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In this thesis a variety of problems are considered, the first of which is associated with the

welding process. Experiments indicate that the shape of a weld pool is influenced by convec-

tion in the liquid metal. In recent years it has been shown that this convection is crucially

affected by the Marangoni (or thermocapillary) force. Recently Craine and Belgrove ([30],

[7]) have developed a two-dimensional, axisymmetric model which includes the Marangoni

force on the free surface of a semi-infinite region of liquid steel when a point source of current

and heat is incident on the free surface. An asymptotic solution to this problem is obtained in

this thesis, and the surface tension gradient with respect to temperature, dj/dT, a parameter

which is crucial to the magnitude of the Marangoni force, is found to affect every coefficient

in the leading and first order asymptotic expansions. In various theoretical and experimental

models purely poloidal flow bifurcates to a rotating flow. To investigate this possibility for

our flow a linear stability analysis is performed on a numerically obtained poloidal solution

for the flow and temperature distribution in a hemisphere (a model first derived in [7]). For

the azimuthal stability mode m = 0 the equation governing the linear stability of the rotating

motion is found to decouple from the corresponding poloidal equations. The poloidal and

azimuthal stability equations both become unstable at different critical currents dependent

on the sign and magnitude of d^/dT. An investigation of the eigenvectors indicates the on-

set of instability near to the point source. For the upper modes instability occurs only when

m = 1 and in a very small region of parameter space.

In the second part of this thesis a freezing sphere problem with flow is used to compare

a sharp interface Stefan model and a diffuse interface phase-field model. Firstly a Stefan

model that includes a disparity between the density of the solid and liquid phases is derived

and solved numerically. This model is compared with a recent phase-field model with flow,

derived by Anderson et al. in [2]. In this thesis the one-dimensional isotropic version of

Anderson's model is obtained in spherical polar coordinates and using certain simplifications

when the dimensionless thickness of the interface £5 is vanishingly small a leading order

asymptotic expression reproduces the Stefan model with flow. The phase-field model is

subsequently modified and solved numerically, and the results are compared with the sharp

interface model. Close agreement is observed between these models when es < 0.01.
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Chapter 1

Introduction to chapters 1 to 5 :

Welding models

In the first five chapters of this thesis problems associated with the welding process are

considered. Welding is a commonly used industrial process which joins together pieces of

material, usually metal. Fusion welding is a process which fuses together pieces of material

by melting their adjoining surfaces and, therefore, it requires a strong heat source to create a

liquid weld pool. Common heat sources include chemical flames, electric arcs, electron beams

and laser beams.

Carbon arc welding was first patented in 1885 by Bernardos and Olezewski. An electric

arc is formed between a carbon electrode and a work piece which acts as an anode. The

arc welding process was later augmented by various technical improvements, one of the most

significant was the addition of an inert gas shield to prevent contamination of the weld by

exposure to the atmosphere, since it was found that absorption of atmospheric nitrogen

created brittle welds. An overview of electric arc welding can be found in [64] and general

reviews of arc welding, which include engineering arc physics applications, can be found in

[49] and [48]. A recent review by Kannatey-Asibu [58] summarises key developments in the

field and includes an extensive literature review of welding processes.

There are many different welding processes in current use, the most important are listed

below.

• Submerged Arc Welding (SAW) uses either an alternating (ac) or a direct (dc) current.

In this process the arc is maintained in a cavity of molten flux formed from a granular

material. SAW is suitable for automatic welding.

• Shielded Metal Arc Welding (SMAW) uses either ac or dc and during manual operation

short lengths of flux coated wire are fed into the weld pool. SMAW is used in all



engineering fields.

• Gas Metal Arc Welding (GMAW), or an equivalent process know as Magnesium Inert

Gas Welding (MIGW), uses flux which is enclosed in a tubular electrode of small diam-

eter. The flux is protected by a gas shield and continuously fed through a gun. Both

GMAW and MIGW are used in general welding purposes.

• Pulsed Gas Tungsten Arc Welding (GTAW), or an equivalent process know as Tungsten

Inert Gas Welding (TIGW), uses an arc which is maintained between a non-consumable

tungsten anode and the workpiece. The high frequency pulse of inert gas improves the

stiffness of the arc. The GTAW and TIGW processes are used in all engineering fields.

• Electron Beam Welding (EBW) is an automatic welding process in a vacuum in which

a cathode emits a beam of electrons and no metal transfer occurs. The EBW process

is commonly used in the nuclear and aerospace industries.

• Laser Beam Welding (LBW), apart from the different energy source, is essentially the

same as EBW. In addition to the uses listed for EBW, however, LBW is also used for

cutting non-metallic materials.

Older welding processes, such as SAW and SMAW, are difficult to observe. However, welding

physics has advanced greatly over the years and the newer processes, such as GMAW and

TIGW, are easier to view.

To develop a mathematical model of the welding process the relative importance of heat

conduction and convection must be assessed. Intuitively one might expect heat conduction

to be the most important. However, when arc-welding steel the value of the Peclet number1,

Pe = pvLcp/n, which measures the relative importance of convection compared with con-

duction, can range from about 10 to over 1000. Therefore, for TIGW of steel (and, for that

matter, many other metals) convection rather than conduction will usually determine the

temperature distribution and, consequently, the size and shape of the weld pool. Further-

more, the Reynolds number for TIGW is usually approximately 100̂ 4 and, therefore, the flow

is likely to be laminar. To accurately model the welding process a description of the laminar

fluid motion is required. To achieve this the forces acting on the liquid must be included.

In the arc welding process the motion inside the weld pool can be caused by the following

forces:

• a Lorentz (electromagnetic) force created by the interaction between the applied electric

current and its self-induced magnetic field or, occasionally, with an applied magnetic

field;

'Here p represents density, v the viscosity, L a typical length scale, cp the specific heat at constant pressure
and K the thermal conductivity.



• a buoyancy force due to internal temperature differences causing changes in the density

of the molten metal;

• a Marangoni, or thermocapillary, (surface tension) force on the free surface due to the

variation of surface tension with temperature;

• a plasma jet force, caused by the jet of inert gas flowing over the free surface of the

pool.

Schematic diagrams in which the forces act are displayed in figure 1.1. Clearly all these forces

a) b)

c) d)

Figure 1.1: Forces in the weld pool: (a) Lorentz (electromagnetic) force caused by the current

and the self-induced magnetic field, (b) Buoyancy force due to temperature distribution, (c)

Marangoni (thermocapillary) force on the free surface which can cause inward or outward

flow on the free surface, (d) Plasma jet force over the surface of the weld pool. A figure

similar to this is used in [77].

do not have a significant effect on the fluid motion and for non-arc welding processes (such

as EBW and LBW for example) the Lorentz and plasma jet forces do not arise.

In the 1940's the first attempt was made to model the welding process by considering a

point source of heat traversing the surface of a semi-infinite block of stationary material [92].

There have been many extensions to this work which exclude material motion. However,

experimental results of Woods and Milner [136] indicated that there is motion inside the

liquid metal pool formed beneath a tungsten welding arc, primarily caused by the action

of the Lorentz force. By examining the mixing of dissimilar metal droplets in the pool

these authors found that a symmetrical current path produced a double circulation in the

weld pool, but pure rotation was obtained when the current flow was markedly asymmetric.

Further, they discovered that materials such as iron and steel produced more rapid motion

and this was attributed to the high melting points of these materials. It was also noticed



that the speeds in the weld pool increased with the square of the current. Mills also showed

experimentally, see [76], that the shape of the weld pool in GTAW is primarily influenced by

the flow patterns in the liquid metal. Using an electric arc which stayed constant, he found

that the depth to width ratio of a weld pool could vary by up to 80%, thereby confirming

the prediction obtained from evaluating the range of values for Pe, namely that convection

rather than conduction will usually determine the size and shape of the weld pool.

Models of arc welding which include fluid motion but consider the simpler case of a semi-

infinite region of fluid have been developed by many authors (e.g. Lundquist [73], Sozou et al.

[110], [111], [112], [113], and [114], Shercliff [99], Bojarevics [9], [10] and [12], Lancaster [65],

Belgrove [7]), because of their relative simplicity when compared with models which consider

a finite region of fluid. Maecker [74] made initial progress on this problem by performing

an approximate analysis, assuming uniform applied current density and a semi-infinite, in-

compressible, isothermal, electrically conducting, inviscid fluid (IIEI fluid). Lundquist [73]

obtained steady solutions to the flow of a semi-infinite viscous (IIEV) fluid due to a point

source of current at the free surface by ignoring the inertia forces. Shercliff [99] considered

an IIEI fluid using a point source of current, and included convection due to the Lorentz

force. He observed that the solution to this model was related to an exact solution of the

Navier-Stokes equations for a jet flow initiated by a point source of momentum in an infinite

uniform fluid [118]. However, Shercliff's axi-symmetric model produced singularities in the

velocity field along the axis of symmetry for all values of the imposed current.

Sozou [110] extended Shercliff's model to include viscosity (considering a IIEV fluid) and

obtained a similarity solution for the non-linear, steady-state problem, by assuming that the

velocity field was small and, therefore, its effect on the electromagnetic field was negligible.

At very low applied currents the addition of viscosity prevented the development of axial

singularities. However, on increasing the current an axial jet developed in the fluid, leading to

velocity singularities on the axis of symmetry when the Sozou parameter, K, reached a critical

value KCTit. When the plane boundary is a wall Kcrit = 300.1 which, for steel, corresponds to a

critical current, JCTiti of approximately 3.7A On the other hand when the plane boundary is a

free surface Kcrit = 94.1, which corresponds to a critical current, 3Criu of approximately 2.06.A

for steel. The parameter K, later called the parameter of electrically induced vortex flow [13],

is defined by

where /xo is the permeability of free space, Jo the total applied electric current, p the density

and v the kinematic viscosity of the fluid.

In [114] Sozou and English relaxed the 'small velocity field' assumption in [110] by allowing

the velocity to affect the electromagnetic field in a IIEV fluid. Their numerical results indicate

that the inclusion of induced currents increases the range of K in which a solution exists.



However, the breakdown in the solution was not eliminated by the inclusion of this effect

and, furthermore, the increase in KCTn (and thereby Jcrit) is extremely small when realistic

material parameter values are used. To address the discrepancy between the large values of

K observed in experiments and the small values of Kcru obtained in the earlier models, Sozou

[113] investigated the effect on the flow field of using a current distribution comprising partly

of a circular cylindrical column of current and partly of a current radiating from a point on

the surface of an IIEV fluid which occupied a conical region, and then a semi-infinite region.

He found that the value of the critical breakdown current JCTit could be significantly increased

by using this type of current distribution. He also pointed out the inadequate geometry of

the semi-infinite model when comparing with experimental results (such as those obtained

in [136]). Sozou and Pickering [115] considered the unsteady semi-infinite problem of [110]

to study the streamlines of the developing flow field in an IIEV fluid. They discovered that

these streamlines were closed loops around a stagnation point which moves away from the

point source to infinity at a speed proportional to £~1//2, the inverse square root of the time

variable. These authors also determined that within a radius r of the point source a steady

state value for the non-dimensional streamfunction was established within a time t = r2/v,

where v is the coefficient of kinematic viscosity.

In [13] Bojarevics et al. discussed in detail a paper by Bojarevics [9], in which the viscous

forces in the region of the jet are increased by including a narrow rigid cone centred on the axis

of symmetry, to represent a submerged conical electrode in an IIEV fluid. The breakdown in

the steady-state solution at low currents, which was encountered by Sozou [110], was avoided

by applying the no-slip condition on this new conical electrode, and solutions were obtained

up to an unspecified maximum value of K in excess of 8000. Bojarevics also considered the

inverse, but geometrically identical case, where the electric current was supplied to the point

source on the plane surface of the liquid (which was either a rigid wall or a free surface)

from the axial cone. This second situation is displayed in figure 1.2, where the direction of

current flow is labelled 'reversed current J'. In this figure the angle 6 is measured from the

axis of symmetry (9 = 0) to the free surface (9 = n/2). Bojarevics was able to obtain a

numerical solution for the diverging flow described by this model for any large value of K

and, furthermore, in [10] he constructs an asymptotic solution for this model for large K.

The use of a semi-infinite geometry is a severe simplification in the theoretical models

described above, as observed by Sozou and English [113]. When a finite region of fluid is

considered, however, a similarity solution is no longer possible and the resulting system of

equations must be solved numerically.

Sozou and Pickering [116] extended the earlier work of Sozou [110] by considering only

a hemispherical region of fluid, with the imposed current source placed at the centre of

the hemisphere's surface. A steady-state similarity solution, similar to that obtained by



usual current direction J

= 7t/2

reversed current J

axial cone

e = o

Figure 1.2: Current flows with an axial cone, the regime used in [9], [10] and [13]

Sozou [110], was no longer possible, but a numerical solution to the governing equations was

found. However, the numerical method the authors used in [116] did not produce solutions

at currents close to the value of Kcru obtained in the earlier semi-infinite model ([110]), due

to large velocity gradients occurring in the axial region near the spherical surface.

Rosenthal's [92] early steady-state model in a semi-infinite medium, which considers a

travelling point source of heat, ignores both convective and radiative heat flow and uses

average material properties, was extended by Eagar and Tsai [39] to include a distributed

Gaussian heat distribution. These authors claimed that their model was capable of explaining

most of the experimental scatter observed in practical investigations. Many other authors

have also extended the work of Sozou and Pickering to consider different current inputs at

the free surface. Andrews and Craine [4] considered the flow in a hemisphere of IIEV fluid for

small currents (i.e. ignoring the non-linear inertia terms in the Navier-Stokes equations) due

to various distributed current sources across the plane surface (9 = n/2) of the hemisphere.

More specifically they considered a point source placed a distance o above the plane surface

and a ring sink of radius 6 centred on the axis of symmetry below this surface. The authors

found that varying the current distributions produced qualitatively different flow patterns.

Atthey [5] considered the situation where a metallic plate of constant thickness contained a

hemispherical pool of IIEV liquid metal of a smaller radius. A Gaussian current distribution,

which approximates the real current distribution in an arc, was then applied on the free

surface of the pool and drawn off at the periphery of the metallic plate. The numerical



procedure adopted by Atthey was convergent for very large values of K (^ 105) and the

intensity of the flow was observed to fall off as the thickness of the plate was increased.

Results were obtained for a number of different plate thicknesses and pool radii.

Another prescribed pool shape which has been investigated by some authors is that of an

oblate spheroid. In [117] Sozou and Pickering considered the case where current is discharged

from a circular electrode which is at the centre of the free surface (9 = n/2) of such a spheroid

of IIEV fluid. They introduced a similar assumption to Andrews and Craine [4], that the

velocities are small, and so ignored the non-linear inertial term in the Navier-Stokes equation.

The non-linear problem, which includes the inertia term, was considered later by Ajayi, Sozou

and Pickering [1]. By increasing the size of the area through which the current was discharged

the velocities in the spheroid considered in [1] were observed to vary.

All the theoretical models described so far have only accounted for the Lorentz force and

ignored the plasma jet, buoyancy and Marangoni forces. The experimental evidence of Lin

and Eagar [71] for example, indicates that overlooking the plasma jet force is not an important

oversight. At current values over 300A, however, the authors observed from the experiments

that the surface of a weld pool of stainless steel becomes markedly depressed, although the

analytical results in [71] indicated that arc pressure only influences the weld pool geometry

when the current exceeds 500A. Therefore, the pressure of the arc cannot account for the

change in the shape of the free surface for currents of approximately 300A Instead the

change was attributed to circumferential convection within the pool, and the authors argued

in [71] that the effect of surface tension on the surface depression was unimportant. The size

of the depression in the surface of the pool at a current of 240A is very small, but in [91]

Rokhlin stated that between current values of 240A and 300A the depression in the surface of

the pool increased by more than five times. Clearly the plasma jet force is not important in

many theoretical models, especially those which model the welding arc as a point source since

these models cannot obtain solutions at large values of the imposed current. In addition, by

neglecting the buoyancy and Marangoni forces these models also, in effect, assume that the

pool of liquid metal is isothermal. However, although a theoretical argument can be made

for excluding the buoyancy force, it has been shown that the Marangoni force is far from

insignificant.

Heiple and Roper [51] studied the effect of adding surface active elements (sulphur and

selenium) to iron and stainless steel and showed that the surface tension forces in molten

iron can be significantly changed by introducing 40-60ppm (parts per million) of sulphur,

oxygen or selenium. The surface tension gradient with respect to temperature (dj/dT) for

molten iron is usually negative, in which case the Marangoni force, if it dominates the others,

causes the molten metal to flow outwards from the source on the free surface, producing

wide shallow welds. However, upon introducing the aforementioned trace elements a positive



surface tension gradient is produced suggesting inward flow towards the source and deeper

pools. Later, Zacharia et al. [141] showed that fluid motion in the weld pool is further

influenced by the temperature distribution on the surface of the pool. Values of the surface

tension as a function of temperature were determined experimentally by Keene et al. [59] for

four different transition metals, namely gold, cobalt, iron and nickel, and type 316 stainless

steel. During TIGW this latter type of steel is known to portray different weld penetrations

when the constituent parts of each sample are apparently identical. The results in [59]

indicated that the differences between the weld-ability of different samples of steel 316 could

be related to the surface properties of the melts caused by the presence, or otherwise, of small

amounts of surface active elements. For samples of type 316 steel with large and small depth

to width ratios (thereby exhibiting good and poor weld-abilities respectively) Keene et al.

measured dj/dT to be 8 x lO^Nm^K'1 and - 3 x lO^Nm^K'1 respectively. These

experiments indicate the crucial role often played by the surface tension forces.

The effect of the Marangoni (also known as the thermocapillary) surface force on fluid flow

in the weld pool has been the subject of much experimental investigation since the paper of

Heiple and Roper [51]. Consequently some of the recent papers concerning this subject will

be outlined below.

In [77] Mills et al. discussed recent developments in Marangoni effects associated with

welding. These authors concluded that weld penetration in steel using GTAW, TIGW, EBW

and LBW techniques is determined by the direction and magnitude of the fluid flow in the weld

pool. This flow is, in turn, controlled by the thermocapillary (Marangoni) forces which are

dependent on the sulphur content in the sample of steel. The authors also discussed the effects

of arc wander and other surface properties. In [100] Shirali and Mills considered the effect

on the weld pool of changing various welding parameters such as current, speed, arc-length

and electrode geometry. In [100] the authors confirm the proposition of Heiple and Burgardt

[15], namely that any increase in the temperature gradient increases both the magnitude

of the thermocapillary force and the weld penetration in a high sulphur sample of steel,

but decreases the weld penetration in a low sulphur sample. Shirali and Mills also showed

that increasing the arc length decreases the weld penetration, but increasing the energy of

the arc increases the weld penetration. Motivated by the use of thin walled tubes in the

chemical and nuclear industries, Scheller et al. [96] considered the influence that the sulphur

content has upon thin strips of stainless steel. They confirmed that increasing the content

of sulphur, or the linear energy, increases the weld penetration in thin strips of material,

thereby allowing a faster welding speed. However, they observed that this advantage is offset

by the inferior workability and corrosion resistance of high sulphur steel, which is of course an

important consideration in the chemical and nuclear industries. Ishizaki et al. [57] performed

various experiments to study the convection in molten hemispherical and cylindrical pools



of liquid mercury. In [57] the authors investigated the effects of other forces by applying a

hot rod or a jet of hot dry air or ether saturated vapour at room temperature to the centre

of the free surface of a hemispherical pool of water in a block of ice. Using these methods

the authors demonstrated that a variety of different flow patterns were possible, including

inward, outward and more complicated flow patterns. They found that the Marangoni force

and its associated surface tension gradient, rather than the shear stress from the air flow,

governed the direction of the flow.

To investigate how the presence of the gas tungsten arc affects the welding process, in

addition to the effects of normal heat conduction and fluid flow, Pierce et al. [84] compared the

GTAW method with the non-arc EBW method using two different samples of stainless steel,

one containing a high sulphur concentration and the other a low sulphur concentration. These

authors found that the GTA and EB welds were both qualitatively similar, demonstrating

that Marangoni (thermocapillary) flow and normal convection are the dominant factors in

the weld pool. However, they observed growing differences between the two sets of results as

the arc power was increased. This effect they attributed to gas motion in the arc plasma, an

effect which is not present in EBW.

In [56] Hsieh et al. examined the effect of minor surface active elements and the electrode

shielding gas on the penetration of stainless steel during TIG W. These authors also found that

traces of sulphur or oxygen increased the depth to width ratio of the weld, whereas increasing

the aluminium content of the base metal produced the opposite effect since aluminium, which

is not a surface active element, is a strong de-oxidant. They also observed that the addition

of 1% oxygen or 5% hydrogen to the shielding gas significantly increased the depth to width

ratio.

Lee et al. [67] considered the effect of a thermocapillary (Marangoni) flow in the EBW

process, showing both experimentally and theoretically that this force dominates the fluid

flow. Using a dimensionless relationship between heat and mass transfer in the weld pool,

Murray et al. [78] obtained an analytical expression for the depth of the weld pool in GMAW

and compared these results with the experimental evidence.

Over the years since Heiple and Roper's pioneering work there have been various theoretical

models which incorporate a surface Marangoni force.

One of the first theoretical models to include the independent contribution of surface

tension to the flow of an incompressible, thermally and electrically conducting, inviscid fluid

(ITEV fluid) in a weld pool was proposed by the Japanese researchers Yokoya and Matsunawa

[138], using material parameters for iron. Using a numerical approach they investigated the

effects caused by a non-zero surface tension gradient on the fluid motion in a semicylindrical

basin of liquid metal in which current and heat is supplied by a semi-cylindrical submerged

electrode on the axis of symmetry. The authors concluded that the Marangoni force on the



free surface has a significant effect on convection and temperature distribution within the

pool.

Another early calculation which incorporated the Marangoni effect was due to Oreper and

Szekely [79], who used a distributed source of current and heat on the free surface of a ITEV

fluid and solved the unsteady temperature and heat phase-change problem using the material

properties of steel. Since that work various other models incorporating the thermocapillary

free surface force have been developed, see for example Matsunawa et al. [75], Zacharia [140],

Ravindran et al. [86], and, very recently, Priede, Cramer and Bojarevics et al. [85] and Chung

and Wei [27].

Matsunawa et al. [75] developed an unsteady numerical model for heat and mass transfer in

a growing pool of ITEV fluid. The authors included Lorentz, Marangoni and buoyancy forces

and also an aerodynamic free surface shear force, comparing the individual and combined

contribution of these forces to the penetration shape. In addition these authors considered

the effect of using different arc lengths, obtaining a two-loop flow structure2 when the arc

length was comparatively short. (An experimental study of electrode geometry and arc length

in TIGW can be found in [53].) Matsunawa et al. also observed that the fastest flow speeds

were caused by the surface forces (i.e. Marangoni and aerodynamic drag) and that high heat

and current density cause deep penetration, whereas a shallow pool occurs when the heat

and current density is lower.

In [65] Lancaster proposed a model which extended the steady-state, semi-infinite model

of Sozou [110] to an ITEV fluid by including the Marangoni force on the free surface caused

by a superimposed prescribed spherically symmetric temperature distribution.

In [140] Zacharia et al. outlined a finite difference model for a stationary welding torch in

GTAW and LBW. These authors considered the unsteady case, in which the position of the

solid/liquid interface is determined by the energy equation. In their model the surface tension

gradient is expressed as a function of both the surface temperature and the amount of surface

active element present, and the heat source is approximated by a Gaussian distribution. Their

model confirmed that in GTAW the heat transfer and depth to width ratio of the weld pool are

determined by convection in the liquid pool. To avoid the deleterious effect on the properties

of the weld due to the addition of sulphur, Zacharia et al. suggested an alternative, namely

that the advantage of a narrower, deeper weld pool which is obtained from a uniformly

positive value for dj/dT could be achieved by increasing the surface temperature. In [141]

Zacharia et al. compared the size and shape of the fusion zone position predicted by the

numerical model in [140] with the corresponding results emanating from experiments on type

304 stainless steel, obtaining excellent agreement for both the GTAW and LBW processes.
2The different types of flow structure which are observed in both experimental and theoretical models are

discussed in more detail in the introduction to chapter 2.
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Ravindran et al. [86] used the Galerkin finite element solution method in a model describing

the stationary, steady-state LBW process for an ITEV fluid. The position of the solid-liquid

interface was determined from the conservation of energy equation, and the heat source was

approximated as a beam of finite radius on the free (flat) surface, on which various constant

values for the surface tension gradient were applied. This model showed that on the free

surface the buoyancy force is much smaller than the thermocapillary force, and the latter

totally dominates the flow patterns in the absence of a magnetic field. (In the LBW process

the magnetic field is absent, so there is no Lorentz force acting).

Belgrove and Craine ([7], [30]) extended the model of Lancaster in [65] by assuming that

the arc was represented by a point source of current and heat, and then solved Sozou's

problem together with the coupled temperature equation, including the Marangoni force on

the free surface. Since it has been shown both theoretically [138] and experimentally [77]

that the presence of small quantities of surfactants in a molten metal causes large changes

in the value of the surface tension gradient with respect to temperature, dj/dT, it is not

surprising that the introduction in [7] of thermal terms and a Marangoni force into Sozou's

problem significantly affects the current at which breakdown occurs. Belgrove and Craine

found that a negative surface tension gradient gives rise to a Marangoni force which opposes

the Lorentz force, and consequently the development of axial singularities, and hence Kcru

increases as the magnitude of the negative surface tension is increased. On the other hand,

when the surface tension gradient is positive the corresponding Marangoni force reinforces

the Lorentz force and Kcru is reduced below the value obtained by Sozou in [110].

The numerical solutions found by Belgrove [7] for the steady flow induced by a stationary

point source of current and heat on the free surface of a semi-infinite expanse of ITEV fluid,

due to the presence of Lorentz and Marangoni forces, are very useful. These numerical

results indicate the existence of solutions, for an applied point source for currents up to

60.A (and, therefore, large values of K) and for large negative surface tension gradients,

using the appropriate parameter values of liquid steel. The use of the phrase ''large negative

surface tension gradient' may be misleading in this context, since comparing the chosen

values of dj/dT in [7] to those obtained by Keene et al. [59], who measured dj/dT to be

8 x 10~3 NTH'1 K'1 and - 3 x lO^iVm"1.^"1 (for steels with large and small depth to width

ratios respectively), a 'large' negative surface tension gradient in this thesis means one that

is approximately 0(1O~4). In chapter 2 of this thesis we obtain an asymptotic solution of

the model developed in [7] and [30] when the surface tension gradient is large and negative,

since this allows us to validate the numerical solutions and provide a greater understanding

of the relative importance of the forces involved.

Very recently Priede, Cramer and Bojarevics et al. [85] performed an experimental and

numerical study of thermocapillary convection in liquid gallium, with small amounts of a
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surface active element present at the free surface of the liquid, obtaining similar velocity

profiles in both their numerical work and experimental results.

Chung and Wei [27] considered a two-dimensional, unsteady model for welding dissimilar

metals with a moving source. This model incorporates Marangoni effects on the (assumed

flat) free surface of an ITEV fluid. The position of the solid-liquid interface was determined

with the energy equation incorporating a latent heat term, whilst the material parameters in

the liquid mixture were obtained using a linear volumetric fraction. Chung and Wei obtained

results for different metals and different magnitudes of the Marangoni force, comparing their

results with experimental observations.

In chapter 3 of this thesis we outline a model for the stationary, steady-state flow in a

hemispherical pool of liquid steel, modelled as an ITEV fluid, due to the application of a

point source of heat and current on the liquid's surface. This model was recently investigated

by Belgrove [7] and includes both a buoyancy force and the thermocapillary (or Marangoni)

force. The results are interesting since they describe how the Marangoni force on the free

surface affects the breakdown currents observed in the papers of Sozou and his co-workers

(e.g. [115]).

In the last two decades the use of external magnetic fields to control liquid metals has

become widespread in the metallurgical industry. By applying an external magnetic field

the electrically induced flow can be controlled and this method is apparently used (see [13])

for controlling electric arcs and electro-slag processes. (In the electro-slag process a melting

electrode is continuously fed into the area in which the slag3 melts.) In addition to the

poloidal flow the external magnetic field causes the fluid to rotate relative to the axis of

symmetry. This rotation will attempt to generate a (diverging) flow from the point source

out along the plane free surface (9 = TT/2 in figure 1.2) due to the centrifugal forces. The

converging axial flow, which leads to axial singularities, is reduced by the centrifugal forces

generated by this motion and if the applied electric field is sufficiently strong these forces can

reverse the fluid motion.

In [130] and [31] Craine and Weatherill studied the effect of an external magnetic field on

the flow induced in a hemisphere of IIEV fluid by a distributed source of current. In this

case the azimuthal rotating flow reduced, or even reversed, the velocity of the poloidal flow.

In [13] Bojarevics et al. described an experiment which demonstrates that azimuthal ro-

tation can occur without the imposition of an external magnetic field. In this experiment a

small current-carrying electrode situated at the centre of the free surface of a copper bowl of

mercury drives a poloidal motion in the fluid. When J > 15̂ 4 poloidal flow, which converged

towards the electrode on the free surface, was accompanied by azimuthal rotation. However,

up to a maximum current of 1500A no azimuthal motion was observed when the poloidal
3Slag is the waste material on the top of a liquid metal pool.
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flow was diverging away from the source on the free surface.

In [12] Bojarevics and Shcherbinin demonstrated that intense rotation can be achieved in

the semi-infinite point source model of Sozou [110], without any externally applied magnetic

field, by using an applied azimuthal forcing term kJ2, where k is a fixed small parameter.

They observed that in this situation the streamlines of the model are similar to those produced

by flow to a sink remote from the surface 6 = TT/2, and noted that this type of sink flow, such

as that which occurs in a bath tub, has a tendency to rotate in the azimuthal direction. As a

critical current value was reached, corresponding to Kcra in Sozou's model [110], they found

that the azimuthal flow increased dramatically for small k and breakdown was subsequently

avoided. However, when considering the reversed current case in which current is supplied

by an immersed electrode along 6 = 0 (see figure 1.2), small azimuthal disturbances were

retarded so that a rotating flow could not be maintained. In [13] Bojarevics et al. discussed a

paper by Bojarevics and Millere [11] where the authors considered the azimuthal perturbation

problem of [12] in a hemisphere (of radius R), with the current diverging radially from a small

hemispherical electrode (of radius R\ < R). The authors observed similar results to the

semi-infinite point source problem considered in [12]. However, their study was hindered by

non-converging numerical methods due to the large velocity gradients near the hemispherical

electrode (a problem similar to that encountered by Sozou and Pickering in [116]).

In a recent review article [34] Davidson discussed some recent research in metallurgical

MHD including magnetic mixing (used in casting to avoid anisotropic solidification), due

to an applied rotating magnetic field, and magnetic damping by an applied static magnetic

field. Davidson also discussed in a recent paper [35] the relationship between the poloidal

and azimuthal flows, i.e. the flows in spherical polar co-ordinates in the (r, 6) plane and 4>

direction respectively.

In chapters 4 and 5 of this thesis we investigate the linear stability ([26], [38]) of the cou-

pled heat and fluid flow model with surface tension, presented in chapter 3. Many years

ago Rayleigh, Reynolds and others all recognised the importance of hydrodynamic stability.

Reynold's series of experiments, described in [89], on the transition to turbulent flow in a

pipe, is often used to introduce the instability of flows and from these experiments he derived

the dimensional number we know today as the Reynolds number, Re. In general terms hydro-

dynamic stability determines whether a given laminar flow (in our case the model presented

in chapter 3) is unstable, and if it is then the theory can be used to determine whether the

flow becomes turbulent or bifurcates to another laminar flow. The method of normal modes,

which was introduced to fluid dynamics by Lord Rayleigh [87], is used in chapters 4 and

5, where the approach is discussed further. In these chapters attention is confined to per-

turbations in the <j> direction of the form ect+im^, where m is called the azimuthal mode of

stability.
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Using a geometrical optics method Lifschitz found that all axi-symmetric, non-viscous,

incompressible, poloidal, stagnation point flows are unstable to perturbations of short wave-

length (see [70]). The model presented in chapter 3, however, includes viscosity which will

damp any perturbations.

Various classical examples of how linear stability has been applied to inviscid and viscous

flows driven by a variety of forcing terms are presented and discussed in [26] and [38]. Some

of these models are outlined below.

• Instability of the laminar flow of liquid in a pipe (Poiseuille flow) was first investigated

by Reynolds over a hundred years ago.

• Thermal instability occurs when a horizontal layer of stationary fluid is heated from be-

low causing thermal convection (known as Bernard convection) due to the destabilising

effect of buoyancy. Rayleigh showed that this instability occurs when a dimensionless

parameter, known today as the Rayleigh number Ra, exceeds a critical value.

• The effect of rotation, or curvature of streamlines can cause centrifugal instability.

Examples include Couette flow (i.e. the flow which occurs between two rotating coaxial

cylinders), boundary layer flow on a concave wall and flow in a curved channel. Taylor

observed steady secondary flow in the form of toroidal vortices when he performed

experiments using two coaxial cylinders with the inner one rotating at a critical value

of a non-dimensional parameter known today as the Taylor number Tc.

• Thermal instability in fluid spheres and spherical shells.

• Steady two-dimensional flows with parallel streamlines. These types of flow were inves-

tigated by Reynolds who observed that the development of instability depended cru-

cially upon the velocity distribution. The inviscid theory was characterised by Rayleigh,

whereas consideration of the viscous theory lead to, what became known as, the Orr-

Sommerfeld equation.

External forces such as surface tension and magnetohydrodynamic forces usually tend to

stabilise fluid flow since they act to inhibit the fluid motion. (In the thermal instability

problem outlined above the surface tension on the free surface of the fluid must clearly affect

the fluid motion, especially when the fluid layer is very thin.) The stability of some of these

models when using an electrically conducting fluid in the presence of a magnetic field is

discussed further in [26], Chandrasekhar's textbook on Hydromagnetic Stability.

More recently Wilson [135] considered the effect of a uniform vertical magnetic field on

the onset of steady Benard-Marangoni convection in a layer of conducting liquid heated

from below. He investigated the cases when the free surface was deformable and then non-

deformable, and introduced various non-dimensional parameters. Wilson found that the
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Crispation number, Cr, (the ratio of viscous force to surface tension force at the reference

temperature), and the Bond number, Bo, (the ratio of gravitational force to surface tension

force at the reference temperature), play a critical role in determining the onset of steady

convection.

Gardner et al. [45] investigated the linear stability of the flow which develops in the fluid

filling a narrow gap between two concentric spheres at different surface temperatures. The

experimental results of various authors indicate that steady axi-symmetric flow occurs below a

critical Grashof number whereas a quasi-periodic, axi-symmetric flow pattern develops above

this critical value, which is dependent upon the Prandtl number and the gap width. The

authors of [45] conjectured that the transition in the flow pattern is due to a bifurcation.

They found that below a critical Prandtl number a linear stability analysis of an analytical

solution to this problem, expressed as a truncated power series in the gap width, indicated the

development of an axi-symmetric oscillatory instability with mode m = 0. On the other hand,

above this critical value instability occurred due to the development of a steady secondary

flow with mode m = 2. A first approximation to this secondary flow was obtained from a

critical eigenvector. In chapter 4 we use a similar method to obtain a first approximation to

a secondary flow. The relevant theory is outlined in chapter 4.

Linear stability analysis has been applied to many diverse, physically motivated models over

the years, some of which are relevant to the welding models discussed above. A very recent

review paper by Shtern and Hussain [106] has discussed the various features of flow breakdown

in rotating flows due to singularity development in the velocity field and bifurcation. The

authors have discussed a number of recent papers and related the topic to a variety of subject

areas including electro-vortex flows, as studied by Bojarevics and his colleagues [13], and the

earlier work of Sozou [110]. Over recent years a variety of papers on swirling flows and the

bifurcation of purely poloidal flows to a rotational flow have been published by Shtern and his

co-workers ([41], [101], [102], [103], [104], [105]). Much of this work is based on an application

which occurs in electro-spray processes. In the latter process the flow of an IIEV liquid in

an electromagnetic field is driven by radial shear stresses on the inner surfaces of a cone. In

[102] Goldshtik et al. showed that above a critical Reynolds number a supercritical pitchfork

bifurcation from a non-swirling to a swirling flow is possible. Extending this paper Shtern

and Barrero [103] found that a similar bifurcation to self swirling flow occurred when the

flow was caused by a body force. Shtern and Barrero extended their investigation to include

a half-space of IIEV liquid driven by an electromagnetic point source of current, following

the model of Sozou [110] which admits a similarity solution. In this latter case they found

that the azimuthal motion dominated over the poloidal flow and the number of flow loops in

the half-space increased with the applied current. In [104] Shtern and Hussain considered the

instability of steady, three-dimensional, axi-symmetric, ITEV flows with divergent streamlines
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near a plane surface or a conical surface. One case considered in [104] is the flow in a half-

space arising from Marangoni convection induced by a point source of heat on the surface

of the liquid. With a linear stability analysis Shtern and Hussain found that the diverging

poloidal flow bifurcates to a rotating flow at a critical Reynolds number for azimuthal modes

m = 2, 3,... . However, this critical Reynolds number is influenced in a non-trivial manner

by the value of the Prandtl number.

The linear stability of the model discussed in chapter 3 of this thesis is investigated in

chapter 4 for the azimuthal mode m = 0 and in chapter 5 for the higher modes m = 1, 2

and 3. It is worth noting that it was shown in [7] that the solution obtained in chapter 2 can

never bifurcate to a rotating flow.

Steel is an extremely important welding material and hence throughout the first five chap-

ters of this thesis all numerical solutions will be calculated using the parameter values for

this material. The results are really being calculated, however, for a general ITEV fluid

using particular values of the non-dimensional parameters in the problem and, therefore, all

the results could be linked to other materials with appropriate changes to the values of the

applied current and the magnitude of the surface tension gradient.
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Chapter 2

Asymptotic analysis of a

semi-infinite flow model with large

negative surface tension gradient

2.1 Introduction

Recently Belgrove [7] and Craine and Belgrove [30] extended an earlier welding model by Lan-

caster [65], by considering the steady state motion of a semi-infinite region of incompressible,

thermally and electrically conducting viscous fluid (ITEV fluid) due to stationary coincident

point sources of heat and current on the free surface. This model includes a Marangoni force

on the free surface and solves the coupled Navier-Stokes and temperature equations. These

authors obtained solutions for positive and negative surface tension gradients. They found

that solutions exist for large1 negative surface tension gradients at large values of the imposed

current J and, consequently, at large values of the parameter of electrically induced vortex

flow K.

In this chapter we construct an asymptotic solution of the model developed in [7] and [30]

for a large negative surface tension gradient using the non-dimensional parameter K as a large

parameter. Firstly, however, an asymptotic solution, derived by Bojarevics, to a semi-infinite

welding model is discussed.

Using the non-dimensional parameter K, Bojarevics [10] constructed an asymptotic solu-

tion to an earlier model [9] which altered the semi-infinite problem of Sozou [110] by placing

a narrow, rigid cone on the axis of symmetry to increase the action of the viscous forces

'The use of the term large may be misleading in this context since comparing the chosen values of d-y/dT

in [7] with measurements in steel by Keene et al. [59] a large negative surface tension gradient in this thesis

means one that is approximately 0(1O~4).

17



in the axial jet. With this addition Bojarevics was able to obtain solutions for very large

values of K. Bojarevics' model describes the flow of a semi-infinite region of incompressible,

isothermal, electrically conducting viscous fluid (IIEV fluid) under the influence of a Lorentz

force produced by the application of a point source of current at the point of intersection

between the axis of symmetry and the free surface. By reducing the conical angle of the cone

to zero Bojarevics was also able to obtain results for an infinitely thin wire on the symmetry

axis. Figure 2.1 depicts the situation, where spherical polar co-ordinates (r, 0, (f>) have been

reversed current J

conical angle a axial cone

9

Figure 2.1: Spherical polar coordinates with the origin at the base of a cone placed on the

axis of symmetry.

introduced with the origin at the apex of the cone. This figure shows 'reversed current flow'

(the situation defined in chapter 1, where an electric current is supplied to the point source on

the plane surface of the liquid, 9 — TT/2, from the axis of symmetry 9 = 0). The ensuing flow

[9] is directed up along the surface of the cone, and then diverges away from the point source

along the plane surface. In his model Bojarevics [9] considered, in turn, the cases where the

plane surface at 9 = ir/2 was a rigid wall and then a free surface, obtaining numerical results

for very large values of the parameter of electrically induced vortex flow K in each case.

Figures 2.2a and 2.3a (obtained from [13]) show respectively the streamlines tp/K = const,

for K = 107 (which corresponds to a current of approximately 1900A in steel) for a rigid wall

at 6 = 7r/2, and for K = 109 (which corresponds to a current of approximately 19,000^4 in
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steel) for a free surface at 9 = n/2, when in both cases the electrode has a conical angle a

of 5°. The solutions were found to depend upon the conical angle, and figures 2.2b and 2.3b

([13]) show the streamlines for K = 107 with a rigid wall at 9 = n/2, and for K = 109 with

a free surface at 9 = TT/2, when the conical angle is zero (i.e. the current is supplied to the

point source along an infinitely thin wire). Notice that when K is large the presence of the

central cone has little effect upon the streamlines in the bulk of the molten metal.

(a) (b)

5 3

Figure 2.2: Streamlines of the flow with a rigid plane (K = 107): (a) for the finite size

electrode; (b) for the infinitely thin wire. Figure taken from [13].

We now return to the recent model of Belgrove [7] and Craine and Belgrove [30]. These

authors have also obtained solutions at high current values, and correspondingly large mag-

nitudes of the parameter K, when the surface tension gradient was negative. The results of

Craine and Belgrove showed that three different combinations of flow regimes can occur in

the semi-infinite domain of fluid. These three flow regimes are shown schematically in figure

2.4, and the flow structures which result from prescribed values for the current J and the

surface tension gradient dj/dT are indicated on figure 2.5. The latter results were obtained

by choosing values for the density p, the thermal diffusivity K, the kinematic viscosity v and

the specific heat at constant pressure cp which are appropriate for liquid steel, namely

p = 7000fcg m~3, v = 6.4 x HT7m2s~\

K = 1.0 x l O ' V s " 1 and cp = GOOJkg^K'1.

In figure 2.5 the region below the dotted curve 2 corresponds to a single loop reverse flow

structure (displayed schematically in figure 2.4b) when the ITEV fluid flows up the axis of

symmetry (where 9 = 0) and diverges away from the point source along the surface (on which
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(a) (b)

Figure 2.3: Streamlines of the flow with a free surface (K = 109): (a) for the finite size

electrode; (b) for the infinitely thin wire. Figure taken from [13].

a) Inward flow: b) Reverse flow: c) 2-loop flow structure

down axis, in along surface. up axis, out along surface.

Figure 2.4: The possible flow structures predicted by the steady-state semi-infinite welding

model in [30] and [7].
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-6.8 -6.3 -5.8 -5.3 -4.8 -4.3 -3.8 -3.3

Figure 2.5: Curves in the (J,Iog10(—<97/<9T))-plane which separate regions that correspond

to different flow regimes in the numerical model described in [7] and [30]. The upper curve

indicates model breakdown. A similar figure can be found in the above references.
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9 = 7r/2). The region between curves 1 and 2 and to the right of the short curve 3 in figure

2.5 corresponds to a double loop flow structure (displayed schematically in figure 2.4c). In

this region the ITEV fluid flows out along the top surface but down the axis of symmetry.

Finally the small region between curves 1 and 3 in figure 2.5 corresponds to a single loop

inward flow structure (displayed schematically in figure 2.4a) in which the ITEV fluid flows

in along the free surface and down the axis of symmetry. Therefore, when the magnitude of

the negative surface tension gradient reaches the largest value occurring for real materials the

single loop reversed flow structure (figure 2.4b) exists for current values up to approximately

50A. Curve 1 denotes critical values of the current, Jcriu above which the solution breaks

down with a fast jet of fluid travelling along the symmetry axis. The figure clearly, shows

that Jcrit is a function of dj/dT, T denoting the temperature.

To understand the relative importance of the competing forces in the model of Craine and

Belgrove [30] some asymptotic results for the coupled problem would be very useful and this

type of analysis is attempted in section 2.4 for high values of the parameter K and large

negative surface tension gradients. First, however, it is necessary to summarise and discuss

the formulation of the model and the calculation of numerical results.

2.2 Numerical model

In this section we consider a model which describes the steady state motion and tempera-

ture distribution of a semi-infinite region of ITEV fluid due to a stationary point electrode

supplying current and heat to the free surface. The surface tension gradient with respect to

temperature, dj/dT, creates a large Marangoni (thermocapillary) force on the free surface,

outward from the point source when d^y/dT is negative. The surface is assumed flat and

buoyancy has been ignored. There is evidence that the exclusion of buoyancy is a reasonable

approximation [36], and its omission allows a similarity solution. The viscosity and density

coefficients are assumed unchanged by any alterations in temperature. The applied current

distribution is assumed spherically symmetric and it is assumed that the current and induced

magnetic field remain unchanged by the flow.

With the above assumptions the governing steady state equations are [110]:

the Navier-Stokes equations

(v.V)v + -Vp - z^V2v - -3 x B = 0,
P P

where v denotes velocity, p pressure, J electric current and B induced magnetic field;

the incompressibility equation,

V.v = 0;
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the heat transfer equation,

v.VT = «V2r, (2.1)

where the term on the left hand side describes heat transfer due to convection and the term

on the right represents conductive heat transfer. Viscous heat dissipation and ohmic heating

have been ignored since they can be shown to be small.

For a point source of current and heat it can be shown [30] that a similarity solution is

possible, with the stream function ip defined by

tp = vrf(n)

and

where n = cosO and 9 represents the angle between the radius and the vertical axis and r

is the distance from the point source situated at the origin on the free surface, as shown in

figure 2.1.

It follows from the definitions that

It is noted that /(/z) is a non-dimensional function, but with no natural length in the problem

i(/i) remains dimensional.

The MHD (magneto- hydro- dynamic) equations which govern the flow of electrically con-

ducting liquids are well known, [98], and will be quoted in the following summary. The

electric current distribution is assumed spherically symmetric and given by

where Jo denotes the total current input. Ampere's law

V x B = /i0J, (2.3)

where fio represents the permeability of free space, can then be solved analytically to give

the self-induced magnetic field

B = -W-"^, (2.4)
2 ( l 2 ) 5

assuming that B remains finite on the axis of symmetry n = 1.

After substitution for v, T, B and J in the Navier-Stokes and the heat transfer equations,

Belgrove and Craine [30] show that the governing equations become

= 2(1 - /x2)/'(/x) + 4/i/(/x) + a//2 + bn + c- F(/i) (2.5)
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and
.If S V / (A*)*(M) l0PS

t (fi) = ~ Q _ 2) ' t2'")

where

a, b and c are constants, a prime denotes differentiation with respect to fi and

Note that equation (2.5) is the equation obtained by Sozou [110] for the isothermal case.

Sozou notes that if F(fi) is removed, equation (2.5) becomes identical to that obtained in

[118] for the momentum transfer through a viscous jet (a topic which is discussed by Batchelor

[6]). Equations (2.5) and (2.6) are solved subject to the following boundary conditions:

no motion across the free surface (/i = 0),

ve(0) = 0 =*• /(0) = 0; (2.7)

no fluid crosses the axis of symmetry (fi — 1),

vB(l) = 0 => /(I) = 0; (2.8)

no heat flux across the top surface (/i = 0),

g ( 0 ) = 0=*i '(0)=0. (2.9)

The final boundary condition, derived from the assumption that the shear stress on the free

surface arises from the Marangoni force, is

and this condition couples equation (2.5) to the temperature. Note that condition (2.10)

involves dj/dT, the surface tension gradient with respect to temperature, which is assumed

constant. By evaluating equation (2.5) at /i = 1 and at fi = 0, and using boundary conditions

(2.7) and (2.8), the constants a,b and c can be obtained in terms of /'(0) as follows:

a = f - 2 / ' ( 0 ) , (2.11)

6 = K(41n(2)-3)+4/ ' (0) , (2.12)

c = - 2 / ' ( 0 ) . (2.13)

Equation (2.5) is of Ricatti-type and is usually transformed into the second order linear

equation

~ H- )
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via the transformation

Equation (2.14) must now be solved numerically subject to the boundary conditions

u'(0)=0 and u(0) = 1. (2.15)

Unfortunately the boundary condition (2.10) and the values of the coefficients a, b and c can-

not be determined explicitly from the prescribed boundary conditions since /'(0) is unknown

and, therefore, in order to calculate the correct value for /'(0) an extra condition is required.

In [65] the total heat input has been experimentally found to be approximately six times the

current input and this relation is used in our analysis. The heat conducted and convected

across a small hemisphere around the origin are given by

qd = —2nk—- and qv = 2nTcppvr,
or

where k is the thermal conductivity. The total heat flux is then obtained by integrating with

respect to JJL between 0 and 1, and hence the additional condition used in this thesis is

6Jo = Q = 2vrpcp / " * ( « - " / ' ) dfi. (2.16)

2.2.1 Method of numerical solution

Equations (2.14) and (2.6) for u(n) and t(fi) were solved subject to the boundary conditions

(2.9), (2.10) and (2.15), using the NAG routine D02BBF. The value of /'(0) was guessed,

solutions for u and t were found, and then the initial value /'(0) was altered until the right

hand side of equation (2.16) produced a value for Q which was within 0.1% of 6Jg.

2.3 Discussion

The numerical results of Belgrove [7] revealed that for certain current values and surface

tension gradients (which are far from the breakdown value shown on figure 2.5) the tem-

perature profiles are approximately spherical, see figure 2.62. Near the breakdown of the

numerical solutions there is more rapid downward flow close to the axis of symmetry and

along the free surface. On leaving the current unchanged but increasing the magnitude of

the negative surface tension gradient, the isotherms become increasingly aspherical (see fig-

ures 2.7 and 2.8). These results suggest a leading order relationship between the conductive

and convective methods of heat transfer in regions of large negative surface tension gradient.
2The numbers on figures 2.6 and 2.8 indicate values of ip/(vL) and TL, where L is the length of the

horizontal axis.
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I I

-2.761

Figure 2.6: Numerical streamlines and isotherms for K = 271.99 (i.e. Jo = 3.5A for steel)

and d-y/dT = - 3 x lQ

-6.729

-4.807

-5.768

-2.884 -0.961 -1.923 -3.845

Figure 2.7: Numerical streamlines and isotherms for K = 271.99 (i.e. Jo = Z.bA for steel)

and dy/dT = - 8 x 1 0 1
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To produce the required balance the value for Jo, which determines the parameter K, must

ensure that the conductive and convective terms are of similar order when there is a large

outward Marangoni force.

0.245 ,

-15.035

-10.739

-12.387

-6.444 -2.148 -4.296 -8.591

Figure 2.8: Numerical streamlines and isotherms for K — 271.99 (i.e. Jo = 3.5A for steel)

and d-y/dT = - 3 x 1 0 ~ s 1

(2.17)

The numerical results suggest that

is a good approximation for the order of magnitude of the non-dimensional stream function.

Since the magnitude of the Marangoni force clearly affects the stream function, it seems

reasonable to assume that the coefficients a, b and c in equation (2.5) must depend on dy/dT.

In this way the surface tension will affect the first approximation to the stream function in

an asymptotic analysis, as clearly required by figures 2.6 to 2.8 in which dj/dT is the only

input variable to change.

2.4 Asymptotic model

Figure 2.5 shows that numerical solutions are possible, using the material parameters for

steel, when the current is much larger than in the earlier point source isothermal models (see

[110]). That is to say point source solutions can now be found for very large values of K,

up to approximately 30,000 when log10 ( — dj/dT) « —3.75. Hence using K as our large
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parameter we now attempt an asymptotic analysis of the governing equations described in

the previous section when dy/dT is large and negative and K is also large. Asymptotic

analyses are helpful since they provide a deeper understanding of the underlying structure of

solutions. It is also hoped that our analysis will produce results that agree with, and hence

partially validate, the numerical solutions. Specifically, we look at the region in parameter

space where

and
V~ = bK-\, (2.19)

when Ci and C,2 are both 0(1).3 Therefore, using the definition for K given by equation (1.1)

in chapter 1, (2.18) and (2.19) are equivalent to

d U3 2h h-KK
-^ = ~Ci 3 °i ° a n d ^o = C2 1—•

n2

Figure 2.9 shows lines of constant £1 and £2, for molten steel. The curve labelled 1 (shown

previously in figure 2.5) gives the breakdown current, Jcrit, for the numerical model. The

curve labelled 2 (also in figure 2.5) shows the current at which a transition in flow structure

occurs in the numerical solution between a single and double-loop flow structure. Figure 2.9

clearly reveals the region in J — dj/dT space for which both (1 and £2 are 0(1).

The numerical results of Belgrove [7] and Craine and Belgrove [30] suggest that, in the

asymptotic solution, for the chosen values of J and dj/dT the flow should be divided into 2

regions:

A - main flow region, valid everywhere except in a thin layer at the free surface;

B - narrow viscous shear layer at the free surface, in which p. < 6S, where 5S is a positive

small parameter.

These regions are shown schematically in figure 2.10.

In the isothermal model considered by Bojarevics [10] the no slip condition at the axis of

symmetry (/z = 1) necessitated the use of an additional narrow viscous region near the axis,

1 — 8a ^ n < 1, where Sa is another positive small parameter. This axial region is not

introduced here because the thermal model investigated in this chapter does not have a no-

slip boundary condition on the axis and, more importantly, the numerical results do not

indicate any rapid changes in the solutions near this axis.
3For £1 and £2 to be exactly equal to 1 for molten steel (with v = 6.4 x 10~7m2s~1,n = 1.0 x

10~5m2s~1 and p = 7000Kgm~3) one requires that J = 3.3.4 (and consequently K ss 244) and dy/dT =

-1.1 x
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Figure 2.9: Lines of constant Ci and 2̂ superimposed over figure 2.5.
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Surface region B

Main region A

Figure 2.10: Schematic representation of asymptotic regions.
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2.4.1 Main fluid region

Asymptotic solutions to equations (2.5) and (2.6) are sought in this section. The non-

dimensional stream function / and temperature t are assumed to have regular perturbation

expansions with leading and first order terms

(2.20)

t(K,n) = K^toifi) + KBH!(n) + ... . (2.21)

Since K is large it follows that AQ > A\ and BQ > B\. Similarly the constants a, b and c

(which are clearly functions of K, by inspection of equations (2.11) to (2.13)) are assumed

to have regular perturbation expansions with leading and first order terms

a = Kao + K*ai + ... , b = Kbo +KHX + ... and c = Kco + K*ci +... . (2.22)

Momentum transport equation

Substituting equation (2.20) into equation (2.5), which determines the non-dimensional stream

function f{fi), leads to

K2A°f2 +

l ^ ^A (2 ) (2.23)

where

r(fi) = 1 ( 1 + fi)'2 l n ( l + fi) — /J,(1 + ^-/J.) I . (2.24)

The leading order approximation to f(/i) is therefore determined by

= K [a0fi
2 + boli + c0 - r(n)] . (2.25)

Hence 4̂o = 1/2, as expected from comparison with Bojarevics' work in [10], and the numer-

ical results shown in figure 2.8 which were obtained when the parameters satisfied equations

(2.18) and (2.19) with Ci ~ 1 and C2 ~ 1- Therefore, with Ao = 1/2 equation (2.25) implies

/0
2 = [a0(i

2 + ban + c0 - r(//,)] . (2.26)

It should be noted that the solution for /o can have a positive or negative square root. For

the case of large negative surface tension gradient, the flow is expected to be up the axis of

symmetry towards the origin and then diverge outwards along the free surface away from the
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point source, as shown in figure 2.4b. This flow structure corresponds to the negative square

root solution for /o.

The first order approximation to the non-dimensional stream function is determined from

which implies that Ax = 0. Using equations (2.26) and (2.27) with AQ = 1/2 and A\ = 0, it

follows that

f-fi - ^ 2qo/i + 60 - r'(/i) aip2 + but + ci , ,
/i = 11 - M ) 7rr—o~n—; r~vf+ 2^ r> {2,.its)

V ; 2[o0/x
2 + bon + c0 - r(//)] 2 [ao/ i2 + 6 o / i + ^ _ r ( / i)j 5

where r(/i) has been defined by equation (2.24) and

Application of the boundary condition / ( I ) = 0 on the axis of symmetry requires that

/o(l) = 0 and / i( l) = 0. Hence, taking the limit of equations (2.26) and (2.27) as p, ->• 1,

gives

ao + bo + co = r(l) and ax + &i + cx = 0, (2.29)

whilst taking the same limit of the differential of equations (2.26) and (2.27) yields

2a0 + 60 = r'(l) and 2ax + h = 0. (2.30)

Heat transfer equation

In the numerical model the heat transfer equation (2.1) was integrated with respect to fi to

obtain

Substitution of the regular expansion (2.21) for the temperature variable t(fi) into (2.31)

leads to

1 ( / o + / i ) ( o i )
KB°t'o + KBH[ = (2K-i± 4^—2 '-, (2.32)

where equation (2.19) has been used to write V/K in terms of the large parameter K. We

now choose BQ = —1/2, which is in agreement with the numerical results shown in section

2.3 of this chapter. To leading order, equation (2.32) then gives

o C 2 f ^1 /i

which yields the solution

to(/i) = Ct0 exp [C2 £ y ^ dV], (2.34)

32



where Cto is a constant of integration. With the obvious choice Bi = - 1 , equation (2.32) to

first order yields4

from which it follows that

h = U2 r pQ dV + ̂ ifo, (2-36)
Jo l - T Cto

where Ctx is a constant of integration.

2.4.2 Free surface shear layer

Fluid solution

It is necessary to introduce a stretched variable a = a(/x) in the thin shear layer near the

free surface, /x = 0 [128]. Introduce

as the stretched variable, where AS(K) is the small parameter K~s, with s > 0. In the shear

layer it is assumed that the expansions for / and t take the forms

.1/ = K-2 fOs(ii) + fM + ... (2.38)

t = K-hos(fi) + K'hnifi) + ... , (2.39)

which have similar structure in K to the expansions in the main fluid region and so allow

the matching to be performed successfully. Using equations (2.22), (2.37), (2.38) and (2.39)

equation (2.5) transforms into

= 2(1 -K-2V)ir(in/^ + /{J

( 2 2 b0K~sa + c0 -

-2sa2 + bxK~sa + cA (2.40)

where the prime here denotes differentiation with respect to a. Note that the Taylor series

expansion of r(/i) in the shear region, Ss = a/Ks <^ 1, leads to

8s) -Ss(l + \8S) = S3
S + O(«JS

4). (2.41)
4In regions of the dj/dT — J plane where £2 <C 1 the conduction term on the left hand side of equation

(2.32) is larger than any other term in that equation. Consequently, to leading order,

t'0=0

and hence the leading order temperature function, to{n), is constant and the corresponding isotherms are

hemispherical. Discussions in section 2.3 of this chapter indicate that when the surface tension gradient is

large and negative the leading order terms on the left and right hand sides of equation (2.32) must balance to

produce the observed aspherical isotherms, and so the assumption that C2 <S 1 seems unreasonable.
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In the viscous shear layer the linear viscous term, namely the derivative of / in equation

(2.5) and consequently equation (2.40), must be retained in order to satisfy the boundary

conditions on the free surface. Consequently, the viscous term must have the same order of

magnitude as the non-linear inviscid term. This is only possible5 if

in which case the leading and first order approximations to equation (2.40) are

/o, = 2/J8 + co (2-42)

and

2/05/1. = 2/{g + a6o + ci, (2.43)

respectively. The boundary condition /(0) = 0 is equivalent to

/0s(0) = 0 and / i s (0)=0. (2.44)

Applying condition (2.44)i to equation (2.42) yields

co = -2/0,(0) (2.45)

and applying (2.44)2 to equation (2.43) yields

ex = ~2/L(0) (2.46)

Provided Co > 0 (and therefore /us(0) < 0, which is true for the reversed flow shown in figure

2.4b), the solution to (2.42) is easily shown to be

t r~ 1 exp(y^a) ,_ ,fos = vco — , ,— N, (2.47)1 + exp{/c^a)

where the new constant of integration has been determined by again applying condition

(2.44)i. Equation (2.47) is the leading approximation to the stream function in the small

shear layer at the free surface.
5If s > 1/2 equation (2.40) leads to

fL = 0,

since the first (viscous) term on the right-hand side of equation (2.40) would not balance with any other term.

If s < 1/2 then equation (2.40) gives

fos = co,

since the term on the left-hand side of equation (2.40) would only balance with the constant in the final term

on the right hand side. Both cases imply foB is constant throughout the interfacial region, but condition (2.9)

then requires that the constant is zero, which eliminates the necessary surface region. Therefore, s = 1/2 is

the only possible choice.
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A more accurate solution is likely to be obtained by calculating fis. After substituting

from (2.47), equation (2.43) can be solved in a standard way, using an integrating factor, to

give

hs = - L
2 + exp(—y/cQa) + exp^/cna)

XTT I / K a ex-p(-Jc^a) +2a +aexr)(^/c^a) !> da I

2 > da.J- ( 4 ) — -t
V 2 / 2 + exp(

The displayed integral can then be integrated by parts to yield

a2c0 + (oty/c{; - 1Jb0

2co 2 + exp(-A /c^a)+ exp(v/coa)

/ ci \ 2a - exp(- y ^ a ) + exp(y/c^a) 4 g

exp(v/coa)

2a - exp(-

where the constant of integration has been determined by applying condition (2.44)2-

Thermal solution

The temperature in the shear layer is found using a similar method to that outlined above.

The viscous and thermal shear layers are assumed to have the same width, so in the thermal

layer we introduce

a = -A- (2.49)
K 2

Substituting equation (2.49) into (2.6) leads to

In this case the leading and first order approximations to equation (2.50) are

t'os = 0 (2.51)

and

A, = bfostos, (2-52)

whereas boundary condition (2.9) (i'(O) = 0) leads to the conditions

4(0) = 0 and 4 ( 0 ) =0 . (2.53)

Equation (2.51) implies that

(2.54)
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where tOs(O) is a constant. Integrating equation (2.52) yields

- In (l + exp(V^a))2] + *i,(0) + (2*05(0) ln(4) (2.55)

where £is(0) is a constant of integration.

The final boundary condition (2.10), for the shear stress on the free surface, can be rewritten

using the asymptotic expansions described above as

K(Kl2fZM + /£(0)) = Cild (K-hO8(O) + K-Hu(0)) • (2.56)

Therefore, the leading order and first order boundary conditions emanating from (2.56) are

/o,(O)=O
6and

/".(O)=Ci«os(O),

respectively.

Equation (2.51) reveals that to leading order the temperature is constant throughout the

surface layer.

Observe that taking the limit as a -> 0 of the differential with respect to a of equation

(2.43) leads to

60 = -2/:"s(0) = -2CiM0) , (2.57)

since /is(0) = 0 (condition (2.44)2). Therefore using equations (2.29)i and (2.30)i we obtain

r'(l) r'(l)
a0 = ~Y~ + CiMO) and c0 = r(l) - - ^ + Ci*os(O). (2.58)

Using (2.45) it is clear that equations (2.57) and (2.58) are the leading order expansions of

equations (2.11) to (2.13). Similarly, using (2.46), the first order expansions of equations

(2.11) to (2.13) give

= Ci*i*(0), 61 = -2Citi«(0) and a = Cih,(O). (2.59)

2.4.3 Matching

To obtain the remaining constants Ct0 and Ctx in equations (2.34) and (2.36) in terms of

*is(0) we match the leading and first order expressions for the stream function. We adopt

Van Dyke's [128] approach by using the asymptotic matching principle:

The m-term inner expansion of (the n-term outer expansion) =

the n-term outer expansion of (the m-term inner expansion),

Note that the equation fo's = 0 is consistent with the limit of the differential of equation (2.42) as a —> 0.
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and choosing m = n = 2. In our work outer refers to the main fluid region, whereas inner

refers to the surface shear layer.

It follows from equations (2.34) and (2.36) in section 2.4.1 that the 2-term outer expansion,

in inner variables, is

2a) + A ti(K 2a) = K 2Q0exp

^ k * a ) . (2.60)

Expanding in a Taylor series in the small parameter K~5, it is easily shown that the 2-term

inner expansion of the 2-term outer solution is

K-*to{K-*a) + K-Hi(K-^a) = C^R-* + ( - C^y/^a + Ctl) JiT
1. (2.61)

Similarly the 2-term inner expansion, in outer variables, can be written as

K-hos(fi) + K-Hu(ji) = *0 s(0)ir ^ + (t ls(0) + C2*os(O) ln(4))K-1

+C2*o,(O) [ v ^ ^ - 2 In (l + exp( V^ff/x))] K'1 (2.62)

which on expansion gives the leading two terms in the form

21n(2)C2*M(0) + t i^O))^" 1 . (2.63)

Therefore, writing (2.63) in terms of a and equating with (2.61) gives

Cto = tOs(O) and Ctl =2ln{2)(2t0s + *i,(0). (2.64)

A composite solution, which is uniformly valid over the entire region, is obtained from

the addition of the inner and outer expansions and subtraction of the common parts of the

leading and first order expansions in the two regions. Therefore, the approximate first order

solution for / is

^ ) ( ^ ( ( ) V ) ^ ) , (2-65)

where /oc and / i c denote the leading and first order composite asymptotic approximations

of the non-dimensional stream function. With the calculated expressions for /o, / i , fos and

/ i s , the composite asymptotic solution for the non-dimensional stream function (for large

magnitude negative surface tension gradient and large non-dimensional parameter K) can be
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written explicitly as

fc(n) =

2co (2 exp ( - ix) + exp ( -

exp ( -

+ l

2) exp ( -

— exp(—y exp(

Similarly the approximate first order solution for t is

tc(fi) = K~hoc + K'Hlc

(2.66)

(2.67)

where ioc a n ( i tic denote the leading and first order composite approximation for the tem-

perature. With the calculated expressions for to, t\, tos and t\s, the composite asymptotic

solution for the temperature (for large magnitude negative surface tension gradient and large

non-dimensional parameter K) can be written explicitly as

21n(2)C2*os(0))

(2.68)

The constants tOs(O) and tis(0) remain to be calculated. As discussed earlier, in this thesis

this final boundary condition is taken to be the one used by Belgrove [7], since it has been

shown in experiments, [65], that the applied current Jo and heat input Qin are approximately

related by the equation

6 Jo = Qin-
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This assumption is again used here, and provides the extra condition

6jo = Qin = 2irk / till) (1 - - / ' ( /
J0 \ K

(2.69)

where k = pcpK denotes the thermal conduction coefficient. With the aid of equations (2.19)

and (2.66), equation (2.69) can be written as

i: -of
Jo

(2.70)

to leading and first order, where e is a small parameter denoting the thickness of the shear

layer. Taking the limit e —> 0 in the lower bound of the first integral and K^e —> 00 in the

upper bound of the second integral, the leading order expression

irk

h-f
Jo

(2.71)

gives a non-linear equation for tos(O). Incorporating the remaining sections of the integrals,

introduced by the approximations e -> 0 and K*e —>• 00 in the leading order expression, into

the equation for the first order, we obtain

{ti(/i)(l-C2/o(A*))-C2*o(/i)/{(/*)} dn +

C2 / hs(a)fL(a) da

. (2.72)

0 =

1

-K-2

The final integral term in (2.72) can be expressed as

which clearly tends to zero when K ^ i s large.

Similarly, by expanding in powers of /z

C2/o(/i)) dli = -KhtOs(O)

to leading order. Incorporating these results in (2.72) yields

0 = J
(2.73)
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where again we have taken the limit e -» 0 in the lower bound of the first integral and

K 2£ —>• oo in the upper bound of the second integral. Using integration by parts it can be

clearly shown that

/ *!»/£» da =
o

therefore equation (2.73) can be rearranged to yield

= " [Jo t0ifl) { [lD ( " / 0 ( M )) ~ ln (* " ^ ) + 2 M 2 K 2 ] (l ~

2c0

i _ I LL X

a linear integral expression for ii5(0).

2.5 Method of solution

Equations (2.66), (2.68), (2.71) and (2.74) are solved simultaneously for steel for prescribed

fixed values of the current Jo and surface tension gradient d^/dT. To evaluate the tempera-

ture distribution and stream function across the entire region the constants tos(O) and *is(0)

must be calculated. An iterative process is employed to determine tos(O) from (2.71), to a

specified tolerance, for given values of surface tension gradient and current. Then t\s{0) can

be determined by evaluating (2.74). The initial value of ios(O) is guessed and f'Q is evaluated

using equation (2.25), then to evaluate to the integral on the right hand side of equation

(2.34) is calculated via the NAG routine D01AJF, using a range of 100 points equally spaced

in /i between 0 and 1. Finally the outer integral in equation (2.71) is then integrated numer-

ically over the entire range of \i e [0,1)7 by the NAG routine DOIGAF. This routine supplies

values of the integrand at ji = fj,m where m e [1, 999] and /zm e [0,1). The value of tOs(O) is

then altered until equation (2.71) is satisfied to within a specified tolerance of 1 x 10~5. This

tolerance level is comparable to the error introduced by the numerical integration. Further

reduction in the value of the tolerance produced no distinguishable change in the results. The

value calculated for £os(O) is finally substituted into equations (2.74), (2.66) and (2.68) and

7Since the integrand in (2.34) contains a singularity at \i = 1 equations (2.34) and (2.71) cannot be simply

evaluated there. To avoid this complication the integral is evaluated over the interval fi e [0,1 — 8] where

8 = 1/100 and we have denoted this by the range (i e [0,1).
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the composite solutions for / and t are then plotted as functions of/i. Figure 2.11 summarises

the program structure.

Begin

/ Define variables /

Guess initial value for t0 (0)

Calculate f0(u.)from equation (2.26)

Calculate integrand of equation (2.71)
at 100 points between 0 and 1

using DO 1AJF

Integrate (2.71) over the range [0,1)
using D01 GAF

/ Alter t()s(0) /

Is equation (2.71) satisfied to within
a specified tolerance?

false

Substitute t()s(0) into (2.74)

to evaluate tls(0)

Evaluate the composite

solutions for f and t
End

Figure 2.11: Program structure
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2.6 Results and discussion

In all the results discussed in this section the values chosen for u, K, p and Cp are again

p = 7000kgm~3, v = 6.4 x 10"7m2s~1,

K = 1.0 x 10~5m2s~1 and Cp = GOOJkg^K'1.

These values are appropriate for liquid steel. The temperature will be highest at the origin

and since we are restricting attention to dj/dT < 0 the Marangoni force will try to make

the fluid on the free surface flow away from the point source. The actual direction of flow,

however, will depend on the relative magnitudes of the Marangoni and the other forces.

In the model outlined in section 2.2 of this chapter three flow structures were possible for

negative surface tension gradient, and these were shown schematically in figure 2.4. For the

values of the parameters assumed above, however, the asymptotic model will only give one

flow structure, namely the outward flowing single loop structure described in figure 2.4 as

reversed flow.

Figures 2.12 and 2.13 display the values of /(/x) and t(fi), which are proportional to the

stream function and the temperature respectively, for both the full numerical model and

the composite asymptotic solution (given by equations (2.66) and (2.68) respectively), when

dy/dT = - 3 x 10~5 Nm^R-1 and K = 271.99 (i.e. Jo = 3.5A for steel). With these

parameter values it is easily calculated that £i = 2.3325 and (2 — 1.0555.

-10

-20

-30

Numerical Solution
Asymptotic solution

0.2 0.4 0.6 0.8

Figure 2.12: Variation of / with /x for the asymptotic and numerical solutions when K =

271.99 (i.e. Jo = 3.5-4 for steel) and dj/dT = - 3 x lO^Nm^K-1.

Figure 2.12 shows a strong outward flow near the top surface, flowing away from the point

source. The temperature profile is clearly dependent on the polar angle 6, as is clearly
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Figure 2.13: Variation of t with fi for the asymptotic and numerical solutions when K =

271.99 (i.e. Jo = 3.5A for steel) and df/dT = - 3 x 10 ^ 1

observed in figure 2.13. Both figures show very good agreement between the full numerical

solution and the first order composite asymptotic solutions derived in section 2.4.3.

When the magnitude of the negative surface tension gradient dj/dT is reduced, but the

value of Jo is kept constant, the error between the asymptotic approximation and the nu-

merical solution becomes more pronounced. Figures 2.14 and 2.15 show the numerical and

asymptotic solutions to / ( /J ) and i(/x) respectively when dj/dT = - 3 x 10~eNm~1K~1 and

Jo = 3.5A These parameter values correspond to £i = 0.2335 and £2 = 1.0555 and inspec-

tion of figure 2.9 shows that these choices place the solution just inside the surface tension

dominated single loop region shown in figure 2.5. Being near the edge of this region, with a

value for (j not close to 1, it is not surprising that some errors appear.

It is clear from figures 2.14 and 2.15 that the asymptotic solution is less accurate than for

the previous case, especially for the temperature. However, it is expected that the accuracy

could be improved by retaining more terms in the expansions.

As mentioned above the chosen values for the parameters Jo and dj/dT, and the associated

values for (1 and (2, place us close to the region of parameter space where a 2-loop flow

develops (see figure 2.4c). This is confirmed by the fact that a slight increase in the value of

the current in the numerical solution leads to the development of a two-loop flow structure,

indicating that the surface tension forces no longer dominate the problem. Since the Lorentz-

dominated counter rotating loop first develops near the axis of symmetry it is not surprising

to see differences between the asymptotic approximation and numerical solution for both the

streamfunction and temperature, visible in figures 2.14 and 2.15 as /j, ->• 1.
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Figure 2.14: Variation of / with pi for the asymptotic and numerical solutions when K

271.99 (i.e. Jo = 3.5,4 for steel) and d-y/dT = - 3 x lO
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Figure 2.15: Variation of t with JJ. for the asymptotic and numerical solutions when K

271.99 (i.e. Jo = 3.5A for steel) and dj/dT = - 3 x 10
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Figures 2.16 and 2.17 show profiles of / and t, proportional to the stream function and

temperature, for the case dj/dT - - 8 x lO^ATm"1.^1 and J = 3.54 (corresponding to

£i = 0.62201 and £2 = 1.0555), i.e. a magnitude of d'j/dT between the two previous values.

Predictably the maximum error in both the temperature distribution and stream function

lies between those obtained in the previous two cases.
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• Numerical solution
- Asymptotic solution
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Figure 2.16: Variation of / with /i for the asymptotic and numerical solutions when K

271.99 (i.e. J o = 3.54 for steel) and dj/dT = - 8 x l Q ^
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Figure 2.17: Variation of t with fj, for the asymptotic and numerical solutions when K =

271.99 (i.e. Jo = 3.54 for steel) and d^/dT = - 8 x lO

So far we have only shown examples of the asymptotic approximation for a fixed current
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of Jo = 3.5A Increasing the current, and thereby the value of the large parameter K, should

yield an accurate asymptotic approximation provided Ci a nd C2 remain 0(1). To confirm

our view, graphs comparing the numerical and asymptotic solutions for the functions / and

t, when dj/dT = - 3 x 10~5 Nm^K'1 and J = 5.64, are shown in figures 2.18 and 2.19.

These parameter values correspond to Ci = 0.5695 and (2 = 1-6888.
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Figure 2.18: Variation of / with /i for asymptotic and numerical solutions when K = 696.3

(i.e. Jo = 5.64 for steel) and dy/dT = - 3 x lO^
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Figure 2.19: Variation off with \i for the asymptotic and numerical solutions when K = 696.3

(i.e. Jo = 5.64 for steel) and dj/dT = - 3 x 10~5Nut'1 K~K
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Discussion

Very good agreement between the asymptotic and numerical solutions has been obtained when

£1 and (2 are both 0(1). When £i and £2 differ from unity, however, the assumptions under

which the asymptotic model was derived do not remain valid and hence, not surprisingly, the

asymptotic solutions are less accurate.

At very low currents and low magnitudes of dj/dT the isotherms are quite flat. On increas-

ing the current the isotherms become more spherical, since the effect of the surface tension

force is negated by the increasing Lorentz force. Starting from a position in (dj/dT, J)-

parameter space which leads to approximately spherical isotherms (as shown, for example,

in figure 2.6) and then increasing the current, the Lorentz force begins to affect the flow

structure by creating a second counter rotating loop close to the axis of symmetry (fi = 1).

Note that breakdown of the asymptotic solution can be linked to the development of

a double loop flow structure in the numerical solution, where a counter rotating Lorentz

dominated loop appears near the axis of symmetry. When the second loop appears the

stream function in the numerical model will change sign close to the axis of symmetry. In the

asymptotic model, however, this change in sign is impossible since, in the main fluid region

c0 - r(/x)) 2, (2.75)

which is always one-signed and negative provided the solution is real. Breakdown of the

asymptotic solution clearly occurs if

- c0 - r{n) < 0, (2.76)

which, with the use of equations (2.58)i, (2.57) and (2.58)2, is equivalent to

-2f2 ln(2) - l)/ i2 - 2ft - 3/z2 + 2(1 + /z)2 ln(l + /z) + 3 - 41n(2)
Ci*o(O) < - r? 72 • (2-77)

It is easily shown that the right-hand side of equation (2.77) increases monotonically with

/z and has its maximum value when /z = 1. Both the numerator and denominator on the

right-hand side of (2.77) vanish as (i —>• 1. Applying L'Hopital's rule twice then gives the

condition for breakdown as

Ci*o(O) < 1 - ln(2). (2.78)

If the above inequality is satisfied then a real streamfunction does not exist in the asymptotic

solution.

To conclude let us consider the results for the breakdown current. For a comparatively large

negative surface tension gradient at low currents (but large K) the resulting Marangoni force

creates outward flow on the free surface with a consequential upward flow, towards the point
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source, along the axis of symmetry (shown in figure 2.4b). When the current is increased the

larger Lorentz force causes the fluid velocity on the axis to slow down, and eventually reverse

its direction, thereby creating a second counter rotating loop near this axis. It is well known

from the results in [110] for a zero surface tension gradient (for which the Marangoni force is

absent) that breakdown occurs due to the existence of a fluid jet down the axis of symmetry

when the current is low, 2.05A for steel. The presence of surface tension on the free surface

causes little change to Sozou's method of singularity development [110] once flow down the

axis of symmetry has been achieved. It is not a surprise, therefore, that figure 2.5 reveals

that the values of the applied current at which downward axial flows develop are very close

to those values of the current at which breakdown occurs and the difference between these

current values (i.e. curves 1 and 2 in figure 2.5) is relatively constant over a wide range of

values of —dj/dT.
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Chapter 3

Steady state solution in a

hemisphere

3.1 Introduction

In addition to obtaining a steady similarity solution for the temperature and stream func-

tion in a semi-infinite region of incompressible, thermally and electrically conducting viscous

(ITEV) fluid due to a stationary point source of current and heat, Belgrove [7] also considered

flow inside a hemispherical region. He solved this problem in a finite region numerically, also

including the buoyancy force which has been shown to affect the shape of the weld pool, [12].

A problem encountered by experimentalists is the large standard deviation of a given

parameter in a weld, say its depth, when an experiment is repeated under supposedly identical

conditions. One possible cause is the existence of multiple steady-state solutions. In an

attempt to increase our understanding of the problem, Belgrove [7] carried out a linear

stability analysis of the solution inside a hemispherical weld-pool. No analytical solution is

possible for the underlying steady-state situation so Belgrove had to adopt a full numerical

solution to this problem and the associated stability analysis (for modes m — 1, 2, 3).

Due to some errors in his lengthy code, however, Belgrove's stability results were slightly

inaccurate. In chapter 4 of this thesis the analysis for the m = 0 azimuthal stability mode

is investigated (this important case was not considered by Belgrove), whilst in chapter 5

Belgrove's results for the low non-zero modes of stability, m = 1, 2 and 3, are reworked,

corrected and extended.

Before any stability analysis can be attempted the underlying flow must be determined

and in this chapter, therefore, a brief description of Belgrove's work for determining the flow

inside a hemisphere of liquid metal is presented. Figure 3.1 shows the main geometrical

features of the problem.
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Figure 3.1: Geometry of the hemispherical flow model

Our model includes the electro-magnetic force (due to the current and its interaction with

the self induced magnetic field), the Marangoni force on the free surface (due to the variation

of the surface tension with temperature) and the buoyancy force (caused by density variations

within the pool). The top (free) surface is assumed flat and a stationary point source of heat

and current is placed on this surface at the centre of the hemisphere. The liquid is treated as

a ITEV Newtonian fluid, the viscosity coefficient is assumed to be constant and the applied

current and heat distributions are assumed to be spherically symmetric. The Boussinesq

approximation is also used so the density is constant except in the buoyancy term where

a linear variation in temperature is assumed. The current and induced magnetic field are

further assumed to remain unchanged by the fluid flow, and these assumptions ensure that

analytical expressions for the magnetic field and electro-motive force can be derived. No

azimuthal rotation of the fluid is included at this stage.

3.2 The differential equations

The governing steady-state equations are:

the Navier-Stokes equations

- F B + p(v • V)v + Vp - puV2v - J x B = 0, (3.1)

where

p(v • V)v denotes the inertial force, Vp the pressure gradient, pvV2v the viscous force,
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J x B the electro-magnetic force and F B the buoyancy force;

the incompressibility equation

V - v = 0; (3.2)

the heat transfer equation

+ e,, + e0, (3.3)

where K V 2 T represents heat transfer due to conduction and e^,eo denote viscous dissipation

and ohmic heating respectively. The last two terms are small and will be ignored.

We introduce the spherical polar coordinate system {r,9,(j)) as shown in figure 3.1. The

axis of symmetry and free surface are given, therefore, on 9 = 0 and ir/2 respectively and

the point source of heat and current is located at r = 0. The unit vectors in each of the

coordinate directions at any point are denoted by f, 6 and 4> respectively.

A Stokes stream function ip is introduced and expressed in the form

where A = r/a (a is the radius of the hemisphere) and /i = cos 6. Assuming that the fluid

flow is axisymmetric with no azimuthal component, the velocity v is connected to the stream

function by

( ^ A (3.4)

Substituting for tp it then follows that

v ( g + AffA \ / , r\

where in this equation and throughout the remainder of the chapter the subscripts fi and A

denote partial derivatives with respect to those variables.

The temperature T is written

^ ) , (3.6)
r

where Tm is the melting temperature (which we take to be 1700.KT for steel) and t is non-

dimensional. With the Boussinesq approximation the buoyancy force, F B , has the form

F B = ~(p ~ Pm)9eez, (3.7)

where ge represents the acceleration due to gravity, pm is the density of the metal at its

melting temperature and ez = — (f cos# — OsinO) is the unit vector in the upward vertical

direction. The change in density is approximated by the expression

P~ Pm = -pP ( -^— -Tm) . (3.8)
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where /? is the coefficient of expansion of the liquid metal.

The MHD (magneto- hydro- dynamic) equations which govern the flow of electrically con-

ducting liquids are summarised by equations (2.2), (2.3) and (2.4). Using equations (3.5),

(3.6), (3.7), (2.2) and (2.4), the curl of equation (3.1) becomes

- 2A/A - ^ - ,

= 3/<fc + QU + HU9x ~ f\9»), (3-9)

where
X2gXx) ~r2 , _ , ,„ i m

= (V * V V (310)
The quantity (V x v)^ represents the ^-component of V x v. The parameter of electrically

induced vortical flow K is denned in chapter 1 by

and Rr, related to the Rayleigh number, is defined by

Rr = 9 ^ a \ (3.11)

Dropping the viscous dissipation and ohmic heating terms the temperature equation (3.3)

reduces to

P r [-(AtA - t)gp + (g + Xgx)^} = A2tAA - 2^ + (1 - / i % M , (3.12)

where PT is the Prandtl number defined by

Pr=V-
K

The equations are then transformed, following Sozou and Pickering [115], by defining a new

variable

i7 = ( l - / z ) 5 . (3.13)

This transformation ensures that the governing differential equations are elliptic throughout

the region of interest. The introduction of 77 also improves the distribution of grid lines in the

hemisphere since equal spacing in the rj variable corresponds fairly closely to equal spacing

in 9, whereas equal spacing in fi leads to very unequal spacing in 9. The distribution of grid

lines is discussed in detail in chapter 4.

To denote this change of variable the dependent variables /(/i, A), g{n,X) and t(fi,X) are

replaced by f (77, A), g(r), A) and t(rj, A) respectively. With these changes the governing system,

comprising equations (3.9), (3.10) and (3.12), becomes

( 2 - 7 / % , + (2AgA + 2g + 6 - 7 r ?
2 ) | + 4A2fAA - 2 A ( |

[ - AtA + t - ^ r ^ ] = 0.

52



_f _ gf> . &ro , (2AgA + A2gAA)
4^ 42

and

^ - t) + i-t,,(g + AgA) + £ [A2tAA + ̂ ^ t , + ̂ X ] = 0, (3.16)

where the subscript 77 denotes differentiation with respect to that variable. Note also that

the free surface now becomes r\ = 1 and the axis is rj = 0.

3.3 Boundary conditions

The boundary conditions to be applied to the differential equations (3.14), (3.15) and (3.16)

are listed below, with reasons for their validity.

Velocity

v is finite on the axis of symmetry g(0, A) = 0; (3-17)

no slip on the hemispherical boundary g(r/, 1) = 0, g\{r), 1) = 0; (3.18)

no velocity perpendicular to the free surface g(l, A) = 0; (3.19)

the flow at the origin approaches the similarity solution described in section 2.2 of chapter 2

for flow in a semi-infinite region

g(r; ,0)=50( / i) , (3.20)

ffa,0) = ( 7 j » ; (3.21)

the derivative of the non-dimensional vorticity function / is

finite on the axis 9 = 0 (by symmetry) f,(0, A) = 0; (3.22)

(3.15) evaluated on A = 1 ffa, 1) = 2 | A A
 2 ; (3.23)

(3.15) evaluated on 77 = 0 and A = 1 f (0,1) = ^gWAA- (3-24)

In addition, by considering the surface stresses on the free surface of the weld pool it is easily

seen that

fldvr ve dve\ dl d1 dT
aTe — pv\ —— h -̂ — I = — = -z^,-^-, (6.2b)

\r d6 r dr ) dr dT dr

from which it follows that a further boundary condition to be satisfied on the surface 77 = 1

is

f(l,A)=Tr(AtA(l,A)-t(l,A)Y
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where the parameter yp is defined by

1T

With the earlier choices of material parameters for steel it follows that when d'y/dT « 10~7

the parameter 77- ~ 102.

Temperature

No heat flux across the free surface t^(0, A) = 0; (3.26)

no heat flux across the axis of symmetry t^(l, A) = 0; (3.27)

the temperature on the hemisphere is the melting temperature t(rj, 1) = 1; (3.28)

t tends to the similarity solution described in section 2.2 at the origin t(r), 0) = t°(/x).(3.29)

All the boundary conditions stated above were used by Belgrove in [7].

3.4 Finite differences

The finite difference method used here to solve the system of equations and boundary con-

ditions is the same as that adopted by Belgrove. His method has been fully discussed in [7],

so only a brief summary is given here. The grid points used are equally spaced in both the

A and rj directions. All second derivatives are approximated by central differences, whereas

the first derivative of a variable is approximated by the Leonard QUI (quadratic upstream

interpolation) method [68] in the equation which is being used to update the value of that

variable. Elsewhere, central differences are employed to approximate first derivatives. There-

fore, Leonard's method is used to approximate f\ and fv in equation (3.14), g\ and g,, in

equation (3.15) and t> and t̂  in equation (3.16) but central differences are used for all other

derivatives.

Leonard's method avoids both the stability problems associated with using central differ-

ences for first derivatives and the inaccuracies of upstream numerical diffusion, and a brief

discussion follows. Consider the differential equation

d4 »¥ + d + s

where </>, t, u, x and d denote a material variable, time, velocity, spatial position and the

(positive) diffusion coefficient respectively. The quantity S represents any other source or

transport terms and may involve derivatives of variables other than <f>. Expressing the first

derivative d(f>/dx in equation (3.30) in terms of standard one-sided differences, namely

~ <t>x
dx Sx
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when using forward (downwind) differencing and

d<f> _ <f>x — </>x-dx
dx Sx

when using backward (upwind) differencing, leads to discretisation errors

u dx d2(f>
and — ^- j -

respectively. Therefore, using backward differences when u is large and positive, or using

forward differences when u is large and negative, may result in errors which completely

swamp the diffusion terms present in equation (3.30).

The QUI (Quadratic Upstream Interpolation) method of Leonard [68] replaces —ud(j)/dx

in (3.30) with

\2<t>x+dx + 3^>i — 6<f>x-dx + <f>x-2dx] , ^ n (n on\
-u — when u > 0 (3.32)

L 66x J
and

[ ~<Px+2dx + Gtpx+dx ~ 3<Pz — 2(f>x-(ix~\ , „„.
when u < 0. (o.ooj

box J

Using these expressions leads to a discretisation error of O(8x3). Discretisations (3.32) and

(3.33) are a modification of the QUICK scheme outlined in both [68] and [44]. Although

Leonard presents his method in one-dimension, Fletcher [44] discusses some papers where it

has been successfully used in three dimensions, where it has been applied to the driven cavity

problem in [122] and [83] for instance.

On the boundaries where a variable is unknown, fictitious points outside the region are

used wherever possible, to avoid the use of one-sided derivatives. For a comprehensive list of

all the discretised boundary conditions see [7].

The solution method employed in [7] and this thesis is to solve the system of equations

using SUR (successive under-relaxation). Firstly, the similarity solution for flow in a semi-

infinite region is calculated to obtain the values for g, f and t at A = 0. Then f and g are

initially set to zero everywhere else and t is given a linear profile from the origin to its known

value on the outer hemisphere. In a single SUR sweep new values for the unknowns are then

calculated at every grid point. When the maximum percentage change in any of the variables

is less than 0.002% the iterative process is stopped.

Results were obtained using a grid size of 61 x 61 and a convergence tolerance of 0.002%.

Increasing the number of points in the grid produced a very small maximum percentage

change in / , g and T at any grid point. The convergence process was checked by calculat-

ing the error residues of the variables / , g and T at each grid point from equations (3.14),

(3.15) and (3.16) for particular values of the parameters. The 2-norms of the error residues

of equations (3.14), (3.15) and (3.16) over every grid point in the mesh were found to be
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O(10~6), O(1(T7) and O(10~n) respectively. (The infinity norms of equations (3.14), (3.15)

and (3.16) were calculated as O(10~6), O(10~9) and O(10~12) respectively, and the approx-

imate orders of magnitude for the variables / , g and T were O(10), O(10~2) and 0(1)

respectively.)

3.5 Results

There are three forces acting within the hemisphere:-

• a buoyancy force (with /? = 1.25 x lO""4/^"1, a realistic value for liquid steel),

• a Lorentz force, namely the J x B term in equation (3.1) and

• a Marangoni force arising from dj/dT.

The Lorentz force creates a flow which is directed towards the source on the free surface and

then down the axis of symmetry (away from the source). The buoyancy force usually seems

to oppose the Lorentz force, whereas the Marangoni force reinforces the Lorentz force when

dj/dT is positive but opposes the Lorentz force when dj/dT is negative. Therefore, when

the value of d^/dT is positive but very small, the flow is largely governed by the buoyancy

force when the current is small. However, on increasing the applied current and keeping the

other parameters constant the Lorentz force grows until it dominates the other forces. These

two situations are shown in figures 3.2 and 3.3 respectively. The Reynolds number Re, a

dimensionless quantity which measures the ratio of momentum to viscous forces, is given by

pvL/vl and for these flows its value is 7 and 80 respectively, both sufficiently low for the flow

to be laminar.

As the value of dj/dT increases from its small positive value, the size of the loop created

by the buoyancy force at low currents decreases and eventually disappears. Figure 3.4

shows the qualitative flow structure for positive d^/dT. The dotted line represents the

breakdown current for the similarity solution of the semi-infinite model, at a given value

of dj/dT, whereas the upper solid line denotes the corresponding breakdown current JCTa

for the numerical solution in the hemisphere, the problem which has been outlined in this

chapter. The lower solid line in figure 3.4 indicates the boundary between the parameter

values resulting in flows in the hemisphere consisting of one loop (region 1, in which the

Lorentz and surface tension forces dominate as in figure 3.3) and those consisting of two loops

(region 2, in which the buoyancy force leads to a loop rotating in the opposite direction, as

in figure 3.2).

'here v denotes velocity, v the viscosity, L a typical length scale and p the density
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Figure 3.2: (a) Streamlines and (b) isotherms for K — 22.2 (i.e. J = l.(L4 for steel),

p = 1.25 x lO-4^"1 and dj/dT = lO^Nm^R-1

Figu re 3.3: (a) S t r eaml ines a n d (b) i s o t h e r m s for K = 71.9 (i.e. J = 1.8A for steel) ,

P = 1.25 x K T 4 ^ - 1 a n d dj/dT = l O 1
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Figure 3.4: Qualitative flow structure for the steady-state flow model in a hemisphere with

positive dj/dT. The lower solid curves represent the transition between a one- and a two-

loop flow structure. The upper solid and dotted lines represent the breakdown currents as a

function of dj/dT for the hemispherical and semi-infinite models respectively.
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When the value of dj/dT is negative the Marangoni force reinforces the buoyancy force

and, therefore, at low currents a single loop is produced which flows up the axis of symmetry

and away from the source on the free surface. As the current is increased the Lorentz force

produces a counter rotating loop near the origin. These situations are shown in figures 3.5

and 3.6. The Reynolds numbers for these flows are 5 and 28 respectively.

Figure 3.5: (a) Streamlines and (b) isotherms, for K — 22.2 (i.e. J = 1.0A for steel),

/3 = 1.25 x l O " 4 ^ - 1 and d-y/dT = - 2 x 10

Figure 3.6: (a) Streamlines and (b) isotherms, for K =

/3 = 1.25 x l O - 4 ^ - 1 and dj/dT = - 2 x l O ^ 1 1

3.8 (i.e. J = 2.0A for steel),

When the value of dj/dT is large and negative and the current, and hence the Lorentz

force, is less important, a strong jet flows away from the point source along the top surface

of the weld-pool (see figure 3.7). For this case the maximum Reynolds number is 450, which

again indicates laminar flow.

Results for the breakdown current JCTu when dj/dT is negative are displayed in figure

3.8. The dotted line again corresponds to the breakdown current for the similarity solution
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Figure 3.7: (a) Streamlines and (b) isotherms for K = 22.2 (i.e. J = 1.CL4 for steel),

P = 1.25 x l O - 4 ^ - 1 and dj/dT = - 1 x

25 1

20 i

15 1

10 -,

-7.5 _7 _6.5 -6 -5.5 -5 -4.5 -4 -3.5

10 V 6T-
Figure 3.8: Qualitative flow structure for the steady-state hemispherical flow model with

negative dj/dT. The lower solid line represents the transition between a one- and a two-

loop flow structure. The upper solid and dotted lines represent the breakdown currents, as a

function of d"y/dT, for the hemispherical and semi-infinite models respectively.
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of the semi-infinite model (figure 2.5 in chapter 2), whereas the upper solid line denotes

the breakdown current for numerical solutions in the hemisphere. The lower solid line in

figure 3.8 separates regions in J — log10 (dj/dT) space with solutions consisting of one

loop (region 1, where the buoyancy and surface tension forces dominate as in figure 3.5) from

those consisting of two loops (region 2, where the Lorentz force produces a counter rotating

loop as seen in figure 3.6).

The magnitude of the isotherms is directly related to the magnitude of the applied current

J. When J is large the temperature within the weld-pool is large and conversely when J

is small the temperature in the pool is also small. On the other hand the shape of the

temperature profiles is governed by the magnitude of the Reynolds number Re. In figure

3.7, dy/dT is large and negative and, therefore, the Marangoni force is strong. As a result

both the velocity and the corresponding Re are large. A large Reynolds number also occurs

in figure 3.3 since the Marangoni force reinforces the Lorentz force and fast axial flow is

produced. We can clearly see the non-spherical nature of the isotherms in figure 3.3 and 3.7.

In the remaining figures, however, the isotherms are more spherical because in these figures

the Reynolds numbers are small.

To conclude it should be pointed out that there are two possible reasons for the breakdown

in the numerical solution in the hemisphere. At a given dj/dT solutions were obtained at

low currents, but they could not be found when the current exceeded the critical current

value Jcrit- For these positive, and small negative, values of dj/dT the loss of convergence

seems to arise from the development of infinite axial velocities, as found in the isothermal

case [110]. On the other hand, for large negative values of the surface tension gradient the

Reynolds number is approaching 1000 at the breakdown current and the loss of convergence

may be indicating turbulence and instability in the numerical scheme.
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Chapter 4

Linear stability analysis

4.1 Introduction

In this chapter the stability of the flow in a hemisphere discussed in the previous chapter is

investigated, by performing a linear stability analysis [38]. In his thesis Belgrove [7] started

the investigation of the stability of this problem by looking for solutions proportional to eim^,

where </> is the usual azimuthal angle in spherical polar coordinates, and obtaining results for

the mode m = 1. Unfortunately, the method he used to derive the algebraic system rendered

him unable to investigate the first normal mode of stability (m = 0), which is probably

the most important. Following Belgrove, in this chapter and chapter 5 we assume that the

principle of exchange of stabilities is valid, namely that the marginal stability modes with

vanishing real part also have zero complex part.

Before embarking on a stability analysis we briefly outline the method of normal modes for

studying oscillations and instability. In this method, further details of which can be obtained

in [26], [38] and [37], a known solution to a set of equations is perturbed, and in a linear

stability analysis products of these perturbations are neglected in the resulting system. The

perturbations are then resolved into independent components, or modes, varying with time t

in the form eat, for some generally complex constant a which is to be determined. In general

terms we wish to determine whether the predicted flow can be achieved in reality (i.e. the

linear stability analysis attempts to distinguish stable from unstable patterns of predicted

flow). The sign of the real part of the constant a determines whether the disturbances die

away, persist with a similar magnitude, or grow to such an extent that the basic flow becomes

a different laminar, or a turbulent, flow.

A complete linear stability analysis requires us to examine the response to all possible

small disturbances. By the method of normal modes this is achieved by resolving the small

disturbances into modes, chosen by considering the geometry and symmetry of the system.
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Each mode satisfies the system of linear equations and therefore may be considered sepa-

rately1. Distinguishing the different modes by the symbol m, the perturbation u may be

written symbolically as

u(r,0,<f>,t) = / €,m(r,e,(j),t) dm,

and the time dependence is then eliminated by seeking solutions of the form

The constant am will be different for each normal mode distinguished by m.

In this thesis it is assumed that the mode of the perturbation is separable in the azimuthal

direction, given by <£ in spherical polar co-ordinates, and hence

um(r, 6, <t>)eamt = um(r, 6)e°™t+imt

The standard procedure is to write am as am = a$ + iom where a$ and a$ denote the

real and imaginary parts of am respectively. It should be emphasised, however, that for the

solution to be stable at particular parameter values, every am must be less than zero for

every mode, i.e. every value of m. The parameter values which lead to solutions where the

maximum an
r is zero indicate curves of marginal and neutral stability for a particular mode

m = n. On a neutral stability curve there is one, or more, mode(s) where an
r equals zero,

however in the neighbourhood of this curve all the remaining modes have o£' less than zero.

On the other hand, on a marginal stability curve there is one, or more, mode(s) where an

equals zero, however on one side of the curve all modes have negative real part where as on

the other side of the curve one or more modes have o£ greater than zero.

In the welding problem there will be instabilities at currents just exceeding the critical

current, Jc, at which instability first arises for a given value of d'y/dT, but by definition

there will be no instabilities for current values less than Jc. If am ^ 0 as am —>• 0, then an

oscillatory instability (or over-stability) arises. This term was first used by Eddington [40] in

1926. On the other hand, if am = 0 as am —> 0, there is said to be an exchange of stabilities,

and instability sets in as a steady secondary flow. The principle of exchange of stabilities

assumes that exchange of stability occurs due to steady secondary flows only. It is not

possible to check the behaviour of am and am for all possible m, and in practice only the

simplest modes are investigated. In this chapter we consider the lowest possible azimuthal

mode of stability m — 0.

4.2 Derivation of linear system of equations

Following the discussion above the velocity v and temperature T are expressed:
' in this chapter we consider the lowest possible mode of stability m = 0 for a perturbation which is chosen

to be separable in cf>. The modes m = 1, 2 and 3 are considered in chapter 5.
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v = u + v, (4.1)

T = To + f,

where u represents the steady state velocity solution,

v denotes a small perturbation to the steady state solution,

To is the steady state temperature solution,

T is a small perturbation to the steady state temperature solution.

The variables u and To satisfy the steady state equations considered in chapter 3. Taking

the curl of the unsteady momentum-transport equation (which is given in its steady form by

equation (3.1) in chapter 3) gives

V x — = V x v x (V x v) - i/V x V x V x v +

- V xF B + - V X ( J X B). (4.2)

P P

Using equations (4.1) and removing the stationary solution and any term containing products

of perturbations, equation (4.2) leads to

V x |u x (V x v)l + V x |v x (V x u)l - vV x V x V x v
"I £1

+ -V x F B = 7JT(V x v). (4.3)

p at
In this equation F B denotes the buoyancy force caused by the temperature perturbation.

In the underlying flow in a hemisphere outlined in the previous chapter the velocity and

temperature were determined by calculating the functions ip = ^(jy, A) and t = t(7/, A).

Following the discussion in the previous section the perturbations are assumed to depend on

<f> through the separable term e"7^, where m denotes the mode of stability. Therefore, the

perturbations can be written as

t = r(r/,A)e(fm^+CTt) and ^ - ^ ^ t + ^

which reduce to

iP = ^{Tj,X)e'Tt and f = t(ri, \)eat. (4.4)

for the mode of vibration m = 0. Writing a = a^ + ia^l\ solutions are sought for a^ = 0

and these represent marginal or neutral stability solutions depending on the sign of a^ in

the neighbouring parameter space, as described in section 4.1.

Note that in (4.4), and the following sections, a ~ on top of a variable denotes a poloidal

perturbation variable, (i.e. in the (r,9) plane only). In an analogous way ~ denotes an
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azimuthal perturbation variable (i.e. in the indirection) and a ~ denotes the part of the

perturbation variable that is independent of t and <j) as shown in equation (4.4). Any variable

without a superposed bar or tilde denotes a 'main flow' variable, which of course is known

inside the hemisphere from the solution to the steady state flow model described in chapter

3.

Flow equation

The model describing steady flow in a hemisphere, outlined in chapter 3, assumes that the

fluid is incompressible, satisfying

V • u = 0,

and that the flow is axisymmetric. These conditions imply the existence of a stream function

ip(0,r) which can be non-dimensionalised and written

i> = a\vg(r,,\). (4.5)

Since it is assumed that the fluid is incompressible it follows that V • v = 0 and therefore the

perturbation velocity can also be found from a stream function ^ , non-dimensionalised by

i> = a\vg(-n,\). (4.6)

Since the velocity in the underlying flow in the hemisphere, u, is connected to the stream

function ip by

it follows that, with respect to a spherical polar coordinate system,

{tf h^°) £ (ifif*- ^ i - ° ) <47)

defines the velocity of the underlying flow in terms of g(A,7y). Similarly, connecting the

poloidal components of the perturbation velocity v to the streamfunction •ip by

\ ' ' aAsin# /

it follows that v can be expressed

V = (Vr,V,,V+) = ~ ~ (

The perturbation velocity in the azimuthal direction v^ is now expressed in terms of the non

dimensional function g{q, A) through

5 = v± r. (4.9)
A ( 2 2 )
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For convenience v is written as

V = Vl + V2,

where vx is the two-dimensional 'poloidal perturbation velocity' (vr,vg,0) and v̂ 2 denotes

the 'azimuthal perturbation velocity' (0,0,5^).

It is easily shown from equation (4.8) that

where 0 denotes the unit vector in the <f> direction and the vorticity perturbation function,

/ , is defined by

2 , , (Aa)2

= ~(v x V l ) % ( 2 ^ r (4-n)

Similarly, the azimuthal vorticity perturbation function2,/ , is defined by

Direct calculation from the definition of ^2 shows that

and with the use of equation (4.10) the total perturbation vorticity V x v can be written

After two further differentiations it follows that

+ ", ^ ' (A/A -f)e (4.15)

,27 ? w- , (2-??2),- , (6-7r? 2 ) -
A /AA - ^A/A H fr,T) H 7 /T?

where f and 6 denote the unit vectors in the r and 9 directions. Using (4.14) it can be shown

that

v) = J-ZTS (g + AgA)/f + ; ; 3
; gje

2r/2(2-r/2)5(aA)3
(4.16)

2It should be noted that, unlike g, f is dimensional as can be clearly seen by inspection of (4.12). This is
not a problem, however, since in the final system of equations / is everywhere replaced by g using (4.12).
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from which it follows that

V x [u x (V x v)] = 9r,Sv ~ ^9x ~ 9mZ

~gA + -

(aA)42r/2(2 -r

+(2g - A2gAA)^ - A(g + AgA)^A] 0

v (2 - T]2)

2(aA)4

Taking the curl of equation (4.7) leads to

and further manipulation gives

r 1 V2{2 — T?\\ _ _
V x v x (V x u) = ' ' \-\gJ\ + 3o«f + (g + AoA)fJ <f>. (4.19)

Finally, the buoyancy term can be expressed in terms of 8 as

- F B = P9eTm(cos 9, -s\n9,0)f, (4.20)
P

and hence

t B =v x t B
p aX

where 9 has been expressed in terms of 77.

Writing the variables as separable in t and 4>, according to equation (4.4), and using

equation (4.14), the right-hand side of equation (4.3) is transformed for the m = 0 mode to

^k ( £ ^ ^ i ) • (4-22)
Using equations (4.15), (4.17), (4.19), (4.21) and (4.22), the three components of the vector

equation (4.3) yield:

f-component,

2 ^ g " ) A IA+(g+AgA) ( v ™ • 2 7 1 " ) + 1 ( " A | A " +

+ aAr?2(2 - r?2)/,, + 4aA77(l - r?2)/ = A2^!, , , (4.23)
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0-component,

+ ^% - a\r,2(2 - r,2)(\fx - /) = -A3aJA , (4.24)

^-component,

x&v ? ^ ~f (S + ^ S A ) ? AfA~ 3f _ f,, .- ~ 2-f 0 \ i

4 "" 4r)

where Rr has been defined by equation (3.11) and

(4.26)

is the non-dimensional form of the eigenvalue a.

Integrating equation (4.23) with respect to 7/ yields

- r;2)? = A(A) + A2aJ, (4.27)

where A(\) is an arbitrary function of A. On the other hand dividing equation (4.24) by —aA3

and integrating with respect to A also leads to equation (4.27) with a constant of integration

B(rj). Comparing this latter equation with (4.27) requires that A{\) = B{rj) — const. Using

the boundary conditions introduced in section 4.3 it can be shown that this constant is zero.

Hence we put A = 0 and note that equations (4.23), (4.24) and (4.27) all convey the same

information. As a result the two equations (4.23) and (4.24) are discarded in favour of the

single equation (4.27).

Temperature equation

Next the correct equation for the temperature perturbation must be found. The unsteady

form of the heat transfer equation, given in its steady form by equation (2.1), is

^ + v - V T - K V 2 r , (4.28)

where T = TQ + T and v = u + v from (4.1). Substituting these definitions into equation

(4.28), removing the steady-state solution and ignoring any terms that are quadratic in the

perturbations, yields

^ + v.VTo + u.VT = KV 2 T. (4.29)
at
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The steady state temperature distribution is denoted by

To = ^ t f o , A)

and the small temperature perturbation T is expressed

f = Tmf{rl,X)e<Tt,

and it is then easily shown that

' 9 ~ T l 2 U T % 0 , (4.30)

- AtA) + t r ? ( | + \§x)\ er t, (4.31)

VT = ^rAeff tf + ^f^S.fr,effte, (4.32)

-
= aTmfe^, (4.34)

2 / f _ T ^ e " [ 2 - - (2-3772)^ (2 - T? 2 U 1

With these results equation (4.29) becomes

~ 3r? ) ^ (2 ~rl ) ^- A 1 x\ + ^A2 A H 7 J 77
ATJ '" ' 4 m\

-tr,(T + h)+ ^fx - f g + AgA) tr, = -27/AVT. (4.36)

A complete set of differential equations governing the linear stability analysis for the mode

m = 0 has not yet been determined, however, since the current system contains three linear

partial differential equations, (4.25), (4.27) and (4.36), in the five unknowns /, / , g, g and

T. The variables t, g and f which appear in the coefficients of these equations are known, of

course, since they are the 'main flow' variables calculated from the steady-state hemispherical

flow model discussed in chapter 3. Equation (4.27) is a first order partial differential equation

in 77 and A, whereas equations (4.25) and (4.36) are both second order differential equations

in the same variables. The variable / is eliminated from the system by using the second

order differential equation (4.12). This reduces the number of unknown variables to four but

at the same time it transforms (4.27) into a second order differential equation for g. In an

analogous way equation (4.11) could be used to eliminate / from equation (4.25). However,

this would create a fourth order partial differential equation in g which is much more difficult

to solve, and so equation (4.11) is retained in the system. The system that will be solved,
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therefore, consists of the four linear partial differential equations (4.11), (4.25), (4.27 revised)

and (4.36) in the four unknowns / , g, g and T. This linear system is:

3 - \-n2 + g + AgA) /„ -

(3f - AfA)f „ + Af^A + y
2 ^ 4f 2J (4.38)

L - (g + AgA)l !„ + Agr,|A - 2A2r/fAA = -2 r /A 2 aJ , (4.39)

- tA) I , + tv9x ^J~9 + (4r?APr - AgA)TA + 2r]PTX2fxx (4.40)

g + AgA + P r

4.3 Boundary conditions

The system of differential equations derived in section 4.2 must be solved subject to boundary

conditions onA = 0, A = 1, 77 = 0 and 77 = 1. The appropriate conditions are considered in

the following sections.

4.3.1 Origin (A = 0)

No perturbations from the flow are allowed at the origin and therefore

vr : Um ( ^ )
A->o \2aXrjJ

-) = 0, (4.41)

lim ( ~V® + Xh\ ) = 0, (4.42)

lim ( ^ r ) = 0. (4.43)
A > o V A ( 2 2 ) 5 /
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Since the perturbation velocities must be finite it follows that

3(77,0) = 0 and |(77,O) = 0 . (4.44)

In a similar way no perturbation of the temperature is allowed at the origin, hence

ffo,0) = 0. (4.45)

Finally, equation (4.11) leads to

_ . , . / / 1 1 2Xgx + X2g

from which it follows that

7(77,0) = 0. (4.46)

4.3.2 Outer hemisphere (A = 1)

The no-slip boundary condition at the solid-liquid boundary requires that both the veloc-

ity and its associated perturbation are zero on this hemispherical surface. Therefore, it is

necessary that for 0 < 77 < 1

( 4 4 7 )

lim ("® + X^\) = 0, (4.48)
*-*! VaA77(2-772)2y

% : lim ( ^ r ) = 0. (4.49)
*-+! VaA77(2-772)2/

The above results require that

|(T?, 1) = 0 and ~g (77,1) = Co, (4.50)

where Co is an unknown constant. It follows immediately that all the derivatives of g and g

with respect to 77 are identically zero on A = 1.

The outer boundary is at the melting temperature Tm, therefore

f(v,l) = 0 (4.51)

by definition.

It seems natural to complete the boundary conditions on the outer hemisphere by evaluating

(4.38) when A = 1, to give

This boundary condition is discussed further in section 4.4.2.
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4.3.3 Axis of symmet ry (rj = 0)

No flow occurs across the axis of symmetry in the steady-state solution, so it seems natural

to assume that there is no velocity perturbation across this axis and hence

ve{0, A) = — - lim
aX 7?->o

= 0. (4.53)

The latter is equivalent to

lim

which requires that

) = ^ , (4.54)

where Ci is an unknown constant.

The vorticity, u> created by the perturbation velocities can be expressed in the form

Gj = V x v = — I — H ~Vd> I ̂
a y 2A dr] XTJ{2-T]2)2 J

( l d ± (2 - T]2)1* dvr

y\a y \ d\ 2A drj) 9'

Taking the limit of (4.55) on the axis of symmetry, and using VQ = 0 there, leads to

lim u; = —=— hm —— + -^ r lim -—p + —• \ 0 + —^— lim —— (p. (4.56)
*>o y/2aX v^o \drj rj ) aXr,-*o\dX X J y/2aX u-+o \ drj )

Requiring Q to be finite on the axis then yields

540, A) = 4 lim ( gfo 'AM = 0, (4.57)

which implies

|(0, A) = 0 . (4.58)

Since the solution is axisymmetric there is no heat flux across the axis of symmetry. Hence

we assume that there is no heat flux across the axis of symmetry arising from the temperature

perturbation variable T, and so

r,,(0,A) = 0. (4.59)

The symmetry of the problem also implies

A(0, A) = 0. (4.60)
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It is further assumed that V x v j remains finite on the axis, where equation (4.11) shows

that

2 ) L (2-r?2)K 2A . A2

)
(4.61)

The first term on the right hand side of equation (4.61) is clearly the most singular in 77, and

hence we require
~9v(0,X) = 0- (4.62)

Using L'Hopital's rule on this first term, equation (4.61) then implies

It will be shown in equation (4.77) that the constant C\ in equation (4.54) is identically zero,

and hence all derivatives of g with respect to A are zero on the axis 77 = 0. As a consequence,

the numerators in the second and third terms on the right hand side of equation (4.63) vanish

on 77 = 0, and to preserve the finite nature of the whole equation it is necessary that

fw(O,A) = O. (4.64)

A further condition that must hold on the axis of symmetry can be obtained from equation

(4.38), which on dividing by 77 gives

AgA + 3 7 \ = 2= {2-r}

Taking the limit of the latter as 77 -> 0 and using conditions (4.58), (4.59), (4.60), (4.62),

(4.64) and L'Hopital's rule, where appropriate, transforms the above equation to

R A -
-2A/A + A2/AA + 2 / w + .R .A 4 ^ + -^-fm = A2

CTl/ on 77 = 0. (4.65)

In an analogous way another condition that must hold on the axis of symmetry can be

obtained from equation (4.40), divided by 277,

IK
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Applying boundary conditions (4.54), (4.58), (4.59), (4.60), (4.62) and (4.64) as 77 -» 0 and

again using L'Hopital's rule, where necessary, transforms the above equation into

Pr\
2T\\ + Prfm + 2XPrfx = X2aif onr) = 0. (4.66)

4.3.4 Free surface (77 = 1)

It is assumed that there is no velocity perturbation perpendicular to the free surface. There-

fore, it is required that

5,(1,A) = -v- lim ( g + A * O = 0, (4.67)

which in an analogous way to (4.54) implies

) = ^ , (4.68)

where C% is an unknown constant.

The general forms for the components of the shear stress on the free surface are given by

pv (-(2-r,^ dv* (1-r?2) \
&4>e = r 7. 5 1 Tv4> (4.69)

aX y 2 dr, TI(2-T]2)2 9J

and
ldvr vg dvB\ djdT

T orr 06 r or J

The assumed axisymmetric nature of the Marangoni force implies that a^g = 0 on 7] = 1, and

it follows with the use of (4.69) and (4.9) that

1,(1, A) = 0 . (4.71)

It is also assumed that there is no heat flux across the free surface, so

2\,( l ,A)=0. (4.72)

The constant term in equation (4.68) will be shown in section 4.3.5 to be zero and, therefore,

on the free surface all derivatives of | with respect to A are also identically zero. Using these

results and (4.72), the temperature equation (4.40) reduces to

2APr" A f ) ^A + PrA^AA + T 1 ^ " = x 2 a i ? on ̂  = !' (4-73)
and equation (4.38) yields

) n + f g j - (2A + ̂ g,) h \

+ Yfm + ̂ A ^ A = X2aJ on V = 1. (4.74)
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In a similar way with the use of equation (4.71), equation (4.39) implies

- 2 ^ w + A g ^ A - 2 A 2 | A A = -2\2aig on 77 = 1. (4.75)

4.3.5 Corners

In obtaining equations (4.64) and (4.74) above we have assumed that the constants Co, C\

and C2, introduced in equations (4.50)2, (4.54) and (4.68) respectively, are all zero. These

assumptions can be verified by considering the system of equations in the "corners" of the

hemisphere, where (77, A) -> (1,1), (0,1) and (0,0) in turn.

First consider equations (4.50)2 and (4.68) at the point (77, A) = (1,1). Consistency requires

that

lim [1(77,1)] = lim [|(1, A)],

in which case

Co = lim (Q) = C2. (4.76)
A>1 \ A /

Similarly, taking the limits of equations (4.44)i and (4.54) as (77, A) -> (0,0) we obtain

lim [f (77,0)1 = limfe(0,A)l, (4.77)
7j->0 L J A->0 L J

which requires that C\ = 0. In a similar way, considering g at the bottom corner where

(77, A) -> (0,1) leads to Co = 0. Hence result (4.76) gives C2 = 0, and all three constants

Co, C\ and C2 are zero.

The knowledge obtained above for the variables at the corner points allows the boundary

conditions to be simplified. At the corner where the hemisphere intersects with the axis

of symmetry (i.e. A = 1, 77 = 0) the boundary conditions (4.50) and (4.51) on the outer

hemisphere hold, so

T(0, l ) = 0, | ( 0 , l ) = 0 a n d 9(0,1) =0. (4.78)

We now consider an expression for / in the same corner of the grid. Equation (4.11) on

the axis of symmetry gives

1 _ 1 2A A2

f ^ + + ^ + ( 4 7 9 )

Recall equations (4.62) and (4.64) then, using L'Hopital's rule on the first term of equation

(4.79), it follows that

75



L'Hopital's rule can then be employed again to transform equation (4.80) to

where the numerators in the second and third terms are zero on the axis (from (4.62)). Since

the point (77, A) = (0,1) lies on the hemisphere A = 1, where § and all its derivatives with

respect to 77 are zero, it follows that

1^,(0, l ) = 0 (4.82)

and, after one further application of L'Hopital's rule, equation (4.81) gives

) = lim [^1^(77,1) + \~9Xm(v, 1) + \hxm(ri, 1)] • (4-83)

Since the second and third terms on the right hand side of this equation clearly vanish on

the axis (from equation (4.64)) and, as discussed above, all derivatives of g with respect to 7/

are zero, (4.83) simplifies to

7(0,1) = 0. (4.84)

Finally at the corner where the hemisphere intersects with the free surface (i.e. 77 = 1, A =

1) the boundary conditions on both the outer hemisphere and the free surface can be applied.

The only remaining unknown in this corner is 7(1,1) but applying the boundary conditions

(4.50)2 and (4.68) when Co = C2 = 0 to equation (4.37) immediately leads to

7(1,1) =0. (4.85)

4.3.6 Problem statement

Assuming the principle of exchange of stabilities, solutions are sought when a = 0, therefore

the complete system of equations in the four unknowns f, g, g and T which govern the linear

stability of the flow determined in chapter 3, for the mode m = 0, is written as:

„ J = 0, (4.86)

j - tA) ~gv + tr,~gx + ^'g + (ArjXPr - AgA)f A + 2vPrX
2fxx (4.88)

+ Pr ^ Tm + g + AgA + PT[ I 7 , = 0,
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3&,/ + ^ 2
V)lm + ( 3 - \r? + g + AgA) /„ - X(4V

+2r/A27AA + (3f - Xfx)§v + XQX + iv§

+Rr\3(l - TJ2)TV + 2r]X
4Rrfx = 0. (4.89)

The above equations must be solved subject to the boundary conditions

l(ri, 1) = I(V, 0) = 1(0, A) = | , ( 1 , A) = 0, (4.90)

- ^ l w + Ag^|A-2A2 |A A = 0 on 77 = 1, (4.91)

, 1) = Mv, 1) = ~9(V, 0) = | (0 , A) = ^ ( 0 , A) = | ( 1 , A) = 0, (4.92)

rfo, 1) = f(V, 0) = fv(0, A) = fv(l, A) = 0, (4.93)

Pr A
2f AA + P r f w + 2APrTA = 0 on r, = 0, (4.94)

+ (2APr - A^) TA + PrA
2TAA + %fm = 0 on r, = 1, (4.95)

/(r? ,0)=/ ; ?(0,A)=0, (4.96)

) / ^ + AA + ^ ^ r , + ^ T A - 2/A = 0 on A = 1, (4.97)

-2A/A + A2/AA + 2 / w + RrX4fx + ^ t w = 0 on r, = 0, (4.98)

+ fg J - (2A + kv) h - i/, + A2/AA

}m + Rr^x = 0 on n = 1, (4.99)

) = 0 . (4.100)

Before considering the finite difference formulation in section 4.4 note that the partial

differential equations (4.87), (4.88) and (4.89) which govern the stability of the poloidal flow

have decoupled from equation (4.86), which describes the stability of the azimuthal motion.

In general the equations governing the stability of the poloidal flow are linked to the azimuthal

stability equation by second order terms. However, since the stability analysis in this chapter

is linear, equation (4.86) has totally decoupled from the other three equations (4.87), (4.88)

and (4.89). The two systems, which are henceforth referred to as azimuthal and poloidal,

will be solved separately inside the hemisphere.

4.4 Finite differences

Equations (4.86), (4.87), (4.88) and (4.89) are written in terms of finite differences and then

must be solved in the hemisphere. The grid points used for this linear stability problem



must coincide with nodes where the underlying steady-state flow variables f, g and t are

calculated in the hemisphere, so that the coefficients appearing in (4.86) to (4.89) can be

computed accurately.

Let us outline the solution procedure. For fixed values of J and dy/dT, the variables f, g

and t are calculated from equations (3.14), (3.15) and (3.16) at each mesh point on a 61 x 61

grid equally spaced in both the 77 and A directions. This is the steady-state solution and in

the previous chapter a 61 x 61 grid was found to give reasonable accuracy. Any derivatives of

these main flow variables that are required for coefficients of the linear stability equations are

approximated by central differencing, using neighbouring points on the 61 x 61 steady-state

mesh. The stability analysis must be performed using grid points which coincide with the

points used in determining the steady-state solution, but a 61 x 61 grid is too large to employ

for the stability part since the required computing time proves excessive. Therefore, a coarser

grid was used for the stability equations, taking care that grid points on the coarser grid

coincided with grid points on the finer underlying mesh on which the steady-state variables

had been calculated.

The relative simplicity of the azimuthal system, the single differential equation (4.86),

allows the use of a grid with fine spacing near the boundaries, a method suggested by

Roache [90]. This grid is shown schematically in figure 4.1, where the size of the mesh

in the central region was made relatively coarse to enable the program to have a sensible

running time. Figure 4.1 shows equal spacing in 6 in both the main and boundary regions.

In the following numerical work, however, the grid is equally spaced in 77 in both regions so

before proceeding further we need to check that the position of the grid points in the stability

mesh is not unevenly redistributed by the coordinate transformation 6 1—> rj.

In figure 4.2 the crosses show the actual distribution of grid points in 77, along a grid line

where A is constant, for the situation shown in figure 4.1 in which the 6 spacings are separately

constant in both the main and boundary regions. These crosses form the slightly curved

dashed line displayed in figure 4.2. If the position of the grid points had been invariant under

the transformation 6 1—> 77, the dashed curve would be coincident with the dots in figure 4.2

which form a straight diagonal line across the figure. The closeness of both lines shows that

the distribution of grid points is not significantly affected by the coordinate transformation.

An attempt was made to use the grid shown in figure 4.1 for the poloidal system. The

additional complexity of solving a larger system of equations on a grid of varying size pro-

duced additional problems, however, and the use of this variable grid was dropped for the

poloidal system. In producing our solution for the poloidal equations (4.87), (4.88) and (4.89),

therefore, a regular grid (displayed by solid lines in figure 4.3) is used.

In both the poloidal and azimuthal systems the first derivatives in the centre of the pool are

approximated using the Quadratic Upstream Interpolation (QUI) method of Leonard [68],
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Figure 4.1: Azimuthal stability grid which uses fine spacing near the boundaries.
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Figure 4.2: Grid point spacing in 9 and r? along a grid line where A is constant, x denote

the distribution of grid points in 77-space when the distribution in #-space is constant in the

main and boundary regions. • denote the equivalent invariant transformation 9 \-t 77.

described in the previous chapter. Near the boundaries the QUI method is used for first

derivatives parallel to the boundary, but one-sided differencing [108] is used in the direction

perpendicular to the boundary. Remember that near the boundaries the grid lines are closely

spaced in the azimuthal system and so the size of the discretisation error associated with

one-sided differencing is reduced. Central differencing is used to represent second derivatives

everywhere.

On boundaries where a Neumann condition exists fictitious grid points outside the hemi-

sphere are introduced. Fictitious points may also be necessary when using Leonard's method

close to a boundary. Using the central difference approximation for the Neumann bound-

ary condition, the fictitious grid points can be written in terms of grid points inside the

hemisphere in the usual way. When no Neumann boundary condition exists, however, the

fictitious grid points cannot be easily replaced and in this situation one-sided finite difference

approximations are used in our solution.

There is a further complication to the finite difference scheme when the grid size is not

equally spaced in either the 77 or A directions, as in the azimuthal grid shown in figure 4.1.

Near the boundaries between regions with different grid sizes considerable care is required and

for simplicity, whenever the normal finite difference rules stated above would have required

the use of fictitious points inside the central region of the grid shown in figure 4.1, one-sided

80



Point
Source Free Surface

<u
£

00
<+-o

X= 1—

Hemisphere

Figure 4.3: The poloidal stability grid, which uses equal spacing in A and T) throughout

the hemisphere, is displayed by solid lines. The dotted lines denote the grid on which the

steady-state solution, discussed in chapter 3, was calculated.
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differences were used to avoid the difficulty. This situation is illustrated by figure 4.4, where

in the upper diagram it is shown how the use of Leonard's method close to the transition

between grid sizes, would require the introduction of a fictitious point within the central

region. Instead of this scheme a simple one-sided difference is used, as shown in the lower

diagram of figure 4.4. This change is adopted wherever a transition in the size of the mesh

occurs.

Fictitious
Point j _ 5

Leonard's Method

= 11

<>

One-sided differencing

Figure 4.4: Finite difference approximations at the grid size transition (when Leonard's

method requires the use of a fictitious point within the central region one-sided finite differ-

encing is used instead).
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4.4.1 Azimuthal system

Positions of grid points

The grid used for solving the azimuthal system has been shown in figure 4.1. Note that 17

and 21 points are used in the A and 77 directions respectively (i.e. N\ = 17 and Nv = 21),

since g = 0 at the origin where A = 0, on the hemisphere where A = 1 and on the axis of

symmetry where 77 = 0, so these points are not included in the grid.

In the central region (see figure 4.1), where constant values are used for A A and A77, the

points are labelled

for A = 1/15, 2/15, ... 12/15 by i = 1, 2, ... 12 and

for 77 = 3/15, 4/15, ... 12/15 by j = 6, 7, ... 15.

The value of A at a particular point i and 77 at a particular point j in this central region are

given by

A,- = iAAc and Vj = (j - 3)Ar)C, (4.101)

where AAc = Arjc = 1/15. The subscript C refers to the central region.

Figure 4.1 shows that additional grid points are added near the axis, surface and hemispher-

ical boundary by halving the grid spacing along lines perpendicular to the nearby boundary.

In the axial region the grid points are labelled as follows:

A = 1/15, 2/15, ... 12/15 by i = 1, 2, ... 12 and

7? = 1/30, 2/30, ... 5/30 by j = 1, 2, ... 5.

The value of A at a particular point i and 77 at a particular point j are given by

Xi = iAXA and T]J-JAT]A. (4.102)

The subscript A refers to the axial boundary region. The distances between mesh points in

the A and 77 directions are given by AXA = AXc and A77.4 = Arjc/2, where A77C and AA^

denote the grid spacing used in the central region in the 77 and A directions respectively.

In a similar way in the surface boundary region the grid points are labelled:

A = 1/15, 2/15, ... 12/15 as i = 1, 2, ... 12 and

77 = 25/30, 26/30, ... 1 as j = 16, 17, ... 21.

In this region the values of A and 77 at a particular point (i,j) are given by

and ^ = 6AT)A+ 9AT]C + (j - 15)AT]S, (4.103)
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where the subscript S denotes the surface boundary region. The values of AAs and A775 are

the same as AA^ and AT]A, that is A Ac and Ar)c/2 respectively.

Turning to the hemispherical boundary region, the identification used is to represent

A = 25/30, 26/30, ... 29/30 by i = 13, 14, ... 17 and

77 = 3/15, 4/15, ... 12/15 by j = 6, 7, ... 15.

Here the values of A and 77 at a particular point (i, j) are given by

\i = 12AAC + (i - 12)AAH and TJJ = {j - 3)Ar?# (4.104)

where ATJH = ATJC and AA# = AXc/2, and the suffix H denotes the hemispherical boundary

region.

In the top corner, between the outer hemisphere and the free surface, we represent

A = 25/30, 26/30, ... 29/30 by i = 13, 14, ... 17 and

77 = 25/30, 26/30, ... 1 by j = 16, 17, ... 21.

The appropriate values of A and 77 at the point (i,j) are now

Xi - 12AAC + (i - 12)AXSH and r\j = 6AT]A + 9AT?C + (j - l5)Ar)SH, (4.105)

where A775# = Arjc/2 and AXSH = AXc/2.

Finally in the bottom corner, between the outer hemisphere and the axis of symmetry, the

identification used is to label

A = 25/30, 26/30, ... 29/30 by i = 13, 14, ... 17 and

7? - 1/30, 2/30, ... 5/30 by j = 1, 2, ... 5,

with the corresponding values of A and 77 at (i,j) given by

Xi = 12AXC + (t - 12)AA,itf and rjj = jAr]AH, (4.106)

with AT)AH = Ar)c/2 and AA^// = AXc/2.

Finite difference form of (4.86)

Equation (4.86) is a second order partial differential equation in the perturbation variable g

with coefficients which depend on the steady-state solution. To obtain the finite difference
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form of (4.86) within each region on figure 4.1 the second derivatives of g are approximated

on every internal grid point using central differences to give

(4.107)

where the grid spacing in the finite difference approximations and the values of Aj and rjj

are dependent on the region, denoted by the subscript R, in which they are evaluated. For

example, in the central region the subscript R is replaced by C, and T\J and A; by equation

(4.101). The variable g(r], A) evaluated at (rjj,\i) is usually denoted by g{j. This notation

is a little unwieldy, however, and for brevity we have dropped one subscript from the finite

difference derivative approximations in equation (4.107) and most of the following working

in this chapter. To illustrate the simplification of notation consider the central difference

approximation for gm, namely

9ij-l ~ 29i,j + 9i,j+i , . , . .. A 9j-i ~ 29j +
-^ ——^5 JJ—which is written as — —— ,„

{Ar)R)2

in equation (4.107). An analogous procedure is generally adopted for all derivatives with

respect to A, when the j subscript is dropped from the explicit finite difference representations.

Over most of the grid the first derivatives gn and gx are approximated using Leonard's

method. To illustrate the procedure consider the term in (4.107) involving gn, and write its

coefficient as a(r), A). Central differences are used for any derivatives appearing in a, so

Since the coefficient of (L_ in the equation is negative, if at a given point a,-j < 0 the derivative

gv at that point is approximated by

whereas if a.ij > 0 the derivative is written

An analogous procedure is used for the term involving gx.

The expected direction of flow is parallel to the boundaries rather than perpendicular to

them. For simplicity therefore one-sided differences, instead of Leonard's method, are used

to approximate the first derivative d/drj inside the axial and surface boundary regions. This
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simpler approximation should be reasonable since the grid is finely spaced along lines in the

77 direction near these boundaries and velocities in this direction should be small. In the axial

boundary region the coefficient of <L can be written

" l J 2 ^ . j - r - . 2 A A A

where rjj and A, are given by equation (4.102) if i < 13 and equation (4.106) otherwise.

When dij < 0 we use

= _ 9j+i ~ 9j

whereas if aij > 0 then we introduce

s 9j ~ 9i-\

An identical method is used in the surface boundary region, except that the subscript 5

replaces the subscript A in the approximations above, and Aj, rjj are given by equation

(4.103) if i < 13 and (4.105) otherwise.

In the outer hemispherical region the coefficient of gx in (4.86) can be expressed

, _ ^i

where \ is given by equation (4.106) if j < 6, (4.104) if 6 < j < 15 and (4.105) otherwise.

The derivative g^ is replaced by

9i+*~9i when b{ ,• < 0,
AXH

and by

9\ = l
 AX

 X - 1 w h e n bi}j > 0.

The quantity g vanishes on all boundaries except the free surface. On the latter, equation

(4.86) is transformed into equation (4.91) which can be expressed

9j-i - 9j N

where Â  is given by equation (4.103) if i < 13 or (4.105) otherwise, and gx as described by

the preceeding paragraph.

Throughout the small corner regions where the grid points are finely spaced in both coordi-

nate directions, one-sided differencing is employed to approximate first derivatives whenever

Leonard's method would lead to unwanted fictitious points. Examples of these are points out-

side the hemisphere which cannot be written in terms of grid points within the hemisphere

(usually when there is not a Neumann boundary condition), or fictitious points within the

central region as shown in figure 4.4. These cases were discussed earlier in this section. The

second derivatives in these situations need no special treatment.
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4.4.2 Poloidal system

Position of grid points

The numerical solution of the poloidal system of stability equations is very time consuming,

and so the number of grid points chosen is relatively small. In the poloidal system of equations

the mesh points are equally spaced throughout the region with eleven points used in the A

direction and eleven points in the rj direction, (i.e. Nn = N\ = 11). An odd number of grid

points occurs in both the A and 77 directions since poloidal stability variables are required at

the origin and on the axis of symmetry and so grid points are needed on A = 0 and 77 = 0.

The poloidal grid is displayed with solid lines in figure 4.3. The grid points are labelled for

A = 0, 1/10, ... 1 by i = 0, 1, ... 10 and

7? = 0, 1/10, ... 1 by j = 0, 1, ... 10.

The values of A and 77 at point (i, j) are given by

Aj = iAA and rjj = jArj

respectively, where throughout the entire grid AA = 1/10 and A77 = 1/10. These values of

AA and A77 are used throughout the remainder of this section on the poloidal system.

Finite difference forms of equations (4.87), (4.88) and (4.89)

The bulk of the region is approximated by Leonard's QUI method for first derivatives and

central differencing for second derivatives, but special consideration is given to the equations

on or near the boundaries.

Consider first equation (4.87) which transforms into

2Vj) \ (Ar?)2 J + U ( 2 ~ (VJ)2)J V

where the derivatives gx and gv are approximated by Leonard's method, as shown below.

Since

( 4 A ) > 0 for all A G (0,1], 7/ G (0,1],

the derivative g^ is approximated by

-l.+2 + e^-3| , -2g,_, ( 4 H 0 )

In an analogous way, the coefficient multiplying the derivative gv is always negative and so

gv is replaced by

gw+ »,-»,-,+*-, ( 4 U 1 )
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throughout the region.

Next we consider the temperature equation (4.88) which can be written

, (p ijp-(ij)'

(4,12)

where t,\, t^, g^ have been expressed using central differences. The first derivatives T^, T\

are approximated once again by Leonard's QUI method in an analogous way to the method

used for the equations above. For the sake of continuity with the steady state solution in the

hemisphere, and use of the same discretisation error, the first derivatives g and §^ are also

approximated using the QUI method.

Finally, equation (4.89) can be expressed

" I 2

+ 2rlj{Xi)
iRrTx, (4.113)

where the first derivatives f\ and /,, are again approximated by the QUI scheme and for the

sake of continuity so are gx, gv, T\ and Tv.

Finite difference forms of the poloidal stability boundary conditions (4.94), (4.95),

(4.98) and (4.99).

On the free surface, rj = 1, the temperature perturbation function T and vorticity pertur-

bation function / are not prescribed. Using central differences to approximate T\\ and Tm



(with the grid point outside the hemisphere removed by the central difference approxima-

tion of the Neumann boundary condition) and one-sided differences for g^, j n and / w , the

temperature equation (4.95) transforms to

and the vorticity equation, (4.99), similarly becomes

=

The first derivatives T\ and f\ in equations (4.114) and (4.115) are then approximated by

Leonard's QUI method and the resulting finite difference scheme used on r) = 1.

Near the boundaries A = 0 and A = 1 the first derivatives are written in terms of one-sided

differences only when the use of the third order QUI method would require the introduction

of fictitious grid points and no Neumann boundary conditions for either / or T exist on A = 0

or A = 1. On the axis of symmetry, r/ = 0, equation (4.94) becomes

(4.116)

except on the mesh point where A = 1 — AA. For the latter T\ is approximated by first order

differencing.

It remains to determine / on the axis of symmetry. The perturbation / satisfies equation

(4.98) when r\ = 0 and is approximated by

n
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except on the mesh points where A = AA and A = 1 - AA. For the latter two special cases

the first derivatives with respect to A are once again approximated by first order differences,

since the QUI method would use values on grid points outside the hemisphere that cannot

be written in terms of values on grid points inside the region.

Finite difference form of equation (4.97) on A = 1

Investigation revealed that by using the finite difference equation (4.97) on the hemispherical

boundary A = 1 some positive real eigenvalues o\ were produced for all values of the applied

current, even very small values. This result is not expected and after some thought and

numerical experimentation, different implementations of the boundary conditions applied

at the solid hemispherical boundary were explored. A variety of forms of this boundary

condition have been proposed by Woods [137], Thom [125] and Pearson [81] but all are

derived by using Taylor series expansions of the stream function and vorticity close to the

hemispherical boundary.

The Woods boundary condition is stated

Q(v, 1) = ^ p M* 1 - AA) - ±Q(V, 1 - AA) + O(h2), (4.118)

where the stream function if) and vorticity Q are related by Q — V2ip. In the work in

this thesis for flow in a hemisphere, the Stokes stream function is used for the main and

perturbation flow variables and so a revised form of equation (4.118) must be found that

follows from our relation

\aA77(2 -

Since evaluating equation (4.87) on A = 1 gives

a relationship similar to (4.118) can be obtained which gives this expression when expanded

in a Taylor series in AA. This time, however, the boundary condition must be expressed in

terms of the non-dimensional vorticity on the solid boundary, f(r],l), and the non-dimensional

stream function and vorticity on the adjacent grid point, g(r), 1 — AA) and /(TJ, 1 — AA),

Therefore, the Woods boundary condition for a Stokes stream function has the form

7fa,l-AA). (4.119)

Using a similar approach it can be shown that the forms of the boundary conditions on the

outer hemispherical boundary suggested by Thom and Pearson, for a Stokes stream function,
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are

and
? 4 ^ 1 ~A A> 3fa* ~ 2 A A ) (4 121)

)2]' l '
respectively. Thorn's boundary condition (4.120), is the simpler expression. However, the

condition has a leading order error of O(AA), whereas the Woods and Pearson boundary

conditions preserve the second order error used in most of the discretisation process.

In performing a numerical linear stability analysis every grid point on the stability mesh

produces an eigenvalue for each perturbation variable considered at that mesh point. When all

the eigenvalues have negative real part the system is said to be stable. On solving the system

of equations with / evaluated on the boundary A = 1 using equation (4.97), some eigenvalues

with positive real part were produced for all values of dy/dT and J. On replacing equation

(4.97) by equations (4.119), (4.120) and (4.121) in turn, however, all the eigenvalues had

negative real part when the system was tested at very low currents for a number of different

values of dj/dT. Since the Woods boundary condition has been used in the numerical solution

for the steady-state solution in the hemisphere it is also the one chosen in the stability analysis

in this chapter.
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4.5 Method of solution

The existence of solutions to both the azimuthal and poloidal sets of equations must be inves-

tigated numerically, since the perturbations cannot be written analytically and the solution

to the steady state problem had to be found numerically. The azimuthal stability equation

(4.86) with boundary conditions (4.90) and (4.91) (which decoupled from the remaining sta-

bility equations when the system was linearised), and the poloidal stability system (4.87),

(4.88) and (4.89) subject to the boundary conditions (4.92) to (4.100) (with (4.97) replaced

by (4.119)) are solved separately on the grids displayed in figures 4.1 and 4.3 respectively.

The solution method in both cases is essentially the same.

Consider first the method for the poloidal system. The governing poloidal stability equa-

tions in finite difference form ((4.109), (4.112) and (4.113)), and their corresponding boundary

conditions, are written in terms of a matrix A of coefficients and a vector x of perturbation

functions, over the entire finite difference stability grid on which the perturbations are un-

known. The system is expressed

Ax = 0, (4.122)

where x is a vector of the unknown functions g, J and T at each point on the grid of solid

lines shown in figure 4.3. The elements in A are determined from the values of f, g and t

(and their derivatives) at each grid point, calculated using the underlying steady-state model

discussed in chapter 3.

The overall solution method is as follows. For a given value of dj/dT, the current J is

increased from zero in small steps. At each new value of J the steady-state solution in the

hemisphere is calculated numerically, and this solution is used to determine the coefficients

in the matrix A. The determinant of A is then calculated using NAG routine F03AFF. Non-

zero solutions for x exist only when the determinant of A is identically zero. Investigation

revealed that at extremely low currents all the eigenvalues of the system (which correspond

to the rate of exponential growth with time of the perturbations) were found to be negative,

as expected. Consequently, at these parameter values all disturbances decrease exponentially

with time and the problem is stable.

As the current is increased a different steady-state solution is obtained and hence the values

of the coefficients change in matrix A . As a result the magnitudes the eigenvalues associated

with the system will also change. If the real part of a single (real) eigenvalue passes through

zero then the determinant of A (calculated via NAG routine F03AFF) will change sign. This

feature will always occur since det A is proportional to the product of the eigenvalues.

Complex eigenvalues occur in conjugate pairs, and the imaginary part of a complex eigen-

value corresponds to an oscillatory perturbation. When the real part of a complex eigenvalue

changes sign, in this chapter due to a change in either d~//dT or J, the real part of its complex
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conjugate must also change sign. In this situation the determinant of A will not change sign,

since the product of a pair of complex conjugate eigenvalues is always positive regardless of

the sign of their real part. Therefore, monitoring changes to the sign of the determinant is

not sufficient if the system of stability equations is likely to produce complex eigenvalues. In

this, and the subsequent chapter, however, we assume the principle of exchange of stabilities

and look for the simpler case where all the eigenvalues are assumed real.

The program structure that was used to solve the poloidal and azimuthal stability problems

is shown in figure 4.5. At the start of the solution process values for dj/dT and J were entered

by the user, together with the size of the current increment to be used later. Then the semi-

infinite numerical model described in chapter 2 was solved to obtain the similarity solution.

This solution was used in calculating the steady-state solution in the hemisphere, as discussed

in chapter 3, from which the elements of matrix A could be determined. Nag routine F03AFF

calculated the determinant of matrix A and the current was then increased by the previously

prescribed incremental step and, provided the current did not exceed some user imposed

maximum, the code was re-run. Solving the stability problem on a Sun SPARC5 machine,

for a considerable number of discrete values of dj/dT and J in the region of parameter space

where the steady-state model converged, required a running time of at least two weeks. Due

to the length of time required to run these simulations the number of results presented in

this thesis is relatively small.

93



Begin

User defined variables

Calculate the similarity solution in
semi-infinite geometry.

Feed in similarity solution to grid
of points in the hemispherical model

Solve steady-state model of

flow in hemisphere.

'Set up the matrix of simultaneous equations t

over the appropriate stability grid.

1

Solve the eigenvalue problem by calculating the
determinant of A using a NAG routine.

I Increase the current by L
increment defined by user.

false

•*-<L. Current > maximum current

Figure 4.5: Program structure

94



4.6 Results and discussion

The determinant of A was calculated for a large number of values of the current, J, and

surface tension gradient, dj/dT, for which the underlying steady state model converged. In

a set of solutions the surface tension gradient was fixed and the current was then increased

in small steps until a current was reached, Jcrit, for which the steady state solution in the

hemisphere failed to converge. Figures 3.4 and 3.8 showed Jcrn as a function of log10 ( ±

dj/dT) respectively and as discussed then, at currents greater than Jcrit no solution could

be obtained. For each solution determined the determinant was recorded and its values was

observed to vary smoothly with the current J as the latter was slowly increased.

The underlying steady-state model was solved on a 61 x 61 grid in the hemisphere. Numeri-

cal experimentation suggested that these solutions were sufficiently accurate for our purposes.

The accuracy of the stability curves produced in the figures below is clearly dependent on

the incremental step size in the current, and in our results the step size was set to 0.01A

As discussed earlier the number of grid points used in the azimuthal and poloidal stability

problems was restricted by the running time and capacity of the Sun SPARC5 machine on

which the numerical results were calculated. The complicated nature of the formulation of

the stability problem discussed here combined with the long running time made extensive

checking difficult. However, the accuracy of the results presented were checked by altering

the number of grid lines in both the poloidal-stability model and the underlying steady-state

model, taking care that mesh points on the two grids remained coincident, and then running

the code for various values of dj/dT and J. In the poloidal-stability case changes in the

number of grid points in either the steady-state grid or the poloidal stability grid caused only

small changes in the position of the displayed stability curves. The more complicated struc-

ture of the finite difference grid for the azimuthal stability problem made changing the size

of the stability grid in this case more difficult. However, varying the size of the underlying

steady state grid, again caused only small changes in the stability curves when the code was

tested for particular values of d-y/dT and J.

4.6.1 Azimuthal stability problem

Figure 4.6 displays the stability of the steady flow to the decoupled azimuthal perturbation

when the surface tension gradient is negative. No azimuthal rotational flow was allowed in

the steady state model, but an azimuthal perturbation is included and the marginal stability

curve therefore corresponds to the development of a rotational component in the flow. The

upper solid curves seen on the upper right- and left-hand sides of figure 4.6 show the current

values for which the underlying steady-state numerical solution for flow in the hemisphere

ceased to be convergent, see figure 3.8. (The steady-state model in chapter 3 was deemed to
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Figure 4.6: Stability and steady-state breakdown curves for the azimuthal system when

d-y/dT < 0.
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be non-convergent if, after 90,000 iterations of the SUR solution algorithm, equations (3.14),

(3.15) and (3.16) could not be satisfied to within a tolerance of 0.002%).

At the very small current values below and to the left of the dotted line the model is stable

to azimuthal perturbations. The dotted line denotes a marginal stability curve where there

exists an exchange of stabilities. When crossing from the left to the right of this dotted line

the determinant of A changes sign and consequently a real eigenvalue passes through zero,

thereby becoming positive, and the system becomes unstable to azimuthal perturbations.

Careful inspection of figure 4.6 clearly shows that for J < 4.5A the region of instability

does not extend up to the current values at which the underlying steady state numerical

model fails to converge. For currents just below the breakdown value, however, the model

is extremely difficult to investigate, since the numerical procedures are very sensitive and

lengthy. It should be pointed out that, in [7] the similarity solution obtained for the semi-

infinite model (discussed in chapter 2 of this thesis) was shown to be stable for large negative

dj/dT and, therefore, the outward jet predicted here is unstable due to restricting the fluid

to being inside a hemisphere.

Figure 4.6 displays the case of negative surface tension gradient. A negative dj/dT causes

an outward flow of fluid on the free surface away from the point source at the origin. As

the magnitude of the negative surface tension gradient was increased a strong surface jet,

outwards from the source, developed at very small current values in the underlying steady-

state flow model described in chapter 3 (see figure 3.7). The dotted line shown in figure

4.6 tends towards zero as the magnitude of dj/dT increases and this suggests that the

instability which develops in the azimuthal system is due to the strong outward Marangoni

force, manifest in the stationary model for large values of negative dj/dT and small currents.

When d-y/dT is positive the Marangoni force tries to create on the free surface an inward

flow towards the point source. In this situation the azimuthal linear stability system did

not possess any marginal stability curves up to current values close to where the underlying

steady-state model failed to converge. It is well known that converging vortices have a

tendency to 'spin up', and this consideration was applied to the welding problem by Bojarevics

in [13] and [12]. As a result of his arguments our model might be expected to possess marginal

stability curves just prior to the breakdown of the steady-state model, where an axial jet

develops down the axis of symmetry, but because convergence of the steady-state model is

difficult to achieve in this region no such curves could be found.

It is hoped that an indication of the region where azimuthal instability first occurs inside

the hemisphere can be gained by examining the eigenvector ev, corresponding to the first

positive eigenvalue. The relevant eigenvector was found by using the NAG routine F02BJF.

The solution for ev provides a vector of the scaled azimuthal perturbation streamfunction

g(\,r)) at each grid point on the azimuthal finite difference mesh displayed in figure 4.1. Note
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that the other poloidal perturbations have decoupled, although they will be considered later

in this section.

Plots of ev are obtained by choosing appropriate values for g, and plotting these points

using linear interpolation between grid points in the A and 77 directions. Curves are fitted

through these points. This procedure was quite lengthy and complicated to code since the

spacing for the azimuthal stability grid is not constant throughout the hemisphere.

Figure 4.7 shows the secondary flow set up due to the positive eigenvalue which occurs when

dj/dT = -3.0 x 10'5Nm~1K~1 and J = 0.03A The values of the stream function have

-0.18

Figure 4.7: Contour plot of g(\, 77) obtained from an evaluation of the azimuthal eigenvector

ev when dj/dT = -3.0 x lO^Nm^K'1 and J = 0.03A

been scaled in the numerical algorithm and consequently the numbers on the figure only give

a relative order of magnitude for the non-dimensional perturbation stream-function g{\,rj)

at each grid point. At first sight this figure seems quite complicated but a closer inspection

reveals that the maximum flow region occurs close to the point source. This suggests that

the breakdown in stability is due to azimuthal rotation near the point source of heat and

current. Since the general form of the perturbation for g is

it is clear that the perturbations are independent of <f> for the mode m = 0. (Recall that g

denotes the non-dimensional stream-function perturbation in the azimuthal direction.) These

98



perturbations must conform to the principal of conservation of angular momentum, however,

so the presence of the strong rotation near the origin creates a slow counter-rotating region

in the main bulk of the fluid (see figures 4.7 and 4.8).

Figure 4.8 shows a different secondary flow, corresponding to the positive eigenvalue which

occurs when dj/dT = -1.78 x lQ~GNm~lK~l and J = 0.545A Once again the eigenvector

-1*10

Figure 4.8: Contour plot of g(X, rf) obtained from an evaluation of the azimuthal eigenvector

ev when dj/dT = -1.78 x lO^iVm- 1^- 1 and J = 0.545A

suggests that instability is due to the development of a large azimuthal rotation at the point

source. In a similar way to the preceding case, the main bulk of the fluid rotates slowly in

the opposing direction to conserve angular momentum.
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4.6.2 Poloidal system

The stability curves for positive surface tension gradient in the poloidal system are described

in figure 4.9. The upper curve, labelled 1, shows the current Jcru at which the underlying

steady state model described in chapter 3 failed to converge (see figure 3.4). At current

values exceeding Jcrit no converged solution to the steady-state model could be obtained. A

marginal stability curve was found lying just below curve 1 but it is too close to curve 1 to

display on the figure. Curve 2 denotes a change in the sign of the determinant of matrix A.

Therefore, within the region on figure 4.9 enclosed by curve 2 there exists one real positive

eigenvalue. Between curve 2, the horizontal axis and a curve just below curve 1 no marginal

stability curves were found.

Figure 4.9: Stability and steady-state breakdown curves for poloidal system when dj/dT > 0.

The instability of the basic flow to poloidal disturbances at current values approaching

breakdown is not very surprising. When the applied current is small and d'y/dT > 0, the

100



a) b)
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Figure 4.10: Streamlines of a Marangoni free flow a) without rotation for J = 2.01^4, b) with

rotation for J = 2.1(L4 (figure taken from [13]).

underlying flow in the finite hemispherical domain is an axial jet down the axis of symmetry.

The jet can become unstable to azimuthal rotations. Once such rotations occur the associated

centrifugal force which results will then in turn cause a change in the poloidal flow. This

behaviour can be clearly seen in results obtained by Bojarevics [12], [13] for the semi-infinite

isothermal model, see figure 4.10. The streamlines in figure 4.10a resemble the flow to a

sink remote from the plane surface, yet the converging sink flow reaches a state of intense

swirl, even from a small rotational disturbance. Figure 4.10b displays the streamlines at

a similar current when this swirl is included. Clearly there is a significant difference in the

magnitude and distribution of the poloidal streamlines because of the addition of an azimuthal

component to the flow. In [12] Bojarevics et al. showed that a state of intense rotation may

be achieved from a semi-infinite model similar to that considered in chapter 2 but without

surface tension effects. He also showed experimentally the propensity of a converging flow

to 'spin up'. In his experiment a hemispherical copper container was filled with mercury,

and supplied by an electric current from a small electrode situated at the centre of the free

surface. For currents > 15A the observed flow was clearly accompanied by rotation.

Figure 4.11 is a repeat of figure 4.9 but with an additional curve. This curve has been

taken from figure 3.4 where it indicates the boundary between parameter values which result

in steady-state flows in the hemisphere consisting of one loop and those consisting of two

loops (as discussed in chapter 3). It is observed that the upper part of curve 2 in figure 4.11,

which encloses an unstable region, lies at current values just prior to the development of a

single loop flow structure in the steady-state model, and stability is restored as curve 3 is
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Figure 4.11: Stability, steady-state breakdown and flow-transition curves for poloidal system

when dj/dT > 0.
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crossed by increasing the current at a fixed value of dj/dT.

4 -

3 -

1 -

0

-7 -6.5 -6 -5.5 -5 -4.5 -4

Figure 4.12: Stability and steady-state breakdown curves for the poloidal system when

dj/dT < 0.

Figure 4.12 shows the stability curves for the poloidal system when the surface tension

gradient is now negative. The curve labelled 1, seen on the upper right- and left-hand sides

of the figure, corresponds to the breakdown in convergence of the underlying solution for

steady state flow in the hemisphere (considered in chapter 3). At current values above this

curve no solution could be obtained for the steady-state model. On the other hand at current

values below curve 2 the poloidal system is stable. As curve 2 is crossed, by increasing J

at a fixed value of dj/dT, the determinant of matrix A was observed to change sign and

therefore a negative, real eigenvalue passes through zero and becomes positive. This exchange

of stability occurs at decreasing current values as log10 ( —dj/dT) increases, to values causing

strong outward flow on the free surface (see figure 3.5). The outward jet on the free surface

is consequently unstable even at very low applied currents. Curve 4 in figure 4.12 indicates a

change in the sign of the determinant of A. Because figures 4.9 and 4.12 must join smoothly

when the value of the surface tension gradient tends toward zero, this curve must join with

the upper branch of curve 2 on figure 4.9 and therefore it indicates a region of stability.
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However, this region disappears as the magnitude of the negative surface tension gradient is

increased because curve 3, which runs parallel to the left-hand part of the breakdown curve

1, corresponds to the development of a marginal stability curve just before the breakdown of

the underlying steady-state model.

Figure 4.13 shows the secondary flow corresponding to the eigenvector arising from the

positive eigenvalue which occurs where dj/dT — -3.0 x 10~5Nm~1K~1 and J = 0.03A

Once again the values on these plots have been scaled by the numerical algorithm and give

Figure 4.13: Contour plot of g(X, rj) obtained from an evaluation of the poloidal eigenvector

ev when dj/dT = - 3 x lO^Nm^K'1 and J = 0.03A

a relative order of magnitude for the non-dimensional perturbation stream-function g(A, 77).

Figure 4.13 again suggests that instability occurs due to a secondary flow developing near

the point source. This is rather unexpected since there is a strong outward flow on the top

surface in the underlying steady-state model at these assumed values of (J^d^/dT), and a

diverging flow in a semi-infinite region is stable. Figure 4.13 is consistent, however, with

the eigenvectors corresponding to the azimuthal perturbations shown in figures 4.7 and 4.8.

Notice that there also exist small counter-rotating loops in figure 4.13 near the free surface

and close to the outer hemispherical boundary. As in the previous eigenvector plots all the

large perturbations in the non-dimensional stream-function are shown to lie in the upper part
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of the hemisphere.

Figure 4.14 shows the secondary flow set up due to the positive eigenvalue which occurs

when dj/dT = -1.0 x lO^Nm^R-1 and J = 0.93A At these values of J and dj/dT

-0.36
-0.36<>

Figure 4.14: Contour plot of g(\, rj) obtained from an evaluation of the poloidal eigenvector

ev when dj/dT = - 1 x 10~7 Nm^R-1 and J = 0.93A

only a small Marangoni force occurs on the free surface and consequently the steady-state

flow structure is qualitatively different from that corresponding to figure 4.13. Figure 4.14

reveals, however, that the secondary flow is once more strongest close to the point source

and that there is again a slow counter rotating loop near the outer hemisphere. Note also

that the region of negative flow perturbation in figure 4.14 extends a little further along the

free surface than in figure 4.13. Both of the eigenvalue plots shown in figures 4.13 and 4.14

suggest that the instability of this model to perturbations of mode m = 0 occur near the

point source, regardless of the magnitude of the free surface force.

Figure 4.15 shows on the same figure the simplified graphs of the azimuthal and poloidal

stability curves for negative d-f/dT. Again the upper solid line, labelled 1, denotes the current

above which the underlying steady-state model failed to converge. Line 3 was shown in figure

4.6, and discussed there, whilst line 2 was shown on figure 4.12 and discussed at that stage.
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Figure 4.15: Stability and steady-state breakdown curves for azimuthal and poloidal systems

when dj/dT < 0.
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Chapter 5

Higher modes of stability

5.1 Introduction

The azimuthal stability mode m = 0 was considered at length in the previous chapter. For

the upper modes of stability, m > 1, the appropriate system of linear equations can be written

in terms of velocity and vorticity perturbation functions. Belgrove [7] derived the system of

equations for m > 1 and investigated the modes m = 1 and 2, assuming the principal of

exchange of stabilities. The perturbation equations can be written in the form

Ax = crBx,

where x is a vector of the unknown perturbation variables at every point on the stability

grid, A is a matrix of coefficients in the stability equations and a is the eigenvalue which

we introduced in chapter 4. As we will show below all elements in the matrix B have the

same sign wherever we are positioned inside the hemisphere. Therefore, provided all the

eigenvalues are real (i.e. assuming the principle of exchange of stabilities) the stability of the

system can be monitored by evaluating the determinant of A at different parameter values in

the (J, <97/<9T)-plane. In this case for m > 1 a change in sign of the determinant of A occurs

only when an eigenvalue of the linear system passes through zero, and becomes positive. This

was the method used in chapter 4 where we considered the azimuthal stability mode m = 0.

On investigating again the discretisation described in [7], and obtaining approximate solu-

tions, it was found that positive real eigenvalues existed at vanishingly small current values,

in contradiction to the assumption made in [7]. Therefore, the problem of the higher modes

of stability is reconsidered in this chapter and the revised solution for the stability of the

upper modes is presented below.
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5.2 Derivation of linear system of equations for the azimuthal

modes m ^ 0

The derivation and finite difference formulation for the system of equations for the stability

modes m > 1 is essentially the same as [7], but the time dependency has been included

in much of the working within this chapter. A further alteration to [7] for the boundary

condition on the outer hemisphere A = 1 is also required, and in section 5.3.5 the Woods

boundary condition is applied in an analogous way to that adopted previously in chapter 4.

As described in chapter 4 the total velocity v and temperature T are expressed

v = u + v (5.1)

and

T = To + f, (5.2)

where the 'stationary' solutions for velocity and temperature are denoted by u and To and

their perturbations are denoted by v and T respectively. Substituting (5.2) and (5.1) into

the time-dependent form of the curl of the Navier-Stokes equation, and eliminating both the

stationary solution and any term containing a quadratic in a small parameter, leads to

- ^ = V x (u x w) + V x [v x (V x u)l - vV x V x w + - V x F B . (5.3)
ot l i p

In equation (5.3) w represents the perturbation vorticity V x v and F B denotes the buoyancy

force caused by the temperature perturbation.

The time dependence is again assumed to have the form eat where a is written as a —

cr(r) +ia^\ with a^ and <jM denoting the real and complex parts of a respectively. We write

T0 = ^ft(v,X) (5.4)

for the steady-state temperature distribution and, since the steady-state flow is incompressible

and axi-symmetric, a stream-function ip can be introduced and non-dimensionalised by

ip = aXug(rj, A). (5.5)

As in the previous chapter the steady state velocity in the hemisphere is related to g through

The steady state solutions are complicated functions of both A and rj. However, as discussed

previously the perturbations are chosen to depend on <j> through the separable term eim<^,
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where m denotes the mode of vibration. Therefore, for the m mode of vibration the

perturbations

w = (wr, we, W/j,) and v = (vr, vB, v^)

can be written as

(5.7)

) (5.8)vT = vB =

and

The buoyancy term is defined in terms of 6 as

FB=/3p9eTm(cos0,-sme,O)feiim4'+at).

(5.9)

(5.10)

Substituting (5.7)i to (5.10) into the vector equation (5.3), and cancelling the exponential

term, leads to the following expressions for each component:

r-component

1 I" 2m2

[ ( + ̂) 1 / gv\] = 1
+ 4A ( g w " V J J Vr + 2

e ' x • ^ [ 2 ( g + A S A ) + 2 "

(2 - f/2

+

( 2 - T / 2 )

im

+
(2-7/5

Wff, +

)H
4

r
(2

27/ -

Xim

- 7 / 2

gr?)

)^

^-component

ima/3geTm(l -

(2gA + AgAA

(2-7/2)^

m2

im

aXrj (2 - 4A

Ur +

gA??

AT/(2 - T/2) + 2 J

g + AgA

(2-7/2)1
Wr,\ +

77(2-7,2)1
wr,\t]

y - 27/

im(l-7/2 + g + AgA)] r r

Ar/(2-r/2)

(5.11)

(5.12)
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0-component

[ 7/(2 - 7/2

1 [2-7/2

( 2 g A + A g A A ) " 2 g A " ~ A g A A " "

2aA | 4A (2-7/2)^

(1 - tf) ,_ ,

[ y - 2r?j ^ , A -
2

( 2 -

2A ?(

AgA , (2-3r?2)

a
(2-7/2)l

2A

4A

4A

a L ( 2 - 7 / 2 )
(5.13)

2v \ =

where

<7i = — a .
v

The vector identity V • w = 0 implies that

- l \ lo 2 a , , - - x l - x , r i 2 , - - , ^ ( 2 - r ? 2 ) - ,
Wd> ~ — V{2 — V j 2 (2wr + AWr A ) + (1 — 7/ )Wg -\ W(,

m [ ' 2
and hence €>d> and its derivatives can be eliminated from (5.11) and (5.12), yielding

(5.14)

4A V W »7 / J
_ 1

J
y Ag. , (2-3^)1 (5.15)

7/(2-7/2)1 ._ (2-7/2)
1 w + ^ ^

2 ) 2
g

=

and

4(1 - T/2)

2(1 - "r/(2-7/2)l
r,T] + I —— -f- 2771 we,\ +

1 r(27/4-47/2 + l) m2 (2-7/2) (1-7/2)

AT/

2(g-

( g

+ 1/(2-1/2)2
T =
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where iwr has been substituted for wr and iwg has been substituted for wg.

The relationship between v and w is well known and for our coordinate system can be

written

(5.17)
( 2 - 7,2)5 s , 1 -77 2

o \ v<P-,n ' „ 1 '
ZA AT?(2 77 )5

[A77(2-772)Kr A "0>A

AT7(

- 1

a A Ve'X

r

LA

The incompressibility condition is V • v = 0, from which an expression for v^ is obtained in

a similar way to (5.14). Then all terms involving v^ and its derivatives can be removed from

equation (5.17), leaving the following expressions for the r and 6 components of the vector:

r-component

wrma =

(1 - V + 2T?4 - m2)

+ 4A

rj(2 -

r ' A 7 > • *

77(2-772)f =
4A

(5.18)

^-component

—w$ma = , _ 2 )
477(2 -

(5.19)

Finally, substituting (5.1) and (5.2) into the unsteady form of the temperature equation

(3.3), removing the steady-state solution and ignoring any terms containing a quadratic in a

small parameter, leaves

ot
(5.20)

The steady-state and perturbation temperature distributions, To and T respectively, and the

steady-state velocity solution u are given by the general expressions (5.4), (5.9) and (5.6)

respectively. These three expressions can be substituted into equation (5.20), together with

definitions (5.8) and (5.9), to give

x)Vr
(2-7/2)5 ~

A A77
(5.21)

K 2AT AA + 4 T A
(2-3T72)- , ( 2 - r7 2 ) -

2A77
*T,+

2m2

2A
T - 2v\alT.

I l l
1°



5.3 Boundary conditions

The system of differential equations obtained in section 5.2 must be solved subject to bound-

ary conditions on vr, dg, v<p, ivr, •Gig and f on A = 0, A = 1, T] = 0 and r] = 1. The

appropriate conditions are stated below.

5.3.1 Point source (A = 0)

No perturbations from the prescribed flow are allowed at the origin, therefore

Crfo,0) = 5*(T7,O) = 5*(i7,O) = 0. (5.22)

Evaluating equation (5.16) on A = 0 and using L'Hopital's rule wherever appropriate requires

that

€OtX(v, 0) = tiofa 0) = *>r(v, 0) = 0. (5.23)

With the use of (5.23), equation (5.14) gives

(5.24)

No perturbation of the temperature is allowed at the origin, hence

Tfo,0)=0. (5.25)

5.3.2 Outer hemisphere (A = 1)

The no-slip boundary condition on the solid-liquid boundary requires that the velocity com-

ponents and their associated perturbations are zero on the hemispherical boundary, and

hence

) = 0- (5-26)

Evaluating equation (5.17) on A = 1 then requires that

* r(»7,l)=0. (5.27)

One method of completing the boundary conditions on A = 1 is to evaluate equation (5.16) on

the outer hemisphere. Employing this equation in the finite difference scheme, however, led

to the appearance of positive eigenvalues for all current values, as discussed in the analogous

situation in chapter 4. To avoid this difficulty the Woods boundary condition is again adopted

on A = 1, and this will be discussed further in section 5.3.5.

The outer boundary is at the melting temperature Tm, therefore

f(r,, 1) = 0. (5.28)
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5.3.3 Axis of symmetry (77 = 0)

No motion is allowed across the axis of symmetry, so we also assume there is no velocity

perturbation across it. This assumption is equivalent to

5*(0,A)=0. (5.29)

Evaluating (5.17) on 77 = 0, and using L'Hopital's rule where appropriate, requires that

fy(0,A) = wr(0,A)=0. (5.30)

Consequently, satisfying equation (5.15) on 77 = 0 requires that

^0(0, A) = 0 and tt/r(O,A)=O, (5.31)

and evaluating the temperature equation (5.21) on 77 = 0 then gives

T(0,A)=0. (5.32)

5.3.4 Free surface (77 = 1)

It is assumed that there is no velocity perturbation perpendicular to the free surface, so

5*(l,A)=0. (5.33)

The perturbation to the shear stress components on the free surface satisfy

* " = fc^5™ = a O T ^ a n d ^ = ^ x ^ = P^r = 0, (5.34)

which imply that

tfr(l,A)=0 and ^L = ̂ .^.fx on 77 = 1. (5.35)

Finally, equations (5.16) and (5.21) are used on the free surface 77 = 1 to complete the set of

boundary conditions.

5.3.5 Woods boundary condition on A = 1

Investigation reveals that evaluating equation (5.16) on the hemispherical boundary A =

1 and using the resulting condition in the governing system produces some positive non-

dimensional eigenvalues a\ for all current values. These eigenvalues were not detected by

Belgrove [7]. As mentioned earlier the difficulty is removed when use is made of the Woods

boundary condition [137] on the outer hemisphere. In the previous chapter this condition

was shown to give

113



when higher order terms are neglected. In the system of linear equations for m > 1 being

considered in this chapter, however, different perturbation functions, namely the velocity and

vorticity functions, are used and hence /(r?, A) and g{rj, A) must be expressed in terms of vr

and w^. The ^-component of the vorticity •&<$, can be expressed

and substituting (5.37) into equation (5.36) gives

- , ( 2 - „>) V*V( , , 1) = ( A A ) 2 ( i " + 2 A A )

The function 5(77, A) can be written in terms of vT via the relation

which can then be used in the equation formed by differentiating (5.38) with respect to TJ to

give

(2-T]
2)12a a(r/2-l)

Using equation (5.14), •ix)̂  and i)^ can be eliminated from (5.40) since, after substituting

iwr for wr and itoe for wg

and

^(2 - 7i2)
- r)2)we + 2

+\2- -

Therefore, the condition

2a(l - r?
2)^r,A(r7,1) + ^ ( 2 - ift&r,A,fo, 1) + " ^ " ^ 1 } ^ ( ^ D

1 77(2 — 772) 2

- T72)5(6 - 7r?)wo<t,(ri, i
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3m(l-AA) 2 a ( l - A A ) 2 ( l - r / 2 ) -

(1 + 2 A A ) ^ 1

a( l -77 2 ) ( l -AA) 3 - . i A ^ a(l - AA)2T?(2 - r?2)-_
1 + 2AA ^ ( ? ? ' X " A A ) + 2(1 + 2AA)

- AA)3(2 - T)2) - . ,
2AA) *rM(v,l

4(1+ 2AA)7/(2-7/2)2

| Q ( l - A A ) 2 ( 2 - T 7
2 ) i ( 6 - 7 r ?

2 ) , -
+ 8(1 + 2AA) We

a ( l - A A ) 2 r ? ( 2 - r ?
2 ) f -

+ 8(1 + 2AA) We

is the Woods boundary condition on the hemispherical boundary A = 1 for the Stokes stream-

function tp, expressed in terms of the velocity and vorticity perturbation functions.
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5.3.6 Finite difference scheme

The system of equations (5.15), (5.16), (5.18), (5.19), (5.21) (and their corresponding bound-

ary conditions) were next written in finite difference form on a uniform grid using the method

discussed in chapter 4. That is to say the first derivatives were approximated using Leonard's

[68] method and the second derivatives using central differences. The resulting system was

then solved over a 11 x 11 grid (see figure 4.3, where the stability grid is shown by solid lines).

Note that in this chapter the dependant variables are known on the boundaries rj = 0 and

A = 0 and therefore these lines do not appear in the stability grid. Clearly the grid points

used to solve the linear stability problem in the hemisphere with m > 1 coincide with points

on the equally spaced 61 x 61 grid on which the underlying steady-state flow variables f, g

and t have been calculated (see the grid of dotted lines in figure 4.3). As before any deriva-

tives of the variables f, g or t were approximated by central differences using neighbouring

points on the 61 x 61 mesh.

5.3.7 Method of solution

The solution method for the linear stability system for integers m > 1 is now summarised. The

governing stability equations (5.15), (5.16), (5.18), (5.19) and (5.21) (and their corresponding

boundary conditions), written in finite difference form, were expressed in terms of a matrix A

of coefficients and a vector x of perturbation functions over the entire grid where the variable

values are unknown, to give

Ax = 0, (5.42)

when o\ is set equal to zero. The vector x consists of the unknown perturbation functions

5r, Dfl, wr, we and T at each grid point on the solid grid shown in figure 4.3. With o\

identically zero, equations (5.15), (5.16), (5.18), (5.19) and (5.21) were solved at each grid

point (except for (5.16) on A = 1) and the coefficients in front of each of the unknowns were

evaluated from the values of f, g and t (and their derivatives) at that grid point calculated

from the steady-state solution discussed in chapter 3. These coefficients produce the elements

of matrix A. The solution method for the system described by (5.42) is presented in the

previous chapter.
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5.4 Results and discussion

The stability system was solved at many closely spaced positions throughout the (J, dj/dT)

parameter space in which the steady-state model converged. At each position the determinant

of the matrix A was calculated and stored. As the current was increased in small steps, for a

fixed value of dj/dT between ±3.5 x 10~4Nm~lK-1, the calculated value for the determinant

of A varied smoothly, indicating that the eigenvalues associated with the system also vary

smoothly. The size of the pool in the underlying steady-state model was chosen to be 2mm.

The results obtained in this chapter cannot be compared with [7] since the condition

Belgrove applied on the boundary A = 1 has been changed, for the reasons discussed earlier,

and therefore our results are different to those obtained by Belgrove.

Positive surface tension gradient, d*y/dT > 0

For m = 1,2 and 3, in turn, no change in the sign of detA was observed, indicating that

no marginal stability curves exist for any value of the current J over the entire range for

which the underlying steady-state model converged. Consequently, assuming that instability

initially occurs in the lower modes (m = 1, 2 and 3) of vibration, no instability is predicted

in any of the upper modes of vibration (m > 1) when the surface tension gradient is positive.

Negative surface tension gradient, dj/dT < 0

The stability characteristics of the system of equations when m — 1 and the surface tension

gradient dj/dT is negative are shown in figure 5.1. The upper solid line (labelled 1) represents

the current at which the underlying steady-state model failed to converge (therefore at current

values above curve 1 no solution to the steady-state model could be obtained). When the

current was increased and crossed the lower line of the closed region 2, the determinant of

matrix A changed sign, indicating a region of instability. As the current was increased further

the determinant of A changed sign once again as the upper line of region 2 was crossed. By

increasing the current from zero along lines of constant dj/dT which do not intersect region

2, no changes in the sign of the determinant of A were observed. This behaviour suggests

that for the mode m = 1 azimuthal perturbations are stable where the steady-state model

breaks down. For the modes m = 2 and 3 no marginal stability curves were found for any

values of J in the parameter range over which the steady-state model converged. It is possible

that the instability to mode m = 1 perturbations just prior to breakdown is related to the

transition between a double-loop and a single-loop flow structure in the underlying steady

state model which is known to occur at about these parameter values.
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Figure 5.1: Stability and steady-state breakdown curves when dj/dT < 0 and m = 1.
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Chapter 6

Introduction to chapters 6 to 10 :

Solidification models

One process which was not modelled in the welding problem considered in the first five

chapters of this thesis was the unsteady growth of the pool of liquid metal. To model this

effect the unsteady Navier-Stokes equations can be used together with an expression for the

heat balance on the outer surface of the pool. Unlike the preceeding chapters, however,

the shape of the growing weld pool may not be spherical, especially when there is a strong

Marangoni force on the free surface. Following a paper by Szekely and Stanek [121], Kroeger

and Ostrach [62] modelled the continuous casting process of a pure metal or alloy solidifying

along a plane freezing front. Convection in the liquid metal was caused by the introduction

of feed metal with superheat, supplied to the liquid region through the top surface and this

region was cooled from the side. The outer surface of the liquid pool was determined by the

classical sharp interface latent heat (or Stefan) condition for the conservation of energy across

the interface. Oreper and Szekely [79] considered a similar type of problem. They solved the

coupled problem of an unsteady Navier-Stokes equation and a heat transfer equation. These

authors introduced a mushy layer whenever the temperature was between typical solidus and

liquidus temperatures for steel, and they insisted that the streamfunction was identically zero

in these regions.

In chapters 6 to 10 of this thesis we consider a related problem which involves a non-

isothermal phase change process with convection in the liquid phase. We model this process

using the sharp and diffuse interface methods and compare the solutions as the thickness of

the interface in the diffuse interface model is reduced to zero. In chapter 7 we develop a Stefan

model [119] for the solidification of a growing solid sphere in an infinite bath of super-cooled

liquid. This model assumes that the solid/liquid phase transition is sharp. The results of

this model are formulated in a similar way to Schaefer and Glicksman [95], however in the
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model derived in chapter 7 we allow for a disparity between the solid and liquid densities and

therefore flow ensues in the liquid phase, an effect which is absent from [95]. This model is

then compared to a recent phase-field model developed by Anderson, McFadden and Wheeler

[2], outlined at the end of this introductory chapter. In chapter 8 we show that, under certain

simplifications, a leading order asymptotic expansion of the model in [2] describes the sharp

interface model in chapter 7. Finally, in chapter 9 we make a comparison in one-dimension

between the numerical results of these two models as the thickness of the diffuse interface

tends to zero.

Early in the nineteenth century Young, Laplace and Gauss considered the nature of the

interface between two fluids. Generally they represented this interface as a sharp discontinuity

in the phase of a material and other physical quantities such as density. Boundary conditions

introduced at this 'interface of zero thickness' accounted for its physical properties. An

important boundary condition at this interface involves surface tension, which accounts for

capillarity effects (a term which derives its name from the rise in the level of fluid inside a

tube above the surrounding fluid when the diameter of this tube is comparable to a hairs

width (Latinxapillus)). By considering this phenomenon, Laplace obtained the equation

pl-p9 = 2o/R, (6.1)

describing the difference between the pressure inside a spherical drop of liquid pl and the

pressure of the (in this case) gas outside, p9, in terms of the curvature K (given by K = 2/R

where R denotes the radius of the spherical drop of liquid) and the surface tension a. Equation

(6.1) was later derived by Gibbs in [46] using thermodynamic arguments, and an outline of

both derivations can be found in [93]. Young [139], discussed in [93], went slightly further

than Laplace. He considered the forces parallel to a solid surface and obtained an expression

for the resulting angle of contact between a solid and liquid as

as9 = a
ls + alg cos 0,

where the surface tension (or energy) of the solid-gas, liquid-solid and liquid-gas interfaces

are given by asg, als and alg respectively, and the contact angle between the liquid and solid

phases is given by 0.

A boundary-value problem ([32]) occurs when the solution to a differential equation must

satisfy certain conditions on the boundary of its domain (in this case the interface between

two immiscible fluids). If in addition the position of the boundary must also be determined

this is known as a 'free boundary problem' when the boundary is stationary and a steady-state

solution exists; or a 'moving boundary problem' when the boundary is time dependent ([32],

[63], [6]). In these problems the position of the interfacial boundary is required in addition to

the solution of the differential equation at the interface. Suitable initial and fixed boundary

120



conditions are needed to obtain these two requirements. Moving boundary problems, such as

these, are usually referred to as Stefan problems after J. Stefan, who modelled the melting

of the polar ice cap in the late nineteenth century [119]. Essentially the condition derived by

Stefan at the boundary between, in this case, the solid and liquid phases of water, can be

easily obtained as
dR

= Lp—
dt

(6.2)
1 r\ ' •*•"".£ *-i

OX OX

by referring to figure 6.1. In equation (6.2) L denotes the latent heat, p the density, R(t) the

-K,5T,
'5x

Water Ice

Figure 6.1: Latent heat boundary condition at a solid/liquid interface. A similar figure

appears in [32].

position of the interface as a function of time, Ti{x) the temperature of water (when i = 1)

and ice (when i = 2) as a function of position x and Ki the heat conductivity of water

(when i = 1) and ice (when i = 2). When there are no heat sources at the interface an

amount of heat LpSx is required to melt the shaded region in figure 6.1. In the absence

of other sources this heat must be supplied by the difference between the heat entering the

shaded element from the water phase, —K\StdTi/dx, and the heat escaping into the ice,

-K26tdT2/dx.

Few exact solutions to these free-boundary problems can be obtained, those that can are

variations of the solution of Neumann, who, in his classical problem, considered a semi-infinite

medium of initially constant temperature in contact with a different constant temperature at

its face. These exact solutions are functions of x/t? and are known as similarity solutions.

Many such solutions can be found in text books on this subject, two good examples are by

Carslaw and Jaeger [23] and John Crank [32].

The simple one-dimensional, two-phase Stefan problem can be described as the heat flow

in the solid and liquid phases of a two-phase system which initially has its solid phase below

the melting temperature. It is then required that the solution to the system supplies the

variables Ti(x,t) and T2(x,t) throughout the solution space, and x •=• R{t), the position of

the interface. In its simplest form a plane interfacial surface is considered with its temperature
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fixed at the melting temperature, and the conductivities and densities of the solid and liquid

phases equal, thereby assuming negligible volume change on solidification. There have been

many generalisations to this problem including non-linear heat parameters and 'mushy region'

development, density change and convection in the liquid phase, ablation (continuous or

immediate removal of the surface of a melting solid or evaporating liquid) , inverse problems

(where R(t) is known but T(x = R(t)) is unknown), multiphase problems, diffusion and

heat flow in alloys, solution in two or three spatial dimensions and various implicit boundary

conditions to name but a few. Extensive discussions on all these problems can be found in

[32], and [94] presents a systematic development of the Stefan problem. Numerical methods

in solving various types of 'moving boundary' problems (including an alternative enthalpy

approach, an example of which can be found in [52]) are discussed in [80].

In the remainder of this thesis we restrict ourselves to the situation where a sphere of super-

cooled pure material is growing into its super-cooled melt. The term 'super-cooled' refers to

the temperature of the liquid phase which is below the equilibrium melting temperature of the

material. We also allow for a disparity between the density of the solid and liquid phases. In

general, energy, momentum and mass must be conserved during any phase change, therefore

when the density of the solid phase is not equal to the density of the liquid phase, conservation

of mass requires fluid flow in the liquid phase. To include the effect of such a density change

at the sharp interface Dankwerts [33] introduced coordinates at rest in the two phases which

are then in relative bodily motion along an axis perpendicular to the interface when the

two phases are free from convection currents. He showed that, with respect to the interface,

relative motion can exist between these two phases and he also considered several physical

situations. In particular, he obtained a similarity solution to the problem of progressive

freezing of a liquid when the plane interface was maintained at a constant temperature. He

noted that when the disparity between the densities was removed his solution reduced to the

classical similarity solution found by Carslaw and Jaeger in [23]. Chambre [25] analysed the

dynamics of growth of the solid phase in a super-cooled, semi-infinite two-phase system of

unequal densities with either a plane, cylindrical or spherical boundary starting from initially

negligible dimensions. He assumed that the solid phase remained at a constant surface

temperature, a condition which implied that the conductivity was infinite in this phase, and

that the velocity of the liquid phase was zero at infinity. To determine the velocity in the

liquid phase he used the equation of motion with a constant pressure field, instead of the

continuity equation and by using an appropriate coordinate transformation he was then able

to obtain similarity solutions to this problem. A Neumann type solution to a similar problem

with a plane interface was obtained by Carslaw and Jaeger (and reported by Crank [32]).

They considered the example of the freezing of a semi-infinite region when ps > pi and both

phases are incompressible, and applying slightly different boundary conditions in the solid
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and liquid phases they obtained a similarity solution. Later Horvay [54] produced alternative

similarity solutions to Chambre [25] by considering the effect of a varying pressure field on

the equation of motion and using the continuity equation to account for conservation of mass

in each volume element of the fluid. In an extensive later paper [55] Horvay modelled one-

dimensional freezing of highly super-cooled Nickel, from a finite initial embryo, studying the

flow velocities, temperatures and pressures in the liquid phase.

He assumed that the fluid was incompressible, obtained a profile of the pressure field from

Euler's equation and an expression for the temperature at the interface from the pressure

differences. This formulation resulted in a variant of the classical Gibbs-Thompson equation

at the interface. Under certain conditions Horvay found that his asymptotic solution became

indistinguishable from the classical solution (in [23] and [32]) which does not account for

pressure changes. Rubinstein [94] derived a similarity solution to the problem including a

density change on solidification, considered by Carslaw and Jaeger, but took the liquid phase

to be incompressible. Wilson [134], reported by Crank [32], considered a planar problem

where several phases of different densities occupy a (finite) slab of material.

More exact solutions to the Stefan problem have been produced by Tao. In [123] he

obtained a convergent analytical exact solution to the planar Stefan problem with arbitrary

initial and boundary conditions in the solid and liquid phases, but without a volume change

on solidification, and gave infinite series solutions for the temperature and position of the

interface. In [124] he further investigated the density change, planar solidification problem

subject to similar arbitrary initial and boundary conditions in the solid and liquid phases,

again obtaining convergent, exact, series solutions for this problem by using a new variable

y = (x + eS(t))/(l + e) where S(t) is the position of the interface and e = (pj, — ps)lPL

denotes the non-dimensional difference between the density of the solid and liquid phases.

With the exception of Horvay [55] all the papers discussed so far fix the temperature of the

solid phase and/or the sharp interface. However an accurate description of the temperature

for the solidification of a super-cooled liquid requires special attention, especially for an

embryo of solid which necessarily has a large curvature. As mentioned in reference to Horvay's

paper [55], an equation which accounts for the effect of the solid/liquid interface curvature on

the equilibrium temperature is the 'Gibbs-Thompson' equation. Interface attachment kinetics

(i.e. requiring that the rate of solidification (dR/dt) is related to the difference between the

interfacial temperature and the equilibrium temperature (AT)) is another process which

should be taken into consideration at the solid-liquid interface. A discussion of this effect

and consideration of the nucleation process and microscopic heat flow at the interface can

be found in Chalmers textbook on solidification processes [24]. In this book he describes

the relationship between the process of molecular attachment at the solidifying front and

the subsequent dependency on the interfacial super-cooling AT. He comments that when
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all atomic sites are equivalent the velocity of the interface, dR/dt, is proportional to AT.

Therefore appending the interface velocity of a growing spherical crystal by a linear kinetic

function of AT is reasonable and should be included with the Gibbs-Thompson equation at

the interface. This condition, including the linear kinetic function, was incorporated into the

Stefan problem and solved using a Greens function technique in a useful paper by Schaefer

and Glicksman [95]. These authors used physical values for white phosphorus to produce

results for the growth rate and surface temperature of a super-cooled system comprising of a

growing spherical crystal embryo in its melt. They initiated growth of the embryo by setting

the initial radius of the solid phase 0.1% larger than the radius of a solid embryo which

is in equilibrium with its super-cooled melt. At this so-called critical radius the effect of

the pressure difference (given by equation (6.1)) on the free energy is just compensated for

by AT, the departure of the interfacial temperature from the equilibrium temperature. By

assuming incompressibility in the solid phase, and thereby equating the pressure difference

with the difference in the free energy between the solid and liquid phases at a temperature

T — AT, Chalmers [24] obtained an expression for the equilibrium radius r* (used in [95])

which is given by

LAT'

where T& denotes the equilibrium, or melting temperature. In this paper, however, Schaefer

and Glicksman [95] did not account for a volume change on solidification due to a difference

in the density of the solid and liquid phases.

In chapter 7 we obtain a numerical solution to a problem similar to [95], but in addition we

account for volume changes on solidification. We solve this problem using a finite difference

method and compare our solutions favourably with [95] in the limiting case ps = PL-

An important aspect of the work of Young, Laplace and Gauss and the subsequent Stefan

models discussed above was first pointed out by Poisson in 1816. Namely that, in reality, the

density changes continuously when passing from a solid to a liquid state (or equivalently from

a liquid state to a gas) rather than as a step function. He suggested that the discontinuous

density should be replaced with a continuous function p{x), where x is the position variable.

Working with a suggestion that the density function shares some of the properties of the

Van der Waals equation of state, Rayleigh [88] obtained an equation for the surface tension

in terms of the density gradients. Van der Waals [127] also developed this theory, which he

based upon the local free-energy density. He noted that the excess free-energy density, which

is caused by the presence of the interface, is equal to the surface tension a and the free energy

density f(p,T) can be expressed by a double-well function which is shown schematically in

figure 6.2. The distance of this curve above the dotted tangent line describes a double well

with respect to the density with minima at ps and pi. To account for the surface tension at

the interface Van der Waals added the term (K/2)\Vp(x)\2 to the free-energy double-well,
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Figure 6.2: Thermodynamic free-energy density f(p, T) as a function of p for a fixed temper-

ature T in a region traversing two phases, PL denotes the density of the liquid phase and ps

the density of the solid phase. A similar figure appears in [93].

where if is a gradient energy coefficient (related to the second moment of the intermolecular

potential). This term is necessarily large when the density gradient is large and without such

a term in the excess free-energy density the surface tension would vanish. The integral of the

excess free-energy density is then given by

2

when the gradient energy coefficient K is assumed to be a constant. Anisotropy can be

introduced to the system by making K a function of the density gradient. Further details

of this theory can be found in Rowlinson and Widom [93]. In the formulation of Van der

Waals the density p can be described as an 'order parameter', since it distinguishes between

the solid and liquid phases and the interface between them. This theory was reformulated

later by Cahn and Hilliard [22] who expressed the free energy of the system in terms of a

scalar quantity c. They make the comment that this quantity could be either composition

(in the case of a binary fluid) or density. Like Van der Waals before them, they found that

the thickness of the interface increased in the vicinity of the critical temperature Tc where it

became infinite. If we consider the phase change of a pure material with negligible change in

the density on solidification then neither the composition nor the density can play the role of

an order parameter. In this case a so-called 'phase field variable' </>(x, t) can be introduced to

distinguish between the two phases. <f> is usually constant in the bulk phases, with a larger

constant value in one of the phases. (In [82] the authors make the comment that for <fi to

be an 'order parameter' rather than a 'disorder parameter' it should have a larger constant

value in the phase with the lower energy. In the literature, however, this is not always the
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case.) The quantity <f> varies smoothly between the two bulk values across the diffuse interface

and when the solid and liquid phases are represented by <j> = 1 and <j> = 0 for example, the

interface is located at the level set <j> = 1/2. Using this definition for the phase-field variable

the Van der Waals free-energy density can be expressed in terms of the function

V (6.3)

where 0, is the fixed region of space occupied by the system and f(<p, T) is the local Helmholtz

free-energy density which has a double well structure with respect to <j> (instead of p as shown

in figure 6.2). Langer [66] adapted 'Model C by Halperin et al. [50], to obtain a phase-field

model to describe the phase change of a pure substance and independently Collins and Levine

[28] introduced a similar model. Both of these models can be made to account for different

interfacial effects including the Gibbs-Thompson equation at the solid-liquid interface in the

solidification problem, as we shall see later. These authors proposed the governing equation

for the phase-field variable, where M is the relaxation time to equilibrium (where <f> min-

imises T) and \/M is called the mobility. Equation (6.4) was obtained from the free energy

functional described by equation (6.3), and in Langer's model K is replaced with e2 where

e is proportional to the thickness of the interface. This equation is coupled to the modified

unsteady temperature diffusion equation

where c is the thermal heat capacity, k the thermal conductivity, and L the latent heat per

unit volume of the material. The final term of equation (6.5) acts as a source of latent

heat when <j) ^ 0, i.e., at the moving interface. Away from the critical point the interface

thickness decreases and approaches a sharp interface, the approximation used in the Stefan

model. To show that the diffuse-interface models (described by equations similar to (6.4) and

(6.5)) are justified away from the critical temperature it has been shown by Caginalp and co-

workers in [16], [17], [18] and [19] that these equations asymptotically approach various free

boundary problems, including the model of solidification described by Schaefer and Glicksman

in [95]. In particular, in [16] Caginalp shows, using detailed asymptotic analyses, that various

sharp-interface models can arise from different scalings of the parameters in equations (6.4)

and (6.5) as e, the interfacial thickness parameter, is reduced to zero. Fife and Gill [42]

examined the one-dimensional solutions of the phase field model described in [19] using a

computer simulation under conditions which lead to the presence of mushy zones. They

justified these mushy zones by commenting that they can occur in a pure material which

experiences rapid internal heating, and in a binary alloy which is rapidly quenched. To
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describe a material which is not in any distinct phase they applied smooth initial data and

removed all source terms from their phase-field model. They observed that this situation

contained oscillatory instabilities which, when applied to the solution, evolved by gradually

increasing their dominant wavelength. Eventually these oscillations died out leaving a solution

which was divided into a separate solid and liquid phase. They suggested that this effect could

be interpreted as a fine-grained coarsening process, as in the solidification of alloys. Later,

[43], these same authors considered the formation and disappearance of mushy regions in

a material undergoing internal heating. Here they made a connection between fine-grain

coarsening and spinodal decomposition, the phenomenon of spontaneous phase separation

into a free-grained mixture. Above a certain critical value of internal heating, however, they

observed that the coarsening process was curtailed and even eliminated.

Penrose and Fife [82] identified a drawback in the class of phase-field descriptions originally

derived by Langer [66] and Collins and Levine [28]. Namely that the phase-field equation

(6.4) is based on a free-energy functional which is considered to be isothermal, however the

expression for the temperature field, given by equation (6.5), is then derived by allowing the

temperature to vary and applying a term proportional to d(f)/dt, to account for the latent

heat. To avoid this ad hoc approach these authors derived a class of thermodynamically

consistent models, which include the phase-field model described above, from an entropy

rather than a free energy functional. In [129] Wang et al., following the method described in

[82], derived a class of phase-field models for the solidification of a pure material in its own

melt. These authors showed that by making specific choices for the functions and parameters

their approach could be made to describe the models of Langer [66], Collins and Levine [28]

and others.

Until recently numerical methods for computation of these type of solidification problems

have been restricted by the limitations of computing power. An early numerical solution was

obtained by Smith in [109]. He used a finite element method to produce results in two-spatial

dimensions. This approach was based on a weak formulation of the single-domain method

which gave the interfacial conditions implicitly (as in the phase-field model). However, to

accurately approximate the temperature profile near the interface he uses a front tracking

method which (like the sharp-interface Stefan model) calculated the interfacial position ex-

plicitly. Later, however, Caginalp and Socolovsky [21] applied the single-domain method

alone, avoiding explicit front tracking by using a finely spaced finite-difference grid over the

entire co-ordinate range. They adopted the perspective that equations (6.4) and (6.5) are es-

sentially a means of approximating the sharp interface Stefan problems described previously,

and showed that, provided the non-dimensional interfacial thickness parameter e was small,

an increase or decrease in its magnitude did not affect the accuracy of their results. They

compared these results to the classical exact solution to the plane-interface Stefan model and
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found close agreement when e was small. They also observed a numerical restriction on the

ratio e/Ar, where Ar is the mesh spacing. If this ratio was too small significant numerical

oscillations occurred which caused the solution method to break down and the most suitable

range for this ratio was 0.75 < e/Ar < 1.1. A similar result was later observed independently

by Wheeler et al. in [133] and is verified in chapter 9 of this thesis.

In nature solidification occurs by the formation of dendrites at the surface of a growing

crystal (snowflakes for example display a variety of fascinating dendritic shapes). This process

of crystal formation is often seen in many solidification problems. A dendrite tip of freely

growing succinonitrile is shown in figure 6.3, which has been taken from a paper by Glicksman,

Schaefer and Ayers [47]. In this paper they carefully obtain experimental results and compare

5 0 fj.m

Figure 6.3: Micro-morphology of a freely growing dendrite of succinonitrile, from [47].

these results with the velocity of a growing dendrite as predicted by various different crystal

growth theories. The dendrite in figure 6.3 displays a main stem with a smooth parabola-like

tip followed by small perturbations which grow to form side branches that eventually become

perpendicular to the main-stem.

To obtain these complex shapes from theoretical models requires a numerical solution to

the solidification problem in at least two spatial dimensions. An early numerical solidification

model which was based on an equation of motion for the heat content per unit area of the

surface was developed by Ben-Jacob, Goldenfield and Langer et al. [8]. In this model these

authors incorporated the Gibbs-Thompson and Cahn-Hilliard conditions and used a thermal

boundary layer approach to approximate the diffuse interface, ignoring heat diffusion in the

solid phase. They solved this model numerically by tracking the interface and showed that

introducing anisotropy to the description of the interface triggered model instabilities and
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dendritic behaviour which they qualitatively compared to snowflake patterns.

Later Kobayashi [61] performed a series of numerical calculations in 2 spatial dimensions

which showed the formation of dendritic patterns using the phase-field approach. He was

critical of the earlier numerical method of Ben-Jacob [8] and others [60], [107] since these

papers keep the interfacial data explicitly and move the position of the interface according

to the interfacial equation of motion. Instead he solved the phase-field equations directly

by using a simple explicit numerical method for an equation similar to (6.4) and an implicit

numerical method for an equation similar to (6.5), since these equations express the interfacial

conditions implicitly. He introduced anisotropy by assuming that the small parameter e

depended on the direction of the normal to the interface, and produced results for directional

solidification and the growth of the solid phase after nucleation.

Wheeler et al. [133] solved the model developed in [129] in both one- and two-dimensions.

These authors were critical of Kobayashi's numerical work [61] as he did not address the

issues of numerical accuracy, the relation to classical solidification problems (such as the

Stefan problem discussed above) or the comparison of his results with experimental evidence.

To address these issues Wheeler et al. [133] compared the one dimensional numerical results

of the model in [129] to the results of Schaefer and Glicksman [95], as the interfacial thickness

parameter of the model was reduced. In this paper the authors obtained excellent agreement

between these two methods in the sharp interface limit when e < 0.01, however larger values of

e were less accurate. In two-dimensions they produced quantitative and qualitative numerical

results which compare favourably with dendrite formation in the growth of a super-cooled

melt.

Recently there have been a few papers which consider hydrodynamic flow effects in the

liquid phase when deriving a phase-field model. In [20] Caginalp and Jones derived a phase-

field model with flow in the liquid phase to describe the phase-change process of a pure

material. They chose an order parameter which was not fixed in either phase but varied

linearly with the position variable x. These authors made a formulation of the phase-field

equations using the continuity equation and Euler's equation to determine the specific gravity

and the pressure. They considered briefly the sharp interface limit of this model, to obtain a

generalisation of the Gibbs-Thompson equation, and the planar geometrical situation.

In [3], a recent review paper by Anderson et al., a thermodynamic model is outlined in

which convection in the liquid phase is included. This model involves a gradient internal

energy coefficient and it leads to a set of equations which, together with an equation of state,

describe a phase-field model for viscous, compressible, non-isothermal flow. In this paper

([3]) and references therein, various other diffuse interface models and their applications are

discussed. Some of these applications for a single component fluid include shear flows in near-

critical fluids, moving contact lines (see [97] for example, where a diffuse interface model is
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used to determine equations for a viscous flow near a plane wall), nucleation of droplets,

instabilities of planar jets and spinodal decomposition with hydro-dynamic effects. Binary

fluid models and their application are also considered.

Tonhardt and Amberg [126] used a phase-field model to study the effect of a shear flow in

the liquid phase on a solid nucleus attached to a solid wall and growing into the melt. These

authors produced numerical results in two spatial dimensions and found that the shear flow

significantly affected the shape of the growing dendrite and the local heat transfer. More

specifically, growth of the dendritic side branches of the vertical main-stem were enlarged on

the up-stream side and reduced on the down-stream side. They also noted that a change

in the orientation of the main-stem occurred when the shear flow was significant, whereas

decreasing the under-cooling reduced the radius of the dendrite tip and therefore the velocity

and growth of the side branches also decreased.

Very recently Anderson, McFadden and Wheeler [2] have developed a phase-field model

which allows for convection in the liquid phase. To extend previously existing phase-field

models to include convection these authors base their model upon a non-conserved order

parameter, 4>(x,t) which denotes the liquid and solid phases by <p(x,t) = 0 and 4>{x-,t) = 1

respectively. This model is unusual because it treats both the solid and liquid phases as

Newtonian fluids, where the viscosity (which is dependent upon cf>) of the solid phase is much

larger than the liquid phase. The density is not treated as an independent variable but is

prescribed as a function of <p only and therefore the density of the bulk solid and liquid

phases are uniform in the spatial variable. Also these authors allow for a non-standard (in

a fluid-fluid system) interfacial anisotropic surface energy. Following Penrose and Fife [82]

and Wang et al. [129], governing equations are developed from gradient entropy and internal

energy functionals.

Since this thesis deals with the model described in [2] we end this chapter by briefly

outlining the functionals and physical balance laws which lead to the model obtained therein.

The total entropy of the system is given by

S= f L- iUr 2 (V0)l dV, (6.6)
Jn(t) L 2 J

where ps is the classical entropy density per unit volume and the non-classical term involving

spatial phase-field gradients contains a gradient entropy coefficient es which is assumed to be

a constant for simplicity. Q(£) is a material volume and the homogeneous degree one function

F(V^) allows for a diffuse interface with an anisotropic surface energy (if F(V0) = |V >̂| is

chosen, the surface energy of the interface becomes isotropic). Then the total mass M., linear

momentum V and internal energy £ which incorporates the non-classical phase-field gradient
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term with a gradient energy coefficient e#, are

M= f pdV, (6.7)
Jti(t)

V
/fi(i)

and

= / pudV (6.8)
Jn(t)

dv (6.9)

respectively where u denotes velocity and e the internal energy density per unit mass.

The physical balance law for entropy is given by

i o r r

— + / qs-hdA= sprod dV (6.10)
dt Jsn(t) Jn(t)

where qs denotes the entropy flux and sprod is the local rate of entropy production, which

by the second law of thermodynamics must not be negative. The remaining physical balance

laws for mass, momentum and energy are

dM

dV__ r
dt ~ JSl

at = 0 ' ( 6 J 1 )

h-mdA (6.12)
I59.{t)

and

-j- + QE • n dA = n • m • u dA (6.13)

dt Jsa(t) Jsn(t)

respectively, where m is the stress tensor, qs the internal energy flux and n is the outward

unit normal to SCl(t).

The local entropy production can now be expressed in terms of m, <JE, qs and D(p/Dt

by writing equations (6.6) to (6.13) as differential equations. Forms for these terms are

then chosen by using the second law of thermodynamics which requires that sprod cannot be

negative. Further details of this procedure can be found in [2]. Resulting equations of motion

for mass, momentum, the phase-field variable and internal energy can then be written as

(6.14)

(6.15)

^ ^ (6.16)

and

^ [ ( | r c | | V ^ I - r e | V ^ ® V ^ + rJ :V« (6.17)
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respectively where the thermal conductivity k is constant, the gradient free energy Helmholtz

coefficient e2
F = e2

E + Te|, the viscous stress tensor r = /J(VU + Vt^) + A(V • u)l where /i, A

are viscosity coefficients and I is the unit tensor, and ¥ is a constant (positive) mobility

coefficient. The matrix identity a : Vu = a^jduj/dxh, with summation over the repeated

indices A; and j , and in equations (6.14) to (6.17) we have assumed that the surface energy is

isotropic by substituting |V0| for F(V</>).

To study situations in which the density is constant in the solid and liquid phases, which

implies therefore that these bulk phases are incompressible, the density was not chosen to

be an independent variable as in the quasi-incompressible formulation, described in [72].

Accordingly, therefore, the pressure and temperature are chosen as independent variables

and the internal energy per unit mass is expressed as

P
= g(T,p,(t>)+Ts(T,p,<j))- (6.18)

where g(T,p,<p) is the Gibbs free energy per unit mass and the following thermodynamic

relationships hold:

1 =dg
p(T,p,4>) dp

T,4>

and T*
p,<t> s,p P,T

The density is described in terms of the phase-field variable (f> alone by

p{4>) =pSr{<j>)+ PL [ 1 - r (</>)]

(6.19)

(6.20)

where ps and pi, denote constant solid and liquid densities respectively and r(0) is given

by r((f>) = <f>2(3 — 2<f>), a smooth monotonic function satisfying r(0) = 0 and r(l) = 1. The

equation (6.19)i can be integrated and the Gibbs free energy expressed as

p-po
g(T,p,<t>)=go(T,<t>)

Pit)
(6.21)

where po is a reference pressure and in [2] they let

go(T, <)>) = [eo - cTM - r(<f>)L ' f~) ~ cTln [f~) + ^
This expression for the free energy gives the following corresponding expressions for the

entropy as
i r i i / T \

(6.23)

and internal energy as

c{T -TM) -r{4>)L Po (6.24)

In equations (6.22) to (6.24) the symbols eo, c, L, TM, as and o are assumed to be constant

terms and they denote respectively the reference energy, the heat capacity per unit mass, the
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latent heat per unit mass, the melting point at the reference pressure, and entropy and free

energy coefficients. H{4>) is a double well potential which is given by H((j)) = <j>2(\ — <f>)2. In

[2] the authors justify their choice of go, shown in equation (6.22), by commenting that it

leads to an energy density in the liquid phase which is a linear function of the temperature.

This assumption was made in equation (31) of an earlier paper by Wang et al. [129], who

argued that in solidification problems heat conduction occurs mostly in the liquid phase.

The model outlined above has been used in chapters 8 and 9 of this thesis where we show its

asymptotic and numerical relationship to the sharp interface Stefan model of chapter 7 in the

sharp interface limit as £5, a non-dimensional parameter related to the interfacial thickness,

tends to 0.

133



Chapter 7

Sharp interface Stefan model with

flow

7.1 Introduction

In this chapter we derive a one-dimensional sharp interface Stefan model in spherical polar

co-ordinates for the growth of a solid sphere into a super-cooled melt. Allowance is made

for a flow velocity caused by a change in volume on solidification due to a difference in the

density between the solid phase and the liquid phase. We formulate this problem in such a

way that it may be directly compared to the numerical Green's function solution of a similar

problem without flow described by Schaefer and Glicksman in [95]. The problem in this

chapter, however, is solved numerically in one spatial direction by using finite differences.

7.2 Derivation

The problem of a growing solid phase inside a liquid phase can be characterised by a set of

partial differential equations within the solid and liquid phases coupled by a set of boundary

conditions at the interface between the two phases.

7.2.1 Liquid phase

The equation for temperature describing heat transfer due to convection and diffusion in a

liquid phase is given by

~ + u • VT = KLV2T (7.1)

where T, t, u and K denote temperature, time, velocity and thermal diffusivity respectively.
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In a spherically symmetric geometry, equation (7.1) becomes

dTL dTL (d2TL 2
(7.2)

at ' v dr -
where the subscript I denotes the liquid phase and r is the radial position vector from a point

at the centre of the growing sphere.

The equation describing conservation of momentum takes the form

p— = pF + V • a (7.3)

where F is a vector describing the volume body forces per unit mass of fluid, and <r is the

stress tensor which is given in tensor form by

<7jj = /i I 1 I — pdij (7-4)
\ 3 l )

where p and /x denote pressure and viscosity.

In a spherically symmetric geometry this equation becomes

pL£^k=pL (UL) +uL(uL)]=-(PL) +nL\(uL) +-(UL) (75)

where we have assumed no body forces (such as gravity) are acting and the radial component

of velocity, pressure, viscosity and density in the liquid phase are given by ui, PL, \ij_, and

PL respectively.

Incompressibility in the liquid phase requires that

V • u = 0. (7.6)

Integrating (7.6) with respect to r gives

where the term Cu is a function of time.

7.2.2 Solid phase

The temperature equation in the solid phase is identical to equation (7.1), however since the

velocity is identically zero it simplifies to

*JL = KS (*?£ + * Ms) (7.8)
dt \ dr2 r dr I

\ /

where the subscript s denotes the solid phase. Since us = 0, equation (7.3), which describes

conservation of momentum in the solid phase, becomes

which indicates that the pressure is constant in the solid phase.
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7.2.3 Interfacial boundary conditions

Across the moving boundary the mass must be conserved. Consider the freezing sphere in

Liquid

Density, p
Li

Figure 7.1: A freezing sphere.

figure 7.1 which has a radius R(t), a solid density ps and a liquid density pi,. Assuming

spherical symmetry, on the liquid side of the interface the velocity of the fluid UL acts only

in a direction normal to the sphere since the no slip condition on the boundary requires that

there is no tangential component.

In one-dimension the mass of the solid enclosed by the surface at any instant is

The net velocity at which fluid flows towards the interface is

dR _

and the net rate at which mass flows towards the interface is given by

\dt - uL

Therefore conservation of mass in one-dimension implies that

d / 4 - \ . » (dR
^ - uL ] = 0

which simplifies to
dR _UL

~dt ~~ T
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where

(7.11)

and UL denotes the normal velocity at the interface where r = R(t). Equation (7.10) gives

a relationship between the velocity of the interface (dR/dt) and the velocity in the liquid at

the interface {UL)- Therefore using equation (7.7) we can write (7.10) as

dR
~dt

1 Cu(t)
e R2 '

(7.12)

Next we consider the latent heat condition to describe conservation of heat at the interface.

When the temperature of the solid phase is greater than the liquid phase, therefore, heat will

be conducted towards the interface from the solid and away into the cooler liquid. The

difference between the heat conducted towards and away from the interface is equal to the

latent heat of solidification. A schematic representation of this is shown in figure 7.2.

Density, p

Solid

Liquid
(Supercooled)

Density, p

Figure 7.2: Heat transfer at the boundary of a freezing sphere.

In the situation where the specific heat c is a constant the latent heat boundary condition

can be written as

(7.13)
or

dTL dR
-~- = LPs~jror at

where ks and k,L are the thermal conductivities in the solid and liquid phases respectively.

Following [95] the effect of the interface curvature is included in an expression for the equi-

librium temperature; this is known as the Gibbs-Thompson effect. We also require that the

rate of motion of the interface is a function of the deviation of the interface temperature from

the local equilibrium temperature of the bath. This effect is known as interface attachment
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kinetics. The effect of the curvature on the equilibrium temperature will be very pronounced

for a spherical crystal whose radius is very small. For an interface of radius R(t), surface

energy 7 and a planar interface melting temperature given by Tm, the Gibbs-Thompson

relationship in spherical polar co-ordinates describes the local equilibrium temperature T as

T-T -±±
R c

where A = 2yTmc/L2, L is the latent heat of fusion per unit volume and c the specific heat

of the super-cooled liquid per unit volume. For some small radius of curvature R* — A/A0,

where A6 is the normalised bath super-cooling denned by A9 = cAT/L, the local equilibrium

temperature will be reduced to the temperature of the super-cooled bath of liquid. We now

introduce attachment kinetics into this equation. Denning the surface temperature of the

growing sphere as Tst, then the rate of motion of the interface is assumed to be a function

of the difference between Tst and the local equilibrium temperature of the curved interface

of radius R(t). This function will depend upon the molecular attachment process at the

interface. For a solid phase which remains spherical as it grows, a reasonable choice is to

assume this function is linear. The surface temperature of the interface is then given by

r - = T._^_I« (7.i4,
R c fi at

where \i cm/sec °C is the linear kinetic coefficient.

Finally it is required that the temperature at the interface is continuous since a discontinu-

ity in the temperature profile would clearly be unrealistic. Therefore at r = R(t) we require

that

lim T = Tst= lim T (7.15)

where R{t)~ and R(t)+ denote the limit as r -» R(t) from the solid and liquid sides of the

interface respectively.

7.3 Non-dimensionalisation

Equations (7.2), (7.5), (7.8), (7.12), (7.13) and (7.14) can be solved numerically. To com-

pare the numerical results to those obtained in [95], however, it is convenient to first non-

dimensionalise the variables in a similar way. Therefore we let

f=£, (7-16)

r - ^ ± t (7 17)

T=-0, (7.18)

c
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dR
dt

dR
(7.19)

R* dr"

and in addition the spatial constant of integration Cu in equation (7.7), which was introduced

by integrating the incompressibility condition (7.6), is non-dimensionalised by

CU{T) = KSLR*Cv(r). (7.20)

R* denotes the radius of a spherical solid crystal in equilibrium with the super-cooled bath

and KSL is the average thermal diffusivity, defined as

Similarly the average density PSL is defined by

PSL = 2 \Ps +

Finally we define the normalised temperature variable 6 via

9 = 9m + A99, (7.21)

which describes the temperature in terms of the under-cooling A9. Initially with 9 = — 1

everywhere the super-cooling is A#, and 9 = 0 corresponds to zero super-cooling (i.e. the

non-dimensional temperature 9 is equal to the melting temperature 9m).

Applying non-dimensionalisations (7.16) to (7.21) to the system of equations (7.2), (7.8),

(7.12), (7.13) and (7.14) leaves

(7.22)

(7.23)

(7.24)

(9s) =(0s) +--\ J T V / ff r

l O v

R

dR 1_
f=R + ~R

(7.25)

(7.26)

where f = AL/J,/4KSLC- The system of equations (7.22) to (7.26) can be solved without

reference to the pressure. The pressure will vary throughout the liquid phase, especially
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when flow is induced in the liquid by a density difference between the two phases. This flow

will also affect the pressure in the solid phase according to the vapour recoil effect. The effect

of the change in pressure on the melting temperature will be small, however, since the latent

heat coefficient L is large. We have used the Gibbs-Thompson equation (7.14) to obtain an

expression for the interfacial temperature and the pressure term is absent from (7.14) and

consequently (7.26). Therefore, since we do not need to evaluate the pressure in either phase

the momentum equation (7.5) and the pressure are not considered any further.

7.4 Tracking of the interface

To solve equations (7.22) to (7.26) the position of the interface is tracked as it grows into the

liquid phase. Introducing the variable £ where

ensures that:

- the interface is always at £ = 1/2,

- in the limit as f —> oo then £ —>• 1,

- in the limit as f —> 0 then £ -» 0.

The change of variable from f to £ transforms the non-dimensional equations outlined in the

previous section since

' = < £ ) • (7'28)
d = d( d = R d = (l - Q 2 d

dr drdC, {f + R)2dC R d('

R2 d2 2R 8 _ (1 - C)4 d2 2(1 - C ) 3 d

(f + R)4d^ (f + RfdC~ R2 d(2 R?

and

(7.30)

Rdr (f + R)2 d( dr

Unfortunately these transformations significantly complicate the system. On application of

conditions (7.27) to (7.31) equations (7.22) and (7.23) become

T2( l -C) 3 2(1 - C ) ;
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and

(7.33)

Combining equations (7.24) and (7.25) gives

Cv = eRA9(l -
dOL 60s

(7-34)

equations (7.25) and (7.26) together yield

JTT / I T r\M r tC t~> fiH n I

(7.35)

Equation (7.26) remains unchanged. Equation (7.32) is used to evaluate the non-dimensional

temperature 9 at every grid point in the liquid phase using forward time and central space

finite differences. Similarly, equation (7.33) is used to evaluate 9 at every grid point in the

solid phase again using forward time and central space finite differences. Equations (7.26),

(7.34) and (7.35) are evaluated at the interface where £ = 1/2. Equation (7.26) can be

used to evaluate R at t + St, the new time level, by using forward differencing for the time

derivative and evaluating the right hand side at the previous time step in the usual way. It is

possible to obtain values for Cv and 9 on C, = 1/2 at t + 8t directly from equations (7.24) and

(7.25), however these equations must be evaluated at the new time step and therefore a finite

difference approximation for RT is required at t + St. Prom the combination of (7.24) and

(7.25) however, we obtain equation (7.34), which contains no time derivatives and therefore

can simply be evaluated at t + St. A similar combination of (7.25) and (7.26) yields equation

(7.35) which can also be simply evaluated at t 4- St.

7.5 Finite differences

Equations (7.26), (7.32), (7.33), (7.34) and (7.35) were initially discretised by using Crank-

Nicolson's method [108] which averages over the new and previous time step. Due to the initial

non-equilibrium data imposed upon the system, however, persistent numerical oscillations

were produced. These oscillations did not decay with time despite changing the size of the

time and/or position steps. Obtaining results using this method was found to be impossible

since the system proved to be sensitive to small oscillations at the interface. Therefore the

Crank-Nicholson approach was dropped in favour of the simpler forward time, central space

approximation. Dropping the bars the finite difference approximations of equations (7.26),

(7.32), (7.33), (7.34) and (7.35) are outlined below.

Temperature equation (7.33) in the solid phase:

0 ' -^{-^^)+lR^ {^f (7-36)
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I 2(1 - o 3 2(1 - c)3

[ (RT)2 C(RT)2
4(1 - c)C (RT+dT -

{
~ *?-«>

Temperature equation (7.32) in the liquid phase:

0 = -

2 ( 1 - Q 3 , 2 ( 1 - C ) 3

4(1 - c) re(i - crp[- RT+dT-RT

KL RT V 4C2

Incompressibility condition (7.34) evaluated at the new time step:

2dC,
(7.37)

+dr
0 = CT+dT - eRT+dTA9(l - C)2

Boundary condition (7.35) evaluated at the new time step:

0 = 4£ ( RT+dT9r
R

+dT + 1 ) + A0(1 - 0

T+dr

c-i+
(7.38)

d(0s)
T

R
+dT

d(6L)R
+dT

The Gibbs Thompson condition (7.26):

Rr+dr _ ^ r
0 =

dT

J
(7.39)

(7.40)

In the boundary equations (7.39) and (7.40) a one-sided derivative of 89/dC, must be

used in both the solid phase and the liquid phase. The standard up-wind and down-wind

differencing approximations for the first derivative (see [108]) introduce large discretisation

errors (i.e. O(A£))- Since the surface boundary conditions are sensitive to small changes

(as observed by the failure of the Crank-Nicholson method discussed above), a non-standard

one-sided finite difference approximation for 89/dC, has been derived which has a smaller

discretisation error. We can obtain a second order accurate one-sided finite difference scheme

to approximate 89/dC, by considering a three term Taylor series expansion in 9. Specifically

d(9s)l
+dT

2~ ^ 2 ~ »

and
d(9L)T

c
+dT

2d(

+ 0

+ O

(7.41)

(7.42)

Equations (7.41) and (7.42) are used in the discretisation of the interfacial boundary condi-

tions (7.38) and (7.39).
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7.6 Boundary conditions

The temperature equations (7.36) and (7.37) must be solved on the boundaries C = °

C = 1 respectively. At the origin and in the far field, the Neumann boundary conditions

i- de « , >• 99 nhm 7— = 0 and hm — = 0,

are used. When evaluating equation (7.33) at the origin where ( — 0 special treatment is

required for the final term on the right hand side. Since the numerator and denominator

both vanish on £ = 0, L'Hopital's rule can be used to write

as

(RT)2 (do2

Therefore on £ = 0 equation (7.33) becomes

( 7 . 4 3 )
KS V dr

where fictitious points have been removed using the central difference approximation for the

Neumann derivative boundary condition on £ = 0.

No special treatment is required to evaluate equation (7.32) on C, — 1, which yields

(7.44)

7.7 Method of solution

The system of equations (7.36), (7.37), (7.38), (7.39) and (7.40) with boundary conditions

(7.43) and (7.44) cannot be solved using an explicit method since there is no order in which

the system of equations can be solved explicitly at each new time step. Therefore an implicit

solution method was adopted, using Newton iteration [29] at each time step.

Firstly the normalised non-dimensional temperature 6 was everywhere set equal to — 1,

corresponding to a non-dimensional super-cooling of A#. Growth was initiated by setting the

initial position of the interface .R(O) to 1 + 8 where 8 < 1 (i.e. R(0) = (1 + 8) x R*) and the

velocity to zero by letting the unknown flow parameter (7(0) = 0. To solve the system (7.36),

(7.37), (7.38), (7.39) and (7.40) with boundary conditions (7.43) and (7.44) using Newton's

method it was written in terms of an (n + 3)-vector £ satisfying the system

F(C) = 0 (7.45)
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where n denotes the number of grid points in C between 0 and 1.

In equation (7.45) -Pj(C) denotes:

i

1

2 ... n/2

n/2 + 1

n/2 + 2 ... n - 1

n

n + 2

n + 3

Equation

the temperature

the temperature

when C = {i — 1)

the latent heat -

when C = (n/2)

the temperature

equation (7.43) on r — 0 (when C = 0)

equation (7.36) in the solid phase

AC
Gibbs-Thompson boundary condition (7.39)

x AC = 1/2
equation (7.37) in the liquid phase

when C = («'•- 1)AC

the temperature equation (7.44) as r —> oo (when C = 1)

the Gibbs-Thompson boundary condition (7.40)

when C = (n/2) x AC = 1/2

the mass balance - latent heat boundary condition (7.38)

when C = (n/2) x AC = 1/2
Prom the Taylor expansion [120] of F the ith component function F{ satisfies

Fi(x + h) = Fi(x) + [vF,(x)]Th + O(|h|2)

when Fi has continuous first and second partial derivatives. Therefore

F(x + h) = F(x) + J(x)h + <9(|h|2)

where J (x) is the Jacobian matrix of F at x which is given by

jw= P •
Now the linearised equation for the correction vector h can be solved from

J(x)h = F(x + h) -F (x )

using Gaussian elimination. The new approximation to the vector C is then given as

x n e w = x + ah

where a is a relaxation parameter. For the problem considered in this chapter the Newton

method did not require relaxation and therefore a = 1. This procedure was repeated until the

2-norm of F(x) was less than a specified tolerance of 10~7. The Jacobian was re-calculated

at each stage since the number of row operations required to solve the system by Gaussian

elimination was minimal.
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To make an accurate guess of each variable at every position step at the next time level, a

spline was fitted over the previous time steps. A quadratic spline was found to obtain more

than sufficient accuracy.

Despite the use of an implicit solution method the explicit forward time, centre space finite

difference scheme required that the usual time step constraint for an explicit scheme was

adopted, namely

AT = / 8 ( A C ) 2 , (7.46)

where ft < 1 is the relaxation coefficient. Solutions could be obtained for values of /3 close to

1 and /3 = 0.75 was used to evaluate the results in the following section.

7.8 Results and discussion

The parameter values for white phosphorus were used and are shown in Table 1.1. The

coefficients for white phosphorus (P4) and water shown in this table are given in [69] and

[95].

substance :

Lp/c

A[ = 2aTmc/{Lpf)

K

T

°c
cm

cm2 /sec

sec- °C/cm

°C

5

1

2

.5

.5

.3
i

PA

25

X

X

X

14.

.4

io-7

io-3

io-3

31

H2O

80

6.5 x

1.35 :

9.7 x

0

10~8

«io-3

10~4

Table 1: Values of relevant physical constants given in [69] and [95].

The results obtained for the normalised growth rate-time curves, using the model described

in this chapter were compared to the results in [95] by equating the densities of the solid and

liquid phases. Growth was initiated by setting R(0) = (1 + S)R* where <5 = 0.001 (i.e. a 0.1%

increment on the critical radius) as in [95]. However, the temperature profiles were obtained

by initially setting £ = 0.1.

The accuracy of the results obtained from the model described in this chapter is dependent

on the number of grid points (n) used in the position variable C- Results could be achieved

with less than n = 50 points, and figure 7.3 displays the maximum percentage change between

equivalent temperature profiles when n is increased from 50 to 100, 100 to 150 and 150 to 200.

These results were obtained for the three data sets: A9 = 0.1, ps = PL = 1-823 g/cm3, and
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I
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6

1.5

0.5

0

s

x A6 = 0.1,x = 5, p = ps

• A0 = 0.5, x = 5, p = pS

1 s

50 to 100 100 to 150
number of grid points

150 to 200

Figure 7.3: Maximum percentage change in the temperature profiles at time r = 5 and

H = 500 cm/sec °C when n, the number of grid points in (, is increased, for the three data

sets: A0 = 0.1, ps = PL = 1-823 g/cm3, and A0 = 0.1, ps = 1.823 g/crn3, pL = 2.026 g/cm3,

and A6» = 0.5, ps = pL = 1.823 5/cm3.
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A6 = 0.1, ps = 1.823 g/cm3, pL = 2.026 g/cm3, and A9 = 0.5, ps = pL = 1-823 g/cm3

when time r = 5 and /j, = 500 cm/sec °C.

Figure 7.3 clearly shows that at time r = 5 and /i = 500 cm/sec °C the maximum

percentage change reduces with the number of grid points and the super-cooling A9. The

maximum percentage change for all three data sets at any point in the temperature profile

is less than 0.5% when the number of grid points is increased from n = 150 to n = 200. If

we assume that the exact solution is obtained when n — 200, then

(7-47)

where T£ is the temperature at £ = iA£ using a grid of n < 200 points, T^ is the temperature

at £ = iA£ using a grid of n = 200 points, A is a constant and a is the order of the

discretisation error. A value of a « 2 is expected, since we have used forward time (with a

time step restriction given by equation (7.46)) and central space finite differences. Taking

the natural log of (7.47) yields

(7.48)

which we can evaluate point-wise or by using the 2-norm via

{ r n i l l

E (7£ - TJ,00)
2 > = l n ^ + a l n ( - J (7.49)

at n = 50, 100 and 150. Figure 7.4 displays equation (7.49) evaluated at these three points.

The solid line in the figure is a linear regression curve which was fitted using the plotting pack-

age XMGR. From this curve values of a = 1.995 and ln^l = 4.798 were obtained. As expected

the error of the discrete finite difference scheme, outlined in section 7.5, is approximately sec-

ond order in A£. Therefore using n = 200 the discretisation error estimate in the temperature

profile is O(10~3). (Evaluating equation (7.48) point-wise, thereby evaluating three values of

a1 at every coincident grid point, and averaging these values gave ^average = 2.33.) All the

results displayed in the remaining figures in this chapter use n = 200 grid points in £•

Figure 7.5 displays growth rate curves, as functions of time, of a spherical nucleus growing

into a melt with super-cooling A9 — 0.5, when the linear kinetic coefficient p, = 500, 200, 100

and 50 cm/sec °C and ps = pL- The dots, crosses, pluses and squares on this figure de-

note values of the Green's-function solution discussed in [95] when p. — 500, 200, 100 and

50 cm/sec °C respectively. These points were obtained from an enlargement of a graph shown

in [95] and are therefore not exact. However figure 7.5 clearly shows close agreement with

the corresponding figure in [95]. After passing through a maximum the growth rate decays,

and at large time resembles V~xl2, the similarity solution behaviour (observed in [23]) when

kinetic and curvature effects are not important.
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Figure 7.4: A linear regression curve is fitted to the data points obtained using equation

(7.49) with n = 50, 100 and 150 to find an estimate for the order of the error in the discrete

finite difference scheme when T = 5, (JL = 500 cm/sec °C, ps — PL = 1.823 g/cm3 and

A0 = 0.5.
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Figure 7.5: Normalised growth rate-time curves for bath with super-cooling A# = 0.5 when

^ = 500, 200, 100 and 50 cm/sec °C. The corresponding values of the Green's-function

solution in [95] are denoted by •, x, + and • respectively. The initial radius R(Q) = 1.001.R*.
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Flow is introduced into the problem by setting ps ^ PL- Since this problem is driven by

the interfacial boundary conditions, the effect of the hydrodynamics on the system is difficult

to compare with figure 7.5 (where the velocity in the liquid phase is zero) if the thermal

conductivities ki and ks change with the density. This can be clearly seen by inspection of

the coefficients in front of the temperature derivatives on the left hand side of the latent heat

boundary condition (7.13). Also, and more importantly, in chapter 9 the model described

in this chapter will be compared with a phase-field model which assumes that the thermal

conductivity remains constant. The density, thermal diffusivity and thermal conductivity are

linked via the relation

k = npc

where c is the specific heat (which is assumed constant). It follows that if k is kept fixed as p

is changed, then K must also change. Therefore, we proceed to rescale KS and KL by adopting

the following two conditions:

• the average thermal diffusivity remains constant,

where KSL = ^{Ks + KL) = 1-5 x 10~3 cm2/sec (the value of K given in table 1),

• ks = KSPSC = KLPLC = kL.

These two conditions require that

KL — 2KSL and KS = 2KSL -
PL + PS PL + PS

where the constant average thermal diffusivity KSL is given above. Figure 7.6 shows the

comparison between growth rates of spherical nuclei growing in a melt with super-cooling

A9 = 0.5 when the linear kinetic coefficient /i = 500 cm/sec °C and /x = 50 cm/sec °C.

Again growth was initiated by setting the initial radius to 0.1% above the critical radius.

Figure 7.7 shows the equivalent growth rates with a smaller super-cooling of A0 = 0.1. The

solid lines in figures 7.6 and 7.7 show the case described in figure 7.5 where pL = ps =

1.823 g/cm3 (the density of (solid) white phosphorus given in [69]) and therefore from (7.11)

e = (pL — ps)/PL = 0. The upper dashed lines show the case where pi = 2.026 g/cm3 and

ps = 1.823 g/cm3 and therefore e = (PL - ps)lPL — 0.1. The lower dashed lines show the

case where PL = 1.657 g/cm3 and ps = 1.823 g/cm3 and therefore e = (PL - Ps)/PL = —0.1.

As expected, in figures 7.6 and 7.7 the velocity of the interface is reduced when e is negative,

since the flow in the liquid is inwards towards the solid phase when the density of the solid

is less than the density of the liquid and consequently heat transfer from the interface is also

reduced. On the other hand when e is positive (as for water) the liquid phase is flowing

away from the solid phase and the velocity of the interface increases. Note that the disparity

between the density of the solid phase and the density of the liquid phase must be large

to obtain a significant difference between the velocity of the interface when e ^ 0 and the

corresponding velocity when e = 0. Comparing figures 7.6 and 7.7 we observe that the
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Figure 7.6: Normalised growth rate-time curves for bath with super-cooling Ad = 0.5, fj, = 50

and 500 cm/sec °C, and 12(0) = 1.001 x R*, when e = -0.1, 0.0 and 0.1.
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Figure 7.7: Normalised growth rate-time curves for bath with super-cooling A9 = 0.1, /i = 50

and 500 cm/sec °C, and i?(0) = 1.001 x R*, when e = -0.1, 0.0 and 0.1.
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velocity of the interface is greatly reduced when the super-cooling is small. In figure 7.7

dR/dt reaches a maximum at a much later time T than the maximum value reached in figure

7.6 (when T a 45). Further, the maximum value of dR/dt and the difference between the

velocity of the interface when e = ±0.1 and e = 0.0 is smaller in figure 7.7, when A6 = 0.1,

than in figure 7.6, when A6 = 0.5.

We now consider the temperature profiles at successive time levels when A0 = 0.5 and

A0 = 0.1. Figure 7.8 shows the temperature profiles when e = -0 .1 , 0.0 and 0.1 as a function

of the radial co-ordinate r, when the super-cooling A6 = 0.5 and the linear kinetic coefficient

fi = 500 cm/sec °C at times r = 5, 10, 15, 20, 25, 30, 35 and 40. Figure 7.9 shows the

corresponding temperature profiles when the super-cooling Ad = 0.1. Initially the normalised

non-dimensional temperature 0 = — 1 everywhere, corresponding to an initial super-cooling,

A0, of 0.5 in figure 7.8 and 0.1 in figure 7.9. In these figures growth was initiated by setting

the radius at r = 0 to 10% above the critical radius (i.e. R(0) = (1 + <5) x R* where S — 0.1).

Increasing the initial radius of the solid phase will increase the velocity of the interface

obtained in figures 7.6 and 7.7 when 5 = 0.001. Consequently the difference between the

temperature profiles with and without flow will increase.

The upper dashed lines in figures 7.8 and 7.7 show the temperature profiles when pi, =

2.026 g/cm3 and ps = 1.823 g/cm3 and therefore e = 0.1. The lower dotted lines show the

temperature profiles at successive time levels when pi = 1.657 g/cm3 and ps = 1.823 g/cm3

and therefore e = —0.1. As we discussed previously, when e < 0 the velocity in the liquid

phase is inward (i.e. towards the solid phase) and the temperature profiles are lower, and

when e > 0 the velocity in the liquid phase is outward (i.e. away from the solid phase) and

the temperature profiles are therefore higher.

The difference between the temperature profiles in figures 7.8 and 7.9 when e = —0.1, 0 and

0.1 is small when r is small. This is expected however since, from equation (7.10), the flow

in the liquid phase is given by e x dR/dt and figure 7.5 shows that when r is small dR/dt is

vanishingly small, even when (as in this case) the linear kinetic coefficient fi is unrealistically

large. (In their paper [95] Schaefer and Glicksman commented that an approximate realistic

value for fi is 17 cm/sec °C.) As expected the difference between the temperature profiles

when e = —0.1, 0.0 and 0.1 in figure 7.9, where A6 = 0.1, is greatly reduced when compared

to the difference between these profiles shown in figure 7.8, where A9 = 0.5.
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Figure 7.8: Temperature profiles with and without flow at times r = 5, 10, 15, 20, 25, 30, 35

and 40, as a function of the radial co-ordinate r when the super-cooling A9 — 0.5, fi =

500 cm/sec °C and R(0) = 1.1 x R* for different values of e.
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Figure 7.9: Temperature profiles with and without flow at times r = 5, 10, 15, 20 and 25, as

a function of the radial co-ordinate r when the super-cooling Ad = 0.1, [i = 500 cm/sec °C

and R(0) = 1.1 x R* when e = 0.1, 0.0 and -0.1.
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Chapter 8

Sharp interface limit of the

phase-field equations due to

Anderson, McFadden and Wheeler

8.1 Introduction

In this chapter we consider the sharp interface limit of the phase-field model recently devised

by Anderson, McFadden and Wheeler [2], which includes convection in the liquid phase. This

model combines the thermodynamically-consistent framework in a previous paper by Wang et

al. [129] with the phase-field approach devised by Langer, Collins and Levine and others [66].

We compare the one-dimensional form of this model to the sharp interface limit including flow

described in chapter 7 (an extension to the work of Schaefer and Glicksman in [95]). In this

chapter, however, we initially dispense with the density difference between the solid and liquid

phases (and thereby convection in the liquid phase) before considering the one-dimensional

form of the complete phase-field system ([2]). In this thesis the surface energy in the model

described in [2] is assumed to be isotropic since we are considering growth of a spherical solid

crystal. First, the appropriate non-dimensionalisations of Schaefer and Glicksman [95] are

used to compare this model with the sharp-interface Stefan model described in the previous

chapter. Then, using the method of Caginalp [16], the model described in this chapter is

shown to be equivalent to the sharp interface model in the sharp interface limit. Once the

non-dimensional parameters associated with the no-flow case of [2] have been determined in

terms of the material parameters, a sharp interface analysis of the full model of Anderson,

McFadden and Wheeler [2] is considered.
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8.2 Asymptotic limit of phase-field equations without flow

The simplified form of the one-dimensional phase-field equations of Anderson, McFadden and

Wheeler [2], with the gradient energy coefficient £# set to zero (i.e. e2
F = Te | rather than

eF = Tes + e|;), equal solid and liquid densities and an isotropic surface free energy are

M<j>t =

and

pet = kV2T,

(8.1)

(8.2)

where T, <p, t, ep,p,k and e denote temperature, phase-field variable, time, gradient free energy

Helmholtz coefficient, density, thermal conductivity and internal energy density respectively.

The constant M is related to the mobility. The phase field variable <\> is given by <f> = 0 in

the liquid phase and <j> = 1 in the solid phase.

The internal energy density (per unit mass), e, is assumed to have the form

c(T- Tm) - r(J>)L + \ \ - + -
4[a s a

(8.3)

where eo,c, L,Tm and po denote a reference energy, heat capacity, latent heat (all per unit

mass), melting temperature and pressure. The quantities as and a are positive constants;

I/05 and I/a represent the height of the entropy and the free energy double well potentials

respectively. The function r((f>) is a smooth monotonic function which satisfies r(0) = 0 and

r(l) = 1 and in [2] Anderson, McFadden and Wheeler assume it to have the form

(8.4)

(8-5)

The function H{4>) is the double-well potential given in [2] by

H(4>) = <£2(1 - 4>?

and it is also noted from [2] that
de dg

s,p P,T

where

and

- cTm -

Hence (8.1) can be written as

(8.6)
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Now, it can be clearly seen from the corresponding equation in Wang et al. [129] that

PH = -TQ{T)p'{4>) + TG'(4>), (8.7)

where

sen = [T £*; = L{T
T~Tm). (8.8)

JTm S Hm
Since pg^ can be written as

the functions p'((f>) and G'(4>) can be found by comparing equations (8.8) and (8.9) to equation

(8.7). Therefore

G'(<f>) = p——, (8.10)

and

4L \as

Consequently, equation (8.6) can now be written in a similar form to that of Wang et al.

[129] as

where e|, = Tec.

Substituting the form of e(T, <f>, t) given in (8.3) into equation (8.2) gives

[1 (\ 1 \ , , 1 A; o
c i t + 7 —I \H (w) — r (<p)L\ (pt = —V 1, (8.Id)

[4:\a asj J p
and further substitution for the functions H'((j)) and r'(</>) yields

cTt + -p'{<t>)<t>t = - V 2 T . (8.14)
P P

The parameters a and es can be related to the thickness of the interface S and the surface

energy a by considering the steady one-dimensional planar solution to equation (8.12) under

equilibrium temperature conditions T = Tm. Using these conditions, in one spatial dimension

x, equation (8.12) becomes

4 ^ = G'(4>), (8.15)

with boundary conditions <f) —> 0 in the liquid as x —> oo and (f> —> 1 as x —> —oo in the solid.

The solution to equation (8.15) is

[ 1 ^ ( ^ X ] , (8.16)
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and from this solution it is clear that the interface has characteristic thickness

o — (8.17)

The surface free energy associated with this one-dimensional solution is calculated from the

Helmholtz free energy functional T [3] at the melting temperature Tm which is given by

T = £ - (8.18)

where fv = ev — svT defines the Helmholtz free energy density /„ in terms of the internal

energy density ev and the entropy density sv. Since the form for the internal energy per unit

mass, as given in [2], is

e(T,p, </>) = g(T,p, <j>) + Ts(T,p, <f>) -

then

dfv
d<f> P,T P,T

p
= - j - (gv - p) Oil

P,T d(f> p,T

and using (8.8) it is clear that Q(Tm) = 0 and consequently

(8.19)

Integrating equation (8.15) with respect to (f> and then using equation (8.19) gives

MTm,p,4>) = TmG(<t>) = I r m e | ( ^ ) 2 .(̂ ) (8.20)

Therefore using equation (8.20) to substitute for /„ in equation (8.18) the corresponding

surface free energy per unit area, which is a surface excess quantity because f(Tm, <p) = 0 in

the bulk, is given by

since the tangential components are ignored in one dimension. By using equation (8.16) and

transforming the range of integration, equation (8.21) can be written as

= /
Jo

~ 4>)

from which it follows that

a = 12a
(8.22)

relates the constant a to the thickness of the interface 6 and the parameters of the material.
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8.2.1 Non-dimensionalisations

Schaefer and Glicksman [95] used the following non-dimensionalisations:

--_L 4/c T-— — - ^L^L

where R* and K denote the radius of a spherical particle which is in equilibrium with the super-

cooled melt and the thermal diffusivity respectively. Under these transformations equations

(8.12) and (8.14) become

> - !*'<«< <8 '23>

and

= V20, (8.24)

where k = npc and p (<f>) = p {4>)/p is the dimensionless form of the derivative of the function

p{4>). For brevity we have introduced in (8.23) and (8.24) the ordinary differential operator

V2 = d2/df2 + (2/f)d/df (8.25)

which we will use subsequently.

It is clear from [16] and [129] that the sharp interface limit can be achieved from the first

order perturbation expansion of the phase field model only if the coefficient of the term on the

left hand side and the coefficient of the first term on the right hand side of equation (8.23) are

both order e | , whilst the coefficient of p'{<j)) is of order es, where £5 is the non-dimensional

thickness of the interface. In this chapter es is given by

2 _ 62 _aTmel
£s~ {R*y~ (i?*)V ( j

and consequently the first term on the right hand side of equation (8.23) is clearly of order

e | as required. This equation can now be written as

£^4>T = e2
sV

2cf> + esYp'(<f>) - \H'(4>) (8.27)

with
_ 682p

X aK
 ( 8- 2 8 )

and

Y , (8.29)

where 6m is the non-dimensional melting temperature and both X and Y are assumed1 to

be 0(1) as £5 —> 0. Both X and Y are dependent on the non-dimensional temperature 6 and

'In chapter 9 it will be shown that this assumption is not unreasonable when using the parameter values

for white phosphorus shown in chapter 7.
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can be written as

Y = ?( ~ m ) and J*
V. " )

where

y = HLZL and 1 = M .

The non-dimensional temperature 0 is similar in magnitude to the non-dimensional melting

temperature 9m and can therefore be approximated by 6 = 9m(l + S) where 5 is small.

Consequently,

-... and £- =
9 ~

-9m) (8-30)

So to first order in S

9 -0m'~ "m>

and to leading order in 6

These approximations simplify the asymptotic expansions in the following sections. Without

using these simplifications additional terms appear in the Gibbs-Thompson equation.

8.2.2 Per tu rba t ion expansion

An asymptotic perturbation expansion of equations (8.24) and (8.27) can now be carried out

in the style of Caginalp [16]. Below, the inner and outer expansions are considered separately

in one spatial dimension. In the phase field model the mean position of the interface may be

specified as

{f6fi:^)f) }

where the material, which can be in either of two phases (namely solid or liquid) occupies

a region Cl c 9lN in space and T is regular provided the initial and boundary conditions

are smooth. For a sufficiently small neighbourhood around T(t) we define r(x, t) to be the

distance from x to T(t), r being positive in the liquid, and negative in the solid. Further, in

the neighbourhood of T

|Vr| = 1 and V2r = KC,

where KC denotes the curvature. Now formally expanding the variables in their original

coordinates, the outer expansion can be written as

f, r,es) = 0°(r,T) + esti
l(r, r) + e2

s0
2{r,r) + .... , (8.31)

, r, ES) = <p°(r, T) + eSip
l{r, r) + e2

s<p2(r, r) + .... , (8.32)
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where these terms may be discontinuous at r = 0 but are smooth for r ^ O . By "stretching

out" [128] the r variable, a new variable Z, can be defined as

esZ = r = {f- n) (8.33)

where r/ denotes the position TI(T) = f of the solid-liquid interface Y{t). The inner expansion

can then be written as

d(f,T,es) = e°(Z,r) + ese
1(Z,T) +e|92(Z,r) + ...., (8.34)

<f>(r,T,es) = $°(Z,T) +SS$
1(Z,T) + 4 $ 2 ( Z , T ) + (8.35)

8.2.3 Outer expansion

Substituting equations (8.31) and (8.32) into the non-dimensionalised phase-field equations

(8.24) and (8.27) gives,

%) = 4 (VV + esVV + 4vV) (8-36)

4v W ) + l^v1

+0(4),

and

1-0(4), (8.37)

where, in general, the phase-field equation (8.36) will depend on the forms of M and p((f>).

At each order of £c we find:

), (8.38)

V2^/0. (8.39)

0 = Y ( ^ = L ) P'(V°) - ^ ^ " ( / ) , (8-40)
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0(£2):

i^o = vV+y

(8.41)

0 ) ] , (8-42)

(8.43)

Prom the 0(1) balance, equation (8.38) implies that y° = 0,1 or 1/2, however <j> = 1/2 is

unphysical in this context since it is an unstable solution, therefore equation (8.39) reduces

to

4tf° = V2tf° (8.44)

and when re-dimensionalised equation (8.44) becomes the heat diffusion equation

Tt° = KV 2 T° . (8.45)

8.2.4 Inner expansion

0(1),

Using the inner stretched coordinate, Z, the Laplacian is given by

V20 = 6 f f + V2f0r = \QZZ + — V 2 f9 z +

where V2 is given by (8.25) and the time derivative, 0T as

0T = QT-—(rj)Tez.

Then substituting equations (8.34) and (8.84) into equations (8.24) and (8.27) gives

x rr
£ 5

] ( g 4 6 )

J

^ (6° + esO1 + el®2 - 6m) t"'

and

£5

4 [p'

6 0 fll

(r/)rgo _
£5 Z

V2r

(8.47)

O(4).
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At each order of £5 we obtain

O(l):
0 = —H'($°) + $ z z , (8.48)

Qzz = °- (8-49)

O{es):

X \ 0 m J 4

-4(r/)TGz - 4p'($°)(r7)T$z = 6 Z Z + V 2 r6 z . (8.51)

The general solution to equation (8.49) is

where Co and C\ axe functions of time.

8.2.5 Matching

We require the inner and outer solutions to match for £5 —> 0. We first consider the outer

and inner expansions of the non-dimensional temperature variable which are given by (8.31)

and (8.34) as

0{r,T,es) = t?°(f,T) + es^(f,r) + e2
sti

2(f,r) + ....

and

The Van Dyke matching principle [128] states that

the m term inner expansion (n term outer expansion) =

the n term outer expansion (m term inner expansion).

Therefore taking m — n = 2 the 2-term inner expansion is

and the 2-term outer expansion is

Therefore the 2-term inner expansion of the 2-term outer expansion is

0(r,T,es) = i?°(r/-
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and the 2-term outer expansion of the 2-term inner expansion is

e(Z, r,es) = 6° (f-ZHt r) + es& ( ^ , r)

Therefore we require

and the first two matching conditions of equation (8.53) are

0(1):

0°{Z,T)=d°(rI,T) (8.54)

O(es):

Clearly equation (8.54) shows that the leading order inner and outer solutions must be equal

and independent of Z and r as £5 -> 0. This condition is only satisfied if Co = 0 in equation

(8.52), hence

A similar matching procedure for the 0 variable requires that

$(±00, T) = <f>(rf,T) = <
( 1, r -» - 0 0 ,

and because T is defined by 0(0,T) = 1/2 then </(0,r) = 1/2 and $°(Z,T) = $°(Z). Since

Co = 0 equation (8.51) becomes

which can be integrated to yield

e ^ = -4p($°)(r?)T + C2(r), (8.56)

where C2 is a function of time. Differentiating equation (8.55) with respect to Z leaves

lim e^(Z,T)=t??(r/ ,r) .

Consequently taking the limit of equation (8.56) as Z —> 0 from the liquidus side denoted by

F + , leaves

= C2(T) (8.57)
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and taking the limit of equation (8.56) as Z —> 0 from the solidus side denoted by F_, leaves

(r/)? + C2(r). (8.58)
r_

Noting that the dimensionless normal velocity is given by (T"/)T = ^° a nd subtracting equation

(8.58) from equation (8.57) leaves

M = -4v°. (8.59)
L -I r±

By re-dimensionalising equation (8.59) we obtain

_ = Lp^, (8.60)

the well known latent heat condition, described in chapter 7, for the sharp interface Stefan

model. Finally we need to obtain an expression for the modified Gibbs-Thompson condition

[16] from the phase-field model.

The O(es) equation (8.50) can be written in the form

£& ^ *zz - \H"{&)& = -t*% - ***% - Y^-^V($°).

where RQ
C = V2r° is the leading order curvature. By considering the theory of adjoint systems

(see, amongst others, Boyce and DiPrima [14]) it can be shown that for a solution $ 1 to exist

11-
from which it follows that

g - ( e o - e m ) | p ( * ° ) | : - = - ( « o + ^ ) / ( * o ) 2 ^ (8.62)

where
]Z=+oor . -]Z=+oo

J>($ ) =
L JZ=-oo

Equation (8.21) states that
r+oo

a= e2
sTm{<t>x)

2dx,
J—oo

which may be expressed in terms of the inner stretched coordinate as

+ OO

We now employ the identity (8.26)

_ aTme2
s
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and define the quantity a0 as the leading order approximation for a by

Therefore, the integral on the right hand side of equation (8.62) may be expressed as

iZ = Y1 (8-64)

and from equations (8.62), (8.63) and (8.64) we obtain

which in its dimensional form becomes

i = i m — I —-— 1 KC — I I ̂ . (o.o5)

The usual form of the Gibbs-Thompson equation with attachment kinetics [95] is

(8.66)

therefore by comparing equations (8.65) and (8.66) we require that

where, from its definition,

f+OO
4rm r

2 rp f + OO c^T C'''

_ tS±m I ,^0 ^Ay _L s m /
• " e 5 J—oo "- J—c

= a° + O(es)

and so to leading order a = a0. Using equation (8.28) the relationship described by equation

(8.67) serves to define M in terms of the material parameters.

The first order phase-field problem has now been shown to be equivalent to the sharp

interface Modified Stefan Model 2 without flow (characterised by the dimensional equations

(8.45), (8.60) and (8.65)) in the sharp interface limit. Also the unknown constants in the

phase field model of Anderson, McFadden and Wheeler [2] without flow have been related to

the sharp interface Stefan model [132] without flow by using the non-dimensionalisations of

Schaefer and Glicksman in [95].

2so called by Caginalp in [16].

167



8.3 Asymptotic limit of phase-field equations with flow

In this section we consider the sharp interface limit of the complete phase-field model of

Anderson, McFadden and Wheeler [2] by taking the asymptotic limit of the phase-field equa-

tions in one-dimension. The leading order expression of the asymptotic analysis of this model,

which includes convection in the liquid phase, is then compared to the sharp interface Modi-

fied Stefan Model with flow, which is an extension of the work by Schaefer and Glicksman in

[95] (as described in chapter 7). The surface energy in the model described in this chapter is

assumed to be isotropic and we use the non-dimensionalisations of Schaefer and Glicksman

[95] to compare this model to the sharp-interface Modified Stefan Model with flow which is

described in chapter 7.

The simplified form of the one-dimensional phase-field equations of Anderson, McFadden

and Wheeler [2], with the gradient energy coefficient eg set to zero (i.e. ep = Te2
s rather

than ep = Te2
s + e2

E) and an isotropic surface free energy are given by

Pldt+Ud\ ~ ~fc~ 2U

(8.70)
L J \ur- •/• ui j

and

d2T 2dT

where t, ep, p, k,p, u, A and e denote time, gradient free energy Helmholtz coefficient, density,

thermal conductivity, pressure, viscosity coefficients and internal energy density respectively,

all per unit mass. The temperature and the phase-field variables are denoted by T and <fi

respectively and the quantity M is related to the interface mobility using equations (8.28)

and (8.67).

To simplify the problem the term denoting the viscous heating in the energy equation

(8.71) namely
\ „ du , /du 2

2 + A (
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is henceforth ignored, as in many situations its contribution to the heat balance is small.

The internal energy density (per unit mass) e is given by (8.3) as

e = e0 + c(T - Tm) - r(<t>)L + \ \ — + -} H{4>) P°

where r((f>) and H(<p) are defined by (8.4) and (8.5). The density and dynamic viscosities will

be assumed to have the forms

= psr{(f>) + pL[l - r{4>)] and

respectively. Anderson, McFadden and Wheeler [2] state that

s,p P,T

where

and

90(T, <f>) = Je0 - cTm - r(<f>)L + ^ j ^ ( ^ ) ] (l - ~^ ~ cTIn (J^ + ^

As we discussed in section 8.2, the phase-field equation (8.70) can be expressed in terms of

the functions p'(4>) and G'{(j>) if we let

t>), (8.72)

where
Q{T) = L Z^ =

J 1 m ^

L(T - Tm)

p'{(j)) = —r'((p)p((j)) -\—-— I 1— I H'{4>) — (p — Pi

and

4a J-m J-mPW)

The functions p'((j)) and G'{4>) are not unique in this context, however by expressing the

phase-field equation (8.70) in terms of these functions we can formulate the larger sys-

tem of equations in this section in a similar way to the simplified equations discussed in

section 8.2. However we first non-dimensionalise equations (8.68) to (8.71) using the non-

dimensionalisations of Schaefer and Glicksman [95], which are

r 4K 5 L i ^ L9 dR R* dR
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where KSL is an average thermal diffusivity given by

Additionally the density, dynamic viscosities and pressure are non-dimensionalised via

p{4>) = PSLP{4>), ii{4>) = VSLP>{.4>), K<P) = VSLH<I>), P = PSL[-^T) P

where the parameters psi, and VSL are averages given by

PSL = — T - and vSL = -\ +

Therefore equations (8.68) and (8.69) become

pT(<f>) + upf{4>) = -p{4>) ( ^ + ; t i ] (8.74)

and

p((j))[uT + uiif] = - -£- £2
SCM\ { ^ r

or or

2"

dr J r \dr

u 2

}, (8-75)

where CM\ and C*M2 are given by

esL9 _ (R*)2 6
M 1 " / J "°" ° 2a(4KSL)20m

and

CM2 = - .
PSL^KSL

Using (8.72) and (8.73) equation (8.70) can be written as

| \ (8.76)

where
_

Cp ~ a

and3

3where we have used the non-dimensionalisation p'(<j>) = PSLP (4>)
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Finally, by dropping the viscous heating term equation (8.71) becomes

«„[*, + «,] »{jg + | »} (8.77)
L J 4 1 drl r or)

where

and A; = KSLPSLC has been used to relate the thermal conductivity k, to the thermal diffusivity

K. The energy equation coefficient CE is given by

r -
L(i?*)2 '

Writing 9 — 6m(\ + S), to leading order in S the coefficients X, Y and CMI become

X = X = —-, Y = Y— where Y = — - - and CM\ = C =

The coefficients C^, Cp, CMI and CM2 are all assumed to be approximately 0(1) in the

following sections of this chapter. This assumption, however, will clearly not be valid for the

parameter values of every fluid.

8.3.1 Perturbation expansion

An asymptotic perturbation expansion of equations (8.74), (8.75), (8.76) and (8.77) can now

be carried out in the style of Caginalp [16]. By formally expanding the variables in their

original coordinates the outer expansions can be written as

9(f, T, es) = 0°(r, T) + es^1 (r, r) + e2
sti

2(r, r) + .... , (8.78)

4>(r, r, es) = ¥>°(r, T) + esf1 (r, r) + e|^2(r, r) + .... , (8.79)

u(f, r, es) = r/ + u°(r, r) + esu^r, r) + e l " 2 ^ , r) + .... , (8.80)

p(r, r, es) = p°(r, r) + esp
l (r, r) + e |p2(r, r) + ... , (8.81)

where the relative velocity u is defined by

u = u-rI, (8.82)

with the speed of the interface denoted by fj. These terms may be discontinuous at r — 0

but are smooth for r ^ 0.

A new variable Z is denned by equation (8.33) by "stretching out" the r variable and the

position of the interface is illustrated in figure 8.1.
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Figure 8.1: Position of the moving interface.

The inner expansions for the temperature, phase-field, velocity and pressure variables can

be written as

and

e(f,r,es) = e°(Z,T) + esB^Z^) + e2
se

2(Z,T) + ... ,

$(f, r, e5) = *°(Z, r) + es*1 (Z, r) + e2
s$

2(Z, r) + .... ,

U(f,T,es) = C/°(Z,r) + e sC/1(^r) +E2
SU

2(Z,T) + ....

P(f,r,es) = P°(Z,r)

(8.83)

(8.84)

(8.85)

(8.86)

Differentiating with respect to time requires care. By using equation (8.82) we obtain the

expression
du du du

— 77 —

5r or
which relates du/dr (the time differential of the velocity in the stationary frame) with du/dr

(the time differential in the moving frame) since

dr dr 7'

From this expression it follows that the total differential

Du du _ du .. du „ du
DT dr df dr dr'

and similarly
d(f> d(f> dr dcp
dr dr dr dr

relates the time differential of the phase-field variable in the stationary frame with its time

differential in the moving frame. It follows that the total time differential D<J>/DT is therefore

given as
D(f> _ d<j> „ d<f>
DT dr dr

in the moving frame of reference.
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8.3.2 Scaling of the pressure and viscosities

In the model of Anderson, McFadden and Wheeler [2] the Clausius-Clapeyron condition in-

stead of the Gibbs-Thompson condition with kinetics is sought at the interface. The Clausius-

Clapeyron equation accounts for the pressure on one side of the interface as well as the inter-

facial curvature. Therefore to obtain this condition in an asymptotic analysis it is required

that in the inner asymptotic expansion of equations (8.74), (8.75), (8.76) and (8.77) (i.e. in

the interfacial region) the pressure should vary. To satisfy this condition we consider a variety

of scalings for the non-dimensional viscosities and pressure /2(<5), A($) and P. To this end

we express these variables as

and

respectively, where the coefficients a and /3 must now be determined. Using equations (8.83)

to (8.86) we obtain the inner expansion of the momentum equation (8.75) which is given by

1) (u°z

Ts~dZ

+ [U°z

2 2Z
£5-

(8.87)

and to leading order in £5 we obtain

+ £<

(8.88)
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To retain as many terms as possible in this equation we choose a — 2 = j3 — 1 = — 1 (i.e.

0 — 0 and a = 1), the scaling which is required to balance all four of the terms in equation

(8.88). Then at order e^1 equation (8.87) gives

p($°)U°Uz = ~ - CMI^0)2 + CM2^ [llz [A(*°) + /2($0)] } .

The viscosity and pressure scaling /3 = 0 and a = 1 are used throughout the remainder of

this chapter.

8.3.3 Outer expansion

Substituting equations (8.78), (8.79), (8.80) and (8.81) into the non-dimensionalised phase-

field equations (8.74), (8.75), (8.76) and (8.77) we obtain the expansions shown in section

A.I of appendix A. Prom these asymptotic expansions at leading order in es we obtain to

leading order:

(8.89)

(8.90)
J UT

0 = CP(p° - po)^J- ~ \H'{$°)P{$0), (8.91)

Equation (8.91) implies that

0 = 2 / ( l - ip0) ^3CP(p° - po) (ps -pL)-\(l- 2^°) [(ps - PLM<PQ) + PL] },

which admits three solutions, two of these are stable, namely

ip° = 0 and ip° = 1.

Therefore incorporating these into the leading order conservation of mass equation (8.89)

implies that

V • u° = 0. (8.93)
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This leading order relationship is the incompressibility condition ([6]) which was given by

equation (7.6) in chapter 7. Since there is no flow in the solid, u°, and all its derivatives with

respect to f are identically zero, and

u°s = -rj.

Applying this condition to equation (8.92) in the solid, where (p° = 1, yields

| - — J,
or equivalently

* > { * * ? £ } ,,94)
* { + £}

4 ^ or2 r or )

in a non-moving frame. Re-dimensionalising equation (8.94) leaves
dT° KSLjd2T° 2dT°\
dt ps { dr2 r dr \

In chapter 7 the values of KL and KS were arranged so that k remains constant assuming c is

constant, therefore

then

and equation (8.95)

since

may be

k = K

written

Tt -

PS

as

Ks

LC = KLpLC

PS

\ dr2 ' r

= KSpsC

dr J
(8.96)

This is the sharp interface heat transfer equation in the solid phase [32] which was given by

equation (7.8) in chapter 7.

We now consider equation (8.92) in the liquid phase where tp° = 0 and therefore

Consequently

4 (̂  orc r

in a non-moving frame of reference. Therefore upon re-dimensionalisation

( , 9 7 )

where K£, = KSL/PL = k/pic. This is the sharp interface heat transfer equation in the liquid

phase [32] which was given by equation (7.2) in chapter 7.
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Finally we consider equation (8.90) in the liquid phase where

PL[(U°L)T + u°L(u°L)r + n] = - | ^ - (8-98)

Clearly since

u°T = n + u°T -

where u° = rj + u°, then

and therefore on re-dimensionalisation equation (8.98) becomes

(8-99)

which is the Euler equation in the liquid phase [32] in spherical polar co-ordinates. This

equation was given by (7.5) in chapter 7.

8.3.4 Inner expansion

Noting that the Laplacian in the inner region is given by

- 2 _ 1 V2r

the divergence operator as

- / \ 1 2
V • (0e r) = — @z + ~ 6 ,

V / Es Tj -f- CsZ
and the material time derivative 0 r as

GT = 0T + —@z,
ss

equations (8.74) to (8.77) can be written in terms of the inner stretched coordinate as

/>'($) \$T + —U$z] = -p($) \—Uz + , J2
 7AU + r/)l, (8.100)

)2 (8.101)

f - - f - 2es /
CM2 2/x($)f7z + A($) <Uz + 7 T^vi +

rr + £.<fZ) \

+CM2 2^($)C/Z + A($) < [/z + r r

[ I (r/ + £5^j ^
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£5 es
(8.102)

( +
AL \a as

a c
V2r

}J
P(*)J

(8.103)

The asymptotic expansions of equations (8.100) to (8.103) are derived in section A.2 of

Appendix A. Prom these expansions at each order of £5 we obtain:

0(1):

> V O I °I (8-104)

and

A

= 0

(8.105)

(8.106)

(8.107)

(8.108)

+

CM2

(8.109)
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+ CP(P°-

and

] (8.111)

Integrating equation (8.104) with respect to Z leaves

°) = C3(T), (8.112)

where C3 is a function of T. Therefore in the solid limit as Z —> —00 (i.e. as $° —> 1) equation

(8.112) becomes

C3(r), (8.113)

since

Using equation (8.113) to substitute for Cz{r) in (8.112) leaves

rVO _ ^ PS

which gives

as required. The general solution to equation (8.107) is

° (8.116)

where C${T) and C^T) are functions of time r. Following the Van Dyke matching procedure

outlined in section 8.2.5 the first matching condition between the inner and outer temperature

variable requires that

e°(Z,r)=^0(r7,r),

which clearly shows that the leading order inner and outer solutions must be equal as £5 —> 04.

This condition is only satisfied if C4 = 0, and therefore

e° = C5(r). (8.117)
4A similar relationship was also derived in the appendix of Caginalp [16], citing Caginalp and Fife[19].
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Consequently the temperature in the interfacial region is uniform at leading order and from

the appropriate matching argument we obtain

lim [9°] = lim [T9°] = lim [6°].
Z-¥oo r-t-ri Z-t-oo

Therefore re-dimensionalising

Tl = T° = Tl on f = r7 (or equivalently when r = 0), (8.118)

which is the sharp interface boundary condition on the temperature given by equation (7.15)

in chapter 7.

We now obtain the latent heat boundary condition from the first order energy equation

(8.111). By integrating (8.111) with respect to Z and using equations (8.112), (8.117) and

(8.118) we obtain

where Po denotes the constant reference pressure and Ce is a function of T. Taking the limit

of equation (8.119) as Z —>• 00 (i.e., into the liquid) gives

\- CEj£) = \{Ql
z)L + C6(r), (8.120)

and taking the limit of equation (8.119) as Z —>• -00 (i.e., into the solid) gives

psU°s ( - 1 - CE^j = \{Q\)S + C6(r). (8.121)

Then subtracting equation (8.121) from equation (8.120) leaves

psUl = \ [{Q1
Z)L - {Qxz)s\ + CEP0 [ill - Ul] (8.122)

and using equation (8.113) (which requires that Ug = — r/ and {/£ = —TJPS/PL) equation

(8.122) becomes

-rips = \\~ (®z)s + (&Z)L\ - HPOCE[yL ~ l]• (8.123)

By writing PL = ps + A where A/ps is small, the last term on the right hand side of (8.123)

can be expanded in terms of A/p$ to give

PL Ps

and since fj is small the latter term can be ignored. Using the derivative of equation (8.55)

with respect to Z and non-dimensionalising equation (8.123) yields

r. (8.124)
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Equation (8.124) is the sharp interface latent heat boundary condition given by equation

(7.13) in chapter 7, where ks and &£, are the thermal conductivity coefficients in the solid

and liquid phases respectively.

Finally, we require the Gibbs-Thompson equation with attachment kinetics at the solid-

liquid interface. The Gibbs-Thompson equation does not account for changes in the pressure

across the interface, however the model described in this chapter does account for these

changes. Therefore the first order asymptotic expression for the phase-field equation at

the interface, given by equation (8.110), should yield the Clausius-Clapeyron equation which

accounts for pressure differences across the interface. Firstly, however, we consider the simpler

case, namely by ignoring the pressure differences in equation (8.110) we can obtain the Gibbs-

Thompson equation. Therefore equation (8.110) becomes

[ # ( $ V ( * ) + H($)p($)] $ \ (8.125)

which can be written in the form

® -®

where KPC = V2r° is the leading order curvature. By considering the theory of adjoint systems

(see, amongst others Boyce and DiPrima [14]) it can be shown that for a solution $* to exist

dZ = 0,

from which we obtain

where

AL

with the pressure terms removed. Therefore

X
_oo

and using (8.64)

(8.126)
C ' Xj ' "\PSLJ

which yields

w o e ^ \ j + 0 ( A ) (8.127)
\4KSLPSLLJ X \PSLJ
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on re-dinlensionalisation. This is the form of the Gibbs-Thompspn condition given by equa-

tion (8.65) in section 8.2. It is clear that the coefficients in equation (8.127) are related to

the corresponding coefficients in the Gibbs-Thompson equation, given in chapter 7, in an

identical way to section 8.2.

Finally by accounting for pressure changes the Clausius-Clapeyron equation is required.

The Clausius-Clapeyron equation is a relationship between the phase transition temperature

and the pressure, for a non-planar, unsteady interface. Equating the bulk values of chemical

potential by setting g(poo,T, 0) = g{poo,T, 1) gives the jump in the bulk pressure for an

equilibrium, planar interface as

(Poo -Po)\
[PS PL

This relationship denotes the Clausius-Clapeyron relation when the jump in the chemical

potential is ignored. In [2] Anderson, McFadden and Wheeler derived a generalised version

of the Clausius-Clapeyron equation for a steady, planar interface which accounts for a jump in

the chemical potential in addition to the jump in the bulk pressure. The effect of pressure on

the melting point is thereby altered by the rate of solidification. In one dimension Anderson,

McFadden and Wheeler [2] found that the jump in the chemical potential for a moving planar

interface is given by

(8.128)

where, in the notation of [2] V is the velocity of the interface. Expanding the variables in a

power series in terms of the small parameter ep which was used by Anderson, McFadden and

Wheeler in [2] and scaling the z variable by ep to consider the inner asymptotic expansion,

equation (8.128) becomes

gf-

(8.129)

The mobility M and the viscosities fi and A have been scaled by M = eFM,

and A(3>°) = £F\($°), which are consistent with the scalings discussed in section
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8.3.2. Equation (8.129) will prove useful despite the significant differences between the non-

dimensionalisation in [2] compared with those in this chapter since this equation expresses

the asymptotic form of the Clausius-Clapeyron relationship in the absence of curvature,

time dependency and thermal effects. The derivation of the generalised Clausius-Clapeyron

relationship is long and complicated, therefore it has been placed in section B.I of appendix

B where equation (B.31) gives the jump in the chemical potential for a moving, non-planar,

time dependent non-equilibrium interface as

(8-130)

where the functions I\, I2 and I3 are collections of the terms related to curvature, time

dependence and thermal variation respectively. They are defined as

(8.132)

and

h o ~ / @z \-Lr{§0) + —H{$0)\dZ, (8.133)

where dT denotes an unsteady term given by

and 6K denotes a curvature term given by
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The integral function I\ which is defined by equation (8.131), is multiplied by the leading

order curvature term 2/rj. The integral function I2 contains all the unsteady terms, namely

U®, fj and 5T and the integral function I3 contains all the non-equilibrium thermal terms.

Clearly in the limit as 77 —> 00 the curvature terms vanish, which is the required condition

for a planar interface. Further, making the steady assumption removes the terms U®, ri and

ST which implies that I2 = 0 and applying thermal equilibrium requires that 0^ = ©5 and

Q\ = 0 which implies that I3 = 0.

Using these conditions equation (8.130) reduces to a form which is similar to equation

(8.129), the Clausius-Clapeyron relationship for a planar, steady, temperature invariant inter-

face (as considered in [2]). These last three effects are described by I\, h and I3 respectively

in the more general system described by equation (8.130). The differences in the coefficients

between equations (8.130) and (8.129) are due to the non-dimensionalisations used in this

chapter.

Further it is shown in section B.2 of appendix B that when the density in the liquid phase is

written as pi = ps+A, where A/ps is small, the leading order expansion in A/ps of equation

(8.130) is equivalent to the Gibbs-Thompson condition described by equation (8.65) in the

previous section and (7.14) in chapter 7. To obtain this expression we use an asymptotic

expansion to leading and first order in £5 to express the difference between the Gibbs free

energy (given by equation (B.36) in appendix B) in the solid and liquid phases. Then we

equate the resulting expression with an asymptotic expansion of (8.130) to leading and first

order in A/ps- Using this approach we obtain

fiO _ p. @rna° -0 a°@m •
R*LpSL

 c XR*LpSL.

to leading and first order in e5. The integrands r ($ 0 ) ($ | ) 2 , r ($°) ($^$ | ) z and r{$°)Pl
z

cannot be directly integrated with respect to Z. However if r($°) is approximated by a
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constant average value, given as a say, then these three integrals may be expressed as

and

Therefore re-dimensionalising equation (8.134) and ignoring all terms which are first or higher

order in es we obtain

T 0 _
—

dR
J dtPSLD C UKSLXLPSLJ dt

<m
~dt

.(A)j^k
which, to leading order in A/ps is clearly equivalent to the Gibbs-Thompson condition given

by equation (8.65) in this chapter and equation (7.14) in chapter 7. The first order term in

is small if the latent heat term L is large or if a is 0(1).

8.3.5 Problem statement

To leading order in £5 the phase-field problem with flow described by equations (8.68) to

(8.71) has been shown to be equivalent to the sharp interface Modified Stefan Model with

flow described in chapter 7 when PL = Ps + A where A/ps is small. In summary therefore

as £5 —> 0 the leading order asymptotic expansion of the phase-field model described in this

chapter is given by a set of equations in the solid and liquid phases:

V • u° = 0,

T? = K S V 2 T ° ,

T° + u°Tr° =

and boundary conditions on r = R:

Lps^ = ks(T$)r - kL{Tl)r

and

^2 ' ^ 2

9L-9S =
PL
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where h,h and h are given by equations (B.28), (B.29) and (B.30) respectively. This final

equation may be expressed as

= Tm -

by expanding the equation above in a power series in

The equations above denote the incompressibility condition in the liquid phase (8.93), the

heat transfer equation in the solid phase (8.96), the heat transfer equation in the liquid

phase (8.97), the momentum equation in the liquid phase (8.99), the interfacial temper-

ature boundary condition (8.118), the latent heat boundary condition (8.124) and finally

the generalised Clausius-Clapeyron relationship (8.130) respectively. All of these equations

have been obtained by using an asymptotic expansion of the phase-field equations. Also

the unknown constants in the phase-field model of Anderson, McFadden and Wheeler [2]

have now been related to the model described in chapter 7 via [16], [19] and [129] using the

non-dimensionalisations of Schaefer and Glicksman in [95].
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Chapter 9

Numerical results

9.1 Introduction

In this chapter we solve numerically the phase-field model described in chapter 8. The results

are then compared with the sharp interface Stefan model described in chapter 7 as the non-

dimensional interface thickness parameter £5 —> 0.

9.2 Phase-field equations without flow

First we consider the case without flow, where the non-dimensional phase-field equations

reduce to a simpler form which is similar to the problem considered in [133]. The non-

dimensional phase-field equations (8.24) and (8.27) without flow are given by

&4>T = 4 V V + esYp'(cP) - \H'(CP) (9.1)

and

4(0T+p'(0)</»T)=V20 (9.2)

where

and p((f)), H(4>) and r(<f) are given by

• M ' W J S (; + ;;)*'«). (»-4)

a n d r{<p) = <j>2{3 - 20) (9.5)

respectively.
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Following the non-dimensionalisations used in chapter 7 the normalised temperature 9 can

be rescaled in terms of the normalised super-cooling A6 where

0 = 6m + A99 (9.6)

and 6m is the normalised melting temperature of the planar interface. Initially the system is

super-cooled to A9 everywhere and therefore 6 is set equal to -1. A value of 9 = 0 corresponds

to zero super-cooling (i.e. T = Tm = melting temperature).

To compare the results obtained in this chapter with the results obtained in chapter 7 the

coefficients (9.3), (9.4) and (9.5) in the system described by equations (9.1) and (9.2) must

be related to the coefficients for white phosphorus (P4) given in chapter 7, and shown again

in table 1.

substance P4 H2O

L/c °C 25.4 80

= 2aTmc/L2p\ cm 5.5 x 1(T7 6.5 x 1CT8

K cm21 sec 1.5 x 10"3 1.35 x 1(T3

sec°C /cm 2.3 x 1(T3 9.7 x 1(T4

°C 44.31 0

Table 1: Values of relevant physical constants from [95] and [69].

From equation (8.22) in the previous chapter

1 = it' (97)

therefore from (9.3)

12a 9
R*(Lp) A89
6\/2a 9~

where (9.6) has been used to write the difference between the normalised temperature 9 and

the melting temperature 9m in terms of the normalised super-cooling A9. Writing Tm =

L9m/c, from table 1
_ 2a9m

~Lp~
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R* 29mA99 9
and consequently

Y =
6y2 A 9

since A = R*A9. As described in chapter 8 we use the non-dimensional temperature approx-

imation 9 = 9m(l + 6g) where Sg is small, to express Y as

3\/2'

Similarly from (9.3) X can be expressed as

x = aTm fi = /A/x
2KSLLp2 \Hj2

where the coefficient (£//i) is found in table 1.

It remains to find 1/aL, the coefficient of H'(</>) in expression (9.4). Using (9.7), 6

and A = R*A9 implies that this coefficient becomes

1 _ 1 12g _ 3 A
AaL ~ AL V2pesR*

3A9

The coefficient as which determines the height of the entropy double-well is undetermined.

By adopting the condition 05 = —a the double-well potential is removed from the expression

for the internal energy and in this system p'(4>l) simply becomes —r'((/%).

9.2.1 Finite differences

The discrete system, comprising equations (9.1) and (9.2), can be solved explicitly when the

derivatives are approximated by forward time and central space finite differences. Therefore

equations (9.1) and (9.2) become

~ Vr _ y f ff+dr ~ Wr + # - * , 2 <FT+dr ~ <i>l-dr \ ^Y X
X \ r ^ ]+ es

 Pi*r)~4%H {4>r) ( }f
and

dr 4 [ (drf

where

and p{(j)), H(4>) and r(cf>) are given by
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# ' ( # ) = 2 # ( 1 - # ) ( 1 " 2 # ) and ^ )

The explicit forward time and centre space finite difference discretisation was used for

simplicity, however the explicit nature of the calculation requires a severe restriction on the

time step dr. It was observed that for the method to be convergent when es = dr = 0.01,

the time step restriction on the explicit formulation, namely

dr = a(dr)2 where a < 1.0

requires that

max(a) « 0.875.

A further stability restriction on the size of the time step was observed, namely when dr > es

the system of phase-field equations was unstable and solutions could not be obtained. This

numerical stability restriction was also noted in [133] and confirms the suggestion in [21] that

the numerical solution of the phase-field equations by a finite difference method on a uniform

mesh could break down for es < dr. Stable results were produced however when dr = es,

and this condition was used to evaluate the results in this chapter.

As expected the code was sensitive to initial data and a sharp discontinuity in the phase

field profile at the interface was not adequate. Therefore the hyperbolic tangent solution

4>{r) = I 1 — tanh
2

to the isothermal, steady phase-field equation with a planar interface, given by

(9.10)

0 = ei(j)rr H'(<f>) (9.11)
4

was used as an initial phase-field profile.

9.2.2 Boundary conditions

Solving this system on the boundary f = 0 requires special treatment to avoid the coordinate

singularity in the Laplacian operator. In chapter 7 the Neumann boundary conditions

lim [ -4- | = 0 and lim ( — ) = 0
r->o \dr I r->o I dr I

were used at the origin. Consequently we use the same conditions here and therefore the

central finite difference approximation to the second spatial derivatives in <j> and 6 at the

origin become

= 2 (dr)2
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respectively. Then using L'Hopital's rule

hm ~ U l i m 2 - | and lim - — = hm 2
r->o \rdrj r->o \ dr2 / r->o \rdrj o \

and therefore on f = 0 equations (9.1) and (9.2) become

<t>T0+dT - <t>0 _ ?Y<f>dr ~ 4>Q X Y , JLn'lth^

and _
d *

jfU) ( 9 1 3 )

The far field is made to correspond to a value of f = R = 10 and the boundary conditions

in the far field were then chosen to be

—Z + -£-—=0 and -~ = 0- 9.14
or R or

These conditions are consistent with assuming unity in the phase field equation and a quasi-

static approximation for the heat diffusion equation in the far field. Therefore on f = R

equations (9.1) and (9.2) become

- —H'(ct>T
R) (9.15)

and
-91 1 (\

dr

since
dBR _ 6T

R + l

9.2.3 Solution method

Equations (9.8) and (9.9) were solved subject to boundary conditions (9.12), (9.13), (9.15)

and (9.16). Initially the parameters /i, es and R(0) were set and then:

- equation (9.8) was evaluated at every position step, calculating <pJ.+dT

for all 0 < f < R

- and then equation (9.9) was evaluated at every position step, calculating 6l+dT

for all 0 < r < R.

Finally results were recorded at prescribed time steps defined by the user.
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Phase-field model
Sharp interface model

Figure 9.1: Comparison between the temperature profiles when r = 5,10, ...,30 and 35

produced by the phase-field model with £5 = 0.01, dr — 0.01, A0 = 0.5 and f = 1.0 (i.e.

(j, = 434.78 cm/sec °C for PA and the corresponding Stefan model from chapter 7.
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9.2.4 Results and discussion

Figure 9.1 shows the temperature profiles of the sharp interface Stefan model described in

chapter 7 and the phase field model described in this chapter. The normalised super-cooling

A0 was set to 0.5 and the parameter £ to 1.0 (which requires that the mobility fi takes the

value \i = 434.78 cm/sec °C when using the material parameter values for P4). Growth

was initiated by setting the initial radius 10% above the critical radius (i.e. (j) = 1/2 when

f = (1 + Sr) where 6r = 0.1) and the non-dimensional interface thickness parameter es was

set to 0.01. As briefly discussed in section 9.2.1 a mesh size of dr = £s(= 0.01) was used since

it was found to be the largest value of dr, for a given value of £5, for which the numerical

scheme remained stable. Almost identical results were obtained by using smaller values of

the position step dr when £5 = 0.01. However the restriction on the mesh size (dr < £5) in

conjunction with the explicit time stepping restriction (dt < dr2) was a significant limiting

constraint and therefore we chose the largest stable mesh size dr = £5. Figure 9.1 clearly

shows relatively small differences between the phase-field model when £5 = 0.01 and the

sharp interface Stefan model. Furthermore these differences are similar in magnitude to the

discretisation error in the finite difference approximation. With such a small value for £5 we

expect close agreement between the two methods.

Figure 9.2 shows the temperature profiles of the sharp interface Stefan model and the

phase-field model when all the parameters are identical to those in figure 9.1 except for £5

which is 0.005. As expected the figure shows excellent agreement between the two models.

Due to the restrictions on dr and dt however it took approximately one week of continuous

running time on a Pentium II desktop machine to complete figure 9.2, and for this reason

further reductions in £5 were impractical using this explicit finite difference method.

The agreement between the sharp interface model and the phase-field model depends

strongly on the value of £5. This is shown by figure 9.3 in which all the parameters are iden-

tical to those in figure 9.1 except that es = dr = 0.1. The disparity between the numerical

solution to the phase-field and sharp-interface models was observed to increase monotonically

with both es and r. Figure 9.3 does not indicate a sharp discontinuity in the temperature

profile at the interface which in the phase-field model is positioned at approximately </> = 1/2.

The smooth nature of this figure close to <j> = 1/2 indicates the diffuse nature of the interface.

It should also be observed that although the sharp interface solution at each time level is

not coincident with the corresponding phase-field solution when £5 = 0.1 the position of the

interface is approximately coincident with the sharp-interface solution. This can be clearly

seen by the dashed line in figure 9.3 which displays the position of </> = 1/2 in the solution to

the phase-field model. This curve is almost coincident with the discontinuities in the temper-

ature profile of the sharp-interface Stefan model which denote the position of the interface
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-0.5 ^ ^ ^

-0.6 -

-0.7 -

-0.8 -

-0.9 -

-1

Figure 9.2: Comparison between the temperature profiles when T = 5,10, ...,30 and 35

produced by the phase-field model with es = 0.005, dr = 0.005, Ad = 0.5 and f = 1.0 (i.e.

^ = 434.78 cm/sec °Cfor P4) and the corresponding Stefan model from chapter 7.
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-0.2

-0.4

-0.6

-0.8

-1

Phase-field model
Sharp interface model
Position of (j)= 1/2

10

Figure 9.3: Comparison between the temperature profiles when r — 5,10, ...,30 and 35

produced by the phase-field model with Es — 0.1, dr = 0.1, A0 = 0.5 and £ = 1.0 (i.e.

H — 434.78 cm/sec °C for P4) and the corresponding Stefan model.

194



at successive time levels.

9.3 Phase-field equations with flow

We now consider the non-dimensionalised phase-field equations (8.68), (8.69), (8.70) and

(8.71) which include flow due to a change in density on solidification. As presented in the

previous chapter this system of equations is given by

pT{<t>)

Y Yesp'{<t>) + Cpf(p -

and

where eT and ej, are

± + 1) H'(</>) + CTSPO.A..2
as a) \p(4>)]

and

The coefficients X, Y, CMI, CM2, Cpf and CT\ are given by

n r {n n \ r>*
QLi\u — Ujjijri

e

(9.17)

(9.18)

Cpf = a\^) and C T I =

Using the approximation 9 = #m(l + 8g), described in section 9.2, to leading order in 8g we

can express X, Y, CMI and CTI as

Y
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and

The pressure, however, is not considered in the sharp interface Stefan model discussed in

chapter 7. Therefore we remove the pressure variable from the system of equations (9.17),

(9.18), (9.19) and (9.20) by assuming that the pressure p does not significantly change from

the constant reference pressure po) ie. we assume that there is a constant pressure field (the

assumption made by Chambre in [25]). In this case therefore, the term p—po is removed from

equation (9.18), dp/dR from equation (9.19) and po from (9.20). Since the pressure variable

has now been removed from the system we no longer need to evaluate the momentum equation

(9.19), so the simplified system of equations become

£2 - 1

- $ [<f>T + ucf>R] = 4 v 2 ( / > + Yesp'{4>) ~ -AH'{4>)p{<t>) (9.22)
and

where for simplicity we apply the condition as = —a and the temperature 9 has been rescaled

in terms of the super-cooling A0 according to (9.6).

9.3.1 Finite differences

The system of equations (9.21), (9.22) and (9.23) can be solved explicitly. The first and second

derivatives in equations (9.22) and (9.23) are approximated by forward time and central space

finite differences except for the terms u(pR and UGR. These derivatives are approximated by

up-wind and down-wind differences depending on the sign of their velocity coefficient u.

Therefore equation (9.22) becomes

(9.24)

where the non-standard one-sided finite difference approximations (7.42) and (7.41), which

were derived in chapter 7, have been used to approximate d(j)/dR. Specifically

uM = Ur 2 ^ lf u > 0 (9-25)

and
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Similarly (9.23) becomes

and the one-sided finite difference approximations (9.25) and (9.26) have been used to approx-

imate ud(f)/dR and ud6/dR (by replacing <f> with 9 in equations (9.25) and (9.26). Equation

(9.21) denotes conservation of mass in terms of the phase-field variable. Obtaining a solution

to this equation requires special treatment since it does not contain a time derivative in the

non-dimensional velocity u, the remaining unknown variable at the new time step. Many

finite difference formulations were attempted to solve this equation. By this stage in the

numerical solution 9^+dT and 4>lr
+dT are known at all spatial grid points and therefore it is

possible to employ a Crank-Nicolson formulation explicitly, however this approach produced

highly unstable numerical oscillations and no convergent averaging method could be found.

A leapfrog method evaluated at the new time-step, which approximates (9.21) by

iT+dT~] {f,T+dT - TiT+dT

^ -^ ^d^r+dr ^ (fT+dl T+d\ ^[
CLT 2dr \ 2dr r J

produced solutions if the first n time steps (where n > 100) were linearly smoothed in the

updating procedure. However solutions at large r were extremely difficult to obtain due to

the instability of this method.

Attempts were also made to integrate equation (9.21) directly and find uT+dT using numer-

ical quadrature via NAG routine D01GAF. However no sensible solutions could be obtained

using this approach. A convergent, stable integration technique was eventually found by

substituting (9.22) into equation (9.21) to give

Subsequently integrating (9.28) leaves

_T+dT _ 1 fr
 2p'(r+dT)

r2 Jo p{^+dT) dr2 r dr
1

^ ^ T + d T j j dr (9.29)

and using (f>T+dT and 9T+dT, which are known at every position step in f, equation (9.29) can

be discretised by

( d r ) ' + r 2dr
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— p'(<f>T
r
+dT) - - ^ / f ' ( ^ + d T )p (^ + d T ) l dr (9.30)

£ 4e J
which is evaluated explicitly at the new time step using the trapezoidal rule [131].

An initial phase-field profile was obtained from the hyperbolic tangent solution (9.10) to

the steady, isothermal phase-field equation without flow described by equation (9.11) and the

stability restriction dr < es was observed.

9.3.2 Boundary conditions

The boundary conditions at f = 0 and f = R (where R denotes the radius which is taken

to represent the far-field) axe identical to those imposed on the no-flow case discussed in the

previous section. The velocity u = 0 on f = 0 is the only additional boundary condition.

Therefore on f = 0 equations (9.21), (9.22) and (9.23) become

u = 0, (9.31)

and
d H 1 K ~ % 1 K+ (9 33)
dr 2 (drf A6"TV; dr

In the far field (which we have taken to be f = R = 10) equations (9.21), (9.22) and (9.23)

become

AT+dr

2X-"f+dr = J _ f r2p'{<t>Tr+dT)
R 2 Jo P(4>r+ T) (dr)2

^) - ^ ' ( ^ f c K * ? * ) ] dr, (9.34)

>R-dr ~ VR XY x
^iP M " i i l ^ {(f)Rd r 2 X (dr)2

and

where we have used boundary conditions (9.14) for the spatial derivatives.

9.3.3 Solution method

Equations (9.24), (9.27) and (9.30) were solved subject to boundary conditions (9.31) to

(9.36). We initially set the parameters /i, es, R(0), ps and pi and then:

• equation (9.24) was evaluated at every position step, calculating (f>l+dT for all 0 < f < R
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• next equation (9.27) was evaluated at every position step, calculating 9^+dT for all

0<f<R

• and finally the integral in equation (9.30) was evaluated at every position step, and

using the trapezoidal rule uJ.+dT was calculated for all 0 < f < R.

Finally results were recorded at specific time steps.

9.3.4 Results and discussion

After extensive testing and developing of this program we were unable to obtain results

which could be compared to the sharp-interface Stefan model with flow described in chapter

7 when the expression for the density in equations (9.22) and (9.23) was dependent on the

phase-field variable 0. A small difference between the density of the solid and liquid phases

caused a large velocity in the liquid phase which significantly affected the numerical solution

to the temperature profiles. This situation is shown in figure 9.4 where the phase-field

solution is obtained by using the leapfrog method and the non-dimensional interface thickness

es = 0.01, dr = 0.0025 and the difference between the density of the solid and liquid phases

was 0.02 g/cm3. The mobility of the interface fj, was set to 434.78 cm/sec °C which is the

required value for the non-dimensional parameter £ to be 1.0, and the results are shown at

times r = 0.5, 1.0 and 1.5. The upper dashed lines display results obtained when pi, —

1.823 g/cm3, ps = 1.803 g/cm3 and therefore e = (pL - PS)/PL = 0.011. The lower dotted

lines display results obtained when pi, — 1.803 g/cm3, ps — 1.823 g/cm3 and therefore

e = —0.011. The sharp interface solution without flow is shown by the dots on the figure.

However the sharp interface solution with flow is not displayed since the density differences

used in the phase-field model in this figure made no appreciable difference to the temperature

profiles obtained by the sharp interface model.

The asymptotic analysis in chapter 8 shows that the interfacial boundary condition which

was obtained from the phase-field model in the sharp interface limit contained leading order

errors which were proportional to the difference between the solid and liquid densities. We

observed in chapter 7 that the equations at the solid/liquid interface were sensitive to small

changes in the initial conditions and the finite difference method which was used to evaluate

them. In [21] Caginalp and Socolovsky work with the ansatz that the phase-field model is

more sensitive to small changes in the surface tension a than the interfacial thickness £5.

The surface tension term appears only in the interfacial Gibbs-Thompson equation in the

sharp interface model described in chapter 7. If, therefore, the leading order error in the

Gibbs-Thompson equation in the sharp-interface limit of the phase-field model is interpreted

as a small change in the surface tension gradient then figure 9.4 indicates the validity of

Caginalp and Socolovsky's ansatz [21]. To reduce the leading order difference between the
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Figure 9.4: Comparison between the temperature profiles when r = 0.5,1.0 and 1.5 produced

by the phase-field model with flow when es = 0.01, dr = 0.0025, A6 = 0.5, £ = 1.0 (i.e.

fi = 434.78 cm/sec °C for P4) and e = -0.011, 0.0 and 0.011 and the corresponding Stefan

model from chapter 7.
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Gibbs-Thompson equation and the equation obtained from the sharp interface limit of the

phase-field model the density, which can be written as

p{4>) = 1.0 + er(<f>)

where e = (PL~PS)/PL (replacing PSL with pi for simplicity) can be replaced with p(<f>) = 1.0,

to leading order in e, in equations (9.22) and (9.23). Using this density approximation the

temperature profiles of the phase-field model with flow at r = 5 and 10 when the normalised

super-cooling A0 — 0.5 and £ = 1.0 are shown in figure 9.5. Growth was initiated by setting

the initial radius 10% above the critical radius (i.e. <f> = 1/2 when f = (l + 6r) where Sr = 0.1)

and the non-dimensional interface thickness parameter es and mesh spacing Ar, were set to

0.02.

-0.7

-0.8 -

-0.9 -

£ = 0.1

• Sharp interface
solution £ = -0.1

Sharp interface
solution e = 0.0

Sharp interface
solution £ = 0.1

Figure 9.5: Comparison between the temperature profiles when r = 5.0 and 10.0 produced

by the phase-field model with es = 0.02, dr = 0.02, A0 = 0.5 and £ = 1.0 (i.e. n =

434.78 cm/sec °C for P4) when e = 0.1,0.0 and - 0 . 1 .

The upper dashed lines show the temperature profiles for p/, = 2.026 g/cm? and ps =

1.823 g/cm3 (when e = {pi — ps)/PL — 0.1). The lower dotted lines show the temperature

profiles for PL — 1.657 g/cm3 and ps = 1.823 g/cm3 (when e = -0.1) and the solid lines

show the temperature profiles for PL = Ps — 1-823 g/cm3 (when e = 0.0). The dots, crosses

and squares show the solutions to the equivalent sharp-interface model (at r = 5.0 and 10.0)
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when e = —0.1, 0.0 and 0.1 respectively. Clearly, with reference to the figures in section

9.2.4, a small yet significant disparity is expected between the temperature profiles obtained

using these two methods when the interface thickness £5 = 0.02. This difference can be seen

clearly on figure 9.5. However, even with £s two times larger than the value in figure 9.4, the

disparity between these two methods is greatly reduced.
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E = 0.1

e = 0.0

interface
E = 0.1
interface
£ = 0.0
interface
£ = -0.1

solution
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solution
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Figure 9.6: Comparison between the temperature profiles when r = 5.0, 10.0 and 15.0

produced by the phase-field model with £5 = 0.01, dr = 0.01, Ad = 0.5 and £ = 1.0 (i.e.

fj. = 434.78 cm/sec °C for PA) when e = 0.1,0.0 and -0.1.

Figure 9.6 shows a comparison between the temperature profiles when r = 5.0, 10.0 and

15.0 produced by the phase-field model with es = 0.01, dr = 0.01, A0 = 0.5 and £ = 1.0. The

dots, crosses and squares show the corresponding solutions to the equivalent sharp-interface

model (at r = 5.0, 10.0 and 15.0 ) when e = —0.1, 0.0 and 0.1 respectively. Clearly with

es = 0.01 a small disparity persists between the temperature profiles obtained using these

two methods (as expected from figure 9.1 in section 9.2.4). However, the difference between

the temperature profiles obtained using the Stefan model with flow and the phase-field model

when es = 0.01, shown in figure 9.6 is significantly smaller than in figure 9.5 when the phase-

field model was evaluated with £5 = 0.02. Unfortunately it required two weeks continuous

running time on three Pentium II desktop machines to obtain figure 9.6. Therefore reducing

£5 any further is not practical using this explicit method. However it is clear from figures 9.7,
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9.5 and 9.6 that the disparity between the temperature profiles obtained via these methods

is decreasing with es in an identical way to the section 9.2. Therefore we expect very close

agreement if the non-dimensional interface thickness is reduced further.

-0.2

-0.4

• Interface position in
v Stefan model e = -0.1
* X Interface position in
v Stefan model e = 0.1

-1

Figure 9.7: Comparison between the temperature profiles when r = 5,10, ...,35 and 40

produced by the phase-field model with £5 = 0.1, dr = 0.1, A8 = 0.5 and f = 1.0 (i.e.

fj. = 434.78 cm/sec °C for P4) when e = 0.1,0.0 and -0.1.

Figure 9.7 shows the temperature profiles of the phase-field model with flow at r =

5, 10, ..., 35 and 40 when the normalised super-cooling A0 = 0.5, £ = 1.0 and £5 = Ar = 0.1.

The density differences are identical to figure 9.6. The smooth temperature profile near

<f> = 1/2 indicates the diffuse nature of the interface. A significant disparity exists between

the temperature profiles obtained using these models since the disparity between the sharp

interface and phase-field models is strongly dependent on es- Therefore with £5 = 0.1 How-

ever the qualitative forms of the phase-field solutions with flow strongly resemble the sharp

interface solutions with flow displayed in figure 7.8 in chapter 7. The dot-dashed line displays

the temperature and position of (j> = 1/2 in the phase-field model when e = 0.1. The equiva-

lent curve obtained when e = —0.1 is not displayed since it was almost identical to the curve

shown in the figure. This suggests that the presence of flow in the system does not affect

the temperature-position curve followed by the interface, only the velocity and subsequently

temperature of the interface at any given time level. (Note that the line <j> = 1/2, e = 0.1
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has been obtained by linear interpolation between data points in the phase-field model and

therefore is slightly inaccurate). The crosses and dots display the position of the interface

(shown as a discontinuity in the temperature profiles of figure 7.8) in the sharp interface

Stefan model when e = 0.1 and —0.1 respectively. These points correspond to the position

of the interface at r = 5, 10, ..., 30 and 35. It is clear, by inspection, that these points are

almost coincident with the phase-field curve.
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Chapter 10

Conclusions

A variety of problems have been considered in this thesis. In the first five chapters the solution

and stability of flows in liquid steel driven by Lorentz, Marangoni and buoyancy forces were

investigated. In the remainder of the thesis a diffuse interface phase-field model with flow,

recently derived by Anderson et al. [2], was investigated for a freezing sphere.

In chapter 2 the numerical similarity solution for the steady flow induced by a point source

of current and heat on the free surface of a semi-infinite region of ITEV fluid was described.

This model was derived recently by Belgrove and Craine in [7] and [30]. An asymptotic

solution for their model was obtained, to leading and first orders, when the surface tension

gradient, dj/dT, was negative and O(10~4). The latter value represents the largest magni-

tude that occurs in practical situations in welding (see [59]). A narrow viscous shear layer

was required near the free surface and it was shown that all the coefficients of the leading

and first order expressions in the composite asymptotic expression for the temperature dis-

tribution and the streamfunction were dependent on df/dT. Excellent agreement between

the asymptotic solution and the numerical similarity solution was obtained for a surprisingly

large range of values of current J and negative d^/dT. Using this asymptotic solution we

obtained an analytical expression which indicated when the transition between one-loop and

two-loop flow occurred. The results confirmed the numerical solutions in [7] and [30] and

demonstrated the strong effect of the thermocapillary (Marangoni) force on the free surface.

They also demonstrated how the Marangoni force opposes the Lorentz force and therefore

increases the value of the current at which the semi-infinite point source model breaks down

(i.e. when the velocity develops singularities on the axis of symmetry).

In chapter 3 we described a two-dimensional, stationary, steady-state model, presented

first in [7], for the flow of ITEV fluid in a hemisphere induced by a point source of current

and heat on the free surface. The model included the Lorentz force, the thermocapillary

(Marangoni) force on the free surface and the buoyancy force, and was solved numerically
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using finite difference methods. The results showed that the breakdown current depended

strongly on the value of d'y/dT.

In chapter 4 a linear stability analysis for the azimuthal mode m = 0 was performed on the

solution for the flow and temperature distributions in the hemisphere, obtained numerically

using the model in chapter 3. This stability analysis allowed for the possibility of bifurcation

to a rotating flow, an effect which was absent from the hemisphere solution described in

chapter 3. The equation governing the linear stability of the rotating motion was observed

to decouple from the poloidal stability equations, and hence both systems were considered

separately using finite difference methods. The results indicated that the two-dimensional

steady-state poloidal flow became unstable to azimuthal and poloidal perturbations at almost

identical current values when dj/dT « —10~6. As the magnitude of the negative surface ten-

sion gradient was increased, i.e. dj/dT < —10~6, the steady-state solution in the hemisphere

became unstable to azimuthal and poloidal perturbations at progressively smaller current val-

ues. On the other hand when \d-y/dT\ < 10~6 no azimuthal instability was detected at any

value of the current J below that at which the steady-state model broke down. However, at

these magnitudes of the surface tension gradient the underlying steady-state model remained

unstable to poloidal perturbations at critical current values, Jcru, which were dependent on

the magnitude of d^/dT. When dj/dT > 10"6 no azimuthal or poloidal instability was

detected at any current value. An investigation of the eigenvectors at the onset of instability

revealed that the flow became unstable at a position close to the point source of heat and

current in both the azimuthal and poloidal stability systems. It can be conjectured, there-

fore, that the stationary steady-state model of ITEV fluid in a hemisphere became unstable

to azimuthal and/or poloidal disturbances of mode m = 0 near to the point source of heat

and current.

The upper modes of stability m = 1, 2 and 3 were considered in chapter 5. For these modes

it was shown that, unlike the m = 0 case, the azimuthal and poloidal stability systems did

not now de-couple. However, when m = 1, 2 and 3 the steady-state model did not become

unstable for any parameter values for which the underlying steady-state model converged,

apart from a very small region in which d"y/dT ~ — O(10~6), m = 1 and the current was just

below the breakdown current.

Clearly the stability of the stationary, steady-state model is dependent on the flow in the

hemisphere in a non-trivial way.

There are many possible extensions to the welding models considered in this thesis, some

of these are outlined below:

• The welding problem could be extended by introducing a distributed source of heat and

current on the free surface and then performing a stability analysis similar to the one
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described in this thesis. The literature on analogous problems suggests that, in this

case, the model would converge for a much larger range of current values and moreover

the eigenvectors found in chapter 4 indicate a secondary flow which is strongest near to

the point source. Therefore the point source may be the cause of the instability of the

model at unrealistically low current values and a significant difference in the stability

results might then arise if we use a distributed source of heat and current.

• At certain parameter values, such as those which correspond to the presence of a large

Marangoni force on the free surface, the isotherms are not spherical and in this case

the pool of liquid metal would also be aspherical. It would be instructive therefore to

consider the stability of the steady-state flow in a spheroid, the shape of which can be

determined from the isotherms of the semi-infinite model, as a first approximation to

solving the fully coupled problem.

• The effect of a back emf on the steady-state welding model is not considered in this

thesis. This exclusion relies upon the anzatz that the velocity of the liquid metal in the

pool is small. However the velocity of the steady-state model described in this thesis

is not small when the current is close to the critical value at which break down occurs.

Including a back electro-magnetic force, therefore, could change the solution and/or the

stability characteristics of the steady-state model.

• The material parameters, such as density and viscosity, are taken to be fixed aver-

age values in the welding models described in this thesis. Significant changes to the

steady-state solutions might occur if the values of these material parameters were made

temperature dependent.

• Although experimental evidence suggests that the free surface of the weld pool is flat

at low current values it remains to be proven that this assumption is true for the model

described in this thesis.

• For certain values of dj/dT the Reynolds number is large at current values where the

steady-state model fails to converge. This may indicate turbulent flow, which could

also be considered in the model.

By introducing some or all of the above extensions the velocity and/or temperature dis-

tributions of the steady-state model and their associated stability characteristics may be

significantly altered.

In chapters 6 to 9 a different problem was considered, namely the solidification of a growing

sphere of solid in a super-cooled melt with a density change on solidification. In chapter 7 a

sharp-interface Stefan model, which describes the solidification process of an initial embryo
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of solid with a disparity between the density of the solid and liquid phases, was derived and

then solved numerically using a finite difference method. In this model the temperature of

the interface was defined by the Gibbs-Thompson equation, with linear interface attachment

kinetics, and the velocity of the interface by the latent heat equation, obtained through

conservation of energy. When there is no density change on solidification the results agreed

closely with the model of Schaefer and Glicksman [95]. When a density change was included,

the temperature profiles obtained in chapter 7 were lower than the no-flow case when the flow

was directed toward the solid phase, whereas the opposite is true for flow directed away from

the growing solid phase. This effect is not unexpected since incoming super-cooled liquid will

reduce the temperature of the solid/liquid boundary, whereas the temperature profiles will

naturally rise when there is excess warmer fluid flowing away from the interface.

In chapter 8 an asymptotic analysis of the diffuse interface phase-field model with flow

derived by Anderson et al. [2] was performed, when the thickness of this interface was van-

ishingly small, the so-called sharp interface limit. The one-dimensional isotropic case was

considered and this reproduced, with one exception, the leading order asymptotic expres-

sions for the Stefan model with flow derived in chapter 7. The equation which determined the

temperature of the interface in this phase-field model was given by the non-planar, unsteady,

temperature dependent Clausius-Clapeyron condition rather than the Gibbs-Thompson con-

dition with linear interface attachment kinetics. However, it was shown in appendix B,

that when the non-dimensional solid/liquid density difference, A(= pi — ps)/ps, is small

the Clausius-Clapeyron relationship can be approximated, to leading order in A/ps, by the

modified Gibbs-Thompson condition.

Finally in chapter 9 the isotropic diffuse interface model of Anderson, McFadden and

Wheeler [2] was solved numerically in one-dimension, and the numerical results were com-

pared with those calculated in chapter 7. Firstly the case was considered where no difference

exists between the density of the two phases. At consecutive time levels very close agreement

was obtained between the temperature profiles produced with these two methods when the

dimensionless interface thickness £5 was chosen to be 0.01 in the diffuse interface model,

and excellent agreement was obtained when £5 equalled 0.005. By solving the phase-field

model with flow in a constant pressure field and altering the phase-field equations so that

density was kept fixed in the phase-field equation, the Clausius-Clapeyron relation given by

the leading order expression in the sharp interface asymptotic limit could be replaced by the

Gibbs-Thompson equation in this limit. Using this method solutions were obtained and com-

pared with the numerical solution to the sharp interface Stefan model with flow, described

in chapter 7. Close agreement was obtained between these models when the dimensionless

interface thickness es had the value 0.01.

A severe limiting restriction was observed on the numerical stability of the phase-field
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model, namely that the numerical procedure used to obtain solutions to the diffuse-interface

model became unstable near the interface when the grid spacing Ar > £5. A more efficient

numerical procedure would involve using fine spacing close to the interface only and then

a coarser grid everywhere else. The increased efficiency of this modified method must be

balanced, however, against the requirement that the position of the interface would be needed

in advance and, therefore, the numerical procedure would be significantly more complicated.

The phase-field model described in this thesis warrants further investigation. In the nu-

merical work the effect of removing the constant pressure field restriction or the isotropic

surface energy should be investigated and the numerical analysis could be extended to two-

dimensions where dendritic shapes would be obtained. Extensions of the simpler case of

planar geometry could also be investigated, by including for instance shear flows in the liquid

phase, internal heat sources and confined geometries. An interesting approach to the welding

problem considered in chapters 1 to 5 would be to use a diffuse-interface phase-field model

with flow to describe the unsteady growth of a weld-pool for different interface thicknesses.

The effects of surface tension, buoyancy and the Lorentz force could all be included in this

approach and the results could then be compared with other models in the literature which

employ a mushy layer (such as [79] or [86]).
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Appendix A

Outer and inner asymptotic

expansions of the phase-field

equations with flow

A.I Outer expansion

Substituting equations (8.78), (8.79), (8.80) and (8.81) into the non-dimensionalised phase-

field equations (8.74), (8.75), (8.76) and (8.77) yields

ri +u° + esu1} [p°r + esri] [p'(<p°) + ̂  W ) ]

•>) + esp'p'iv0)] [(«? + esul) + \(u° + esu1)], (A.I)

esul

u I ~ I - / ru . i _ / / 0% I I - o , - 1
fr y 21 jl(^) + esv'fi'itp11) \\uu

T + esu
L

r

(A.2)
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e2 f

= 4 (v?r + -V? + £S<plr + \esrf) + CP (p° + pQ)

+Y ^ (t?0 + esti1 - 0TO)j s [ P V ) ¥ y (y)]

] [ / ^ 0 ] ( A . 3 )

x [ i fV) + e V t f ' V ) ] [p(v°) +

P ' V )

where

' M 2 ~

and po denotes the constant non-dimensional reference pressure.

From these asymptotic expansions at each order of es we obtain

0(1):
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O(es):

d

o)uo
r + \(v°)(u°r + ?n 0)] | - fr from (A.2).

A.2 Inner expansion

Noting that the Laplacian in the inner region is given by

1 f72

v2<? = Arezz + —QZ + 0(1),

the divergence operator as

V • (Oer) = —Qz + I 6 + 0(es),

and the material time derivative 0T as

eT = eT + — ez,

equations (8.74) to (8.77) can be written in terms of the inner stretched coordinate as

] f{) \ I y rj
Es J Le [r + e Z )

)], (A.5)
J

d I „ ^ ., ^ ^A_6j

n +
-CMX(*Z)

+CM2 ^{$)Uz + A($) \(Jz + ^ z ) (r
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= 4 (A.7)

i n

lJ
J - ( I + 1 ) H'{9)p{*)4L \a aj J

(A.8)

Then substituting equations (8.83) to (8.86) into the non-dimensionalised phase-field equa-

tions (A.5) to (A.8) yields

$0 + esK + ^ (A.9)

/° + f7)

+

2 2Z
£

77

1) ((7°

+ESY
1 - ©m) (A.11)
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Vf*0)! [p($

as

y (*0)]

^

where the constant coefficients CMU CA/2, ̂ , Y, Cp and C E are defined in section A.I of

this appendix and PQ denotes the inner non-dimensional reference pressure.

From these asymptotic expressions at each order of £5 we obtain

o(ss2y.
\&°zz = 0, from (A.12)

U°p'(<Z>°)$z = -p{&)Uz, from (A.9)

p($0)U°Uz =JL[-pO- CM1($°Z)2 + CM 2 {2/2($°) + A($°) |LT°] , from .(A.10)

5'(<J>°) I
, - + — I/T($")o[$") -r'{$")o($") + OV/V „. >'

4L \ a

, from (A.12)
J
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+ ^ Ul from (A.9)

2

n

, from (A. 10)

+ - \H'(*0)p(*0) = 0, from (A.ll)

i - e r

+

respectively.
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Appendix B

Derivation and asymptotic

expansion of Clausius-Clapeyron

relation

B.I Derivation of Clausius-Clapeyron equation from phase-

field equation

To obtain the general Clausius-Clapeyron relation we re-write the inner phase-field equation

(8.102) in chapter 8 in terms of the free energy g, giving

T es

2 V 2 r .

4
-a [p($°) + es&p'(<S>0)} [ 4 + esgl] (B.I)

= 4

where, as discussed in chapter 8, we have written 6 = 0m( l + <5) and made the approximation

by retaining only the leading order term. Then we obtain at each order of £5:

O(l):

*°zz - ap($°)gl = 0 (B.2)

O{es):

lu°*z = V\$z + *zz-a [p(^)9l + * y (*°)»}] • (B.3)
Equation (B.2) can be rearranged to yield
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and from equation (B.3) we can subsequently obtain

(B-5)

The differential of the leading order free energy term with respect to the expanded inner

position variable Z is given by

^9 0*0

Prom equation (8.118) in chapter 8 it is required that T | = 0, however to compare equa-

tion (B.6) with the inner asymptotic expansion of the Clausius-Clapeyron equation given by

equation (8.129) it is necessary to find appropriate expressions for gQ
P and P\. Expanding

gp by a power series in £5 gives

which implies that

and

P\ is obtained by re-arranging the leading order inner momentum equation (8.105) in chapter

8 which gives

(B.9)

Similarly, P\ is obtained by re-arranging the first order inner momentum equation (8.109)

which gives

Pz = ^ [ -

-p(^°)(C/T
0 + r / ) - p ( $ 0 ) ^

d
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Substituting equations (B.4), (B.7) and (B.9) into equation (B.6) gives

dZ

and since

VW) °M1 = Ta
the first term cancels with the third term on the right hand side of equation (B.ll). Therefore

integrating the resulting expression leaves

(B.12)

and using

equation (B.12) becomes

ps y_o(
\ R* J

PL rTps

since limz-t±oc U% = 0, by differentiating equation (8.114) with respect to Z. Equation (B.13)

is equivalent to the leading order term of the inner asymptotic expansion of the Clausius-

Clapeyron equation (8.129) where fj has replaced V and the non-dimensionalisations used

in chapter 8 result in the coefficients (4KSL/R* ) a n d CM2-

In equation (8.129) the first order term in CF may be obtained from the differential with

respect to Z of the first order free energy term, namely

As we noted above Tj = 0, however T\ ^ 0 inside the interfacial region and therefore it is

necessary to find an appropriate expression for g\ to compare equation (B.14) with equation

(8.129). The differential with respect to temperature of the leading order free energy term

inside the inner region (from [2]), is given by

9T = -s°(T, P,$) = - — ( e 0 -r(<E>°)LH H{$°)\ -clnl — J. (B.15)
P,* Tm I 4a s J \TmJ

Therefore using equations (B.7) and (B.8) to express g°p and gP, (B.4) and (B.5) to express

#9 and g^, and (B.9) and (B.15) to express P\ and gj,, equation (B.14) becomes
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The leading order inner expansion of the momentum equation given in chapter 8 by (8.105)

can be integrated with respect to Z using equation (8.112) (which states that p($°)C/° =

C3(r)) to give

C7(r)

where C-j is a function of T introduced by the integration. This expression can be used in

equation (B.10) to replace the term CM2[2M(^ 0 ) + -M$°)]^.z- The resulting expression can

then be substituted for P\ in equation (B.16) to leave

dZ

Evaluating equation (B.17) in the liquid and solid limit (i.e. as Z —> oo and Z —> —oo

respectively) gives two expressions for the constant of integration CY{T), namely

C7(T) = -P°S- = -PI-PL(UI?' (B.19)

Equation (B.19) gives the jump.in the leading order pressure P° across the interface, know as

the vapour recoil effect. To obtain the form of the first order term in €F in equation (8.129)

we must express fp'($°)/[p($0)]2 W 1 in terms of the first order inner velocity U1. Therefore

integrating equation (8.108) with respect to Z gives

6 1 - < B-2 0 )
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where ST denotes an unsteady term given by

5K denotes a curvature term given by

6K = ^ o y / ^ ( ^ ° ) ( ^ ° + n)dz (B.22)

and we have used equations (8.112) and (8.113) to write l/p($°) in terms of the leading order

velocity U° as
1 U°

( B ' 2 3 )

The viscous terms in equation (B.16) obey the differential relationships

(B.24)

(B.25)

and

A J ^ ] ! A | [ ] ^ | (B.26)

Therefore using equations (B.20), (B.23), (B.24), (B.25) and (B.26) and the conditions

lim^ioo Uz = 0 and1 lim^.±0OUz = -\2/rA limz^±oc(U° + fi) (which require that the

terms on the left hand side of equations (B.25) and (B.26) vanish under indefinite integra-

tion) the integral of equation (B.18) with respect to Z becomes

ZU zuZi \a.Zl)

The functions I\, 1^ and I3 are collections of the terms related to curvature, time dependence

and thermal variation respectively. They are defined as

expression has been obtained from the limit of equation (8.108) as Z —» ±00.

220



h = -\

and

(B.29)

£ jT el[el -

where ST and <5K are defined by equations (B.21) and (B.22) respectively. The integral function

I\ defined by equation (B.28) is multiplied by the leading order curvature term 2/r/. The

integral function I2 contains all the unsteady terms, namely U®, 77 and ST and the integral

function J3 contains all the non-equilibrium thermal terms.

Clearly in the limit as 77 -» 00, the curvature term vanishes, which is the required condition

for a planar interface. Further, making the steady assumption removes the terms U®, fj and

5T which implies that I2 = 0 and applying thermal equilibrium requires that 0^ = 0^ and

©2 = 0 which implies that 73 = 0. Using these conditions equation (B.27) reduces to a form

which is similar to the first order term in ep in equation (8.129).

Therefore combining equations (B.13) and (B.27), to leading and first order in £5 the

Clausius-Clapeyron relationship is given by

9L - gs

(B.31)

where I\, I2 and I3 are defined by equations (B.28), (B.29) and (B.30) respectively. Equation

(B.31) is similar to equation (8.129) in chapter 8 which describes the Clausius-Clapeyron

relationship for a planar, steady, temperature invariant interface. These last three effects

are described in equation (B.31) by 7i, I2 and I3 respectively. The differences between the

coefficients in equations (B.31) and (8.129) result from the way in which our general system

has been non-dimensionalised.
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B.2 Expansion of Clausius-Clapeyron equation in A/ps

Finally we show that when the density in the liquid phase is written as pi = p$ + A, where

A/p5 is small, the leading order expansion in A of equation (B.31) is equivalent to the

Gibbs-Thompson condition described by equation (8.65) in chapter 8 and (7.14) in chapter

7. Expressing the density in the form described in this paragraph allows us to express the

non-dimensional density as
A

- r ($ 0 ) ] , (B.32)

where for simplicity we have taken PSL = PS- Therefore using equation (8.114) the leading

order inner velocity can be written as

U° = -f

and its derivative as

Then using these expressions equation (B.13) becomes

\ R* J

rips J-oo

= °+(-)(^)r] + O(\-\ )- (B.33)

We consider the first order difference in the Gibbs free energy by integrating equation (B.16)

directly to obtain

/ l
J-oo L

-oo
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(B.34)

Equation (B.34) appears extremely complicated, however by considering only the leading

order terms in A/ps and es the following simplifications can be made:

- The fourth and the eighth integrals in equation (B.34) cancel since

' 4 K 5 L \ 2 1

- Because the first and second derivatives of the leading order inner velocity are expressed as

and

\Ps

the seventh and ninth integrals are both of order f A/ps J and therefore they are ignored.

Then noting that V2r = K°, to leading order in £5 equation (B.34) becomes

1 r°°
d-g's = -*l (*°z)2dz

a 7-oo

\PsJ a.
dZ
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+ —

The Gibbs free energy is defined in chapter 8 as

g(T,p,<f>)=go(T,<p) P-Po

where from [2]

= [«, - cTm -

By non-dimensionalising this expression and using the inner asymptotic expansions for the

variables T, p and (j) in terms of the small parameter £5, to leading and first order the

expression for the difference between the Gibbs free energy in the solid and liquid phases

becomes

[eo - L In

). (B.36)

Therefore combining equations (B.33) and (B.35) and equating the resulting expression with

equation (B.36) results in

+es< — -
aX 5PSL

dZ

ps'\ a J_c

d
dZ
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where2

has been used to transform the first two integrals in equation (B.35). Using equation (B.32)

and expanding equation (B.19) in powers of (A/ps) yields

\ (B.38)

Therefore the leading order pressure difference on the first line of (B.37) cancels with the

first term on the right hand side of this equation. Finally, noting that S = EsR* then to first

order in es and (A/psJ equation (B.37) becomes

R*PSL
,

- /
i

4oS

i | . aft
— fT($°) - L6^ In ( —
4 J V0

2cr°

4- f

Re-arranging equation (B.39) leaves

Q •

7

2This relationship was derived by equation (8.64) in chapter 8.

(B.39)
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( a 4 0 )

The integrands r ($°)($ | ) 2 , r ($°)($^$ | ) z and r(<E>°)P̂  cannot be directly integrated with

respect to Z. However if r($°) is approximated by a constant average value, given as a say,

then these three integrals may be expressed as

and

f ° $°)P|dZ » a[Pl -f
J—

Therefore re-dimensionalising equation (B.40) and ignoring all terms which are first or higher

order in £5 we obtain

T° =

A \ j T m 0 /<j°Tm\ 0 , ( 2a°Tm A dR

To leading order in A/ps equation (B.41) is clearly equivalent to the Gibbs-Thompson con-

dition shown in chapter 8 by equation (8.65) and equation (7.14) in chapter 7. The first order

term in A/ps is small if the latent heat term L is large or if a is 0(1).
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