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HIGHLIGHTS

o ML-enhanced UQ approach cuts computational cost while ensuring high accuracy.
e Analysis shows 18 % NHj production and 30 % refrigeration output variability.

o Heat exchanger effectiveness drives 50 % of system uncertainty.

e System uncertainties cause 40-50 % variation in CO, reduction potential.

e Economic impact: 30-40 % refrigeration revenue and 5 % LCOA fluctuation.
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ABSTRACT

Renewable-powered ammonia production is a promising route for sustainable energy and hydrogen storage but is
highly sensitive to operational uncertainty from variable power supply and component performance. This study
presents a novel machine learning-enhanced uncertainty quantification (ML-UQ) framework that, for the first
time, integrates a high-fidelity surrogate model—an artificial neural network with autoregressive feedback—into
Aspen Plus simulations of a hybrid ammonia production system coupled with a vapour absorption refrigeration
unit for heat recovery. The framework captures nonlinear interactions among six critical uncertain parameters,
including renewable power variability, heat exchanger effectiveness, and compressor efficiency. It reduces the
computational cost by three orders of magnitude while maintaining high predictive accuracy (R? = 0.97, MAE =
8.57, RMSE = 11.3). The ANN surrogate enables scalable uncertainty propagation via polynomial chaos
expansion. Results show that, across nominal power levels of 10-20 MW, uncertainties can cause up to 18 %
variation in ammonia output, 30 % in refrigeration, and 40-50 % in CO; emissions reduction. Heat exchanger
effectiveness alone accounts for nearly 50 % of total variability. Economic analysis indicates a 5 % increase in the
levelized cost of ammonia and 30-40 % variation in annual refrigeration revenue. This work delivers the first
computationally feasible, ML-assisted surrogate-based UQ framework for hybrid green ammonia systems. More
broadly, it offers a practical and readily scalable tool for designing resilient, economically viable, and low-carbon
energy and chemical manufacturing systems.
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(continued)
CoV Coefficient of variation
d Dimension
GHG Greenhouse gasses
HB Haber Bosch
HPC High performance computer cluster
A Simulation outputs
I3 Quadrature points
LCOA Levelized cost of ammonia
N Number of PCE terms
Nord Parameter used for quadrature point generation
P Order of PCE model
PCE Polynomial chaos expansion
PDF Probability density function
Psample Sample parameters
S Main sensitivity
SD Standard deviation
uQ Uncertainty quantification
UQTk Uncertainty quantification tool kit
VARC Vapour absorption refrigeration cycle
wi Weight matrix
Wi Multidimensional orthogonal polynomials
WHR Waste heat recovery
X Uncertain parameter
y Outputs
T Probability density function (PDF)

1. Introduction
1.1. Background

The increasing utilisation of renewable power sources, particularly
wind and solar photovoltaic, presents challenges due to their inherent
variability and intermittency, thereby necessitating efficient and scal-
able energy storage solutions (Almodfer et al., 2022; Y. Wang et al.,
2024). Among the various energy carriers, hydrogen has emerged as a
promising long-term option, particularly in its green form—produced
via water electrolysis powered by renewable energy (Samitha Weer-
akoon and Assadi, 2024), the practical deployment of hydrogen is con-
strained by high storage costs, energy-intensive liquefaction processes,
and transportation safety concerns (T. Zhang et al., 2023). In this
context, ammonia is gaining recognition as an alternative hydrogen
carrier, owing to its higher volumetric energy density, ease of storage
under moderate pressure and temperature, and existing global infra-
structure for handling and distribution (Diaz-Motta et al., 2023; Xing
and Jiang, 2024). Despite these advantages, ammonia synthesis is highly
sensitive to fluctuations in renewable power supply, leading to opera-
tional uncertainties that challenge the economic viability (Rehman
et al., 2024; Verleysen et al., 2020). However, systematic, and
cost-effective evaluation of these uncertainties remains unexplored and
calls for further research.

1.2. Literature review

1.2.1. Green ammonia production

Recent advancements have focused on decarbonising ammonia
production through the integration of renewable energy sources,
enhancing both economic viability and sustainability. For instance,
Shamsi et al. (2024) demonstrated a geothermal-powered polygenera-
tion system that integrates a PEM electrolyser, an organic Rankine cycle,
and an air separation unit, co-producing ammonia, electricity, oxygen,
and thermal energy. This configuration achieved an ammonia output of
2.085 kg/s at a competitive cost of $2.24/kg with a payback period of
just three years, underscoring the feasibility of geothermal-based syn-
thesis. Electrolyser selection has also proven critical; Nami et al. (2024)
compared alkaline (AEC) and solid oxide (SOEC) electrolysers, revealing
that while AEC is cost-effective today, SOEC’s higher efficiency and
thermal integration capabilities could reduce production costs to 340 €/t
with low-cost electricity (10 €/MWh), making it competitive with
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fossil-based ammonia. To further expand renewable integration,
decentralised ammonia production systems leveraging biomass gasifi-
cation, biogas reforming, and electrolysis have been modelled in Aspen
Plus, maintaining consistent primary energy consumption (~14-15
kW/kg NH3) without compromising process efficiency (Frattini et al.,
2016). To further optimise energy and exergy efficiencies, a recent study
(Anwar et al., 2024) conducted 4 E analysis (energy, exergy environ-
ment and economy) and compared waste heat recovery methods in
green ammonia plants. It was found that the vapour absorption refrig-
eration cycle significantly outperforms the Kalina cycle by enhancing
energy efficiency by 8 %, improving exergy efficiency by 11 %, and
quadrupling emission savings, all while maintaining cost-effectiveness.
Beyond traditional methods, emerging low-pressure synthesis techni-
ques—including thermochemical looping, solid-state synthesis, and
photocatalysis—seek to bypass the energy-intensive Haber-Bosch pro-
cess. These methods promise reduced energy demand and enhanced
integration with variable renewable sources (Klaas et al., 2021). Addi-
tionally, Laimon and Goh, 2024 introduced a framework to repurpose
curtailed renewable electricity for ammonia synthesis, incorporating
capacity factor adjustments and monetising by-products, achieving
levelized costs of $1.5/kg for hydrogen and $401/t for ammonia. This
strategy not only improves economic feasibility but also enhances grid
stability by utilising surplus renewable energy. While the economics and
efficiency of green ammonia production have been widely studied, the
impacts of uncertainties on economic outcomes and plant performance
remain largely unexplored.

Machine Learning (ML) has further accelerated innovation in green
ammonia production, enabling efficient processing of high-dimensional
data, optimising plant performance, and supporting real-time decision-
making (Sarker, 2021; Zaki et al., 2024; Zhang and Jiang, 2018).
ML-driven models have been instrumental in predicting energy con-
sumption, detecting inefficiencies, and suggesting corrective strategies
that lead to cost savings and emission reductions (El-Maghraby et al.,
2024; Qaiyum et al., 2025). Advanced optimisation frameworks and
hybrid systems—such as geothermal-biomass co-production—have
demonstrated improved ammonia yields and reduced environmental
footprints (Yin, 2024; Zayed et al., 2025). Moreover, deep learning and
physics-informed modelling have shown strong potential in optimising
reactor configurations and understanding reaction kinetics, offering
scalable solutions for process enhancement (Deng et al., 2024; Park
et al., 2025). These technological advancements highlight the critical
role of artificial intelligence in elevating technoeconomic analysis,
emissions estimation, and system-wide optimisation within green
ammonia production (Adeli et al., 2024; Lee et al., 2024). However, the
consideration of uncertainties in machine learning—-enhanced analyses is
still rare.

1.2.2. Applications of uncertainty quantification to energy and production
systems

Uncertainty Quantification is a critical framework for assessing the
reliability and resilience of energy systems under variable conditions
(Smith, 2024). It systematically measures uncertainties in system inputs
and outputs, classifying them as either aleatoric (inherent variability) or
epistemic (knowledge-based uncertainty) (Abdar et al., 2021; Helton
et al., 2010; Wang, 2019). While aleatoric uncertainties are irreducible
due to their stochastic nature, epistemic uncertainties can be reduced
through improved data collection (Gholaminezhad et al., 2016). Accu-
rate UQ enables robust performance predictions, which are vital for
decision-making in complex production systems Nannapaneni and
Mahadevan (2014); Zayed et al. (2023) applied a hybrid framework
combining support vector machines and Monte Carlo simulation to
assess how geometric and thermal parameters affect the performance of
a wavy corrugated solar air collector with thermal energy storage. Their
sensitivity analysis of key inputs demonstrated the effectiveness of
data-driven modelling in renewable thermal energy systems. Traditional
UQ methods, such as Monte Carlo simulations, are reliable but
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computationally expensive, making them impractical for large-scale
systems (Knio et al., 2001). To overcome this limitation, surrogate
models like Gaussian Processes (Bilionis and Zabaras, 2012; Tripathy
et al., 2016) and PCE (Najm, 2009; Zhang and Jiang, 2018) have been
developed. PCE, initially introduced by Wiener and later refined
(Egolfopoulos et al., 2014), is particularly effective—it reduces
computational costs while maintaining accuracy in uncertainty propa-
gation, making it ideal for analysing variability in energy and
manufacturing systems.

Despite its importance, UQ is still underexplored in renewable-
powered ammonia production. Few studies have examined how
renewable supply fluctuations, process inefficiencies, and equipment
variability affect outputs in hybrid ammonia systems. Extending UQ
beyond ammonia synthesis to wider energy and manufacturing contexts
is essential for robust, data-driven decision-making. As UQ advances, its
integration into process modelling will be pivotal for improving pre-
dictive reliability and ensuring the long-term viability of sustainable
production systems. However, the high computational cost of such an-
alyses has slowed down the progress on this front. The integration of
machine learning surrogates for real-time predictions remains an
outstanding challenge, emphasising the need for more scalable, high-
fidelity UQ approaches in multi-scale energy and production systems.
For example, Soyler et al. (2023) showed that PCE can be an efficient
alternative to Monte Carlo for assessing fuel composition effects in
ammonia-hydrogen flames. However, even using a one-dimensional
model, their uncertainty analysis of the basic combustion characteris-
tics still required 6000 CPU hours. In a subsequent study, Soyler et al.
(2024) extended the method to NHs/syngas combustion, requiring 1296
samples per simulation—underscoring the persistent computational
challenges in surrogate-based UQ.

1.3. Objectives and novelties

The primary objective of this work is to develop a robust method-
ology for quantifying the effects of uncertainties from multiple sources
on the performance of ammonia production systems, and ultimately on
their economic and environmental outcomes. To this end, we apply UQ
to a hybrid ammonia production system, where performance is affected
by uncertainties in heat exchangers, compressors, and renewable power
supply. As process models become increasingly complex, traditional UQ
methods are computationally prohibitive. To overcome this challenge,
we introduce a novel machine learning-enhanced UQ framework that
integrates an artificial neural network (ANN) surrogate model with
Aspen Plus simulations. The ANN is coupled with the Uncertainty
Quantification Toolkit (UQTK) to enable efficient uncertainty propaga-
tion, dramatically reducing computational cost while maintaining ac-
curacy. This framework allows extensive analysis of uncertainties in
ammonia production, refrigeration generation, GHG emissions reduc-
tion, and revenue—tasks that would otherwise be intractable using
conventional methods.

The key novelty of this work lies in its seamless integration of ML
within the UQ framework, enabling scalable and efficient uncertainty
quantification for hybridised ammonia production. To the best of our
knowledge, this study presents the first uncertainty quantification
analysis of such hybrid ammonia-refrigeration systems and is among the
earliest to apply machine learning techniques to ammonia production
more broadly. By replacing exhaustive simulations with an ML-based
surrogate model, our approach achieves remarkably high computa-
tional efficiency without compromising accuracy, making high-fidelity
UQ feasible for complex, real-world energy systems.

2. Methodology
2.1. System description

Our previous study showed that integrating a green ammonia plant
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with a vapour absorption refrigeration cycle significantly improves en-
ergy and exergy efficiencies while ensuring economic viability and
substantial CO, reduction (Anwar et al., 2024). However, that analysis
did not consider operational uncertainties. Here, we examine six key
uncertain parameters: heat exchanger effectiveness (HE1-HE4),
compressor isentropic efficiency, and electrolyser input power, chosen
for their strong influence on ammonia synthesis and thermal integration
(Rajeh et al., 2024). Heat exchanger effectiveness can vary up to 20 %
due to fouling and degradation (Karimi Shoar et al., 2023; Palmer et al.,
2016; Zubair et al., 2000), compressor efficiency fluctuates by ~6 %
(Gresh, 2018; Jain et al., 2013; Lou et al., 2013), and electrolyser power,
from intermittent renewables, can change by up to 10 % (Lee et al,,
2017; Suberu et al., 2014; Verleysen et al., 2020).

The schematic diagram shown in Fig. 1 represents the integrated
system combining a power to hydrogen unit with Haber-Bosch (HB)
process and waste heat recovery (WHR) i.e. vapour absorption refrig-
eration cycle (VARC). The power to hydrogen and HB sub-systems uti-
lises air, water, and renewable power as inputs, producing green
ammonia as the primary output and generating waste thermal energy as
a byproduct. It is assumed that the renewable power input undergoes
gradual, non-abrupt fluctuations, allowing the system to be modelled
under quasi-steady-state conditions for the purpose of uncertainty
quantification. This waste heat is effectively harnessed by VARC for
refrigeration production, thus forming a hybridised ammonia synthesis
plant. The refrigeration output from VARC represents a low carbon en-
ergy vector with significant economic value (Anwar et al., 2024).

2.2. Aspen Plus model

Aspen Plus V11 was used to conduct process simulations. A detailed
illustration of Aspen Plus simulation models of the hybridised ammonia
production system, incorporating an alkaline water electrolyser (AWE),
air separation unit (ASU), and VARG, is shown in Fig. 2. In this system,
nitrogen was produced through the ASU, hydrogen was generated via
AWE. During electrolysis, water was decomposed in the electrolyser,
producing hydrogen and oxygen. The resulting hydrogen and nitrogen
streams were then supplied to the HB sub-system for ammonia synthesis.
The VARC was integrated with HB through waste heat streams, specif-
ically high-temperature (HT) and low-temperature (LT) streams labelled
HB2-HT and HB2-LT, respectively. To maximise the utilisation of waste
heat, a pre-heating system was introduced. This mechanism utilised hot
outlet streams from the electrolyser, including oxygen streams (02-HT,
02-LT) and hydrogen streams (H2-HT, H2-LT). Additionally, a third pre-
heater was also used to extract heat from the stream HB streams (HB1-
HT, HB1-LT), that hot stream was located preceding to the ammonia
reactor in HB sub-system. This arrangement enhanced thermal effi-
ciency and optimised the recovery of waste heat for the integrated WHR
applications (Anwar et al., 2024). It is important to note here that the
hybridised ammonia production model in Aspen Plus was validated
extensively in our previous work (Anwar et al., 2024). Therefore, the
validation is not repeated here.

Fig. 3 displays the Aspen Plus process models developed for the
hybrid ammonia production system. The system components include:
(1) a cryogenic air separation unit for nitrogen generation (Fig. 3a), (2)
an alkaline water electrolyser for hydrogen production (Fig. 3b)
modelled following Sanchez et al. (2020) with validated performance,
and (3) a Haber-Bosch synthesis loop where ammonia is produced under
high-pressure, high-temperature conditions (Fig. 3c), with model vali-
dation against Ishaq and Dincer (2020) data. For enhanced efficiency
through waste heat recovery, the Haber-Bosch process was thermally
integrated with a VARC. This integration was achieved using two
high-temperature waste heat streams: HB1-HT (upstream of the HB
reactor) and HB2-HT (outlet of high-pressure compressors), which serve
as heat sources for the VARC system through dedicated heat exchangers.
This configuration ensures continuous heat supply while maintaining
energy balance across the hybrid system.
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Fig. 1. Schematic of the investigated power to hydrogen and HB sub-system integrated with VARC, forming the hybridised ammonia production system.
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Fig. 2. Aspen plus model illustration of the hybridised ammonia production system.

2.3. Machine learning

The study employed a NARX-configured feedforward ANN with
autoregressive feedback to model the integrated ammonia production
system. This architecture combines feedforward ANN’s nonlinear
approximation capability with temporal memory through input/output
delays, effectively capturing system dynamics and uncertainty propa-
gation. As shown in Fig. 4, the network comprises an input layer, fifteen
fully connected hidden layers using tansig activation functions, and a
linear output layer (purelin) for continuous regression. Input and feed-
back delays (1-2 timesteps) were incorporated to account for historical
trends in key parameters (renewable power, heat exchanger effective-
ness, compressor efficiency) and outputs (ammonia production, refrig-
eration). The network was first trained in open-loop mode before

conversion to closed-loop for multi-step forecasting. A step-ahead pre-
diction variant was also developed by reducing one delay, enabling
proactive system control through single-timestep anticipation.

The hyperparameter tuning process proceeded in two phases. Initial
baseline configurations were established through empirical evaluation
of delay lengths, hidden layer architecture, learning rates, epoch counts,
and training functions. Subsequently, Bayesian optimisation refined key
parameters—neuron count, learning rate, and regularisation
strength—using a probabilistic surrogate model to minimise cross-
validated MSE while efficiently navigating the search space (Snoek
et al.,, 2012; Z. Wang et al., 2024). This approach optimally balances
exploration and exploitation, particularly valuable for computationally
intensive model evaluations. The final model employed
Levenberg-Marquardt backpropagation (Yang et al., 2021) for rapid
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Fig. 3. Aspen Plus models of (a) ASU, (b) AWE, (c) HB sub-system, (d) VARC.

convergence, achieving excellent predictive performance (R? = 0.967,
MAE = 8.57, RMSE = 11.3, Grayson Index = 0.98). Cross-validation
with multiple input sets from the uncertainty quantification toolkit
confirmed the model’s robustness and generalisation capability. The
surrogate demonstrated both computational efficiency and strong

agreement with Aspen Plus simulations, as evidenced by probability
density function analyses in Section 2.5.1. Once validated, the ML model
was used to predict system behaviour across six configurations (10-20
MW power input), enabling comprehensive UQ analysis without the
computational burden of extensive simulations. The final ANN
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Fig. 4. Architecture of ML model.

predictive model is expressed as:
5’\ :fANN<x) = O'I(WIO'kl ( .

As shown later, this approach significantly enhances computational
efficiency while maintaining precision in UQ analysis.

Co(Whx+bt). . L) +bh) €h)

2.4. Uncertainty quantification

In this study, an open-source UQTK, version 3.1.2 (Bert Debusschere,
2024; Sargsyan et al., 2022) was employed to construct PCE models and
process the resulting data. UQTk works by running the model thousands
of times with different input samples, allowing uncertainty to be prop-
agated through system. A python script was developed to generate
random parameter samples utilising the mean values which can be seen
in Table 1.

The uncertainty in the simulation parameters is represented by Eq.
(2).

Psample =P,u + Prr*gd (2)

Here, Py represents one of the simulation parameters, where its
uncertainty is randomly sampled. The mean value and standard devia-
tion of the corresponding parameters are denoted as P, and is P,,
respectively, that can be seen in Table 1.

In Equation (2), &; represents the random variable components,

referred to as dimensions, which can be expressed as &; = (5HE17§HE27

Table 1

Mean values of uncertain parameters.
Nominal 10 12 14 16 18 20
power input
Mw)

Parameters (P) Mean values

HE1 (kW) 811.37 874.80 979.75 1030.55 1176.94  1313.47
HE2 (kW) 63.12 77.13 91.13 101.72 115.91 126.22
HE3 (kW) 28.53 33.72 38.48 41.76 45.69 48.31
HE4 (kW) 675.84  710.21 765.11 814.68 878.02 913.66
Pin (MW) 10 12 14 16 18 20
Cefr (%) 75 75 75 75 75 75
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Eness EHEa> Epy s ch,,> where d indicates the dimensionality. These random

variables, referred to as quadrature points, are generated according to
the distribution type associated with the orthogonal polynomial series.

Several orthogonal polynomial series from the Wiener-Askey scheme
are available in UQTK, including Laguerre, Jacobi, Hermite, and Leg-
endre polynomials (Xiu and Karniadakis, 2002). The choice of method
for constructing PCE is inherently linked to the distribution type of the
uncertain parameters, such as uniform, normal, or exponential. PCE has
been widely recognised in the literature as a robust method for quanti-
fying uncertainties in complex engineering systems, providing a
computationally efficient means of capturing the statistical properties of
model outputs (Le Maitre et al., 2002; Najm et al., 2009; Reagan et al.,
2005). In this study, the uncertainties in system parameters were
assumed to be uniformly distributed, reflecting bounded variability
without a specific directional bias. Consequently, Legendre polynomials
were selected, as they are well-suited for uniformly distributed random
variables (Mueller et al., 2025; Sargsyan et al., 2022). This choice is
consistent with the steady-state assumptions of the renewable energy
inputs and aligns with prior studies demonstrating the applicability of
Legendre-based PCE for systematic uncertainty propagation in energy
systems (Gillcrist et al., 2024; Xiong et al., 2014). Each uncertain
parameter is defined within the interval [—1,1], allowing for a mathe-
matically structured and representative characterisation of variability
across the input space.

Consequently, Eq. (3) represents the PCE of a simulation output (4).

P
A= Ce¥i(&y) 3)
k=0

Here, A represents a simulation output (i.e. ammonia production and
refrigeration generation from hybridised ammonia production system),
P represents the order of the polynomial chaos expansion model, while
¥i(¢) denotes the multidimensional orthogonal polynomial chaos
Legendre-Uniform basis functions. The coefficients C; corresponds to the
PCE coefficients.

In UQTK, the methods to perform quadrature integration are either
the sparse tensor product method or full tensor product method. For full
tensor product technique, the function must be integrate using the
quadrature points (&), and their number is determined by (Nord)d,
where Noqg = P+1 is the order of expansion. In this study, P was set to

three, resulting in (34 1)® = 4096 is quadrature points used for the
integration. It is crucial to highlight that in high-dimensional problems,
this technique demands significantly more computational resources,
leading to the issue known as the curse of dimensionality (Indyk and
Motwani, 1998). Furthermore, growing the order of PCE beyond a
certain threshold does not always improve the results.

For balance accuracy and computational efficiency, a third-order
PCE analysis was chosen for this study. Increasing the order substan-
tially amplifies the computational cost, as it scales the random sample
numbers (Nog)®, for instance, 6 ¢ = 46,656.

The 4096 quadrature points in ¢ are transformed into 4096 Pyl
values using Eq. (1). These Pygmp. simulations then performed in Aspen
Plus to compute outputs, ammonia production and refrigeration gen-
eration, across nominal power inputs of the hybridised ammonia pro-
duction system.

To determine the coefficients Cy, the non-intrusive spectral projec-
tion method is employed, utilising Gauss-Legendre quadrature integra-
tion (Jansohn, 2013) as described in Eq. (4).

@) _
(Fi* (&)

1 1
g | fenenedok=0..p @

where (&) denotes the germ samples and 7(¢) represents the PDF for each
input parameters mentioned in Table 1.

Global sensitivity analysis plays a crucial role in UQ as it identifies
the parameters that most significantly impact the output (Kucherenko
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and Song, 2017). In this study, Sobol’ indices, a widely used method for
sensitivity analysis, were applied. Eq. (5) was used to compute the
sensitivity index to measure the contribution of the variance of single
parameter to the overall output variance.

1 2
Sq :mzid (¥a?)

Here, S, denotes the sensitivity which is associated to the dimension
(d) and corresponds to the number of uncertain parameters. V[4] rep-
resents the total variance. For example, the total variance of the outputs
(i.e. NH3 production and refrigeration generation) can be expressed as
shown in Eq. (6).

VINHs /ref] = > u>#i’
k>0

(5)

(6)

The numerator in Eq. (5) can be further expressed as shown in Eq.
(7). For this study, the dimensionality d = 6, the total order P = 3, and
the number of PC terms is calculated as N = (d + P)!/(d!P!) = 84. The
first term in Eq. (7) corresponds to the mean value without any deviation
and is thus equal to zero.

Var(NHs / ref) = 0+ 21212 + 12212 4 15212 4 042 P52

+ 25212 + ... (84 terms) @)

2.5. Machine learning enhanced uncertainty quantification

The conventional UQ approach using Aspen Plus simulations
required 4096 simulations per nominal power input, resulting in over
1050 CPU hours. Simulations were performed on a Dell XPS 17 9700
with an 11th Gen Intel Core i9-11900H CPU @ 2.50 GHz and 64 GB
RAM. Extending this analysis across nominal power inputs from 10 MW
to 20 MW—reflecting typical scales of modular green ammonia systems
powered by intermittent renewable sources (Chitransh and Bindal,
2021; Yuen et al., 2010; Y. Zhang et al., 2023)—made exhaustive direct
simulations computationally infeasible.

To overcome this limitation, we developed a novel machine lear-
ning-enhanced UQ framework by integrating an artificial neural
network (ANN) surrogate with Aspen Plus simulations. This approach
drastically reduces computational overhead while maintaining high
predictive fidelity. Embedding the ANN within the UQ workflow

Journal of Cleaner Production 527 (2025) 146702

achieved a three-order-of-magnitude reduction in computational cost
compared to direct simulation. For example, analysing six system ca-
pacities (10-20 MW) with conventional simulations would require over
24,000 full-process runs, totalling approximately 6300 CPU hours. In
contrast, once trained, the ANN model completed the same uncertainty
propagation in under 7 h on the same hardware. This efficiency becomes
even more critical as system complexity increases. Moreover, the
framework is simulation-agnostic and scalable, allowing integration
with platforms such as ANSYS, Aspen Plus, COMSOL, or MATLAB/
Simulink. Its main strength is enabling rigorous uncertainty analysis for
complex, nonlinear, and tightly coupled energy systems that are other-
wise intractable with conventional methods.

We focused on six critical uncertain parameters: four heat exchanger
effectiveness values (HE1-HE4), compressor efficiency (Ceff), and elec-
trolyser power input (Pj,). Using UQTKk, these parameters were sys-
tematically sampled to ensure comprehensive coverage of the input
space. The sampled inputs were processed through Aspen Plus to
generate outputs for ammonia production and refrigeration generation.
Unlike traditional direct simulations, the ANN surrogate replaces Aspen
Plus runs, as illustrated in Fig. 5. While ML-UQ approaches have been
applied in other engineering domains, this represents one of the first
implementations tailored to hybrid green ammonia systems, providing a
scalable alternative for UQ in this emerging field.

The ANN model was trained on the Aspen Plus simulation data, with
its parameters optimised to minimise prediction error. Once validated,
the ML-based model performed the UQ analysis in place of the full
simulation. This integration greatly reduced computational time and
resource usage while efficiently predicting system outputs—ammonia
production, refrigeration generation, GHG emission reduction, and
revenue—across the parameter space. By replacing exhaustive simula-
tions that would have been prohibitive for large-scale analyses, the ML
surrogate enabled comprehensive uncertainty quantification. This
approach not only streamlines the analysis process but also supports
timely, resource-efficient decision-making, highlighting the substantial
benefits of ML-enhanced UQ in complex energy systems.

2.5.1. ML model validation

The ML model was rigorously validated through multiple ap-
proaches, including R? evaluation, output distribution comparisons, and
uncertainty quantification assessment. Through iterative dataset

Aspen Plus
Simulations

Training and
Validation

Uncertainty

[}

quantification
tool kit (UQTKk) )

L&

Machine learning
pseudo model

Integrated modelling approach

Fig. 5. Schematic representation of the novel ‘ML enhanced UQ analysis’ for the hybridised ammonia production system.
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expansion, the model achieved strong predictive performance (R? =
0.97, MAE = 8.57, RMSE = 11.3), demonstrating excellent agreement
with Aspen Plus simulations. Cross-validation using alternative UQTk-
generated sample sets confirmed consistent performance across
different data subsets, supporting framework reliability.

For model development, the dataset was progressively expanded and
partitioned into 70 % training, 15 % validation, and 15 % test sets.
Additional cross-validation using completely unseen “blind” data
further verified the model’s ability to accurately predict system behav-
iour under varying conditions. Fig. 6 compares probability density
functions (PDFs) between Aspen Plus simulations and data-driven model
results for both ammonia production and refrigeration generation. The
ammonia production PDF shows a uniform distribution (Fig. 6a),
reflecting linear variation propagation primarily influenced by input
power and two heat exchangers. In contrast, refrigeration generation
exhibits a normal distribution (Fig. 6b, bell-shaped curve), resulting
from the combined effects of multiple interacting uncertainties (input
power, several heat exchangers, compressor efficiency) following Cen-
tral Limit Theorem principles (Davidson, 1994; Spanos, 1986).

The excellent agreement between simulation and DDM results across
both output metrics validates the model’s accuracy for comprehensive
uncertainty quantification analysis. This confirmation enables reliable
use of the data-driven approach for further system investigations
without requiring additional computationally intensive simulations.

3. Results and discussion
3.1. UQ analysis

Fig. 7 presents the Pearson correlation heatmap analysing relation-
ships between input parameters and system outputs in the hybrid
ammonia production system (Ustiin et al., 2024). The heatmap evaluates
correlations between six uncertain inputs - heat exchanger effectiveness
values HE1 through HE4, power input Pin, and compressor efficiency
(Cefp), and two key outputs: ammonia production (NHg) and refrigera-
tion generation (Ref). The diagonal elements naturally display perfect
correlation coefficients of one, representing each parameter’s correla-
tion with itself.

The analysis reveals statistically significant positive correlations
between power input Pin and both system outputs, with p-values of
0.009 for ammonia production and 0.007 for refrigeration generation,
underscoring Pin’s critical influence on system performance. Among the
heat exchangers, HE1 and HE4 show meaningful correlations with
outputs (p = 0.016-0.038), confirming their substantial contribution to
heat recovery efficiency. In contrast, HE2, HE3 and compressor effi-
ciency Cesr demonstrate weaker correlations (p > 0.1) with both NH3 and
Ref production, indicating their relatively minor impact under the
examined operating conditions. These quantitative insights help identify
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Fig. 7. Heatmap of Pearson

output parameters.

correlation between the input and

the most influential parameters for system optimisation while high-
lighting components where performance improvements would yield
limited benefits.

The correlation patterns align with the system’s thermodynamic
behaviour, where power input and primary heat exchangers dominate
the energy conversion processes, while secondary heat exchangers and
compression efficiency play more peripheral roles in overall perfor-
mance. These findings provide valuable guidance for prioritising oper-
ational monitoring and maintenance efforts in the hybrid ammonia
production system.

More results are produced by using UQTk to generate the combina-
tion of input parameters and data driven model was used to generate
results with respect to that specific combination of parameters. Fig. 8
shows the PDFs of different scaled HB sub-system for ammonia pro-
duction and refrigeration from hybridised HB and vapour absorption
refrigeration cycle. Fig. 8a presents the uniformly distributed curve of
the minimum and maximum values of ammonia production, along with
the system’s PDF across the 10 MW-20 MW range. In contrast, Fig. 8b
illustrates the minimum and maximum values of refrigeration genera-
tion from hybridised ammonia production system for nominal power
inputs (10 MW-20 MW), where the PDF follows a bell-shaped (normal)
distribution. The difference in probability density function shapes be-
tween Fig. 8a and b is driven by the distinct uncertainty propagation
mechanisms in ammonia and refrigeration production. Ammonia pro-
duction followed a uniform distribution, suggesting that input
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Fig. 6. Validation of ML model, comparison of the ML and simulations-based PDFs of (a) ammonia production, (b) refrigeration.
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uncertainties were evenly distributed, leading to a uniform spread of
output values. In contrast, refrigeration production exhibits a normal
distribution due to the nonlinear interactions of uncertain parameters
introduced by the VARC in hybridised ammonia production system. The
combined effects of uncertainties, resulting in a bell-shaped distribution
where values concentrate around a mean. This distinction underscores
the differing stochastic behaviour of ammonia and refrigeration pro-
duction in the hybridised system.

Fig. 9 shows the effect of uncertainty in input parameters (showed in
Table 1) on ammonia production and refrigeration generation from
hybridised ammonia production system. Fig. 9a shows the variation in
the ammonia production due to the uncertainties in HB sub-systems for
nominal power inputs. Overall, approximately 18 % variability in the
ammonia production is noticed due to the uncertainty in the perfor-
mance of heat exchangers, compressors, and input power. Similarly,
Fig. 9b shows the variation in the refrigeration production due to the
uncertainties in hybridised ammonia production systems for nominal
power inputs. Uncertainty in the performance of heat exchangers,
compressors, and power input led to a 30 % variation in refrigeration
production by the VARC system when coupled with the HB sub-system.
This significant variation is expected due to the VARC system’s heavy
reliance on heat exchangers. A reduction in heat exchanger effectiveness
can directly cause up to a 30 % decline in VARC output. In contrast, the
smaller variation observed in ammonia production is due to the HB sub-
system being less dependent on heat exchanger performance compared
to VARC system.

Fig. 10 presents the sensitivity analysis of uncertainties in 10-20 MW
HB sub-systems and hybridised ammonia production systems. Fig. 10a
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illustrates the sensitivity of uncertain components affecting ammonia
production in the HB sub-system, while Fig. 10b highlights the impact of
component performance uncertainties on refrigeration generation
within the hybridised ammonia production system.

In both cases—ammonia production and refrigeration—the most
sensitive variable is the power supply (Pj,) which is almost 50 % in case
with Fig. 10a and more than 50 % if we look at Fig. 10b. This is due to its
role as the primary energy supplier of the whole hybridised system.
Another significant source of uncertainty is the effectiveness of heat
exchangers which is within 12 %-18 % range. HE1 is responsible for
cooling the gas mixture to 350 °C before it enters the HB reactor. In the
hybridised system, this heat exchanger also functions as a preheater
when integrated with VARC. Consequently, any uncertainty in its
effectiveness affects the output of both systems.

HE2 and HE3 represent uncertainties in the effectiveness of the heat
exchangers used to cool the hydrogen and oxygen streams exiting the
water electrolyser. Since these streams have moderate temperatures
(70-90 °C), variations in their effectiveness have minimal impact (less
than 5 %) on ammonia production. However, in the hybridised ammonia
production system for refrigeration, these heat exchangers serve as
preheaters in the VARC, meaning their performance uncertainty directly
influences system output (5 %-10 %). HE4 is the heat exchanger
responsible for cooling the gas mixture downstream of the HB reactor to
separate ammonia from the unreacted mixture. In the hybridised sys-
tem, this heat exchanger also connects the HB sub-system to VARC.
Therefore, any inefficiency in HE4 due to performance uncertainty has a
more pronounced impact on the overall system (23 %-33 %). Addi-
tionally, Cef represents the impact of uncertainty in the compressor’s
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Refrigeration (MW)

0.5

().()] 0

14 16
Nominal power input (MW)

20

Fig. 9. Effects of input parameters variability on (a) ammonia production, (b) refrigeration generation.
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isentropic efficiency, further influencing system performance.

Fig. 11 presents the coefficient of variance (see (Brown, 1998) for
definition) of ammonia production from HB sub-system and refrigera-
tion generation from the hybridised ammonia production system. The
trend of CoV for both ammonia production and refrigeration generation
are similar. It can be seen that as the capacity of HB sub-system in-
creases, the values of CoV converges towards a reasonable range for
complex engineering systems, i.e. 15-20 % (Shechtman, 2013). Overall,
for both HB sub-system for ammonia production and hybridised
ammonia production system for refrigeration generation, the data for
CoV are in acceptable ranges. It can be noticed that as the capacity of the
system increases the CoV becomes more stable. This behaviour might be
because as the system capacity increases, the production of ammonia
and refrigeration increases significantly, which increases the mean value
and the corresponding uncertainties does not increase to the same
extend, lowering the impact of uncertainties.

For better understanding, an analysis is conducted to observe the
impact of individual uncertainties in the system on ammonia production
and refrigeration generation. Fig. 12 shows the range of variation in
ammonia production due to the uncertainties in performance of the
components of HB sub-system. Fig. 12a shows the range in variation in
the ammonia production which is around 50 %. This is due to the un-
certain power input because of intermittent power supply from renew-
able energy sources. Fig. 12b and c presents the variation range in
ammonia production due to the uncertainties in the effectiveness of heat
exchangers (HE1, HE4). The effectiveness of heat exchangers is the
cause of the remaining 50 % of the overall uncertainty in the system.
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Fig. 12d shows the range in variation in output due to the uncertainty in
compressor efficiencies (Cefr) over time. Clearly, the most significant
impact on output is due to the uncertainty in power input. In contrast,
the variations in the output caused due to the uncertainty in the effec-
tiveness of heat exchangers are comparatively much smaller. Never-
theless, both combined could lead to up to 50 % of the overall
uncertainties in the HB sub-system.

Similarly, Fig. 13 shows the variation range in ammonia production
due to the uncertainties in hybridised ammonia production system for
nominal power inputs. Fig. 13a shows the variation range in the output
due to the uncertainty in the power supply, which could be significant
due to the intermittent supply of renewable power. Fig. 13b shows the
variation range in refrigeration generation due to the uncertainty in heat
exchanger (HE1) which is one of the three preheaters in VARC and
extract waste heat from HB sub-system.

Figs. 13c and 12d present the variation range in refrigeration caused
by the uncertainties in the effectiveness of heat exchangers. These two
heat exchangers (HE2, HE3), which are the other two preheaters in
VARC are transferring waste heat from water electrolyser hydrogen and
oxygen outlet streams. It can be noticed the variation range (2 %-4 %) is
not significant as the heat extraction from water electrolyser streams is
relatively small (Anwar et al., 2024). Fig. 13e illustrates the range of
variations in refrigeration output caused by uncertainty in the effec-
tiveness of the heat exchanger (HE4), which connects the HB sub-system
to the VARC. As the primary component of WHR in the hybridised
ammonia production system, this heat exchanger plays a crucial role in
transferring thermal energy to the VARC. Any uncertainty in its effec-
tiveness has a significant impact, potentially leading to fluctuations
exceeding 20 % in refrigeration generation.

Fig. 13f presents the variations in system output resulting from un-
certainties in compressor efficiencies (Ceff). Overall, the results indicate
that uncertainty in power input has the most substantial influence on
system performance. Additionally, variations in heat exchanger effec-
tiveness contribute significantly, accounting for approximately 50 % of
the total uncertainties in the hybridised ammonia production system.

3.2. Environmental and economic analysis

The environmental analysis adopted U.S. energy sector assumptions
from the EIA (EIA, 2022), where electricity generation is sourced from
natural gas (40 %), coal (20 %), nuclear (18 %), and renewables (22 %).
This mix results in substantial GHG emissions: 80 % CO; (0.85 kg/kWh),
11 % CHy (0.015 kg/kWh), and 6.1 % N20 (0.001 kg/kWh). The
assessment assumed that conventional vapour compression refrigeration
requires 284.33 W of electric power per kilowatt of cooling (EIA, 2022).
By integrating a renewable-powered HB process with a VARG, the sys-
tem recovers waste heat to provide cooling, thereby reducing emis-
sions—although the extent of reduction is influenced by system
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the HB sub-system for different values of the nominal power input.

uncertainties. The VARC’s cooling output replaces that which would
otherwise be generated by electricity-intensive vapour compression
systems, serving as a low-carbon energy vector since it is derived from
renewable sources rather than fossil fuels.

For a 20 MW HB system hybridised with VARC, refrigeration gen-
eration reaches approximately 2.163 MW (204.8 tonnes of refrigera-
tion), displacing conventional electricity needs estimated at 0.721 MW
(assuming a COP of 3). Fig. 14 demonstrates that system uncertainties
create significant variations in environmental benefits - up to 30 %
fluctuation in refrigeration output and 40-50 % variation in GHG re-
ductions. Since the refrigeration cycle directly offsets conventional en-
ergy demand, any output reduction proportionally increases grid/fossil
fuel dependence, elevating emissions. This sensitivity highlights refrig-
eration stability’s critical role in maximising carbon credits and mini-
mising environmental impact (Chen et al., 2022; Woo et al., 2021),
emphasising the need to address uncertainties for optimising the sys-
tem’s sustainability performance.

It should be noted that the current environmental assessment focuses
on avoided operational carbon emissions under uncertainty. Embodied
carbon from infrastructure and system components is assumed fixed and
excluded, so the results reflect changes in emission reduction potential
due to operational variability rather than the total lifecycle footprint.

In Fig. 15, the overview of the variation in the annual revenue due to
the uncertainties in hybridised ammonia production systems for nomi-
nal power inputs is illustrated. The calculations and discussions of LCOA
and the associated CAPEX and OPEX were reported in a recent study
(Anwar et al., 2024). The LCOA for the HB sub-system was determined
to be 0.65 $/kg, aligning well with the literature-reported range of
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0.58-1.2 $/kg (Nayak-Luke et al., 2018a). It was established from the
previous study that the LCOA of HB sub-system remains practically
neutral when integrated with VARC, this is due to the reason that the
extra installation overheads of VARC were balanced from the savings
achieved through the produced refrigeration. The following Eq. (8)
presents the equation for LCOA estimation (Nayak-Luke et al., 2018b;
Osman et al., 2020).

n
Z Ie+M+E;
(1+7)°

LCOA=2Y (8)

where ‘Iy’ represents the capital cost, ‘M denotes the operation or
maintenance cost, ‘Et’ is the utility cost which is the cost of electricity in
the current scenario and was assumed to be $0.03/kWh (EIA, 2022), ‘Gt
represents the production generation, ‘t’ is the project life span, “r’
shows the discount rate, which is 8 %, ‘n’ here is the number of years,
which was assumed to be 10 years and cost of ammonia was assumed to
be $0.61/kg (EIA, 2022; Liu et al., 2024).

However, this claim has been made without the consideration of
uncertainties in the system. Considering those uncertainties, 30-40 % of
the variation in the annual revenue generation from refrigeration is
observed. Accounting the uncertainties, the value of LCOA increased
from 0.65 $/kg to 0.68 $/kg, escalated by 5 %, highlighting the eco-
nomic impact of variability. The 30-40 % fluctuation in annual refrig-
eration revenue underscores the need to account the uncertainty
quantification to ensure the economic viability of integrated ammonia
production.
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4. Conclusions

This study introduced a robust machine learning—enhanced uncer-
tainty quantification (ML-UQ) framework to evaluate the tech-
noeconomic and environmental performance of a hybrid ammonia
production system powered by renewable energy. High-fidelity Aspen
Plus simulations were performed across six nominal power inputs
(10-20 MW) to generate a dataset for training a feedforward artificial
neural network (ANN) with autoregressive feedback. The ANN surrogate

13

accurately captured the complex nonlinear interactions among six key
uncertain parameters—renewable power input, four heat exchanger
effectiveness values, and compressor efficiency—and critical outputs,
including ammonia production and refrigeration capacity. Statistical
metrics confirmed its predictive fidelity: R? = 0.97, MAE = 8.57, RMSE
= 11.3, and Grayson Index = 0.98, validating its use for subsequent
uncertainty propagation via polynomial chaos expansion. UQ analysis
revealed strong sensitivity of system outputs to parameter uncertainties:
ammonia production varied by up to 18 %, refrigeration output by 30 %,
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and CO; emissions reduction potential by 40-50 %. Heat exchanger
effectiveness emerged as the dominant contributor, accounting for
nearly 50 % of total variability. Economically, uncertainties led to a
modest 5 % increase in the levelized cost of ammonia, with 30-40 %
variability in annual refrigeration revenue. The ML-UQ methodology
enabled a scalable and computationally efficient assessment of
nonlinear system behaviour under uncertainty, reducing computational
cost by three orders of magnitude while maintaining high predictive
accuracy. This efficiency facilitates analysis of complex, large-scale
systems and provides critical insights into the resilience and reliability
of renewable-integrated ammonia processes under quasi-steady-state
conditions. While the study assumed independent, uniformly distrib-
uted uncertainties and did not capture short-term dynamics, it lays a
foundation for future work incorporating unsteady-state effects, tem-
poral dynamics, and correlated or non-uniform inputs to more closely
reflect real-world operations. Overall, this work advances surrogate-
assisted UQ and demonstrates the value of combining machine
learning with process modelling for the optimisation of next-generation
sustainable energy technologies. The proposed framework is general-
isable and practical, offering an effective approach for uncertainty-
aware decision-making in complex energy and manufacturing systems.
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