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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF MATHEMATICAL STUDIES
OPERATIONAL RESEARCH

Doctor of Philosophy

LOT STREAMING AND BATCH SCHEDULING: SPLITTING AND GROUPING
JOBS TO IMPROVE PRODUCTION EFFICIENCY

Edgar Possani

This thesis deals with issues arising in manufacturing. in particular related
to production efficiency. Lot streaming refers to the process of splitting jobs
to move production through several stages as quickly as possible, whereas
batch scheduling refers to the process of grouping jobs to improve the use of
resources and customer satisfaction.

We use a network representation and critical path approach to analyse the
lot streaming problem of finding optimal sublot sizes and a job sequence in
a two-machine flow shop with transportation and setup times. We introduce
a model where the number of sublots for each job is not predetermined,
presenting an algorithm to assign a new sublot efficiently, and discuss a
heuristic to assign a fixed number of sublots between jobs. A model with
several identical jobs in an multiple machine flow shop is analysed through
a dominant machine approach to find optimal sublot sizes for jobs.

For batch scheduling, we tackle the NP-hard problem of scheduling jobs
on a batching machine with restricted batch size to minimise the maxi-
mum lateness. We design a branch and bound algorithm, and develop local
search heuristics for the problem. Different neighbourhoods are compared,
one of which is an exponential sized neighbourhood that can be searched in
polynomial time. We develop dynamic programming algorithms to obtain
lower bounds and explore neighbourhoods efficiently. The performance of
the branch and bound algorithm and the local search heuristics is assessed

and supported by extensive computational tests.
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Chapter 1

Introduction

1.1 Background

Activities that transform resources into goods and services, that take place in
all sorts of organizations, are of interest to production and operations man-
agement. Efficient decision making at this level is important in increasing
productivity as pointed out by Heizer & Render (1996). Scheduling plays an
important role in production planning for manufacturing, and in increasing
its efficiency, more so with the advent of computers and automated systems.
However, its uses are wider, and many applications can be found outside
manufacturing and production in the service industries area. In the compet-
itive environment of today, efficient scheduling has become a necessity for
survival in the marketplace.

This thesis deals with issues arising in manufacturing, in particular related
to production efficiency. The problems we consider are scheduling problems.
Scheduling deals with the allocation of scare resources (machines) over time
to tasks (jobs). We concentrate in two different areas: [lof streaming and
batching. Lot streaming refers to the process of splitting jobs, where as
batching refers to the process of grouping them. Both are common processes
in manufacturing, and are of considerable interest, as can be seen by an

extensive literature.
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Lot streaming is motivated by a desire to move the production of a job
through several work stations or stages as quickly as possible. It can be
considered an extension on the classical models in scheduling theory, where
jobs are processed fullv on a machine before continuing to another stage in
the system, for in this case partially completed parts of a job are passed
to downstream machines. Our aim was to show the advantages of network
representations for the models, like the ones presented in Glass & Potts
(1998), to obtain new results for the flow shop environment. Research on lot
streaming was done under the supervision of Dr. Celia A. Glass.

Most batching problems arise from the effort of grouping similar jobs
in order to reduce common setup times. However, in this thesis we are
interested in modeling a batching machine, one which can process more than
one job at a time. Applications can be found in the ‘burn-in’ operations
in the manufacture of circuits boards, and for chemical processes that are
performed in tanks or kilns. Our aim was to tackle the NP-hard problem
of scheduling jobs on a batching machine with a restricted batch size to
minimize the maximum lateness objective function. Research on batching

was done under the supervision of Prof. Chris N. Potts.

1.2 Contributions

The contents of this thesis are a result of work wholly carried out by the
author while registered in postgraduate candidature at the University of

Southampton. We now describe the main contributions of this thesis.

Lot streaming

A job is split into sublots, the question that most lot streaming models
try to answer is that of finding optimal sizes for the sublots. Instead of using
a linear programming approach we have used a network representation and
critical path approach to analyse models in lot streaming, with good results.
We have presented an alternative approach to analyse the lot streaming prob-

lem of finding optimal sublot sizes and job sequence in a two-machine flow
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shop with transportation and setup times. Our aim was to clarify and give
more insight into the results given by Vickson (1993). We have also anal-
vsed extension of the models for the flow shop environment. In particular
we have analysed the case where the number of sublots each job has is not
predetermined. We are considering a situation where the number of sublots
is a technological constraint for the whole schedule, rather than a particular
one for each job, as is common in the literature. We present an algorithm to
assign a new sublot efficiently, and discuss a heuristic to assign a fixed num-
ber of sublots between jobs. We have also analvsed a model with n jobs in an
m-machine flow shop with m > 3. The jobs have the same processing times
and sublots on each machine. We have applied a dominant machine analysis
to find optimal sublot sizes for jobs, and proven that the model reduces to a

simpler single-job lot streaming problem.
Batching

We have tackled the NP-hard problem of scheduling jobs on a batching
machine with restricted batch size to minimise the maximum lateness. Our
aim was to develop exact as well as approximation methods for this problem.
We have designed a branch and bound algorithm for the problem. The per-
formance of the algorithm has been assessed through extensive computational
testing. We give dynamic programming algorithms to find lower bounds on
the maximum lateness of a schedule with a restricted maximum batch size.
We also developed local search heuristics for the problem. Different neigh-
bourhoods have been designed and compared, one of which is an exponential
sized neighbourhood that can be searched in polynomial time. We rely on
dynamic programming algorithms to explore the neighbourhoods efficiently.
Again, the development work is supported by computational tests. As far as
the author knows these are the first algorithms, and heuristics developed for
the problem. Potts & Kovalyov (2000) point out that there is little research
done on branch and bound and local search for batching machine problems,

and our aim is to fill part of this gap.
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1.3 Organisation

The thesis is divided into two main parts. Part I, deals with models in lot
streaming while Part II is dedicated to the batching machine model. In
Chapter 2, we give a brief introduction to the theory of scheduling, and com-
putational complexity. We present the notation we will be using throughout
the thesis. Chapter 3 gives an overview of the models studied on the lot
streaming literature, and the techniques we are interested in applyving. Here
we present the alternative approach to schedule jobs in a two-machine flow
shop. Chapter 4 looks at the extensions of the known lot streaming models.
In Chapter 5, we talk about batching machine scheduling in the context of
combinatorial optimisation problems. We explain techniques to find exact
solutions (branch and bound, and dynamic programming), as well as approx-
imate solutions (local search heuristics). We also introduce the problem we
study in the two following chapters. In Chapter 6, we describe the branch and
bound algorithm developed for the batching machine problem, and discuss
the computational results obtained. In Chapter 7, we compare several local
search heuristics over different neighbourhoods. We present a exponential
size neighbourhood that can be searched in polvnomial time. Computa-
tional tests are used to compare the different methods. Finally Chapter 8

concludes the thesis, outlining potential further work.



Chapter 2
Scheduling

In this chapter we give a brief introduction to the theory of scheduling, and
computational complexity. Our aim is to familiarise the reader with some
scheduling problems and their models, and explain a general framework to
classify the difficulty of solving them. We focus mostly on those concepts
that are relevant to subsequent chapters. More elaborate introductions can
be found for scheduling in Conway, Maxwell & Miller (1967), Baker (1974)
French (1982), and Pinedo (1995).

Scheduling problems go back to the beginning of the industrial era. How-
ever, the first samples of scientific analysis of such problems date back to
the 1950’s. The theory of scheduling is concerned with the efficient allo-
cation of resources to tasks over time. For example, a resource may be a
machine in a workshop, surgeons in a hospital, processing units in a comput-
ing environment, and so on. The corresponding tasks mayv be operations in
a production process, the surgical procedures to be performed to patients,
computer programs to be executed, etc. Each task and resource might have
different properties, which need to be taken into account to do the allocation.
The value of the allocation is usually expressed as a function of the comple-
tion time of the tasks, referred to as an objective function. The problem
is then one of finding a minimum value for this objective function. We in-

troduce several models in Section 2.1. discussing popular objective functions
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and properties of interest for the tasks and resources. We confine ourselves
in this thesis to deterministic scheduling models (problems). That is, we as-
sume the data that define the problem (tasks and resources) are known with

certainty in advance.

2.1 Scheduling Machine Models

The standard terminology in use is one set in a manufacturirg environment,
which reflects the beginnings of the theory. Hence, a task is referred to as a
job, and a resource is referred to as a machine. Each job may consist of several
operations. It is common to talk about n jobs to be scheduled on m machines,
and usually a subscript j refers to a job, whereas the subscript ¢ refers to a
machine. It is sometimes useful to refer to the set of jobs or machines. The
notation we use is J = {J1, Jo, ..., Jp}, and M = {M,, ..., A,,} for the set
of jobs, and machines respectively. Thus, it is the same to refer to job 7,
or job Jj, likewise to machine ¢ or machine Af;. Several models have been
proposed, analysed, and classified in the literature. Classification schemes
have been proposed based on different dimensions. There are two major
dimensions that specify any model: the machine environment and the job
properties.

Machine environments are determined by the number of machines, how
they are organised in the production system, and the way the jobs are pro-
cessed through them. We can divide the machine environments into two
broad classes single-stage and multi-stage environments. A single-stage en-
vironment corresponds to production svstems requiring only one operation
per job, whereas multi-stage environments correspond to production systems

where there are jobs that require operations on different machines.

2.1.1 Single-Stage Environments

Single-stage environments involve either a single machine or m machines op-

erating in parallel. The single-machine model is the simmplest one, where
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jobs require one operation on the (single) machine. It is standard to con-
sider a single machine as being able to processes just one job at at time.
However, in this thesis we are interested in modeling a single machine that
can process more than cne job at a time: we call such a machine a batch-
ing machine (see Section 5.5). Single-machine models not only come from
situations that are in their own right a single machine problems, but also
arise as simplifications of more complex models. It is not uncommon that a
single machine is a bottleneck in a complex production system, and thus the
performance of the entire system depends on it. Single machine models are
also important in decomposition approaches, where scheduling problems in
complicated environments are broken down into a number of smaller, single
machine scheduling problems, as simple rules to solve them are more common
due to their simplicity.

A parallel-machine system, is a generalisation of the single-machine model.
In this case we have several machines that can process a job. It is common to
distinguish between three settings: one where the m machines are identical,
one where machines have different speeds, called uniform parallel machines,
and one where the machines are unrelated. In an identical parallel machine
environment each job requires a single operation and it may be processed
on any one of the machines. In a uniform parallel machine environment,
any machine can process a job, but the machines operate at different speeds,
where the speed does not depend on the job, but on the machine. This por-
trays the fact that some machines in the system might be older, and therefore
operate at lower speeds (an obvious example is computers). In the unrelated
parallel machine environment the speed of the machines not only differ from
machine to machine, but also vary for different jobs on the same machine.
For example, when machines represent people, then the processing time may
depend on the job as well as on the person (machine). One person may excel
in one type of job, whereas another person mav specialize in another type of

job.
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2.1.2 Multi-Stage Environments

Multi-stage environments consist of several machines, where the jobs gener-
ally have more than one operation to be performed on the machine system.
There are three main types of multi-stage enviromuents: flow shop, open
shop, and job shop. In a flow shop environment each job has to be processed
on each one of the m machines (stages) in the same order. For convenience,
we say the jobs pass through from machine 1 to m. All jobs have the same
routing, and after processing on one machine they join a queue for the next.
Jobs may be resequenced between machines. If no job changes order while
waiting in the queue, then we refer to it as a permutation flow shop. In an
open shop environment jobs have to be processed once on each of the m
machines, but there is no restriction on the order any single job must pass
through them. Hence, the routing becomes part of the allocation (decision)
process. In a job shop each job has its own route to follow through the ma-
chines. The route is prescribed beforehand for each job and it can differ from
job to job. It is assumed that each job visits each machine at most once.
However, if we allow a job to visit a machine more than once, then the job
shop is subject to recirculation.

It is usual for a job to be processed completely at a stage before it is
sent to the next stage. Nevertheless, there are cases when the operation on
a job is stopped to be resumed later, or when partially completed work on
a job is passed along to other stages (downstream machines). Specifically,
some models allow job preemptions where the processing of a job j may be
interrupted (preempted), to put a different job in the machine, and resumed
at a later time. Preemption is motivated by a desire to implement appropriate
priorities among jobs in a situation where two or more jobs compete for
limited production resources. In fact we are splitting the operation of the
job into smaller parts. Another case where splitting of jobs is allowed is
lot streaming. However in this case the job processing is not necessarily
interrupted by another job, but merely passed along to another machine

in the system, while the processing continucs on the job. Lot streaming
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is motivated by a desire to move the production of the job through several
work stations (stages) as quickly as possible. Sometimes jobs have precedence
constraints, when certain jobs require the completion of some others before

work can start on them.

2.1.3 Job properties

The following are popular job properties, and we present the notation we will

use for them throughout the thesis.

e Processing time p;; of job 7 on machine 4, is the time it takes for
machine ¢ to process job j. The subscript 7 is omitted if the processing
time of the job does not depend on the machine, or if we are working
with a single machine. Hence, for identical parallel machines p; is the
processing time on any machine, whereas in a uniform parallel machine
environment the processing time of job j mayv be expressed as p;/u;,

where u; is the speed of machine 1.

e Due date d; of job j, is the time by which the job should be completed.
In a manufacturing system it represents the committed shipping (or
completion) date the job is promised to the customer. The completion
of a job after its due date is allowed; however a penalty is incurred
(usually expressed in the objective function). If the due date must

necessarily be met then we refer to it as the deadline.

e Release date r; of job j, is the time (date) at which the job becomes

available for processing in the system.

o Weight w; of job, which denotes the importance of a job relative to
others; it is a priority factor. It might represent the actual cost of
keeping the job in the system, such as a holding or inventory cost.

Alternatively, it might just be a predefined value (cost) of the jobh.

e Setup s;;; time between jobs j and £ on machine 7. This may represent

the clean up time after job j before job A starts processing on machine 7.
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If the setups are not sequence dependent then we say s;; is the setup
time on machine ¢ before job j starts. If the setup does not depend on
the machine, or we are working with a single machine the subscript 7
is omitted. Sometimes similar jobs share a setup, we say they belong
to the same family. If job k is processed immediately after job j on

machine ¢ and they belong to the same family, then s;;, = 0.

o Transportation time ¢;;5, of job j between machine ¢ and h, to represent
the time it takes to transport job j from machine 7 to machine k.
This property is inherent in multi-stage environments. If it is machine
independent, or if the transport is always made in the same direction
and only between two machines we may omit subscripts 7 and h. This
can be viewed as a setup between machines for the same job, in a

similar way to s;;; being one between jobs in the same machine.

Note how some properties are predominantly time related like d;, and r;,
while some are also dependent on the job sequencing on the machines like
sijk and tjx. Others are solely dependent on the job like w;, or are based
on the particular environment where they are set such as preemption, lot

streaming, or precedence constraints.

2.1.4 Objective Functions

In scheduling terminology, a distinction is often made between a sequence,
and a schedule. A sequence usually corresponds to a permutation of the jobs,
that is, the order in which jobs are to be processed on a given machine. A
schedule provides additional information, including the time that the oper-
ations occupy the machines and possibly some other features. For example,
in an two-machine flow shop with lot streaming a schedule not only specifies
the order the jobs go through both machines but the size of the sublots for
each job (see Section 3.4).

Once a schedule of the jobs is determined, we can calculate the completion

time of each job. We will denote by C; the completion time of job j. that
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is the time the job leaves the system (i.e. its completion time on the last
machine on which it requires processing). Sometimes it is useful to be able
to refer to the completion time of an operation of job 7 on machine ¢, which
we denote by Cj;. As explained before, the objective function is usually
expressed in terms of the completion time of the jobs. Some measures that
can be calculated for each job and help define popular objective functions

are:

e the lateness of a job L; = C; — dj;

the unit penalty U; = 1 if C; > d;, otherwise U; = 0;

the tardiness T; = max{C; — d;, 0};

the earliness E; = max{d; — Cj, 0};

and the flow time F; = C; —r;.

Based on these measures we are able to calculate and propose the follow-

ing objective functions.

e Maximum completion time or makespan Cp,x = maxCj. A minimum
j
makespan usually implies a high utilisation of the machine(s). It is also

a measure of the output rate of products in a syvstem.

e Total (weighted) completion time »_(w;)C;. which gives an indication
of the holding costs incurred by the schedule. When w; = 1 for each job
j this objective function is equivalent to minimising the average number

of jobs in the system, and is a measure of the average throughput time.

e Total (weighted) flow time ) (w,) F} is a similar measure to the previous
one, but this one considers the job release date. It allows for jobs

entering the system at different times. Note that if r; = 0 for all jobs

j then  (w;)Cj = 3 (w;) F;.
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e Maximum lateness, Lyax = max L;; this measures the worst violation
J
of the due date. In some sense, minimising L. is equivalent to min-

imising the worst performance of the schedule.

e Total (weighted) number of late jobs > Uj; this is « conumon measure
in practice, and easily recorded. It does not account for how late a
job is, but just if it is late or not. However uinimising this objective
function may result in schedules where jobs are very late, which is often

unacceptable in practice.

e Total (weighted) tardiness Y _(w;)Tj; this measures the conformance to
due dates, similarly to Y (w;)U;, but it is less likely that the wait for

any given job will be unacceptably long.

e Maximum tardiness, Ty, iS similar to L., but early jobs bring no

reward.

In this thesis we are interested in particular in the C,., and L.y objective

functions.

2.1.5 Model Notation

The standard representation scheme for scheduling problems (Graham, Lawler,

Lenstra & Rinnoy Kan 1979) is a three-field descriptor ¢

t|1ps, where ¢ in-
dicates the machine environment, ¢, describes the job properties, and ¥3 the
objective function to be minimised. We let ¢; = a m, where m is the number
of machines, and a € {P,Q, R, F, J, O} for identical, uniform, and unrelated
parallel machines, flow shop, job shop and open shop environments, respec-
tively. We use the notation suggested by Potts & Kovalvov (2000) where
if the machines involved are batching machines we use tilde on top of the
environment (for example, Pm is an identical parallel machine environment
with m batching machines). Under ¥ we may have any of the job properties

given above, and, or:
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e b; if the maximum batch size on machine 7 is 0;, and just b if the

maximum batch size on all machines is b.

e g; is number of sublots job j is allowed to have. When all jobs have
the same number of sublots, we drop the index j. Models without lot

streaming have ¢ = 1, and there is no need to make it explicit in .
e prec if there are precedence constrains,
e pmtn if preemption is allowed,
e recrc if recirculation is present in the system,

Field 3 may be any of the objective functions explained before. For ex-
ample, F2 |g;, sij, tj| Cmag is the two-machine lot streaming flow shop
problem, minimising makespan, with sequence independent setup times s;;,
transportation time ¢;, and g; sublots for each job. This problem is solved
in Section 3.4. Another example is J2 by = 1, by = 3| Thnax, @ two machine
job shop where the first machine is a classical machine, and the second is a
batching machine that can process up to 3 jobs at the same time, minimis-
ing the maximum tardiness. In this thesis we study problem 1 |b| Ly, a
single batching machine with restricted batch size to minimise the maximum

lateness.

2.1.6 Dispatching rules

A simple solution procedure for scheduling problems is to priorities jobs, and
schedule them according to a dispatching rule. A dispatching rule prioritizes
all the jobs that are waiting for processing on a machine. The prioritization
scheme may take into account the jobs properties and machine attributes, as
well as the current time. Pinedo & Chao (1999) distinguish between static
and dynamic dispatching rules. These rules are usually constructive in their
approach. A static rule prioritizes all jobs before constructing the schedule,

and does not change the priority as the schedule is being constructed (i.e. it
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is just a function of the data of the problem). Dynamic rules, on the other
hand, are time dependent, and prioritize jobs differently with time as the
schedule is constructed. The first results on the theory of scheduling were
static dispatching rules that gave optimal solutions for some problems. As

an example we present the following:

e Shortest processing time (SPT) rule prioritizes jobs according to their
processing time. It forms a schedule as a sequence of jobs in non-
decreasing order of processing time. A schedule constructed in such a
way minimizes the Y C; or ) w;C; if w; = w Vj in a single machine en-
vironment. This rule is also optimal for Pm|| " C;. and Fm|prmu, p;; =
p;1 > C; (see Pinedo (1995), Sections 4.3 & 5.1).

e Earliest due date (EDD) rule prioritizes jobs according to their due
dates. It takes the jobs and orders them in non-decreasing order of
their due dates to forin the schedule as a sequence of jobs. It was
proven by Jackson (1955) that this rule yields an optimal schedule for
1||Lmax- We use it as well to construct starting solutions for our local

search heuristics, see Chapter 7.

e Shortest processing time first, largest processing time second (SPT(1)-
LPT(2)) rule, also referred to as Johnson’s rule. This rule was originally
designed for the F2||Cyax problem, (Johnson 1954). It divides jobs into
two sets; set I where the processing time on the first machine is smaller
than the second (i.e. pi; < pgj), and set 2 where the processing time on
the second machine is smaller than on the first machine (i.e p1; > poj)
Jobs where py; = py; may be in either set. The SPT(1)-LPT(2) rule
dispatches jobs in the set 1 first, and in non-decrcasing order of p;,

and dispatches jobs in set 2 afterwards, in non-increasing order of py;.

Another famous dispatching rule is the weighted shortest processing time
first (WSPT) rule for 1|3y w;C;, where the jobs are ordered in decreas-

ing order of w;/p;, due to Smith (1956). Several other dispatching rules
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have been devised for different objective functions and environments (includ-
ing 02, Jm, Fm); for a summary of other dispatching rules consult Pinedo
(1995).

Throughout the thesis we focus mainly on the C,.x objective function in a
flow shop, and the L., objective functions on a batching machine. Hence, we
are particularly interested in the SPT(1)-LPT(2) and the EDD dispatching
rules. We now prove why these rules work. In particular Johnson’s rule will

be used extensively in Chapters 3 and 4.

Theorem 2.1 (Johnson 1954). F2||Cpax s solved by an SPT(1)-LPT(2)

schedule.

Proof:  Suppose that no optimal sequence corresponds to an SPT(1)-
LPT(2) schedule. In an optimal sequence, there is a pair of adjacent jobs,
say h before [ such that they satisfy one of the following 3 conditions:

(i) job h belongs to set 2 and [ to set I

(ii) job h and ! belong to set I and p1p > pu;

(iii) job h and [ belong to set 2 and pay < pa.
We need to show that, under any of the three conditions mentioned above, by
interchanging the positions of job h and [ in the sequence we get a makespan
that is shorter or the same. Let Cj; denote the completion time of job j
(1 < j < n) on machine ¢ (i = 1, 2) under the original sequence and 61-]- the
completion time under the sequence where h and / have been interchanged.
Suppose that under the original sequence job ¢ immediately precedes job
h and that job g immediately follows job [. Interchanging h and [ does
not affect the starting time on the first machine of job ¢, which is equal
to Cy; + p1n + pu- However, we are interested in knowing when the second
machine becomes available to process job g. Under the original sequence it
is Cy, but with the interchange it is CA”Qh. We need only to prové that, under
any of the three conditions mentioned above, 62/, < ('y. The completion of

job  on the second machine under the original sequence is

Co = max{max{Cy, Cyy + pin} + pon. Cvv + pin + put + pu =
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= max{Cy + pon + P2, Cit + v +Don +pau. Cu +pun + pu + pal,

and similarly the completion time of job h on the second machine after the

interchange is
Con = max{Cy + poy + pon, Cut +pu+ pau + v, Cu + pu+ pin + pan}-

Under condition (i), pip > pon, and py < pgr. Note that the first terms within
the max expressions of Cy and 52,1 are identical. The second term in the
expression for 52;1 is no greater than the third term in the expression for Cy,
and the third term in the expression for 6'% is no greater than the second
term in the expression for Cy. Hence, under condition (i), 52;,, < (Cy.

Under condition (ii), p1p < pap as well as py; < py, and pyy, > pyy. In this
case the second and the third terms in the expression for @h are no greater
than the second term in the expression for Cy. Hence, under condition (ii)
Con < Cat.

Finally condition (iii) implies that py, > pop, and py; > po, as well as
Pan < por. So that the third term in the expression for C'y is no less than the
third and second term in the expression for Csp, . Hence under condition (iid)
62/1 < (Cy. We need to repeat the same argument until we get an SPT(1)-
LPT(2) sequence.

Theorem 2.2 (Jackson 1955). 1||Lmax s solved by an EDD schedule.

Proof: Let o be an optimal sequence, and Ly (o) its maximum lateness.
Suppose that no optimal sequence corresponds to an EDD schedule. Then
there are at least two consecutive jobs in o say j sequenced before j+ 1 such
that d(j) > d(j +1). Construct a new sequence ¢’ where job j + 1 is swaped
with job j. The completion time of job j under o is C';_; +pj;, and its lateness
is L; = Cj_1 + p;j — d;, while the completion time of job j + 1 under o 1s
Cj—1+p;j+pjs1 and its lateness L = Cj_1+p; +pje; —d 11 Now consider

the maximum lateness of sequence ¢’. The lateness of each job hefore 7 and
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j + 1 remains the same as no such job is affected by the swap. The lateness
of each job after 7 and 7 + 1 also remains the same as the completion time
of the job j in ¢’ is éj = Cj_1 + pj4+1 + pj = Cjz1. We only need to look
a the lateness of jobs j and j + 1 under ¢'. The lateness of job j in ¢’ is
]A;]- =Cijo1+pjp1+pj—dj =Ciu1 ~dj < Cijiq1 —djy1 = Lijpy < Linax(0),
and the lateness of job j+1in o' is zj+1 =Cjo1+pjs1—djy1 <Cjo1+pj+
Pi+1 — dj+1 = Ljt1 < Limax(0). Thus, Lyax(0') < Lpax(o). We can repeat

the same argument until we get a sequence in EDD order.
O

Dispatching rules, however, tend only to vield optimal solutions for sim-
ple models. We consider an algorithm to be a step by step solution procedure
which yields an optimal solution to a problem. That is, an algorithm will
construct an optimal schedule (i.e. one that minimises the objective func-
tion). A procedure that does not yield an optimal solution is referred to
as a heuristic. We analyse a class of heuristics (local search heuristics) in
Chapter 5, Section 5.4. General purpose algorithms like branch and bound,
and dynamic programming are introduced in Chapter 5, Section 5.3. Many
scheduling problems can be formulated as (mized integer) linear program-
ming problems MILP, see Schrijver (1986). Another solution procedure for
scheduling problems, therefore, is the methodology for MILP problems. How-
ever, for most scheduling problems it is hard to find algorithms that solve
them in a reasonable amount of time. It is common to classify the difficulty
of scheduling problems by the time it takes to solve them. A frame for such
a classification was introduced by Cook (1971) and Karp (1972), and is re-
ferred to as the theory of computational complexity. We give an overview of

the theory in the next section.
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2.2 Computational Complexity

An intuitive way of classifying problems is the effort (time) required to solve
them to optimality. The main contribution of the theory of computational
complexity is 10 give a framework for such a classification. In this section we
give a non-rigorous overview of the concepts involved in this classification.
For a rigorous and detailed treatment we refer the reader to the classical
book by Garey & Johnson (1979). We also base our presentation on books
by Papadimitriou & Steiglitz (1982), Papadimitriou (1994), and Cook, Cun-
ningham, Pulleyblank & Schrijver (1998).

An instance of a problem is obtained by specifving particular values for
the parameters (machine environment, job properties) that define it. The size
of an instance can be roughly defined as the number of symbols required to
represent it. The effort (time) required for an algorithm to obtain a solution
grows with the size of the problem instance. It is natural then, to represent
this effort as a function of the size of the instance. In fact the running time
of an algorithm for a given problem is measured by an upper bound on the
number of elementary steps the algorithm has to perform. Specifically, if n
is the size of an instance, and f(n) is an upper bound on the number of steps
the algorithm performs, then the algorithm runs in O(g(n)) time, or is said
to have O(g(n)) time complexity, if there exists a constant ¢ > 0 such that for
large enough n, f(n) < ¢ g(n). An polynomial time algorithm is one where
g(n) is a polynomial function. We have an ezponential time algorithm, when
it is not a polynomial time algorithm, this includes functions of the form n!
and nloen,

Other standard notation for the asymptotic running time of an algorithm
(see Cormen, Leiserson & Rivest (1993)) is as follows. Let f(n) : 2 — R*
and g(n) : 2% — R then f(n) is Q(g(n)) if there exists a constant ¢ > 0
such that, for large enough n, f(n) > ¢ g(n), and f(n) is ©(g(n)) if there
exist constants ¢;,c, > 0 such that, for large enough n. ¢ g(n) < f(n) <
cy g(n). Note that just as O-notation gives an asvmptotic upper bound,

the (2-notation provides an asymptotic lower bound. We can use this same
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notation to refer to the space requirement of the algorithmm (information an
algorithm needs to access while running), or to denote the size of a solution
space (see Section 5.4).

As explained before, complexity theory aims to classify problems into
‘hard’ or ‘easy’ depending on the time it takes to solve them. The core of
the classification lies in grouping problems into two main classes, namely
P and NP. The definitions of P (deterministic polynomial) and NP (non-
deterministic polynomial) classes are based on the concept of a deterministic
and non-deterministic Turing Machine. A Turing Machine is a mathematical
model of an algorithm. A problem is in the P class if it is possible to solve it
in polynomial time by a deterministic Turing Machine. A non-deterministic
Turing machine is a theoretical extension of the deterministic machine which
can evaluate an exponential number of solutions in a polvnomial bounded
number of computations. A problem is in NP if it can be solved in polynomial
time by a non-deterministic Turing Machine. It follows that P C NP.

In practice a problem belongs to class P if there exists an polynomial time
algorithm that solves it. For example, the ellipsoid algorithm by Khachian
(1979) solves any linear programming (LP) problem in polvnomial time;
hence LP problems belong to P. However, for a long time it was unknown
if LP problems belonged to P. That there is no known polynomial algo-
rithm for a problem does not guarantee that it does not belong to P, rather
that the problem is intractable. However, it is of interest to know if such a
problem is NP-complete. Ve note that the NP-completeness theory refers
to decision problems (one whose solution is either ‘ves’ or ‘no’). For any
given problem there exists an associated decision problem. Membership of
the NP-complete class is ‘harder’ to establish, and is based on the fact that
all NP problems can be reduced to any NP-complete problem in polynomial
time. Cook (1971) was the first to give an NP-complete problem, namely
the satisfiability problem. If problem IT can be reduced to problem IT" by
a polynomial time procedure, then they belong to the same class. This is

significant because if we were able to find a polynomial time algorithm for
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an NP-complete problem, then we would prove that P = NP. A list of NP-
complete problems can be found in Garey & Johnson (1979), with recent
results summarised in (Papadimitriou 1994). Unfortunately there has been
no success in finding any polynomial algorithm for an NP-complete problem,
nor in proving P # NP. In fact, what the theory seems to conclude is that
the ‘hardest’ problems (NP-complete problems) are in some sense equivalent,
and it is widely believed that NP # P.

The size of an instance is encoding-dependent (i.e. dependent on the
code or ‘language’ utilized to represent the parameters of the problem). NP-
complete problems, can be divided into two subclasses depending on the
encoding scheme. These are unary NP-complete (or strongly NP-complete),
and binary NP-complete (sometimes referred to as NP-complete in the or-
dinary sense). These concepts were introduced by Garev & Johnson (1978)
and Lageweg, Lawler, Lenstra & Rinnooy Kan (1978). If a problem is unary
NP-complete, then it is NP-complete even when the encoding scheme uses
unary notation (where a string of n ones represents number n, expressed
in base 1). Such a problem differs from a binary NP-complete problem by
the fact that a binary NP-complete problem may have a pseudo-polynomzal
algorithm, one that runs in polynomial time if the encoding is unary. Hence,
in some sense unary NP-complete problems are ‘harder’ than binary NP-
complete problems. Very informally a problem is termed unary NP-hard
when the corresponding decision problem is NP-complete in the strong sense,
and binary NP-hard if the corresponding decision problem is NP-complete in
the ordinary sense. For a more detailed treatment of these terms (including
Turing reducibility and number problems) consult Garey & Johnson (1979).

In scheduling problems there is a thin line dividing NP-hard problems
from P problems. For example, in problem 1||L,.., that belongs to P (as
EDD rule solves it), changing to a batching machine with restricted batch
sizes (i.e. 1|b|Lmax) produces an NP-hard problem.

Computational complexity is a worst case analyvsis, and is by no means

a measure of the expected running time in practice. An illustrative example



CHAPTER 2. SCHEDULING 21

is the simplez algorithm of (Dantzig 1949) that solves linear programming
problems. It is an exponential time algorithm, but it works very well on av-
erage, and for many instances outperforms the ellipsoidal method. However,
the theory does give an indication of the complexity of the problem, from
which we can deduce the tvpe of methods that are most suitable to find so-
lutions. Heuristic methods, like the ones described in Chapter 5, are used for
NP-hard problems if solutions are required using reasonable computational

resources.
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Chapter 3

Lot Streaming Basic Models

3.1 Introduction

As explained in chapter 2, it is common for a job to finish its operation on one
machine before proceeding to the next machine in the svstem. Lot streaming,
however, is the process of splitting partially completed jobs into sublots to be
transferred to downstream machines in multi-stage production systems. It
1s an extension on the classical machine models where the number of sublots
for each job j, denoted by ¢;, is ¢; = 1. By allowing the overlapping between
successive operations we may obtain a reduction on the completion time of
the jobs in the resulting schedule, and the work-in-process inventory levels.
Lot streaming also improves customer services, as partially completed sublots
may be delivered before the whole job (order) is completed, as pointed out
by Potts & Van Wassenhove (1992).

We illustrate this in the following example. Consider the F2 | | Cpax
model with 3 jobs, and the following processing times.

Table 3.1: Processing times for a 3-job example

job | J1 | S| J3
pij| 4166
P2 | O | 81 4
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Johnson’s SPT(1)-LPT(2) dispatching rule will give a schedule where job
Ji is sequenced before J,, and job J, before J;. with makespan Cy . = 22. A
Gantt chart representing this optimal schedule is shown in Figure 3.1. Note
how the operation on machine AM; for a particular job is finished before its
operation on machine M, begins. Machine A, is idle for 4 time units before
the operation on the first job starts, and it is idle for 1 time unit while it

awaits for operation on job J, to finish on the first machine.

Mi[ gy Jo Js |
M, J; | I | 5]

time { } |1 | | |

0 4 9 10 16 18 22
Figure 3.1: Gantt Chart for the 3-job example

Allow lot streaming on Js, say by dividing it into two equally sized sublots
throughout the flow shop. Hence, divide the operation of J, on A} in two 3
time unit sublots, and the operation on Af5 in two 4 time unit sublots. The
schedule with the same job sequence as before is shown in the Gantt chart
of Figure 3.2. Note how for job J, there is an overlap of the operation on
the second sublot on machine M;, and the operation of the first sublot on
machine M, (between time 9 and 10). Half of job J, (sublot 1) becomes
available for dispaching to the customer at time 13, and the whole job is
completed at time 17, whereas before its completion time was C, = 18.
Not only that, but the duration of the whole process, the makespan of the
schedule, is reduced to 21. This reduction in makespan results from a higher

utilization of machine M,, where the idle time is reduced by 1 unit.

M, [ Ji Jo sblt 1}]2 sblt i J3
My J1 [ Josblt 1 | Lsblt2 | T, |
time | F +——— { — +-
0 4 7 910 13 16 17 21

sblt = sublot

Figure 3.2: Gantt Chart for the 3-job example, where gy = 2
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A job may consist of several items. Hence. after theyv are completed in: the
first machine they wait until all of the items are finished before they move
to the second machine. Those items waiting for others to be completed are
part of the work-in-process inventory. We can appreciate how the inventory
levels between time 4 and 10 are reduced when lot streaming is allowed.

The aim of this chapter is to review important results for some models
that deal with lot streaming, and give more insight into the F'2 |g;, s;;, t;| Crmax
model. In Section 3.2 we give an overvie ~ of the results in the literature. In
Section 3.3 we give more details on the network representation of the single
job flow shop lot streaming model, and the dominant machine analysis by
Glass & Potts (1998). In Section 3.4 we present a critical path approach to
find an optimal schedule for the F2 |g;, s;;, t;| Cimax model.

3.2 Literature Review

Lot streaming models date back to work by Szendorvits (1975). His model
shows that there are potential savings in the holding, work-in-process, and
final inventory costs when lot streaming (overlap of operations) are consid-
ered in multi-stage production systems. His analysis focuses on a single job
(production lot) with equally sized sublots. Goyal (1976) treats the prob-
lem of optimising the sublot sizes in Szendorvits model, both models assume
there is no idle time between sublots (but there may be between different
jobs). These results are in accordance with the just in time (JIT) philosophy
where shorter production runs are preferred.

The first lot streaming models focused in obtaining optimal sublot sizes
for a single job. The makespan is a natural cost function, as the aim is to pass
the lot (job) through the system as quick as possible. Baker (1988) gives a
linear programming formulation for a single job in a flow shop environment,
minimising the makespan. He allows idle time between sublots, and expresses
the makespan as the sum of the idle times in the last machine plus the

processing time of the sublots on that machine. His model assumes that the
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number of sublots is known (g fixed beforehand). One possible formulation
for this problem focusing on the completion time of sublots, rather than the

idle time is as follows.
Lot streaming for a single job minimising the makespan

Let Cy; denote the completion time of sublot £ (1 < & < ¢) on machine i
(1 < i < m), and let 24 be the proportion of the job belonging to sublot %,
then the problem of minimising the makespan of a single job with ¢ sublois

through m machines can be formulated as:

min Cym
subject to
Cu —piry 20,
Cri = Cric1 —pixe 20, for1<k<qg,and2<i<m (3.1)
Cri = Cr1; —pix 20, for2<k<g,and1<i<m (3.2)
DTk =1,
Zr, Cri > 0, forl1<k<gqg,and 1 <i<m.

Note that Cyy, is the completion time of the last sublot of the job in the
last machine, which is the makespan of the single job. The processing time
of sublot £ on machine ¢ is p;zx. Thus, the first inequality guarantees that
the completion time of the first sublot on the first machine is not smaller
than the processing time of the first sublot on the first machine. The set
of inequalities (3.1) ensure that the processing of sublot £ on machine ¢ — 1
is completed before it starts its processing on machine 7. This is usually
referred to as the sublot processing constraint. The second set of inequalities
(3.2) makes sure that sublot k¥ — 1 has completed its processing on machine i
before the processing of the next sublot (k) starts. This is referred to as the
machine capacity constraints. The fourth inequality guarantees that zj is a
proportion of the job. A solution to this problem is fully determined by the
values of z for k=1,...,q.

Baker (1988) showed explicitly that the sublot sizes for the two machine

case (m = 2) are geometric. That is, if xy is the proportion of the job
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belonging to sublot & then,

p2\k-1
(%)

-1
Z:O(%)’”

In general, let us denote with z;;; the proportion of job J; belonging to sublot

k, on machine M; for j =1,...,n,i=1,...m,and k =1,...,¢g;. We refer
to x5 as the sublot size.

We say sublots are consistent if the sublot size z;;, does not vary from
machine to machine (i.e. we may drop index 7). In fact, Potts & Baker (1989)
showed that for the 2 or 3 machine flow shop (m = 2, 3) there is an optimal
schedule with consistent sublot sizes. They point out that this property is
valid for n different jobs not only the single job case. In their paper they also
compared equally sized sublots (z; = 1/¢) with optimal ones, finding that
the advantage of using optimal sublot sizes can not be more than 1.53 times
that of using equally sized sublots. An upper bound on the improvement of
an extra sublot on the makespan of the single job is 1/(¢ + 1)2. Note that
even though Baker’s initial model did not consider the possibility of varying
sublot sizes on different machines, his result still holds, and formula (3.3) is
valid. Consider the 3-job example given in Section 3.1. If we were to schedule
only job Jy without lot streaming the makespan of that single job would be
14 (=p12 + p22). Under the suggested equally sized sublots, sublots 1 and 2
would overlap for 3 time units, and the makespan would be reduced to 11.
However, if we were to use the optimal sublot sizes (z; = 3/7, and o = 4/7),
the makespan would be reduced even further to 10%.

Vickson & Alfredsson (1992), Trietsch & Baker (1993), and Cetinkaya
(1994) consider models where jobs are composed of several indivisible items.
Each item becomes available to be transferred to the next stage immediately
after the operation on it has been performed. There is no limit on the
number of sublots one can pass along to downstream machines. However,
consideration of setup and transportation times, might not make it ideal to
divide the job into a large number of sublots. Trietsch & Baker (1993) refer

to such a model as a discrete model, and to thosce models where jobs can be
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divided into any fraction of the job as continuous models. It is a common
suggestion to use the solutions to continuous models to approximate those of
discrete models. The more items in a job the closer the approximation will
be. Discrete models are usually explored with linear integer programming
techniques. However they tend to give little insight into the structure of
the problem, and are rarely useful in exploring extensions to the model.
Throughout this thesis we will focus on continuous models, and the use of
network formulations for them.

For continuous models a network representation of the problem, like the
one used by Potts & Baker (1989), Glass, Gupta & Potts (1994), Glass &
Potts (1998) has proven a useful analysis tool. We give some details in the
next section. Glass, Gupta & Potts (1994) also analysed the job shop and
open shop environments. They explain how a flow shop relaxation algorithm
can be used to generate a schedule with minimum makespan for a job shop.
They also provide an O{q)-time algorithm for the 3 stage open shop when
using consistent sublot sizes. Attach and detached setup times are considered
for the three machine flow shop in Chen & Steiner (1996) and Chen & Steiner
(1998), effortlessly from the analysis of Glass, Gupta & Potts (1994).

Going back to the 3 job example of section 3.1 if we were to change the
sequence so that job J, precedes J; (i.e. job sequence (Js, Ji,J3)) with the
suggested equally sized sublots on J5, the makespan would be reduced even
further to Cphax = 20. Hence, improvements on the schedule can be ob-
tained from the sublots sizes as well as the re-sequencing of jobs. Decisions
on the sublot size and sequence of jobs have to be taken into account when
minimizing the makespan of a given set of n jobs. Vickson (1995) studies
a model with n different jobs in the two-machine flow shop, which includes
transportation and setup times. His analysis focuses on the idle time on the
machines, relies on linear programming formulation for the model, and is
mainly algebraic. Surprisingly he found that the problem collapses to a sim-
ple two-machine flow shop, and that sublot size and sequencing decisions can

be taken independently. We give more insight into his results using a network
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representation for the problem in Section 3.4. Vickson (1995) presents an al-
gorithm for the case where jobs are composed of several indivisible items,
but assumes that there is a finite number of sublots per job. Baker (1995)
also tackles the setup times with transfer lots of size one, using a time lag
model.

Approximation methods for the discrete lot streaming are given in Chen
& Steiner (1997), Sen, Topaloglu, & Benli (1998), and Chen & Steiner (1999).
Dauzere-Péres & Lasserre (1997) explore the more general job shop model.
They present computational results for their procedure, which solves itera-
tively a lot sizing and sequencing decision. When setups are not considered
their approximation procedures show that a small number of sublots may
only be needed. Their results also indicate that ignoring the sequencing of
operations in the machine capacity constraints may be a valid model when
lot streaming is available. Upper bounds on the benefit of using lot streaming
for the makespan, mean flow time and average work-in-process performance
measures are presented in Kalir & Sarin (2000), though they use simplifying
assumptions for their models and do not consider transfer, or set up times.
They also propose a heuristic (Karlir & Sarin 2001) to schedule several jobs
with consistent sublot sizes through several machines. However they ignore
the work done by (Vickson 1995), and the analysis on dominant machines
by Glass & Potts (1998), and focus mainly on improving the heuristic given
by Dauzére-Péres & Lasserre (1997). Their heuristic focuses in finding a
bottleneck machine and reducing the idle time on it by sequencing the jobs
efficiently on it.

Ramasesh, Fu, Fong, & Hayya (2000) analyse the benefits of lot stream-
ing in the work-in-process inventories focusing on a single job, and present
numerical examples to show the improvement in the manufacturing cycle
time. A no-wait flow shop is considered by Kumar, Bagchi, & Sriskandara-
jah (2000), they develop a genetic algorithm for the multiple job case to
minimise the makespan. Bogaschewsky, Buscher, & Lindner (2001) review

Goyal (1976) model to consider a modification of their two stage model for
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manufacturing systems, and present computational results for the heuristic
they propose.

We will denote by ¢ = (g1,...,¢,) the vector that holds the information
on the number of sublots each job is allowed to have. The 3-job example of
Section 3.1 has ¢ = (1,2,1). Most models in the literature consider q as a
technological constraint, and regard it as given beforehand, but we explore

a new model where this in not the case in Chapter 4.

3.3 Network Representation and Dominant

Machines

In this section we briefly introduce a network representation for the single job
lot streaming model in a flow shop, and the dominant machine analysis done
by Glass & Potts (1998), which we will use extensively in the next chapter.

In the m-machine flow shop environment for a fixed vector of sublots
sizes £ = (x1,...,%,), the network representation N(x) of a single job is
composed of mgq vertices, where each vertex (i, k) represents the processing
of sublot k¥ on machine ¢ (for i = 1,...,m, and k = 1,...,q). Vertex (i, k)
has an associated weight of p;z; (p; the processing time on machine ¢ and
xy the size of sublot k). An arc is directed from (4, %) to (¢, k + 1), (for
1<k<g—1land1 <i<m)torepresent the sublot constraint that sublots
may not overlap, and an arc from (¢, k) to (1 + 1,%), (for 1 <7 <m —1 and
1 < k < q), to represent the machine capacity constraint that a machine is
unable to process two sublots at the same time. Taking the length of a path
in N(z) to be the sum of weights of the vertices which lie in the path, then
any longest path from (1, 1) to (m, ¢) will give the makespan of the job. The
makespan for m = 2 can be expressed as

1<k*<

k* q
man{ZPlek + Z pary}. (3.4)
k=1 k=k~

Glass, Gupta & Potts (1994) define as a critical path any longest path from



CHAPTER 3. LOT STREAMING BASIC MODELS 31

(1,1) to (m, ¢) in N(z); and a subpath of a critical path as a critical segment.
If (i,k) — (i +1,k) is a critical segment for some machine i (1 <1< m — 1)
then k is a critical sublot, and if (i,k) — (i, k + 1) is a critical segment for
some sublot £ (1 < k < g —1) then 1 is a critical machine. They prove that
in any network of optimal sublot sizes, every sublot is critical, and that there
exists a vector of optimal sublot sizes z for which N(z) contains at least two
critical machines from sublot k£ for 1 < k < ¢ — 1. Based on this properties
they obtain a closed form for the optimal sublots sizes for the 3 machine flow
shop.

Glass & Potts (1998) expand this result to environments with more ma-
chines, introducing the concept of dominant machines. They define a machine

v to be dominated by machines u and w (u < v < w) if

(227 (50) = (&) (52)

A machine is dominant if it is not dominated by any other two machines.
They prove that the machine capacity constraints of a dominated machine
does not come into consideration when finding optimal sublot sizes.

Glass & Potts (1998) give an O(m)-time algorithm to find the dominant
machines in any m machine flow shop. After applying the algorithm to a
lot streaming problem, say F, a new related problem R, with m’ machines,
is obtained. Problem R consists of alternating capacitated and lag machines
starting and finishing with a capacitated machine. Capacitated machine '
in R (1 <o < m')is associated with dominant machine g, in F with
the same processing time, where 1 = y; < py < jtyy = m. Every dominant
machine in F corresponds to a capacitated machine in R. Every lag machine
in R corresponds to either one or more dominated machines in F, (with
processing time, or lag time, equal to the sum of the processing times of |
the dominated machines between the dominant machines) or is a dummy
machine (with processing time zero; this happens when i1 = jur + 1).
R is a relaxation of F since it corresponds to having the machine capacity

constraint relaxed. For an optimal solution the machine capacity constraint
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of a dominated machine will not be tight.

The network representation of the original problem F is denoted by
Nx(z), and Nr(z) denotes the network representation for problem R. There
is a vertex (u', k) in Nr(z) for 1 < «' < m', which corresponds to a capaci-
tated machine vertex (u., k) in Nx(z) with weight p,, ,x;; and a vertex [u/, k]

for every lag machine in R with weight [,z where

when g1 # pw + 1, and Iy = 0 when g4 = po + 1. There are arcs
directed from (v', k) to [u',k] and from [v/ k] to («' + 1,k) in Ng(z), for
1<4w <m—1land 1 <k < g, and an arc from (v, k) to (u',k + 1) for
1 <4 <mand1 <k <qg-—1. As an example consider the case where
m = 5 and the processing times are given by p; = 5,p; = 4.p3 = 3,ps = 4
and ps = 2. The corresponding network graphs for Nx(z), and Ng(z) are
given in Figure 3.3.

A block B(u,i;v, j;z) in Ng(z) is composed of all paths from vertex (u, 1)
to vertex (v, j), except those that have a segment on some machine other than
u and v. They are of the form (u,i) —... — (u, k) —... = (v, k) — ... = (v, 7).
A Dblock is said to be a critical block if all of its segments are critical. The
following theorem states the structure of an optimal solution in the network

representation of a one job lot streaming problem.

Theorem 3.1 There exists a vector of optimal sublot sizes x for the original
problem F for which Nx(z) has critical blocks B(ji, by, ; w41, by, 5 T) for
1 <u <m -1 for some integers hy,..., hyy, where 1 = hy < hy < ... <

hm = q, and .
Hylpr1—4
Ik . Zi:ltu/ ])1
- Hyl 41
Tr+1 Zi:pul+1 Pi

forhy <k<hyy1~1landl <u' <m'-1.

(3.5)

Finally to solve the problem they focus on the vector of integers

h = (hy,hg,...,hy) where hy = 1 and h,y = ¢. Note that equation (3.5)
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Figure 3.3: Network Nx(z), and Ng(z)
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defines a recursive relationship from which, for a fixed A, the vector of sublot

sizes z can be calculated. That is, if we define

uu'+l_1 .

- Zl-_uu Di
Pur = Z#u +1

1=, r+1 ])l

then under A,
(h) = pu::r(+)1 for hy < j < hyyr — 1,

and so

—hy
xgzh), = p . xﬁlh), for 1 <u' <m' —1.

u

The makespan in this case is given by

m’ hur
]\[(]_l) = Z <pl‘u’1 Z ( + [" 115: )) +1)m L( )

u'=2 j=hyr_,
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So that the makespan M (h) can be computed in O(m') time for a fixed A.
There are O(g™ ~2) feasible vectors h which define critical blocks so to obtain

the optimal solution requires O(m + m/q™ ~2) time.

3.4 A two-machine flow shop model

In this section we study a continuous lot streaming model set in a two ma-
chine flow shop with multiple jobs, set up times, and transportation times,
F2|gj, sij, tj]Cmax- Vickson (1995) has analysed this model, focusing on
the idle time between machines. He shows that the makespan minimisation
reduces to a simple two machine flow shop without lot streaming. However
he says “we do not currently posses an intuitive explanation of why the setup
time, processing time and lot streaming effects collapse into such a simple
form”. In this section we give more insight into why this happens, using a
network representation for the problem.

The data for any given instance of the problem comprise

e g; the number of sublots for each job j (j =1,...n),

e p;; the processing time of job j on machine ¢ (for j =1,...n, and
i=1,2),

e s;; the setup time of each job j on each machine ¢ (for j =1,...n,
and i = 1,2),

e t; sublot size dependent transportation time, and

e T; a fixed transportation time for each job j =1,...,n.

The sublot size dependent transportation time portraits the fact that the
transportation time may vary depending on the amount of items being trans-
ported, and the fixed transportation time represents the time taken every
time a sublot of a particulaf job j is passed along form machine 1 to 2 in
the flow shop. Interleaving of sublots (preemption) is not allowed, and the
setups are anticipatory (they can start before the job arrives to the machine).

If Csj) is the completion time of the job in the j-th position in sequence o;
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then, Cy() is the completion of the last job in sequence o, and the objective
is to find

min Cy(py,
O,Tkj

the sequence of jobs o (a permutation of the n jobs) and sublot sizes zy;
(1 £k < g;) for each job j = 1,...n that minimize the makespan of the n
jobs to schedule.

Any solution to this model is determined by two elements, the sublot sizes
for each job, and the sequencing of jobs. We show why these two elements
can be tackled separately in Theorem 3.2, give a formula for the optimal
sublot sizes of each job in Theorem 3.3, and show that there is a simple rule
to sequence all jobs in Theorem 3.4. Our aim is to clarify the effect the setups

and transportation times have on the solution.

IR I

JOb 1- job j JOb n

I $15 lejzlj P15 T2;5 P1; T35

{T,- +t,—zljJ [T,-+t,—zng {Tj+tj13jl

1 1 ¥
[ s2j }———(szxszPﬁIZj )—*(1’27'131‘)—'

Figure 3.4: Network representation for sequence o.

For a given sequence of jobs o, numbered for convenience aso = (1,...,n),
we choose to represent the problem with the network shown in Figure 3.4.
This network representation follows similar ideas to the network for a single
job explained in Section 3.2. We have 3 2?21 ¢;+2(n+1) nodes. The circular
node 3 represents the start of the schedule, while the circular node f repre-
sents the finishing of the schedule. The oval nodes represent the processing
time of sublot & of job j on machine ¢ with associated weight z;p;;. The

arcs joining them horizontally represent the machine capacity constraints in-
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dicating that sublot z;_;; must be completed on machine j before sublot
xyj starts its processing (k = 2,...,¢;). A setup must be performed before
we start processing the first sublot on the first machine which is represented
by an arc is directed from the rectangular node with weight s;; to the node
with weight p;;x,;. For the same reason, the rectangular node with weight
S9;, representing the setup on the second machine, precedes work on the first
sublot on the second machine. The total transportation time between the
first machine and the second for sublot zy; is T + t;z;. This is expressed by
the arcs and the rectangular node with weight T; +¢;2;; that join sublot zy;
between machine one and two. The makespan of the n jobs under sequence
o is the length of the longest path joining node § to f in the network. If
the schedule starts at time 0, then the weight associated with node 3 is zero.
There is a vector of sublot sizes for each job. We will use the notation z7 to
refer to the sublot sizes of job j. That is, 27 = (x1j,....2,;). For a specific

job j and its vector of sublot sizes z7, let

k* qj
M(j,z%) = 515 + n]gai( {Zm]ﬂ?k] + T+ tjzp-; + Z pgjzkj} (3.6)
k=k*

For j < n, M(j,2’) is the length of the longest path from the setup of job
j in the first machine to the setup of the job j+1 on the second machine. The
makespan of sequence o with sublot sizes X' = (211,..., 01, -, Z1n, - - -, Tgon),

denoted by Cpax(0, X), can be calculated as

n jr—-1
Z s2j + P2, 12“312(”{ Z s1j +pig) + M(5*,277)
maX ]: ] : n (37)
+ 3 (s25 +p2y)}
j=g+1

That is, the longest path from node 8 to node f (see figure 3.4) goes along
machine two all the way form job 1 to job n, or starts on the first machine
and goes down on a particular sublot £* of a job j* to machine two and
continues on machine 2 to job n, or goes along the first machine until job
n in a partiuclar sublot £*. The only part in the expression for Cyax(o, X),

in equation (3.7), that depends on the sublot sizes of the jobs is M (j*,277).
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This is true regafdless of the sequence o. Hence, it is always better to use
the sublot sizes that minimise M (j*,z7") for any o. This yields the following

theorem.

Theorem 3.2 For the F2|q;, sij, tj|Cmax model, the sublot size decision is
independent of the sequencing decision. The optimal sublot sizes for job j

are the ones that minimise M(j,z7) for j=1...n.

To find out the size of the optimal sublot, let us focus on the value of

M (4, z7). Equation (3.6) can be rewritten as

k* qj
M@, z?) = (s;; + Tj — t5) + | max > (1 + ty)awg + Y (paj + t)zks} (3.8)
=7 =Y k=1 k=k~

Observe that the first term s;;+7; —1; is constant with respect to 27. Not
only that, but the second term is the expression for the makespan of an g¢-
sublot single job two-machine flow shop model with (p;;+1;) processing time
on the first machine, and (p,; +t;) processing time in the second machine as
explained in Section 3.3 (equation 3.4). The optimal sublot sizes are given by
the geometric progression of equation (3.3) derived by Potts & Baker (1989).

Hence, we can state the following theorem.
Theorem 3.3 The sublot sizes 27 = (z1j,...,2,,) that minimise M(j, z7)
(1 <j<n)aregwen, fork=1,...,q;, by

P2+t Nk—1
Gott)

v
g1 [ paj+i;
v=0 p1j+t;

(3.9)

* —
Ty =

We now focus on the sequencing decision. Fix the sublot sizes to be the
ones given by equation (3.9), which from Theorem 3.3 we know to be opti-
mal. Note that we have reduced the problem to one without transportation
times. In the reduced problem (without transportation times and sublot size

decision) the setup time are s}; = si; + 7, — f;, and s},; = s5;, while the
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job processing times are py; = py; + t;, py; = p2; + 1; on machine 1 and 2
respectively. From the properties of the critical paths in a two-machine flow
shop (Potts & Baker 1989), we can write pj; —a; = ph; —b; = g;, where a; is
the processing time of the first sublot on the first machine, and b; is the pro-
cessing time of last sublot on the second machine. That is a; = pj,z7;, and
by = p'ij;jj. The expression for the makespan of any sequence o, Cpax (0, X),
in equation (3.7), depends upon the job sequence which minimises the second
term. It can be rewritten as

7 n
!
J:

=3 j=1

The last term in the above expression is independent of the job sequence.
While the first term is the expression for the makespan of the n job two
machine flow shop model with p}; = (s}; + a;) processing time on the first
machine, and pj; = (s}, + b;) processing time on the second machine. This
problem is solved using a Johnson SPT(1)-LPT(2) sequence, as explained in

Chapter 2. Hence we have the following theorem.

Theorem 3.4 For the F2|q;, sij, t;|Cmax model, an optimal job order is an
SPT(1)-LPT(2) sequence with respect to pi;, and p5; processing times in the

first and second machine respectively where pi; = s1;+T; — 15+ (p1; +t5)73;,

(le'-HZ')k_l
* o . Np* . o Pyttt
p3; = s2;j + (p2; + 1)z, and T o ()
V=0 \P1iH

We have reduced the problem to one without lot streaming, where the
optimal sublot sizes are given by equation (3.9), and the jobs are ordered ac-
cording to Johnson’s SPT(1)-LPT(2) rule over pj;, and p3;, as given above.
We have shown that the sublot sizes of the jobs are not influenced by the job
sequence or the setup times, and can be determined solely on the relationship
between the processing times on the machines and the transportation times.
On the other hand, the sequencing decision involve both the setup and trans-
portation times as well as the relative order of the processing times of the

different jobs. We have also made clear the reduction of this extended model
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to one without lot streaming, setup or transportation times. We should also
note, from equation (3.7), that if the sum of the setup and processing time
on the second machine are big enough, then sequencing and lot streaming
have no effect on the makespan. A Johnson sequence is found in O(nlogn)
time. Thus, as the sublot sizes can be calculated in O(n) time, a solution to
the model considered in this section can be found in O(nlogn) time. There
is no need to solve the linear program given in Vickson (1995) to find the

optimal solutions for this model.

3.5 Concluding Remarks

We presented in this chapter a network representation and path approach
for the two machine flow shop with transportation and setup times to min-
imise the makespan of n jobs. We show that the sublot size decision can be
taken independently of the job sequencing decision, and give a closed formula
for the optimal sublot sizes. Furthermore, the model with setup times and
transportation times can be reduced to simpler models. We believe this gives
more insight into the result given by (Vickson 1995).

Note that when no transportation times and setups are involved the di-
patching rule will be to fix the sublot size to the ones given by equation (3.9)
and to schedule jobs in SPT(1)-LPT(2) order with respect to the processing
times of the first sublot on the first machine and last sublot on the second
machine (Theorem 3.4 with T; = t; = s1; = so; = 0). We will use this prop-
erty extensively in the next chapter to analyse a model where the number of
sublots for each job (g;) is not predetermined beforehand. A possible further
extension of these results, would be to apply dominant machine analysis. We
believe the results can be extended to two dominant machines. We explore

the case of identical jobs in an m-machine flow shop in the Chapter 4.



Chapter 4

Extended Models

4.1 Introduction

In this chapter we present two new models for lot streaming that are exten-
sions on those analysed in the literature. Throughout this chapter we focus
our attention on the flow shop environment, with the makespan objective
function.

The first model relaxes the assumption that numbers of sublots are pre-
determined. We analyse the two-machine flow shop with lot streaming to
minimise the makespan when sublots are not predetermined. We use the
strong results of Chapter 3 for the two machine flow shop. In Section 4.2 we
present a heuristic to allocate a fixed number of sublots between jobs. First
we explain how to add one extra sublot to a job in a schedule in an optimal
way. We then focus on a critical path analysis to show that when adding
optimaly an extra sublot there is no need to calculate the entire schedule
(sublot sizes and sequence of jobs) when starting with a Johnson sequence.
We use the results of this analysis to devise an O(Qn?) heuristic to allocate
(2 sublots between n jobs.

The second model is a lot streaming m-machine flow shop with n identical
jobs to minimise the makespan. In Section 4.3 we use a dominant machine

analysis similar to Glass & Potts (1998) to find optimal sublot sizes for this

40
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model. We prove that the model reduces to a simpler single job lot streaming

model.

4.2 Lot streaming with sublot allocation

The model we work with in this section is set in a two-machine flow shop
environment, where the objective is to minimise the makespan of n jobs
with consistent sublots sizes. We will use the same notation introduced in
Chapter 3, where g; is the number of sublots for job j, and ¢ = (q1,...,¢,) is
the vector of sublot sizes that holds the information on the number of sublots
each job has.

An instance of this problem is determined by

e p;; the processing times of the job j (1 < j < n) on machinei, (i = 1,2)

e and by () the sublots to allocate between the n jobs.
Hence, in this case g; is not specified as in the other models presented in this
thesis. Most models in the literature consider g as a technological constraint
particular to each job, and hence g; is given beforehand for j =1,...,n. We
relax this assumption, so g is not predetermined, g; is not fixed for each job,
rather we have a fixed amount () of sublots to allocate between the jobs. We
are thinking of a situation where g is a technological constraint for the whole
run, rather than a particular one for each job. A solution to this problem
not only requires deciding the sequencing of jobs and the sublot sizes, but
also the number of sublots each jobs should have.

If Cyy; is the completion time on machine ¢ (¢ = 1,2) of the A-th sublot,
1 < k < gj, of job j, p;; the processing time of job j on machine 7, z; the
size of sublot k£ of job j (1 < j < n), and o a sequence of the n jobs to
schedule. Then, ngo(n)g(n) is the completion on the last machine of the last

sublot of the last job in sequence o, and the objective is to

min - Cag, ,yo(n)
(o2
subject to

Clie(1) — P1o(1)T14(1) = 0,
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-~

Ciko5) = Ciz1ko(j) = Pio(7)Tho(j) 2 0, 1<k <q;,2<i<m,1<j<n
Ciko(j) — Cik=10(j) = Pic()Tko(j) = 0, 2<k < ¢, 1<i<m1<57<n
YTy =1, 1<j<n
gG2>21 1<j5<n
Z?:l g =@

o a permutation of the n jobs to schedule

Tj, Cigj >0, for1<i<m, 1<k<gq;,1<5<n.
That is, we wish to find the number of sublots ¢; each job j should have
such that Z?zl g; = @, together with a sequence o (a permutation of the n
jobs) and sublot sizes zx; (1 < k < g;) for each job j = 1,...n, in order to
minimize the makespan of the n jobs to schedule. The first three constraints
are the sublot processing time and machine capacity constraints (similar to
the ones explained in section 3.2 for the single job problem). The fourth
constraint ensures that zy; is the proportion of the job belonging to sublot
k of job j. As ¢g; > 1, and Z;‘:l ¢; = Q we have that Q = n corresponds
to a model without lot streaming (i.e. ¢; =1 for j = 1,....n), the simple
F2 || Crax model.

In this section we present a heuristic to allocate the ) sublots between
the n jobs, which gives the optimal sequencing of jobs and sublot sizes for
that given allocation. The main idea is to add one sublot at a time efficiently
until the @ sublots are assigned. The procedure will become clear in the

following subsections.

4.2.1 Preliminary results

From Theorem 3.2 we know that the sublot size decision can be tackle sep-
arately from the sequencing decision for a given sublot allocation. This is
true regardless of the sublot allocation. Thus, it is always better to use the
optimal sublot sizes for any given sequence. Hence, throughout this section
we always use the optimal sublot sizes. As this model does not include se-

tups or transportation times the optimal sublot sizes for 7 = 1,...,n and
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k=1,...,q; are given by

)k—l 2

T‘ .
(7, where r; =

= . . 4.1
1+7‘j+...+(7‘j)q1'"1‘ Dy ( )

.’L‘]'k

Then, the problem of minimising the makespan reduces to one of how to
sequence jobs, and to which jobs to assign the sublots.

From Theorem 3.4 we know that for a given sublot allocation, an SPT(1)-
LPT(2) sequence with respect to the processing times of the first sublot on
the first machine, and the last sublot on the second machine minimises the
makespan. We will denote the processing time of the first sublot of job 7 on
the first machine by a;, and the processing time of the last sublot of job j
on the second machine by b;. Their values vary according to the number of
sublot for job j. Hence, when we need to make this explicit we will write
a;(g;), and b;(g;). We have that,

P1j

ai{g;) = and, 4.2
3(45) L4+rj+... 4 (r;)e! (4.2)
—1
P2 ()" P2;
bi(g;) = , where r; = ===, 4.3
(%) L4744 (r;)s! T py (1.3)
That is, once an allocation of sublots ¢ = (q1,--..q,) 1s fixed, the optimal

sequence can be obtained in O(nlogn) time by ordering the n jobs according
to the SPT(1)-LPT(2) rule over a;(g;) and b;(¢;). To order any sequence of
jobs we need only to focus on a;(g;) and b;(g;).

As we focus on the job sequence and sublot allocation alone, the following
notation is also useful:

e 0(q) a sequence o with sublot allocation g.
® Chax(o(g)) the makespan of a sequence o with sublot allocation g.

o C..(j,q;) the makespan of job j with ¢; sublots, using the optimal

sublot sizes given in (4.1).

e P(h;o(q)) the length of the path that goes down to machine 2 on job
in the h-th place under sequence o in the network representing the

sequencing problem.
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Note that Cy .. (4, 4;) = aj(g;) + p2j = p1; + b;(g;). The use of P(h;0(q))
will become apparent in the following sections, as our analysis will focus on

the path length to determine job sequences.

4.2.2 Assigning one sublot efficiently

First we analyse which job gives the best reduction in makespan if we add
an extra sublot. Let e; be an ¢ dimensional vector with zeros as all its
entries except the j-th which is equal to 1. Then, g + ¢; is the operation of
adding one extra sublot to job j under sublot allocation ¢. We want to find
j€{1,...,n} such that g + ¢e; yields the greatest decrease in makespan.

The 3 job example of section 3.1 without lot streaming with ¢ = (1,1,1)
has an optimal schedule with Cp.c = 22. Suppose (¢ = 4, that we have
on extra sublot to add. The sublot allocation given in that example was
¢ = q+ey = (1,2,1), and the makespan for the job sequence o = (2,1, 3)
(job J; sequenced before J;, and J; before J3) is 20. The same makespan
is obtained when using the optimal sublot sizes given by equation(4.1) for
Jo. Any other sublot allocation g+ €1, or g+ €3 will not have reduced the
makespan.

An inefficient way of verify this is to try the 3 possible allocations, and for
each allocation the 6 different sequences. Alternatively as explained before
we could calculate the optimal sequence, SPT(1)-LPT(2) over a; and b;, and
compare then the makespan under each of the n different allocations (g + g;,
j =1,...,n), choosing the one that vields the best value.

Finding the best job to which to add a new sublot takes O(n?logn) time,
as there are n jobs, and it takes O(nlogn) time to find the optimal sequence
and sublot sizes for a given sublot allocation. In this section we show how
we can actually reduce this to O(n?) time by focusing on the critical jobs
and updating and storing the information about the critical paths. We use
the ideas of (Glass et al. 1994) for critical paths. Recall we introduced this
concepts briefly in Section 3.3. We assume that we start with an SPT(1)-

LPT(2) sequence before we add the extra sublot. From Chapter 2 we know
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that in an SPT(1)-LPT(2) order a job j belongs to set 1 if py; < p,;, and
belongs to set 2if p1; > poy.

The following result states the changes in the job ordering an SPT(1)-
LPT(2) sequence must suffer to remain optimal if we add an extra sublot to

a job.

Lemma 4.1 Consider an SPT(1)-LPT(2) sequence o, indezed for conve-
nience so that jobs go from 1 to n (i.e. o = (1,...,n)), optimal for the
predetermined sublot sizes ¢ = (qu,...,qn). Sequence o' = (7(1),...,7(n))
will be optimal for the new sublot allocation q + e; if o' has the following

properties:

1) If job t belongs to set 1 under o (i.e. a; < b;), then

o’ satisfies:
h for h <[l-—1,

t when h= |,

m(h) = (4.4)
h—1 forl+1<h<t.
h for h > t+1,

where job | is a job in o such that @y = min<;<i{a; | a; > a;(g: + 1)}

2) If job t belongs to set 2 under o (i.e. a; > b,), then
o' satisfies:
h for h <t -1,
h+1 fort<h<l-1,

r(h) = 4.5
m(h) t when h=1, (4:5)

h forh>1+1,
where job | is a job in o such that by = min,<;<n{0; | b; > by(q. +1)}.

Proof: We know that o(q) is an optimal schedule, and from equations (4.2)
and (4.3))we have

b](QJ) — (Tj)q]'

a;(q;)
Let ¢ be the job to which another sublot is to be added. If job t belongs to set

. b 1 .
1 in sequence o then r, > 1. Hence, 1 < 241 — Pt < ittt = bilartD) -~ which
at{qt) ar(qe+1)
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means that job ¢ also belongs to set 1 in ¢’. No other job has been altered
and they therefore remain in the same set in ¢’ as they were in 0. Moreover,
the order of the jobs in set 2 remains unchanged. Note that a;(¢ + 1) is
the new processing time of the first sublot of job ¢ after operation g + e;.
The SPT(1)-LPT(2) rule dictates that jobs in set I are to be scheduled in
increasing order of a;. As a;(q: + 1) < a(g.) it follows that the order of jobs
after job t in ¢ remain in the same position under ¢'. Hence 7(h) = h for
h > t. From a; = miny<;<;{a; | a;(¢: + 1) < a;} we conclude that job ¢ must
be in the [-th position in ¢’, and hence jobs [ to ¢ — 1 move one position up
in o’ relative to o. This is precisely what is described by equation (4.4), and

roughly illustrated in Figure 4.1, (a).

| set 1 [ set 2
|

(ERIL I
Iaoe

move

&

Figure 4.1: Change from sequence ¢ to sequence ¢’ in a network.

Conversely if r; < 1, then job ¢ belongs to set 2. The result described in
equation (4.5), illustrated in Figure 4.1 (b), follows from the above analysis,

due to the reversibility of the problem (standard property of flow shops, see
Pinedo (1995)).

O

This result shows that there is no need to recalculate the position of all
jobs in sequence ¢ when we add a new sublot to a job. We merely have to

move the jobs as indicated by equation (4.4) or (4.5) to obtain a new optimal
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sequence o’. Note, as well, that jobs that belong to a particular set before
allocating any sublot (i.e. when ¢; =1 for 1 < j < n) will remain in the
same set, regardless of how many sublots are allocated to them.

Observe that the problem is reversible, that is, interchanging machines
one and two, and taking the sequence in reverse order will yield the same
makespan. So the following lemmas will concentrate on the cases where the
critical job is in set 2.

Recall that we are using optimal sublot sizes for each job individually
and C},.(4,¢;) is the (minimum) makespan of a job j with g; sublots. Con-
sider the network representation of the problem for a given schedule o(g).
P(h;o(q)) denotes the length of the path going down on the job positioned

in the h-th place under sequence ¢ with g sublot allocation. If 0 = (1,...,n),

the length of the path going down on job £ is easily calculated as:

h—1 n
P(hio(@) =D pj+ Cralhoan) + D by
j=1 j=h+1
From Section 3.3 a path is critical if its length is equal to the makespan
of the schedule, and the job on which this path goes down is considered a
critical job. That is, if Crax(0(g)) is the makespan of schedule o(g), and &
is a critical job, then
Cmax(0(g)) = P(k; 0(q))-

In the next lemma we state which jobs will not reduce the total makespan

if we allocate an extra sublot to any of them.

Lemma 4.2 Consider a Johnson sequence o, indexred for convenience so
that jobs go from 1 ton (i.e. o = (1,...,n)), optimal for the predetermined
sublot sizes ¢ = (q1,...,qy). Suppose this schedule has a critical job, say
k, belonging to set 2 under o. The makespan of schedule o(q), Cmax(a(q)),
remains unchanged by adding one additional sublot to any job in set 1 or any

job t in set 2 for which b; < by.
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Proof: We know that o(g) is an optimal schedule. As & is a critical job we
have that

Cmax(0(g)) = max P(h;o(q)) = P(k:o(q)).

= 1<h<n

Add a new sublot to job ¢ (i.e. let ¢, be now ¢ + 1), and calculate the
new optimal sequence, call it o’ = (7(1),7(2),..., 7(n)). Its makespan is
Crmax(0'(q + €1)).

Let us now evaluate the path length going down on job k£ under o’. Sup-
pose t is in set 1. Since k is in set 2, k > t, from Lemma 4.1 we have that
P(k;o'(qg+e)) = Z] 1 Pin(s) + Z] t+1p1] + Crax (ks ai) + 3711 Pej, but
{r(G) |i=1,...,¢}={jl7i=1,...,t}. Thus

P(k;o'(g+er)) = P(k;0(q)) = Cmax(0(q))- (4.6)

If, on the other hand, ¢ is in set 2, and b; < by, that is if ¢ > k under o,
then from (4.5) of Lemma 4.1, P(k;0'(g + &) = Z;” [y Cra (B qr) +
S ki1 P2s + Yy Do), but {m(§) | i =t,...,n} = {j |j=t,...,n}, and
thus equation (4.6) holds in this case as well.

Since allowing one extra sublot cannot increase the optimal makespan,
(as even in the case where ¢’ = o the length of all the paths remain the same
and the path going down in ¢ is reduced), the optimal makespan in both of

the cases considered in this lemma, from equation (4.6) satisfies

Crnax(0(9)) = Cmax(0'(g+€1)) 2 P(k;o'(g+e:)) = P(k.0'(g)) = Cmax(0(9))-
Thus equality holds and the makespan remains unchanged as claimed.

O

In the following Lemma we continue focusing our attention on Johnson
sequences, this time with only one critical job, but we now give the necessary
conditions a job must satisfy in order to reduce the total makespan of the

sequence if we were to add one more sublot to the job.
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Lemma 4.3 Consider a Johnson sequence o, indexed for convenience so
that jobs go from 1 to n (i.e. o = (1,...,n)), optimal for the predetermined
sublot sizes ¢ = (qu,...,qn). Suppose this schedule has only one critical job,
say k, belonging to set 2 under . The makespan of schedule o, Cpax(0),

will be reduced if we add an extra sublot to job t belonging to set 2 and
be(qe) = bk(gr) > be(ge +1).

Proof: Let o(g) be an optimal schedule. As k is a critical job we have that

Cmax(0(g)) = max P(h;0(q)),= P(k;0(q)).

1<h<n

Moreover P(k;0(q)) > P(h;o(g)) for h # k because k is the only critical job.
Add a new sublot to a job t satisfving the conditions stated in the lemma.
Calculate the new optimal sequence under this new sublot allocation g + e;,
and call it o' = (7(1),7(2),..., m(n)). Its makespan is Cpax(o'(q + 1))
Let job [ in ¢ be such that b, = min,<;<n{0;(q;) | bj(q;) > b(g: + 1)}
From Lemma 4.1 we know that #(j) the job in position j in sequence o' is

given by
h for h <t -1,

h+1 fort<h<Il-1,
t when h = [,
h for h > 1+1,
See Figure 4.2 for a diagramatic illustration of how ¢’ is constructed.
For h<t—1and h > [+ 1 we have that

h—-1

P(h g (q + e ) - Zplﬂ'(] + Cmax( (17r h Z Pan(j

J=1 i=h+1

n

h—
Z p1j + Crax(hyar) + Z p2; = P(h;o(q)),

=1 j=h+1
so that Crax(0(q)) > P(h;s'(g+e)) for h <t —~Tand h > 1+ 1.

Fort<h<Il-1

P(h; o' (g+e:)) Zplru +Zp17"(])+0max (1) Gmn) Z Dan ]>+Z Pan(j)

j=h+1 j=l+1
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— t t4+1 n
change of position J
t—1t+1t+2

2SS EN GO

Figure 4.2: ¢ and o’

t—1 h—1 -1
= Zplj + Zp1]+1 + Crax(h + 1, qnr) + Z P2j+1 + P2t + Z D2j-
Jj=1 Jj=t j=h+1 j=l+1
Thus,
h n
P(h;o'(g +e)) = Zplj —pu+ Chax(h + 1 qni1) + Z poj +pa (4.7)
7=1 j=h+2

=P(h+1;0(q)) — p1t + pa-

Since t is in set 2, pyy > po, and hence, P(h + 1;0(q)) > P(h;0'(q + e1)).
However, Crax(o(q)) > P(h + 1;0(g)), with equality holding only for h =
k — 1. Hence, Crax(c(q)) > P(h;0'(g+e;)) for t <h <1 —1.

Now for h =1 we have that

t—1 -1
P(l o (q + et ) = Zplvr + Zplﬂ' 7) + Cma\ (Iﬂ l) Z P2r(4)
Jj=1 Jj=

j=i41

1]+Cmaxtqt+1 ZP1]+ Z[)QJ

j=1 j=t+1 =l+1

= P(l’ ( )) C;ax(l QI) + Cr*nax(t‘r q + 1) — Pt + pu

=P(l;0(q)) — bilq) + bi(q + 1).
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But from the choice of I; bi(q;) > by(g,+1), so that P(l;0(q)) > P(l;0'(g+ey))
and Cmax(0(g)) > P(L;0'(g + €;)). Hence Crax(0(q)) > P(h;0'(q + )) for
1 <h<n(all h). Thus Crax(0(g)) > Crmax(0'(q + €1)).

g

We conclude from this Lemma that for those optimal sequences with only
one critical job, in order for the makespan to be reduced when adding a new
sublot to a job, either the critical job needs to change its position in the
sequence, or the new sublot must be added to the critical job. There are
situations where the reduction in makespan is better by adding a sublot to
a non-critical job which makes the position of the critical job change within

the sequence, rather than to a critical job.

Corollary 4.1 Under the conditions of Lemma 4.3, if 0(q) is the original
schedule and o' is the optimal sequence for the new sublot allocation q + e,

the path lengths in the two schedules are related as follows:

P(h;o(q)) forh<t-—1
Plhio'(g+e) = P(h+10(9) = pre + par fort <h<U-1,
A P;o(g)) — bi(@) + bula + 1) for h=1,
P(h;o(q)) for h>1+1,

(4.8)
where job 1 is a job in o such that by = miny<;<,{b; | b; > b(q: + 1)}

Note that [4+1—t paths have changed length, namely those corresponding
to jobs that have changed their position from sequence o to sequence o'
Another way of calculating P(h; o'(q + e:)), for t < h <1 -1, from equation
4.7 in the proof of Lemma 4.3, is P(h,0'(qg + ¢)) = Z;;ll pie+ Cha(t,a +
D)+ Y1 P+ X1 P2

We will denote by | ¢ | the sum of the entries of vector ¢. Thus, | ¢ |=
>_j=14; is the total amount of sublots the n jobs have. The next theorem
integrates the previous lemmas to state the condition for the decrease in the
total makespan to be maximum when adding a sublot to a job. This forms

the basis for the heuristic we present later in the next section.
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Theorem 4.1 Consider the case where we have assigned | q | sublots between
n jobs, with ¢ = (qu, ... qn) the sublot allocation, and o the optimal Johnson
sequence. Suppose the schedule o(q) has only one critical job, say k, belonging

to set 2. Let o' be the optimal Johnson sequence for the sublot allocation g+e;.

Adding a sublot to job t* will give the mazimum decrease in the makespan if

Cinax(0'(g-+e1+)) = min {C’max(ol(g—l-et)) |t i set 2 ,b(q) > by > bt(qt+1)}.

Proof: From Lemma 4.2 we know that if £ is the only critical job in the
sequence and it belongs to set 2, then a necessary condition for the makespan
to be reduced is that ¢ is a job in set 2 under o, and ¢t < k. From Lemma 4.3
we know that a sufficient condition is for b;(q;) > by > bi(g; + 1). So that we
are only considering those jobs which give a decrease in the makespan and

we are choosing the one that gives the greatest decrease.
O

Observe that the problem is reversible, that is, interchanging machines
one and two, and taking the sequence in reverse order will yield the same
makespan. Hence the properties stated in Lemmas 4.2 and 4.3 have their
counterpart proposition of set 2 in the reversed problem which is set 1 in the
original problem.

Thus, we have that if we have a Johnson sequence o, optimal for a given
sublot allocation ¢, with only one critical job, say k belonging to set 1. If
we choose a job t in o belonging to set I such that a,(q; + 1) < ap < ai(gt)
then, the makespan will be reduced if we add a new sublot to t. Let ¢’ be the
new ordering of the jobs as given in Lemma 4.1 when adding a new sublot
to job ¢. The length of the path going down on the job in the h-th position

(1 < h < n) in sequence ¢’ under allocation ¢ + ¢; can be calculated from
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the length of the path in sequence ¢ under allocation ¢ as follows:

P(h;o(q)) for h <1-1,
Plh:o'(q +e)) = P(h—10(g)) +p1e — for il +1<h <t
e PUW(_Q_)) +aq) —a(q+1) for h =1,
P(h;a(q)) for h >t +1,

(4.9)

where job [ is a job in o such that ¢; = mini<;<,{a; | a;(g: + 1) < a;}
Summarising, we have found that jobs in a Johnson sequence do not
change from set I to set 2, or from set 2 to set 1. We have stated how the
job sequence changes when adding an extra sublot to a job (Lemma 4.1).
We have shown that a critical job needs to change place for the makespan to
be reduced, and give conditions for this to happen (Lemma 4.3). We have
also stated how the path lengths change when re-sequencing, (Corollary 4.1
equation (4.8), and equation (4.9)). The heuristic we propose to assign @

sublots uses all of the above results, and is given in the following section.

4.2.3 Sublot Allocation Heuristic

In this section we propose a heuristic to allocate () sublots between n jobs.
The idea of this heuristic is to add one sublot at a time, until we have assigned
the total amount of sublots ) between the n jobs. At each step we will choose
the job which yields the maximum decrease in the makespan. That is, if ¢’ is
the optimal sequence for sublot allocation g + e;, we will add an extra sublot
to a job t* such that

Cruas(0'(g + €0+)) = min { Conax(0” (g +€0)) | }.

We are looking for a maximum decrease in makespan at each step.

In fact, we do not need to look at all jobs ¢, but rather at a reduced set,
as presented in Theorem 4.1 in the previous section. If there is a critical job
k in set 2 then we need to look at those jobs t helonging to set 2 such that
bi(g:) > by > by(q + 1), and if there is a critical job k in set I then we focus
on those jobs t belonging to set I such that a,(¢; + 1) < ap < a,(q).
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We will use three sequences, one to store the optimal sequence under
allocation g, and two more to find the job which vields the maximum decrease
in makespan. The makespan will be calculated from the maximum path
length. Path lengths will be updated using equation (4.8) of Corollary 4.1,
and equation (4.9) stated in the previous section.

For a given sublot allocation g, we know that a Johnson sequence, say
o, is optimal. Its makespan, Crax(0(g)), is calculated as the maximum path
length. If

P(1;0(q)) = Ci + Zpgj, (4.10)

where C, = p1p + pan (1 < h < n), the length of the paths can be recursively
calculated for h =2,...n, by

P(h;o(q)) = P(h—1;0(q)) = Che1 + Ch + pia—1 — pan- (4.11)
Using all of the above we can state our heuristic as follows.

Maximum Marginal Decrease Heuristic

Input Data:

Processing times p1j;, pa; of each job j (1 < 5 < n), and @ the total number of

sublots to be allocated between the jobs.
Variables:

o, a', o* (each stores an ordering of n jobs). P(h;o), P(h;o'), and P(h;o*) for
h=1,...,n (each stores the path length going down on the job in the h-th position
in the sequence). Set K (of critical jobs). g (the number of jobs in set 1). sb (eztra
sublots allocated). Cmax(0), Cmax(c'), and Cipax(c™), temporary variables to store

makespan of schedules. g (vector of sublot sizes).
Step 1: (Initialisation)

Initial allocation: ¢ = (1,1,...,1).
Let o* be a Johnson SPT(1)-LPT(2) sequence over the processing times a;(1)
and b;(1)).
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Calculate P(1;0*) following equation 4.10.
Calculate recursively P(h;o*) from h = 2 following equation (4.11).
Crmax(0™) = max; <h<n {P(h;a*)}; K = {k | P(k;0%) = Comax(0™)}.
9 =|{j | p1j < p2;} | (number of jobs in the first set).

Step 2: (Allocating Sublots One at a Time)

DO For sb = 0 until sb = Q — n ( while there are sublots to allocate)
Begin
If there is a job 7 € K such that j < g (a critical job in set 1)
then
k =min{j | j € K} and go to step 3,
else (the critical job(s) is(are) in set 2)
k =max{j | j € K}, and go to step 4.
Step 3:
(Calculating t* in set 1 which gives the best saving in makespan)
0 = 0%, Crax(0) = Crax(0™*).
For t = g down to k do
Begin
If a;(ge + 1) < ar(ge) < ai(gs)} then { Calculate Crax(g + e/) }
Begin
Let o/ = o*
Find ! such that a; = mini<j<¢{a; | ai(q; + 1) < ay}
Reorder the job in ¢’ according to 4.4.
Calculate P(h;0') from P(h; o) following 4.9.
Calculate Crax(c') = max {P(h: a’)}
End
If Chax(0) > Cmax(0') then
Begin
t* =t; 0 = 0, Cpax(0) = Cmax(0')
P(hyo) =P(h;o')forh=1,....n
End
End
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Go to Step 5.
Step 4: (Calculating t* in set 2)

o=o", Cmax(a) = Cmax(o'*)

Fort=g+1to kdo

Begin

If by(ge + 1) < br(gi) < bi(ge)} then { Calculate Crax(q +e¢) }

Begin
Let o' = o*
Find [ such that b, = miny<;j<n{b; | b; > by(qe +1)}.
Reorder the job in ¢’ according to 4.5.
Calculate P(h; o') from P(h; o) following 4.8.
Calculate Cprax(0’) = max {P(h; a’)}

End

If Crnax(0) > Ciax(0’) then

Begin

t* =t; 0 = ', Crnax(0) = Crmax(c’)
P(h;o) =P(h;o')forh=1,...,n
End
End (For t =g+ 1 to k)
Follow to step 5.
Step 5: (Updating sequence, and path lengths)
sb = sb+ 1 (one more sublot added)
q = ¢ + e~ (updated sublot allocation)
0" = 05 Cmax(0") = Crax(0)
P(h;o*) =P(h;o)forh=1,...,n
Find set K of critical jobs, K = {k' | P(k;0*) = Cax(c*)}.
End of Do loop (back to beginning of step 2).
Allocated the Q sublots
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4.2.4 Complexity of Heuristic

If n is the number of jobs to be scheduled and @ is the total amount of
sublots to allocate, then this heuristic runs in O(Q n?) time, as is shown by
the following arguments. Let us first analyse Step 1. A Johnson sequence can
be calculated in O(n log n) time. P(o; h) can be obtained by equation 4.11
in O(n) time. The set of critical jobs K and g are both found in O(n) time.
Thus we have that Step 1 has a complexity of O(nlogn). Let us now analyse
the remaining steps. Note that Step 2 is visited @ — n times (until all the
sublots have been allocated). k is found in O(n) time. Step 3 and 4 find
job t*, to which a sublot should be added. We calculate Cpax(q + €;) in the
worst case n times (if all jobs belong to set 1 and k is the first job, or if all
jobs are in set 2 and k is the last job). Finding ! can be done in O(n) time.
Reordering the job in sequence ¢’ according to equation (4.4) or (4.5) can be
done in O(n) time. Calculating P(h;c’) from P(h; o) by equations (4.8) or
(4.9) takes O(n) time. Since Cprax(c’) is computed in O(n) time, we obtain
Crmax(q + €) in O(n) time. Hence calculating t* requires O(n?) time, either
in Step 3 or 4. We find job t* a total of @ — n times (Step 2), but @ > n, so
that O((Q —n)n?) is O(Q n?). This vields the desired complexity of O(Q n?)

for the heuristic.

4.2.5 Counterexample of optimality

We now show why this heuristic is not an exact algorithm (one that does not
always obtain a global optima, see Chapter 5). We give a counterexample
that it does not find the optimal allocation of sublots.

Consider the instance with 26 jobs and processing times given in the

following table.

Instance Data
Jobjl1]2[3]...125]26
Pij 48 |8 18| ... | 8 | 8
D2 24|77 ... | 7

-1
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For an initial situation where no extra sublot has been assigned to any
job, g = ¢, = (1,1,...,1), as shown in the following table. o(j) is the j-th
job in sequence o, where o is the SPT(1)-LPT(2) sequence that minimises the
makespan for the given sublot allocation g. P(j) is the length of the path
going down on job o(j) under sublot allocation g. The critical path goes
down in job 26, and the makespan for this sequence and sublot allocation is
Cmax(a(go)) = 255.

9=4,
o) | 1| 2|3 | 415 25 | 26
j 1] 2|3 ]4]|5 25 | 26
q 1| 1] 1|11 1] 1
p | 48| 8 | 8| 8 |8 s | 8
py | 24| 7T 7| 7|7 A
P(j) | 247 | 231 | 232 | 233 | 234 | ... | 254 | 255

If we were to add an extra sublot to job 1 then by (q1) = 01(2) = x19p21 = 8.
The makespan of the n jobs with this sublot allocation ¢+ e; would remain
the same as job 1 would not move from its position. No improvement will
be attained by this assignment. On the other hand, if we were to add a new
sublot to any job j with j = 2, ..., 25 the processing time of the second (last)
= ‘11—2. The

heuristic adds an extra sublot to job 26; with Step 4, reordering according

sublot in the second machine would be b;(q;) = 0;(2) = xjopo;

to equation (4.5), this job will go at the end of schedule, as 7 > %. There is
a reduction of 3% to the makespan of the n jobs for this new allocation of
sublots q,t¢€;5- In fact Cmax(a’(go+ej)) = 2b4forj =2,...,25. The following
table shows the situation after we added a sublot to job j = 26. When the
job has more than one sublot, we have made explicit the processing time of
the sublots, and in what order they are processed in the first and second

machine.
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g=g,+ €%
o) | 1 | 2| 3 24 | 25 26
j 1|23 24 | 25 26
q 1|1 |1 1|1 2
p |48 | 8 | 8 8 4%(341]
Py | 24| 7T |7 T 7 353134
P(j) | 247 | 231|232 | ... | 253 | 254 251 &

Let us now add another extra sublot. Following the same argument as be-
fore adding a new sublot to job 1 will yield no improvement in the makespan
of n jobs (bi(¢1 = 2) = 8). However, C'max(a(g0 + eg5 + €5)) = 253 for
j=2,...,25. As illustrated in the following table, where the heuristic, will

choose to add a new sublot to job 25.

g =g, + e+ ex
o(j) | 1 | 2 | 3 24 25 26
J 1|2 ] 3 24 25 26
q 1|11 1 2 2
pi; | 48| 8 | 8 8 4% (|38 41|34
py |24 7T | T |... 313 13331353
P(j) | 247 | 231 | 232 | ... | 253 250 251 &

So far two extra sublots have been added, one to job 25, and another to
job 26. If we had added this two extra sublot to job 1 instead, we would have

the situation illustrated in the following table.

9=q,+ 2e;
o) | 1 | 2| 3 | 4 25 20
j 2 | 34|65 26 1
q 1|1 ]1]1 1 3
py | 88|88 8 | IR
pe | T T T T T | 129548
P(j) [ 190 | 191 | 192 | 193 | ... | 214 251 2
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The makespan of the n jobs with this sublot allocation ¢, + 2e; will be 251-:?%.
Summarising Cf (g, +2€1) < CF,,(g, €25+ €26) , we have found a different
sublot allocation from the one found by the heuristic, which yields a better
makespan. In fact, C7,,,(g, + 2e1) < Cf,.(q, + € + ex) for 2 < 5 k < 26.

Hence, our heuristic does not guarantee finding optimal solutions.

4.3 Identical Jobs Multiple Machines

The model we work with in this section is set in an m-machine flow shop
with n “identical” jobs to minimise the makespan of the n jobs. The jobs are
identical in the sense that the processing time of any job, on each machine,
is the same, and all jobs have the same sublots. Our aim is to find optimal
sublot sizes for the jobs when m > 3.
An instance of the problem requires

e p; the processing time of the job on machine ¢, and

e g the number of sublots a job has.
Let xx; be the k-th sublot of job j (1 < k£ < ¢, 1 < j < n), and Cy; the
completion time on machine 7 (1 < i < m) of sublot k of job j. Then, we

want to find

min Cpgn
subject to
Ci1 ~ p171y 2> 0,
Cikj — Cicikj —Diti; 20, 1<k<qg2<i<m,1<j<n
Citj — Cig—1; —pizg; 20, 2<k<q1<i1<m,1<5<n
2ok=1 Tk =1,
Zgj, Cir; > 0, forl1 <k<g and1<i<m.

Any solution to this problem can be viewed as a solution to the corre-
sponding, less restricted, single-job ng-sublot lotstreaming problem, by scal-
ing all the sublot sizes down by a factor of . It is know from Glass & Potts
(1998) that, for a single job no critical path goes through a dominated ma-
chine. Moreover, (Glass & Potts 1998) provide a Relaxation Algorithm for
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reducing the problem to one with only dominant machines and intermediate
lag times. The resultant machine processing times py, ..., p,, and the inter-
mediary lag times [y,..., -1, corresponding to processing on intermediate
non-dominant machines, satisfy the dominance condition:

pl+ll<p2+l2<.”<pm’—l+lm—l'
ll + P2 l2 + P3 lm’—l + Pm’

(4.12)

The network representing the reduced problem is illustrated in Figure
4.3. Each oval node (i,k) for k = 1,..., q represents the processing of sublot
z on dominant machine 7 (1 < ¢ < m'), and cach rectangular node [i, k]
represents the lag time that elapses between the end of the completion time
of sublot x; on dominant machine ¢ and the start of the processing of sublot

/

z on dominant machine ¢4+1 (i = 1,...,m'—1). The makespan of a schedule

is given by the length of a longest path joining node (1,1) to (m/, ng).

dominant machine 1{pjz, e —>

lag time 1 1111 1112 l l1rng 1 ] [Il.ran

dominant machine 2 2”1

lag time m' — 1 l lm'—qu le'—l

p __‘ -
dominant machine m' @ e

Figure 4.3: Network after applying the Relaxation Algorithm

As the sublots are the same for each job, 1(_1yytn = Tjq4n for j =
1,...,n—=1and h=1,...,q. Let P(j1,h1;J2.ho; ... i o1, hoy—1) denote a
path tha;c joins node (1,1) to (m', ng), going down from dominant machine s
to machine 7 + 1 in job j; sublot h;, for i = 1....,m'. Note that 1 < h; < g,
fori=1,...,m' and that 1 < j; < 55 < ... < j,v_; < /. Further, let
L(j1, h1; jo, hos o5 Gmr—1, b 1) denote the length of this path. We call a
path critical if its length is the longest of all paths.
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Lemma 4.4 A feasible solution g = (21, ..., Tn,) has a critical path P(jy, hy;
j2)h2; ST jm’—lv hm’——l) with hl < h2 < h13 <... < Py —1.

Proof: Suppose that the lemma does not hold. Then, there is a feasi-
ble solution z = (zi,...,Zne) with a critical path P = P(ji, hi;j2, ho; .. .
Jm—1, Amr—1) for which h, > hy for some pair of machines a < b. Since P is a
critical path, and a < b, then P cannot go down to machine b before a, and
thus j, < 7. Moreover, since h, > h; using the same argument we have that
jobs 7, and j, cannot be the same. Hence j, < j,.

We can always choose a and b with a < b such that i, < h,forl <k <a-—
land hy < hpforb+ 1<k <q. Thus, 1 < hgey <y < hy < hyy1 < g, and
therefore the segments o, = (a,¢(jo—1)+hs) —(a, ¢(jo—1)+he)—(a+1, ¢(jo—
1)-+he), and o, = (b, q(o—1)+hy) —(b+1,9(5s—1)+hy) — (041, (5o — 1) +h,)
are on the critical path P.

Now consider the set of paths of the form P'(h!, h}) = P(j1, h1; Ja, ho; - - -,

a
!

Jas Py -3 Jby By; -« o5 Jmie1, Bmy—1) which differ from the given path P only in
values h! and hj, with hy, < k! < h, and hy < Iy < h,. Suppose that
no path P'(h!,h}) with h! < hj is critical. Consider paths P’(hs, k) and
P'(hg, hy). They are not critical and must therefore be shorter than path
P = P'(hg, hy). Thus segment o, must be longer than segment (a, (j, —
Dg+hy) —(a+1,0e — g+ h) — (a+1,(a — 1)ha), and similarly o is
longer than (b, (js — 1)g + he) — (b, (Jb — 1)g + ha) — (0 + 1, (Jp — 1)g + ha).

Thus, if
hao1—1

X = Z T,

k=hpi1+1
then we have the following inequalities:

Thyyy (la + Pat1) + X par1 < Tn, (la + pa) + Xpo, and,

Thyp (I 4 pot1) + X ppy1 > 2, (b + o) + Xpy.
Adding X, on both sides of the first equation, X'/, to both sides of the
second equation, yvields the following inequality

Pb + lb < Thyy + ‘}’ < Pa t+ ](: :
Iy + Po+1 Th, + X l, + Pa+1
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contradicting Equation (4.12).

Thus, some path P'(hl, h;) with k) < hj is critical. Take h! the smallest
for which P'(h!, hy) is critical, and hj the largest for which P'(h,, h}) is
critical. Then P’(h}, h}) is a critical path. Call it P'. Since h, > hj and
he > hyfork=1,...,a—1, h < h fork=1,...,a— 1. Similarly hj < hy
for k =0b+1,...,9. As hl < h, we cannot have additional inequalities of
the form h! > hy for £k > a + 1. In the same way, since h; < hy, there
are no additional inequalities of the form hy < hj in P’ that were not in P.
Moreover, the inequality h, > h, has now been replaced by h), < h,. We
conclude that P’ has at least one less inequality, between the pairs of hy’s
(k=1,...,q) than the original path P. By showing that such a pair A}, hj

always exists the proof follows by induction. Hence, hy < hy < ... < by ;.

O

Before proceeding we need to make a small observation.

Lemma 4.5 At least one machine with largest processing time s a dominant

machine.

Proof: Dominant machines are those which are not reduced to a lag by the
Relaxation Algorithm. Now observe that a machine is reduced to a lag by the
Relaxation Algorithm only if at some stage of reduction its processing time,
say py, satisfies an inequality of the form (I,_1+p,)(pr+1) < (pr—1+L-1) (I +
pr+1), where p,_; and p,,1 are also machine processing times. Since p, is the
largest machine processing time, the inequality implies that p,_, = p, = pr—1,
and hence there remains a dominant machine with maximum processing time

after the reduction.

O
Lemma 4.6 A feasible solution £ = (x1,....%4,) has a critical path, of the
form described in Lemma 4.4, which passes through jobs 2,...,n —1 on a

machine which has the largest processing time among all machines.
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Proof: Given a feasible solution z = (zy,...,74,), for which there is a
critical path P = P41, h1; Jo, ho; - - -5 Jm, A —1) where 1 < jo <00 < Gy,
and hy < hy < ... < hyy_y, from Lemma 4.4. Let L denote the length of
path P.

hl h~_)
L={(G—Dpr+D_zepr + b} +{(Ga = j)p2 + Y wxpa + boan} + ...
k=1 k=h
hr
+{(jr - jT—l)pr + Z TiPr + lrxhr} + ...+ {(jm’—l - jm’—Q)pm’—1+
k=h,_3
Rt 1 7
Z TkPm'—1 + lm’—lth;_l} + {(n - jm’—l)pm’ + xkpm’}-
k=h__, k=h,_,

Now take a dominant machine r with the largest processing time of any
dominant machine, that is,

= Imax
pr= max p

Consider path P' = P(1,hy;1,ho; .. 51, he_y;m, by oo oiny oy ). It passes
through jobs 2 to n — 1 on dominant machine r. Let L’ denote the length of
path P’.

hy hr hrt1
L'={> zmp+han+...+ > zipetlan}+0—1p+{) mepr+
k:l k:hr-l k:hr
hot_q n
lr+1xhr+1 T+ TpPm' -1t lm’—lth’—l + Z xkpml}.
k=h,/_, k=h,_,

Thus, L' ~ L= (n—1)p, = [(h = Dp1 + G2 —Ji)p2 + .. (Jr — Jr-1)pr +
oot Umr—1 = Jmr—2) P —1 — (M= Jor—1) pav)- Extending the notation by setting
Jo =1, and j,» = n, this difference becomes

m/

(jm’ - jO)pr - Z(]z - ji—l)/’i'

=1
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Thus by substituting Z;il(ji = Jiz1) for (jmr — Jo) we have

ml

L'—L= Z(ji — Ji-1)(pr — pi)-

=1
From the choice of r this is non negative, and hence P’ is a critical path

of the form described in Lemma 4.4. Note that, from Lemma 4.5, p, is the

largest processing time for any machine, not just the dominant ones.

Theorem 4.2 For the multiple identical job problem with the same sublot
sizes for each job, the makespan is minimised by the sublot sizes which
mintmise the makespan of a single job alone. A critical path s given by
L(1,hy;1,hos .o Lheyyny hes o5y by —y). where p, = maXi<i<m pi, and

its makespan is C},, + (n — 1) maxi<j<m pi. where C},

max is the makespan of

X

a single job using the optimal sublot sizes.

Proof: From Lemma 4.6 we know that the critical path length is of the form

m'—1 hit) m' —1
(n—1)p, + Z Z TppPio1 + Z lizh,.
i=0 k=h; i=1

where hg = 1, hl, = n and p, = p, is the largest processing time of a single
job on any one of the machines. The last two terms of this expression define
the makespan of a single job with sublot siz z = (21,...,%4). Thus, if for
every job in the schedule we use the sublot sizes which minimise Cax for
a single job, the makespan of the schedule is minimised. The makespan of

such a schedule is (n — 1) maxp; + C},,,..

0

We have thus reduced the problem of lot sizing n identical jobs on m machines

to that of a single job on m’ machines.
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4.4 Concluding remarks

In this chapter we have presented two models that are extensions on those
analysed in the literature for lot streaming on the flow shop environment.

First we worked with a model where the numbers of sublots are not
predetermined beforehand. We used the results on the two machine flow
shop model given in Chapter 3 to focus our attention on the job sequence
and sublot allocation. We used an analysis on the critical paths to develop a
O(Qn?) heuristic to allocate sublots. We gave a counterexample of optimality
for the heuristic. As further work it is desirable to evaluate the heuristic with
computational tests, and analyse the worst case performance.

Finally we have also studied a model with n identical jobs, and applied a
dominant machine analysis to find optimal sublot sizes. Not only that, but
we have reduced the sublot size decision to that of a single-job. We hope to
have illustrated the advantages of using network representation, critical path

and dominant machine analysis for lot streaming problems.
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Chapter 5

Combinatorial Optimisation
and Batching Machine
Scheduling

5.1 Introduction

Batching machine problems can be considered an extension on classical schedul-
ing models where jobs are not processed simultaneously. As explained in
Chapter 2 a batching machine is able to process several jobs at a time. Our
analysis approach for these problems is different from the one followed in
Chapters 3 and 4. In this chapter we explain the standard methodology to
tackle combinatorial optimisation problems, including scheduling problems;
presenting methods that look for exact, as well as, approximate solutions.
Section 5.2 explains the basis of a combinatorial optimisation problem, sec-
tion 5.3 presents methods that aim at giving exact solutions to the problems,
whereas section 5.4 deals with approximate solutions. Finally, we discuss in
section 5.5 the batching machine model in the context of scheduling, and
introduce the specific model (subection 5.5.1) we work with in the remaining
chapters (Chapters 6, and 7).

68
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5.2 Combinatorial Optimisation

A combinatorial optimisation problem arises when we have a discrete num-
ber of choices to make; the problem lies in choosing an optimal one. The
optimality of this choice relates to a quantitative measure for each possible
choice. The ‘combinatorial’ term refers to the fact that the choice is made

over a set which is at worst a countably infinite set. We formalise this idea.

Definition 5.1 An instance of a combinatorial optimisation problem is a
pair (Z, f) where I is the set of feasible solutions and the cost function f is
a mapping f : T — R. The problem is to find a globally optimal solution i.e.
i* € T such that f(i*) < f(i) for alli e T.

Note that the optimal cost is f* = f(i*), and a set I* = {i € Z|f(i) = f*}
will be a set of optimal solutions. If the problem is one of minimisation,
then the optimal cost is min;ez f(i); likewise if it is a maximisation prob-
lem, then the optimal cost is max;cr f(7). The instance (Z, f) is usually not
given explicitly, that is, by a listing of all solutions, and their cost. Instead,
it is common to have a compact data representation of an instance and a
polynomial-time algorithm to verify the feasibility of the solution (i.e. if ¢
belongs to Z), and its cost (i.e. f(7)). The size of the data representation,
that is, the number of bits needed to store it in a computer, is taken to be the
size of the problem instance (as explained in section 2.2). For detailed intro-
ductions to the area of combinatorial optimisation we refer to Papadimitriou
& Steiglitz (1982) or Schrijver (1986).

Any scheduling problem can be expressed as a combinatorial optimisation
problem. The choices are all feasible schedules (the feasibility may rely,
for example, on precedence constrains or release dates). The quantitative
measure is any of the objective functions (dependent on the completion time
of the jobs) introduced in Chapter 2. For example, the two-machine flow
shop minimising the makespan is a combinatorial optimisation problem where
f = Chax, and T is composed of all possible schedules (a sequence of the jobs

that defines the processing order on the two machines). Each solution can be
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expressed as a permutation 7 of the jobs to schedule. A particular instance

to the problem is the following:

jOb Jl J2 J3 J4
py | 31|33
D2 3 2 1 3

There are 24 different solutions (i.e. 24 different permutations of 4 jobs), and
therefore the size of Z is 24. The optimal solutions are: i} : Jo, J1, J4, J3, and
i5 : Jo, Jy, J1, J3. Hence, T* = {3, i3}, with f* = f(i7) = f(i5) = 11.

A simple, but inefficient way of solving combinatorial optimisation prob-
lems would be to look at each element in Z, and choose the one with optimal
cost. This method is referred to as complete enumeration. In our exam-
ple, a complete enumeration method would need to evaluate n! solutions for
an instance with n jobs. As this is not a practical method, other implicit
enumeration methods have been devised. There are two widely used such
methods to solve combinatorial optimisation problems, branch and bound,

and dynamic programming, which we will explain below.

5.3 Exact Solutions

5.3.1 Branch and Bound

The main idea of a branch and bound approach (Land & Doig 1960) is
to partition the feasible solutions Z into disjoint sets, each belonging to a
branch of a search tree, and then bound the cost of each set so as to guide the
search to as optimal solution. This can be represented as a tree graph, see
Figure 5.1, where the root node is Z, and the disjoint sets are at a lower level,
each one represented by a node joined to the root by edges. At each node, a
decision is made either to partition it further (keep branching form the node)
and/or calculate a bound with the aim of discarding it. For example, a lower
bound on the cost of the solutions in a set of a minimisation problem can

be calculated, and if it is bigger than the best objective value found so far
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it can be discarded, as no solution emanating it could be optimal. At each
successive level of the tree, the sets of solutions represented by the nodes
become smaller, until at the final level each node represents a single solution.

Eventually the method terminates with all nodes discarded.

/ |
O O O/C) o Qnext level

excluding subsets of 7

Figure 5.1: Search tree in a branch and bound procedure

We avoid evaluating every single feasible solution by discarding sets of
them corresponding to a node of the search tree. Sometimes an upper bound
is also used which can be used in conjunction with the best objective value
found so far to prune the tree. Thus, the speed of the algorithm rclies on how
efficient, and effective the lower bound is, in conjunction with the branching
and upper bounding schemes. It is also popular to use other elimination
criteria in the form of problem-specific dominance rules to prune the tree
even further.

A possible branching scheme for the flow shop example we presented
previously is to decide, at level ¢, the job at position ¢ in the job sequence.
Hence, we would have 4 branches emanating form the root node (i.e. any of
the 4 jobs could be at the beginning of the sequence). For each node in the
first level we would have 3 branches (i.e. we have 3 choices for the second
position, as one job is already in the first position). In the same way, for
each node in the second level we would have 2 branches, and finally just
one branch from each node in the third level. At the end (if no node was
eliminated, by the bounding schemes or dominance rules) we would have 24
end-nodes (the 24 solutions). It is easy to see the importance of the lower
bound calculations. The stronger the lower bound, the fewer nodes that

will need examination. However, strong lower hounds usually require more
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computing time than weaker bounds. The size of the tree is also affected by
the quality of the upper bound, the other elimination criteria (domimance
rules), and of course by the branching scheme.

Techniques to obtain lower bounds are generally based on solving some
relaxation of the problem, for example a Lagrangian relaxation method. This
method was first introduced by [Held & Karp (1970), Held & Karp (1971)];
a good introduction to the subject can be found in Fisher (1981), and Fisher
(1985). It is important to note that the application of this method in schedul-
ing does not need to rely on integer linear programming formulations as
pointed out by Van de Velde (1991). Probably the most famous branch and
bound algorithm in this domain, capable of solving problems with as many
as ten thousand jobs, uses bounds obtained by relaxing a specific feature of
the problem (Carlier 1982). In batching machine scheduling, we can also re-
lax a specific feature of the problem, the assumption on the restricted batch
size, and develop an the algorithm that solves the unrestricted case to obtain

lower bounds, see Chapter 6.

5.3.2 Dynamic Programming

Dynamic programming is a general optimisation technique particularly well
suited to problems requiring a sequence of inter-related decisions. At each
stage in the decision sequence, sub-problems of increasing complexity are
solved recursively using knowledge obtained from sub-problems (decisions)
solved at previous stages. Solving these sub-problems usually involves mini-
mizing or maximising some measure of value. Each new sub-problem (deci-
sion) solved determines more features of the optimal solution, until, at the
end, the problem is solved, and the optimal cost of the final decision (problem
solution) is obtained.

The efficiency of the method relies on the ability of breaking a prob-
lem into stages or sub-problems that could be solved efficently. This entails
formulating the solution of the problems in terms of dynamic programming

recurrence relations (recursive formula for the sub-problems), identifying the
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appropriate state and stage variables, initialization conditions, and charac-
terizing the optimal value function as explained by Dreyfus & Law (1977).
We present a dynamic program to solve a scheduling problem in section 5.5.2.

Similarly to branch and bound, dynamic programming does not evalu-
ate all possible solutions, as it discards some by solving them as part of a
sub-problem. It is generally much more efficient than complete enumera-
tion, but still not in general a polynomial time algorithm. Hence, as nei-
ther branch and bound nor dynamic programming can be applied efficiently
(within polynomial time) to most combinatorial optimisation problems, it is
of importance to use methods that would vield approximate solutions in a

reasonable amount of time. We explain a class of such methods below.

5.4 Local Search Heuristics

Most combinatorial problems, and practical scheduling problems are NP-hard
(see list given by Garey & Johnson (1979), pg. 236-244, and (Papadimitriou
1994)). As explained in section 2.2, it is generally believed that these prob-
lems cannot be solved optimaly within polynomially bounded computational
times. Thus, it is of great interest to be able to give (near-optimal) approxi-
mate solutions in a reasonable amount of time. To achieve these, some sort
of heuristic is usually employed.

A heuristic is an algorithm (step by step set of instructions) which aims
to provide near-optimal solutions. This however does not imply that there
is any guarantee of feasibility, or optimality. In fact, there is usually no way
of finding how close to optimality a particular feasible solution is. A distinc-
tion can be made between two broad classes of approximation algorithms:
constructive and local search methods. In this thesis, we are interested in
the latter, even though a simple constructive heuristic is usually used as a
starting solution (usually an ordering of the jobs, though it might be more
complicated). Constructive heuristics are used as starting solutions in chap-
ters 6 and 7.
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The main idea that distinguishes a local search heuristic, is that of a
netghbourhood. For the solutions of a combinatorial optimisation problem,
a neighbourhood structure is imposed which determines which solutions are
close to each other (neighbours). Once the neighbourhood structure is de-
signed, it is a matter of searching for better neighbours. Ideally this search
will take a small amount of time (polynomially bounded), as to make the lo-
cal search efficient. It is a local search as we are just searching locally within

the neighbourhood. We now formalise the idea.

Definition 5.2 Let (Z, f), where I is the set of feasible solutions and f is
the cost function, be an instance of a combinatorial optimisation problem. A
neighbourhood function is a mapping N' : T — 2, which defines for each
solution 1 € T a set N (i) C T of solutions that are close to i.

The set NV (i) is the neighbourhood of solution i, and each j € N (7) is a
neighbour of 4. For a minimisation problem, a solution ¢ is a local optimal if
f() < f(5) for all j € N'(2). If T' is the set of locally optimal solutions, then
N is ezxact if ' C I*, where Z* is the set of optimal solutions (as defined
previously).

The simplest local search heuristic is descent, also know as iterative lo-
cal improvement. However, as not to confuse it with iterated local search,
which is explained in subsection 5.4.1, throughout this thesis we will refer
to it as descent. This heuristic starts with some initial solution (obtained
form a constructive heuristic, or chosen randomly), and then searches its
neighbourhood for a solution with a better value. If such a better solution is
found, it replaces the current solution and the search continues. Otherwise,
the descent heuristic returns the current solution, which is locally optimum.
The descent heuristic can apply either first improve, in which the current
solution is replaced by the first cost-improving solution found in the neigh-
bourhood search, or best improve, in which the current solution is replaced
by the best solution in its neighbourhood (i.e. usually after examining all

the neighbours).
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The are some important comments to make about employing local search
heuristics to combinatorial optimisation problems:

1) Related Areas: Most heuristics have been develop~d on analogies with
processes in nature, relating it to other disciplines such as statistical physics,
biological evolution and neurophysiology. WWell known examples are simu-
lated annealing, genetic algorithms, and neural networks, which we explain
in more detail below.

2) Theoretical: Recently some local search algorithms have been mathemat-
ically modeled, yielding theoretical results on their performance, and the
development of a complexity theory of local search, see (Johnson, Papadim-
itriou & Yannakakis 1988).

3) Applicability: The increased power of computational resources and data
structures have enable local search heuristics to be competitive, solving big
instances of problems. The flexibility and ease of implementation is also an
important factor for employing this type of heuristics.

Any local search heuristic requires a specification of neighbouring solu-
tions, a cost function, and an efficient method for exploring the neighbour-
hood. However, specifying these, is no guarantee of good quality solutions.
In fact, experience shows that applying a simple local search usually does not
yield high quality solutions. A simple procedure to improve on the quality is
to start at different (usually randomly generated) starting solutions and run
the local search on each, taking the best one as the final solution. This is
referred to as a multi-start local search. Another idea that uses several runs
and combines different neighbourhoods is to take the local optimum from one
neighbourhood and apply a search in a different neighbourhood, repeating
several times this procedure across different neighbourhoods. This is often
called multilevel local search. Another idea which capitalizes on multiple
runs of local search, but modifying the starting solutions is Iterated Local

Search.
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5.4.1 Iterated Local Search

Recall that in a multi-start approach several runs using the same neigh-
bourhood on different (randomly generated) starting solutions are applied,
whereas in a multi-level approach a previous local optimum is taken as start-
ing solution for a new search in a different neighbourhood. The idea behind
Iterated Local search is to restart the search near a local minimum, rather
than from a randomly generated one, or the last local minimum.

From an initial solution, we perform a local search (usually a traditional
descent) to get a current solution. This current solution (local optimum) is
then modified, and another local search is performed. We continue modi-
fying the local optimum and applying another local search repeatively until
some stopping criteria is met (usually time based, or depending on the num-
ber of iterations performed). Modifying the local optimum from a previous
iteration is usually referred to as performing a kick. This kick should keep
enough information of the goodness of local optimum, but be big enough
as to dislodge the search from the region of attention of the previous local
optimum. If we stay in the same neighbourhood, this can be viewed as per-
forming a local search on the local optima. We can state a general Iterated

Local Search as follows.

Iterated Local Search Heuristic
1) First Local Optimum Start form an initial solution, and apply a local
search to obtain the current solution (local optimum) s,
2) Kick Modify s, to get s'.
3) Local Search From s’ perform a local search and get s, a local optimum.
4) Stopping Criteria Decide whether to:
(a) take s, as the current solution s, and repeat steps 2 and 3; or
(b) take a previous solution (usually the best solution so far) as the
current solution s, and repeat 2 and 3; or
(c) stop (as time limit or number of iterations is met) and return the best

solution found so far.
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Step 4(b) is usually referred to as backtracking, as we allow the search to
go back to a previous solution. This can be also viewed as deciding whether
to leave the current solution unchanged or to replace it with the new local
optimum. In Chapter 7 we explore iterated local search heuristics for a
batching machine model with restricted batch size. We now give a overview

of other popular local search heuristics.

5.4.2 Simulated Annealing

Simulated annealing was introduced by Kirkpatrick, Jr. & Vecchi (1983),
and Cerny (1985). Its name originates form the physical process of anneal-
ing, where the evolution of a solid as it is slowly cooled from a liquid is
simulated. If this is done slowly enough, it eventually settles in a ground
state arranged in a highly structured lattice which minimises the energy of
the system. The algorithm that simulates the physical process (Metropolis,
Rosenbluth, Rosenbluth, Teller & Teller 1953) can also be used to solve com-
binatorial optimisation problems, where the system states are the feasible
solutions, the energy is the cost (objective function), the change of state
are the neighbourhood solutions, the temperature is a control parameter,
and the frozen state is the final solution. This algorithm is of interest be-
cause it has a stochastic component, which facilitates a theoretical analysis
of its asymptotic convergence, and it has been applied successfully to a broad
range of practical problems. We can state a simulated annealing local search

as follows.

Simulated Annealing
begin
Get initial solution: sg
Current solution s = s
Iteration £k =0
repeat
get a neighbour s; € N (s)
calculate the difference is cost C = f(s;) — f(s)
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with probability px let the new new current solution be s = s;, where

e 1 if C <0
¢ exp(—=C/ty) fC>0

k=k+1
until stopping criterion is satisfied

end

Note that the probability function used to accept or reject a neighbouring
solution is the negative exponential distribution with parameter 1/t,. The
parameter ;. is called the control parameter, and plays an important role in
the convergence analysis of the algorithm. For example, using the theory of
finite Markov chains, the algorithm finds an optimal solution asymptotically
as ty — 0 and k£ — oo. Other distribution functions might be chosen;
the idea is that solutions corresponding to a large increase in cost have a
small probability of being accepted, whereas solutions corresponding to small
increases in cost have a larger probability of being accepted.

Threshold accepting algorithms can be thought of as a simplification of
simulated annealing, where moves to a worst solution are accepted (similar to
the way a kick allows to move to a worst solution) if its value is smaller than
a threshold parameter 7,. The value of 7, usually decreases as the number
of iterations increases, eventually becoming 0 at which point only improving
moves are allowed (becoming more like a simple first improve descent algo-
rithm). Note that in this case the acceptance criterion is deterministic, as
no probability function is employed. Aarts, Korst & Van Laarhoven (1997)
review threshold algorithms, and give an overview of the type of convergence

results that can be stated for simulated annealing.

5.4.3 Tabu Search

Tabu search lacks the convergence properties of simulated annealing. How-

ever it makes use of memory of previously analysed solutions or moves. It
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was first presented in its current form by Glover (1986). Recall that both
simulated annealing and iterated local search allow non-improving moves, so
there is a risk of visiting a solution again, and more generally of cycling.
Tabu search aims at avoiding cycling by storing information on recently vis-
ited solutions which defines forbidden or tabu moves. Tabu moves effectively
reduce the neighbourhood to be searched. However, memory is used at a
deeper level to guide the local search, using tabu conditions on forbidden
moves, and aspiration criteria allow for attractive solutions to be accepted.
This is linked with the process of intensifying and diversifving the search.

We can state a tabu search as follows.

Tabu Search

begin

Get an initial solution sg.

Current solution s = sg, iteration k£ = 0.

repeat
Let N (s, k) be the neighbourhood of s that meets the tabu conditions,

or the aspiration criteria.

Choose the best neighbour s’ of s in M (s, k).
Update tabu conditions (list) and the aspiration criteria.
s=8 k=k+1.

until stopping criteria is satisfied.

end

Possible stopping criteria may be: k is larger than a specified number; the
number of iterations since the last improvement of the best overall solution
is larger than a specified number; and N (s, k) is empty. The efficiency of the
method seems to rely mostly on the modeling of the particular combinatorial
optimisation problem. However, tabu search remains a popular local search

method, and many problems have been tackled effectively with it.
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5.4.4 Genetic Algorithms

Genetic algorithms are inspired by the theory of evolution in nature and
population genetics, and were first introduced by Holland (1975). Genetic
algorithms differ from evolution strategies (Rechenberg 1975, Schwefel 1981)
which use mainly mutation and selection processes by the fact that sexual
reproduction is allowed, which is often called recombination. There are many
variations known in the literature of algorithms that follow these concepts.
We present, as an example, genetic local search introduced by Miihlenbein,
Gorges-Schleuter & Kriamer (1988). Each individual in a population repre-
sents a solution of the combinatorial optimisation problem. The idea is to
apply the survival of the fittest principle to the population, where a monotonic
transformation of the cost function corresponds to the measure of fitness of
the individual, also referred to as the fitness score (a term from theoretical
biology). Recombination is used to combine two or more solutions to produce
an offspring. Mutation is used to produce variation. In nature, it is normally
caused by randomly occurring copying errors in the replication of sections
of chromosomes. In a genetic algorithm it may be produced by randomly
selecting a neighbour of the offspring solution. A selection procedure is used
to reduce the population back to its original size. This corresponds to the
survival of the fittest principle, where only a proportion of the population
which best adapts survives for the next reproduction cycle. We can state a

genetic algorithm in the following way.

Gentetic local search algorithm
begin
Initialise: Construct an initial population of N solutions.
Improve Use local search to replace the N solutions by N local optima.
repeat
Recombine €& Mutate: Increase the population by adding n offspring
solutions via recombination, and allow some mutation; the new
population is now N + n.

Improve: Use local search to replace the n offspring solution in the



CHAPTER 5. C.0. AND BATCHING MACHINE SCHEDULING 81

population by n local optima.
Select: Reduce the population to its original size by selecting N
solutions from the current population.
until stopping criterion satisfied.
Returning the best solution.

end

A version of this algorithm is also described as a parallel genetic algorithm
by Miihlenbein (1997). To implement a genetic algorithm, decisions must be
made including the initial population, the recombination process, size and
frequency of mutation as well as the selection and stopping criteria. Note
that mutation is similar to the kick in iterated local search. The general
class of genetic algorithms contains many other approaches, which may differ
substantially form the approach presented above. Some of them have been
applied successfully to various problems.

There exists other local search heuristics based in nature. For example,
ant systems, which simulate the ability of ants to find the shortest path,
even under changing conditions, from a food source to the nest, imitating

pheromone trails left by ants.

5.4.5 Neural Networks

As its name suggest, this heuristic tries to mimic the biological neural net-
works inside brains. Such a network consists of linked neurons, which are able
to work in parallel to find solutions. The computational counterpart for the
neurons are processing units, and thanks to recent development in parallel
computing a growing interested in this area has developed. In particular, its
application to combinatorial optimisation problems goes back to Hopfield &
Tank (1985) who analysed a neural network for the traveling salesman prob-
lem. Again, as in most local search methods based on other scientific areas,
the efficiency of the method lies on the modeling of the problem through the

characteristics, in this case, of a neural network.
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5.4.6 Complexity of Local Search Heuristics

Johnson et al. (1988) introduce the complexity class PLS of polynomial-time
local search problem, addressing the question of the worst-case behaviour of
local search heuristics. Recall that any local search heuristic requires the
definition of a neighbourhood. The more powerful (bigger) the neighbour-
hood the harder it is to explore (find a local optima), but the better quality
the optima are expected to have. The most powerful neighbourhood is the
exact neighbourhood (recall section 5.4), where local optima are also global
optima.

The class PLS contains the problems whose neighbourhood can be searched
in polynomial time, by the standard local search algorithm (introduced be-
fore as descent). That is, we have polynomial-time algorithms to (a) generate
solutions in the neighbourhood, (b) evaluate the cost of the solution, and (c)
determine whether it is a local optimum. Unfortunately, the complexity
of finding locally optimal solutions for many interesting problems remains
open. Similarly to theory that defined NP-complete problems (section 2.2),
the class of PLS-complete problems characterizes the complexity of local
search problems. A problem is said to be PLS-complete if every problem in
PLS can be reduced to it. Hence, if a PLS-complete problem can be solved
in polynomial time, it will enable all PLS-complete problems to be solved in
polynomial time.

In recent yvears important local search problems have been found to be
PLS-complete (for example, graph partitioning with Kerninghan-Lin neigh-
bourhood). Still, the complexity of many famous local search problems (like
the traveling salesman problem under standard Lin-Kernighan or 2-opt neigh-
bourhoods) remains unknown. Even so, for practical purposes the average
running time -may be a more significant measure on the running time of a
local search method. We can mention as an example the famous Simplex
method, developed by Dantzig (1949); it works on an exact neighbourhood
(the polytope of a linear programming problem). The method looks for local

optima (vertex of the polytope), and it has been shown to take exponential



CHAPTER 5. C.0. AND BATCHING MACHINE SCHEDULING 83

time. However it behaves on average very efficiently, even outperforming
non-local search methods which are polynomial time algorithms (like the el-
lipsoid method of Khachian (1979) and interior point method of Karmarkar
(1984) and Grotschel, Lovasz & Schrijver (1988)). This also serves to em-
phasis the difference between local search complexity and P-NP complexity,
PLS lies somewhere between the two. An up to date review on computational

complexity for local search heuristics can be found in Yannakakis (1997).

5.5 The Batching Machine Model

There has been a lot of interest in the last decades in scheduling problems
with a batching element. There are basically two models where batching
arises naturally. One is the family scheduling model, where jobs are grouped
together as to take advantage of shared set-up times on a machine. The other
is when we are actually modeling a batching machine, one that can processes
several jobs simultaneously. We refer to such as model as a batching machine
model. In this thesis we are interested in the batching machine model.

A recent and thorough review of these models can be found in Potts &
Kovalyov (2000). They review both family scheduling and batching machine
models, and focus on dynamic programming techniques to solve them. Batch-
ing machine models generalise models in scheduling theory, as explained in
Chapter 2, by considering a machine to be a batching machine and allowing
it to process more than one job at a time. Batching machines are common
in the metalworking, chemical and microelectronics industries.

Lee, Uzsoy & Martin-Vega (1992), explore the ‘burn in’ operations in
the manufacture of circuit boards with a batching machine model. Their
batching machine can process up to a certain limit of jobs simultaneously, and
the processing time of a batch is equal to the largest processing time among
all jobs in the batch. They are concerned with customer service, quantified
by on-time delivery, and thus analyse the maximum tardiness, T;,.x, number

of late jobs, ) Uj, and maximum lateness Lp,ax Objective functions. Some of
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the problems they consider are NP-hard, and heuristics for this are presented,
as well as dynamic programming based algorithms to solve others.

Albers, S. & Brucker, P. (1993) explore the complexity of several batching
problems with the flow time objective function. Webster & Baker (1995) re-
view family of scheduling models, and present some results for some batching
machine models. The results of both papers are summaries and extended in
(Potts & Kovalyov 2000); parallel batching machines are also considered in
this paper. Hurink (1999) explores a batching machine model where the pro-
cessing time of a batch is the sum of the processing times of jobs belonging
to the batch. He presents a tabu search heuristic for the problem.

Recently, Dupont & Dhaenens-Flipo (2002) proposed a branch and bound
algorithm to minimise the makespan of a single batching machine with re-
stricted batch size, where the processing time of a batch is the largest process-
ing time among jobs in the batch. They rely heavily on dominance properties
to reduce the enumeration scheme, and find good results for similarily sized
jobs. The case where jobs have different release dates is explore by Sung
et al. (2002). They give some computational results comparing dynamic
programming algorithms for the case where jobs belong to different families.

A seminal article for the batching machine models is Brucker et al. (1998).
They provide complexity results for various objectives functions. If the batch
size b is bigger than the total number of jobs n to be processed b > n then we
say the model has unrestricted batch size; likewise it is restricted if b < n. For
the case where the batch size is not restricted they provide a characterization
of a class of optimal schedules, which leads to a generic dynamic programming
DP algorithm that solves the problem of minimizing an arbitrary regular cost
function in pseudopolynomial time.

We are interested in this result because it leads to an O(n?) DP algo-
rithm for 1 || Lynax which we explain in subsection 5.5.2. An improvement
to O(nlogn) time is presented in Wagelmans & Gerodimos (2000). In this
thesis we study the restricted batch size version of this model 1 | b | Lmax

which we will abbreviate as BMRS, and in the next subsection we explain it
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in detail. We give the first branch and bound algorithm developed for it in
Chapter 6. We also compare various local search heuristics for the problem

in Chapter 7, with a novel neighbourhood structure.

5.5.1 A batching machine model with restricted batch

size to minimise the maximum lateness BMRS

As explained before, a batching machine is one that can process several jobs
simultaneously. The BMRS problem is one where n jobs are to be schedule
in a single batching machine, with restricted batch size b < n, to minimise
the maximum lateness. Let

e Jy,...,J, denote the n jobs,

e p; the processing time of job Jj,

e d; the due date of job Jj,

e b the restricted batch size (b < n),

e all jobs become available at time zero (r; =0 for j =1, .., n),
In this case, a schedule o is a sequence of batches o0 = (By,...,B,), where
each batch By, is a set of jobs. Let |B,| denote the number of jobs belonging to
batch By, for h =1,...,r, and Ly, (0) the maximum lateness of schedule o.

A possible formulation for the BRMS problem is as follows.

mgin Liyax(0) = min max {C;(o) — d,;} (5.1)

o 1<j<n
subject to
o= (Biy,...,B,) asequence of batches
B, asetof jobs h=1,...,r
B.O\B h#I (5.2)
hfjl By= {J1,...Jn} (5.3)

|IBh| <b h=1....,r
p(Br) = }n&x"l{pj} =1,....r

(
(
C(B) =3 pBj) h=1....r (

Ci(o) =C(By) if J; € By under o (
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Note that a schedule is a sequence of batches, where each batch contains a
different set of jobs, equation (5.2), and all jobs are schedule, equation (5.3).
Jobs that are processed together form a batch, and constraint (5.4) ensures
that there are no more than b jobs in any batch (a restricted batch size). The
processing time of a batch is equal to the longest processing time of jobs in
the batch, equation (5.5). All jobs in a batch begin processing at the same
time, and have a common completion time, constraints (5.6) & (5.7). Note
that the completion time of job J; in o, for each J; € By and h = 1,...,7,
is Cj(o) = C(By). If d(B) = }JHGI% d; is the due date of batch B then, there
are two ways of calculating the maximum lateness of a given schedule o; the
one stated in equation (5.1)

Lumax(0) = max {C;(0) - d;},
where we calculate it over the lateness of each job, and another

Lmax(a) = max {C(Bh) - d’(Bh)}a

1<h<r

where we calculate it over the lateness of each batch (h =1,....7). The goal
is to find an optimal schedule ¢* which minimises the maximum lateness
Limax(0*) = min L. (0).

This probfem was proven to be unary NP-hard by Brucker et al. (1998).
Potts & Kovalyov (2000) point out the importance of designing algorithms
for NP-hard problems in view of the interest in scheduling with batching.
We now explain how the unrestricted batch model iHLmax is solved, in this

case constraint (5.2) can be omitted from the formulation.

5.5.2 Solution for the unrestricted batch size model

As mentioned before, Brucker et al. (1998) gave a characterization of op-
timal schedules for the unrestricted batch version of the batching machine
model with regular scheduling criterion. If we assume that jobs are indexed
according to the SPT (shortest processing time) rule (p; < ... < py,), an

SPT-batch schedule is one in which adjacent jobs in the sequence Jy....J,
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may be grouped to form batches. For example if there were 6 jobs, a possible
batching might look like {JyJoJ3}{Ja}{JsJs}. Brucker et al. (1998) showed
that there exists a SPT-batch schedule that is optimal. They propose the
following backward dynamic programming algorithm with batch insertion to
solve the problem.

Let F; be the minimum value of the maximum lateness of a schedule
that contains jobs Jj,...,J, where the jobs are indexed in SPT order, and
the processing of the first batch in the schedule starts at time zero . The

initialisation is F},4; = —o0, and the recursion for j =n.n —1,...,11s

Fj = j<r1§1$1£1+1{max{Fk + pk_l,jgr?sak}i_l{pk_l - dl}}}

The optimal solution value is given by Fi, and the corresponding schedule
can be found by backtracking. Note that p,_; is the cost of adding a batch
with jobs Jj,...Jy—; at the beginning of a schedule with jobs J,..., Jy;
whereas the maximum lateness of jobs in that batch can be calculated as
max;<i<k—1{Pk-1—di}. A graphic representation of this calculations is shown
in Figure 5.2.

Schedule with jobs J;, .. .. Jn

inserted batch B schedule
{J; .. et} Je oo Jn
p(B) = pr-1 t
Maximum lateness: maxjgigk—l{pk-l - di} Ey F;

Figure 5.2: Illustration of dynamic program

A straight forward implementation of the algorithm requires O(n?) time in
O(n) space. Wagelmans & Gerodimos (2000) give an alternative calculation

in O(nlogn) time, through the efficient use of data structures.

5.6 Concluding Remarks

In this chapter we have reviewed solution procedures for combinatorial opti-

misation problems, and presented the BNIRS problem. In particular we were
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interested clarifying the elements of a branch and bound algorithm, as we
develop one in the next chapter, and in explaining the main ideas of a local
search heuristic, as we propose several ones in Chapter 7.

We have also presented an example of a dynamic program, in particular
one that solves the unrestricted version of the problem (BMRS) we focus
on the rest of the thesis. Modifications on this formulation will be used

extensively throughout the next chapters.



Chapter 6

Branch and Bound for BMRS

problem

6.1 Introduction

In this chapter we present a branch and bound algorithm developed for
scheduling a batching machine, with restricted batch size, to minimise the
maximum lateness. In the previous chapter we referred to this problem as
the BMRS problem. As far as the author knows this is the first branch and
bound algorithm developed for the problem. Applications can be found in
the ‘burn in’ operations in manufacturing of circuit boards, and chemical
processes that occur in tanks or kilns.

A batching machine is one that can process several jobs at the same time
in a batch. In the BMRS problem there is an upper limit on the number of
jobs in any batch. That is, there is a restricted (or maximum) batch size. The
processing time of a batch is given by the biggest processing time of any job
in the batch. We will use the same notation introduced in Chapters 2 and 5.
There are n jobs to schedule J = {J1, ..., Ju}, and b denotes the maximum
batch size. A schedule o is a sequence of batches o = (By,..., B,), where
each batch By, is a set of no more than b jobs taken from 7. The processing

time of any batch B is p(B) = rJnag;{pj}. The goal is to find an optimal
;€

89
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schedule which will minimise the maximum lateness L ax.

There is the decision of which jobs to assign to each batch,and how to
ordr them. Note that there can be no more than r = n batches,correspond-
ing to a schedule with one job per batch (equivalent to 1 || Lmax, and no less
than r = [n/b], where we force as many batches as possible tohave b jobs.
The completion time of batch h is C(B)) = Z;."zl p(B;). The completion
time of job J; (j = 1,...,n) in schedule o, for each J; € By and2 =1,..., 7,
is Cj(0) = C(By). When there is no ambiguity, we abbreviate ¢;(c) simply
by C;. Recall that d; is the date by which job J; should be conpleted, then

Liax = Lmax(0) = max {C;(0) — d,} = 112%}51{Cj —d}. (6.1)

1<j<n

The due date of a batch B is d(B) = xJnig d;, the most restrictivi due date of
;€

any job in the batch. Another way of calculating the maximurr lateness is

Lax(0) = max{C(B;) — d(B))}. (6.2)

1<i<r

The BMRS problem is a unary NP-hard problem as shownby Brucker,
Gladky, Hoogeveen, Kovalyov, Potts, Tautenhahn & Van de Yelde (1998).
Hence, as explained in Chapter 2 Section 2.2 it is unlikely to fnd solutions
in polynomial time, unless NP = P. Therefore we do not exped¢ an implicit
enumeration scheme, like the branch and bound algorithm w: present, to
yield optimal solution for big instances. One of our aims in tlis chapter is
to explore what are the biggest instances solvable in reasonabe time. The
results we obtained are later used as basis of comparisons for thelocal search
heuristics of Chapter 7.

As explained in Chapter 3 Section 5.3.1, to specify a brana and bound
algorithm we need to choose a branching scheme, lower and wpper bound-
ing schemes, and possibly some elimination criteria. The branhing scheme
specifies how sets of solutions are partitioned and searched, aid the lower
bound is used to evaluate the minimum cost of this sets. An ipper bound
on the optimal solution can be easily calculated with the valueof an initial

feasible solution, and updated with the best value of solutionsfound as the
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search progresses. This upper bound is used together with the lower bound
to reduce the set of solutions that need inspection. To familiarise the reader
with the type of properties and proofs we will be working with, we present
in Section 6.2 some characteristics of optimal schedules. An initial feasi-
ble solution is obtained from a constructive heuristic developed in Section
6.3. In Section 6.4 we explain our proposed branching scheme, while the
lower bound calculation is derived in Section 6.5. In Section 6.6 we present
some dominance rules which further reduce the search in our tree. Finally in

Section 6.7 we present and discuss the computational results.

6.2 Preliminary Results

As mentioned in Section 5.5.1, the unrestricted version of the problem, where
b > n, is solved by Brucker et al. (1998). They prove that the search can
be reduced to SPT-batch schedules. Based on this fact theyv propose a back-
ward dynamic programming algorithm with batch insertion to find optimal
schedules, as explained in Section 5.5.2.

In this section we introduce the concept of an EDD-batch schedule for the
case of a restricted batch size. We show that there is alwayvs an EDD-batch
schedule that is optimal. This property allows us to reduce our search for
an optimal schedule to EDD-batch schedules. In particular, we use this
result to justify an elimination criterion (Dominance Rule A, Section 6.6)
when branching. We will aim for EDD-batch schedules in the constructive
heuristics we use to obtain an upper bound, and later in chapter 7, to obtain

initial solutions for our local search algorithms. We start by defining an
EDD-batch schedule.

Definition 6.1 An EDD-batch schedule with r batches By, ...,B, is one
where d(B;) < d(Bj41) forl=1,...,r — 1.

Note that the batches in an EDD-batch schedule are ordered in non-decreasing

order of their due date times.
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Theorem 6.1 There exists an EDD-batch schedule which minimizes the maz-

tmum lateness.

Proof: Suppose there does not exist any EDD-batch schedule which is opti-
mal. Take an optimal schedule 0. As ¢ is not an EDD-batch schedule, there
is at least two consecutive batches in o, say B; and B4 (1 <1 <7 —1),
where d(B;) > d(Bj.1). Construct a new schedule o’ where B;;; is swaped
with B; in o’ (see Figure 6.1). Let C be the completion time of batch B4,
under o. Note that the completion time of batch B, under ¢’ is also C, as

we have the same [ + 1 scheduled batches before time C' (see Figure 6.1).

o B | . [ B ] [Bu]
o LB ] - [Bu] [ B ]|

C
Figure 6.1: Schedules ¢ and o'.

Let Lyax(0) be the maximum lateness of 0. We now analyse the maximum
lateness of jobs in the new schedule ¢’. From equation (6.2) we have that
Lyax(0) > C — d(By;1) (i.e. the maximum lateness is an upper bound of
the lateness of any job in batch B;;;). On the other hand any job J, € B4
under ¢’ has a smaller lateness than in ¢ as the completion time of batch B,
is smaller under ¢’. An upper bound on the lateness of any job in B, under ¢’
is maxjep oy Lj = C —d(B;). Note that C —d(B;) < C—d(Bi41) < Limax(0).
Thus, the lateness of any job j in batch B, under ¢’ is smaller than the
maximum lateness of schedule o. The lateness of all other jobs not belonging
to B, or Bj;; remain the same. Hence, ¢’ is also optimal. We repeat this
argument for all batches B; (1 <! < r—1), with d(B;) > d(B;+1) in order to
get an EDD-batch schedule which is optimal, contradicting our assumption.
Therefore, we conclude that there always exists an EDD-batch schedule which

is optimal, one that minimises the maximum lateness.

|
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Another way of proving this result is to treat each batch as a job, and
then use Jackson (1955) earliest due date (EDD) rule. This rule, as explained
in Chapter 2, prioritizes jobs in non decreasing order of their due dates. The
rule is equivalent to ordering batches in non-decreasing order of their due
date. Thus, the result follows from Theorem 2.2.

Any constructive heuristic will address two questions when building a
solution to the problem 1) how many batches to construct, and 2) which
jobs should go in each batch. There are obvious limits to the amount of
batches we can have; an upper bound of n (maximum number of batches
given that there are n jobs), and a lower bound of [n/b] (minimum number
of batches we can construct with the n jobs, given that the maximum batch
size is b). If the constructive heuristic builds one batch at a time filling it
with jobs, and it is at a stage where a new batch B; will start to be filled
with jobs, we know because of Theorem 6.1 that the un-assigned job with the
earliest due date (among all un-assigned job) is a good candidate for batch
B;. Furthermore, any schedule constructed at this stage where the earliest

due date job is not in batch B; has a worse, or the same maximum lateness.

6.3 Upper Bound

To calculate an initial upper bound, we devise a constructive heuristic which
gives a feasible solution to the problem. The heuristic constructs a schedule
by adding a single job, one at a time, to a partial schedule until all of the jobs
have been assigned and a complete schedule achieved. We work with EDD
indexing for the n jobs (d; < ... < d,). Note that assigning job .J; (job with
the smallest due date) to any batch but the first will not be consistent with
Theorem 6.1. Thus, job J; should belong to batch B;. Hence, our first step
is to add job J; to batch By. Thus, initially p(B;) = p,, and d(B;) = d;. Let
B, be the last batch in the partially constructed schedule. Initially r = 1.
Let 6 > 0, be a parameter, that specifies by how much we allow a batch to

increase its processing time when adding a new job. If § = 0 we will not
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add a job to a given batch if it increases its processing time. The heuristic

constructs a schedule by adding job J; for j = 2,...,n as follows:

e Find the smallest £ with £ < r, for which batch By has less than b jobs,
and p; < p(Bg) + 4. If such a batch exists then add job J; to batch By.

Update the processing time of batch B; if necessary.

e Otherwise, create a new batch B,,;. Add job J; to B4, the processing
time of this batch is p;, and the due date is d;. Increase r by one, as

the last batch in the partially constructed schedule is now batch B,,;.

This heuristic yields an EDD-batch schedule. Note that each new job

added to a batch will not increase the processing time of that batch more

than 6. We use § = \/% > i-1(p; — P)?, where  is the mean of the processing
times of the n jobs. ¢ is the standard deviation of the processing times of
the n jobs. Thus, in the worst case, the difference between the smallest
processing time in a batch and the biggest is not more than §(b — 1). The
heuristic has a time complexity of O(nlogn). The maximum lateness of the
final schedule obtained from this heuristic will be used as the upper bound
of the branch and bound algorithm. The upper bound will be updated every
time a new schedule with better value (smaller maximum lateness) is found

when searching the tree.

6.4 Branching Scheme

The branching scheme specifies how sets of solutions are partitioned and
searched. At each node, our partition excludes sets of solutions by assigning
certain jobs to specific batches. Each node is associated with a partial sche-
dule, where some jobs have already been fixed. In our branching scheme,
at each node in our search tree, we focus in one particular batch; call it the
current batch. A branch coming out of any node will either add another
job to the current batch (branch denoted by the job added), or consider the

current batch as complete with the jobs it has (branch denoted by node ¢).
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Our jobs will be indexed in EDD (earliest due date) order (d; < ... < d,).
We use a depth first policy to explore the tree. Thus, if job Ji is assigned
(added) to the current batch and the current batch has less than b jobs, a
branch with job J; for j < k (representing the operation of adding job J; to
the current batch) is not feasible (as this option is analysed previously). At
each node, a lower bound on that situation is calculated and compared with
the current upper bound on the optimal solutions. We eliminate the node if
the lower bound is greater than or equal to the upper bound. Once job J; is
included in the partial schedule it is excluded for the remaining nodes. If the
current batch By, has b jobs, or if we evaluate the branch where this batch
is complete, the feasible branches are those corresponding to jobs which are
not yet assigned. For this branches, Bj.;, becomes our new current batch.
Hence, there will be no more than n — 1 branches coming out of each node,
and an end node will be reached in no more than 2n — 1 branching levels.
Note that an end node in our tree represents a complete schedule. As men-
tioned before, we continue branching from any node if the lower bound is
smaller than the current upper bound. Initially, this upper bound is cal-
culated from the approximate solution found by the heuristic explained in
Section 6.3. The upper bound is updated every time we reach an end node
representing a better schedule. Pruning of nodes is done by comparing the
lower bound evaluation at each node with the current upper bound on the
optimal schedule, and by applying dominance rules. We explain both the
lower bound calculations and dominance rules in the following sections.

To illustrate the branching scheme consider an instance with 6 jobs, num-
bered in EDD (earliest due date) order (i.e. d; < ... < dg), and restricted
batch size b = 3. Suppose job J; is the only job scheduled in batch By, that
batch Bs is the current batch, and that it only contains job J,. The last job
added is J,. The branches coming out of that node are: (a) job J3 belongs
to Bs, (b) job J; belongs to By, and J3 does not, (¢) job Js belongs to B,,
but Js3, and J; do not (d) job Jg belongs to By, but Js, Jy, and J5 do not,

finally (e) no more jobs belong to batch B,. Depth first means we explore
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branch (a) before exploring i.ranch (b), and (b) before (c), and so on. In the
same example, if instead of job J, belonging to batch B, we had that job Js
belonged to batch B,, the only feasible branches would be (d) and (e). On
the other hand, if we went down branch ¢, the new branches emanating from
it, would be (a) J;3 € Bs, (b) Jy € Bs, (c) J; € Bs, (d) J; € Bs, excluding
branch (e) and the new current batch changes to Bs.
B, B,
partial schedule: ( J1) (J2) J2last job added

possiblgﬁ)ranches

&__ G

T | T T [ T s

B,

current batch

@

next batch

Bs

Figure 6.2: Branching from node J,

6.5 Lower Bound

In this section we explain how to calculate a lower bound at each node. There
are two characteristics which a lower bound should aim to have, one it should
be quick to compute, and the second, that it should be as tight as possible.
In our case, tight means close to the minimum maximum lateness of the
schedules represented by the node. Recall that for unrestricted batch sizes
the minimum L.y is straightforward to compute, as we only had to order
jobs in SPT and then apply the dynamic program explained in Section 5.5.2.
This was possible because we could reduce our search to SPT-batch schedules.
In the restricted case there is no guarantee that an SPT-batch schedule would

be optimal. In fact, there are several instances where the optimal schedule is
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not an SPT-batch schedule. The lower bound we propose considers schedules
where batches instead of being composed of jobs are composed of a set of
processing times and due dates. We relax the linking of processing time
and due dates of each job, and allow for batches to have a un-equal mix
of processing times and due dates, defining a new type of schedule (SPT-
EDD-dynamic-batch schedule}) whose minimum L, is a lower bound on
the optimum schedule for the restricted case. We explain this in more detail
below. Later, we propose a dynamic program to find the minimum L,y
of this type of schedules, and how to modify it to include information of

partially completed batches as we analyse nodes in the tree.

Definition 6.2 Let « be an SPT ordering of jobs in J = {J1,...,Jn} (i.e
Pa) £ ... £ Pamy), and B an EDD ordering (i.e. dsay < ... < dgmy)-
Let 0 = (By,...,B;) be a schedule, with batches composed of a collection of

processing times and due dates. Let batch B = {5"“”’ 5““’“” "'5"“’“”” }
B(my), #3(m;+1)> = B(mH_l—l)
wherel=71<jos<...<jr=n+land, 1=m;y<my<...<m,=n+1l,
for 1 =1,...,r. The processing time of the batch is p(B;) = pa(ji,,-1), and
the due date of the batch is d(B;) = dg(m,)- Call this type of schedule an

SPT-EDD-dynamic-batch schedule.

Note that such a schedule is completely specified by the due date and pro-
cessing times that start each batch. For example, let us think of the instance
shown in Table 6.1. A possible sequence « (jobs in SPT) is Jy, J3, Ja, Jo, J5, Jg

Table 6.1: 6 job example

Job Jl JQ J3 J4 Jg, J(j
p; 243355
d; |316]|7|8]11]12

(there are two possible sequences), whereas sequence 3 (jobs in EDD) is
J1, Jo, J3, Jy, Js, Js. Suppose the batch size is b = 3, a possible SPT-EDD-
dyanmic batch schedule is as follows: {pl } , {7’3"""”2} , {”5’ be } This

dy, d2 dg dy, ds, de
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schedule consists of 7 = 3 batches, with j;, = 1, 5 = 2, j3 = 5, and
my; = 1, my = 3, mz = 4. Note that the processing time of the batch
B corresponds to the biggest index on the p,(;y € B, and the due date is
the smallest index dg(jy € B (in fact, the first due date in the batch). For
example, the processing time of batch Bj is pg, and its due date d4. Using

equation (6.2) the maximum lateness of this schedule is 3.

Theorem 6.2 There ezists an SPT-EDD-dynamic batch schedule whose maz
imum lateness is a lower bound on the Ly, of any schedule constructed from
a set of jobs Jy, ..., J,.

Proof: As an overview, the idea behind this proof is 1) to modify the
optimal schedule o obtaining a new schedule ¢’ where the due dates are in
EDD order. We then 2) allow for dynamic batches (where each batch may
have an un-equal mix of processing times and due date times) and construct
a schedule ¢” where jobs are in EDD order and batches are in SPT order.
Finally 3) we construct from ¢” a schedule ¢" that is a SPT-EDD-batch
dynamic batch schedule whose L. provides a lower bound on the optimal
schedule.

1) Let o be a schedule with minimum L,y over Jy, ..., J,. Suppose there
are two batches in o, with By scheduled before By, such that a job J, € By
has a later due date than a job J, € Bk, that is d;, > d;. Modify the due
dates of jobs J, and Ji such that dj, is now dj, = d; and the due date of job
Ji is now d, = d. In other words, we interchange the due dates of the jobs.
The maximum lateness after modifying these due dates is

Lpax = max {Cy — d},,Cy — d},, R}, where R = as C, —d;}.
*ACk = di, Gy = i, B}, wher eSS oy (G~ )

Since dp > di, we have that Cy — dr > Ci — d}. so that the lateness of job
Jx is now smaller. Recall that C, > C} as batch By is scheduled after batch
By. Thus Cx —d > C, — dy = C, — d},. So that the lateness of job Jj, is not
bigger than the previous lateness of job Ji. Hence, the maximum lateness of

schedule o is not increased by interchanging these due dates.
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We can continue interchanging the due dates of the jobs to construct a
new schedule ¢/ = (B},...,B.) over a new set of jobs J" = {Ji,...,J.}
where the processing time of job J; € B is the same as job J; € B, for every
J; € Bi,and I = 1,...,r, with the due dates of the jobs in J' under ¢ in
earliest due date (EDD) order.

2) Suppose there exist two batches in o', with By scheduled before B,
such that p(BYy) > p(BY%). Focus on the processing times and due date times
of the jobs in each batch. Batch B}, has | B} | due dates and processing times,
while batch BY has |Bi|. Allow batches with different numbers of processing
times and due dates. We work now with a different concept of a batch, not
as a set of jobs, but rather a collection of due dates and processing times.
Accordingly, we adapt the definition of d(B]) to be the minimum of the due
dates belonging to batch B; instead of the jobs belonging to the batch, and
similarly adapt the definition of p(B]) to be the maximum over the processing
times belonging to batch B] (1 <! < r). No batch is allowed to have more
than b due dates or b processing times. We are still able to use equation
(6.2) to calculate the maximum lateness, whereas equation (6.1) is no longer
useful. Interchange all processing times of batch Bj) with all processing
times of batch Bj,. The other batches remain the same. The new processing
time of batch Bl is now p(B) ), and the completion time of any job in that
batch is now smaller as 3277 p(B,) + p(By) < C(B}). Furthermore, if
there are batches between By, and By their completion time is also smaller
than before. On the other hand, the completion time of batch B} remains
the same, Zlep(B'L). Hence, the completion time of batches after batch

. remain the same. Thus, the maximum lateness is not increased by this
interchange in processing times.

We can repeat this same argument, and continue interchanging the pro-
cessing times of different batches to construct a new schedule " = (B, ..., B),
where the batches are in SPT-batch order (i.e. p(BY) < p(B) < ... < p(B!)),
and the due dates of batch B} are the same as the due dates of batch B for

1 <1 < r. Batches do not necessarily have the same number of processing
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times and due dates, but Lnax(0") < Lipax(0') < Linax(0).

3) Suppose there are two batches in ¢”, with B}, scheduled before BY,
such that there exists a processing time py, belonging to batch B} that is
bigger than a processing time p; in batch Bj,, that is p, > px. Interchange
these processing times. The processing time of batch Bj; is now

max{pk, R}, where R= max p;,
o ) pieB\ D)

which is not bigger than before the interchange as py < p,. Recall that for
0", pn is in batch BY and, as ¢” is an SPT-batch schedule, p(BY) < p(B%),
so that for 0" px < pn < p(BY%). Thus, py # p(BY},), and the processing time
of batch By remains the same after the interchange. Hence, the maximum
lateness is not increased by this interchange in processing times.

We can continue interchanging the processing times to construct a new
schedule ¢" = (BY,...,B!), where the processing times are in SPT order
and the due dates in EDD order, although batches might contain different
numbers of processing times and due dates. As Ly (0”) < Lpax(c”) <
Linax(0), the maximum lateness of this schedule is a lower bound on Ly« (0).
Note that ¢ is an SPT-EDD-dynamic-batch schedule.

O

An SPT-EDD-dynamic-batch schedule with minimum maximum lateness
can be calculated by a backward dynamic programming algorithm as ex-
plained below.

Using the notation introduced in definition 6.2, o is SPT ordering of
jobs in J = {J1,...,Jn} (i.€ Paq) < ... < Pa@m)), and J the EDD ordering
(i-e. dgay < ... < dpm). Recall that an SPT-EDD-dynamic-batch schedule

o = (By,...,B,), has batches composed of a collection of processing times

and due dates, with batch B; = { Pet Peli+: - Pali-1) & where 1 = j; <
dg(my), d3(mp+1)s = dgm; Ly -1)

Je<...<jr=n+land, l=m<my<...<m,=n+1forl=1,...,7.

Let F(j,m) be the value of the maximum latcness of an SPT-EDD-

dynamic-batch schedule which contains the last n — j + 1 processing times
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corresponding to jobs Ju(y; - - -5 Jan), and n — m + 1 due date times corre-
sponding to jobs Jg(m), - - ., Jpm). If a batch B which groups processing times
Pa(j)s - - - » Pa(j’—1) and due dates dgm, . . ., dgemr—1) is inserted at the start of a
schedule o containing processing times corresponding to jobs Ju(j), - . ., Ja(n)
and due dates to jobs Jg(m), .., Jgm), then the maximum lateness of jobs
in ¢ is increased by pa(; -1) (biggest processing time in batch B) while the
maximum lateness of batch B is py(ji—1) — dg(m) (as dg(m) is the smallest due
date in B).

The initialisation is
Fin+1,n+1) = —o0,

and the recursion for j =n,n—1,...,1land m=n,n—-1,...,11s

F(], m) - J‘<j/5mri£1{ijl}-b,n+1} {maX{F(j/a m,> + Pa(j'~1)s Paly'=1) — dﬁ(m)}} :
m<m/ <min{m+bn+1}

The minimum value of the maximum lateness is given by F(1,1), and can
be computed in O(n?b?) time.

We are now ready to explain how we calculate the lower bound at any
node. Recall that each node has an associated partially constructed schedule.
The maximum lateness of those batches in the partially constructed schedule
is a lower bound on the maximum lateness of any branch emanating from that
node. Hence, first we calculate the maximum lateness and makespan of the
completed batches forming the partially constructed schedule; let their values
be LI .., and C} .., respectively. We then take the jobs of the incomplete
batch (there is at least one job when the current batch is not completed), and
all remaining unscheduled jobs and find the lower bound on the maximum
lateness of these jobs; let its value be F'. If we use the dvnamic programming
formulation eiplained above, this will provide a lower bound on the maximum
lateness of these jobs if they had started processing at time 0. However, as

they start at time C/

T.axs the lateness has to increase by that amount . Thus,

the lower bound can then be computed as

max{L,, ,C|

max:? max

+ F'},
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which again can be computed in O(n?b?) time. Note that there might be
several jobs in an incomplete batch, and they might change place in the SPT-
EDD-dynamic-batch schedule we employ to compute F'. We know that the
processing time of the incomplete batch is given by the biggest processing
time of the jobs in the b. -ch, say p’, and its due date is given by the smallest
of the due dates, say d’. Thus, to take into consideration that they are
already assigned to the incomplete batch we need to change the processing
time of the jobs in the incomplete batch to p’, and the due dates to d'. We

summarise the process as follows.

Lower Bound Procedure

begin
Compute L .. and C/ .
Let b, be the number of jobs in the current batch B;.
If b, = b then compute Ly.x and Cp,x of partial schedule.
else compute Lya.x and Chax of the schedule until batch B;_;.
Set L! .. = Lmax, and C} ,, = Crax.
Compute F'.
If b, < b then
p = B?Séipj and d' = inelgz d;.
U is a set comprising all unscheduled jobs, b, identical jobs
with processing time p’, and due date d'.
else U has all unscheduled jobs.
Compute F' over U.
Compute Lower Bound
The lower bound is max{L] ,.,Cr. .+ F'}.

end

As an example, consider the instance introduced before in Table 6.1. Let
job J; be assigned to batch B;, and jobs J; and .J; assigned to the current

batch B;. Recall the processing times and due dates are as follows.
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JOb J] J2 J3 J4 JS '](5
pi | 2]4]3|3|5]5
d; |36 7|8]11]12

As batch B, has less than b = 3 jobs, we calculate the makespan and maxi-

mum lateness of the partial schedule without the current batch. Thus, com-
puting the makespan and lateness of batch B; (containing job J;), to get
Clax = 2, and L, = —1. The unscheduled jobs are Jy, J5, and Js. As
there are two job in the incomplete batch B,, we also take 2 jobs Ji, J) with
processing time ppax = 4 and due date dp;, = 6. Thus, U is the set of jobs
{Ji, I3, Ju, Js, Jg} with the processing times and due dates shown in Table

6.2. After applying the dynamic programming algorithm explained above we

Table 6.2: Set U

Job J{ Jé J4 J5 JG
p; | 441355
d; | 6]6]8 11|12

6,6,8 11, 12
is 0. In fact, for this particular instance, the bound is tight as the optimal

schedule is ({Jl}, {JQ, J3, J4}, {J5, Js}) with Lmax = 0.

obtain F] = —2, from the schedule {3’ & 4} , { >0 } Hence the lower bound

6.6 Dominance Rules

Recall that we do not need to explore a node if the lower bound is greater or
equal to the upper bound. The dominance rules that follow aim at making
the pruning process of the tree faster than just bv using the simple rule of
comparing upper and lower bounds. The basic argument of any dominance
rule is that the schedules corresponding to a node (and its branches) are not
worth analysing as they are dominated. There are many situations where we
are able to check for the dominance of a node. We have applied five main

rules, and explain them below.
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Dominance Rule A

A situation where we are able to check for dominance, is when a batch is
completed. At this stage, we branch form the node representing the last job
added to the batch just completed, starting a new batch. Instead of looking
at all unscheduled jobs we know that the job with earliest due date of all
unscheduled jobs must be in this batch, as explained in Section 6.2. Thus,

we need not analyse all the other nodes.

B,
L l | B |=1b

Bal O O O - O

only analyse the one with earliest due date

Figure 6.3: Dominance Rule A

Dominance Rule B

Another situation where we can check for dominance is just after we have
added a new job to a batch, and the batch is not full. We can check if node
¢ (corresponding to the decision to leave the current batch as it is, adding
no more jobs to it) is worth analysing.

Suppose the last job added to the current batch B; of the partially con-
structed schedule ¢ in our search tree is J;, and that batch B; is not full
(i.e. |B;| < b). We can add a job J; € U, where U is the list of unscheduled
jobs, to batch B; without violating the restriction on the batch size. If there
exists a job J; € U, such that

p; < max pi, and d; > (Znelgl dy., (6.3)
then adding job J; to batch B, does not increase the makespan or maximum
lateness of the partial schedule o, because the conditions in (6.3) are equiv-
alent to p; < p(B,), and d; > d(B;). Moreover, adding job .J; to batch B

will reduce the number of unscheduled jobs remaining to be added to the
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@ | B [<b

B, l I | |

g J]‘ U:{I,}
B, B,

Figure 6.4: Dominance Rule B

partial schedule. Any schedule found by going down the branch indicating
that job J; is the last job to be added to batch B; (i.e. with the child branch
corresponding to node ¢), is dominated. Hence, the branch ¢ is not worth
analysing and should be discarded from the list of nodes to analyse from

node J;.
Dominance Rule C

Now, let us look at the situation where the job that has just been added
completes the batch. We analyse whether is worth branching from this node.

Suppose the last job added to the partially constructed schedule o in the
current batch B, is J;, and that this job makes the batch full (i.e. |B| = b).
If there exists a job Ji in batch B;, and a job J; in U, where U is the list of
unscheduled jobs, such that p, < p;, di > d; (job J; is more restrictive than
job Jg), and

; < max , 6.4
P> JhG(Bz\Jk)ph ( )

then the partial schedule is dominated.

Proof: Let ¢’ be the schedule constructed from ¢ where job J is substituted
with J; in batch B;. Restriction (6.4) ensures that the processing time of
batch B; in ¢’ is the same as in 0. Hence C the completion time of batch B;
is the same for both (partial) schedules (C(B;(0)) = C(B;(d"))).

Construct a schedule ¢* = o7 that is optimal among schedules that

*

start with o. The maximum lateness of 0* is L. (o) = max{L;, L}, L*},
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Q? | B |=1b swap
] 1 1 g J]' Jk U= {Ji,.. }

Bl OO - O 5 F

B

B, By
o Ji J; o*
O,I J1 Jk O_l/
C

Figure 6.5: Dominance Rule C

where L} and L} is the lateness of job J; and J; respectively in ¢*, and L*
is the maximum of the lateness of all other n — 2 jobs in ¢*. Note that
L; = C(B(o*)) —dr = C(Bi(0)) — dy = C — dy, where C is the makespan
of the partial schedule ¢. Let B) be the batch to which J; belongs in o*
(i.e. in 7). Thus, Lf = C(Bp(0*)) — d;. Let ¢" be the schedule obtain from
exchanging job J; with Ji in 0*. We can express the maximum lateness of
schedule 0" as Lyax(0”) = max{L}, LY, L"}, the lateness of job k, job 7, and
the remaining n — 2 jobs in schedule ¢”. Note that, L} = C(B,(0")) — di,
and LY = C(Bi(0")) — d; = C — d;. Hence, L < L} < Lyax(0*). Recall that
Pk < ps, s0 C(Br(o'm)) < C(Bu(o*)). Thus L < L*, and as dy > d;, we have
that L < LY < Lyax(o®).

Thus, the partial schedule constructed form this node is dominated.
O

We have to be careful when p; = pr and d; = d;, as not to eliminate
equivalent schedules. Hence, in this case we consider the branch dominated

if 7> k.
Dominance Rule D

Again we will look at the situation where a job has just completed the
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batch. Only now, instead of looking for dominance by exchanging a job in the
partially completed schedule with one that is not, we will look at dominance
by exchanging two jobs within the partial schedule.

Suppose the last job added, in the partially constructed schedule o, to the
current batch B; in our search tree is J; (i.e. |B;| = b). Consider a job J; in
a previous batch, that is, J; € By where k < [. Let ¢’ be a schedule obtained
by interchanging job J; and J;. If the maximum latness of ¢’ is smaller
than the one for 0 (i.e. Lpnax(0") < Lmax(0)) and Chax(0') < Chmax(0), or if
the makespan of ¢’ is smaller than the one for o (i.e. Cax(0') < Crax(0))
and Lpax(0') < Lpax(0), then any complete schedule built by continuing
the partial schedule o will be dominated by one bulit by continuing the
partial schedule ¢’. Thus, the branch corresponding to this last job J; can
be discarded form our search. If both Ly (0) = Liyax(c') and Chax(o) =
Cmax(0'), we choose to discard the node if 7 > j.

B,
_ | | B |=b

| [ ] | I

Biii o o O - O
f“'ap to get g’

" better than ¢
o Ji Jj f
Bk Bl

Figure 6.6: Dominance Rule D

Dominance E

In this last rule, we actually store some values as we analyse a branch
(recall we are doing depth first). From this stored information, sometimes it
1s possible to detect that a subsequent branch is dominated.

Suppose that dominance rule D does not eliminate a node, but that we

reach a situation where the new schedule o', found by exchanging job J; € By,
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with J; € B; (with h < [ where [ is the current batch) in schedule o, is such
that
Crmax(0") < Cmax(0), and Liyax(0) < Linax(0”).

We store the value of Ly, (0') (or the smallest value for any of the previous
exchanges of this type). We will continue branching form this node (i.e.
building on o). If at a later stage we have completed the current batch in a
partial schedule o7 and the lower bound of this node is such that Ly, (0') <
LB(o7), then the node is dominated, and can be discarded form the search

tree.

Proof: Consider a schedule omp constructed form orx which minimises the
maximum lateness. That is, p is the optimal continuation of om. The maxi-

mum lateness of schedule o7p may be calculated as

Linax(07p) = max{L™ (5), L) (), L7 (p)}, (6.5)

max ’ max ? max

where LEI’QX(Q) is the maximum lateness of the jobs in # which is a subset of
schedule ¥. We have that

Linax(0') < LB(om) < Liax(omp).

Consider the schedule o'mp, note that L{%r” (0") = Lumax(c'). Recall that
Crnax(0") € Crnax(0), hence LG () < L2 (), and L2 (p) < L2 (p).
If we express the maximum lateness of schedule ¢'7p as the maximum of its
three parts, as in equation (6.5), we conclude from the above inequalities

that Lyax(0'7p) < Lmax(omp). Thus, schedule o7 is dominated.
O

We should be careful when Chax(0') = Crax(0). Note that in our branch
and bound algorithm we are applying this rule at the same time as check-
ing rule D, which checks for this condition. Hence, we have to use a more
restrictive condition for the makespan. We will only store the value of
Limax(0') if the inequality Crax(0") < Ciax(0) is satisfied strictly. That is, if
Conax(0") < Cona(0)-
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6.7 Computational Experience

6.7.1 Experimental Design

We are interested in comparing the behaviour of the branch and bound al-
gorithm over a range of instances. In particular we investigate the number
of jobs the algorithm is able to tackle using reasonable computer resources,
and we explore the effect of different batch sizes, and due dates.

We have generated sets of instances with n = 10,15, 20, and 25 jobs. We
choose different values for b depending on the number of jobs. We also vary
the number of instances per set depending on the average time it takes to
solve each instance. The following table summarises the different sets of in-

stances we generated. The processing time of the jobs are integers uniformly

Table 6.3: Set of instances for the branch and bound algorithm

n b number of instances
1012,3,4,5,6,7,8 10
1512,3,4,5,6,7,8,9, 10 10
2012, 3,4 10
25 15,10, 15 5

distributed from 1 to 100. An estimate on the makespan of the schedule,
given the processing times and the batch size b, is T = %Z?zl p;j. An obvi-
ous choice for the distribution of the due dates is a uniform distribution from
1 to T. However, to mimic different scenarios for the due dates, we used
a parameter A that takes the following values: 0.5,1,1.5, and integer due
dates are distributed uniformly between 1 and AT. A scenario with A = 0.5
has restrictive due dates (we expect to have bigger values for the maximum
lateness). On the other hand a scenario with A = 1.5 has slack due dates (we
expect smaller values for the maximum lateness).

The algorithm was encoded in Turbo Pascal and run on a PC with a
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Pentium 200MHz processor and 32Mb of ram. For instances with 10 and 15
jobs no time limit was set. However, for 20, and 25, some instances took
more than 10 hours to solve, so a limit time for the run was set at 2 hrs and

30 minutes.

6.7.2 Influence of Dominance Rules

There is a substantial reduction on the running time when running the in-
stances with the dominance rules. This was expected as eliminating nodes at
an early stage, reduces the search tree considerably. Instances with 10 jobs
took several minutes without dominance rules; with the dominance rules the
time was reduced to fractions of a second. Rule A and B yield the most re-
ductions in times. Nevertheless, every rule is important. Taking out any rule
increases running time of the algorithm, and the number of nodes explored
in the search.

In Table 6.4, we present results on how many times the different domi-
nance rules were successfully used for the set of instances with 15 jobs. Each
entry is the average over the 10 instances generated per set. We do not show
summary results for Rule A, as we consider this rule more as part of the
branching scheme, than an elimination criteria. It is always applied, and
there is no need to calculate the makespan or lateness of any partial sche-
dule. Its influence in node elimination is vital. We are more interested in
comparing the behaviour of the other rules.

As can be seen from Table 6.4, Rule B is the most effective rule (excluding
rule A) to eliminate nodes from the tree. As a percentage of the total amount
of the nodes analysed it fluctuates form 1% (for the set of instances with
b=2,)=1.5) to 84% (for the set of instances with b6 = 7, A = 0.5). This
might be explained from the fact that Rule B is applied when analysing un-
full batches (i.e. with [B| < b), whereas Rule C, D, E are applied every
time a batch is full (i.e. only when |B| = ). Rule C also seems to play an
important part in eliminating nodes, not as much as B, but comparatively

more than D or E which are rarely successful. This can also be explained by
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Table 6.4: Comparison of different dominance rules for 15-job instances

Each entry is the average number of nodes over 10 instances

b= 2 b=3
total Rule total Rule
A | nodes B C D E nodes B C D E
1.5 233 3 3 14 0 11849 3061 | 320 [ 316 42
1 3274 428 76 316 | 109 27009 7153 521 | 1097 285
0.5 3085 523 | 174 | 380 | 246 51287 | 14455 | 2002 | 3877 | 1171
b=4 b=15
total Rule total Rule
A | nodes B C D E nodes B C D E
1.5 42945 | 15327 | 267 | 198 6 85989 | 44868 | 408 | 192 6
1 84969 | 33924 | 2888 | 2590 | 263 || 111240 | 58200 | 1327 | 826 40
0.5 | 143027 | 63152 | 5145 | 7113 : 609 |} 205459 | 112793 | 7366 | 5768 | 113
b=6 b=7
total Rule total Rule
A | nodes B C D E nodes B C D E
1.5 | 74150 | 53407 | 809 89 0 || 101372 | 89239 | 1422 0
1 | 208305 | 152197 | 1606 | 236 128998 | 106282 | 2263 2 0
0.5 | 163878 | 119532 | 2302 | 867 | 24 || 149775 | 126121 | 2445 7 0
b=28 b=9
total Rule total Rule
A | nodes B C D E nodes B C D E
1.5 1 36780 | 29598 | 1539 0 26331 | 21199 | 410
1 52577 | 43832 | 2560 31812 25401 | 1645
0.5 | 138775 | 113206 | 2284 40698 | 30306 | 2277
b=10
total Rule
A nodes B C D E
1.5 7 20426 | 17397 | 411 0 0
1 25008 | 20348 | 769 0
0.5 22510 18167 | 1247 0
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the fact that Rule C is checked before D and E. As a percentage of the total
amount of nodes analysed 8% (for b = 2, A = 0.5) seems to be the most Rule
E comes into use. Rule D and E work better for smaller batch sizes (b form
2 to 6). This might be explained from the fact that this rules come into play
only when several batches are present in the partial schedule, and this is less
frequent when the batch size is bigger. Rule D however seems to out-perform
rule C in eliminating nodes for b = 3.

The more restrictive the due dates (A small), the more nodes that are
generated. However this effect seems to diminish for bigger batch sizes (for
b = 9,10 the average number of nodes analysed are very similar). Another
important factor is the running time, we present a comparative analysis for

different sets of instances in the following section.

6.7.3 Analysis of results

In Table 6.5 we present results for the sets with 10 jobs. Each entry shows the
average over the 10 instances generated for each set. The time is measured
in seconds. The algorithm works very fast, it finds the optimum in less than
a second on average. The more restrictive the due dates the more time (and
nodes) it takes to solve the problems. Note that as the batch size increases
the number of nodes analysed increases at first, reaching a maximum in
b = 5 (hardest sets of problems), and then decreases. However, as b increases
such a smooth (parabolic-like) behaviour is not found, it grows until b = 5,
decreases slightly, and seems to stabilise for bigger batch sizes.

We show a similar summary of results for the sets of instance with 15
jobs in Table 6.6. We can observe the same smooth behaviour in the average
number of nodes analysed as the batch size increases for the 15 job case.
However, in this case the hardest problem seems to be for A = 0.5 b = 5, for
A=1b=26,and for A =1.5b = 7. So that for more restrictive due dates,
the hardest problems seem to appear for smaller batch sizes than for less
restrictive ones. Our algorithm seem to perform verv well for this number of

jobs, as on average any instance does not take more than 5 minutes to solve.
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Table 6.5: Results for 10-job instances

10 Jobs
A=15 A=1 A=0.5

Time | Nodes | Time | Nodes | Time | Nodes

2| 0.02 100 | 0.04 215 | 0.06 244

3, 0.13 635 | 0.26 1326 | 0.27 | 1318

41 0.19 858 | 0.32 1523 | 0.37 | 1797
b|5| 025| 1037 | 0.31 1320 | 0.46 | 2211
6 024 710 | 0.30 1093 | 0.25 862

71 0.32 653 0.32 671 0.34 760

81 045 706 | 0.37 564 | 0.37 568

Each entry is average over 10 instances

The time measured in seconds

Table 6.6: Results for 15-job instances

15 Jobs
A=15 A=1 A=05

Time | Nodes | Time | Nodes | Time | Nodes

2 0.05 233 0.86 3274 2.65 3085
3 3.28 | 11849 6.69 | 27009 | 39.84 | 51287
4 14.10 | 42945 | 93.55 | 84969 | 112.95 | 143027
5 30.47 | 85989 | 115.71 | 111240 | 200.85 | 205459
b| 6 | 116.76 | 74150 | 255.39 | 208305 | 233.63 | 163878
7 | 152.73 | 101372 | 134.14 | 128998 | 191.86 | 149775
8 27.84 | 36780 | 91.86 ; 52577 | 103.44 | 138775
9 27.92 | 26331 | 65.22 | 31812 | 41.64 | 40698
10 | 35.03 | 20426 | 112.75 | 25008 | 45.34 | 22510

Each entry is average over 10 instances

The time measured in seconds
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Table 6.7: Results for 20-job instances

20 Jobs
A b=2 b=3 b=14
Time | Nodes | Sol. [ Time Nodes | Sol. Time Nodes | Sol.

1.5 6.66 | 19644 | 10| 377.54 { 699170 10 { 2739.84 | 2551025 | 10
1 | 41.88 | 40469 10 | 949.60 | 1021343 10 | 13446.12 | 4885584 6
0.5 | 50.68 | 46613 10 | 915.11 | 903874 10 | 8000.82 | 5678713 6

Sol. = number of optimal solutions found

The number of nodes is the average over 10 instances

The time is measured in seconds, and is the average over 10 instances

In Table 6.7 we show the summary for the set of scenarios with 20 jobs.
Where the average for each entry was taken over the 10 instances of each
problem. Recall that a time limit was set at 2 hours and 30 minutes for any
particular instance. We have made explicit how many instances were solved
within that time period, for the sets where not all instances were solved the
average was taken over the ones solved. Again as the batch size increases
the average time increases. However, the growth in this case is great than in
previous sets. For b = 4 and A = 1.5 the average instance takes 45 minutes to
solve, and 4 instances for A = 1 and A = 1.5 were not solved within the time
limit. The number of nodes analysed also increases, considerably more than
before. An estimated one million nodes can be analysed in approximately 15
minutes. These instances are sufficiently hard to start using approximation
algorithms. In fact, the results obtained form this set of instances are used
to evaluate the local search heuristics in Chapter 7.

For the 25-job instance very few optima were reached within the 2 hours
and 30 minutes time limit. Three optima were found for b = 5, 1 optimal for
b = 10 and not one for b = 15. This results suggest that other techniques
should be used if we want to obtain optimal solutions for instances with 25

or more jobs.
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Table 6.8: Results for 25-job instances

25 Jobs

A b=5 b=10 b=15

Time Nodes | Sol. | Time Nodes | Sol. | Time | Nodes | Sol.
1.5 | 5574 | 2456893 3| 7496 | 5765501 1| 9000 | 865220
1 9000 | 5370042 0 | 9000 | 8433876 0 | 9000 | 823178

0.5 | 9000 | 4897654 0| 9000 | 7677432 0 | 9000 | 765322 0

Sol. = numper of optimal solutions found

The number of nodes is the average over 5 instances

The time is measured in seconds, and is the average over 5 instances

6.8 Concluding Remarks

In this chapter we have presented a branch and bound algorithm to solve
the BRMS problem. Our algorithm finds optimal solutions in a reasonable
time for instances of up to 20 jobs. We know the problem is NP-hard, but
we were hoping to solve bigger instances. Since largest instances occur in
practice the need to develop local search heuristics is apparent.

On the other hand, we have shown that we can reduce the search for an
optimal solution to EDD-batch schedules. We develop a polynomial time
dynamic programming algorithm to calculate a lower bound at each node
in the search tree, and describe several dominance rules that are effective
in reducing the number of nodes generated. We should point out that this
lower bound calculation can also be employed to obtain a lower bound on
the maximum lateness of any schedule. In fact, we will use it to provide
estimates of the quality of solutions generated by the local search heuristics
developed in the next chapter.

We could try improving the branch and bound algorithm by devising
a new branching scheme, or developing new lower bounds. Originally we
have tried a Lagrangian relaxation approach. but due to the form of the

objective function our attempts did not lead to an efficiently solvable relaxed
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problem. Even though an optimal schedule for the restricted version of the
problem need not be an SPT-batch schedule, we could use the solution for the
unrestricted batch size to provide a lower bound on the maximum lateness.
It would be interesting to compare this bound with the one we propose.
Another avenue for further research is to try and obtain reductions on the
time complexity of the lower bound calculation, using efficient data structures

like the ones suggested by Wagelmans & Gerodimos (2000).



Chapter 7

Local Search Heuristics

7.1 Introduction

In this chapter we present several local search heuristic for the BMRS prob-
lem introduced in Chapter 5 Section 5.5. As explained, the BMRS problem
is one of scheduling jobs on a single batching machine with restricted batch
size to minimise the maximum lateness. A batching machine is one that can
process several jobs at the same time in a batch. In the BMRS problem there
is an maximum number of jobs any batch can have. The processing time of
a batch is given by the biggest processing time of any job in the batch. We
will use the same notation introduced in Chapters 2 and 5. Though, when
it is convenient we will talk about job j instead of job J;, and thus express
the sequence of jobs (Ji,...,J,) by the vector (1,...,n). There are n jobs
to schedule J = {Ji,...,J,}, and b denotes the maximum batch size. A
schedule ¢ is determined by a sequence of batches o = (B, ..., B;) with no
more than b jobs in each batch B;, [ = 1,...,r. Applications can be found
in the ‘burn in’ operations in manufacturing of circuit boards, and chemical
processes that occur in tanks or kilns.

This BMRS problem is a unary NP-hard problem as shown by Brucker et
al. (1998). Not only that, but instances with more than 25 jobs are difficult

to solve with the branch and bound algorithm presented in the previous
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chapter. All of which justifies the implementation of local search heurist: 3
to find approximate solutions for bigger instances of the problem. The aim of
this chapter is to asses the potential of local search heuristics for finding good
quality solutions for the BMRS problem. We design a new neighbourhood
structure, which is exponentially sized. We refer to it as the split-merge
neighbourhood. In particular, we evaluate the use of a swap, an insert, and a
split-merge neighbourhood for the problem, in a simple descent heuristic, and
a multi-start descent heuristic. We have also developed an iterated descent
heuristic in the split-merge neighbourhood which yields the best results.

As explained in Chapter 5, Section 5.4, any local search heuristic has
an associated neighbourhood structure. The structure determines which so-
lutions are close to each other (i.e. neighbours), and the search for better
solutions will be done over these neighbours. In section 7.2 we present some
popular neighbourhoods for sequencing problems, and explain how we can
use them to design neighbourhoods for the BMRS problem. In section 7.3
we briefly review recently developed neighbourhoods that are exponentially
sized. In section 7.4 we present an exponential neighbourhood (split-merge)
for our problem. In section 7.5 we present our computational results, and
comparisons for the different local search heuristics developed. Section 7.6

concludes the chapter, and outlines possibilities for further research.

7.2 Classical Neighbourhoods

In Chapter 5, Section 5.4, we introduced the concept of a neighbourhood N,
as a function that gives for each solution ¢ (of an instance of a combinatorial
optimisation problem) a set N(i) of solutions that are close to i. However,
we have not shown explicitly any particular one for scheduling problems. As
explained in Section 5.1 it is common to express an instance of a combina-
torial optimization problem by a compact data representation. Such a data
representation for some scheduling problems (see Chapter 2) is a sequence of

jobs. We now present some classical neighbourhood structures for problems
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whose solutions can be expressed as a sequence.

A class of popular neighbourhoods for problems whose solutions can be
expressed as a sequence is a k-exchange (k > 2) neighbourhood. This neigh-
bourhood is composed of all solutions that can be obtained by exchanging
k elements of a given sequence. For k = 2 the neighbourhood is usually
referred to as swap neighbourhood (also known as a pair-wise interchange
neighbourhood). For example the sequence (1,4,3,2,5,6) is a neighbour of
sequence (1,2,3,4,5,6), obtained by exchanging job 2 with job 4. Verifying
local optimality for a k-exchange neighbourhood requires Q(n*) time, where
n is the total number of elements. The more exchanges we perform (the big-
ger the value of k) the more computationaly expensive it becomes to search
the neighbourhood. However, when using a simple descent algorithm, the
quality of the solution is better. The size of a neighbourhood 1s the num-
ber of neighbours for a single solution. For example, the size of the swap
neighbourhood (k = 2) is n(n — 1)/2.

Another popular neighbourhood is the insert neighbourhood. The insert
neighbourhood is composed of all solutions that can be obtained by taking
an element and inserting it in another position within the sequence. For
example sequence (1,5,2,3,4,6) is a neighbour of sequence (1,2,3,4,5,6),
obtained by taking job 5 and inserting it before job 2. The size of this
neighbourhood is (n — 1)2. A block insertion is when we take a set of more
than one element (referred to as a block) and insert it in another position
within the sequence. For example sequence (5,6, 1.2,3,4) is a neighbour of
sequence (1,2,3,4,5,6), obtained by taking the block with jobs (5, 6) and
inserting it before job 1. If we fix the block to be of size m (m > 2), then
the size of the neighbourhood with n jobs is (n —m + 1)(n — m).

A schedule for the BMRS problem can be determined by a job sequence
and a partition of the sequence into batches. For example, a particular
sequence of 6 jobs might be 7 = (J1, Jy, J3, Jo, J5, Jg), and if b = 3 a feasible
batching is {J1J4}{J3J2Js}{Js} (the first batch with jobs 1 and 4, the second
batch with jobs 2, 3 and 5, finally the third batch with job 6). Recall that
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Brucker et al. (1998) gave a dynamic programming algorithm to solve the
unrestricted version of the problem (where b > n), which is explained in
more detail in Section 5.5.2. In broad terms a solution was obtain by sorting
jobs in SPT (a fixed sequence), and then using the dyvnamic programming
algorithm. We now adapt their algorithm to obtain for any given (fixed)
sequence of jobs m = (Ji,...,J,) a partition of the sequence into batches,
with no more than b jobs in a batch, that will vield the minimum value for
the maximum lateness.

Let F; be the minimum value of the maximum lateness of a schedule
that contains jobs Jj,. .., J, from 7, where the processing of the first batch
in the schedule starts at time zero . If a batch {J;,..., Ji—1}, which has
processing time p’ = jglgcx_lpl, is inserted at the start of a schedule for
jobs Ji,...,Jn, then the maximum lateness of jobs Ji,...,J, increases by
max p; — min d,

1
<I<k—1 J<i<k—1

p’, while the maximum latness for jobs Jj,..., Je_1 is |
ISES
(the processing time of the batch minus its due date). We can now state the

dynamic programming recursion. The initialisation is

Fn+1 = -0,
and the recursion for j =n,n—1,...,11s
F, = min max{f, + max p;, max p,— min d;}}}. (7.1
1 j<k§min{n+1,j+b}{ { jglgk—lp ’jglgk—1p j<I<k—1 HE (1)

The optimal solution value is given by Fj, and the corresponding schedule
can be found by backtracking.

Note how similar this formulation is to the one given in Section 5.5.2
(Brucker et al. 1998). The minimum is calculated over a smaller set as we
can only fit b jobs into any batch. This is expressed in the range of the first
(outer-most) min calculation, instead of the range for & being 7 <k <n+1
it is j < k < min{n + 1,5 + b}. Another change is that jobs in sequence 7
are not necessarily ordered in SPT order. Hence, we need to calculate the
processing time of the batch {J;,..., Ji_1} inserted at the beginning of the

schedule, which is computed as max;<i<k—1 pi-
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We can rewrite the recursion formula (7.1) as

F;, = min max p; + max{F,,— min d;}}.
I j<k5min{n+1,j+b}{j§l§k—lp {Fi, §<i<k—1 H
Define Gy = max p, + max{Fx,— min d,;}, then
j<i<h—1 j<I<k-1
F}‘ = min Gk.

j<k<min{n+1,j+b}

Note that Gy can be computed for k = 5+ 1,...,min{n + 1,7 + b}, in that
order. Hence we can store the previous value of the maxp, and mind; as
k progresses on its range, to reduce the number of calculations to constant
time for each value of k. Note that for each F} there are at most b G;’s to
compare, and n values of j. Hence, this is an O(nb)-time algorithm.

For any feasible schedule ¢ of the BMRS problem, there is an underlying
permutation of jobs m. We say a schedule ¢’ is a swap (or insert) neighbour
of schedule o if the underlying permutation 7 of ¢ is a swap (or insert)
neighbour of the underlying permutation 7’ of ¢’. Recall that the swap and
insert neighbourhoods are of size O(n?). Hence, searching the swap or insert
neighbourhood of a schedule o of the BMRS problem will take O(n3b) time.

Summarising, in this section we have introduced the swap and insert
neighbourhoods. We have also shown that theyv can be used efficiently (in
O(nb) time) via a dynamic programming algorithm to evaluate and obtain
solutions to the BMRS problem. This allows us to define both swap an insert
neighbourhood structures for the BMRS problem, and tackle them with any

of the local search heuristics presented in Chapter 5.

7.3 Exponential Neighbourhoods

In the previous section we defined the size of a neighbourhood as the num-
ber of neighbours a single solution has (i.e. |[N(i)|). The swap and insert
neighbourhoods are polynomial sized neighbourhoods. As mention in chap-
ter 5 it is believed that a bigger neighbourhood often vields better quality

solutions. At the same time, the larger the neighbourhood, the longer it



CHAPTER 7. LOCAL SEARCH HEURISTICS 122

usually takes to search the neighbourhood. A neighbourhood is said to be
exponential if its sizes grows exponential with respect with the size of the
instance. We would think such a neighbourhood to be very time consuming
to explore. However, recently some exponential neighbourhoods have been
analysed that surprisingly can be be searched in polynomial time.

Congram, Potts & Van de Veld (1998) introduce an exponential neigh-
bourhood (dynasearch swap neigi.oourhood) for the single machine total
weighted tardiness problem, and an iterated local search algorithm which
yields the best results found so far in the literature. Dynasearch is equiva-
lent to performing a series of ‘independent’ swap moves. Moreover, Congram
(2000) uses a dynasearch neighbourhood for the linear ordering problem and
the traveling salesman problem (TSP), exploring the neighbourhoods in poly-
nomial time, with good results. Hurink (1999) has analysed an exponential
neighbourhood for a single batching machine to minimise the total weighted
completion time. His model differs form ours in that the processing time
of each batch is defined as the sum of the processing time of the jobs that
belong to that batch. He uses a multiple transpose neighbourhood with a
tabu search heuristic.

Exponential neighbourhoods are also referred to as Very Large-Scale
Neighbourhoods (VLSN) by Ahuja, Ergun, Orlin & Punnen (1999). They,
distinguish three main methods of exploring VLSN neighbourhoods: (a) par-
tially search using heuristics (variable-depth methods); (b) Network flow
based improvement algorithms; (c¢) polynomial time heuristics for NP-hard
problems. Under their classification the neighbourhood used by Hurink
(1999) comes under category (b) as he presents the efficient search of the
neighbourhood as solving a shortest path problem. Most of the exponential
neighbourhoods, however, have been developed for the TSP problem.

In Section 7.4 we present an exponential neighbourhood for the BMRS
problem. We call it the split-merge neighbourhood, and we prove that it can

be searched in polynomial time.
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7.4 Split-Merge Neighbourhood

In this section we present an exponential neighbourhood, which we call split-
merge neighbourhood. We calculate its size, and show how it can be explored
in polynomial time. We give a dynamic programming algorithm for using the
neighbourhood to evaluate and generate solutions for the BMRS problem.

We introduced in section 7.2 the insert neighbourhood in which one item
or block is moved. A multiple insert move will be one where more than
one insert move is allowed to form a neighbour. We expect a multiple in-
sert neighbourhood to be a more powerful neighbourhood than simple insert
neighbourhood.

The split-merge neighbourhood is a restricted version of a general multiple
insert neighbourhood. It is restricted as certain insert moves are not allowed.
Let 7y be an initial sequence. In the split-merge neighbourhood N, certain
jobs of the neighbour of sequence 7y will preserve the order they had in
sequence mg. The idea is to split sequence 7y into two disjoint subsequences,
say m and 7y, and then merge them to obtain a neighbour 7 € N (m) (i.e.
{J;|J; € m}n{J;|J; € m} = ¢, {J;|J; € m} U{J;|J;€ ma} = {J;]J; € mo}
= {J;|J; € n}, where m € N(m) is the neighbour). The merge operation
is a multiple insert move, while the splitting operation restricts the feasible
moves. Specifically, if job j goes before job ¢ in the same split sequence (either
71 Or ), then job j will continue to go before ¢ in the merged sequence 7.
Also if a job j goes before i in the original solution 7y, and it happens that
both belong to the same split sequence (either 7, or my), then they will
keep that order (job j sequenced before job i) in the split sequence. This
last condition ensures that sequence 7y € N (mo) (the initial sequence is a
neighbour of itself).

For example,- suppose we have my = (1,2.3,4,5,6), choose m, = (2,4,5),
and 7 = (1,3,6). Then, a feasible merge is 7 = (1,3,2,4,6,5), which is
equivalent to performing the following two insert moves in 7y: insert job 3
before job 2, and insert job 5 after job 6. Note how the order of jobs in

7, preserves the order of jobs in m; and 7. However, under this choice of
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7 and 7o, sequence 7' = (1,5,6,2,3,4) is not a neighbour of 7, as job 4
goes before job 5 in 71, and job 3 goes before 6 in sequence 75. On the
other hand, if we had chosen m; = (1,2, 3,4) and 7, = (5, 6) this would be a
valid merge operation, and 7' € N (7). Note that 7’ could be obtained from
inserting block (5,6) in front of job 2. Hence, different splitting procedures
yield different restrictions on the possible neighbours for a specific sequence.

Summarising, the split-merge neighbourhood is a restricted multiple in-
sert neighbourhood, where the restrictions are given by the relative order of
jobs in the split sequences, and initial sequence as explained above. The two
determining factors for the efficiency of the split-merge neighbourhood are
(i) the splitting procedure, and (ii) the merging procedure.

We show in Section 7.4.2 that given the split of the initial sequence a
merged sequence and a feasible batching to minimise the maximum lateness
of the resulting schedule can be obtained in polynomial time with a dynamic
programming algorithm. That is, a collection of restricted multiple insert
moves to minimise the maximum lateness (local optiumum) can be obtained
in polynomial time in the split-merge neighbourhood.

It remains to see what a good splitting procedure will be. Note that the
split sequences can be of un-equal size; if we have a sequence, say 7y, with just
one job, then the split-merge neighbourhood is equivalent to a simple insert
neighbourhood where we only allow the job in sequence 7 to be moved. We
show in Section 7.4.1 that sequences with (near) equal number of jobs are

the best choice in terms of neighbourhood size.

7.4.1 Neighbourhood Size

To calculate the size of the split-merge neighbourhood, consider the two
sequences we split, 7y, and m. Let n; be the number of jobs in sequence
71, and ng in sequence 7. The job in the i** position in sequence 7 will be
denoted by 7 (7). Once sequences m; and 7, have been specified, any feasible

merged sequence 7 can be represented as a binary string I' of size n, where
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the entry in the 7** position, I'(z), takes the following values,

I = { 1 if 7(2) belongs to sequence 7y,

0 if n(7) belongs to sequence .

There are () different I" binary strings (equivalent to () )). Hence, there are

(:1) = (nz) different sequences 7 that can be obtained from merging sequence

m and m,. Note that () = ——-—*(n o

possible neighbourhood is obtained for n; = %. The neighbourhood size is

©(2™). Neighbourhoods of such a large size can be explored in polynomial

< min{n™,n"?}. Hence, the biggest

time, as explained in section 7.4.2. Furthermore, as larger neighbourhoods
tend to yield better quality solutions (better local optima), we are interested
in using similarly sized split sequences to have as big a neighbourhood as
possible. We have tried different splitting procedures, and compare them in

section 7.5.2.

7.4.2 Merging Sequences

We propose the following backward dynamic programing recursion to find a
merged sequence, and form batches of jobs with the minimum value of the
maximum lateness.

Let Ji,...,J;, be the n; jobs in the first sequence, and Jy, ..., J;, the n,
jobs in the second sequence. Let schedule o(j, j2) be a partial schedule with
jobs J!

oo - Jp, from the first sequence and jobs J7,....J; from the second

727 n2

sequence, merged in such a way that the maximum lateness is minimized,
and the relative order of the jobs in each sequence is preserved as explained
before. Let L(j1,72) be the value of this maximum lateness. Then,
L(j1,72) = min max{L(ky, k +ma\ max p; — min d;
(]1 ]2) J1<k1 <nyp+1 { { ( ! 2) p] I'IEjp] J;eJ }

j2 L ka <np+1
1<k —j1+ko—joa<b

where J = {J},..., Jy,_,J5, -, Ji, 1} is the batch containing the union
of the jobs with indices from 7, ..., kl — 1 in the first sequence, and indices

from js,...,ky—1 in the second sequence. The maximum lateness of the best
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merge is given by L(1,1), and the optimal batching (and merged sequence)
can be obtained by backtracking over L.

Note how similar this formulation is to the ones presented before for the
problem with restricted batch size. J is the batch that will be inserted at
the beginning of the schedule o(j1, jo). The maximum batch size restriction
is expressed in the range 1 < k; —j1 + ks — jo <D

We will evaluate at most b% sets 7, and there are at most n? values of
L(j1,72)- Hence, this an O(b?n?)-time algorithm. For a given split of the
underlying sequence, exploring the split-merge neighbourhood takes O(b*n?)
time. We compare this neighbourhood with the swap and insert neighbour-

hood with different local search heuristics in the next section.

7.5 Computational Experience

7.5.1 Test Problems and Experimental Design

We have used the same set of data generated for instances with 20 jobs,
explained in section 6.7, to compare the different local search heuristics we
propose. The processing times of the jobs are uniformly distributed from 1
to 100. An estimate on the makespan of the schedule, given the processing
times and the batch size b, is T = %Z;‘:lpj. An obvious choice for the
distribution of the due dates is a uniform distribution from 1 to T". However,
to mimic different scenarios for the due dates, we have used a parameter
A that takes the following values: 0.5,1,1.5, and due dates are distributed
uniformly between 1 and AT. Hence, A\ = 0.5 is a restrictive due dates
scenario and A = 1.5 a slack one. Recall that for the 20-job set of instances
the maximum batch size is b = 2,3, or 4, and we have 10 instances for each
choice of b and A.

We also generate new sets of data for 50 and 80 jobs to try out the
iterated descent algorithm in the split merge neighbourhood we propose in
section 7.5.5. The jobs and due dates of this set of instances follow the

same distributions explained above. We have choose for n = 50 maximum
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batch size of b = 2,5,10, and 25, and for n = 80, b = 5,10, 15,20, and 40.
We generated 5 instances for each choice of b, and A. All our heuristics were

encoded in Turbo Pascal and run on a PC with a Pentium 200MHz processor
and 32Mb of ram.

7.5.2 Comparing different splitting procedures

In this section we present several splitting procedures, and evaluate their per-
formance using a descent with the split-merge neighbourhood. Recall that
the splitting operation is vital in the performance of the split-merge neigh-
bourhood, as it will determine forbidden insert moves. We have tried several
procedures to split the sequence, both deterministic and non-deterministic
ones. Recall that it is desirable to have similarly sized split sequences. In
most of our split procedures we aim for this; however we allow for some to
have different sizes, as basis of comparisons.

We propose the following deterministic procedures to split a given se-

quence 7:

S1 Splitting sequence by half This is the simplest procedure to split a se-
quence into two equally sized subsequences. Take jobs 7(1),...,7([%])
assign them to the first sequence, and jobs 7([5] +1),...,7(n) to the

second sequence.

S2 Indezx odd-even splitting This is another procedure that aims at obtain-
ing equally sized subsequences, assigning jobs one by one alternatively
between the two split sequences. Construct one sequence with jobs
7(1),7(3), 7(5),..., (odd index), and another sequence with jobs 7(2),
n(4), 7(6),... (even index).

The non-deterministic procedures to split the sequence we propose are:

S3 Split balanced parts This procedure aims at counstructing cqually sized
subsequences. Generate t a random number between 1 and 7. Assign

jobs @(1),...,m(t) to the first sequence, and if ¢t # [5] assign jobs
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S4

S5

7(t),...,m(|5]) to the second sequence. Assign jobs 7(2|%] —¢+1),

..,m(n) to the second sequence, and if ¢t # |5] assign 7([5] + 1),
..., (2|3} — 1) to the first sequence. If ¢ = | %], then this sequence is
equivalent to S1. However, it generally splits sequence 7 into 4 different
parts, and we expected it to behave more like procedure S4 with 7 = 4

(see below).

Split randomly into T parts Generate a random number ¢ distributed
uniformly between 1 and 22 — 1 (i.e t ~ U[1,2(2) —1]); 7 > 2. The
expected value of ¢ is n/7. Our aim is to divide the sequence on av-
erage into 7 different parts and assign them alternatively between the
two subsequences. Let to = 0, and ¢, = min{¢,n}. We assign jobs
m(to+ 1), ..., m(t1) to the first sequence. If we have not assigned all
jobs of 7, generate another random number t ~ U[1,2(%) — 1], let
t, = min{t; + t,n}, assign jobs w(¢; + 1),...,7(t2) to the second se-
quence. Continue to generate ¢ and calculating t; = min{3_._" tx+t,n}
to assign jobs m(t;_1 + 1),...,7(¢;) alternatively between the first and
second subsequence until the last job 7(n) of the original sequence has

been assigned.

Split sets of jobs at random In procedure S4 we divide the sequence into
different parts (7 (t;—; +1),...,7(¢;)) and assigned them alternatively;
these parts might contain different numbers of jobs. By contrast, in this
procedure we want to fix the number of jobs in each part and assign
them randomly between the two sequences. The procedure assigns
with certain probability p (0 < p < 1) a set of i jobs to the first
sequence; otherwise it assigns these jobs to the second sequence. Note
that 4 = [ %] and p = 0.5 will yield on average an equivalent split to S1.
If u=1and p = 0.5 we also expect a similar behaviour to S2, though
in this case the assignment is random (and we can have a mixture of

odd and even indexes on the same split sequence).
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The heuristic we used to compare the different splitting procedures is as

follows.

Descent Heuristic in split-merge neighbourhood

begin
— Construct an initial sequence 7’ where jobs are in EDD order.
— Obtain an optimum batching and calculate the maximum lateness L(n’)
for sequence 7’ using the dynamic programming algorithm explained
in Section 7.2, equation (7.1).

repeat
-m=7', L(n) = L(n')

- Split 7 into two subsequences with procedure S, one of the splitting

procedures mentioned above.

- Merge subsequences with the dynamic programming algorithm explained
in Section 7.4.2, to obtain a new sequence 7', and optimal batching with
maximum Jateness L(7').

until L(7) = L(n")

end

Think of 7 as the initial solution. The subsequences obtained after split-
ting sequence 7 determine feasible merges that can be performed. Applying
the algorithm explained in Section 7.4.2 guarantees a resulting sequence 7’
whose optimal batching has the minimum maximum lateness of all feasible
merges. When we use any of the splitting procedures explained previously
we guarantee that sequence 7 is one of the feasible merges. Thus, the maxi-
mum lateness of the optimal batching for the new sequence 7’ is never worst
than the maximum lateness of the optimal batching of 7. Our aim is to
find the best splitting procedure. We consider going from sequence 7 to 7’
as a descent move in the split-merge neighbourhood. Initial runs with this
descent heuristic for the 20-job set of instances did not give clear evidence

on the best splitting procedure. In fact, few (global) optima for the 20-job
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BMRS problem were found, and a move (the repeat-until loop) was per-
formed only once or twice. In some sense, what this is telling us is that the
split-merge neighbourhood has a flat landscape making it hard to escape the
first local optimum found. To avoid this we substituted the stopping criterion
L(w) = L(#") with a criterion to stop after a time limit. We have set this
time limit at 0.07 seconds, which is the time it takes to perform on average a
first improve descent in the insert neighbourhood (see Section 7.5.3). With
this stopping criterion we allow moves where the maximum lateness is not
strictly decreasing (i.e. we allow moves to sequences with the same maximum
lateness as the previous sequence), and thus making it easier to compare the
splitting procedures.

In table 7.1 we show a summary of results comparing the different splitting
procedures S1, S2, S3, S4 and S5. For procedure S4 we show results for
T =4,5,6, and 7. For procedure S5 we show results for p = 0.5,0.7, and 0.9
and pu = 2,4,5. Note that p = 0.7 is equivalent to p = 0.3, and more generally
S5 with p = k is equivalent to p = 1 — k. Recall we have 10 instances for each
pair b and A\. We decided only to show the behaviour over the different due
date scenarios (from a slack one, A = 1.5, to a restrictive one A = 0.5), and
summarise the behaviour over different batch sizes (i.e. b = 2,3,4). Hence,
each entry is the average over 30 different 20-job instances. The overall
behaviour for each splitting procedure is summarised in the last column. We
use the following statistics:

e DV: average percentage deviation from global optima (30 instances),
e NO : number of global optima found (30 instances),

e ODV: average percentage deviation from global optima (90 instances),
e TNO : total number of global optima found (90 instances),

where the percentage of deviation from global optima is calculated as

(Lmax( Local Optimum ) — L. ( Global Optimum )

100,
| Limax ( Global Optimum )] )

and the local optimum is the one found by the heuristic with the chosen

splitting procedure. Recall that the values of the maximum lateness of the
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global optima were found for the 20-job instances by the branch and bound
algorithm of Chapter 6.

From table 7.1 we see that more global optima are found for less restric-
tive due dates (A = 1.5). These are also the easier problems to solve when
running the branch and bound algorithm (Chapter 6). The deterministic pro-
cedures (S1, and S2) yield fewer global optima than the non-deterministic
procedures. With non-deterministic splitting procedures we are less likely to
have the same split sequences from one iteration to the next, thus chang-
ing the forbidden insert moves. It seems that the randomness of the non-
deterministic procedures allows for diversity in the search. Hence, we prefer
non-deterministic splitting procedures.

Splitting procedure S2 performs better than S1. In S1 we keep the first
jobs 1,...,|%] together which were consecutive in the initial sequence (the
same for the last » — |} jobs.) This suggest that leaving a big list of
consecutive jobs unchanged from the initial sequence to the split sequences
is not desirable. Note that S2 does not leave any consecutive pair of jobs
( and j + 1) in the same split sequence. However, this also seems to do
poorly. It seems to be desirable to leave at least some consecutive jobs from
the initial sequence together in a split sequence. This happens in all other
procedures.

For n = 20, procedure S5 with p = 4 will divide sequence 7 into 5 sets
of 4 jobs, so that the split sequences cannot be of the same size. As we have
stated before, equally sized split sequences are preferred, this explains why
procedure S5 with u = 4 performs poorly compared with y = 2 or g = 5.
The best choice of parameters for procedure S5 seem to be p = 0.5 and p = 2;
confirms that we want some consecutive jobs together and equally sized split
subsequences. Procedure S3 appears to perform better than S5, this might
be due to the fact that procedure S5 has similarly sized split sequences, but it
also allows for consecutive jobs to be separated from each other in a random
fashion.

The best results were obtained with splitting procedure S4. This pro-
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Table 7.1: Comparing spilt procedures in the split-merge neighbourhood

20-job instances
Splitting Due Dates Scenarios Overall
Procedure A=15 A=10 A=05 Totals

DV NO DV NO DV NO|ODV TNO
S1 87.7 4 263 0 119 2| 419 6
S2 43.3 7 174 0 122 1] 242 8
S3 326 16 73 7 45 4 14.7 27
T= 233 19 6.3 6 3.0 71 10.8 32
S4 T=5|136 16 7.5 6 29 7 8.0 29
T=61 41 23 4.7 9 43 5 4.4 37
T=7| 63 21 5.7 5 35 5 5.2 31

(P, 1)
(0.5,2) [ 121 14 74 5 31 5 7.5 24
(0.7,2) | 145 12 6.9 3 38 6 8.4 21
(0.9,2) | 18.1 14 10.2 4 54 1] 11.2 19
(0.5, 4) | 32.9 7 153 0 56 11 179 8
S5 | (0.7, 4) | 32.1 4 138 0 4.9 2] 16.9 6
(0.9, 4) | 67.5 6 11.0 3 6.1 1] 281 10
(0.5, 5) | 67.8 7 122 1 6.5 21 288 10
(0.7, 5) | 52.5 8 149 1 71 1| 248 10
(0.9, 5) | 45.9 9 147 0 46 1] 217 10

DV: average percentage deviation from global optima (30 instances)

NO : number of global optima found (30 instances)

ODV: average percentage deviation from global optimna (90 instances)

TNO : total number of global optima found (90 instances)
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cedure allows consecutive jobs to be separated and aims on average to have
equally sized split sequences. The best choice of parameter for this procedure
seems to be 7 = 6, as it not only found the greatest number of global optima,
but also reduced the average percentage deviation from the global optima.
Hence, form now on in this chapter, when running any heuristics over
the split-merge neighbourhood for the 20-job instances we will use the the

splitting procedure S4 with 7 = 6 with the time limit stopping criterion.

7.5.3 Comparing different neighbourhoods with a sim-

ple descent heuristic

In this section we compare the different neighbourhoods presented for the
BMRS problem. The swap and an insert neighbourhood for the BMRS prob-
lem are defined in Section 7.2. We use a simple descent heuristic as explained
in Section 5.4. We can apply either a first improve or a best improve policy
for descent. Hence, we can compare four heuristics for the classical neigh-
bourhoods:

IFT: First improve descent in the insert neighbourhood,

IBI: Best improve descent in the insert neighbourhood,

SFI: First improve descent in the swap neighbourhood,

SBI: Best improve descent in the swap neighbourhood,

We use as starting solution a sequence of jobs in EDD order. We compare
these heuristics with the descent heuristic in the split-merge neighbourhood
as explained in Section 7.5.2, with S4 7 = 6, and time limit stopping criterion
of 0.07 seconds. This is the average time it takes to perform a first improve
descent in the insert neighbourhood (see table 7.2).

As in the previous section we have used the same set of 20-job instances.
We aggregate the behaviour over different batch sizes (i.e. b = 2, 3,4) to show
it over the different due date scenarios. Hence, each entry is the average over
30 different 20-job instances. The overall behaviour is summarised in the

last row. To compare the performance of the different heuristics we use the
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following statistics:

e NO: number of global optima found (30 instances),

e DV: average percentage deviation from global optima (30 instances),
e AT: average time per instance in seconds (30 instances),

The results are shown in table 7.2.

A first improve descent heuristic will stop when the first improving neigh-
bour is found, and a best improve descent heuristic will stop after all neigh-
bours have been analysed returning the best value. Hence, we expect a
first improve descent heuristic to take less time than a best improve descent
heuristic. This can be seen clearly in table 7.2, where we observe that the
best improve descent takes more time. However, the average deviation from
global optima is smaller for the best improve policy. This behaviour is more
apparent in the insert neighbourhood, where the first improve policy has a
37% deviation whereas the best improve has a 19% deviation. We notice
again that it is harder to find global optima for those instances with more
restrictive due dates.

The split-merge neighbourhood has the best performance. It finds more
global optima, and it had a smaller deviation from the optimum. Further-
more, the deviation from the optimum does not change with how restrictive
the due dates are, as it did with the other heuristics. Note that it was less
than 5% for any A. Thus, it seems we have better quality solutions using
a descent heuristic in the split-merge neighbourhood whatever the due date
scenario. The descent heuristic in the split-merge neighbourhood found 37
out of the 90 global optima. That is only 41% of global optima; hence, it
is of interest to apply other local search heuristics. We explore multi-start

descent heuristics in the next section.
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Table 7.2: Comparing Descent in Swap, Insert, and Split-Merge Neighbour-

hoods

20-job instances

|

IFI IBI
A NO DV AT | NO Dv AT
1.5 13 9113 0.05| 14 37.17 0.08
1 4 1057 0.08 5 12.77 0.12
0.5 2 983 008 2 81 0.12
Totals | 19 37.18 0.07 | 21 1934 0.11
SFI SBI
A NO DV AT | NO DV AT
1.5 12 51.27 0.03 | 12 46 0.04
1 5 8.9 0.04 6 8.8 0.06
0.5 4 427 0.04 3 327 0.07
Totals | 21 21.48 0.04 | 21 19.36 0.06
S-M
A NO DV AT
1.5 23 413 0.07
1 9 477 0.07
0.5 5 433 007
Totals | 37 4.41 0.07

IFT: First improve descent in the insert neighbourhood

IBI: Best improve descent in the insert neighbourhood

SFI: First improve descent in the swap neighbourhood

SBI: Best improve descent in the swap neighbourhood

S-M: Descent in the split-merge neighbourhood

NO: number of global optima found (30 instances)

DV: average percentage deviation from global optima (30 instances)

AT: average time per instance in seconds (30 instances)
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7.5.4 Comparing different neighbourhoods with a multi-

start descent heuristic

A multi-start descent heuristic is one where a local search heuristic is applied
from different starting solutions, as explained in Section 5.4. In this section
we compare different neighbourhoods with a multi-start heuristic.

Recall form section 7.5.3 that the best improve descent policy gave bet-
ter results (both in terms of the number of optima found and deviation from
global optima). Hence, we will only use this policy for the insert and swap
neighbourhoods. We try the following three multi-start heuristics:

MIBI: multi-start with best improve descent in an insert neighbourhood,

MSBI: multi-start with best improve descent in a swap neighborhood,

MS-M: multi-start descent in the split-merge neighbourhood
We generated 10 random starting solutions (sequences), and run each of the
three heuristics (MIBI, MSBI, MS-M) on them. Each random starting so-
lution, yields a local optima, the best of this 10 is then taken as the final
solution of the multi-start heuristic. As in the previous section we have used
the same set of 20-job instances. We aggregate the behaviour over different
batch sizes (i.e. b = 2,3,4) and show it over the different due date scenarios.
Hence, each entry is the average over 30 different 20-job instances. The over-
all behaviour is summarised in the last row. To compare the performance of
the different heuristics we use the following statistics:

e NO: number of global optima found (30 instances),

e AT: average time per instance in seconds (30 instances),

e DV: average percentage deviation from global optima (30 instances),

e NTW: number of times the heuristic found a solution that was no worse
than the one found with the other (two) heuristics.

NTW can also be described as the number of times the heuristic finds a ‘win-

ning’ solution, where by ‘winning’ solution we mean one that has the smallest

value of all the values obtain with all the heuristics for that instance. The

smallest value is not necessarily a global optimumn. This statistic helps us

identify how many times the heuristic arrives at comparatively good solu-



CHAPTER 7. LOCAL SEARCH HEURISTICS 137

tions. The results are shown in table 7.3.

For multi-start we use randomly constructed sequences instead of the
EDD ordered sequence we used before as star:ing solutions in Section 7.5.3.
A good initial solution seems to be of importance for the insert neighbour-
hood, as observed by comparing with the results given in table 7.2. The over-
all results for the insert neighbourhood are better with EDD, even though
in multi-start we are running the heuristic 10 times (one for each starting
solution). In the insert neighbourhood the multi-start heuristic starting with
random sequences finds 18 global optima, but using simple descent starting
with the EDD sequence finds 21. This is more striking if we notice that
the simple descent heuristic only took 0.11 seconds, and the multi-start took
1.6 seconds. Compared with the other two multi-start heuristics it found the
winning solution in only 22% of the instances (NTW=20 out of 90 instances).

The multi-start heuristic in the swap neighbourhood, performs better
than in the insert neighbourhood. It finds 27 global optima, and found the
winning solution in 41% of the instances (NTW=37 out of 90). The starting
solution does not seem to play such an important role for multi-start in
the swap neigbhourhood, as it finds 6 more global optima than with simple
descent and EDD starting sequences (compare with table 7.2). It seems to
work well for instances with restrictive due dates (A = 0.5). Our intuition
suggests that a swap move allows batches to remain intact more often than
an insert move, hence keeping more information about the solution. For
example if we have the sequence (1,2,3,4,5,6,7,8), and a maximum batch
size of b = 3 with the batches {1,2,3}{4, 5}{6, 7}{8}, and we swap 2 with 8,
we might keep job 1 and 3 in the same batch and batches {4, 5}{6, 7} intact;
if instead we perform the simple insert move of shifting job 8 to the second
position in front of job 2, job 1 cannot be in the same batch with job 3 as
b = 3, and the batch structure in the middle might have to change.

The best heuristic is multi-start in the split-imerge neighbourhood. It finds
77% of the global optima (70 out of 90), and found the winning solutions
in 87% of the instances (NTW=79 out of 90). However. it did not find the
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Table 7.3: Comparing different multi-start heuristics

20-job instances

MIBI
A NO DV NTW AT
1.5 11 344 12 1.8
1 6 7.3 7 1.6
0.5 1 4.4 1 14
Overall | 18 15.3 20 1.6
MSBI
A NO DV NTW AT
1.5 7 50.17 10 0.8
1 5 6.87 7 0.8
0.5 15 1.03 20 0.7
Overall | 27 1936 37 0.7
MS-M
A NO DV NTW AT
1.5 26 2 30 0.7
1 22 0.73 24 0.7
0.5 22 0.33 25 0.7
Overall | 70 1.02 79 07

MIBI: multi-start with best improve descent in an insert neighbourhood,
MSBI: multi-start with best improve descent in a swap neighborhood,
MS-M: multi-start descent in the split-merge neighbourhood

NO: number of global optima found (30 instances),

AT: average time per instance in seconds (30 instances),

DV: average percentage deviation from global optima (30 instances),

NTW: number of times the heuristic found the winning solution.

138
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global optima for 20 instances, it is of interest to see if by keeping some
information on previous solutions we can improve our search. We do so by

trying iterated local search in the next section.

7.5.5 Aniterated descent heuristic with the split-merge
neighbourhood

As seen in the previous section the repetitive application of the split-merge
heuristic (multi-start) gives the best overall results. Recall that an iterated
local search heuristic (Section 5.4.1) also applies several times a local search,
but rather than starting from random solutions, it restarts from a modified
(or kicked) last local optimum. The idea is to dislodge the search from the
current local search to look at other areas of the solution space. It also tries
to keep information on previously good solutions by backtracking.

As the split-merge neighbourhood is a restricted version of the multiple
insert neighbourhood, we have chosen a kick to be a certain number of ran-
dom insert moves on the solution. The number of moves is referred to as
the size of the kick. We want the kick to be sufficiently large to move to a
solution that is not too close to the last local optimum, but not too far away
that the good characteristics of the previous local optimum are lost, and we
effectively have multi-start. As explained before, sometimes instead of using
the last optimum to restart the local search, a backtracking procedure is em-
ployed, where after several local search runs, a kick is performed on the best
overall local optimum, instead of the previous local optimum. The idea of
backtracking is to guide the search back to solutions with good values.

There are two basic parameters we have to fix to find a best heuristic of
this type: x which is the number of insert moves (size of the kick), and
which is the number of times a local search is performed before backtracking
to the previous best solution.

First to compare iterated with the multi-start, we ran each iterated local
search for 0.7 second (the same time it took to analyse the 10 randomly

generated instances), with varying values of 8 = 2,...,8 and k = 2,...6.
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The best parameter values are 3 = 5, k = 3 for which the iterated local
search found 72 global optima. This does not seem a very big improvement
on the 70 global optima that multi-start finds; it is probablyv partly due to
the fact that very few kicks were performed and the backtracking was used
very little (once for § = 5,6,7,8). We then tried a longer run time of 5
seconds, which gives approximately 45 kicks (keeping the stopping criterion
of 0.07 seconds for each descent). We tried k = 3,4,5,6,7, and § = 5,10, 15.
The best parameters are § = 6 and k = 10, where 89 out of the 90 global
optima were found. Running the heuristic for 10 seconds per instance yields
all the optima. Thus, problems with 20 jobs seem to be easily tackled with
this heuristic.

To compare on a consistent basis with respect to computational times we
have run the multi-start descent heuristic for the same time (10 seconds) to
compare with the iterated descent heuristic in the split merge neighbourhood.
The results are shown in Table 7.4. We can see that not all optima were

found, so we prefer the iterated heuristic to the multi-start.

Table 7.4: Results for multi-start in split-merge neighbourhood

20-job instances

A NO DV AT
1.5 30 0 10
1 28 0.2 10
0.5 27 06 10
Overall | 8 04 10

NO: number of global optima found (30 instaunces),
AT: average time per instance in seconds (30 instances),

DV: average percentage deviation from global optima (30 instances),
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We now discus results for larger instances. Optimal solutions for 50 or
80 jobs are not easily obtainable. To evaluate the quality of the solutions

obtained we compute

e The improvement on the starting solution 7gpp (sequence in EDD or-

der), with [IEED= L‘“a"(’;r‘l)a‘;)(;;“g’)‘(no ), where 7m0 is the local optimum

obtained from the heuristic.

e The relative deviation from the lower bound of the schedule, as com-
puted in Section 6.5, with DLB= ﬂi’fg—)_l’ﬁ, where 770 1s the local
optimum obtained from the heuristic and LB is the lower bound on the
maximum lateness of any schedule using the dynamic programming for-

mulation explained in Section 6.5.

Note that if DLB =0, then the local optimum is a global optimum. To
compare the iterated descent heuristic in the split-merge neighbourhood for
the larger instances we also developed an iterated descent heuristic for the
swap neighbourhood. Detailed analysis of the solutions for the 20-job in-
stances shows that multi-start in the swap neighbourhood sometimes finds
better local optima than in the split-merge neighbourhood. Hence, it is of
interest to compare them with an iterated descent heuristic. We ran the
iterated heuristic with S4 7 = 15, 8 = 10, « = 10, for the 50-job instances
explained in Section 7.5. Each entry is the average over the 5 instances
generated. Each heuristic ran for 10 seconds on each instance. We use the
following statistics:

e AIEED: Average improvement on the starting solution (5 instances),

e ADLB: Average deviation from the lower bound (5 instances),

e NO: number of global optima found (5 instances),

e NTW: number of times the winning solution is found in the neighbourhood,
either in the split-merge or swap (over the 5 instances).

Our results are summarised in table 7.5
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Table 7.5: Results for the 50 job instances

A=15 Split-Merge Swap
b AIEDD ADLB NO | NTW | AIEDD ADLB NO | NTW
2 0 0 5 5 0 0 5 5
5 23 30 0 4 26 38 0 4
10 18 7 1 4 15 20 0 3
25 1 15 0 5 1 24 0 1
A=10 Split-Merge Swap
b AIEDD ADLB NO | NTW | AIEDD ADLB NO | NTW
2 56 147 0 3 40 150 0 3
5 38 133 0 4 31 171 0 1
10 18 103 0 5 10 123 0 1
25 3 39 0 5 3 32 0 4
A=0.5 Split-Merge Swap
AIEDD ADLB NO | NTW | AIEDD ADLB NO | NTW
26 11 0 4 7 25 0 1
30 54 0 5 10 63 0 0
10 18 78 0 2 20 68 0 3
25 2 70 0 5 1 90 0 2
Total 19 57 6 51 13.6 67 5 28

AIEED: Average precentage improvement on the starting solution (5 instances),

ADLB: Average percentage deviation from the lower bound (5 instances),

NO: number of global optima found (5 instances),
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NTW: number of times the winning solution is found in using this neighbourhood.
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Global optima are found for some instances with slack due dates A =
1.5, it seems that in these cases the batch size restriction is less impor-
tant. In fact for b = 2 the EDD sequence also gives the global optimum
(AIEDD=ADLB=0 for all 5 instances). It is interesting to note that the
deviation from the lower bound was quite big for scenario A = 1.0, it might
be that the lower bound is not very tight. The best improvements to the
starting solutions are found for smaller batch sizes (b = 2 and b = 5) in the
split-merge neighbourhood. For batch size of b = 25 the EDD sequence is
hardly improved by either heuristic as shown from a small value of AIEDD
for all due date scenarios.

However the split-merge neighbourhood seems to perform well compared
with the swap neighbourhood in total it finds 85% of the winning solutions
(51 out of 60), where as swap finds 46% (28 out of 60). It also improves the
starting solution better and has a smaller deviation from the lower bound
overall instances. Still it is surprising to find that there were various cases
where the winning solution was also found using the swap neighbourhood;
in some cases in different instances. It might be interesting to develop a
multilevel approach, where both neighbourhood structures (split-merge and
swap) were used. As they are now the iterated descent heuristic in the split-
merge neighbourhood wins over the iterated descent heuristic over the swap
neighbourhood.

For n = 80 we ran the iterated descent heuristic in the split-merge neigh-
bourhood with parameters 7 = 10, k = 40, and 8 = 15, time limit per
instance of 5 seconds. Again each entry is the average over 5 instances. The
results are shown in table 7.6.

The results are similar to the ones found for 50 jobs. The only global
optima were found for A = 1.5, b = 5, where the initial solution (EDD
sequence) is also optimal. As can be seen, for maximum batch sizes of b = 40
the local optima are not better than the initial solution (EDD sequence). The
local optima seem to be further away from the lower bound for the 80-job

instances than for the 50-job instances.
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Table 7.6: Results for the 80 job instances

Iterated Heuristic in the Split-Merge Neighbourhood
A=15 A=10 A=0.5
AJEDD ADLB NO | AIEDD ADLB NO { AIEDD ADLB NO
5 0.00 0.00 5 0.36 2.54 0 0.24 0.51 0
10 0.16 0.66 0 0.15 2.48 0 0.13 0.91 0
15 0.11 0.66 0 0.10 1.54 0 0.10 1.11 0
20 0.04 0.47 0 0.03 1.21 0 0.02 1.21 0
40 0.00 0.22 0 0.00 0.46 0 0.00 0.72 0

AIEED: Average improvement on the starting solution (5 instances),
ADLB: Average deviation from the lower bound (5 instances),

NO: number of global optima found (5 instances),

7.6 Concluding Remarks

In this chapter we have presented neighbourhood structures for the BMRS
problem. In particular the exponentially sized split-merge neighbourhood
has proven to be comparatively better for the problem than the insert or
swap neighbourhood. However, the swap neighbourhood does seem to ob-
tain better global optima sometimes. It would be desirable to to develop a
multilevel approach, where both neighbourhood structures (split-merge and
swap) were used, in the hopes of getting better solutions. Another avenue
of further research would be the development of other local search heuristic
(such as those described in Chapter 5), using the neighbourhood described
in this chapter.

For the 20-job instances good quality solutions are found in fractions of
a minute, whereas they require hours to solve with the branch and bound
algorithm of Chapter 6. The split-merge neighbourhood seems to be good at
exploring big areas of the search space, and gives good approximate solutions
regardless of the due date scenario, as pointed out in Section 7.5.2.

The efficiency of the neighbourhood search relies on the dynamic program-

ing algorithms to find solutions for the BMRS problemn. We could probably
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modify the O(n?®) dynamic algorithm in Brucker et. al. (1998 ) for the total
number of late jobs ?:1 U; to tackle the model with restricted maximum
batch size which is unary NP-hard, much in the same way we did for the
BMRS problem (also unary NP-hard).

Note that heuristics developed for the BMRS problem could also be mod-
ified to tackle the two batch machine flow shop problem where the first ma-
chine deals with batches of size 1 (classical machine) and the second is a
restricted batching machine (F2 by = 1, by < n| Cmax). Recall the equiv-
alence between 1 | | Limax, and F2 |by = 1| Cray pointed out in Potts &
Kovalyov (2000).



Chapter 8
Conclusions and Further Work

This thesis covered two areas of machine scheduling: lot streaming and batch-
ing machine scheduling. We used a wide range of techniques throughout this
thesis. In the lot streaming chapters we have opted for a network and criti-
cal path analysis for the problems. These approaches are useful for finding
optimal structures for the models analysed. We believe we have proven that
a network representation for lot streaming models is a useful analysis tool.
On the other hand, general purpose techniques have also been used, such as
branch and bound and dynamic programming, to obtain exact solutions for
the batching machine problem we study, and approximation methods such
as the local search heuristics we presented in Chapter 7.

We have given a new approach to tackle the F2|g;, s;j,t;|Cmax model,
which gives more insight into why it collapses to a much simpler problem. We
think some extension to dominant machines might be possible. We present a
form of such analysis for identical jobs in Chapter 4. We also introduce a new
model where numbers of sublots are not predetermined. We explain how to
add one extra sublot efficiently and presented a heuristic to allocate several
sublots. There is plenty more research that can be done on this model. It
would be of interest to find lower bounds on the reduction of makespan when
adding a given number of sublots. The computational complexity of the

model could also be analysed; NP-hardness would justifv the development of
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local search heuristics for the model.

We also developed solutions for the problem of scheduling jobs on a batch-
ing machine with restricted batch size to minimise the maximum lateness. We
relied on efficient dynamic programming algorithms to find lower bounds on
the maximum lateness of a schedule in the model, and to search efficiently an
exponential neighbourhood. The results obtained for the split-merge neigh-
bourhood are very encouraging. As pointed out previously, we could develop
the neighbourhood further, by designing new local search heuristics, or trying
a multi-level approach with the swap neighbourhood.

It would be of interest as well to try and develop new exponential neigh-
bourhoods for batching problems that have polynomial time dynamic pro-
gramming solutions when the batch size is not restricted. In particular we
could tackle the single batching machine model with restricted maximum
batch size and total number of late jobs Z};l U, objective function.

Finally, both lot streaming and batching machine scheduling are exten-
sions of classical machine scheduling models. We hope that this work has
contributed to the development of further knowledge in this area. It has

certainly given us many possibilities for further research.
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