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H I G H L I G H T S

• ML–enhanced UQ approach cuts computational cost while ensuring high accuracy.
• Analysis shows 18 % NH3 production and 30 % refrigeration output variability.
• Heat exchanger effectiveness drives 50 % of system uncertainty.
• System uncertainties cause 40–50 % variation in CO2 reduction potential.
• Economic impact: 30–40 % refrigeration revenue and 5 % LCOA fluctuation.
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A B S T R A C T

Renewable-powered ammonia production is a promising route for sustainable energy and hydrogen storage but is 
highly sensitive to operational uncertainty from variable power supply and component performance. This study 
presents a novel machine learning–enhanced uncertainty quantification (ML-UQ) framework that, for the first 
time, integrates a high-fidelity surrogate model—an artificial neural network with autoregressive feedback—into 
Aspen Plus simulations of a hybrid ammonia production system coupled with a vapour absorption refrigeration 
unit for heat recovery. The framework captures nonlinear interactions among six critical uncertain parameters, 
including renewable power variability, heat exchanger effectiveness, and compressor efficiency. It reduces the 
computational cost by three orders of magnitude while maintaining high predictive accuracy (R2 = 0.97, MAE =
8.57, RMSE = 11.3). The ANN surrogate enables scalable uncertainty propagation via polynomial chaos 
expansion. Results show that, across nominal power levels of 10–20 MW, uncertainties can cause up to 18 % 
variation in ammonia output, 30 % in refrigeration, and 40–50 % in CO2 emissions reduction. Heat exchanger 
effectiveness alone accounts for nearly 50 % of total variability. Economic analysis indicates a 5 % increase in the 
levelized cost of ammonia and 30–40 % variation in annual refrigeration revenue. This work delivers the first 
computationally feasible, ML-assisted surrogate-based UQ framework for hybrid green ammonia systems. More 
broadly, it offers a practical and readily scalable tool for designing resilient, economically viable, and low-carbon 
energy and chemical manufacturing systems.

Nomenclature:

AWE Alkaline water electrolyser
σl Activation function elementwise
ASU Air separation unit
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bl Bias vector
Ceff Compressor’s isentropic efficiency
Ck PCE coefficients
CPU Central processing unit
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(continued )

CoV Coefficient of variation
d Dimension
GHG Greenhouse gasses
HB Haber Bosch
HPC High performance computer cluster
λ Simulation outputs
ξ Quadrature points
LCOA Levelized cost of ammonia
N Number of PCE terms
Nord Parameter used for quadrature point generation
P Order of PCE model
PCE Polynomial chaos expansion
PDF Probability density function
Psample Sample parameters
S Main sensitivity
SD Standard deviation
UQ Uncertainty quantification
UQTk Uncertainty quantification tool kit
VARC Vapour absorption refrigeration cycle
Wl Weight matrix
Ψk Multidimensional orthogonal polynomials
WHR Waste heat recovery
x Uncertain parameter
ŷ Outputs
π Probability density function (PDF)

1. Introduction

1.1. Background

The increasing utilisation of renewable power sources, particularly 
wind and solar photovoltaic, presents challenges due to their inherent 
variability and intermittency, thereby necessitating efficient and scal
able energy storage solutions (Almodfer et al., 2022; Y. Wang et al., 
2024). Among the various energy carriers, hydrogen has emerged as a 
promising long-term option, particularly in its green form—produced 
via water electrolysis powered by renewable energy (Samitha Weer
akoon and Assadi, 2024), the practical deployment of hydrogen is con
strained by high storage costs, energy-intensive liquefaction processes, 
and transportation safety concerns (T. Zhang et al., 2023). In this 
context, ammonia is gaining recognition as an alternative hydrogen 
carrier, owing to its higher volumetric energy density, ease of storage 
under moderate pressure and temperature, and existing global infra
structure for handling and distribution (Díaz-Motta et al., 2023; Xing 
and Jiang, 2024). Despite these advantages, ammonia synthesis is highly 
sensitive to fluctuations in renewable power supply, leading to opera
tional uncertainties that challenge the economic viability (Rehman 
et al., 2024; Verleysen et al., 2020). However, systematic, and 
cost-effective evaluation of these uncertainties remains unexplored and 
calls for further research.

1.2. Literature review

1.2.1. Green ammonia production
Recent advancements have focused on decarbonising ammonia 

production through the integration of renewable energy sources, 
enhancing both economic viability and sustainability. For instance, 
Shamsi et al. (2024) demonstrated a geothermal-powered polygenera
tion system that integrates a PEM electrolyser, an organic Rankine cycle, 
and an air separation unit, co-producing ammonia, electricity, oxygen, 
and thermal energy. This configuration achieved an ammonia output of 
2.085 kg/s at a competitive cost of $2.24/kg with a payback period of 
just three years, underscoring the feasibility of geothermal-based syn
thesis. Electrolyser selection has also proven critical; Nami et al. (2024)
compared alkaline (AEC) and solid oxide (SOEC) electrolysers, revealing 
that while AEC is cost-effective today, SOEC’s higher efficiency and 
thermal integration capabilities could reduce production costs to 340 €/t 
with low-cost electricity (10 €/MWh), making it competitive with 

fossil-based ammonia. To further expand renewable integration, 
decentralised ammonia production systems leveraging biomass gasifi
cation, biogas reforming, and electrolysis have been modelled in Aspen 
Plus, maintaining consistent primary energy consumption (~14–15 
kW/kg NH3) without compromising process efficiency (Frattini et al., 
2016). To further optimise energy and exergy efficiencies, a recent study 
(Anwar et al., 2024) conducted 4 E analysis (energy, exergy environ
ment and economy) and compared waste heat recovery methods in 
green ammonia plants. It was found that the vapour absorption refrig
eration cycle significantly outperforms the Kalina cycle by enhancing 
energy efficiency by 8 %, improving exergy efficiency by 11 %, and 
quadrupling emission savings, all while maintaining cost-effectiveness. 
Beyond traditional methods, emerging low-pressure synthesis techni
ques—including thermochemical looping, solid-state synthesis, and 
photocatalysis—seek to bypass the energy-intensive Haber–Bosch pro
cess. These methods promise reduced energy demand and enhanced 
integration with variable renewable sources (Klaas et al., 2021). Addi
tionally, Laimon and Goh, 2024 introduced a framework to repurpose 
curtailed renewable electricity for ammonia synthesis, incorporating 
capacity factor adjustments and monetising by-products, achieving 
levelized costs of $1.5/kg for hydrogen and $401/t for ammonia. This 
strategy not only improves economic feasibility but also enhances grid 
stability by utilising surplus renewable energy. While the economics and 
efficiency of green ammonia production have been widely studied, the 
impacts of uncertainties on economic outcomes and plant performance 
remain largely unexplored.

Machine Learning (ML) has further accelerated innovation in green 
ammonia production, enabling efficient processing of high-dimensional 
data, optimising plant performance, and supporting real-time decision- 
making (Sarker, 2021; Zaki et al., 2024; Zhang and Jiang, 2018). 
ML-driven models have been instrumental in predicting energy con
sumption, detecting inefficiencies, and suggesting corrective strategies 
that lead to cost savings and emission reductions (El-Maghraby et al., 
2024; Qaiyum et al., 2025). Advanced optimisation frameworks and 
hybrid systems—such as geothermal-biomass co-production—have 
demonstrated improved ammonia yields and reduced environmental 
footprints (Yin, 2024; Zayed et al., 2025). Moreover, deep learning and 
physics-informed modelling have shown strong potential in optimising 
reactor configurations and understanding reaction kinetics, offering 
scalable solutions for process enhancement (Deng et al., 2024; Park 
et al., 2025). These technological advancements highlight the critical 
role of artificial intelligence in elevating technoeconomic analysis, 
emissions estimation, and system-wide optimisation within green 
ammonia production (Adeli et al., 2024; Lee et al., 2024). However, the 
consideration of uncertainties in machine learning–enhanced analyses is 
still rare.

1.2.2. Applications of uncertainty quantification to energy and production 
systems

Uncertainty Quantification is a critical framework for assessing the 
reliability and resilience of energy systems under variable conditions 
(Smith, 2024). It systematically measures uncertainties in system inputs 
and outputs, classifying them as either aleatoric (inherent variability) or 
epistemic (knowledge-based uncertainty) (Abdar et al., 2021; Helton 
et al., 2010; Wang, 2019). While aleatoric uncertainties are irreducible 
due to their stochastic nature, epistemic uncertainties can be reduced 
through improved data collection (Gholaminezhad et al., 2016). Accu
rate UQ enables robust performance predictions, which are vital for 
decision-making in complex production systems Nannapaneni and 
Mahadevan (2014); Zayed et al. (2023) applied a hybrid framework 
combining support vector machines and Monte Carlo simulation to 
assess how geometric and thermal parameters affect the performance of 
a wavy corrugated solar air collector with thermal energy storage. Their 
sensitivity analysis of key inputs demonstrated the effectiveness of 
data-driven modelling in renewable thermal energy systems. Traditional 
UQ methods, such as Monte Carlo simulations, are reliable but 
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computationally expensive, making them impractical for large-scale 
systems (Knio et al., 2001). To overcome this limitation, surrogate 
models like Gaussian Processes (Bilionis and Zabaras, 2012; Tripathy 
et al., 2016) and PCE (Najm, 2009; Zhang and Jiang, 2018) have been 
developed. PCE, initially introduced by Wiener and later refined 
(Egolfopoulos et al., 2014), is particularly effective—it reduces 
computational costs while maintaining accuracy in uncertainty propa
gation, making it ideal for analysing variability in energy and 
manufacturing systems.

Despite its importance, UQ is still underexplored in renewable- 
powered ammonia production. Few studies have examined how 
renewable supply fluctuations, process inefficiencies, and equipment 
variability affect outputs in hybrid ammonia systems. Extending UQ 
beyond ammonia synthesis to wider energy and manufacturing contexts 
is essential for robust, data-driven decision-making. As UQ advances, its 
integration into process modelling will be pivotal for improving pre
dictive reliability and ensuring the long-term viability of sustainable 
production systems. However, the high computational cost of such an
alyses has slowed down the progress on this front. The integration of 
machine learning surrogates for real-time predictions remains an 
outstanding challenge, emphasising the need for more scalable, high- 
fidelity UQ approaches in multi-scale energy and production systems. 
For example, Soyler et al. (2023) showed that PCE can be an efficient 
alternative to Monte Carlo for assessing fuel composition effects in 
ammonia–hydrogen flames. However, even using a one-dimensional 
model, their uncertainty analysis of the basic combustion characteris
tics still required 6000 CPU hours. In a subsequent study, Soyler et al. 
(2024) extended the method to NH3/syngas combustion, requiring 1296 
samples per simulation—underscoring the persistent computational 
challenges in surrogate-based UQ.

1.3. Objectives and novelties

The primary objective of this work is to develop a robust method
ology for quantifying the effects of uncertainties from multiple sources 
on the performance of ammonia production systems, and ultimately on 
their economic and environmental outcomes. To this end, we apply UQ 
to a hybrid ammonia production system, where performance is affected 
by uncertainties in heat exchangers, compressors, and renewable power 
supply. As process models become increasingly complex, traditional UQ 
methods are computationally prohibitive. To overcome this challenge, 
we introduce a novel machine learning–enhanced UQ framework that 
integrates an artificial neural network (ANN) surrogate model with 
Aspen Plus simulations. The ANN is coupled with the Uncertainty 
Quantification Toolkit (UQTk) to enable efficient uncertainty propaga
tion, dramatically reducing computational cost while maintaining ac
curacy. This framework allows extensive analysis of uncertainties in 
ammonia production, refrigeration generation, GHG emissions reduc
tion, and revenue—tasks that would otherwise be intractable using 
conventional methods.

The key novelty of this work lies in its seamless integration of ML 
within the UQ framework, enabling scalable and efficient uncertainty 
quantification for hybridised ammonia production. To the best of our 
knowledge, this study presents the first uncertainty quantification 
analysis of such hybrid ammonia-refrigeration systems and is among the 
earliest to apply machine learning techniques to ammonia production 
more broadly. By replacing exhaustive simulations with an ML-based 
surrogate model, our approach achieves remarkably high computa
tional efficiency without compromising accuracy, making high-fidelity 
UQ feasible for complex, real-world energy systems.

2. Methodology

2.1. System description

Our previous study showed that integrating a green ammonia plant 

with a vapour absorption refrigeration cycle significantly improves en
ergy and exergy efficiencies while ensuring economic viability and 
substantial CO2 reduction (Anwar et al., 2024). However, that analysis 
did not consider operational uncertainties. Here, we examine six key 
uncertain parameters: heat exchanger effectiveness (HE1–HE4), 
compressor isentropic efficiency, and electrolyser input power, chosen 
for their strong influence on ammonia synthesis and thermal integration 
(Rajeh et al., 2024). Heat exchanger effectiveness can vary up to 20 % 
due to fouling and degradation (Karimi Shoar et al., 2023; Palmer et al., 
2016; Zubair et al., 2000), compressor efficiency fluctuates by ~6 % 
(Gresh, 2018; Jain et al., 2013; Lou et al., 2013), and electrolyser power, 
from intermittent renewables, can change by up to 10 % (Lee et al., 
2017; Suberu et al., 2014; Verleysen et al., 2020).

The schematic diagram shown in Fig. 1 represents the integrated 
system combining a power to hydrogen unit with Haber-Bosch (HB) 
process and waste heat recovery (WHR) i.e. vapour absorption refrig
eration cycle (VARC). The power to hydrogen and HB sub-systems uti
lises air, water, and renewable power as inputs, producing green 
ammonia as the primary output and generating waste thermal energy as 
a byproduct. It is assumed that the renewable power input undergoes 
gradual, non-abrupt fluctuations, allowing the system to be modelled 
under quasi-steady-state conditions for the purpose of uncertainty 
quantification. This waste heat is effectively harnessed by VARC for 
refrigeration production, thus forming a hybridised ammonia synthesis 
plant. The refrigeration output from VARC represents a low carbon en
ergy vector with significant economic value (Anwar et al., 2024).

2.2. Aspen Plus model

Aspen Plus V11 was used to conduct process simulations. A detailed 
illustration of Aspen Plus simulation models of the hybridised ammonia 
production system, incorporating an alkaline water electrolyser (AWE), 
air separation unit (ASU), and VARC, is shown in Fig. 2. In this system, 
nitrogen was produced through the ASU, hydrogen was generated via 
AWE. During electrolysis, water was decomposed in the electrolyser, 
producing hydrogen and oxygen. The resulting hydrogen and nitrogen 
streams were then supplied to the HB sub-system for ammonia synthesis. 
The VARC was integrated with HB through waste heat streams, specif
ically high-temperature (HT) and low-temperature (LT) streams labelled 
HB2-HT and HB2-LT, respectively. To maximise the utilisation of waste 
heat, a pre-heating system was introduced. This mechanism utilised hot 
outlet streams from the electrolyser, including oxygen streams (O2-HT, 
O2-LT) and hydrogen streams (H2-HT, H2-LT). Additionally, a third pre- 
heater was also used to extract heat from the stream HB streams (HB1- 
HT, HB1-LT), that hot stream was located preceding to the ammonia 
reactor in HB sub-system. This arrangement enhanced thermal effi
ciency and optimised the recovery of waste heat for the integrated WHR 
applications (Anwar et al., 2024). It is important to note here that the 
hybridised ammonia production model in Aspen Plus was validated 
extensively in our previous work (Anwar et al., 2024). Therefore, the 
validation is not repeated here.

Fig. 3 displays the Aspen Plus process models developed for the 
hybrid ammonia production system. The system components include: 
(1) a cryogenic air separation unit for nitrogen generation (Fig. 3a), (2) 
an alkaline water electrolyser for hydrogen production (Fig. 3b) 
modelled following Sanchez et al. (2020) with validated performance, 
and (3) a Haber-Bosch synthesis loop where ammonia is produced under 
high-pressure, high-temperature conditions (Fig. 3c), with model vali
dation against Ishaq and Dincer (2020) data. For enhanced efficiency 
through waste heat recovery, the Haber-Bosch process was thermally 
integrated with a VARC. This integration was achieved using two 
high-temperature waste heat streams: HB1-HT (upstream of the HB 
reactor) and HB2-HT (outlet of high-pressure compressors), which serve 
as heat sources for the VARC system through dedicated heat exchangers. 
This configuration ensures continuous heat supply while maintaining 
energy balance across the hybrid system.
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2.3. Machine learning

The study employed a NARX-configured feedforward ANN with 
autoregressive feedback to model the integrated ammonia production 
system. This architecture combines feedforward ANN’s nonlinear 
approximation capability with temporal memory through input/output 
delays, effectively capturing system dynamics and uncertainty propa
gation. As shown in Fig. 4, the network comprises an input layer, fifteen 
fully connected hidden layers using tansig activation functions, and a 
linear output layer (purelin) for continuous regression. Input and feed
back delays (1–2 timesteps) were incorporated to account for historical 
trends in key parameters (renewable power, heat exchanger effective
ness, compressor efficiency) and outputs (ammonia production, refrig
eration). The network was first trained in open-loop mode before 

conversion to closed-loop for multi-step forecasting. A step-ahead pre
diction variant was also developed by reducing one delay, enabling 
proactive system control through single-timestep anticipation.

The hyperparameter tuning process proceeded in two phases. Initial 
baseline configurations were established through empirical evaluation 
of delay lengths, hidden layer architecture, learning rates, epoch counts, 
and training functions. Subsequently, Bayesian optimisation refined key 
parameters—neuron count, learning rate, and regularisation 
strength—using a probabilistic surrogate model to minimise cross- 
validated MSE while efficiently navigating the search space (Snoek 
et al., 2012; Z. Wang et al., 2024). This approach optimally balances 
exploration and exploitation, particularly valuable for computationally 
intensive model evaluations. The final model employed 
Levenberg-Marquardt backpropagation (Yang et al., 2021) for rapid 

Fig. 1. Schematic of the investigated power to hydrogen and HB sub-system integrated with VARC, forming the hybridised ammonia production system.

Fig. 2. Aspen plus model illustration of the hybridised ammonia production system.
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convergence, achieving excellent predictive performance (R2 = 0.967, 
MAE = 8.57, RMSE = 11.3, Grayson Index = 0.98). Cross-validation 
with multiple input sets from the uncertainty quantification toolkit 
confirmed the model’s robustness and generalisation capability. The 
surrogate demonstrated both computational efficiency and strong 

agreement with Aspen Plus simulations, as evidenced by probability 
density function analyses in Section 2.5.1. Once validated, the ML model 
was used to predict system behaviour across six configurations (10–20 
MW power input), enabling comprehensive UQ analysis without the 
computational burden of extensive simulations. The final ANN 

Fig. 3. Aspen Plus models of (a) ASU, (b) AWE, (c) HB sub-system, (d) VARC.
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Fig. 3. (continued).
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predictive model is expressed as: 

ŷ = fANN(x)= σl( Wlσl− 1( . . . σl( W1x+ b1). . .
)
+ bL) (1) 

As shown later, this approach significantly enhances computational 
efficiency while maintaining precision in UQ analysis.

2.4. Uncertainty quantification

In this study, an open-source UQTk, version 3.1.2 (Bert Debusschere, 
2024; Sargsyan et al., 2022) was employed to construct PCE models and 
process the resulting data. UQTk works by running the model thousands 
of times with different input samples, allowing uncertainty to be prop
agated through system. A python script was developed to generate 
random parameter samples utilising the mean values which can be seen 
in Table 1.

The uncertainty in the simulation parameters is represented by Eq. 
(2). 

Psample =Pμ ± Pσ*ξd (2) 

Here, Psample represents one of the simulation parameters, where its 
uncertainty is randomly sampled. The mean value and standard devia
tion of the corresponding parameters are denoted as Pμ and is Pσ , 
respectively, that can be seen in Table 1.

In Equation (2), ξd represents the random variable components, 

referred to as dimensions, which can be expressed as ξd =
(

ξHE1, ξHE2,

ξHE3, ξHE4, ξPin , ξCeff

)
where d indicates the dimensionality. These random 

variables, referred to as quadrature points, are generated according to 
the distribution type associated with the orthogonal polynomial series.

Several orthogonal polynomial series from the Wiener-Askey scheme 
are available in UQTk, including Laguerre, Jacobi, Hermite, and Leg
endre polynomials (Xiu and Karniadakis, 2002). The choice of method 
for constructing PCE is inherently linked to the distribution type of the 
uncertain parameters, such as uniform, normal, or exponential. PCE has 
been widely recognised in the literature as a robust method for quanti
fying uncertainties in complex engineering systems, providing a 
computationally efficient means of capturing the statistical properties of 
model outputs (Le Maıtre et al., 2002; Najm et al., 2009; Reagan et al., 
2005). In this study, the uncertainties in system parameters were 
assumed to be uniformly distributed, reflecting bounded variability 
without a specific directional bias. Consequently, Legendre polynomials 
were selected, as they are well-suited for uniformly distributed random 
variables (Mueller et al., 2025; Sargsyan et al., 2022). This choice is 
consistent with the steady-state assumptions of the renewable energy 
inputs and aligns with prior studies demonstrating the applicability of 
Legendre-based PCE for systematic uncertainty propagation in energy 
systems (Gillcrist et al., 2024; Xiong et al., 2014). Each uncertain 
parameter is defined within the interval [− 1,1], allowing for a mathe
matically structured and representative characterisation of variability 
across the input space.

Consequently, Eq. (3) represents the PCE of a simulation output (λ). 

λ=
∑P

k=0
CkΨ k(ξd) (3) 

Here, λ represents a simulation output (i.e. ammonia production and 
refrigeration generation from hybridised ammonia production system), 
P represents the order of the polynomial chaos expansion model, while 
Ψ k(ξ) denotes the multidimensional orthogonal polynomial chaos 
Legendre-Uniform basis functions. The coefficients Ck corresponds to the 
PCE coefficients.

In UQTk, the methods to perform quadrature integration are either 
the sparse tensor product method or full tensor product method. For full 
tensor product technique, the function must be integrate using the 
quadrature points (ξd), and their number is determined by (Nord)d, 
where Nord = P+1 is the order of expansion. In this study, P was set to 
three, resulting in (3 + 1)6

= 4096 is quadrature points used for the 
integration. It is crucial to highlight that in high-dimensional problems, 
this technique demands significantly more computational resources, 
leading to the issue known as the curse of dimensionality (Indyk and 
Motwani, 1998). Furthermore, growing the order of PCE beyond a 
certain threshold does not always improve the results.

For balance accuracy and computational efficiency, a third-order 
PCE analysis was chosen for this study. Increasing the order substan
tially amplifies the computational cost, as it scales the random sample 
numbers (Nord)6, for instance, 6 6 = 46,656.

The 4096 quadrature points in ξ are transformed into 4096 Psample 
values using Eq. (1). These Psample simulations then performed in Aspen 
Plus to compute outputs, ammonia production and refrigeration gen
eration, across nominal power inputs of the hybridised ammonia pro
duction system.

To determine the coefficients Ck, the non-intrusive spectral projec
tion method is employed, utilising Gauss-Legendre quadrature integra
tion (Jansohn, 2013) as described in Eq. (4). 

Ck =
〈λ(ξ)Ψk(ξ)〉

〈Ψk
2(ξ)〉

=
1

〈Ψk
2(ξ)〉

∫ 1

− 1
λ(ξ)Ψk(ξ)π(ξ)d(ξ) k = 0,…,P (4) 

where (ξ) denotes the germ samples and π(ξ) represents the PDF for each 
input parameters mentioned in Table 1.

Global sensitivity analysis plays a crucial role in UQ as it identifies 
the parameters that most significantly impact the output (Kucherenko 

Fig. 4. Architecture of ML model.

Table 1 
Mean values of uncertain parameters.

Nominal 
power input 
(MW)

10 12 14 16 18 20

Parameters (P) Mean values

HE1 (kW) 811.37 874.80 979.75 1030.55 1176.94 1313.47
HE2 (kW) 63.12 77.13 91.13 101.72 115.91 126.22
HE3 (kW) 28.53 33.72 38.48 41.76 45.69 48.31
HE4 (kW) 675.84 710.21 765.11 814.68 878.02 913.66
Pin (MW) 10 12 14 16 18 20
Ceff (%) 75 75 75 75 75 75
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and Song, 2017). In this study, Sobol’ indices, a widely used method for 
sensitivity analysis, were applied. Eq. (5) was used to compute the 
sensitivity index to measure the contribution of the variance of single 
parameter to the overall output variance. 

Sd =
1

V[λ]
∑

λd
2〈Ψ d

2〉 (5) 

Here, Sd denotes the sensitivity which is associated to the dimension 
(d) and corresponds to the number of uncertain parameters. V[λ] rep
resents the total variance. For example, the total variance of the outputs 
(i.e. NH3 production and refrigeration generation) can be expressed as 
shown in Eq. (6). 

V[NH3 / ref ] =
∑

k>0

λk
2Ψ k

2 (6) 

The numerator in Eq. (5) can be further expressed as shown in Eq. 
(7). For this study, the dimensionality d = 6, the total order P = 3, and 
the number of PC terms is calculated as N = (d + P)!/(d!P!) = 84. The 
first term in Eq. (7) corresponds to the mean value without any deviation 
and is thus equal to zero. 

Var(NH3 / ref)=0+ λ1
2Ψ1

2 + λ2
2Ψ1

2 + λ3
2Ψ1

2 + λ4
2Ψ2

2 

+ λ5
2Ψ1

2 + … (84 terms) (7) 

2.5. Machine learning enhanced uncertainty quantification

The conventional UQ approach using Aspen Plus simulations 
required 4096 simulations per nominal power input, resulting in over 
1050 CPU hours. Simulations were performed on a Dell XPS 17 9700 
with an 11th Gen Intel Core i9-11900H CPU @ 2.50 GHz and 64 GB 
RAM. Extending this analysis across nominal power inputs from 10 MW 
to 20 MW—reflecting typical scales of modular green ammonia systems 
powered by intermittent renewable sources (Chitransh and Bindal, 
2021; Yuen et al., 2010; Y. Zhang et al., 2023)—made exhaustive direct 
simulations computationally infeasible.

To overcome this limitation, we developed a novel machine lear
ning–enhanced UQ framework by integrating an artificial neural 
network (ANN) surrogate with Aspen Plus simulations. This approach 
drastically reduces computational overhead while maintaining high 
predictive fidelity. Embedding the ANN within the UQ workflow 

achieved a three-order-of-magnitude reduction in computational cost 
compared to direct simulation. For example, analysing six system ca
pacities (10–20 MW) with conventional simulations would require over 
24,000 full-process runs, totalling approximately 6300 CPU hours. In 
contrast, once trained, the ANN model completed the same uncertainty 
propagation in under 7 h on the same hardware. This efficiency becomes 
even more critical as system complexity increases. Moreover, the 
framework is simulation-agnostic and scalable, allowing integration 
with platforms such as ANSYS, Aspen Plus, COMSOL, or MATLAB/ 
Simulink. Its main strength is enabling rigorous uncertainty analysis for 
complex, nonlinear, and tightly coupled energy systems that are other
wise intractable with conventional methods.

We focused on six critical uncertain parameters: four heat exchanger 
effectiveness values (HE1–HE4), compressor efficiency (Ceff), and elec
trolyser power input (Pin). Using UQTk, these parameters were sys
tematically sampled to ensure comprehensive coverage of the input 
space. The sampled inputs were processed through Aspen Plus to 
generate outputs for ammonia production and refrigeration generation. 
Unlike traditional direct simulations, the ANN surrogate replaces Aspen 
Plus runs, as illustrated in Fig. 5. While ML-UQ approaches have been 
applied in other engineering domains, this represents one of the first 
implementations tailored to hybrid green ammonia systems, providing a 
scalable alternative for UQ in this emerging field.

The ANN model was trained on the Aspen Plus simulation data, with 
its parameters optimised to minimise prediction error. Once validated, 
the ML-based model performed the UQ analysis in place of the full 
simulation. This integration greatly reduced computational time and 
resource usage while efficiently predicting system outputs—ammonia 
production, refrigeration generation, GHG emission reduction, and 
revenue—across the parameter space. By replacing exhaustive simula
tions that would have been prohibitive for large-scale analyses, the ML 
surrogate enabled comprehensive uncertainty quantification. This 
approach not only streamlines the analysis process but also supports 
timely, resource-efficient decision-making, highlighting the substantial 
benefits of ML-enhanced UQ in complex energy systems.

2.5.1. ML model validation
The ML model was rigorously validated through multiple ap

proaches, including R2 evaluation, output distribution comparisons, and 
uncertainty quantification assessment. Through iterative dataset 

Fig. 5. Schematic representation of the novel ‘ML enhanced UQ analysis’ for the hybridised ammonia production system.
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expansion, the model achieved strong predictive performance (R2 =

0.97, MAE = 8.57, RMSE = 11.3), demonstrating excellent agreement 
with Aspen Plus simulations. Cross-validation using alternative UQTk- 
generated sample sets confirmed consistent performance across 
different data subsets, supporting framework reliability.

For model development, the dataset was progressively expanded and 
partitioned into 70 % training, 15 % validation, and 15 % test sets. 
Additional cross-validation using completely unseen “blind” data 
further verified the model’s ability to accurately predict system behav
iour under varying conditions. Fig. 6 compares probability density 
functions (PDFs) between Aspen Plus simulations and data-driven model 
results for both ammonia production and refrigeration generation. The 
ammonia production PDF shows a uniform distribution (Fig. 6a), 
reflecting linear variation propagation primarily influenced by input 
power and two heat exchangers. In contrast, refrigeration generation 
exhibits a normal distribution (Fig. 6b, bell-shaped curve), resulting 
from the combined effects of multiple interacting uncertainties (input 
power, several heat exchangers, compressor efficiency) following Cen
tral Limit Theorem principles (Davidson, 1994; Spanos, 1986).

The excellent agreement between simulation and DDM results across 
both output metrics validates the model’s accuracy for comprehensive 
uncertainty quantification analysis. This confirmation enables reliable 
use of the data-driven approach for further system investigations 
without requiring additional computationally intensive simulations.

3. Results and discussion

3.1. UQ analysis

Fig. 7 presents the Pearson correlation heatmap analysing relation
ships between input parameters and system outputs in the hybrid 
ammonia production system (Üstün et al., 2024). The heatmap evaluates 
correlations between six uncertain inputs - heat exchanger effectiveness 
values HE1 through HE4, power input Pin, and compressor efficiency 
(Ceff), and two key outputs: ammonia production (NH3) and refrigera
tion generation (Ref). The diagonal elements naturally display perfect 
correlation coefficients of one, representing each parameter’s correla
tion with itself.

The analysis reveals statistically significant positive correlations 
between power input Pin and both system outputs, with p-values of 
0.009 for ammonia production and 0.007 for refrigeration generation, 
underscoring Pin’s critical influence on system performance. Among the 
heat exchangers, HE1 and HE4 show meaningful correlations with 
outputs (p = 0.016–0.038), confirming their substantial contribution to 
heat recovery efficiency. In contrast, HE2, HE3 and compressor effi
ciency Ceff demonstrate weaker correlations (p > 0.1) with both NH3 and 
Ref production, indicating their relatively minor impact under the 
examined operating conditions. These quantitative insights help identify 

the most influential parameters for system optimisation while high
lighting components where performance improvements would yield 
limited benefits.

The correlation patterns align with the system’s thermodynamic 
behaviour, where power input and primary heat exchangers dominate 
the energy conversion processes, while secondary heat exchangers and 
compression efficiency play more peripheral roles in overall perfor
mance. These findings provide valuable guidance for prioritising oper
ational monitoring and maintenance efforts in the hybrid ammonia 
production system.

More results are produced by using UQTk to generate the combina
tion of input parameters and data driven model was used to generate 
results with respect to that specific combination of parameters. Fig. 8
shows the PDFs of different scaled HB sub-system for ammonia pro
duction and refrigeration from hybridised HB and vapour absorption 
refrigeration cycle. Fig. 8a presents the uniformly distributed curve of 
the minimum and maximum values of ammonia production, along with 
the system’s PDF across the 10 MW–20 MW range. In contrast, Fig. 8b 
illustrates the minimum and maximum values of refrigeration genera
tion from hybridised ammonia production system for nominal power 
inputs (10 MW–20 MW), where the PDF follows a bell-shaped (normal) 
distribution. The difference in probability density function shapes be
tween Fig. 8a and b is driven by the distinct uncertainty propagation 
mechanisms in ammonia and refrigeration production. Ammonia pro
duction followed a uniform distribution, suggesting that input 

Fig. 6. Validation of ML model, comparison of the ML and simulations-based PDFs of (a) ammonia production, (b) refrigeration.

Fig. 7. Heatmap of Pearson correlation between the input and 
output parameters.
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uncertainties were evenly distributed, leading to a uniform spread of 
output values. In contrast, refrigeration production exhibits a normal 
distribution due to the nonlinear interactions of uncertain parameters 
introduced by the VARC in hybridised ammonia production system. The 
combined effects of uncertainties, resulting in a bell-shaped distribution 
where values concentrate around a mean. This distinction underscores 
the differing stochastic behaviour of ammonia and refrigeration pro
duction in the hybridised system.

Fig. 9 shows the effect of uncertainty in input parameters (showed in 
Table 1) on ammonia production and refrigeration generation from 
hybridised ammonia production system. Fig. 9a shows the variation in 
the ammonia production due to the uncertainties in HB sub-systems for 
nominal power inputs. Overall, approximately 18 % variability in the 
ammonia production is noticed due to the uncertainty in the perfor
mance of heat exchangers, compressors, and input power. Similarly, 
Fig. 9b shows the variation in the refrigeration production due to the 
uncertainties in hybridised ammonia production systems for nominal 
power inputs. Uncertainty in the performance of heat exchangers, 
compressors, and power input led to a 30 % variation in refrigeration 
production by the VARC system when coupled with the HB sub-system. 
This significant variation is expected due to the VARC system’s heavy 
reliance on heat exchangers. A reduction in heat exchanger effectiveness 
can directly cause up to a 30 % decline in VARC output. In contrast, the 
smaller variation observed in ammonia production is due to the HB sub- 
system being less dependent on heat exchanger performance compared 
to VARC system.

Fig. 10 presents the sensitivity analysis of uncertainties in 10–20 MW 
HB sub-systems and hybridised ammonia production systems. Fig. 10a 

illustrates the sensitivity of uncertain components affecting ammonia 
production in the HB sub-system, while Fig. 10b highlights the impact of 
component performance uncertainties on refrigeration generation 
within the hybridised ammonia production system.

In both cases—ammonia production and refrigeration—the most 
sensitive variable is the power supply (Pin) which is almost 50 % in case 
with Fig. 10a and more than 50 % if we look at Fig. 10b. This is due to its 
role as the primary energy supplier of the whole hybridised system. 
Another significant source of uncertainty is the effectiveness of heat 
exchangers which is within 12 %–18 % range. HE1 is responsible for 
cooling the gas mixture to 350 ◦C before it enters the HB reactor. In the 
hybridised system, this heat exchanger also functions as a preheater 
when integrated with VARC. Consequently, any uncertainty in its 
effectiveness affects the output of both systems.

HE2 and HE3 represent uncertainties in the effectiveness of the heat 
exchangers used to cool the hydrogen and oxygen streams exiting the 
water electrolyser. Since these streams have moderate temperatures 
(70–90 ◦C), variations in their effectiveness have minimal impact (less 
than 5 %) on ammonia production. However, in the hybridised ammonia 
production system for refrigeration, these heat exchangers serve as 
preheaters in the VARC, meaning their performance uncertainty directly 
influences system output (5 %–10 %). HE4 is the heat exchanger 
responsible for cooling the gas mixture downstream of the HB reactor to 
separate ammonia from the unreacted mixture. In the hybridised sys
tem, this heat exchanger also connects the HB sub-system to VARC. 
Therefore, any inefficiency in HE4 due to performance uncertainty has a 
more pronounced impact on the overall system (23 %–33 %). Addi
tionally, Ceff represents the impact of uncertainty in the compressor’s 

Fig. 8. PDFs of the hybridised ammonia production system for different values of the nominal power input of (a) ammonia production, (b) refrigeration.

Fig. 9. Effects of input parameters variability on (a) ammonia production, (b) refrigeration generation.
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isentropic efficiency, further influencing system performance.
Fig. 11 presents the coefficient of variance (see (Brown, 1998) for 

definition) of ammonia production from HB sub-system and refrigera
tion generation from the hybridised ammonia production system. The 
trend of CoV for both ammonia production and refrigeration generation 
are similar. It can be seen that as the capacity of HB sub-system in
creases, the values of CoV converges towards a reasonable range for 
complex engineering systems, i.e. 15-20 % (Shechtman, 2013). Overall, 
for both HB sub-system for ammonia production and hybridised 
ammonia production system for refrigeration generation, the data for 
CoV are in acceptable ranges. It can be noticed that as the capacity of the 
system increases the CoV becomes more stable. This behaviour might be 
because as the system capacity increases, the production of ammonia 
and refrigeration increases significantly, which increases the mean value 
and the corresponding uncertainties does not increase to the same 
extend, lowering the impact of uncertainties.

For better understanding, an analysis is conducted to observe the 
impact of individual uncertainties in the system on ammonia production 
and refrigeration generation. Fig. 12 shows the range of variation in 
ammonia production due to the uncertainties in performance of the 
components of HB sub-system. Fig. 12a shows the range in variation in 
the ammonia production which is around 50 %. This is due to the un
certain power input because of intermittent power supply from renew
able energy sources. Fig. 12b and c presents the variation range in 
ammonia production due to the uncertainties in the effectiveness of heat 
exchangers (HE1, HE4). The effectiveness of heat exchangers is the 
cause of the remaining 50 % of the overall uncertainty in the system. 

Fig. 12d shows the range in variation in output due to the uncertainty in 
compressor efficiencies (Ceff) over time. Clearly, the most significant 
impact on output is due to the uncertainty in power input. In contrast, 
the variations in the output caused due to the uncertainty in the effec
tiveness of heat exchangers are comparatively much smaller. Never
theless, both combined could lead to up to 50 % of the overall 
uncertainties in the HB sub-system.

Similarly, Fig. 13 shows the variation range in ammonia production 
due to the uncertainties in hybridised ammonia production system for 
nominal power inputs. Fig. 13a shows the variation range in the output 
due to the uncertainty in the power supply, which could be significant 
due to the intermittent supply of renewable power. Fig. 13b shows the 
variation range in refrigeration generation due to the uncertainty in heat 
exchanger (HE1) which is one of the three preheaters in VARC and 
extract waste heat from HB sub-system.

Figs. 13c and 12d present the variation range in refrigeration caused 
by the uncertainties in the effectiveness of heat exchangers. These two 
heat exchangers (HE2, HE3), which are the other two preheaters in 
VARC are transferring waste heat from water electrolyser hydrogen and 
oxygen outlet streams. It can be noticed the variation range (2 %–4 %) is 
not significant as the heat extraction from water electrolyser streams is 
relatively small (Anwar et al., 2024). Fig. 13e illustrates the range of 
variations in refrigeration output caused by uncertainty in the effec
tiveness of the heat exchanger (HE4), which connects the HB sub-system 
to the VARC. As the primary component of WHR in the hybridised 
ammonia production system, this heat exchanger plays a crucial role in 
transferring thermal energy to the VARC. Any uncertainty in its effec
tiveness has a significant impact, potentially leading to fluctuations 
exceeding 20 % in refrigeration generation.

Fig. 13f presents the variations in system output resulting from un
certainties in compressor efficiencies (Ceff). Overall, the results indicate 
that uncertainty in power input has the most substantial influence on 
system performance. Additionally, variations in heat exchanger effec
tiveness contribute significantly, accounting for approximately 50 % of 
the total uncertainties in the hybridised ammonia production system.

3.2. Environmental and economic analysis

The environmental analysis adopted U.S. energy sector assumptions 
from the EIA (EIA, 2022), where electricity generation is sourced from 
natural gas (40 %), coal (20 %), nuclear (18 %), and renewables (22 %). 
This mix results in substantial GHG emissions: 80 % CO2 (0.85 kg/kWh), 
11 % CH4 (0.015 kg/kWh), and 6.1 % N2O (0.001 kg/kWh). The 
assessment assumed that conventional vapour compression refrigeration 
requires 284.33 W of electric power per kilowatt of cooling (EIA, 2022). 
By integrating a renewable-powered HB process with a VARC, the sys
tem recovers waste heat to provide cooling, thereby reducing emis
sions—although the extent of reduction is influenced by system 

Fig. 10. Main sensitivity of all uncertain parameters in (a) HB sub-system, (b) hybridised ammonia production system.

Fig. 11. Coefficient of variance of the hybridised ammonia production system 
for different values of the nominal power input.
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uncertainties. The VARC’s cooling output replaces that which would 
otherwise be generated by electricity-intensive vapour compression 
systems, serving as a low-carbon energy vector since it is derived from 
renewable sources rather than fossil fuels.

For a 20 MW HB system hybridised with VARC, refrigeration gen
eration reaches approximately 2.163 MW (204.8 tonnes of refrigera
tion), displacing conventional electricity needs estimated at 0.721 MW 
(assuming a COP of 3). Fig. 14 demonstrates that system uncertainties 
create significant variations in environmental benefits - up to 30 % 
fluctuation in refrigeration output and 40–50 % variation in GHG re
ductions. Since the refrigeration cycle directly offsets conventional en
ergy demand, any output reduction proportionally increases grid/fossil 
fuel dependence, elevating emissions. This sensitivity highlights refrig
eration stability’s critical role in maximising carbon credits and mini
mising environmental impact (Chen et al., 2022; Woo et al., 2021), 
emphasising the need to address uncertainties for optimising the sys
tem’s sustainability performance.

It should be noted that the current environmental assessment focuses 
on avoided operational carbon emissions under uncertainty. Embodied 
carbon from infrastructure and system components is assumed fixed and 
excluded, so the results reflect changes in emission reduction potential 
due to operational variability rather than the total lifecycle footprint.

In Fig. 15, the overview of the variation in the annual revenue due to 
the uncertainties in hybridised ammonia production systems for nomi
nal power inputs is illustrated. The calculations and discussions of LCOA 
and the associated CAPEX and OPEX were reported in a recent study 
(Anwar et al., 2024). The LCOA for the HB sub-system was determined 
to be 0.65 $/kg, aligning well with the literature-reported range of 

0.58–1.2 $/kg (Nayak-Luke et al., 2018a). It was established from the 
previous study that the LCOA of HB sub-system remains practically 
neutral when integrated with VARC, this is due to the reason that the 
extra installation overheads of VARC were balanced from the savings 
achieved through the produced refrigeration. The following Eq. (8)
presents the equation for LCOA estimation (Nayak-Luke et al., 2018b; 
Osman et al., 2020). 

LCOA=

∑n

t=1

It+Mt+Et
(1+r)t

∑n

t=1

Gt
(1+r)t

(8) 

where ‘It’ represents the capital cost, ‘Mt’ denotes the operation or 
maintenance cost, ‘Et’ is the utility cost which is the cost of electricity in 
the current scenario and was assumed to be $0.03/kWh (EIA, 2022), ‘Gt’ 
represents the production generation, ‘t’ is the project life span, ‘‘r’ 
shows the discount rate, which is 8 %, ‘n’ here is the number of years, 
which was assumed to be 10 years and cost of ammonia was assumed to 
be $0.61/kg (EIA, 2022; Liu et al., 2024).

However, this claim has been made without the consideration of 
uncertainties in the system. Considering those uncertainties, 30–40 % of 
the variation in the annual revenue generation from refrigeration is 
observed. Accounting the uncertainties, the value of LCOA increased 
from 0.65 $/kg to 0.68 $/kg, escalated by 5 %, highlighting the eco
nomic impact of variability. The 30–40 % fluctuation in annual refrig
eration revenue underscores the need to account the uncertainty 
quantification to ensure the economic viability of integrated ammonia 
production.

Fig. 12. Variation in ammonia production due to uncertainties in (a) power input Pin (b) preheater HE1, (c) heat exchanger HE4, (d) compressors efficiency Ceff, in 
the HB sub-system for different values of the nominal power input.
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4. Conclusions

This study introduced a robust machine learning–enhanced uncer
tainty quantification (ML-UQ) framework to evaluate the tech
noeconomic and environmental performance of a hybrid ammonia 
production system powered by renewable energy. High-fidelity Aspen 
Plus simulations were performed across six nominal power inputs 
(10–20 MW) to generate a dataset for training a feedforward artificial 
neural network (ANN) with autoregressive feedback. The ANN surrogate 

accurately captured the complex nonlinear interactions among six key 
uncertain parameters—renewable power input, four heat exchanger 
effectiveness values, and compressor efficiency—and critical outputs, 
including ammonia production and refrigeration capacity. Statistical 
metrics confirmed its predictive fidelity: R2 = 0.97, MAE = 8.57, RMSE 
= 11.3, and Grayson Index = 0.98, validating its use for subsequent 
uncertainty propagation via polynomial chaos expansion. UQ analysis 
revealed strong sensitivity of system outputs to parameter uncertainties: 
ammonia production varied by up to 18 %, refrigeration output by 30 %, 

Fig. 13. Variation in refrigeration generation due to uncertainties in (a) power input Pin (b) preheater HE1, (c) preheater HE2, (d) preheater HE3, (e) heat exchanger 
HE4, (f) compressors efficiency Ceff, in the hybridised ammonia production system for different values of the nominal power input.
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and CO2 emissions reduction potential by 40–50 %. Heat exchanger 
effectiveness emerged as the dominant contributor, accounting for 
nearly 50 % of total variability. Economically, uncertainties led to a 
modest 5 % increase in the levelized cost of ammonia, with 30–40 % 
variability in annual refrigeration revenue. The ML-UQ methodology 
enabled a scalable and computationally efficient assessment of 
nonlinear system behaviour under uncertainty, reducing computational 
cost by three orders of magnitude while maintaining high predictive 
accuracy. This efficiency facilitates analysis of complex, large-scale 
systems and provides critical insights into the resilience and reliability 
of renewable-integrated ammonia processes under quasi-steady-state 
conditions. While the study assumed independent, uniformly distrib
uted uncertainties and did not capture short-term dynamics, it lays a 
foundation for future work incorporating unsteady-state effects, tem
poral dynamics, and correlated or non-uniform inputs to more closely 
reflect real-world operations. Overall, this work advances surrogate- 
assisted UQ and demonstrates the value of combining machine 
learning with process modelling for the optimisation of next-generation 
sustainable energy technologies. The proposed framework is general
isable and practical, offering an effective approach for uncertainty- 
aware decision-making in complex energy and manufacturing systems.
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