
applications, including smart cities, health-
care, and autonomous systems

• Adversarial Homogeneous GNN de-
fense [117], [118]

• Adversarial Heterogeneous GNN de-
fense [119], [120]

• Adversarial training
• Defensive distillation: Distill knowledge

from a complex model to a simple one
• Hybrid defense approaches to improve ro-

bustness.

9) How can GNNs enhance
the performance and scal-
ability of future integrated
sensing and communica-
tion and space-air-ground-
sea integrated networks?

Future integrated networks like SAGSINs and
ISAC are crucial for ensuring seamless con-
nectivity across multiple domains. GNNs can
enhance the performance and scalability of
these networks by optimizing communication
and sensing processes and handling complex
cross-domain interactions.

• Integrated Communications and Sens-
ing [82], [121]

• Space-air-ground-sea integrated net-
works [88]

• Scalability and heterogeneity in ISAC and
SAGSINs

• Privacy and security issues in integrated
communication and sensing

• Lack of standardized protocols for seam-
less integration of GNNs

10) How can GNNs
and future computational
technologies, like quantum
computing, work together
to enhance the capabilities
of NG-IoT networks?

Quantum computing has the potential to ad-
dress the computational limitations of GNNs,
providing enhanced capabilities for process-
ing complex graph data in NG-IoT networks

• Quantum computing and quantum cir-
cuits [122]–[124]

• Variational quantum circuit for GNN
[125]

• Hybrid quantum graph neural network
[126]

• Noisy intermediate-scale quantum (NISQ)
devices

• Standard optimal variational quantum cir-
cuits for implementing QGNNs guarantee-
ing efficient circuit design and scalability

• Quantum cryptography with GNN
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TABLE IV: Related surveys on the applications of GNN in NG-IoT networks versus our study.

[127] [26] [25] [24] [23] [128] [21] [27] Our research
Categorizing NG-IoT net-
work problems by graph
problems

✓ ✓ ✓ ✓ ✓ ✓

Efficient deploy GNN in
real NG-IoT environments Model deployment, multi-modal data,

socio-economic dimentions
✓

GNN for NG technologies

Massive MIMO ✓ ✓ ✓ ✓

RIS ✓

Satellite Communication ✓ ✓ ✓ ✓ ✓

THz ✓ ✓

URLLC ✓ ✓

Edge computing ✓ ✓ ✓ ✓ ✓

Blockchain ✓ ✓ ✓

Distributed systems ✓

Adversarial attack and defense
on GNN

✓

GNN with future NG-IoT net-
works and technologies

Integrated communication and sensing ✓

Space-air-groud-sea integrated networks ✓ ✓

Quantum GNN ✓

defense strategies in GNN-based NG networks, with a focus
on both homogeneous and heterogeneous graph settings. In
Section V, we discuss the integration of GNNs with emerging
NG technologies, including ISAC, SAGSINs, and quantum
graph neural networks. Section VI will provide a set of generic
design guidelines. Finally, Section VII concludes the paper.
For convenience, we treat each of the eight open questions in
the form of an identical structure: 1) Background; 2) State-of-
the-art; 3) Challenges and future directions.

II. FOUNDATIONS OF GNNS FOR NG-IOT
In this section, we address Open Questions 1, 2, and 3.

We commence by introducing the fundamental concept of
graphs, distinguishing between key types such as directed vs.
undirected and homogeneous vs. heterogeneous graphs. We
then provide an overview of Graph Neural Networks (GNNs),
including their working principles and prominent architectures,
such as Graph Convolutional Networks (GCNs) [10], Graph
Attention Networks (GATs) [11], Graph Autoencoders (GAEs)
[129], and Graph Spatial-Temporal Networks (GSTNs) [130].
Each of these models is designed to address specific challenges
associated with learning from graph-structured data. Following
this, we explore Open Question 2 by examining why GNNs
are particularly suitable for NG-IoT networks. We analyze the
unique characteristics of NG-IoT environments and illustrate
how these systems can be effectively modeled as graphs. We
then bridge NG-IoT traits to graph-based modeling through the
factor graphs inspired by LDPC decoding. GNNs, as learnable
generalizations of belief propagation, enable convergence anal-
ysis via density evolution (DE) and offer training insights via
the extrinsic information transfer (EXIT) charts, reinforcing
their suitability for dynamic, scalable, and structured NG-IoT
environments. The advantages of node-, edge-, and graph-
level tasks are discussed in the context of optimizing key
wireless functions, such as power allocation, user association,
and network deployment, with practical examples provided.
Subsequently, we present simulation results comparing the per-
formance of different GNN architectures, including a proposed

Vertex/Node

Undirected edge

Directed edge

Undirected graph Directed graph
Homogeneous

graph
Heterogeneous

graph

Edge type 1

Edge type 2

Node type 1

Node type 2

Fig. 2: The left figure separates the family of graphs into
undirected and directed types. The right figure classifies the
graph into homogeneous and heterogeneous types.

hybrid quantum GNN model, which demonstrates promis-
ing potential for enhancing wireless communication systems.
Finally, in addressing Open Question 3, we investigate the
challenges of deploying GNNs in real-world NG-IoT environ-
ments. This includes considerations for model implementation,
multi-modal data processing, and socio-economic dimensions
of GNN. Therein, we explore various types of costs, including
computational, energy, and infrastructure costs, that must be
considered to ensure cost-effective and scalable GNN adoption
in NG-IoT environments. Therein, we analyze key cost consid-
erations, including deployment, operational, and infrastructure
expenses, as well as the sustainability challenges associated
with deploying GNNs in NG-IoT environments.

Open Question 1: What Are Graphs and Graph Neural Net-
works?

1) Background:

Graph Definition: A graph is a mathematical representa-
tion consisting of a set of vertices (also called nodes) and edges
(also called links) that connect pairs of vertices. In general,
a graph is represented by a tuple G = (V, E). The set of
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Fig. 3: Examples of graphical data representations from var-
ious fields. (a) Communication system. (b) Molecules. (c)
Social network.

|V| vertices is denoted by V = {1, ..., v, ...|V|}, while the
set of edges is defined based on the graph types: Undirected
graph: E = {(i, j)|i, j ∈ V, i ̸= j}, where (i, j) represents
an undirected connection between vertices i and j; Directed
graph: E = {(i, j)|i, j ∈ V, i ̸= j}, where (i, j) is the edge
directed from vertex i to vertex j. Graphs can also be cate-
gorized into two types based on the nature of their nodes and
edges: Homogeneous graph: Consists of a single type of node
and a single type of edge; Heterogeneous graph: These graphs
include multiple types of nodes and edges. The illustrations
of different types of graphs are represented in Fig. 2. This
diversity better represents complex real-world networks, such
as wireless communication systems, where different devices
and connections exist. The adjacency matrix of the graph is
represented as A ∈ {0; 1}|V|×|V|, where Aij = 1 if (i, j) ∈ E .
For an undirected graph, A is symmetric, while for a directed
graph, it may not be. The node feature matrix X is a |V|×Fn

matrix, where each row corresponds to a vector of features
for a node. Similarly, the edge feature matrix E is a |E| × Fe

matrix, where each row corresponds to features of an edge.
By storing information in the nodes and edges, the graph can
capture the complexity of real-world networks, as illustrated
in Fig. 3. In Fig. 3(a), a hierarchical wireless communication
network is represented as a graph, where each system entity,
including user equipment (UEs), unmanned aerial vehicles
(UAVs), and access points (APs), is modeled as a node.
Communication links between entities are depicted as edges,
with different edge types capturing distinct connection types.
For example, the edge between an AP and the i-th UAV is
denoted as eU-A1 = [gi], while the edge between the i-th UAV
and the j-th UE is denoted as eU-Uij = [hij ], representing
their respective channel gains. Fig. 3(b) illustrates another
graph-based example: a chemical structure. Here, atoms such
as Carbon (C), Oxygen (O), Nitrogen (N), and Sulfur (S) are
represented as nodes, while chemical bonds (single, double,
or aromatic) are represented as undirected edges. Fig. 3(c)
shows graph modeling in social networks, where individuals
are nodes and their interactions, such as friendships, follows,
or message exchanges, form the edges. These edges can be
directed or undirected, depending on the nature of the rela-
tionship. For instance, a “follow” on platforms like Instagram

or Twitter is a directed edge, while a mutual friendship results
in an undirected edge. Such graph representations are widely
used in applications like recommendation systems, influence
propagation, and community detection.

Graph Neural Network Paradigms:
• What is GNNs?: GNN is a specialized neural network

designed for processing and analyzing graph data. GNNs
are effective at extracting deep-level topological informa-
tion, unveiling critical and intricate data characteristics,
and enabling efficient data processing [8]. The core idea
of GNNs is to learn a mapping function to generate node,
edge, or graph representations, known as embedding
vectors, based on initial graph information.

• How GNNs work?: As the GNN processes the graph,
each node’s embedding vector is iteratively updated by
aggregating its own features with information gleaned
from neighboring nodes and edges, as shown in the graph
convolutional layer block of Fig. 4. In the context of
wireless networks, this framework allows the modeling
of complex relationships of users as nodes and their links
(e.g., interference, connectivity, or cooperation) as edges.
GNNs can learn meaningful representations that capture
spatial-, temporal-, and resource-related dependencies,
thereby enabling efficient solutions for tasks such as
user association, frequency and power allocation, relay
selection, and mobility prediction. The final node or edge
embeddings are then input to the downstream layer in
support of task-specific decisions. In contrast, MLP treats
each node independently without leveraging structural
relationships, aggregating information only from fully
connected layers, while CNN applies local filters to
structured grid-based data, capturing spatial dependencies
within a fixed neighborhood but lacking adaptability to
irregular graph structures. Ultimately, each node and edge
obtains an embedding that captures the broader network
context. The GNN model then processes these node and
edge representations to produce node-level, edge-level,
or graph-level features for tasks such as node clustering,
link prediction, or graph classification. Fig. 4 illustrates
the general pipeline of a GNN model, comprising input
data, graph convolutional layers, and a downstream task
layer.

• Types of GNNs and their functionality: GNNs can be
categorized based on architecture and function, includ-
ing Graph Convolutional Networks (GCNs) [10], Graph
Attention Networks (GATs) [11], Graph Autoencoders
(GAEs) [129], and Graph Spatial-Temporal Networks
(GSTNs) [130]. GCNs aggregate node features via convo-
lution operations, making them scalable for large graphs.
GATs introduce attention mechanisms to assign dynamic
weights to edges, enhancing the model’s ability to capture
complex relationships. GAEs, designed for unsupervised
learning, use an encoder-decoder framework for graph
reconstruction and anomaly detection [131]. GSTNs in-
tegrate spatial and temporal information, making them
ideal for time-evolving data like traffic prediction [132],
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Fig. 4: A general pipeline for solving wireless network problems using GNNs. The pipeline illustrates how graph-structured
data, such as users, base stations, and links, is processed via graph convolutional layers to generate embeddings that facilitate
downstream tasks like user association, resource allocation, and interference management.

[133] and dynamic network analysis [134].
GNNs also integrate with Reinforcement Learning (RL)
for decision-making in graph-structured problems [135],
[136]. In such hybrid models, GNNs extract graph
features, which RL algorithms leverage for sequential
decision-making. This synergy is particularly effective
in applications such as network routing [137], robotics
[138], [139], and multi-agent systems [140].

Privacy-specific to GNNs: The relational learning
paradigm of GNNs introduces distinct privacy challenges
that are fundamentally different from those in traditional
deep learning architectures. In contrast to conventional neural
networks that process isolated data points, GNNs inherently
expose sensitive information through their graph-structured
computations, hence resulting in vulnerabilities. Structural pri-
vacy risks arise from the inherent nature of message passing in
GNNs, where iterative aggregation may inadvertently expose
critical topological features, such as bridge links in social
networks, proprietary dependencies in industrial IoT, or cluster
memberships in critical infrastructure, potentially revealing
sensitive relationships and operational structures [141], [142].
In these scenarios, protecting such high-impact connections
is far more important than safeguarding non-essential links,
whose disclosure typically has negligible operational impact.
Attribute inference further aggravates these risks. The infer-
ence of embeddings and/or gradients can be exploited by
adversaries for reconstructing sensitive node or edge attributes,
posing significant privacy threats. Indeed, recent studies show
that node attributes can be reconstructed from gradient updates
[143] or final embeddings, while edge properties, such as
weights and connection types, may be deduced by observing
multiple GNN layers [144], [145].

To mitigate these risks, advanced privacy-preserving tech-
niques have been proposed. For example, Yuan et al. [146]
introduced locally private GNN training frameworks by allo-
cating privacy budgets based on node degrees and aggrega-
tion perturbation methods to enforce personalized differential

privacy (DP) during message passing, reducing leakage while
maintaining utility. Furthermore, personalized DP mechanisms
allow heterogeneous privacy budgets, enabling fine-grained
protection across different nodes and edges. As a further ad-
vance, Li et al. [145] conceived node-level privacy-preserving
embeddings for protecting sensitive attributes, while Sun et
al. [147] developed decentralized DP approaches for the
estimation of subgraph statistics, ensuring the protection of
critical graph connections without sacrificing accuracy. In-
corporating these state-of-the-art DP solutions represents a
promising direction for enhancing privacy in GNN-based NG-
IoT networks.

2) State-of-the-art:

The development of GNNs has resulted in numerous ad-
vances across domains such as social networks, wireless
networks [148], biology [149], and recommendation systems
[150]. Early contributions, such as [31], explored the robust-
ness of GNNs in processing graph data independently of
node permutations, ensuring that GNNs can operate efficiently
across a wide variety of graph structures. A comprehensive
taxonomy of GNNs was provided by Zhou et al. [32], where
the authors categorized GNN models into paradigms like
GCNs, GATs, and GAEs. Further building on this, Wu et al.
[33] focused their attention on the application of GNNs in
recommendation systems, demonstrating how GNNs enhance
recommendation accuracy by leveraging user-item interaction
graphs.

The explainability of GNNs has become a crucial area
of research, Yuan et al. [34] emphasized the importance
of making GNNs interpretable, especially in sensitive areas
like healthcare and finance. They introduced explainability
methods such as GNNExplainer and PGExplainer, which help
identify key subgraphs and node features, hence improving
the transparency of GNN models. Moreover, Keyulu et al.
[151] examined the limitations of shallow GNNs and proposed
deeper architectures for capturing more complex graph struc-
tures and node dependencies, contributing to the scalability of
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GNNs in large datasets. Similarly, Wu et al. [35] augmented
the understanding of GNNs, especially for dynamic and spatio-
temporal graphs, focusing on traffic prediction and network
analysis.

Despite these advances, challenges such as scaling GNNs to
larger datasets, improving interpretability, and enhancing their
application in real-time systems remain. Future research is
expected to focus on overcoming these obstacles for enabling
GNNs to efficiently handle larger datasets and operate in more
complex, real-time scenarios.

3) Challenges and future directions:

• Model Depth and Oversmoothing: A major challenge
in GNNs is the oversmoothing issue, where deeper layers
render node representations to become indistinguishable.
As highlighted by Keyulu et al. [151] and Xu et al. [152],
adding too many layers may result in all nodes having
similar embeddings, hence reducing the model’s ability
to differentiate between them. Solutions like residual
connections and multi-scale GNNs are needed to retain
expressiveness in deeper models. A possible solution
is to incorporate multi-scale attention mechanisms that
could allow GNNs to learn both local and global features
effectively.

• Scalability: GNNs struggle with scalability, particularly
when applied to large graphs. The computational cost
escalates for larger networks. Zhou et al. [32] emphasized
the need for techniques like graph sampling, mini-batch
training, and graph sparsification to make GNNs more
efficient for large-scale applications. To address this,
research into advanced graph partitioning algorithms,
combined with edge and node-compression techniques,
can further reduce the computational burden of large
networks.

• Security: Ensuring the robustness of GNNs, particularly
in adversarial environments, remains an open problem,
where small perturbations to the graph structure or node
features can lead to incorrect predictions. Recent research
has focused on developing adversarial training methods
and robust GNN architectures that can guard against
topology attacks. However, the existing defenses are
still limited, and further advances are necessary in this
area to construct more secure and reliable GNN models
[153]. Strengthening GNN security requires more robust
adversarial training to defend against both structure-
and feature-based attacks. Future work should explore
quantum-safe encryption for secure GNN communica-
tion, especially in critical fields like cybersecurity. Ad-
ditionally, explainable AI methods can enhance trans-
parency and improve the detection of adversarial threats.

• Privacy: While adversarial security has received growing
attention, privacy risks specific to GNNs remain underex-
plored. The message-passing mechanisms of GNNs can
inadvertently expose sensitive topological or contextual
information, such as bridge links or critical community
structures, even in the absence of attacks [141]. Generic

anonymization or link-hiding methods may protect non-
essential edges but fail to safeguard high-impact relation-
ships. Addressing this challenge requires research into
context-aware privacy-preserving methods that specifi-
cally target critical connections and sensitive attributes
in graph data.

Open Question 2: Why GNNs for NG-IoT Networks? How Do
We Model NG-IoT Systems as Graphs?
1) Background:

Why GNNs for NG-IoT networks?:
i) Real-World Challenges of NG-IoT Networks: NG-IoT

environments are marked by high complexity and scale,
which traditional optimization and deep learning ap-
proaches struggle to handle. Their key characteristics
include:
– Dynamic topology: Devices frequently move, join,

or leave the network, leading to constantly changing
connectivity and traffic patterns.

– Heterogeneous Architecture: NG-IoT integrates diverse
components such as IoT sensors, mobile devices, MEC
servers, RIS, base stations, UAVs, and satellites into a
unified but multi-layered network.

– Non-Euclidean Data: Communication signals and traf-
fic flow originate from complex, irregular domains that
do not conform to grid-like structures (e.g., sensor
graphs or channel states).

– Massive Scale and Connectivity: NG-IoT supports
ultra-dense device deployments, resulting in graphs
having large numbers of nodes and edges.

– Interdependent Operations: Tasks such as routing, re-
source allocation, and scheduling rely heavily on node-
to-node dependencies and on the contextual awareness
of the entire system.

To address the complexities of NG-IoT networks, mod-
eling and optimization solutions must satisfy critical
requirements. Models must be capable of capturing both
local and global dependencies across heterogeneous net-
work elements to reflect the interactions in the system.
Solutions must handle the dynamically evolving topolo-
gies of NG-IoT networks. Given the massive scale of
IoT deployments and limited computational capability
at the edge, scalability and efficiency are non-trivial.
The solutions should remain tractable while maintaining
performance across large, distributed graphs. Moreover,
context-aware processing is needed to integrate real-time
information, such as traffic load, latency, and device
states, into the decision-making process. Finally, the mod-
els must exhibit strong generalization to unseen scenarios,
as NG-IoT systems regularly face novel configurations
with new devices and unpredictable traffic behaviors.

ii) NG-IoT as a Dynamic Factor Graph: The aforementioned
characteristics inherently suggest that NG-IoT systems
should be modeled as dynamic graphs, where learning
must be distributed, adaptive, and structure-aware. To
formalize this, we draw inspiration from factor graphs,
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Fig. 5: Graph representation of some NG-IoT networks: (a) Centralized cellular network, (b) Decentralized D2D network, (c)
MEC-enabled network, (d) Integrated satellite and terrestrial network.

a structured inference framework used in error correction
coding, such as low-density parity-check (LDPC) codes
[154]–[157]. In LDPC decoding, a bipartite factor graph
is constructed with variable nodes representing individual
bits of a codeword and factor nodes enforcing parity-
check constraints. The decoding process involves itera-
tive message passing among these nodes. Each variable
node updates its belief (e.g., log-likelihood ratio) based
on incoming messages from neighboring factor nodes,
while each factor node enforces local constraints by
aggregating the messages it receives and sending back
more reliable feedback. This results in a back-and-forth
iterative refinement of estimates that converges under
well-defined conditions, hence enabling accurate signal
recovery even under hostile impairments. This message-
passing and constraint-checking mechanism mirrors the
interactions in NG-IoT systems, where we have:
◦ Variable nodes: Network entities (e.g., devices, satel-

lites, APs) represent states (e.g., power, queue length,
channel quality);

◦ Factor nodes: Network constraints like maximum trans-
mission power or network-wide interference budgets;

◦ Edges: Logical or physical relationships, for example,
data dependencies, interference coupling, or task of-
floading chains.

However, in contrast to LDPC codes, the topology here is
time-varying, with new devices joining and existing ones
disconnecting dynamically. This dynamic graph structure
naturally aligns with the types of graphs processed by
GNNs. Moreover, edges may represent heterogeneous
relationships, such as line-of-sight channels, virtual task
links, or shared computational dependencies, reinforcing
the need for multi-relational and adaptive modeling.

iii) GNNs as generalized LDPC decoding: The LDPC codes
and modern GNNs share a common foundation, message-
passing on graphs, but take fundamentally different ap-
proaches. The LDPC’s fixed message passing:

Fig. 6: Bridging LDPC decoding and GNN-based learning
in NG-IoT networks. (a) LDPC-style factor graph representa-
tion of NG-IoT systems with fixed message-passing between
device states and network constraints. (b) GNN-based gen-
eralization using learnable message passing over a dynamic,
heterogeneous graph with implicit constraint handling.

◦ Variable-to-Factor: Each device combines messages
from all connected constraints using predefined rules.

◦ Factor-to-Variable: Constraints compute responses us-
ing exact, hand-crafted formulas.

Meanwhile, GNNs learned message-passing as
◦ Neural message functions: Devices and constraints

learn optimal communication strategies through train-
ing.

◦ Dynamically weights inputs based on their importance
and network conditions.

While the belief propagation operates on static factor
graphs using fixed update rules such as the sum-product
algorithm, GNNs extend this paradigm by introducing
learnable message-passing mechanisms tailored for dy-
namic and heterogeneous graphs like those found in NG-
IoT networks. The update process is similar in spirit, but
improved flexibility and adaptiveness. Fig. 6(a) illustrates
a traditional LDPC-inspired factor graph, where variable
nodes (e.g., devices, satellites, UAVs, APs) interact with
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check nodes (e.g., QoS, power, and bandwidth con-
straints) through fixed message-passing rules. Fig. 6(b)
presents a GNN-based generalization, where diverse node
types exchange learnable messages over a dynamic,
multi-relational graph. Constraint enforcement becomes
soft as well as adaptive, and message updates are learned
rather than predefined. This transition highlights how
GNNs extend the structure and harness the convergence
principles of LDPC decoding to meet the scalability,
heterogeneity, and flexibility demands of next-generation
IoT systems. Table V presents a structured compari-
son between traditional LDPC decoding and GNN-based
processing in NG-IoT networks. This duality highlights
how GNNs generalize the belief propagation framework
used in LDPC codes by replacing fixed update rules
with learned message functions, enabling dynamic, data-
driven processing over heterogeneous and evolving net-
work topologies. The table outlines key analogies across
graph types, node and edge semantics, message-passing
mechanisms, convergence tools, and application domains,
thus bridging well-established coding theory with modern
GNN-based learning for IoT.

iv) Convergence analysis via density evolution and EXIT
charts for learning analysis:
◦ Density evolution (DE) [154]: LDPC’s DE tracks mes-

sage distributions across iterations to predict decoding
thresholds. For GNNs, Matthieu et al. [158] have
shown that, under mild assumptions (e.g., Lipschitz
continuity), GNN message-passing admits a state-space
evolution analogous to DE. This shows that GNN up-
dates can be viewed as stochastic operators acting over
a structured graph domain, mirroring DE in LDPC sys-
tems. Therefore, the iterative message-passing process
converges to a fixed-point embedding. For instance,
DE can help evaluate the stability and performance
of GNN-based algorithms in resource allocation or
routing under dynamic conditions.

◦ EXIT (Extrinsic Information Transfer) charts: EXIT
charts [157] constitute another core concept in LDPC
decoding, used to visualize how mutual information
between variable and check nodes evolves during itera-
tions. In the GNN context, such visualization is not yet
standard, but analogous metrics have been explored.
For instance, mutual information tracking between
hidden representations across layers has been proposed
in [159], where Kenta et al. showed how deeper GNNs
suffer from representation collapse. By adapting EXIT-
style visual tools to plot mutual information layer by
layer, practitioners can better diagnose issues like over-
smoothing or underfitting, and design more robust and
interpretable GNNs for NG-IoT applications. Further-
more, they can also provide tangible design guidelines
concerning the best converging activation order of
handling the nodes’ inputs. They can also be used
for mitigating the signaling overhead by identifying

the nodes in the immediate neighborhood that are
capable of expediting convergence, while neglecting
those providing marginal improvements.

◦ Bridging insight: Although DE and EXIT charts origi-
nated from coding theory, they provide a solid analyt-
ical foundation for understanding the GNN behavior.
GNNs can be viewed as learnable generalizations of
belief propagation, where instead of fixed message-
update rules, the aggregation and update functions
are parameterized by neural networks. This flexibility
introduces challenges in theoretical analysis but also
allows tools from LDPC research to be reinterpreted
to provide convergence guarantees and learning diag-
nostics for GNN-based solutions. To elaborate a little
further from an LDPC perspective, codes having short
cycles in their factor-graph invariably perform poorly.
Hence, further research is required for eliminating short
cycles in the GNNs. By the same token, LDPC codes
having rates between 1/3 and 2/3 tend to have the best
performance. Therefore, the factor-graph-based design
of GNNs has a high promise for future research.

Given the aforementioned characteristics and analytical find-
ings, GNNs offer a naturally compatible and theoretically
grounded framework for NG-IoT networks:

• Structure-aware modeling: GNNs operate directly on
graph-structured data, allowing them to represent com-
plex relationships among heterogeneous network entities
(e.g., devices, APs, UAVs, satellites).

• Dynamic message passing: Unlike static models, GNNs
use learned message-passing mechanisms that adapt
to evolving network topologies and conditions, en-
abling real-time, context-aware, and distributed decision-
making.

• Theoretical grounding: By generalizing belief propaga-
tion from LDPC codes, GNNs can leverage insights from
density evolution and EXIT charts to analyze convergence
behavior and guide the design of stable, efficient archi-
tectures.

• Scalability and generalization: GNNs naturally general-
ize across varying graph sizes and structures, making
them robust to unseen network conditions. They remain
scalable through techniques such as graph sampling,
partitioning, and hierarchical modeling.

• Training diagnostics and interpretability: EXIT charts
provide mutual information tracking that helps identify
and mitigate issues like over-smoothing and represen-
tation collapse in deep GNNs, improving learning effi-
ciency and interpretability.

Graph representation of NG-IoT networks:
To address NG-IoT network challenges effectively, they

must first be formulated as graph-based problems. To do so,
this involves key steps:

1) Identifying graph components: Define key elements for
the NG-IoT network and map them to graph components.



12

TABLE V: GNN-LDPC Duality in NG-IoT Systems

Aspect LDPC Decoding GNNs in NG-IoT Networks
Graph Type Static bipartite factor graph (variables ↔ parity checks) Dynamic multigraph (devices, APs, servers, constraints, etc.)
Variable Nodes Bits (e.g., codeword elements xi) Device states (e.g., power, location, queue length, CSI)
check nodes Parity-check constraints Physical/logical constraints (e.g., interference limits, delay, energy

budgets)
Edges Binary connections between variables and checks Typed edges for wireless links, task dependencies, or shared

resource constraints
Message Type Log-likelihood ratios (LLRs) Learnable embeddings
Message Passing Sum-product algorithm (fixed) Trainable functions
Learning No learning (hand-crafted rules) Data-driven learning via backpropagation
Convergence Tool Density evolution (analytical) Neural density evolution [158]; convergence under Lipschitz con-

ditions
Information Flow EXIT charts for decoding visualization EXIT-inspired metrics to diagnose layer-wise training dynamics
Applications Error correction (bit decoding) Power control, scheduling, routing, anomaly detection in NG-IoT

• Nodes: User equipment, base stations, access points,
UAVs, satellites, MEC servers, RIS, etc.

• Edges: Communication links, interference channel,
data dependencies.

• Graph types: Directed vs. undirected, homogenous vs.
heterogeneous graphs.

2) Mapping network data to graph information: Associating
network data with the corresponding graph elements.
• Node features: Device type, mobility, energy consump-

tion, transmission power, individual data.
• Edge features: Link quality, latency, interference level,

channel gain.
• Global network characteristics such as connectivity

density or overall traffic load.
3) Graph construction based on network characteristics

• Centralized Networks (e.g., Cellular Networks)
– Description: Rely on centralized infrastructure like

base stations for communication.
– Key Features: Wide coverage, high reliability, scal-

able.
– Graph Representation:

i) Vertices: Base stations, IoT devices, and core
network elements.

ii) Edges: Links between devices and base sta-
tions, and base stations to the core.

– Example: Fig. 5(a) depicts a typical cellular system
where UEs connect to APs, and APs forward data
to a central server. This forms a heterogeneous
graph with nodes representing UEs, APs, and the
server, and edges modeling wireless and wired
communication links. Such a structure supports
centralized resource control and coordination.

• Decentralized Networks (e.g., D2D, Mesh/Ad-hoc Net-
works)

– Description: Enable direct device communication
without centralized infrastructure.

– Key Features: Low latency, energy-efficient, re-
silient.

– Graph Representation:
i) Vertices: IoT devices.

ii) Edges: Direct, dynamic links between devices.
– Example: Fig. 5(b) shows devices communicating

directly without central infrastructure. Each device
is a node, and edges represent dynamic, peer-
to-peer links. This homogeneous graph structure
captures local interactions in energy-efficient and
latency-sensitive applications.

• Edge-Enabled Networks (e.g., MEC-enabled Net-
works)
– Description: Use edge computing for localized data

processing.
– Key Features: Low latency, real-time analytics,

AI/ML integration.
– Graph Representation:

i) Vertices: IoT devices, edge servers, cloud data
centers.

ii) Edges: Links between devices and edge servers,
and edge servers to the cloud.

– Example: Fig. 5(c) showcases a network architec-
ture enhanced with mobile edge computing, where
edge servers serve as intermediaries between end
devices and the cloud. The graph includes nodes for
IoT devices, edge servers, and cloud infrastructure.
Edges connect devices to their respective edge
servers and edge servers to the centralized cloud.

• Hybrid Networks (e.g., Integrated Terrestrial-Satellite
Networks)
– Description: Combine terrestrial and satellite com-

munication for global coverage.
– Key Features: Ubiquitous connectivity, high relia-

bility.
– Graph Representation:

i) Vertices: IoT devices, base stations, satellites,
ground stations.

ii) Edges: Links between terrestrial and satellite
components.

– Example: Fig. 5(d) illustrates an integrated ter-
restrial infrastructure (e.g., base stations and IoT
devices) with aerial and satellite elements (e.g.,
UAVs, GEO satellites). The graph representation
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includes heterogeneous nodes, such as IoT termi-
nals, terrestrial base stations, UAVs, and satellites,
with edges capturing both ground and space com-
munication links.

4) Problem formulation using graph structures (Incorporat-
ing code, edge, and graph-level tasks)
• Node level: Node-level tasks are particularly advan-

tageous in scenarios where the primary focus is on
optimizing and configuring individual nodes and their
features within a wireless network. These tasks in-
volve associating each variable with a node entity
in the graph, making them well-suited for problems
that require attention to the configuration and per-
formance of specific network components, such as
user equipment, access points, and base stations [41],
[160], [161]. Common node-level tasks include node
classification, node clustering, and node regression,
where each node’s unique characteristics play a vital
role in the network’s overall functionality.

• Edge level: Formulating wireless network problems
as edge-level tasks within GNNs allows models to
focus on capturing the interactions within connected
nodes, which is essential for wireless communication
that relies on device-to-device connections. Particularly
in wireless networks, the quality of communication
links is affected by factors such as distance, interfer-
ence, and environmental conditions. By representing
these links as edges in a graph, GNNs can capture
the intricate relationships and dependencies among
these variables, enabling more accurate predictions
of link quality and improved resource management
strategies. This approach is well-suited for tasks like
link prediction, interference management, and resource
scheduling, where the performance of individual links
is the primary concern.

• Graph level: Graph-level tasks involve obtaining a
global representation of the entire graph, which can
capture comprehensive information that node-level and
edge-level tasks might miss. This global perspective is
vital for tasks that demand a holistic understanding of
the network’s structure and behavior. By summarizing
the representations of all nodes and edges, graph-level
embedding vectors enable the model to leverage global
hidden features beyond the scope of node-level and
edge-level approaches.

2) State-of-the-art:
Table VI provides a summary of existing applications of

GNNs on various IoT network scenarios with three types of
tasks in the graph, highlighting their effectiveness in solving
different types of wireless network challenges.

• Node level: Node-level GNN applications are widely
used in wireless networks, especially in power allocation
[36]–[38], [42]. For instance, in [22], the uplink power
allocation of a cell-free massive MIMO IoT System can
be formulated as a node-level task of an undirected graph,
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Link
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Link
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Link
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Link
22
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: Interference link

Fig. 7: An example of a wireless network graph, where each
communication link is considered as a node.

where users and access points (APs) are represented as
nodes. This approach allows the model to generalize
effectively across different network configurations, ensur-
ing scalability. However, in downlink power allocation,
the problem becomes more complex because each AP
must allocate power vectors that are dependent on the
number of served users, making the task more sensitive
to changes in network size. To overcome this challenge,
Shen et al. [162] proposes to represent communication
links as nodes, as illustrated in Fig. 7. This representation
shifts the focus to the links, allowing the system to
maintain scalability even as the network size varies. This
method ensures that the power allocation process remains
efficient and adaptable in dynamic network environments,
where the number of connected devices may fluctuate.
Furthermore, by representing each communication link as
a node, the node-level tasks lend themselves to solving
link scheduling problems, such as AP-IoT device asso-
ciation or frequency assignment problems. In this way,
decisions regarding transceiver pair scheduling can be
made independently based on the node’s features. This
method enables efficient link scheduling, as demonstrated
in studies like [39], [40].
Node-level tasks also effectively predict user behavior
by analyzing node attributes that capture activity and
communication patterns. In [43], a cellular traffic network
is modeled as an undirected graph with mobile traffic
data as node attributes. This approach enables GNNs to
forecast traffic fluctuations accurately, enhancing network
responsiveness and efficiency. Moreover, node-level tasks
are beneficial in classification problems within wireless
networks. In [44], a GNN was applied to a binary classi-
fication problem to detect anomalies and insider threats.
In this context, nodes represent activity log positions,
while edges represent the contextual relationships be-
tween activities. This node-centric approach allowed the
GNN to identify abnormal patterns effectively. Another
example, Huoh et al. [45] addressed encrypted network
traffic classification by mapping each packet to a node
and using packet relationships and meta-features as graph
inputs. The authors represented the classification problem
by both a node-level task as well as an edge-level task
and revealed that the classification accuracy was higher
when using node-level tasks than edge-level tasks. This
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TABLE VI: Existing application of GNNs on various wireless networks categorized by types of tasks

Task Level Reference Network Architecture Considered Problem Graph Data

Node-level

D. Abode et al. [36] (2023) Industrial Wireless
Subnetworks (IWS)

Power control Undirected + Homogeneous

B. Li et al. [37] (2024) Cellfree-massive MIMO Power control Directed + Heterogeneous

L. Giang et al. [38] (2024) Wireless Sensor Networks Power control Undirected + Heterogeneous

M. Lee et al. [39] (2021) D2D Link scheduling Directed + Homogeneous

T. Chen et al. [40] (2022) D2D Link scheduling Directed + Homogeneous

Z. Wang et al. [41] (2023) RIS Power allocation + RIS phase-
shift

Undirected + Heterogeneous

S. Lyu et al. [42] (2024) RIS Beamforming + RIS phase-shift Undirected + Homogeneous

N. Zhao et al. [43] (2022) Cellular Network Network traffic prediction Undirected + Homogeneous

J. Xiao et al. [44] (2023) Security Network Anomaly detection Undirected + Homogeneous

T. Huoh et al. [45] (2023) Encrypted Network Network traffic classification Directed + Homogeneous

Edge-level

X. Liu et al. [46] (2022) Massive URLLC User association Undirected + Heterogeneous
(Bipartite graph)

Z. Sun et al. [47] (2023) Multi-access Edge Computing
(MEC)

Computation offloading Directed + Heterogeneous

Y. Peng et al. [48] (2024) D2D/ MIMO Power allocation Undirected + Heterogeneous

Y. Wang et al. [49] (2023) Downlink cellular network Power allocation Undirected + Heterogeneous

S. Liu et al. [50] (2023) MISO Precoding design Undirected + Heterogeneous

Sub-Graph/
Graph-level

Y. Yang et al. [51] (2023) Wireless Communication Network deployment Undirected + Homogeneous

Z. Wu et al. [52] (2022) Indoor Localization System Indoor localization Undirected + Homogeneous

G. Wang et al. [53] (2023) MEC Task offloading Undirected + Homogeneous

A. Asheralieva et al. [54]
(2023)

MEC Malicious edge server detection Directed + Homogeneous

indicates the effectiveness of node-level representations
in certain wireless network applications, where capturing
and leveraging node-specific information is crucial for
achieving superior performance.

• Edge level: Edge-level GNNs have proven effective in
addressing various wireless network challenges, espe-
cially in optimizing user association, which is crucial
for enhancing system performance in wireless networks
[163]. Liu et al. [46] utilized the edge-GNN concept
to predict the user-BS association. Similarly, in [47],
the edge-level concept was used to represent the task
offloading problem between wireless devices and mobile
edge computing. In terms of resource allocation, the edge-
level task formulation enhances interference management
by directly modeling interactions between interfering
links. In dense wireless networks, where devices compete
for resources, this approach allows GNNs to predict and
mitigate interference more accurately. By focusing on the
edges, GNNs can optimize scheduling and power con-
trol, hence reducing interference and improving network
performance [48], [49]. Peng et al. [48] revealed that
edge-GNN could perform just as well as the node-GNNs
in power allocation, with the added benefit of reduced
training time. Another advantage of edge-level tasks in
GNNs is their superior scalability in large and dynamic
wireless networks. By focusing on the edges, GNNs

can efficiently manage changes in network topology,
including the addition or removal of links, without being
constrained by the number of nodes. By contrast, node-
level tasks may struggle to attain scalability, particularly
in scenarios like downlink power allocation. Here, the
output dimension at an AP node is typically fixed based
on the number of users, limiting flexibility as the network
grows. By associating the power allocation variable with
the edge, as demonstrated in [49], [50], edge-level GNNs
can more effectively adapt to varying network sizes,
ensuring scalability.

• Graph level: Graph-level tasks have proven to be highly
effective in optimizing large-scale wireless networks by
providing a holistic understanding of the entire network
structure. For instance, a novel GNN-based approach is
proposed by Yang et al. [51], optimizing the deployment
of network nodes to enhance the overall network through-
put, treating the entire network as a unified entity. The
authors model the network throughput as the maximum
flow of the network and employ a GNN for learning the
relationship between node deployment and network flow.
Their simulations demonstrate that addressing wireless
policies at a graph level significantly outperforms simpler
node-level regression tasks, underscoring the importance
of a global understanding of the network. Another ex-
ample is found in [52], where a GNN-based federated
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learning framework is proposed for indoor fingerprint
localization. The problem is modeled at two levels: the
client level and the server level. For clients, each received
signal strength sample is treated as a graph, and a GNN
is utilized for predicting locations through a graph-level
regression task.
Edge computing substantially benefits from graph-level
tasks due to the need for a holistic view of the inter-
connected network, especially in task offloading. Wang
et al. [53] minimized the average offloading delay by
using a Branch & Bound (B&B) algorithm, representing
the process as an enumeration tree of edges and nodes.
Briefly, the GNN processes the input state and action
pair to derive the MEC system’s reward through the final
graph-level embedding, which is then used for optimizing
the offloading strategy via the B&B method. Similarly,
Asheralieva et al. [54] model MEC networks relying on
multiple edge servers as a directed multigraph, where the
GNN produces a graph-level embedding used for man-
aging security and efficiency. This approach illustrates
how graph-level tasks can effectively handle complex
problems that require considering the entire network,
leading to accurate and robust solutions.

• Simulations:
Model architecture: We consider the uplink power allo-
cation for a cell-free massive MIMO system, where M
APs jointly serve K users simultaneously. The goal is
to allocate uplink transmission power for maximizing the
minimum user rate across the system. The uplink data rate
for each user is adopted from [164]. The global solution
may indeed be obtained, but it is computationally ex-
pensive, especially for large-scale networks experiencing
dynamic user and channel conditions. This makes real-
time optimization challenging. Using GNN provides an
efficient design alternative.
As suggested by Peng et al. [48], the cell-free massive
MIMO system can be represented as a heterogeneous
graph. Therein, the associated max-min fairness problem
can be formulated either as an edge-level task or a node-
level task and then solved using the edge and node
convolution-based methods, respectively. To evaluate the
effectiveness of different GNN architectures for this task,
we harnessed both models from [48] plus proposed some
new ones. Below is a summary of the models considered:
– Node-GNN: Updates node features, representing users

and APs, to allocate power based on node-level char-
acteristics.

– Hybrid Quantum GNN (Our proposal): The
HQGNN uses the GNN to preprocess and generate
node embeddings, which are then handled by a deep
quantum neural network (DQN) using quantum circuits
for power allocation.

– Edge-GNN: Updates edge features, representing the
connections between users and APs, to allocate power
based on edge-level characteristics.

Fig. 8: An example of a wireless network graph where each
communication link is a node.

– Graph-GNN: Utilizes global graph pooling to aggre-
gate features across all nodes’ embeddings and then
uses the graph embedding vector to predict the power
allocation.

Simulations and results: In this simulation, we consider a
cell-free massive MIMO system, where 6 users are simul-
taneously served by 30 access points. The APs and users
are uniformly distributed in a square area of size D×D
km2. The path loss model follows a three-slope model
based on [165], which accounts for different propagation
conditions depending on the AP-UE distance. Only large-
scale fading coefficients are used as inputs of the GNNs.
We model the system as a bipartite graph associated with
two types of nodes, including cellular users and access
points. Fig. 8 presents the performance of various GNN
architectures, illustrated using the cumulative distribution
function (CDF) derived from 10, 000 realizations of a
cell-free massive MIMO system.
The results show that an edge-GNN and a node-GNN
constitute a pair of models capable of approximating
the optimal solution. Briefly, these two models achieve
a minimum rate above 1bps/Hz in about 65% of the
instances. The hybrid quantum GNN, which integrates
quantum circuits into the Node-GNN architecture, also
performs competitively. Quantitatively, this model tends
to achieve 1bps/Hz in about 64% of the instances.
On average, the Edge-GNN, Node-GNN, and HQGNN
models provide data throughputs of 1.0783, 1.0733, and
1.0640 bps/Hz, respectively. By contrast, the optimal
solution achieves an average throughput of 1.129 bps/Hz,
slightly outperforming all GNN models, but at the cost
of significantly higher computational complexity, partic-
ularly as the network size escalates. The graph-GNN
performs worst of all GNN models, with less than 40%
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of cases reaching a minimum rate of 1.0 bps/Hz. This
poor performance is attributed to its global aggregation of
information, which fails to capture the crucial local node
and edge interactions necessary for optimizing power
allocation in the network. Overall, the results underscore
the superiority of node-level GNN models, particularly
of those utilizing attention mechanisms for solving the
power control problem of cell-free massive MIMO sys-
tems. Furthermore, the hybrid quantum GNN offers an
intriguing avenue for integrating quantum computing into
GNN architectures.

3) Challenges and future directions
Again, a significant challenge in modeling GNNs for wire-

less networks is ensuring scalability, particularly when dealing
with networks that have inherent constraints, such as limited
node resources or dynamic topology changes. As the graph
size grows, the computational cost and memory usage increase,
making it challenging to maintain the target performance
in real-time. To address this challenge, a promising future
direction is to partition the large graph into multiple sub-
graphs, allowing GNNs to learn locally within each subgraph.
The information learned from each subgraph may then be
aggregated, ensuring that the model is able to process graphs
of varying sizes without losing generalization capabilities.
This approach can mitigate scalability issues and maintain
performance across different network scales. Moreover, in-
tegrating tools from coding theory, such as DE and EXIT
charts, offers new opportunities to analyze and improve GNNs
in NG-IoT networks. While DE provides convergence guar-
antees in LDPC decoding by tracking message distributions,
its application to GNNs is still developing, particularly in
the context of dynamic and heterogeneous graph structures.
Similarly, using EXIT charts to monitor mutual information
across GNN layers could help identify training bottlenecks like
over-smoothing, though more formal metrics and empirical
studies are needed. Future research could focus on adapting
these tools to analyze GNN convergence, guide model design,
and support scalable learning across distributed and partitioned
network environments, thereby enabling more interpretable
and robust GNN deployment.
Open Question 3: How Can GNNs Be Efficiently Implemented
and Optimized for Real-World NG-IoT Systems?
1) Background:

NG-IoT systems require real-time decision-making, scala-
bility, and energy efficiency. To efficiently deploy GNNs in
NG-IoT systems while meeting these requirements, several key
aspects must be considered:

Model Optimization for Edge and Cloud Deployment:
Deploying GNN in NG-IoT systems requires careful consider-
ation of computational optimization, energy usage, scalability,
and resource-constrained IoT devices, edge nodes, and cloud
platforms:

• Embedded GNNs for lightweight devices: Embedded
GNNs are designed to operate on specialized hardware
platforms with limited computational resources, such as

AI chips, Field-Programmable Gate Arrays (FPGAs), and
Edge Tensor Processing Units (TPUs). Unlike traditional
DL models that rely on large-scale GPU or cloud-based
processing, embedded GNNs enable on-device learning
and inference, reducing the reliance on cloud services
and minimizing latency.

• Model compression techniques for efficient deployment:
To address computational constraints, several model com-
pression techniques have been introduced to optimize
GNN performance without sacrificing accuracy: 1) Quan-
tization reduces numerical precision in model param-
eters, storing weights in lower-bit representations such
as 8-bit integers instead of 32-bit floating points. This
technique significantly reduces memory footprint and
speeds up inference, making GNNs feasible for real-time
applications in NG-IoT systems [56]; Pruning removes
unnecessary connections and redundant parameters while
preserving the graph structure. By selectively eliminating
edges or nodes with minimal contribution to the model’s
performance, pruning reduces computational overhead
and enhances efficiency. This approach is particularly
useful for energy-efficient deployment on edge devices,
as demonstrated in recent work on sparse GNNs [57];
Knowledge distillation enables a smaller, compact GNN
(student model) to learn from a larger, complex GNN
(teacher model). This process allows for transferring
knowledge from high-capacity models to lightweight ver-
sions while retaining predictive performance.

• Hardware acceleration for GNN inference: Beyond
software-level optimizations, specialized AI hardware has
been developed to enhance the execution speed and
energy efficiency of GNNs. Hardware accelerators such
as Graphics Processing Units (GPUs), Tensor Processing
Units (TPUs), Application-Specific Integrated Circuits
(ASICs), and neuromorphic chips have been explored
for GNN inference, offering improvements in parallelism
and computation efficiency. GPUs and TPUs, in partic-
ular, have demonstrated substantial speedups in GNN
message-passing operations, making them ideal for large-
scale graph-based learning in NG-IoT networks [166].

Multi-modal data processing in NG-IoT networks: Data
processing plays a vital role in deploying GNNs in NG-IoT
networks, which often involve multimodal data sources, such
as sensor readings, network logs, user interactions, images,
or text, as illustrated in Fig. 9. The integration of diverse
data modalities presents challenges related to data synchro-
nization and representation [167]. Traditional unimodal pro-
cessing methods often fail to fully utilize the correlation and
complementary information between different modalities. In
contrast, GNNs can naturally model the relationships between
heterogeneous data sources, capturing their interdependencies
in complex IoT environments [59], [60]. Fig. 9 illustrates how
heterogeneous data sources, such as images, temperature, hu-
midity, GPS, voice, and text, are processed through dedicated
multi-modal tools (e.g., image processing, text analysis, and
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Fig. 9: Multi-Modal GNN Framework for NG-IoT Applica-
tions.

sensor embeddings) to generate graph-structured data. A multi-
modal GNN then learns from these fused graph representations
to support various NG-IoT tasks, including energy-efficient
routing, resource allocation, anomaly detection, smart moni-
toring, device failure prediction, and fault detection.

However, ensuring the scalability and efficiency of multi-
modal GNNs in real-world NG-IoT systems remains an open
challenge, requiring further research into data pre-processing,
representation learning, and computational optimization tech-
niques.

Security, Privacy, and Scalability Challenges: As NG-
IoT applications involve large-scale, interconnected devices
handling sensitive data, ensuring the privacy of IoT users
and the security of IoT applications is critical. Indeed, IoT
networks are inherently vulnerable to adversarial attacks and
inference manipulation, hence necessitating robust security
mechanisms. To address these concerns, encryption-based
training, differential privacy techniques, and secure multi-party
computation can enhance security for GNN deployment. Given
the importance of these challenges, we provide an in-depth
discussion on adversarial attacks and defense mechanisms
for GNN-based NG-IoT networks in Section IV, analyzing
different attack strategies and mitigation techniques.

Socio-Economic Dimensions of NG-IoT Applications:
The deployment of GNNs in NG-IoT networks introduces
several socio-economic considerations, including cost, sustain-
ability, and accessibility.

• Cost consideration: Deploying GNNs in NG-IoT net-
works involves significant costs, including training, de-
ployment, and scalability. The training cost includes
computational resources, energy, and hardware costs [61].
Deploying GNNs involves infrastructure costs, such as
purchasing and maintaining edge devices (e.g., NVIDIA
Jetson, Raspberry Pi) or cloud-based resources (e.g.,
AWS, Google Cloud). Operational costs, such as energy
consumption and maintenance, also add to the overall
expense [62]. Meanwhile, scaling GNN-based solutions

to large IoT networks requires additional investments in
hardware, software, and network infrastructure [63].

• Sustainability: Training and deploying GNNs on IoT
devices, especially edge devices, can be energy-intensive.
For example, training even lightweight GNN models on
edge devices can strain battery life and increase oper-
ational costs [64]. Besides, the energy consumption of
GNNs contributes to carbon emissions, particularly when
non-renewable energy sources are used [64]. Accordingly,
this poses sustainable challenges limiting the adoption
of GNNs in NG-IoT networks, especially in regions
with strict environmental regulations or limited access to
renewable energy. Green AI initiatives, such as energy-
efficient algorithms and renewable energy-powered data
centers, are critical to addressing these challenges

2) State-of-the-arts

Model Optimization for Edge and Cloud Deployment: To
streamline the deployment of GNNs in NG-IoT networks, var-
ious studies have explored different key aspects. In an attempt
to embed GNN, Zhang et al. [55] have explored how (FPGAs)
can accelerate message-passing operations in GNNs, leading
to faster inference times while maintaining model accuracy.
Besides, the authors also summarize the challenges that FPGA-
based GNN accelerators need to address. Meanwhile, Wang
et al. [56] proposed a quantization-based approach to address
scalability challenges in GNNs. By compressing models with
low-bit quantization and controlling message propagation, it
reduces computational and memory costs while maintaining
accuracy. The method achieves significant speedups (5.11×
for INT2, 4.70× for INT4), offering a cost-effective solution
for deploying GNNs in NG-IoT networks. Xie et al. [57]
proposed Graph sparsification and network pruning (GASSIP),
a novel framework for lightweight graph neural architecture
search (GNAS) tailored for resource-constrained scenarios. By
combining operation-pruned architecture search and curricu-
lum graph sparsification, GASSIP efficiently identifies optimal
lightweight GNNs with reduced model parameters and sparser
graphs. Extensive experiments show that GASSIP achieves
comparable or superior performance with significantly fewer
resources, making it highly relevant for cost-effective GNN
deployment in NG-IoT applications. In [58], Wu et al. in-
troduced Prototype-Guided Knowledge Distillation (PGKD),
a novel method for distilling high-accuracy GNNs into low-
latency MLPs without relying on graph edges. By leveraging
class prototypes and structure-aware distillation losses, PGKD
effectively transfers graph structural knowledge from GNNs
to MLPs, enabling edge-free learning.

Multi-modal data processing in NG-IoT networks: Li et
al. [59] proposed GNNMR, a multi-modal recommendation
framework that integrates GNNs with deep mutual learning
to address modality bias. By training separate GNNs on
unimodal user-item graphs and using mutual knowledge dis-
tillation, GNNMR synchronizes latent semantic relationships
across modalities, improving multi-modal embeddings. It out-
performs existing methods in Top-K recommendation tasks,



18

making it suitable for NG-IoT applications requiring efficient
user-item interaction modeling. Similarly, Zhang et al. [60]
introduced a GNN framework for multimodal data integration,
leveraging feature, decision, and deep fusion techniques to
achieve high accuracy (98%), recall (86.9%), and F1 score
(0.964). This approach demonstrates robust performance in
complex scenarios, highlighting the potential of multimodal
GNNs for NG-IoT applications.

Cost consideration: Recent studies have explored various
strategies to address the socio-economic challenges of deploy-
ing GNNs in NG-IoT systems, particularly focusing on reduc-
ing deployment and operational costs, enhancing scalability,
and improving energy efficiency. Shuvo et al. [61] emphasized
the cost-efficiency benefits of deploying deep learning models
on edge devices in NG-IoT systems. While cloud-based HPC
clusters provide high computational capacity, they incur high
transmission costs, latency, and privacy concerns. In contrast,
edge computing with devices like IoT sensors and wearables
can offer real-time processing at reduced operational costs.
Duc et al. [62] addressed operational costs in edge-cloud
deployments by proposing ML-based resource provisioning
frameworks. Their study examined workload characterization,
elastic resource management, and component placement to
minimize energy consumption and infrastructure usage, which
are key challenges in large-scale NG-IoT applications. In
[63], Murshed et al. provided a comprehensive overview
of deploying ML models at the edge to reduce latency
and offloading costs. They reviewed compression techniques,
frameworks, and hardware accelerators suited for real-time ML
applications in constrained environments, supporting scalable
and low-latency NG-IoT deployment. In parallel, Strubell et
al. [64] quantified the environmental costs of training large
AI models and advocated for sustainable AI practices. Their
findings support the shift toward low-power, energy-efficient
GNN deployment strategies in NG-IoT, aligning with green
AI initiatives to reduce carbon footprint and promote equitable
access to AI technologies.

3) Challenges and future direction

Despite recent advances, several challenges remain in de-
ploying GNNs efficiently within real-world NG-IoT systems.
One of the primary issues is the computational and energy
constraints of edge devices, such as IoT sensors and mobile
nodes. These resource limitations demand advanced model
optimization techniques, including pruning, quantization, and
knowledge distillation, alongside hardware-software co-design
strategies that tailor GNN architectures to run efficiently on
FPGAs, TPUs, and neuromorphic chips. Furthermore, as NG-
IoT systems scale in size and complexity, ensuring real-time
inference and learning becomes increasingly difficult. This
necessitates scalable training frameworks, decentralized and
federated GNN models, and intelligent graph partitioning and
sampling techniques.

Another significant challenge is the integration and pro-
cessing of multimodal data (e.g., sensor readings, logs, and
user interactions), which requires effective fusion strategies

and synchronized graph representations. In addition, from the
socio-economic perspective, cost-efficiency and sustainabil-
ity remain key concerns, which hinder wide-scale adoption.
Hence, promoting energy-efficient algorithms, carbon-aware
deployment strategies, and global standardization efforts will
be essential for the practical, scalable, and equitable integra-
tion of GNNs in NG-IoT applications.

III. APPLICATIONS OF GNN FOR NG TECHNOLOGIES IN
IOT NETWORKS

In this section, we address Open Questions 4, 5, and 6,
focusing on how GNNs empower core NG technologies. Open
Question 4 covers resource management and communication
efficiency in massive MIMO, RIS, Satellite, MEC, THz, and
URLLC systems, with GNNs optimizing user association,
beamforming, and signal propagation. By contrast, Open
Question 5 investigates how GNNs enhance integrity and
security in blockchain. Lastly, Open Question 6 discusses
the integration of GNNs with distributed systems, examining
their collaboration to enable privacy-preserving, scalable, and
efficient learning across distributed NG-IoT networks.
Open Question 4: How Do GNNs Enhance Communication
and Computation Efficiency in Massive MIMO, RIS, Satellite,
THz, MEC, and URLLC Systems?
1) Background:

Massive MIMO, RIS, satellite, THz, mobile edge comput-
ing, and URLLC systems are key NG technologies aimed at
enhancing system performance, including energy, spectrum,
and computational efficiency, as well as coverage. These tech-
nologies and their applications are comprehensively illustrated
in Fig. 10, which highlights their roles in NG IoT networks.
For instance, massive MIMO systems improve spectral ef-
ficiency by employing a large number of antennas, which
allows for improved spatial multiplexing and user throughput
[169]–[172]. RIS creates programmable propagation environ-
ments capable of dynamically adjusting the phase, amplitude,
and polarization of radio waves. This enhances coverage by
reducing interference without relying on power amplifiers
or complex signal processing [173]–[177]. Satellite networks
have become crucial in supporting non-terrestrial networks by
extending coverage to remote areas, hence providing global
connectivity [178]–[180]. THz communication leverages the
unlicensed spectrum ranging from 0.1 to 10 THz for opening
up new frequency bands. The abundance of free spectrum in
this band circumvents spectrum scarcity, hence offering the
high throughput needed for advanced applications like virtual
reality and ultra-high-definition video [181]–[184], albeit at a
high path-loss and limited coverage. Mobile Edge Computing
(MEC) brings data processing capabilities closer to end users
by carrying out computation at the network edge instead of
centrally, thus reducing latency and improving response times
for time-sensitive applications. Harnessing MEC is essential in
scenarios where quick decision-making and real-time analytics
are needed, such as smart cities, autonomous vehicles, and
industrial IoT environments [83]–[85], [107]. It helps offload
computational tasks from centralized cloud servers, optimiz-
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TABLE VII: Related studies in the use of GNN on different NG technologies for IoT networks

NG key tech-
nologies

Reference IoT applications Problems Task Level GNN model

Massive
MIMO

[22] (2023) Uplink cell-free massive MIMO Power control for max-min rate Node MPGNN
[65] (2023) Multicarrier-division duplex cell-free mMIMO Power control for maximizing average rate Node GAT
[67] (2022) Downlink cell-free massive MIMO Power control for max-min rate Node HetGNN
[48] (2024) Downlink MIMO Power control for max sum rate Edge, node HetGNN
[68] (2023) Cell-free massive MIMO AP selection Node MPGNN
[69] (2024) Integrated satellite-terrestrial cell-free massive

mimo IoT systems
Power control for max-min rate Node HetGNN

[70] (2023) Massive MIMO Power control Node GCN-WMMSE

RIS

[71] (2023) RIS aided communication Channel estimation Sub-graph GCN + Trans-
former model

[72] (2022) RIS support multiuser downlink RIS phase shift and power allocation for
long-term error minimization

Node HetGNN

[73] (2022) RIS support Fed procedure RIS phase shift and satellite’s beamforming
optimization

Node GAT

Satellite

[74] (2023) LEO satellite networks Satellite routing and network traffic opti-
mization

Node RL + MPGNN

[75] (2023) Mega-constellations Satellite Networks Model Satellite routing Node GCN + GRU
[76] (2024) LEO satellite networks The SFC orchestration Node RL + GAT
[77] (2023) LEO satellite constellation Topology optimization Node RL + MPGNN
[78] (2023) space-air-ground integrated network with MEC The network slicing allocation Node DL + MPGNN
[79] (2021) UAV-assisted hybrid satellite-terrestrial network Trajectory design and link selection Node GAT
[75] (2023) RIS-assisted satellite IoT communications Channel estimation Node GAT

THz

[80] (2023) Digital Twin (DT) network with the THz band Weighted mean rate maximization problem Node MPGNN
[81] (2024) RIS-aided multiuser MIMO THz system Sub-band allocation, the phase shift, and the

precoding to maximize the system sum rate
Node HetGNN with

self-attention
[82] (2023) Integrated communication and sensing for vehicle

communication
Operation mode selection Node HetGNN

MEC

[83] (2021) MEC support IoT networks Task off-loading Edge RL + MPGNN
[84] (2023) MEC support D2D communication Task off-loading Graph RL + GAT
[85] (2022) MEC based UAV Task off-loading Node RL + MPGNN
[86] (2023) MEC support IoV Task off-loading Node Graph weighted

convolution net-
work

[87] (2023) MEC support IoV Task off-loading Node STGNN + GRU
+ Transformer

[88] (2022) MEC support marine-based IoT Trajectory prediction at Edge computing Node STMGCN +
Self-attention

[89] (2024) MEC support healthcare applications Classification at Edge computing Node GCN
[90] (2023) MEC support smart home Intrusion detection Edge GraphSAGE
[91] (2023) MEC support industrial IoT Anomaly detection Node SPGNN

URLLC

[92] (2023) Cellular network QoS violation probability minimization Node REGNN
[93] (2024) OFDMA wireless network for URLLC services Maximizing number of successful transmis-

sions
Node GraphSAGE

[94] (2021) A factory automation scenario Packet loss probability minimization Node Edge-wise gate
update + FNN

[95] (2024) Distributed URLLC system Decoding error probability minimization Node GraphSAGE

Blockchain

[168] (2023) A secure smart blockchain IoT network User privacy and data processing time Node MPGNN
[97] (2020) IoT smart blockchain Application distribution among IoT net-

works
Node GraphSAGE

[98] (2020) IoT smart blockchain for healthcare applications Malicious node detection Node GCN

Distributes
systems

[99] (2024) Federated learning for network attack detection Attack detection Node GAT
[100] (2023) Federated learning Anomaly detection Node MPGNN
[101] 2024 Federated learning for UAV assisted MEC sys-

tems
Classification inference Node Simplified

graph
convolutional
network

[102] (2025) Federated learning for classification tasks Node classification tasks Node GCN
[103] (2025) Federated learning for edge computing Node classification tasks Node RL + MPGNN
[105] 2025 Decentralized tasks in wireless networks Channel impairments in GNNs Node AirGNN
[106] 2022 Decentralized federated learning in V2V system Power control Node GCN
[107] 2024 Distributed fog servers for smart IoT services Communication efficiency Node GCN, GAT,

GraphSAGE
[108] 2024 Federated learning over interference-limited

wireless networks
Power control Node GCNs

[41] (2023) RIS support federated learning Resource allocation Node HetGNN
[109] (2023) Federated learning over wireless network Power control Node GCN
[95] (2024) Distributed URLLC system Beamforming and power control Node GraphSAGE
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Fig. 10: Next generation IoT networks.

ing resource utilization and enhancing the overall network
efficiency. Meanwhile, URLLC (Ultra-Reliable Low-Latency
Communication) ensures low-latency, high-reliability com-
munication for mission-critical applications like autonomous
driving, robotics, and healthcare. It is crucial in near real-time
scenarios, such as industrial automation and remote medical
procedures, using bespoke resource allocation for meeting
stringent performance requirements [185], [186]. Despite these
advantages, the above sophisticated technologies face common
challenges in managing high-dimensional spatial data and
optimizing spectrum usage. GNNs are becoming popular in
addressing these challenges by learning spatial dependencies,
optimizing resource management, and maintaining efficient,
low-latency communication in dynamic environments.

2) State-of-the-art:

• Massive MIMO: GNNs have been increasingly har-
nessed for addressing challenges in wireless networks
using massive MIMO schemes, particularly in resource
allocation problems [22], [65], [66]. Shen et al. [22] for-
mulated tangible guidelines for designing GNNs to solve
power allocation problems by maximizing the sum rate of
the uplink in a cell-free massive MIMO network. They
treated this heterogeneous network associated with two
types of nodes corresponding to APs and users. Similarly,
Li et al. [65] explored the use of heterogeneous GNNs in
a multicarrier-division duplex cell-free mMIMO system,
proposing a sophisticated technique for differentiating be-
tween communication and interference links. An attention
mechanism was applied for extracting critical information
from both the APs and users. In another study, Salaun
et al. [67] tackled the max-min power control problem
of a cell-free massive MIMO network by constructing

a heterogeneous graph. In contrast to the approach in
[22], [65], the represented graph constructed by Salaun
et al. composed of (M × K) nodes, where M and K
represent the number of APs and users, respectively. An
edge is formed between two nodes if these nodes share
the same AP or user, and the graph has two types of
edges. Note that for the downlink power control problem,
the node embedding approach of Shen et al. [22] will fix
the output dimension based on the number of APs and
users during the training phase. Hence, scalability cannot
be guaranteed, while the solution conceived by Salaun
et al. [67] succeeded in guaranteeing the scalability of
the network. Another method that was put forward by
Peng et al. in [48] also guaranteed the scalability of the
downlink in a MIMO system. Briefly, the MIMO system
is represented by a heterogeneous graph associated with
two types of nodes: APs and users. The edge-GNN
concept was proposed for learning the graph capable of
generating edge embedding, which is used to infer the
power allocation of an AP for a user. In [68], Ranasinghe
et al. addressed the AP selection problem by utilizing a
pair of different graph representations: a homogeneous
graph consisting only of APs and a heterogeneous graph
that includes both APs and users. They employed graph
sample and aggregation (GraphSAGE) [187] for learning
the wireless graph, capable of generating node embed-
dings that were then used for calculating confidence
scores for classifying the links between APs and users. In
a related study, Chien et al. [69] explored a system, where
multiple IoT users are simultaneously served by both a
satellite and access points. The focus was on optimizing
the sum of the ergodic uplink throughput with the aid
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of the most appropriate power allocation across all IoT
users. The authors harnessed a heterogeneous GNN for
tackling the optimization problem formulated. Notably,
Schynol et al. [70] introduced an innovative technique
for optimizing the total data rate of a massive MIMO
system. They constructed a GNN architecture inspired by
the algorithmic unfolding of the weighted minimum mean
squared error (WMMSE) method, providing a powerful
tool for enhancing the performance of a massive MIMO
system.

• Reconfigurable Intelligent Surfaces: GNN-based RIS-
assisted IoT systems have been characterized in [41],
[71], [72]. Singh et al. [71] combined GNNs with a
transformer model, which uses self-attention mechanisms
for capturing long-range dependencies in data, in sup-
port of channel estimation. Specifically, the GNN layers
within the transformer are used for generating embedded
vectors representing the groups of RIS elements, which
are assumed to have the same channel. These are then
processed by the transformer’s attention mechanism for
accurately predicting the unknown channels. This method
significantly reduces the pilot overhead while maintaining
high estimation accuracy. As a further advance, Zhang
et al. [72] proposed a joint optimization procedure for
user scheduling, RIS configuration, and base station
beamforming to maximize the weighted sum rate in the
downlink enhanced by RISs. They utilized a pair of
GNNs for user scheduling and RIS configuration, with the
final beamforming harnessing the WMMSE algorithm.
Wang et al. [41] studied the benefits of federated learning
(FL) for distributed IoT networks. The RIS was employed
for enhancing the FL process by minimizing long-term
errors, hence improving accuracy. A heterogeneous GNN
was proposed for learning the network’s graph structure,
enabling the optimization of RIS phases, client power
allocation, and denoising factors at the server. Cao et al.
[73] investigated the RIS-aided downlink of Low Earth
orbit (LEO) satellite IoT networks. They proposed an
attention graph neural network for learning the network
topology and received pilots, optimizing the RIS phase
shifts and satellite beamforming, thereby improving the
overall network performance.

• Satellite Communication: GNNs are also capable of
addressing challenges in satellite-based IoT networks,
efficiently handling their dynamic topology and resource
constraints [74]–[76]. Huang et al. [74] studied a suite
of multipath routing optimization problems under both
bandwidth and flow constraints. The topology of the
LEO satellite and ground stations is represented by a
spatio-temporal graph. The study proposed a GNN-based
multiPath traffic engineering algorithm relying on edge
embeddings for distributing traffic across the candidate
paths identified by a custom algorithm. Chen et al. [75]
also considered the routing issues of the LEO system
supporting IoT users. As the number of elements in the
network increases, the memory requirement becomes a

challenge. Therefore, the authors proposed combining
a GCN and a gated recursive unit (GRU) [188] for
reducing the memory requirement while still predicting
the topology of the LEO system. He et al. [76] inves-
tigated the service function chain orchestration problem
of LEO networks with the objective of maximizing the
user service acceptance rate. They proposed a GAT-based
hierarchical RL technique for solving the problem, in
which the GAT model served as a feature extraction
module. Similarly, Wang et al. [77] utilized a GNN as an
extraction module within a reinforcement learning model
to optimize routing in LEO satellite networks.
Integrated networks combining satellites with aerial or
ground systems have also garnered significant attention.
Asheralieva et al. [78] investigated the space-air-ground
integrated networking (SAGIN) concept concerning net-
work slicing aided MEC systems designed for IoT and
mobile applications. The SAGIN system, which includes
aerial, LEO satellite, and terrestrial networks, aims for
providing seamless service for IoT devices. However, the
rapidly fluctuating dynamic topology can lead to insta-
bility and unreliable nodes. To address this, Asheralieva
et al. proposed a deep learning model based on MPGNN
for acquiring node embeddings that the DL model will
use for solving the associated slicing problem.
In [189], the hybrid satellite-terrestrial networks have
been studied by Chen et al. with the support of unmanned
aerial vehicles (UAVs) as relay stations. The objective
was to maximize the number of IoT devices served along
the UAV’s trajectory and activate user scheduling. The
GAT model was employed for extracting node embed-
dings, which were used for predicting user scheduling
for IoT devices. This scheduling information was then fed
into a Q-learning model to determine the UAV’s optimal
trajectory. To further enhance the satellite transmission
performance, RISs may also be considered as a potential
solution [73], [79]. For instance, Tekbyk et al. [79]
utilized a GAT network to learn the relationship between
the pilot signal and the phase shift of RIS, which was
then exploited for channel estimation. Leveraging the
GAT network allows the system to estimate all channel
coefficients simultaneously and this procedure can be
generalized to diverse network configurations.

• THz Communication: Recent studies have applied
GNNs for optimizing wireless systems operating in the
THz band, focusing on addressing unique challenges,
such as their high path loss and dynamic channel con-
ditions. For instance, GNNs have been utilized for en-
hancing resource allocation to optimize the performance
of wireless systems utilizing the THz band [80]–[82].
Zhang et al. [80] proposed integrating Digital Twin
(DT) technology with the THz band. The associated
weighted mean rate maximization problem, subject to
power allocation and user association, is formulated as
a graph optimization problem that is then solved using
a distributed message propagation algorithm. Briefly, K
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message passing layers are utilized to infer the node
embedding. The power allocation, Pi, and the user asso-
ciation, µi, of the i-th user are inferred from the node
embedding, xK

i , at the last layer K, where we have
Pi = MLP

(
xK
i

)
and µi = σ

(
xT
i

γ

)
, respectively. Here,

σ is the sigmoid function, and γ is a hyperparameter.
For mitigating the path loss and improving the propaga-
tion distance, Mehrabian et al. [81] suggested using an
RIS system. They simultaneously optimized the THz sub-
band allocation, the phase shift, and the transmit precoder
for maximizing the system’s sum rate. The authors pro-
posed a heterogeneous graph-transformer network based
on the self-attention mechanism for learning the input
features of the RIS, the BS, and all users, resulting in
embedding vectors before applying a deep neural network
(DNN) to predict the specific output for each node.
Moreover, to guarantee the minimum required data rate,
the authors applied a penalty term when the achievable
rate fell below the minimum required rate rmin

i .
Li et al. [82] harnessed the THz band for vehicular
networks. In particular, a set of provider vehicles offers
services to several communication and sensing vehicles
using the THz band. An integrated sensing and communi-
cation problem was considered, and the data rates of all
communicating vehicles were optimized while meeting
the specifications of the associated sensing task. The sys-
tem was represented by a heterogeneous network having
three types of nodes, including provider, communication,
and sensing vehicles. A GNN model was proposed for
learning the represented graph to yield embedding vectors
for all provider nodes and then to use them for calculating
the probability of operating in the sensing and commu-
nication modes or being dormant.

• MEC: GNNs have been widely adopted for solving
various problems in MEC-aided IoT networks, [83]–
[85], [107]. To elaborate, Sun et al. [83] proposed a
graph reinforcement learning-based offloading (GRLO)
framework to solve the task offloading problem in a col-
laborative Artificial Intelligence of Things (AIoT) system
consisting of wireless devices equipped with intelligent
sensors and MEC servers. They constructed a GNN as
an actor network, which learns the policy relying on the
relationship between nodes. Wang et al. [84] invoked
fog computing for task offloading in MEC systems sup-
porting device-to-device (D2D) communication. A real-
time GNN inference framework, termed Foggraph, was
proposed for maximizing the servers’ performance. In
particular, the authors designed an attention mechanism
for GNNs to calculate a reward for the proposed inverse
reinforcement learning relying on GNNs. Similarly, Li
et al. [85] employed a UAV as a mobile-edge server.
Their study investigated the joint optimization of UAV
trajectory and task allocation using a GNN within an
actor-critic structure in order to train real-time actions.
In contrast to previous treatises, where a GNN was used

as an actor-network in reinforcement learning, Li et al.
[85] utilized the GNN as a pre-trained network to harness
the associated network feature correlations.
The application of GNNs in MEC-based IoT scenarios
extends to specific use cases such as transportation.
In [86], [87], the authors studied the task offloading
problem in the Internet of Vehicles (IoV) utilizing edge
servers. Both [86] and [87] utilized a graph-weighted
convolution network (GWCN) for predicting the traffic
flow based on the connectivity and distance relations be-
tween road segments. This information was then used for
optimizing the edge resources within each region using
a deep deterministic policy gradient (DDPG) approach.
Similarly, Zhou et al. [87] introduced a computation
offloading method incorporating demand prediction and
reinforcement learning, using an STGNN for accurate
predictions. In maritime IoT applications, Liu et al.
[88] proposed a so-called Spatio-Temporal Multigraph
Convolutional Network (STMGCN) for vessel trajectory
prediction. This approach uses three distinct graphs based
on social force, time to closest approach, and the size of
surrounding vessels, demonstrating robust performance in
predicting future vessel positions.
Apart from transportation, GNNs have also been applied
in other areas, such as healthcare [89] and smart home
systems [90]. Fei et al. [89] introduced the so-called
MedGCN system, which utilizes IoT edge computing
for real-time analysis of patient data. A novel graph
convolutional network is harnessed by the MedGCN
system for predicting and diagnosing occlusive vascular
diseases. The authors also considered patient privacy;
therefore, this framework has a high potential. Sun et al.
[90] proposed an edge gateway, which is an important in-
termediary between edge computing and IoT devices for
intrusion detection in smart home applications. Briefly,
the graph-type network traffic is fed into the proposed
RF-GraphSAGE model in order to predict attack types
along the edge between devices. Tang et al. [91] con-
sidered various Cloud-Edge Industrial Internet of Things
(IIoT) scenarios, where anomalies happen more often
when users generate service function chains (SFCs). They
proposed a distributed knowledge distillation framework
for time-series anomaly detection. In their teacher model,
the authors proposed to utilize spatial graph convolution
for capturing spatial topology information in their SFC
anomaly detection schemes.

• URLLC: By involving the computational efficiency of
GNNs, researchers have explored their potential in accel-
erating the computational process to meet the stringent la-
tency requirements of URLLC applications. For example,
in [92], Liu et al. minimized the packet loss probability
by harnessing a mechanism that transmits multiple copies
of a packet without waiting for acknowledgment from
the receiver, thereby enhancing reliability. To determine
the optimal number of slots reserved for each packet and
the number of repetitions, a pair of cascaded random-
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edge GNN networks (REGNN) was constructed. The
first REGNN will learn the traffic state, the network
state, and the channel state information in support of
determining the number of slots for each packet. The
second REGNN utilizes the results from the first REGNN
and the network state to predict the most appropriate
number of repetitions.
In [93], Jiaqi et al. aimed for maximizing the success
probability of URLLC data transmissions by formulating
the resource allocation problem as a Markov decision
process. They used a reinforcement learning framework
along with a GraphSAGE encoder to extract networking
information and feed it into the actor-critic network for
decision-making. In [94], Liu et al. proposed a user
association solution employing edge-wise gated GNNs
(EG-GNN) for modeling the network as a bipartite graph
of the BS and IoT devices. The BS nodes included esti-
mated collision and delay violation probabilities, while
the UE nodes had packet loss probabilities. The EG-
GNN predicted the most appropriate gate values for the
device-BS connections, with the devices selecting the
particular gate promising the most beneficial association.
As a further advance, Gu et al. [95] studied a mas-
sive URLLC (mURLLC) relying on multiple transmit
antennas, and aiming for minimizing the decoding error
probability of the worst link in their beamforming design.
The mURLLC network considered was represented by a
fully connected graph, where each communication link
corresponds to a node in the graph, and the interference
link is represented by an edge. The authors proposed a
distributed GNN for an MURLLC system, allowing each
node to determine its policy based solely on the chan-
nel state information gathered from the previous frame.
Accordingly, the system can reduce both the signaling
overhead and the computational delay by updating graph
embeddings based on the correlation of CSI between
two consecutive frames, rather than harnessing multiple
updates within the same frame, as in previous GNN
models.

3) Challenges and future directions

One of the key challenges is the heterogeneity of both the
IoT networks and the additional infrastructure, such as the
associated MEC and satellites. This further complicates pre-
diction and optimization, because each entity requires specific
resource allocation strategies. Secondly, NG-IoT networks
tend to rely on dynamic resource allocation. The complexity
increases in the face of multiple constraints, such as power,
bandwidth, and interference, which makes the problem harder
to represent as a standard graph problem. Each technology
requires careful consideration of the unique characteristics of
the network, such as the spatial correlation experienced by
massive MIMO, the dynamic channel conditions of THz, or the
strict latency and reliability requirements of URLLC commu-
nication. These constraints must be incorporated into the GNN
models for ensuring accurate and efficient resource allocation

Resource Sharing

Trusted Data InteractionSecure Access Control

Privacy
protection

Fig. 11: Blockchain for NG-IoT networks.

across different entities, which requires novel methods for
graph representation and message passing.

Additionally, the scalability of GNNs becomes critical, since
all these technologies involve a large number of network en-
tities, such as numerous antennas in massive MIMO schemes,
reflecting elements in RISs, or other devices in satellite and
THz communication systems. Managing these vast networks
in the presence of complex interdependencies challenges GNN
models, which must balance the computational efficiency vs.
the need to capture detailed spatial and temporal correlations.
Future research should focus on developing scalable GNN
architectures capable of handling larger graphs and integrating
techniques like graph partitioning, hierarchical GNNs, and dis-
tributed learning for ensuring that GNN-based models succeed
in handling the complex constraints of these massive networks
effectively.
Open Question 5: How Can GNNs Enhance Integrity, Security,
and Scalability Along with Blockchain for IoT Systems?
1) Background:

The blockchain concept has emerged as a powerful solution
for addressing security and privacy challenges in IoT systems,
thanks to its decentralization, traceability, trustworthiness, and
immutability [190]. These features make blockchain an ideal
candidate for enhancing security in IoT networks, which are
increasingly vulnerable to attacks and privacy breaches. As
shown in Fig. 11, the blockchain provides a flexible frame-
work for secure IoT applications, allowing users to control
connection permissions for IoT devices, base stations, and
satellites, enabling trusted data exchange. However, leveraging
blockchain in IoT environments also presents several chal-
lenges, including their scalability and limited computational
resources.
2) State-of-the-art:

GNNs have been explored as a solution to address these
challenges in blockchain-based IoT systems [97], [98], [168].
In [168], Cai et al. introduced a technique termed as GTx-
Chain, which is a secure IoT smart blockchain framework
based on GNNs. To elaborate a little further, after collecting
data, the blockchain data structure is exploited for eliminating
unnecessary data. At the blockchain nodes, a GNN model
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is utilized to learn as well as maintain the information on
the blockchain and the information stored in the so-called
InterPlanetary File System. For the graph represented, each
block is treated as an object, and the connection between
blocks represents the edge. Both the computational resources
and the data harnessed for training the GNN are allocated
based on the nodes’ workload. Kim et al. [97] focused their at-
tention on transaction exchanges between blockchain network
nodes in IoT environments. A GNN was designed for node
classification, determining whether nodes should spread, skip,
or specifically activate transactions, thus facilitating efficient
distributed applications across blockchain networks.

As a further development, Ziyu et al. [98] designed a
decentralized blockchain-aided system for maintaining data
privacy in health applications. Their solution, termed Guard-
Health, combines blockchain and smart contracts for achieving
secure data storage and sharing. As shown in the lower-right
quadrant of Fig. 11, blockchain allows users to encrypt their
data and grant access only to authorized institutions with
their permission. The authors represented the network by an
undirected graph having N nodes, including patient nodes,
institute nodes, and cloud service providers, where the nodes
and edges connected them. The nodes have a different feature
trust assessment mechanism. The GNN model was proposed
for malicious node detection in order to reduce transactions
with nodes, which are eventually removed from the network.
These studies highlight the potential of GNNs in addressing
the unique challenges of integrating blockchains into IoT
systems for improving their security, scalability, and efficiency
across a range of applications.
3) Challenges and future directions:

Despite these advances, numerous challenges remain in
applying GNNs to the blockchain-aided IoT. The large scale
and extreme heterogeneity of IoT networks require more
scalable and computationally efficient GNN architectures. The
integration of hybrid storage mechanisms, as highlighted in
[168], points toward reducing on-chain storage load, but signif-
icant computational and communication burdens still persist.
Again, improving the privacy and security of GNN-based
blockchain solutions is a key concern, particularly in envi-
ronments having constrained resources, where computational
capabilities are limited. Future research should focus on devel-
oping lightweight GNN models capable of handling large-scale
blockchain data, while incorporating robust privacy-preserving
techniques, such as zero-knowledge proofs [191], to ensure
trust and data integrity in decentralized IoT networks.
Open Question 6: How Can GNNs Be Integrated with Dis-
tributed Systems in NG-IoT Networks?
1) Backgrounds:

As NG-IoT environments consist of diverse, distributed,
and often resource-constrained edge devices, centralized data
collection and processing pose critical challenges in terms of
data privacy, communication costs, and model scalability. To
address these issues, distributed paradigms, such as federated
learning (FL) and decentralized structures, have gained signif-
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icant attention. FL allows multiple edge devices to collabora-
tively train a shared model without exchanging raw data, pre-
serving privacy and reducing communication overhead [192]–
[198]. Meanwhile, decentralized architectures eliminate the
need for a central server by enabling peer-to-peer collaboration
among devices [66], [199]. The integration of GNNs with
distributed systems has emerged as a promising paradigm
to meet the privacy, scalability, and efficiency requirements
of next-generation IoT (NG-IoT) networks. Combining these
two paradigms empowers edge nodes in NG-IoT systems
to collaboratively learn graph-based models with minimal
communication overhead and stronger privacy guarantees. This
synergy opens two prominent research directions: (1) leverag-
ing distributed architectures to optimize GNN(a) and (2) using
GNNs to enhance distributed systems in NG-IoT systems.
Fig. 12 illustrates the integration of GNN with distributed
frameworks in NG-IoT: (a) Federated learning-assisted GNN,
where a central server aggregates local GNN models trained
on distributed clients; (b) GNN-enabled decentralized system,
where local agents make decisions collaboratively based on
peer-to-peer graph reasoning without a central server.
2) State-of-the-art:

Distributed architecture for GNN in NG-IoT networks:
Distributed systems, especially FL, provide robust frameworks
for collaboratively training GNNs across distributed nodes
while preserving privacy. For instance, Wu et al. [99] devel-
oped FedGAT, a federated graph attention network for privacy-
preserving network attack detection, leveraging attention to
improve internal traffic interaction modeling. Similarly, Zhang
et al. [100] employed FL to train a GNN-based anomaly
detection system for controller area networks (CAN bus),
preserving privacy without compromising detection accuracy.
Addressing resource constraints in mobile edge computing
(MEC), Zhong et al. [101] proposed a lightweight federated
GNN framework for UAV-assisted environments, combining
adaptive information bottlenecks and compact GNNs for accel-
erated classification. Meanwhile, Huang et al. [102] optimized
both client and cross-client edge selection to improve conver-
gence performance and cost-efficiency in training GCNs over
distributed data. Khanna et al. [103] combine FL with graph
reinforcement learning to optimize edge caching in MEC,
demonstrating latency and cache hit improvements.
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In [104], Li et al. presented DHTGL, a distributed hierarchi-
cal temporal graph learning framework, reducing communica-
tion in IIoT systems. For decentralized training environments,
Gao et al. [105] introduced AirGNNs, a communication-
aware GNN architecture that incorporates wireless channel
effects and enables over-the-air decentralized GNN training.
The framework is robust to fading and noise and supports
decentralized tasks such as multi-robot flocking and source
localization. Li et al. [106] proposed a GCN-based dynamic
topology selection strategy in vehicle-to-vehicle (V2V) net-
works to ensure reliable model sharing in decentralized fed-
erated learning (DFL), thereby improving training stability in
mobile environments. In [107], Zeng et al. proposed FoGraph,
a distributed GNN inference platform deployed over fog
nodes. By leveraging compression-aware execution planning,
FoGraph reduces communication bottlenecks compared to
traditional cloud-based model serving and accelerates GNN
inference by over 5×.

GNN for the distributed systems in NG-IoT networks:
Several studies utilize GNNs to improve the design and
performance of decentralized systems and FL. Li et al. [108]
proposed a GCN-based power allocation policy designed for
wireless FL systems operating under channel variability and
non-IID data distributions. Their method parameterizes power
control using a GCN and solves the associated optimization
via a primal-dual approach, ensuring communication efficiency
while maintaining learning accuracy. Wang et al. [41] incor-
porated GNNs into over-the-air FL by learning efficient map-
pings from wireless channel states to RIS-assisted transceiver
configurations, thus mitigating aggregation bottlenecks and
improving spectral efficiency. In [109], Yang et al. introduced
a two-stage GNN-based collaborative FL framework aimed
at minimizing energy consumption. The model enables each
device to learn an optimal set of communication links for local
parameter exchange and corresponding transmit power levels,
significantly outperforming traditional iterative optimization
techniques in both speed and energy efficiency. In another
work, Zhang et al. [95] leveraged GNN-based policies to solve
the joint distributed beamforming and power control problem
in massive URLLC networks, targeting a reduction in decoding
error probabilities under tight latency constraints.

3) Challenges and future directions:

Despite these advances, several challenges remain in inte-
grating GNNs with the distributed systems in IoT networks.
First, heterogeneity in data and system conditions, such as
device capabilities, communication channels, and data distri-
butions, restricts effective collaboration. Besides, devices in
NG-IoT systems possess different capabilities in computa-
tional power, memory, and energy constraints. This results
in non-uniform convergence behavior and degraded model
performance in federated GNN training, especially in highly
dynamic environments like UAVs, mobile edge networks, or
vehicular systems.

Another significant problem is about communication effi-
ciency, although approaches such as over-the-air computation
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(e.g., AirGNNs [105], Air-MPNN [200]) and graph compres-
sion techniques (e.g., LW-FGL [101], DHTGL [104]) aim
to mitigate communication overhead, the scalability of these
methods in extremely large or densely connected networks is
still underexplored. Besides, distributed nodes require synchro-
nization and consistency, which remains difficult to achieve
when topology evolves rapidly (e.g., in V2V networks), re-
quiring more robust protocols for model aggregation and
graph updates. Finally, dynamic graph learning under limited
feedback and partial observability remains a key challenge,
as NG-IoT graph structures often evolve due to mobility
and device failures. Future GNN architectures must support
online updates and continual learning without full graph re-
computation to meet real-time demands.
IV. ADVERSARIAL ATTACKS AND DEFENSE MECHANISMS

CONCEIVED FOR GNN-BASED NG-IOT NETWORKS

In this section, we address a pair of critical questions: Open
Question 9 focuses on the nature of adversarial attacks target-
ing GNN-based systems, while Open Question 10 explores
defense techniques designed for safeguarding these systems.
We commence by examining how adversarial attacks exploit
vulnerabilities in GNN models within NG-IoT networks, tar-
geting both homogeneous GNNs (HoGNNs) and heteroge-
neous GNNs (HeGNNs). These attacks can severely impact the
performance and security of systems in applications such as
smart cities, autonomous transportation, and healthcare. Next,
Open Question 6 explores defense mechanisms that have been
developed for countering these attacks, enhancing both the
robustness and reliability of GNN-based systems. Finally, we
review the latest strategies of adversarial defense and provide
insights into future research directions for securing GNNs in
the complex dynamic environments of NG-IoT networks.
Open Question 7: How Do Adversarial Attacks Exploit Vul-
nerabilities in GNN-Based NG-IoT Networks?
1) Background:

Graph neural networks have become pivotal in enhancing
the performance of NG-IoT networks across various do-
mains, including smart cities, healthcare, autonomous trans-
portation, and communication systems relying on massive
MIMO schemes, RIS, and URLLC. Despite having numerous
benefits, GNNs are vulnerable to adversarial attacks when
malicious actors introduce subtle perturbations into the data
to manipulate the model’s output. Fig. 13 outlines the process
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of adversarial attacks on GNNs, showcasing three main types:
poisoning attacks, where malicious data is injected during
training, and white-box and black-box attacks, which target the
inference phase. It also highlights how these attacks can lead to
incorrect embeddings and outputs, compromising the system’s
integrity. These attacks may erode the system’s performance,
compromise data integrity, and pose significant security risks,
especially in critical applications like autonomous driving
and industrial automation. The ability to defend GNN-based
systems from such attacks is essential for ensuring secure and
robust operations in complex and dynamic NG-IoT environ-
ments.

2) State-of-the-art:

• Adversarial homogeneous graph neural network: Ma
et al. [110] proposed a novel setup for black-box attacks
on GNNs, representing one of the most practical ap-
proaches available at that time. By exploring the structural
inductive biases of GNNs, which can be leveraged for
adversarial black-box attacks, they introduced a practical
greedy method for adversarial attacks targeting node
classification tasks. In another study, Sharma et al. [111]
proposed the so-called TANDIS algorithm in the context
of the evasion attack-based targeted black box scenario.
As shown in Fig. 13, these attacks target the training or
inference process, leading to incorrect outputs and de-
graded performance. The figure highlights how attackers,
including poisoning and inference-based (white-box and
black-box), exploit vulnerabilities in the GNN pipeline.
In the realm of HoGNNs, some authors have mitigated
adversarial attacks [112], [113], [114], but their solutions
often suffered from limitations in three key areas:
1. They focused on specific tasks.
2. The adversaries had knowledge about the GNN models.
3. Their methods rely heavily on node or edge labels.
The experiments showed that the TANDIS algorithm of
[111] outperformed other evasion attack-based black-box
algorithms, despite running approximately 1000 times
faster and achieving up to 50% higher effectiveness
in terms of Drop-in-Accuracy (DA%), which quantifies
the percentage reduction in model accuracy before and
after an attack. Despite being model-agnostic and task-
independent, this algorithm highlights the vulnerability
of HoGNNs [111] when faced with adversarial attacks,
proving their susceptibility.

• Adversarial heterogeneous graph neural network:
Sun et al. [115] introduced a hierarchical-learning-based
method that enables adversaries to execute data poison-
ing attacks without relying on reinforcement learning
techniques. They examined a novel graph node injection
attack, which adversely impacts the accuracy of heteroge-
neous GNNs, even though it does not alter the link struc-
ture of the original graph. Additionally, their framework
was tested on several real-world graph datasets, including
Cora [201], Citeseer [202], and Pubmed [201], and it was
shown to gravely degrade the model accuracy.

Additionally, H. Zhao et al. introduced the so-called
HGAtack concept of [116], which operated under the
gray-box scenario, where attackers have limited knowl-
edge of the targeted models. Suffice to note that Sun et
al. [115] conducted experiments under white-box scenar-
ios, when attackers have full knowledge of the targeted
models. The results acquired by HGAttack [116] showed
that the proposed attack method was effective in gray-box
evasion attacks in the context of the ACM, IMDB, and
DBLP datasets. Therefore, H. Zhao et al. [116] showed
the potential opportunities for applying adversarial attacks
to mislead the heterogeneous GNN models in the real-
world black-box scenarios, when attackers only know the
input and output of the targeted models.

3) Challenges and future directions:
Let us now discuss the family of adversarial attacks de-

signed for damaging key GNN technologies. Firstly, we clas-
sify adversarial attacks into three levels: white, grey, and
black. Briefly, in a white box scenario, the adversary has com-
plete knowledge of the victim model, hence facilitating grave
destruction even upon using straightforward algorithms like
fast gradient descent or projected gradient descent. However,
most real-world adversarial attacks occur in grey- or black-
box scenarios, where the adversary’s knowledge is limited or
nonexistent. Nevertheless, even in these cases, there are potent
techniques of attacking the model; a possible approach is to
generate various white boxes to find the most suitable model
similar to the targeted model. Notably, the adversary may be
able to infer the model input and output, subject to the practical
trade-offs between destruction performance and computational
complexity. For example, to generate adversarial perturbations
for attacking model-based federated learning, the adversary
may harness centralized or distributed attacks. Each family
of attack has its advantages and disadvantages as regards
the potential resources required. Additionally, multiple attack
algorithms may be combined. Overall, we must carefully guard
against adversarial attacks.
Open Question 8: What Are the Most Effective Defense
Techniques Against Adversarial Attacks in GNN-Based NG-
IoT Networks?
1) Background:

As GNNs become increasingly integral to NG-IoT net-
works, their vulnerability to adversarial attacks poses a sig-
nificant threat to system reliability and security. Defending
against such attacks is vital for ensuring the integrity and
robustness of GNN-based systems, particularly in dynamic
and distributed NG environments. Both homogeneous GNNs
and heterogeneous GNNs are susceptible to these threats,
necessitating a range of defense techniques tailored to their
specific vulnerabilities. Fig. 14 demonstrates how these de-
fenses protect the inference process, maintaining the accuracy
and reliability of the system. Adversarial defenses focus on
enhancing data during the training process through pre-training
techniques. These approaches aim to mitigate the impact of
adversarial attacks, ensuring the GNN model produces correct
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Fig. 14: Adversarial defense for GNN.

and secure embeddings despite malicious attempts.

2) State-of-the-art:

• Adversarial HoGNN defense: To enhance the robustness
of GCNs against adversarial attacks, Zhu et al. [117]
proposed a novel model, where the hidden representations
of nodes are modeled by Gaussian distributions. Their
approach allows the model to mitigate the impact of
adversarial structure alterations by incorporating these
changes into the variances of the Gaussian distributions.
Additionally, they introduced a variance-based attention
mechanism for mitigating the impact of adversarial at-
tacks within GCNs. This involves assigning particular
weights to specific node neighborhoods based on their
variances during the associated convolution operations.
Their experimental results demonstrated that the proposed
method was capable of significantly improving the robust-
ness of GCNs, leading to enhanced node classification
accuracy, as demonstrated with the aid of three bench-
mark datasets: Cora [201], Citeseer [202], and Pubmed
[201].
As a further development, Zhang et al. [118] developed
GNNGuard, a general defense algorithm for securing
discrete graph structures. GNNGuard can be readily in-
tegrated into any GNN model. The primary objective
of GNNGuard was to minimize the adverse effects of
adversarial attacks by inferring the relationship between
the node features and the graph structure. GNNGuard
facilitates the robust propagation of the neural message
by using revised edges, which were achieved by learning
the most appropriate weights for linking the node, while
pruning edges between irrelevant nodes. Experimental
results derived for five types of GNNs showed that
GNNGuard outperforms other existing defense strategies,
including GNN-Jaccard [203], RobustGCN [117], and
GNN-SVD [204], with an average improvement of 15.3%
in the accuracy over the Cora [201], Citeseer [202], ogbn-
arxiv [205], and DP datasets [206].

• Adversarial HeGNN defense: Zhang et al. in [119]
identified a pair of key issues contributing to the vulnera-
bilities of heterogeneous GNNs (HeGNNs): perturbation

enlargement effect and soft attention mechanism. Their
experiments, conducted across three specific types of
HeGNNs, revealed that perturbation enlargement is less
significant in meta-path aggregated graph neural networks
and graph transformer networks than in heterogeneous
graph attention networks. To improve the robustness of
HeGNNs, Zhang et al. [119] proposed the concept of
Robust Heterogeneous GNNs (RoHe), which may be used
for purifying the node-level aggregation framework by
harnessing an attention purifier against topology adver-
sarial attacks. Another notable contribution is by Sang
et al. [120], who introduced a model called AHGNNRec
designed for robust recommendation systems based on
HeGNNs. The authors applied adversarial training for
optimizing hierarchical HeGNN layers by generating
perturbed nodes from clean nodes in order to explore
the weaknesses of their system. The experimental results
based on YouTube and Yelp datasets illustrated the power
of AHGNNRec.

3) Challenges and future directions:
While existing defense techniques offer promising solutions,

there is still substantial room for improving their efficiency
and robustness in NG-IoT networks. Adversarial training is
a widely used method, which strengthens the models by
exposing them to adversarial perturbations. Additionally, de-
fensive distillation constitutes another potent method where
knowledge is distilled from a complex model to a simpler one
with the objective of enhancing the performance. Briefly, this
approach seeks for creating a more robust classifier that is
better prepared to guard against adversarial attacks by relying
on precise gradient information. Nonetheless, this method’s
effectiveness may be compromised by attacks that do not
depend on gradients or use gradient approximation techniques.
A combination of defense methods can also be used for
providing stronger protection against adversarial attacks, but
this can make the model more complex and increase its carbon
footprint.

V. THE ROLE OF GNNS IN FUTURE INTEGRATED
NETWORKS AND QUANTUM COMPUTING

In this section, we address a pair of critical questions related
to the future of GNN applications in NG-IoT networks. Open
Question 7 focuses on how GNNs enhance the performance
and scalability of future integrated networks, such as SAGSINs
and ISAC. Figure 15 illustrates an ISAC network and a
SAGSIN, showcasing their integration within next-generation
IoT networks supported by GNNs. These emerging technolo-
gies present unique opportunities for IoT networks, but also
pose significant challenges for GNN-based solutions. Open
Question 8 explores how GNNs can be combined with future
computational technologies, including quantum computing, in
order to support various NG applications. Quantum computing
is expected to revolutionize the computational landscape for
NG systems by accelerating tasks such as encryption, signal
processing, and resource optimization. By integrating GNNs
with quantum technologies, NG networks may realize more
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efficient and scalable solutions, further enhancing capabilities
across different network layers and applications.

Open Question 9: How Can GNNs Enhance the Performance
and Scalability of Future Integrated Sensing and Communica-
tion and Space-Air-Ground-Sea Integrated Networks?

1) Background:

• Integrated sensing and communications: In the realm
of NG networks, the concept of ISAC network emerges as
a transformative technology, seamlessly integrating sens-
ing capabilities with communication functionalities [207].
Leveraging the extensive coverage of the operational net-
work infrastructures, ISAC becomes capable of providing
sensing capabilities across the entire communications
network at a modest additional cost, effectively using the
network as a sensor array. As illustrated in the left sub-
figure of Fig. 15, ISAC integrates vehicular networks,
event monitoring, and smart device communication into a
unified framework, ensuring efficient data collection and
processing. Sensing is also capable of significantly en-
hancing communications by providing improved accuracy
in localization, imaging, and environment reconstruction,
leading to accurate beamforming and CSI tracking, thus
improving the overall communication performance. ISAC
exhibits several key characteristics, including dynamic
resource allocation, heterogeneous data processing, and
real-time adaptability, which are crucial for NG IoT ap-
plications. However, these demanding requirements also
impose grave challenges and necessitate careful optimiza-
tion and network design.

• Space-air-ground-sea integrated networks: Space-Air-
Ground-Sea Integrated Networks have emerged as an
intriguing solution in NG-IoT research and development,
extending connectivity to all corners of the Earth. This
includes challenging environments such as mountainous
regions, oceans, underwater areas, and space. SAGSINs
achieve this by integrating satellite, aerial, terrestrial, and
marine communication networks [2], [208]. The need
for a comprehensive global coverage and the growing
demands of NG-IoT applications drive the transition from
SAGINs to SAGSINs. While a SAGIN covers the vast
majority of terrestrial and aerial needs, incorporating sea-
based communication networks into SAGSINs addresses
the unique requirements of maritime and underwater
environments. The right sub-figure of Fig. 15 illustrates
how SAGSIN integrates satellite, aerial, terrestrial, and
marine networks into a layered architecture. Each layer
plays a specific role: satellites provide global connec-
tivity, aerial networks enhance communication coverage
and flexibility, terrestrial networks handle dense urban
demands, and sea networks enable maritime and under-
water communication. This extension ensures robust and
reliable connectivity for maritime operations, deep-sea
exploration, and remote IoT applications, thus creating
a truly global communication infrastructure.

2) State-of-the-art:

• Integrated communications and sensing: In the context
of ISAC, GNN is a strong candidate as a benefit of
its capabilities in terms of modeling complex relation-
ships and dependencies. GNNs can offer insights into
network dynamics and resource allocation. In [121],
Lee et al. proposed a framework for joint radar and
communication in an intelligent vehicle-based system,
enabling high-performance radar detection, while balanc-
ing performance without extensive knowledge or spe-
cialized hardware. To solve the joint radar and com-
munications problem, the authors designed a multi-agent
deep reinforcement learning (DRL) algorithm combined
with GNNs for learning inter-agent coordination. They
demonstrated superior results compared to traditional
algorithms, dispensing with learning. Similarly, Li et al.
[82] utilized GNNs to extract graph information from in-
tegrated sensing and communication in vehicle networks
for deciding between the sensing and communication
modes of the vehicles.

• Space-air-ground-sea integrated networks: To fully
harness the benefits of SAGSINs, leveraging GNNs has
become an attractive proposition for researchers. A no-
table example is presented in [88], where Liu et al.
considered a maritime IoT system that collects vessel
trajectories using a satellite-terrestrial based automatic
identification system. These trajectories were processed
using the proposed framework for traffic management.
The authors represented vessel trajectories through three
distinct graphs: the social force graph, the time-to-closest-
point-of-approach graph, and the vessel-size graph. Their
solution learned these graphs for the sake of extract-
ing vessel features, which were then fed into a self-
attentive temporal convolutional layer for vessel trajec-
tory prediction. Beyond solving network management
problems, GNNs can facilitate cross-domain integration
of SAGSINs by modeling their interactions and optimiz-
ing their cooperation, resulting in seamless data transmis-
sion and interoperability across the entire network.

3) Challenges and future directions:

• Integrated sensing and communications: The employ-
ment of the use of GNNs for ISAC in IoT networks
is still in its infancy. ISAC presents a myriad of chal-
lenges, including scalability concerns, heterogeneous data
processing, privacy and security issues associated with
sensitive IoT data, and the need for robustness against
adversarial attacks in dynamic network environments.
Overcoming these challenges is paramount for unlock-
ing the full potential of GNNs in ISAC-aided NG-IoT
networks, enabling seamless integration of sensing and
communication to facilitate transformative advances in
IoT applications.

• Space-air-ground-sea integrated networks: Despite the
promising potential of GNNs in SAGSINs, numerous
challenges remain. Firstly, guaranteeing the scalability
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of GNNs in SAGSINs is a grave challenge, given
the dynamic nature of the network. Secondly, security
vulnerabilities in SAGSINs pose significant challenges,
especially in low Earth orbit satellite communication
systems. Potential attacks may compromise the integrity
and reliability of the network. Harnessing robust security
measures for these satellite systems is critical for pre-
venting disruptions and safeguarding data transmission
[209]. Finally, conceiving a standardized protocol for
integrating GNNs into SAGSINs is essential for ensuring
that different systems and technologies can work together
seamlessly.

Open Question 10: How Can GNNs and Future Computational
Technologies, Like Quantum Computing, Work Together to
Enhance the Capabilities of NG-IoT Networks?
1) Background:

Quantum computing exploits the principles of quantum
mechanics to solve complex problems at a potentially lower
number of cost-function evaluations than classical computers.
In contrast to classical bits, which represent information as
either 0 or 1, qubits can exist in a superposition of both
states simultaneously. This capability of processing multiple
possibilities simultaneously gives quantum computing a dis-
tinct edge over classical computers for certain problems. While
classical computing requires performing a new calculation
each time a variable changes, yielding a single result, quantum
computing is capable of exploring the entire solution space in
parallel. The advanced computational capability of quantum
computing makes it a promising solution for wireless com-
munication applications, where classical optimization methods
struggle with scalability.

Recent research has increasingly focused on combining the
strengths of quantum computing with advanced classical ma-

Edge
Register
Encoding

Node
Register
Encoding

Quantum Graph PQC Layers

Embedding OutputGraph Input Data

Fig. 16: Quantum GNN relying on a quantum graph convolu-
tional layer circuit, where U is a unitary operator.

chine learning algorithms, giving rise to the interdisciplinary
field of quantum machine learning (QML) [122], [123], [210],
[211]. An area of particular interest is the integration of
quantum computing with GNNs [124]. Although GNNs excel
at processing graph-structured data, they face scalability and
computational challenges for large-scale graphs, leading to
high training and inference costs [212], [213]. To address these
limitations, researchers have developed quantum graph neural
networks (QGNNs), which combine the structural advantages
of GNNs with the computational power of quantum comput-
ing.
2) State-of-the-art:

The integration of quantum computing with GNNs involves
designing quantum circuits that emulate the layers of a GNN,
particularly the message-passing mechanism [125]. Fig. 16
illustrates the architecture of a QGNN that relies on a quantum
graph convolutional layer circuit. The process begins with the
encoding of graph input data, where node and edge features
are transformed into quantum states through the node register
encoding and edge register encoding blocks. These encoded
quantum states are then processed through layers of quan-
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tum gates, represented by unitary operators (U), within the
quantum graph convolutional layers. By leveraging quantum
properties like superposition and entanglement, the QGNN
efficiently represents the relationships between nodes in the
graph. Moreover, the adjacency matrix of a graph, which
defines node connections, can be mirrored by the entanglement
patterns between qubits, potentially enabling a parallelized
representation of the graph structure.

Another promising scheme is constituted by the hybrid
quantum graph neural network (HQGNN), which replaces
the classical MLP in GNNs by quantum neural networks
(QNNs) [126], [214]. In detail, as illustrated in Fig. 17, the
HQGNN begins with graph input data, which is processed
through hybrid graph convolutional layers that combine clas-
sical and quantum components. The quantum circuit performs
updates on quantum states during training, effectively encod-
ing node and edge relationships into the embedding space.
By employing variational quantum circuits (VQC), QNNs are
capable of facilitating quantum state updates during training,
allowing for more efficient solution space exploration, while
reducing the parameters and computational resources for large-
scale graphs. This hybrid quantum-classical approach allows
for more efficient exploration of the solution space than classi-
cal DNNs, hence reducing both the number of parameters and
the computational resources required for processing large-scale
graphs. By incorporating quantum circuits within the DQN,
the computationally intensive parts of GNNs can be offloaded
to quantum hardware, while the rest of the GNN relies on
classical processors. This hybrid quantum-classical approach
offloads computationally intensive tasks to quantum hardware,
leaving the remaining calculations for classical processors,
making it ideal for applications like NG networks. These
include optimizing resource allocation, dynamic slicing, and
traffic management. The simulated results presented in Fig. 8
highlighted the potential of the proposed hybrid quantum
GNN. This approach demonstrates the potential of hybrid
quantum GNNs and paves the way for future advances.

3) Challenges and future directions:

QGNNs hold promising potential in terms of addressing the
key challenges of NG networks, but they also face limitations
in the era of noisy intermediate-scale quantum (NISQ) devices.
At the current state of quantum computing, these NISQ devices
have a limited number of qubits and significant quantum
domain impairments. Naturally, the performance of a quantum

computer depends on three key factors: scale, fidelity, and
speed [215]. Scale refers to the number of qubits available in
the quantum computer, which determines the dimension of the
problem it can solve. Fidelity represents the level of quantum
impairments in a quantum computer [216]. The so-called
quantum volume characterizes the dimensions of quantum
circuits that can be effectively run on a quantum computer,
providing insight into the practical limits of these devices
[217]. Speed, quantified in terms of the number of circuit
layer operations per second (CLOPS), indicates the compu-
tational efficiency of quantum circuits [215]. Accordingly,
implementing QGNNs on NISQ devices faces challenges such
as representing high-dimensional problems using quantum
circuits limited by the scale and quality of current quantum
hardware [218]. Beyond optimization, QGNNs can signifi-
cantly enhance the security and privacy of communications
in NG-IoT networks by incorporating quantum cryptography.
This would enable unbreakable encryption methods, providing
robust defenses against sophisticated cyber threats. Quantum
key distribution and quantum secure direct communications
are already quite mature [219]–[221], but their standardization
requires substantial future efforts.

VI. GENERIC DESIGN GUIDELINES

To guide the development of efficient GNN models tailored
for NG IoT networks, we highlight key design principles, as
summarized in Fig. 18, and elaborated below.

• Task-specific design: GNN models are highly effective
for node and edge-level tasks, such as user association,
resource allocation, and network routing, providing pre-
cise predictions and improved network performance. For
larger-scale problems, graph-level tasks offer a holistic
view of the network, capable of holistic system opti-
mization, for example, throughput and task offloading in
complex environments like edge computing.
Evaluation metrics: The effectiveness of this design can
be validated using task-specific performance metrics, e.g.,
accuracy, precision, or latency for edge-level tasks; and
throughput, fairness index, or load balance for graph-level
tasks. These metrics indicate whether the GNN archi-
tecture is aligned with the intended scope of decision-
making, ensuring that the model does not underfit or
overfit the level of abstraction.

• Ensuring effective graph representation and informa-
tion propagation: The design has to guarantee that the
GNN model accurately captures the underlying struc-
ture and relationships within a network, reflecting the
network’s topological and functional characteristics. The
model should effectively propagate information across
the graph, ensuring that all important connections and
dependencies are learned. Techniques such as attention
mechanisms, multi-hop message passing, and edge fea-
ture enhancement can help ensure that the GNN accu-
rately captures both local and global relationships.
Evaluation metrics: Metrics such as graph entropy,
equivariance, invariance, and attention weight distribution
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- Tailor GNNs to the granularity of the decision-making problem (node, edge, or graph
level). 
- Evaluation via task-specific performance metrics (e.g., latency, throughput, fairness index)

- Capture the structural dependencies and ensure effective message propagation across the
graph. 
- Use attention, edge features, and multi-hop aggregation to model local/global relationships
- Diagnose representational issues using entropy, invariance, and EXIT-inspired information
flow metrics

- Enable GNNs to large, dynamic NG-IoT graphs while preserving performance 
- Subgraph partitioning, hierarchical GNNs, or federated schemes for distributed
settings
- Measure scalability-efficiency to assess stability under growing graph size

- Model accuracy and computational/resource cost trade-off
- Lightweight GNNs and hybrid solutions (e.g., quantum circuits)
- Accuracy-per-FLOP, model size vs. inference time, energy-per-inference

- Resilient GNNs from adversarial attacks and uncertainties
- Adversarial training, noise injection, or hybrid graph defenses
- Accuracy drop under attack, perturbation tolerance, and
success rate of evasion/poisoning

Fig. 18: Design guidelines for efficient GNNs in NG-IoT
networks.

provide valuable insights into how effectively a GNN
model captures and preserves the underlying structural
information. Additionally, inference accuracy under par-
tial graph observation evaluates the model’s ability to
propagate critical information across the network, while
EXIT chart-inspired metrics can monitor mutual informa-
tion flow between layers, helping diagnose issues such as
over-smoothing or representation collapse. Overall, these
metrics demonstrate the critical role of representational
power in achieving robust performance in complex NG-
IoT environments.

• Scalability of GNN models: When designing GNNs
for NG IoT networks, ensuring scalability is critical for
efficiently handling large and dynamically evolving graph
structures. GNNs must be capable of processing vast,
evolving networks having numerous nodes and edges,
while minimizing both the computational and memory
costs. Approaches such as partitioning large graphs into
smaller subgraphs or leveraging hierarchical GNN models
can help scale solutions, while maintaining accuracy.
Moreover, ensuring that the GNN models can generalize

across various network sizes without performance degra-
dation is essential for real-time network applications.
Evaluation metrics: The key metric is scalability-
efficiency, measuring how performance (e.g., accuracy or
reward) changes with varying graph sizes. This indicator
is essential for validating the model’s practicality in
real-time applications and resource-constrained NG-IoT
deployments, ensuring it remains effective as the network
scales.

• Balancing performance and computational complex-
ity: The objective is to design lightweight GNNs impos-
ing a low computational overhead, while maintaining high
performance. Incorporating quantum computing has the
potential to enhance efficiency by offloading computa-
tionally intensive tasks to quantum circuits in large-scale
graphs. Besides, the depth of the GNN model must be
carefully designed to strike a balance between achieving
node feature uniqueness and avoiding over-smoothing.
Evaluation metrics: Trade-off metrics like accuracy-per-
FLOP, model size vs. latency, and energy-per-inference
provide quantitative insights into this balance. These
metrics will evaluate the deployment feasibility on con-
strained hardware (e.g., FPGAs or Edge TPUs), hence
facilitating compact and effective GNN designs in NG-
IoT networks.

• Security and robustness: It is vital to incorporate adver-
sarial defense mechanisms, such as adversarial training
or hybrid defense techniques, for ensuring robustness
in critical applications like healthcare or autonomous
vehicles.
Evaluation metrics: The main evaluation metrics will be
accuracy drop (DA%), perturbation tolerance thresholds,
and resistance to evasion or poisoning attacks. Evaluating
model reliability under simulated threats provides em-
pirical justification for integrating defense mechanisms,
proving that the model can maintain trustworthiness in
volatile or adversarial environments.

VII. LESSONS LEARNED, FUTURE RESEARCH DIRECTION,
AND CONCLUSIONS

A. Lessons Learned and Future Research Directions
Based on the comprehensive discussion of each open ques-

tion, we summarize the key lessons learned and highlight
promising future research directions to further strengthen the
integration of GNNs with NG-IoT networks.

• GNNs can provide a flexible and expressive modeling tool
to capture spatial, temporal, and structural dependencies
in NG-IoT systems, enabling intelligent decision-making
across edge, cloud, and hybrid platforms. However, the
integration of GNNs into these systems is challenged
by scalability limitations, heterogeneous data, and the
constrained resources of IoT devices. Therefore, future
research should focus on developing lightweight, adap-
tive GNN architectures, using techniques such as model
pruning, quantization, and dynamic graph sparsification,
enabling real-time and energy-efficient deployment in
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practical NG-IoT scenarios.
• Privacy preservation in GNN-based NG-IoT systems

presents unique challenges distinct from adversarial ro-
bustness. The message-passing mechanisms in GNNs
may unintentionally expose critical structural patterns,
such as influential node connections, bridge links, or
tightly-knit communities, making generic privacy preser-
vation techniques like simple anonymization or ran-
dom link concealment ineffective. Such indiscriminate
defenses often degrade model utility while failing to
protect high-impact, context-sensitive relationships that
adversaries are most likely to target. Future research
must further advance context-aware privacy frameworks
that selectively protect sensitive elements of NG-IoT
networks while maintaining GNN utility. A key future
direction is developing topology-aware DP mechanisms
for graphs, since traditional DP methods inject excessive
noise due to structural correlations. Recent advances
demonstrate decentralized DP for subgraph statistics,
personalized DP-GNNs enabling heterogeneous privacy
budgets, and privacy-preserving embeddings [145]–[147].
These approaches collectively pave the way for context-
aware privacy solutions that balance strong privacy guar-
antees with high utility in NG-IoT networks. Another
direction is topology-aware graph perturbation, where
measures like betweenness centrality or edge criticality
guide selective link obfuscation to protect high-impact
connections, while avoiding unnecessary anonymization
[222]. Complementary to DP, homomorphic encryption
[223], [224] enables privacy-preserving GCN inference
by processing encrypted graph data on cloud servers.
These methods protect both graph features and topology
without revealing raw data, albeit at the cost of additional
computational complexity.

• The involvement of multimodal and non-Euclidean data
with complex interdependencies causes traditional ML
models ineffective in capturing topological structures and
dynamic interactions. Meanwhile, GNNs are naturally
suited to learn from these structures, but their applica-
tion to real-time and distributed settings still requires
innovation in data fusion strategies, synchronization
mechanisms, and dynamic graph representation learning.
This requires a robust multimodal GNN pipeline with
attention-based fusion, continual learning capabilities,
and temporal adaptation for evolving graphs.

• From a system-level perspective, the deployment of
GNNs at the edge introduces a trade-off between perfor-
mance, energy, and cost. We learn that embedding GNNs
into edge devices (e.g., FPGAs, TPUs) and optimizing
them through compression and hardware-software co-
design can dramatically reduce latency and communica-
tion overhead. This necessitates research into green AI
strategies, edge-aware GNN design, and scalable training
techniques for large-scale IoT environments. Moreover,
real-world adoption also depends on developing stan-
dardized frameworks for benchmarking GNN models in

terms of accuracy, efficiency, and sustainability across
heterogeneous NG-IoT settings.

• Distributed systems offer a natural fit for GNNs in NG-
IoT environments where data privacy, communication
cost, and scalability are critical. Yet, federated GNN
training faces challenges from device heterogeneity, par-
tial observability, and synchronization issues in dynamic
graphs. This highlights the need for new protocols and ar-
chitectures supporting structure-aware aggregation, over-
the-air computation, and robust federated updates in non-
IID, time-varying settings. Besides, a unified framework
and public benchmarks will be essential to accelerate
reproducibility and progress in this domain.

• Security and robustness remain pressing concerns. GNNs
are vulnerable to adversarial attacks that manipulate graph
structures or features, threatening reliability in mission-
critical NG-IoT applications. Existing defense techniques
provide partial solutions, but many are tailored to specific
attack models or fail under dynamic graph conditions.
Future directions should include designing universally
robust GNNs using adversarial training, explainable AI,
and quantum-safe encryption techniques, especially for
sensitive applications in smart grids, autonomous trans-
port, and blockchain-integrated systems.

• In emerging applications like ISAC and SAGSINs, GNNs
show promise in managing massive interconnectivity and
optimizing cross-domain coordination. However, chal-
lenges in handling highly dynamic topologies, spatial-
temporal dependencies, and extreme heterogeneity re-
main. Future work should investigate hierarchical and
modular GNN models that can seamlessly operate across
different communication layers and adapt to time-varying
resources.

• Semantic communications represent an emerging frontier
for GNN integration, where learning-based models ex-
tract, process, and transmit meaning rather than raw data.
Future research should explore how GNNs can support
knowledge graph reasoning, semantic-aware encoding,
and context-driven signal processing in NG-IoT applica-
tions. Papers by Zhang et al. [225], Guo et al. [226], and
Hello et al. [227] offer early evidence of this synergy, but
more robust GNN architectures are needed to maintain
semantic fidelity under dynamic and resource-constrained
conditions.

• Finally, quantum computing opens new frontiers in ac-
celerating GNN training, enhancing privacy via quantum
cryptography, and expanding computational capacity for
large-scale NG-IoT graphs. Despite limitations of cur-
rent noisy quantum hardware, hybrid quantum-classical
GNN models and quantum-enhanced optimization can
offer long-term benefits. Additionally, designing scalable
QGNN frameworks is critical to fully harness the po-
tential of quantum computing for large-scale NG-IoT
applications.

B. Conclusions
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A critical appraisal of the application of Graph Neural
Networks (GNNs) in NG-IoT networks was presented. We
commenced by introducing the underlying fundamental graph
concepts and GNN paradigms, establishing the foundational
principles necessary for understanding their relevance. Build-
ing on this, we highlighted the pivotal role of GNNs in NG-IoT
networks and modeled them as dynamic constrained graphs.
To further justify the GNN’s applicability, we related them
to LDPC decoding, framing GNNs as learnable generaliza-
tions of belief propagation, hence supporting convergence and
information flow analysis via density evolution and EXIT
charts. We further discussed how selecting appropriate task
levels, among node-, edge-, or graph-level, can significantly
enhance problem-solving efficiency across diverse NG-IoT
scenarios. We also examined the application of GNNs to key
NG technologies, including massive MIMO schemes, RISs,
satellites, THz, MEC, and URLLC solutions, highlighting
their capability to circumvent the limitations of traditional
methods. We also analyzed their integration with distributed
systems, highlighting their role in supporting distributed intel-
ligence with privacy preservation and reduced communication
overhead. Furthermore, we explored the integration of GNNs
with emerging technologies, including integrated sensing and
communication, space-air-ground-sea integrated networks, and
quantum computing, showcasing their potential to enhance
NG-IoT networks. Additionally, we addressed a range of
critical security concerns by discussing adversarial attacks on
GNN-based systems and by appraising the family of effective
defense strategies. By systematically addressing a suite of ten
open questions, this survey fills a crucial gap in understanding
how GNNs can be efficiently leveraged in NG-IoT networks.
In conclusion, our findings have emphasized the transformative
potential of GNNs in optimizing, scaling, and securing NG-
IoT networks, laying the groundwork for future research in
this rapidly evolving field.
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