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Introduction

 Broadband multi-wavelength light sources
There has been an emerging need for laser light sources with new and improved capabilities.
Broadband light sources are a popular and versatile option among the various types of light source. 

Real-world applications:
• Optical Communication
• Biomedical Imaging
• Spectroscopy
• Sensing & Monitoring
• Material Science & Metrology
• Addressing the needs of AI/ML
• …

[1] A. Donodin et al. Journal of Lightwave Technology, 42(7), 2024
[2] https://www.bli.eu/about-multi-light/
[3] N. Picqué et al. Nat. Photon. 13, 2019.
[4] M. Corato-Zanarella et al. Nat. Photon. 17, 2023.

[1] [2]

[3] [4]

https://www.bli.eu/about-multi-light/
https://www.bli.eu/about-multi-light/
https://www.bli.eu/about-multi-light/
https://www.bli.eu/about-multi-light/
https://www.bli.eu/about-multi-light/
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Introduction

 Ways to achieve multi-wavelength emission
• Linear
Rare-earth-doped fibres
Wavelength-selective elements & cavity design:
Fabry-Perot filter, Mach-Zehner interferometer, Loop mirror, Lyot filter, 
fibre Bragg gratings,…

• Nonlinear
Stimulated Brillouin scattering (SBS)
Stimulated Raman scattering (SRS)
Four-Wave Mixing (FWM)
Second/Third Harmonic Generation
Supercontinuum Generation
Random fibre laser (based on passive fibre) + spectral filtering
Optical Parametric Amplification (OPA)
Optical Parametric Oscillation (OPO)
Random Optical Parametric Oscillator

[5] Y. Wang et al. Optical Materials: X 17, 2023
[6] F. Wang et al. Journal of Lightwave Technology 38(15), 2020.
[7] Y. Ye et al. Optics Letters 45(7), 2020.
[8] B. Han et al. Journal of Lightwave Technology 43(3), 2025.
[9] P. Tovar et al. Nature Communications 14, 2023

[5] [6]

[7]

[8]

[9]
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Introduction

 Ways to achieve multi-wavelength emission
• Fibre/Waveguide design strategies:
Multimode fibres (multiple sidebands across different modes)
Photonics crystal fibres & Dispersion-engineered fibres
Multicore fibres & Microstructure fibres
Tapered fibres
Coupled waveguide

[10] J. Demas et al. CLEO SM3M.1 2017.
[11] K. Yang et al. IEEE Photonics Technology Letters 30(7) 2018.
[12] X. Jiang et al. Optics Letters 49(20) 2024.
[13] V. Ribeiro et al. Journal of Lightwave Technology 40(17) 2022.
[14] L. Xia et al. arXiv:2410.24073v2 2024.

[10]

[11]

[13]

[12]

[14]
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Introduction

 Ways to achieve tuneable multi-wavelength emission

• Tuneable pump (power, 
wavelength, rep rate)

• Tuneable spectral filter
• Electrical / Temperature control
• OPA
• OPO
• Choose from multiple modes

[10]

[15]

[10] J. Demas et al. CLEO SM3M.1 2017.
[15] H. Wu et al. Photonics Research 11(5) 2023.
[16] Y. Zhao et al. Communications physics 6:350 2023.
[17] Kwaśny, Michał, et al. Materials 15(13) 2022.

[16]

[17]
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Introduction

 Why OPA/OPO?
• Broad wavelength tuneability: covers UV to mid-IR
• Allowing narrow linewidth
• High coherence between the wavelengths
• Cascaded processes enable broad spectral range
• Can operate in CW, ns, ps, fs regimes
• Various platforms: chip-scale, fibre-integrated
• High peak power
• High conversion efficiency, low loss
• Polarization and Mode control

[18] Y. Zhao et al. Nature 627, 2024 [18]
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Background and Principles

 Basics of fibre OPA/OPO

𝜕𝜕𝑧𝑧𝐴𝐴𝑠𝑠 = 𝑖𝑖�
𝛽𝛽k
k! i𝜕𝜕𝑡𝑡 k𝐴𝐴𝐴𝐴 + 𝑖𝑖 1 − 𝑓𝑓𝑅𝑅 𝑀𝑀 + 𝑓𝑓𝑅𝑅𝑅𝑅𝑠𝑠

Dispersion Kerr nonlinearity Raman

Four-Wave Mixing in single mode fibres:

The propagation of a signal follows[15]:

𝑀𝑀 = 2𝛾𝛾 𝐴𝐴𝑝𝑝 2𝐴𝐴𝐴𝐴 + 𝛾𝛾𝐴𝐴𝑝𝑝2 𝐴𝐴𝑖𝑖∗ 𝑒𝑒i ∆𝛽𝛽
𝑝𝑝𝑝𝑝+∆𝛽𝛽𝑝𝑝𝑝𝑝 𝑧𝑧

Intramodal four-wave mixing
Pumping at Near zero-
dispersion wavelength

Generating new frequencies(ωs/ωi)

Input
(Ap, As, Ai)

Nonlinear single 
mode fibre

Output
(spatial? 

spectral?)

ωp ωpωs ωi

[15] Agrawal GP. Nonlinear Fiber Optics (Sixth Edition). Academic Press; 2019
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Background and Principles

 Basics of fibre OPA/OPO

𝜕𝜕𝑧𝑧𝐴𝐴𝐴𝐴n = 𝑖𝑖�
𝛽𝛽k
k! i𝜕𝜕𝑡𝑡 k𝐴𝐴𝐴𝐴n + 𝑖𝑖 1 − 𝑓𝑓𝑅𝑅 𝑀𝑀 + 𝑓𝑓𝑅𝑅𝑅𝑅𝑠𝑠n

Dispersion Kerr nonlinearity Raman

Four-Wave Mixing in multimode fibres:

The propagation of a signal in the n-th mode follows[15]:

𝑀𝑀

= �
m

2𝛾𝛾nm 𝐴𝐴𝑝𝑝m 2𝐴𝐴𝐴𝐴𝑛𝑛 + �
m

2𝛾𝛾nm𝐴𝐴𝑝𝑝n𝐴𝐴𝑝𝑝m∗ 𝐴𝐴𝑠𝑠m𝑒𝑒i ∆𝛽𝛽n
𝑝𝑝𝑝𝑝−∆𝛽𝛽m

𝑝𝑝𝑝𝑝 𝑧𝑧

+ 𝛾𝛾nn𝐴𝐴𝑝𝑝n2𝐴𝐴𝑖𝑖n∗𝑒𝑒
i ∆𝛽𝛽n

𝑝𝑝𝑝𝑝+∆𝛽𝛽n
𝑝𝑝𝑝𝑝 𝑧𝑧 + �

m

2𝛾𝛾nm𝐴𝐴𝑝𝑝n𝐴𝐴𝑝𝑝m𝐴𝐴𝑖𝑖m∗ 𝑒𝑒
i ∆𝛽𝛽n

𝑝𝑝𝑝𝑝+∆𝛽𝛽m
𝑝𝑝𝑝𝑝 𝑧𝑧

Intramodal four-wave mixing Intermodal four-wave mixing
Pumping at Near zero-
dispersion wavelength

Zero-dispersion 
requirement is relaxed

Generating new frequencies(ωs/ωi) 
with different spatial modes(m/n)

Input
(Apn, Asn, Ain)

Nonlinear 
multimode fibre

Output
(spatial? 

spectral?)

ωpn ωpmωsn ωim

[15] Agrawal GP. Nonlinear Fiber Optics (Sixth Edition). Academic Press; 2019
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The use of MMFs and MCFs

 Intermodal Four-Wave Mixing in MMFs

PM2000
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The use of MMFs and MCFs

Intermodal FWM between different supermodes:
Phase matching conditions in various fibre designsNL MCFForward Signal

(FS: F1, F2, …)

 An alternative mode choice for MCFs: treat all cores as a whole  multimode structure

SM1-NF SM2-NF SM3-NF SM4-NF

SM1-FF SM2-FF SM3-FF SM4-FF

SM1-NF SM2-NF SM3-NF

SM1-FF SM2-FF SM3-FF

SM1-NF SM2-NF

SM1-FF SM2-FF
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The use of MMFs and MCFs

 Phase matching in MCFs

1010 1020 1030 1040 1050 1060

Wavelength (nm)

8.6

8.7

8.8

8.9
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 (r
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/m
)

10 6 Propagation constant

SM1
SM2
Pump
idler
Pump
Signal

treat all cores as a wholemultimode structure

Transverse modes(Supermodes, SM)Platform: coupled multicore fiber

Input

Output
SM1, Near-field(NF) Far-field

SM2, Near-field(NF) Far-field

Phase-NF

Phase-NF

Cross section
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10 -26 Group velocity dispersion
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10µm core separation
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The use of MMFs and MCFs

 Phase matching in MCFs
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The use of MMFs and MCFs

 Phase matching in MCFs
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The use of MMFs and MCFs

 OPA-MCFs
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The use of MMFs and MCFs

 OPA-MCFs

10µm

8µm
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The use of MMFs and MCFs

 OPA-MCFs

10µm

8µm
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Recent results FOPA

1040 nm 
Laser

QWP

HWP

HWP
PBS

Power meter/
cameraBS

OSA

MMF/MCF

TLS, 10mW
971nm-1082nm

HWP

 FOPA-MMF/MCF: SETUP
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Recent results

 CASE 1: FOPA-TCF

FOPA

d=4µm



23

Recent results

 FOPA-TCF

FOPA

d=4µm

Band1 Band2 

RESULTS

 Band1,2: 1047-1050 nm ; 1078-1081 nm
 Overall bandwidth: 1.6 THz
 WDM gain @pump 100mW: >10 dB
 WDM gain @pump 1 W: >17 dB
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Recent results FOPA

d=5µm CASE 2: FOPA-4CF

Band1 Band2 

Band3 
Band4 

864 914 964 1014 1064 1114 1164 1214 1264
-70

-50

-30

-10

Seed on

0.91125kW

864 914 964 1014 1064 1114 1164 1214 1264
-70

-50

-30

-10 1.2013kW

864 914 964 1014 1064 1114 1164 1214 1264
-70

-50

-30

-10 1.5123kW

864 914 964 1014 1064 1114 1164 1214 1264

Wavelength (nm)

-70

-50

-30

-10

Po
w

er
 (d

Bm
)

1.8182kW

RESULTS

 Now 4 bands engineered via core-to-core pitch and 
core dimension

 Overall bandwidth: 3 THz
 WDM gain @pump 100mW: >8 dB (for proper pump 

mode composition)
 WDM gain @pump 1 W: >15 dB
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Recent results

 FOPA-MCF

FOPA

Fibre

Relative frequency (THz) and the corresponding 
modes for FWM peaks with a pump wavelength of 

1040 nm
Simulation Experiment

DCF ±6.2 (SM1 and SM2) ±6.5 (SM1 and SM2)

TCF

core 
spacing=10

µm

±4.7 (SM1 and SM2),
±5.7 (SM2 and SM3),
±11.8 (SM1 and SM3)

core 
spacing=8µ

m

±10.3 (SM1 and SM2),
±13.9 (SM2 and SM3),
±24.3 (SM1 and SM3)

±10 (SM1 and SM2),
±12.5 (SM2 and SM3),

4CF

Core 
spacing=10

µm

±3 (SM3 and SM4),
±9 (SM2 and SM4),
±10.2 (SM1 and SM2),
±15.9 (SM1 and SM3),
±20.2 (SM1 and SM4)

±8,
-11.5,
-13

Core 
spacing=8µ

m

±6.4 (SM3 and SM4),
±16 (SM1 and SM2),
±16.2 (SM2 and SM4),
±25.2 (SM1 and SM3),
±31.9 (SM1 and SM4)

±6.7 (SM3 and SM4),
±12.7,
±16.1,
±25.2,
±26.3

Fibre

Relative frequency (THz) and the corresponding 
modes for FWM peaks with a pump wavelength of 

1064 nm
Simulation Experiment

DCF ±7.5 (SM1 and SM2) ±7.6 (SM1 and SM2)

TCF

core 
spacing=10µ

m

±5.8 (SM1 and SM2),
±7.2 (SM2 and SM3),
±14.2 (SM1 and SM3)

±5.7 
±12.5 
±13.3 (SM2 and SM3),

core 
spacing=8µm

±11.3 (SM1 and SM2),
±14.1 (SM2 and SM3),
±25.3 (SM1 and SM3)

±4.9 (SM1 and SM3),
±11.4 (SM1 and SM3),
±12.7 (SM1 and SM2),

4CF

Core 
spacing=10µ

m

±3.8 (SM3 and SM4),
±10.9 (SM2 and SM4),
±11.9 (SM1 and SM2),
±18.6 (SM1 and SM3),
±23.8 (SM1 and SM4)

±5.7 (SM1 and SM2),
±7.1,
±10.2,
±13.6,

Core 
spacing=8µm

±6.4 (SM3 and SM4),
±16.5 (SM2 and SM4),
±17.3 (SM1 and SM2),
±26.7 (SM1 and SM3),
±33.2 (SM1 and SM4)

-6.2 
±8.5 (Mix or SM2 and 
SM4),
±19.6 (Mix and SM4),
±29 (SM1 and SM4),
-58.2
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The use of MMFs and MCFs

 CASE 3: FOPA-THREE-MODE-FIBER (PM2000 THORLABS)

Stokes
 @ 1230 nm, 

LP11xBand1 Band2 
Band3 

Band 4 
Band5 

Band6 

RESULTS

 6 bands far from the pump (Band 1 to 6: 1009-1012nm; 1071-1074nm; 910-913 nm; 1208-1213 nm; 904-906 nm; 1229-1233 nm)
 Overall bandwidth: ~ 5 THz (more than the entire C-band)
 WDM gain @pump 1 W: >14 dB in all bands for proper pump mode distribution 
 Estimated WDM gain @pump 10 W (simulations doubling fiber length): >27 dB in all bands for proper pump mode distribution 

Important! Band 1,3,5: the amplified mode is the fundamental one (y-polarized)
Towards elastic networks 
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Conclusions

 Four-wave mixing in MCFs / MMFs:

• FWM between supermodes / LP modes

• Raman / Raman+FWM in MCFs

• Supermode + wavelength conversion  and amplification in 2-core/3-core/4-core fibres

• Mode + wavelength conversion  and amplification in PM2000 fibre 

 Results:

• Multicore fibres: multiple amplification/conversion bands are engineered via core size and core-to-core pitch

• Amplification band can be far away from the pump (>50 THz in our fibres) 

• In PM 2000: 6 bands, overall bandwidth ~ 5 THz (more than the entire C-band!)

• WDM gain @pump 1 W: >14 dB in all bands (estimated gain > 27 dB for 10-W pump power, if doubling the fiber length)

• The bands can be activated individually or simultaneously adjusting the pump modal composition

• We can generate a wide spectral region for single-mode amplification: towards elastic networks
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