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Spectral statistics of quantum chaotic systems are governed by random matrix universality.

In many cases of interest, time-reversal symmetry selects the Gaussian Orthogonal Ensemble

(GOE) as the relevant universality class. In holographic CFTs, this is mirrored by the presence

of non-orientable geometries in the dual gravitational path integral. In this work, we analyze

general properties of these matrix models and their gravitational counterparts. First, we develop

a formalism to express the universal level statistics in the canonical ensemble for arbitrary spectral

curves, leading to a topological expansion with finite radius of convergence in the late-time τ-

scaling limit. Then, we focus on topological gravity and study topological recursion on the moduli

space of non-orientable surfaces. We find that the Weil–Petersson volumes display non-analytic

behaviour multiplying polynomials in the boundary lengths. The volumes give rise to wormholes

with late-time divergences, in contrast with the orientable case, which is finite. We identify

systematic cancellations among WP volumes implied by the consistency and finiteness of the

τ-scaling limit. In particular, the cancellation of late-time divergences requires a nontrivial genus

resummation. Working in the gravitational microcanonical ensemble, we derive and resum all

orders of the topological expansion matching the GOE matrix model in the high-energy regime.

ar
X

iv
:2

50
9.

20
44

8v
1 

 [
he

p-
th

] 
 2

4 
Se

p 
20

25

https://arxiv.org/abs/2509.20448v1


Contents

1 Introduction and summary of results 4

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Random matrix universality and τ-scaling . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Non-orientable gravity and late-time divergences . . . . . . . . . . . . . . . . . . . 10

2 The τ-scaled spectral form factor in GUE/GOE/GSE 14

2.1 Review of the GUE τ-scaled SFF . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 The GOE τ-scaled SFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The GSE τ-scaled SFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Convergence of the τ-scaled topological expansion . . . . . . . . . . . . . . . . . . 29

3 Topological recursion in non-orientable topological gravity 32

3.1 Review of non-orientable topological recursion . . . . . . . . . . . . . . . . . . . . 32

3.2 Topological recursion in the Airy limit . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Loop equations in the Airy GOE matrix model . . . . . . . . . . . . . . . . . . . 39

4 Cancellations in WP volumes of non-orientable topological gravity 40

4.1 The microcanonical ramp from gravity . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Cancellations in the canonical SFF . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Lessons about the genus expansion to all orders 49

5.1 Resumming the genus expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Periodic orbits and gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusion 54

A Derivation of τ-scaled topological expansion 56

A.1 GOE: Derivation of eq. (2.31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.2 GSE: Derivation of eq. (2.57) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2



B Details on τ-scaled GOE JT gravity 66

B.1 High-temperature expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.2 Resummation of the high-temperature expansion . . . . . . . . . . . . . . . . . . 68

C Two-boundary partition function in non-orientable topological gravity 69

D The microcanonical plateau in orientable topological gravity 70

D.1 The microcanonical genus expansion . . . . . . . . . . . . . . . . . . . . . . . . . 70

D.2 The microcanonical plateau from gravity . . . . . . . . . . . . . . . . . . . . . . . 72

3



1 Introduction and summary of results

1.1 Motivation

The gravitational path integral has proven to be a very successful tool in the study of quantum

gravity and black holes. A lot of progress has come from understanding the correct rules according

to which geometries should be included in the path integral. This has led to breakthrough

results on the late-time physics of black holes [1, 2], the statistical realization of random matrix

universality in semi-classical gravity [3–5], and many other problems. At the heart of these

advances is the realization that spacetimes with nontrivial topologies must be included in the

path integral to solve this problem.

The necessity of non-orientable geometries in AdS/CFT. One class of spacetimes that

has often been neglected consists of non-orientable geometries. It has only recently been appre-

ciated that these should be included in the path integral on very general symmetry grounds. In

quantum gravity, global symmetries are expected to be absent, whether continuous or discrete.

In the context of AdS/CFT, this statement has been proven to hold in [6], and we can explore its

consequences by examining the symmetries of the dual CFT. Since CRT is a symmetry of any

relativistic quantum field theory [7], including Conformal Field Theories, it is also a symmetry of

the dual AdS quantum gravity. Since no global symmetries can exist in gravity, CRT (and any

other symmetries like R and CT ) must be a bulk gauge symmetry.

The consequences of gauging such a discrete spacetime symmetry in gravity were recently

studied in [8]. It was shown that gauging spacetime inversions implies the necessary inclusion of

non-orientable spacetimes in the gravitational path integral. Furthermore, these geometries are

not necessarily subleading and there is a priori no reason to exclude them from the path integral.

In fact, in [8] a specific example was exhibited, where a CRT -twisted BTZ black hole needs to

be included to match a boundary CFT prediction. It was pointed out [9, 10] that in Euclidean

signature, these simply belong to the class of SL(2,Z) black holes, which in Lorentzian signature

may be rendered non-orientable. Thus, inadvertently, non-orientable geometries were already

included in the partition function of pure three-dimensional gravity which sums over all SL(2,Z)
black holes [11, 12]. In particular, failing to include these non-orientable contributions would lead

to a violation of modular invariance. On the other hand, summing over all the SL(2,Z) black

holes leads to the well-known problem of the Maloney-Witten density of states being negative in

certain regions of the spectrum [13]. This has led to several resolutions and proposals for what

else to include in the path integral (e.g., [14–17]).

In two-dimensional Jackiw–Teitelboim (JT) gravity, dual to an ensemble average, bulk gauge

symmetries are realized as global symmetries in each member of the ensemble [18, 19]. If the

dual quantum mechanical system is time reversal T symmetric, such as the SYK model with
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q = 0mod 4 [20, 21], then we must gauge T in the bulk theory by summing over both orientable

and non-orientable surfaces in the gravitational path integral. Stanford and Witten [19] showed

that JT gravity, when non-orientable geometries are included, is dual to an ensemble of random

Hamiltonians with time-reversal symmetry T , belonging to the Gaussian Orthogonal Ensemble

(GOE) universality class. As an application, crosscap contributions to correlation functions were

considered in [22] and found to modify the late-time plateau. Recently, a version of topological

recursion for non-orientable surfaces was developed in [23], which we will discuss in detail in the

main text.

The connection between random matrices and discrete symmetries is an old subject which

goes far beyond two-dimensional gravity. In fact, any quantum mechanical system which exhibits

chaos in the form of random matrix statistics will fall into one of several universality classes

according to its discrete symmetries [24–26]. The specific symmetry class will change qualitatively

and quantitatively the random matrix ensemble that describes the statistics of the energy levels

of the quantum system under consideration. The GUE universality class of Hermitian random

matrices, corresponding to systems with no anti-unitary symmetries such as time reversal, is

extremely useful and practical due to is technical simplicity. However, since relativistic quantum

field theories are CRT -invariant, there is always an anti-unitary symmetry acting on the Hilbert

space and consequently the Gaussian Unitary Ensemble (GUE) is not the relevant symmetry

class. This motivates us to study other symmetry classes, particularly the GOE and Gaussian

Symplectic Ensemble (GSE), since these are relevant for chaotic QFTs. From the holographic

perspective, this provides another reason why contributions from non-orientable geometries are

not only necessary but essential: their inclusion is required to correctly capture the chaotic

behaviour expected of dual CFTs.

Quantum chaos and the case of AdS3/CFT2. Let us consider the case of AdS3/CFT2 in

some more detail. Consider a unitary 2d CFT with cL = cR, not assuming that it is parity

invariant. The Hamiltonian decomposes into blocks with fixed spin H =
⊕

j∈ZHj. The CFT

is RT -invariant and the RT symmetry preserves a spin-j block, namely it sends j → j. Since

there is an antiunitary symmetry acting within a block Hj which squares to (RT )2 = (−1)F , the

universality class of a block Hj is GOE for bosonic states and GSE for fermionic states, including

j = 0.1

On the AdS3 side, this means we should include contributions from non-orientable geometries.

This reasoning was applied in [29] where it was pointed out that one should also include a time-

reversal of the Cotler-Jensen torus wormhole [5], to account for the correct slope of the linear ramp

1In Lorentzian cylinder quantization, T and R both send j → −j so RT preserves Hj . In Euclidean radial
quantization, the Osterwalder-Schrader time-reversal Θ acts as conjugation ΘLnΘ

−1 = L†
n = L−n [27, 28], leaving

j invariant. In particular, Θ and RT correspond to each other, since they have the same action on Virasoro
generators. Further assuming that the CFT is parity R-invariant only implies that the spectra of Hj and H−j

coincide.
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in the spectral form factor (SFF). Another class of geometries which can be obtained by crosscap-

type identifications in 3D gravity is given by so-called twisted I-bundles, considered in [30] in the

framework of Virasoro TQFT [31] and in [29] in the semiclassical approximation. Simply put,

these are Z2-quotients of two-boundary wormholes along a two-dimensional slice which results in

a single-boundary contribution to the path integral.

In the near-extremal limit of AdS3 black holes and wormholes, we expect JT gravity to

correctly capture the relevant physics [17]. The gauged RT symmetry implies that the correct

effective theory in the near-extremal limit of AdS3 gravity is non-orientable JT gravity. Similar

conclusions should be valid in higher-dimensional AdS/CFT, since JT gravity has been shown

to be the correct effective theory for near-extremal black holes in several contexts [32–34]. In

particular, the contribution of non-orientable geometries was not included in the work of Maxfield

and Turiaci [17], which considered only ordinary orientable JT gravity. In light of this, it would

be very interesting to revisit their calculation in non-orientable JT gravity with defects. The

interplay between crosscaps and defects has not been discussed before. From the matrix integral

side, the conclusion of [17] was simply that one has to consider a matrix model with a shifted

edge E0 ≪ 1 with respect to the semiclassical black hole threshold, set to E = 0 by convention. A

shifted edge GOE matrix model is the obvious candidate that should correspond to non-orientable

JT with defects, where the sum over defects is simply the gravitational counterpart of the E0 ≪ 1

expansion. Matching the effective 2D theory to 3D gravity sets E0 = O
(
e−S0/2

)
and similarly

for the defect coupling λ = O
(
e−S0/2

)
. A possible subtlety lies in the fact that a 4k defect

contribution is of the same order as the contribution of a genus g = 4k surface, where the genus

can now take half-integer values due to crosscaps: g = 0, 1
2
, 1, 3

2
, . . . .

Going beyond the density of states, to correctly describe the RMT statistics of chaotic 2D

CFTs and their AdS3 holographic duals, it is crucial to consider the constraints coming from

Virasoro symmetry and modular invariance. Recently, a subset of the authors constructed

RMT2, a fully modular-invariant random matrix ensemble which captures the nontrivial interplay

between random matrix statistics in CFT2 and modular invariance [35, 36] (see also [37–39]).

RMT2 serves as a benchmark for chaos in CFT2 and produces candidate partition functions for

off-shell wormholes in AdS3 pure gravity. RMT2 can be developed for any of the GUE, GOE

and GSE symmetry classes (and in principle for the other seven classes of the Altland-Zirnbauer

classification [25]), but to apply it consistently to CFT2, we should use the GOE ensemble.2

The necessity and importance of including non-orientable manifolds are transparent, particu-

larly for understanding chaos in the form of random matrix universality in gravity and CFT. This

motivates us to consider the SFF in GOE matrix integrals and correspondingly the topological

expansion in non-orientable JT gravity. This physically relevant case is unfortunately not a

simple generalization of the GUE case. There are several both qualitative and quantitative

differences between orientable and non-orientable cases, among which are the presence of two

2See also [40, 41] for further comments on the importance of considering the GOE class in this context.
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types of divergences and an overall significantly more complex analytic structure, as explored in

section 1.3.

Objectives. We will focus on the SFF as a diagnostic of random matrix universality which

has a characteristic ramp-plateau structure in all symmetry classes. It was shown in [42] that

in orientable JT gravity it is possible to capture the ramp-plateau transition by considering the

topological e−S0 expansion of the SFF in the τ-scaling limit, where τ = Te−S0 is held fixed

as T, eS0 → ∞. This is an extremely non-trivial property since the topological expansion is

asymptotic and the plateau is usually understood to be a doubly non-perturbative effect in eie
S0

from the GUE matrix integral. The τ-scaling limit reorganizes the topological expansion into

a series with a finite radius of convergence, which upon analytic continuation describes the full

ramp-plateau transition in canonical variables. From the gravity side, this shows that the plateau,

which indicates the discreteness of black hole microstates, is obtained by resumming infinitely

many wormhole geometries and does not necessarily require new non-perturbative effects.

In this work, we extend and generalize these lessons to other symmetry classes, with a

particular focus on time-reversal invariant systems described by GOE matrix models. As we

will see, the τ-scaling limit is considerably more subtle in this case and it involves qualitatively

new ingredients and challenges. Nevertheless, ultimately it still leads to a convergent topological

expansion, allowing for a perturbative study of the plateau.

In the remainder of this section we give a light introduction and an overview of our results.

1.2 Random matrix universality and τ-scaling

In this paper, we study spectral correlators in random matrix theory with particular focus on

two-point correlators. We denote the connected SFF as

K(β1, β2) =
〈
Tr(e−β1H)Tr(e−β2H)

〉
c
, (1.1)

where the expectation value indicates a connected matrix integral of the form

⟨ · ⟩c ≡
1

Z

∫
dH ( · ) e−N TrV (H) . (1.2)

The characteristics of the matrices H, as well as the matrix potential, depend on the discrete

symmetries. We will consider cases where they belong to one of the following universality classes:

• GUE: H are Hermitian and V0(H) = 1
2
H2; a model for systems without time-reversal

symmetry.
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• GOE: H are real-symmetric and V0(H) = 1
4
H2; a model for systems with time-reversal

symmetry in which T 2 = 1.

• GSE: H are Hermitian quaternionic and V0(H) = H2; a model for systems with time-

reversal symmetry in which T 2 = −1 (e.g., fermionic systems).

While we review the GUE for illustration and discuss the GSE as an interesting generalization,

our main focus will be on the GOE. The latter is often the most realistic universality class for

systems of interest in holography.3 We note that further generalizations taking into account

additional symmetries exist and would be interesting to study further [25].

In the double-scaling limit, we take N → ∞ and suitably tune the model parameters to zoom

in on the edge of the spectrum. The matrix model can then be characterized by a continuous

spectral curve, which we assume to be of the form

ρ(E) = ρ0(E) e
S0 =

√
E

2π

(
1 + a1E + a2E

2 + . . .
)
eS0 , (1.3)

where S0 is a large parameter that controls the double-scaling limit. The SFF admits a topological

expansion in powers of e−S0 :

K(β1, β2) =
∑

g=0, 1
2
,1, 3

2
,...

Kg,2(β1, β2) e
−2gS0 , (1.4)

where half-integer terms are only relevant for the GOE and the GSE. Much of this paper is

concerned with the analysis of this expansion, such as finding the coefficients Kg,2 as a function

of the coefficients ai of the spectral curve. For example, a simple universal result is the genus-0

contribution:

K0,2(β1, β2) =
C

2π

√
β1β2

β1 + β2
, (1.5)

with CGUE = 1, CGOE = 2, CGSE = 1
2
.

We will use the following standard analytic continuation of (1.1). In canonical expressions,

we write

β1 = β + iT , β2 = β − iT , (1.6)

and denote the corresponding SFF as Kβ(T ). The corresponding microcanonical expression is

related by a Laplace-Fourier transform:

KE(ω) ≡
∫ ∞

−∞
dEdω e−2βE−iTωKβ(T ) . (1.7)

3See [19, 22, 23, 29, 43] for some recent discussions.
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Figure 1: Universal spectral form factors in three universality classes, for the Airy model. Left:
Microcanonical variables (fixed E = 1); the non-smooth transition between ramp and plateau is
indicated by dots. Right: Canonical variables (fixed β = 1); the transition to the plateau is smooth.

More conveniently, we will often consider the microcanonical SFF in the time domain, i.e.

KE(T ) ≡
∫ ∞

−∞
dE e−2βE Kβ(T ) . (1.8)

The τ-scaling limit. It has been suggested in [42] (see also [44, 45]) that a simple scaling limit

of Kβ(T ) can be used to focus on the physics at the scale of the average level spacings and thereby

extract the universal RMT behavior. Furthermore, it turns out that the canonical SFF is best

suited for this: it leads to a convergent topological expansion that displays a smooth transition

to the plateau. We define this τ-scaling limit of the SFF as follows:

τ-scaling: T → ∞ , S0 → ∞ , τ ≡ T e−S0 fix. (1.9)

In this limit, the topological expansion simplifies, and we write:

Kβ(τ) ≡ lim
T,S0→∞
τ fixed

e−S0 Kβ(T = τeS0) . (1.10)

For instance, the genus-0 term (1.5) implies a universal contribution Kβ(τ) ⊃ C τ
4πβ

.

A conjecture due to [42] (see also [46, 21, 47] and [48, 43] for related recent discussions in the

context of the GOE) is that the τ-scaled SFF agrees exactly with the universal expression (“sine

kernel”) derived in the corresponding Gaussian random matrix model. That is, one expects:

Kβ(τ)
?
=

∫ ∞

0

dE e−2βE KE(τ) , (1.11)
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where the universal expressions for spectral correlators in RMT are [49]:

GUE RMT: KE(τ) = min
{ τ

2π
, ρ0(E)

}
,

GOE RMT: KE(τ) = min

{
τ

π
− τ

2π
log

(
1 +

τ

πρ0(E)

)
, 2ρ0(E)−

τ

2π
log

(
τ+ πρ0(E)

τ− πρ0(E)

)}
,

GSE RMT: KE(τ) = min

{
τ

4π
− τ

8π
log

∣∣∣∣1− τ

2πρ0(E)

∣∣∣∣ , ρ0(E)} .

(1.12)

See figure 1 (left) for illustration. The GUE expression is continuous but not differentiable across

the “ramp-to-plateau transition” at energy E∗ determined by ρ0(E∗) =
τ
2π
. The universal GOE

SFF is twice differentiable across the same transition. In the GSE case, the transition happens

at ρ0(E∗) =
τ
4π

and is twice differentiable; in addition there is a discontinuity in the “ramp” at

ρ0(E∗) =
τ
2π
.

In section 2, we study in detail the Laplace transform of the universal τ-scaled RMT corre-

lators, see (1.11). Our main result is a derivation of the coefficients in the τ-scaled topological

expansion of Kβ(τ) for the three universality classes for an arbitrary spectral curve (1.3). We find

that all of them lead to a convergent topological expansion of the form

Kβ(τ) =
C

4πβ
τ+

∞∑
g=1,2,...

[Ag(ρ0; β) +Bg(ρ0; β) log(τ)] τ
2g+1 +

∞∑
g̃= 1

2
, 3
2
,...

Cg̃(ρ0; β) τ
2g̃+1 . (1.13)

The coefficients in this expansion for general spectral curves can be found for GUE, GOE, and

GSE in (2.3), (2.32), and (2.57), respectively. While the GUE only features the Ag coefficients,

the GOE and GSE attain the general structure shown above, where g ∈ Z indicates integer-genus

contributions and g̃ ∈ Z+ 1
2
labels half-integer-genus contributions. The latter are associated in

gravity models with non-orientable crosscap geometries. See figure 1 (right) for an example of

Kβ(τ).

To derive these results, we develop tools to perform the Laplace transform of the universal

expressions (1.12) for arbitrary ρ0(E). We also give evidence that these universal expressions do

indeed capture the τ-scaling limit of SFF’s computed in various models of interest. Furthermore,

we confirm in examples that the topological expansion in the τ-scaling limit is convergent.

1.3 Non-orientable gravity and late-time divergences

Besides universal RMT correlators, we also study the τ-scaling limit of spectral correlators in toy

models of gravity with a known matrix model description.

The paradigmatic example is the non-perturbative JT gravity path integral, which is known
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to admit a genus expansion [4]:

ZJT
(
β1, ..., βn

)
≡
〈
Z
(
β1
)
...Z
(
βn
)〉

=
∑
g≥0

eχS0 ZJT
g,n

(
β1, ..., βn

)
, (1.14)

where χ := 2 − 2g − n is the Euler characteristic of the hyperbolic surface, which the path

integral is evaluated on. The genus g partition function is computed by gluing external throats

(“trumpets”) to internal geometries with g handles and n punctures:

ZJT
g,n

(
β1, ..., βn

)
=

n∏
i=1

∫ ∞

0

bidbi Ztr

(
βi, bi

)
V JT
g,n

(
b1, ..., bn

)
, (1.15)

with associated trumpet wavefunction

Ztr

(
βi, bi

)
=

e
− b2i

4βi√
4πβi

, (1.16)

and V JT
g,n (b1, ..., bn) being the Weil-Petersson (WP) volumes for the genus g moduli space with n

geodesic boundaries. Geodesic lengths are denoted by bi, and they serve as gluing boundaries

between the trumpets and the hyperbolic surfaces.

In order to compute the gravitational path integral, one requires a systematic way of cal-

culating the WP volumes. This is achieved by Mirzakhani’s topological recursion [50] and its

non-orientable generalization [23]. The geometric intuition behind the recursion is a cutting and

pasting procedure, which describes the moduli space of surfaces Σg,n in terms of the moduli space

of surfaces either with lower genus or fewer boundaries.

Stanford and Witten [19] first examined the JT gravity path integral on non-orientable

surfaces, showing that it diverges due to contributions from small crosscaps. In the moduli

space integral, the measure for a crosscap of size a is [51, 19]:

da

2 tanh
(
a
4

) , (1.17)

which diverges near a = 0. This has long posed an obstacle to formulating a version of Mirza-

khani’s topological recursion for non-orientable surfaces and relating it to a dual matrix integral

in the GOE symmetry class. Recently, Stanford [23] overcame this by demonstrating an analog

of Mirzakhani’s recursion for suitably regularized WP volumes of non-orientable surfaces, and

showed its correspondence with the loop equations of a GOE matrix integral.

The recursion relation, together with its integral kernels, is finite; however, the resulting
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volumes diverge. This led to a definition of ϵ-regularized volumes V ϵ
g,n of the general form:

V JT,ϵ
g,n (b1, . . . , bn) =

2g∑
k=0

log
(
ϵ−1
)k
vg,k(b1, . . . , bn) +O(ϵ). (1.18)

In practice, however, performing the necessary integrals and computing vg,k is challenging. One

way of practically computing V ϵ
g,n is by considering instead the spectral curve of the (2, p) minimal

string and identifying p = 1
ϵ
. On the matrix model side, this method was used in [43] to compute

the vg,k up to genus g = 1 and n = 1, 2. The structure of the volumes vg,k becomes significantly

more complex as they are no longer simply given by symmetric polynomials in the geodesic lengths

bi. Instead, they feature multiple polylogarithms of exponentials of the lengths bi of the form

Li{ki}(e
L({bi})), where L({bi}) are linear functions of bi. This functional form is based on a limited

set of examples, and higher topologies could give rise to new functions.

Remarkably, the τ-scaling limit is well defined in the GOE class and yields a convergent genus

expansion that captures the late-time ramp–plateau structure of the spectral form factor. To

appreciate the nontrivial nature of this result from the gravitational perspective, it is instructive

to compare it with the τ-scaling limit in conventional orientable JT gravity. There are three main

reasons why the τ-scaling limit in non-orientable gravity is significantly more challenging than

the orientable one:

• Crosscap divergences: Due to the UV divergences generated by small crosscaps, the

regularized WP volumes depend explicitly on the regulator ϵ. In contrast, the τ-scaled SFF

is manifestly regulator-independent, raising the question of how the ϵ-dependent volumes

V JT,ϵ
g,2 can reproduce it. For the cases g = 1

2
and g = 1, and up to O(τ4), taking the τ-

scaling limit prior to sending ϵ → 0 yields the correct ϵ-independent result [48]. However,

the general mechanism behind this remains unclear.

• Volume cancellations and integrable structure: In the GUE case, the τ-scaling limit

was traced to special cancellations in the WP volumes [42, 47], first observed in [52], which

reduce the degree of divergence of the topological expansion. These cancellations ensure

that the τ-scaling limit yields a topological expansion with a finite radius of convergence.

As explained in [47], this phenomenon is rooted in the integrable KdV hierarchy struc-

ture underlying matrix models and intersection numbers, and the cancellations were later

proven rigorously in [53]. Thus, for the GUE case, the τ-scaling limit is understood as a

manifestation of a rich integrable mathematical structure. The fact that the GOE class also

admits such a limit suggests the presence of an analogous—albeit more intricate—integrable

structure governing it. In the GUE analysis, a key role was played by the fact that

the volumes are symmetric polynomials, making the cancellations manifest in the basis

of elementary symmetric polynomials. By contrast, the non-orientable volumes involve

a significantly more complicated functional form, featuring polylogarithms, rendering the
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existence of the τ-scaling limit even more nontrivial than in the already rich GUE case.

• Late-time divergences: The way the τ-scaling limit is realized in GUE JT gravity is

particularly simple: the limit can be taken directly at the level of a single geometry of

fixed-genus. Each fixed-genus contribution scales as τ2g+1, and these terms can be resummed

into a convergent series. In the GOE case, however, taking the τ-scaling limit for a single

geometry leads to divergences, as the limit retains dependence on both T and τ. For

instance, at genus g = 1 one encounters a logarithmic divergence of the form ∼ τ3 log T

[43]. The fact that the full SFF nevertheless admits a well-defined τ-dependent limit

indicates that the sum over geometries must involve a nontrivial resummation canceling

these divergences.

Taken together—the crosscap divergences, the cancellations and underlying integrable structure,

and the late-time divergences—these features make the τ-scaling limit in non-orientable gravity

particularly challenging to analyze, underscoring the nontriviality of its very existence. Remark-

ably, the limit not only exists, but can also be computed analytically in closed form, as derived

in section 2.

In section 3, we review the non-orientable topological recursion, and derive its simpler version

for topological gravity (Airy model). A central result is (3.10), a manifestly finite topological

recursion for non-orientable geometries (or ribbon graphs) in the Airy model. We work out many

examples (see table 1) and describe the general structure of non-orientable WP volumes in this

model. Generally, they consist of a piece which is a symmetric polynomial in the boundary

geodesic lengths {bi}, as well as a non-analytic piece consisting of step functions multiplying

polynomials. This simple yet non-trivial appearance of non-analyticities serves as a valuable toy

model for the more challenging case of non-orientable JT gravity. We also describe how the

topological recursion for the Airy model is connected to a corresponding set of loop equations,

see section 3.3.

In section 4, we consider the recursively obtained Airy WP volumes for n = 2 boundaries in

more detail, adding to the recent analysis of [48, 43]. We use the WP volumes to compute the

gravitational path integral (1.15) in the τ-scaling limit. We observe a large number of potential

divergences in the τ-scaling limit. We give evidence that many of these divergences are absent

due to fortuitous cancellations between the coefficients defining the WP volumes. We conjecture

the general form of these constraints for any genus, for example (4.16). Some divergences do not

cancel and their removal requires a non-trivial resummation of the topological expansion.

Note: Ref. [54] appeared while this work was nearing completion. It overlaps with section 4.
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2 The τ-scaled spectral form factor in GUE/GOE/GSE

In this section, we derive the τ-scaling limit of the SFF in the GOE and GSE universality classes

for arbitrary spectral densities ρ0(E). We start by reviewing the derivation for the GUE class

(following appendix D of [42]), in a way that will be useful in preparation for the non-orientable

cases.

2.1 Review of the GUE τ-scaled SFF

Our task is to compute the following Laplace transform of the microcanonical SFF, see (1.9) and

(1.12):

KGUE
β (τ) =

∫ ∞

0

dE e−2βE min
{ τ

2π
, ρ0(E)

}
. (2.1)

The resulting SFF is written as a topological expansion that corresponds to a power series in τ:

KGUE
β (τ) =

τ

4πβ
+

∞∑
g=1

AGUE
g (ρ0; β) τ

2g+1
(2.2)

with coefficients given in terms of the following contour integral over the spectral density:

AGUE
g (ρ0; β) ≡ − 1

2πg(2g + 1)
c2g(ρ0; β) , c2g(ρ0; β) ≡

1

(2π)2g

∮
0

dE

2πi

e−2βE

ρ0(E)2g
. (2.3)

There are two remarkable properties of this expression: (i) the canonical ensemble has smoothed

the SFF from a non-analytic function into an analytic one (c.f., figure 1), and (ii) the topological

(or small τ) expansion has become convergent, with a finite radius of convergence. Thanks to

these properties, the transition from the ramp to the plateau is accessible by resumming this

convergent series.

We will now review how to derive this formula. The reader may want to jump to section 2.1.1

for examples.

Derivation. It is convenient to treat the genus-0 term separately from the rest. That is, we

write (2.1) as follows:

KGUE
β (τ) =

τ

4πβ
+

∫ E∗

0

dE e−2βE
(
ρ0(E)−

τ

2π

)
︸ ︷︷ ︸

≡KGUE
−,β

, (2.4)
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where E∗ is the energy where the two terms in (2.1) exchange dominance, ρ0(E∗) = τ
2π
. The

notation KGUE
−,β indicates that we are considering a low-energy integral (E < E∗). In the GOE

and GSE cases, there will also be non-trivial high-energy integrals for E > E∗.

Consider now KGUE
−,β . We review the general idea used in [42] and show how it can be further

refined. We first write the expression as an integral in the complex ρ0 plane:

KGUE
−,β =

∫ τ
2π

0

dρ0E
′(ρ0) e

−2βE(ρ0)
(
ρ0 −

τ

2π

)
. (2.5)

We wish to find a function f(ρ0), which has a branch cut in the complex ρ0 plane along ρ0 ∈ [0, τ
2π
]

(i.e., for E ∈ [0, E∗]), and whose discontinuity across the cut is the integrand ρ0 − τ
2π
. We can

then replace the integral with a contour integration for a contour that wraps the interval [0, τ
2π
].

In this case the integrand is simple and this can be done exactly, but for later sections it will

prove useful to find a way of obtaining the expanded result systematically.

We use the general way to recover a function from its cuts, the dispersion relation (or Stieltjes

transform),

f(ρ0) = −
∫ τ

2π

0

dρ′

2πi

ρ′ − τ
2π

ρ′ − ρ0

(
ρ0 ∈ C∖

[
0,

τ

2π

])
, (2.6)

which gives a function whose discontinuity is the prescribed

Discρ0
[
f(ρ0)

]
≡ f(ρ0 − i0)− f(ρ0 + i0) = ρ0 −

τ

2π
, ρ0 ∈

[
0,

τ

2π

]
. (2.7)

We find the following function:4

f(ρ0) =
1

2πi

[( τ

2π
− ρ0

)
log

(
1− τ

2πρ0

)
− τ

2π

]
. (2.8)

We can then write:

KGUE
−,β =

∫ τ
2π

0

dρ0E
′(ρ0) e

−2βE(ρ0)Discρ0
[
f(ρ0)

]
=

∮[
0,

τ
2π

] dρ0E ′(ρ0) e
−2βE(ρ0)f(ρ0) , (2.9)

where the notation indicates a contour integral along a contour that wraps the interval [0, τ
2π
]

counterclockwise.

The expression (2.6) constructs a function which has a cut as a function of ρ0, by using an

integral in the ρ′-plane. This is distinguished from the cut as a function of E: The density is a

double-valued function of E, and from the function f(ρ0) given in (2.8), we form the symmetric

combination; this gives the discontinuity as a function of ρ0 in terms of the discontinuity as a

4The dispersive expression does not require any corrections by “subtractions” as the function of interest decays
sufficiently fast at infinity.
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Figure 2: Illustration of the contour deformation: the initial integral along E ∈ [0, E∗] is first
turned into a contour integral around a branch cut, and subsequently into a sum over contour
integral around a pole at E = 0.

function of E, which is what is needed to evaluate the integral in the E-plane. We find for the

functions of interest:

Discρ0
[
f(ρ0)

]
= DiscE

[
f(ρ0(E))

]
+DiscE

[
f(−ρ0(E))

]
. (2.10)

Note that in the E-plane, the logarithm contains a branch cut for E < 0. This contribution is

zero since the symmetric combination for the discontinuity as a function of E vanishes:

DiscE<0

[
f(ρ0(E))

]
+DiscE<0

[
f(−ρ0(E))

]
= 0. (2.11)

Therefore, the only contribution to the discontinuity comes from the interval [0, E∗]. Thus,

converting the ρ0 contour integral into an E contour integral, we obtain:

KGUE
−,β =

∫ E∗

0

dE e−2βE
{
DiscE

[
f(ρ0(E))

]
+DiscE

[
f(−ρ0(E))

]}
=

∮
[0,E∗]

dE e−2βE
(
f(ρ0(E)) + f(−ρ0(E))

)
. (2.12)

This is illustrated in figure 2, (a) and (b).

The contour integrals are suited for extracting the topological expansion. To this end, we

need to expand the function f(ρ0) in powers of τ, or equivalently in inverse powers of ρ0. More

precisely, we deform the E contour to enclose the original interval but taking |ρ0| arbitrarily large.

Since |ρ′| is bounded we can expand 1
ρ′−ρ0

as a geometric series inside the integral:

f(ρ0) =

∫ τ
2π

0

dρ′

2πi

(
ρ′ − τ

2π

) ∞∑
n=1

(ρ′)n−1

ρn0
= − 1

2πi

∞∑
n=1

(
τ
2π

)n+1

n(n+ 1)

1

ρn0
. (2.13)
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Forming the symmetric combination f(ρ0) + f(−ρ0), this gives

KGUE
−,β = −

∞∑
n=1

τn+1

2πn(n+ 1)

1

(2π)n

∮
[0,E∗]

dE

2πi
e−2βE

(
1

ρ0(E)n
+

1

(−ρ0(E))n
)
. (2.14)

Note that only the even powers n = 2g survive in the symmetric combination:

KGUE
−,β = −

∞∑
g=1

τ2g+1

2πg(2g + 1)

1

(2π)2g

∮
[0,E∗]

dE

2πi
e−2βE 1

ρ0(E)2g
. (2.15)

For even powers, the integrand is then a meromorphic function of E (recall (1.3)). While the

branch cut disappears, a pole at E = 0 remains. The last step is therefore to deform the E contour

for individual terms in the sum to a small circle around E = 0, see figure 2(c). Contracting the

contour in this manner yields the final expression for the τ-scaled SFF, (2.2).

2.1.1 Examples

For illustration of the general formula (2.2), we discuss a few examples.

Example I: Airy model. The simplest example of a double-scaled random matrix model with

a spectral curve of the form (1.3) is the Airy model:

ρAiry
0 (E) =

√
E

2π
, (2.16)

we have

c2g
(
ρAiry
0 ; β

)
=

(−2β)g−1

(g − 1)!
⇒ AGUE

g

(
ρAiry
0 ; β

)
= − (−2β)g−1

2π(2g + 1)g!
. (2.17)

Plugging these coefficients into the general formula (2.2), we can perform the sum over g explicitly

and find the known expression:

KGUE,Airy
β (τ) =

1

8
√
2πβ3/2

Erf
(√

2β τ
)
. (2.18)

Example II: (2, p) minimal string for p = 3. The (2, p) minimal string with p = 3 has a

matrix model description with the spectral density [55, 4]

ρ
(2,p=3)
0 (E) =

√
E

2π

(
1 +

2

3κ
E

)
. (2.19)
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In this case we compute the coefficients (2.3) using the following expansion:

1[
ρ
(2,p=3)
0 (E)

]2g = (2π)2g
∑
k≥0

(2g + k − 1)!

(2g − 1)! k!

(
− 2

3κ

)k

Ek−g . (2.20)

To compute the residue at E = 0, we note that the integrand in (2.3) has a pole of order g at

E = 0. This lets us compute the following residue:

c2g
(
ρ
(2,p=3)
0 ; β

)
=

1

(g − 1)!
lim
E→0

(
d

dE

)g−1
[∑
k,ℓ≥0

(2g + k − 1)!

(2g − 1)! k! ℓ!

(
− 2

3κ

)k

(−2β)ℓEk+ℓ

]

=
1

(g − 1)!

(
− 2

3κ

)g−1

(3κβ)3g−1 U (2g, 3g; 3κβ) .

(2.21)

This yields the coefficients in the genus expansion of KGUE
β (τ):

AGUE
g

(
ρ
(2,p=3)
0 ; β

)
=

(−2)g

4π(2g + 1)g!
β3g−1(3κ)2g U (2g, 3g; 3κβ) . (2.22)

Note that the confluent hypergeometric function appearing here truncates for any integer g, i.e.,

it is a finite polynomial in β.

Example III: JT gravity. Next, we compute AGUE
g for JT gravity with density of states given

by

ρJT0 (E) =
sinh

(
2π

√
E
)

4π2
. (2.23)

Using the series expansion of sinh(x), we can work out the expansion required for the computation

of the integrals c2g(ρ
JT
0 ; β); this involves a sum over integer partitions to account for all terms

appearing in the coefficient of any given power of E:

1

[ρJT0 (E)]
2g = (2π)2g

∑
p≥0

(2π)2p ∑
{mr}p

Γ (2g +
∑

rmr)

Γ(2g)

∏
r

1

mr!

(
− 1

(2r + 1)!

)mr

 Ep−g (2.24)

where each set {mr}p = {m1, . . . ,mp} denotes an integer partition of p of the form p =
∑

r rmr.

Performing the residue (2.3) term by term, we find the following coefficients:

c2g
(
ρJT0 ; β

)
=

1

Γ(2g)

∞∑
m1,m2,...=0

[
Γ (2g +

∑
rmr)

Γ(g −∑r rmr)

∏
r

1

mr!

(
− (2π)2r

(2r + 1)!

)mr
]
(−2β)g−1−

∑
r rmr

(2.25)
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where the sums over mr are now unconstrained. But note that the summand is zero whenever∑
r rmr ≥ g, so for any given g there are only finitely many terms. Also, all powers of β are

positive, so the expression is a finite polynomial. The term with m1 = m2 = . . . = 0 corresponds

to the Airy result. An alternative way of writing the result, which is evident from the construction

but more efficient for explicit calculations, is:

c2g
(
ρJT0 ; β

)
=

1

(g − 1)!

(
d

dy

)g−1
e−2βy

(
2π

√
y

sinh
(
2π

√
y
))2g


y=0

. (2.26)

For later reference, we record the first few coefficients:

c2
(
ρJT0 ; β

)
= 1 ,

c4
(
ρJT0 ; β

)
= −2(2π)2

3
− 2β ,

c6
(
ρJT0 ; β

)
=

8(2π)4

15
+ 2(2π)2β + 2β2 ,

c8
(
ρJT0 ; β

)
= −16(2π)6

35
− 28(2π)4

15
β − 8(2π)2

3
β2 − 4

3
β3 .

(2.27)

The τ-scaled SFF follows by plugging (2.27) into (2.2):

KJT,GUE
β (τ) =

τ

4πβ
− τ3

6π
+

(3β + 4π2)τ5

30π
− (15β2 + 60π2β + 64π2)τ7

315π
− c8

(
ρJT0 ; β

)
72π

τ9+ . . . (2.28)

One can check by expanding to arbitrary orders in τ that the above derivation is consistent with

the closed-form expression given in eq. (2.12) of [42].

2.2 The GOE τ-scaled SFF

We will now generalize the method from above to the GOE ensemble. Our task is to compute

the Laplace transform of the universal sine kernel in the GOE universality class:

KGOE
β (τ) =

∫ ∞

0

dE e−2βE min

{
τ

π
− τ

2π
log

(
1 +

τ

πρ0(E)

)
, 2ρ0(E)−

τ

2π
log

(
τ+ πρ0(E)

τ− πρ0(E)

)}
.

(2.29)
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This is equal to the following three contributions:

KGOE
β (τ) = 2×KGUE

β (τ)

− τ

2π

∫ E∗

0

dE e−2βE log

( τ
π
+ ρ0(E)

τ
π
− ρ0(E)

)
− τ

2π

∫ ∞

E∗

dE e−2βE log

(
1 +

τ

πρ0(E)

)
.

(2.30)

First we have (twice) the GUE result, second there is a low energy contribution associated with the

microcanonical plateau (times τ > 2πρ0(E)), and third is the high energy contribution associated

with the microcanonical ramp (times τ < 2πρ0(E)).
5

We will proceed by presenting the general result and discussing some examples. We leave the

details of the derivation to Appendix A. For a general spectral density ρ(E) = ρ0(E)e
S0 we find

the following τ-scaled spectral form factor:

KGOE
β (τ) =

τ

2πβ
+

∞∑
g=1,2,...

[
AGOE

g (ρ0; β) +BGOE
g (ρ0; β) log(τ)

]
τ2g+1

+
∞∑

g̃= 1
2
, 3
2
,...

CGOE
g̃ (ρ0; β) τ

2g̃+1
(2.31)

where

AGOE
g (ρ0; β) = − 2

2πg(2g + 1)

[
1 +

4g−1(2g + 1)

g

(
g log(4)− 2F1(2g, 2g, 2g + 1,−1)− 1

)]
c2g(ρ0; β)

+
4g−1

πg
d2g(ρ0; β) ,

BGOE
g (ρ0; β) = −4g−1

πg
2c2g(ρ0; β) ,

CGOE
g̃ (ρ0; β) = −4g̃−1

πg̃
d2g̃(ρ0; β) .

(2.32)

The information about the specific choice of ρ0(E) is encoded in the coefficients

c2g(ρ0; β) ≡
1

(2π)2g

∮
dE

2πi
e−2βE ρ0(E)

−2g ,

d(δ)n (ρ0; β) ≡
1

(2π)n

∫ ∞

δ

dE e−2βE ρ0(E)
−n .

(2.33)

and dn(ρ0; β) is the finite part of d
(δ)
n (ρ0; β) as δ → 0.

5The three pieces are illustrated for the Airy model in figure 7.
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We observe three kinds of terms based on their τ-dependence: the A-type terms, which are

odd powers of τ2g+1 similar to the GUE case; the B-type terms, which multiply odd powers

times logarithms, log(τ)τ2g+1; and the C-type coefficients corresponding to half-integer genus

contributions, which produce even powers of τ. Note that the GUE piece and the low energy

plateau contrbution IGOE
low contribute only to the A-type terms, while the high energy ramp part

IGOE
high is solely responsible for the B- and C-type terms and for part of the A-type terms.

The dependence on β, encoded in AGOE
g (ρ0; β), B

GOE
g (ρ0; β), C

GOE
g (ρ0; β), is very sensitive to

the choice of spectral curve. This is a qualitatively new feature: while the GUE spectral form

factor was only sensitive to the behavior of the spectral density near E = 0 via c2g(ρ0; β), the

GOE case features new coefficients dn(ρ0; β), which are sensitive to ρ0(E) at all energies. In the

GUE, this meant that the genus g term was only sensitive to the first g − 1 terms in the low

energy expansion of ρ0(E). For instance, in GUE JT gravity the τ-scaled SFF was not sensitive

to the high energy exponential growth of the density of states for any g. Instead in the GOE

case, there is a non-trivial high-energy contribution to the Laplace transform (2.29). We discuss

this contribution in detail in Appendix A.1.2. This shows how the GOE is more generic and

qualitatively sensitive to new physics.

A few more comments are in order:

(i) In the above expressions we introduce the following notation: g and g̃ are both interpreted

as ‘genus’. However, g ∈ Z+ indicates integer genus, while g̃ ∈ 1
2
+ Z+ indicates half-

integer genus contributions. Half-integer genus contributions are associated with crosscap

geometries when a geometric calculation is available.

(ii) The coefficients BGOE
g and CGOE

g̃ only exist in the non-orientable symmetry classes (GOE

and – as discussed later – GSE). Further, the very first term in AGOE
g equals twice AGUE

g ,

but it receives additional additive corrections. As will become clear, the coefficients always

add up such that the logarithmic dependence is actually of the form log(2βτ2).

(iii) The coefficients dn are infrared-divergent, both for n = 2g even and for n = 2g̃ odd. This is

parametrized by the cutoff δ → 0. There appear powerlaw divergences up to degree δ−g+1

and (for integer genus) a logarithmic divergence log δ. In the genus expansion, we only keep

the finite piece in the limit of small δ. We note that this prescription is not ad hoc, but

follows from the detailed derivation in Appendix A, where we show that any divergences

indeed get removed. For a summary of this mechanism, see section 5.

(iv) We can also work with a different regulator, which is often more convenient in practice. In

many examples the finite piece of d
(δ)
n can be extracted by analytic continuation in genus.

As we will illustrate, for half-integer genus, d2g̃ can often be obtained by using integral

formulas valid for Re(g̃) < 1 and analytically continuing the result to the desired value of

g̃. A similar strategy also works for d2g (i.e., even integer index), but with an additional
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subtlety: analytic continuation of dn proceeds from Re(n) < 1 to n = 2(g − ε), shifted

from an even integer by a small amount ε. In the limit ε → 0, one obtains a divergent

contribution scaling as 1
ε
, as well as a finite contribution; again we need to extract the finite

one, which we can write as:

d2g(ρ0; β) = coeffε0
(
d2(g−ε)(ρ0; β)

)
= lim

ε→0

d

dε

[
ε d2(g−ε)(ρ0; β)

]
(2.34)

where the infrared cutoff is no longer important. We note that the coefficient c2g is also

encoded in d2g−ε, but via the divergent part:

c2g(ρ0; β) = coeffε−1

(
d2(g−ε)(ρ0; β)

)
= lim

ε→0

[
ε d2(g−ε)(ρ0; β)

]
. (2.35)

We can therefore extract all required coefficients from a single calculation that obtains the

finite and divergent pieces of d2(g−ε) and d2(g̃−ε). See section 5 for more discussion of this.

2.2.1 Examples

Example I: Airy model

We begin with the Airy model ρAiry
0 (E) =

√
E

2π
. The coefficients sensitive to low energies are the

same as in the GUE:

c2g
(
ρAiry
0 ; β

)
=

(−1)g−1

(g − 1)!
(2β)g−1 . (2.36)

Next, we discuss the coefficients dn, which are sensitive to all energies. For illustration we discuss

different regularization schemes.

Infrared cutoff regularization: With an infrared regulator δ, we find

d
(δ)
2g

(
ρAiry
0 ; β

)
=

(−1)g−1

(g − 1)!
[ψ(g)− log (2β)] (2β)g−1 +

g−1∑
m=1

(−2β)g−1−m

m(g − 1−m)!

1

δm
− (−2β)g−1

(g − 1)!
log(δ) +O(δ) ,

d
(δ)
2g̃

(
ρAiry
0 ; β

)
= Γ(1− g̃)(2β)g̃−1 +

g̃−1∑
m̃= 1

2
, 3
2
,...

(−2β)g̃−1−m

mΓ(g̃ −m)

1

δm
.

(2.37)
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The powerlaw divergences are scheme-dependent and irrelevant for the SFF. The relevant (and

scheme-independent) terms, according to (2.31), are the finite ones:

d2g
(
ρAiry
0 ; β

)
≡
[
d
(δ)
2g

(
ρAiry
0 ; β

)]
finite

=
(−1)g−1

(g − 1)!
[ψ(g)− log (2β)] (2β)g−1 ,

d2g̃
(
ρAiry
0 ; β

)
≡
[
d
(δ)
2g̃

(
ρAiry
0 ; β

)]
finite

= Γ(1− g̃)(2β)g̃−1 .

(2.38)

We also note that the coefficient of log(δ) reproduces c2g; we discuss this in more detail in section

5. Plugging into (2.32), we infer the expansion coefficients in the τ-scaled SFF (2.31):

AGOE
g

(
ρAiry
0 ; β

)
= − (−2β)g−1

π(2g + 1)g!
+

(−8β)g−1

πg!

[
1

g
2F1(2g, 2g, 2g + 1,−1) + ψ(g + 1)− log (8β)

]
BGOE

g

(
ρAiry
0 ; β

)
= −2(−4)g−1

πg!
(2β)g−1 ,

CGOE
g̃

(
ρAiry
0 ; β

)
= −4g̃−1

πg̃
Γ(1− g̃) (2β)g̃−1.

(2.39)

Explicitly, up to genus 5
2
, we get:

KGOE,Airy
β (τ) =

1

2πβ
τ− 1√

2πβ
τ2 − 1

π

(
1

3
+ γ + log

(
2βτ2

))
τ3 +

8

3π
(2πβ)

1
2 τ4

+
4β

π

(
− 7

60
+ γ + log

(
2βτ2

))
τ5 − 64

15π2
(2πβ)

3
2 τ6 + . . .

(2.40)

This is consistent with the expressions obtained using a different method in [48]. Note that, after

dividing by an overall factor of τ3, (2.40) only depends on τ and β through the combination βτ2.

This is a simplification of the Airy model, which can be useful to study the late-time behavior.

Analytic continuation in genus: For illustration, consider now the other regulator described in

the comments after (2.31), i.e., analytic continuation in genus. We use the formula∫ ∞

0

dE e−2βE Ex = Γ(1 + x)(2β)−x−1 , (2.41)

which converges for Re(x) > −1. For half-integer genus g̃, we immediately find the finite piece

of d2g̃ by analytically continuing this formula to x = −g̃, in agreement with (2.38). For integer

genus g, we analytically continue to x = −g+ ε and expand in small ε. The result is finite in the

IR regulator δ (so we can drop it), but divergent as ε→ 0:

d2(g−ε)

(
ρAiry
0 ; β

)
=

(−1)g−1

(g − 1)!

[
1

ε
+ ψ(g)− log (2β) +O(ε)

]
(2β)g−1 . (2.42)
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Both the finite and the divergent pieces have physical meaning. As anticipated on general grounds,

the finite piece agrees with (2.38), thus confirming (2.34). The divergent piece is c2g, as expected

from (2.35).

Example II: (2, p) minimal string for p = 3

Let us again consider the density of states for the (2, p = 3) minimal string, (2.19). The coefficients

c2g were already computed for the GUE, using the binomial expansion (2.20):

c2g
(
ρ
(2,p=3)
0 ; β

)
=

(
− 2

3κ

)g−1
(3κβ)3g−1

Γ(g)
U (2g, 3g; 3κβ)

= c2g
(
ρAiry
0 ; β

) [
1 +

2g(g − 1)

3κβ
+ . . .+

(3g − 2)!

(2g − 1)!(3κβ)g−1

]
.

(2.43)

We compute the coefficients dn using analytic continuation in genus. We start with the formula∫ ∞

0

dE e−2βE

[√
E

(
1 +

2

3κ
E

)]x
= Γ

(
1 +

x

2

)(3κ

2

)1+x
2

U

(
1 +

x

2
, 2 +

3x

2
; 3κβ

)
, (2.44)

where U(a, b; x) is the confluent hypergeometric function. The integral converges for Re(x) > −2.

As illustrated before, we can extract the relevant pieces of dn by analytically continuing (2.44) to

x = −2g̃ and x = −2(g − ε). We find:6

d2g̃
(
ρ
(2,p=3)
0 ; β

)
= Γ (1− g̃) (2β)g̃−1 (3κβ)2g̃ U (2g̃, 3g̃; 3κβ) ,

d2(g−ε)

(
ρ
(2,p=3)
0 ; β

)
= Γ (1− g + ε) (2β)g−ε−1 (3κβ)2(g−ε) U (2(g − ε), 3(g − ε); 3κβ) .

(2.45)

As a consistency check, note that the κ → ∞ limit of these coefficients reproduces the Airy

expressions in (2.38). Equivalently, the leading terms in the large β expansion yield the Airy

results. It is interesting to observe that the Airy results in fact contribute in a multiplicative way

and can naturally be factored out:

d2g̃
(
ρ
(2,p=3)
0 ; β

)
= d2g̃

(
ρAiry
0 ; β

)
× (3κβ)2g̃ U (2g̃, 3g̃; 3κβ)

d2(g−ε)

(
ρ
(2,p=3)
0 ; β

)
= d2(g−ε)

(
ρAiry
0 ; β

){[
1 +

2g(g − 1)

3κβ
+ . . .+

(3g − 2)!

(2g − 1)!(3κβ)g−1

]
+ ε

[
−2(2g − 1)

3κβ
− 8g3 − 15g2 + 2g + 2

(3κβ)2
+ . . .

]
+O(ε2)

}
(2.46)

These expressions imply that all coefficients in the topological expansion (with g > 1) receive

6We rewrite the hypergeometric functions using the identity U(a, b; z) = z1−b U(1 + a− b, 2− b; z).
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corrections in negative powers of (3βκ), relative to the Airy model:

AGOE
g

(
ρ
(2,p=3)
0 ; β

)
= AGOE

g

(
ρAiry
0 ; β

) [
1 +

2g(g − 1)

3κβ
+ . . .+

(3g − 2)!

(2g − 1)!(3κβ)g−1

]
−BGOE

g

(
ρAiry
0 ; β

) [
−(2g − 1)

3κβ
− 8g3 − 15g2 + 2g + 2

2(3κβ)2
+ . . .

]
,

BGOE
g

(
ρ
(2,p=3)
0 ; β

)
=

2(−1)g

πg!
(8β)g−1 (3κβ)2g U(2g, 3g; 3κβ)

= BGOE
g

(
ρAiry
0 ; β

) [
1 +

2g(g − 1)

3κβ
+ . . .+

(3g − 2)!

(2g − 1)!(3κβ)g−1

]
,

CGOE
g̃

(
ρ
(2,p=3)
0 ; β

)
= −4g̃−1Γ (1− g̃)

πg̃
(2β)g̃−1(3κβ)2g̃ U (2g̃, 3g̃; 3κβ)

= CGOE
g̃

(
ρAiry
0 ; β

) [
1 +

2g̃(g̃ − 1)

3κβ
+

(2g̃ + 1)g̃(g̃ − 1)(g̃ − 2)

(3κβ)2
+ . . .

]
,

(2.47)

where the Airy coefficients are given in (2.39).

Having analytic expressions, we can also work out the small β expansion. For example, the

expansion of CGOE
g̃ does not truncate and is therefore non-trivial to expand in small β:

CGOE
g̃

(
ρ
(2,p=3)
0 ; β

)
= −

(
8

3κ

)g̃−1
2 Γ (1− g̃) Γ (3g̃ − 1)

π Γ (2g̃ + 1)

[
1 +

3(2g̃ − 2)

(6g̃ − 4)
(κβ) +

3(2g̃ − 4)

2(6g̃ − 4)
(κβ)2 + . . .

]
+

3

4π
(3κ)2g̃Γ (−3g̃)

[
1 + 2κβ +

3(2g̃ + 1)

3g̃ + 1
(κβ)2 + . . .

)]
(2β)3g̃−1

(2.48)

Importantly, note that this expression has no negative powers of β and thus a well-defined high-

temperature limit (the same true for AGOE
g and BGOE

g ). This was not manifest in (2.47).

Example III: JT gravity

Finally, we turn to computing the canonical SFF for non-orientable JT gravity with density of

states (2.23). We will evaluate the general formula (2.31) in different ways. It is instructive to

consider expansions in both low and high temperatures separately.

Low temperature expansion. In the low temperature limit, we can again consider the

expansion of inverse powers of ρJT0 given in (2.24). That expansion holds for any g, not necessarily

integer. The computation of the coefficients dn(ρ
JT
0 ; β) then reduces to a sum over Laplace
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transforms of powers of E:

dn
(
ρJT0 ; β

)
=
∑
p≥0

(2π)2p ∑
{mr}p

Γ (n+
∑

rmr)

Γ(n)

∏
r

1

mr!

(
− 1

(2r + 1)!

)mr

Γ
(
p+ 1− n

2

)
(2β)

n
2
−p−1

(2.49)

For odd integer n = 2g̃, this expansion is finite but does not truncate. It determines the coefficients

of even powers τ2g̃+1 in the τ-scaled SFF via (2.32). For example:

d1
(
ρJT0 ; β

)
= π (2πβ)−

1
2

[
1− π2

6β
+

7π4

120β2
− 31π6

1008β3
+ . . .

]
,

d3
(
ρJT0 ; β

)
= −2 (2πβ)

1
2

[
1 +

π2

2β
− 17π4

120β2
+

457π6

5040β3
+ . . .

]
,

d5
(
ρJT0 ; β

)
=

4

3π
(2πβ)

3
2

[
1 +

5π2

2β
+

9π4

8β2
− 367π6

1008β3
+ . . .

]
.

(2.50)

We can similarly use (2.49) to evaluate the coefficients of the remaining terms in the topological

expansion. Of course, (2.49) diverges for n = 2g an even integer, so we employ our usual

regularization scheme and instead evaluate at n = 2(g − ε). For instance:

d2−2ε

(
ρJT0 ;β

)
=

1

ε
+

[
−(γ + log(2β))− 2π2

3β
+

4π4

15β2
− 32π6

189β3
− 512π10

3465β5
+ . . .

]
,

d4−2ε

(
ρJT0 ;β

)
=

[
−2β − 8π2

3

]
1

ε

+

[
2β (γ + log(2β)− 1) +

8π2

3

(
γ + log(2β) +

1

2

)
+

88π4

45β
− 992π6

945β2
+ . . .

]
,

d6−2ε

(
ρJT0 ;β

)
=

[
2β2 + 8π2β +

128π4

15

]
1

ε

+

[
− 2β2

(
γ + log(2β)− 3

2

)
− 8π2β

(
γ + log(2β)− 2

3

)
− 128π4

15

(
γ + log(2β) +

31

48

)
− 6112π6

945β
+

18496π8

4725β2
+ . . .

]
.

(2.51)

We can again confirm that the divergent pieces are exactly c2g(ρ
JT
0 ; β), c.f., (2.27).

From these coefficients (and (2.27)) we can readily construct the coefficients in the genus
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expansion (2.31). We find for the SFF in non-orientable JT gravity up to genus 5
2
:

KGOE,JT
β (τ) =

1

2πβ
τ

− 1√
2πβ

[
1− π2

6β
+

7π4

120β2
− 31π6

1008β3
+ . . .

]
τ2

+

[
− 1

π

(
1

3
+ γ + log

(
2βτ2

))
− 2π

3β
+

4π3

15β2
− 32π5

189β3
+ . . .

]
τ3

+
8

3π
(2πβ)

1
2

[
1 +

π2

2β
− 17π4

120β2
+

457π6

5040β3
+ . . .

]
τ4

+

[
4β

π

(
− 7

60
+ γ + log

(
2βτ2

))
+

16π

3

(
83

60
+ γ + log

(
2βτ3

))
+

176π3

45β
+ . . .

]
τ5

− 64

15π2
(2πβ)

3
2

[
1 +

5π2

2β
+

9π4

8β2
− 367π6

1008β3
+ . . .

]
τ6

+ . . .

(2.52)

This quantity was also computed in [43] up to order τ3, see their eq. (4.19). Our result matches

theirs up to that order. We observe that just like the simpler GUE case, it is still true that for

each power of τ, the leading term in the low temperature expansion corresponds to the Airy SFF

in (2.40). However, in addition there is not only an infinite series in powers of β at each genus,

but also new logarithmic terms, appearing at O(τ5) for the first time (and proliferating at higher

genus).

High temperature expansion. In Appendix B.1, we derive recursive formulas for the coef-

ficients dn in JT gravity, expanded in small β. The first few coefficients are (for half-integer

genus):

d1
(
ρJT0 ;β

)
=
π

4
− π

16
β +

π

32
β2 − 17π

768
β3 +

31π

1536
β4 + . . .

d3
(
ρJT0 ;β

)
= −π

3

2
+
π3 − 12π

8
β − π3 − 10π

16
β2 +

17π3 − 168π

384
β3 . . .

d5
(
ρJT0 ;β

)
=

3π5

2
− 3π5 − 40π3

8
β +

9π5 − 100π3 + 120π

48
β2 + . . .

(2.53)
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and (for integer genus):

d2−2ϵ

(
ρJT0 ;β

)
=

1

ϵ
+

[
2(1− log(4π))− 3ζ(3)

2π2
β +

15ζ(5)

8π4
β2 − 105ζ(7)

32π6
β3 + . . .

]
+ . . .

d4−2ϵ

(
ρJT0 ;β

)
=

[
−8π2

3
− 2β

]
1

ϵ
+

[
8π2

9
(6 log(4π)− 5) +

(
4 log(4π) + 4ζ(3)− 22

3

)
β

+
5(ζ(3)− ζ(5))

π2
β2 − 35(ζ(5)− ζ(7))

4π2
β3 +

315(ζ(7)− ζ(9))

16π6
β4 + . . .

]
+ . . .

d6−2ϵ

(
ρJT0 ;β

)
=

[
128π4

15
+ 8π2β + 2β2

]
1

ϵ
+

[
− 64π4

225
(60 log(4π)− 47)

+
4π2

15
(101− 60 log(4π)− 48ζ(3))β + . . .

]
+ . . .

(2.54)

Note that the divergent terms match with the low temperature expansion, (2.51), because their

series expansion (in β) truncates. However, the finite terms have been resummed in a non-trivial

way, which we explore further in Appendix B.2.

Collecting all the above results, we can write down the first few terms in the genus expansion

of the JT SFF at high temperatures:

KGOE,JT
β (τ) =

1

2πβ
τ

+

[
−1

4
+
β

16
− β2

32
+

17β3

768
− 31β4

1536
+ . . .

]
τ2

+

[
5

3π
− 3ζ(3)

2π3
β +

15ζ(5)

8π5
β2 − 105ζ(7)

32π7
β3 + . . .− 2

π
log(4πτ)

]
τ3

+

[
2π2

3
+

12− π2

6
β − 10− π2

12
β2 +

168− 17π2

288
β3 + . . .

]
τ4

+

[
−188π

45
− 167− 120ζ(3)

15π
β +

10(ζ(3)− ζ(5))

π3
β2 + . . .+

8

3π
(4π2 + 3β) log(4πτ)

]
τ5

+

[
−24π4

5
− 80π2 − 6π4

5
β − 9π4 − 100π2 + 120

15
β2 + . . .

]
τ6

+ . . .

(2.55)

This should be compared to the low temperature expansion (2.52). Evidently, the two are related

by a non-trivial resummation. In Appendix B.2 we confirm this resummation explicitly for low

genus, using zeta-function regularization.
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2.3 The GSE τ-scaled SFF

In the GSE ensemble, the universal expression we wish to compute is

KGSE
β (τ) =

∫ ∞

0

dE e−2βE min

{
τ

4π
− τ

8π
log

∣∣∣∣1− τ

2πρ0(E)

∣∣∣∣ , ρ0(E)} . (2.56)

The two terms exchange dominance at ρ(E∗) = τ
4π
. In addition to the non-analyticity at the

transition point, the expression for the ramp is also divergent at ρ0 =
τ
2π
. Using similar methods

as before, we will find:

KGSE
β (τ) =

τ

8πβ
+
∑

g=1,2,...

[
AGSE

g (ρ0; β) +BGSE
g (ρ0; β) log

(τ
2

)] (τ
2

)2g+1

+
∑

g̃= 1
2
, 3
2
,...

CGSE
g̃ (ρ0; β)

(τ
2

)2g̃+1 (2.57)

with

AGSE
g (ρ0; β) =

1

2
AGOE

g (ρ0; β) ,

BGSE
g (ρ0; β) =

1

2
BGOE

g (ρ0; β) ,

CGSE
g̃ (ρ0; β) = −1

2
CGOE

g̃ (ρ0; β) .

(2.58)

Note that the coefficients encode no new information compared to GOE. The GSE expression is

obtained from the corresponding GOE expression (2.31) by the following simple rule:

KGSE
β (τ) =

1

2
KGOE

β

(τ
2

) ∣∣∣∣
CGOE

g̃ (ρ0;β)→−CGOE
g̃ (ρ0;β)

(2.59)

The similarity with GOE is to be expected because both the GOE and GSE have a time-reversal

symmetry T , but in the former it is idempotent (T 2 = 1) while in the latter it satisfies T 2 = −1.

The derivation of (2.57) is given in Appendix A.2. We shall not discuss examples, as they follow

immediately from the GOE expressions.

2.4 Convergence of the τ-scaled topological expansion

The explicit expressions for the topological expansion in the τ-scaling limit are (2.2), (2.31),

(2.57). In this subsection we study the convergence properties of these expansions. The most

important feature is that all of them have a finite radius of convergence. Its value, however,

depends on the details.
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Figure 3: The τ-scaled SFF Kβ(τ) for the Airy model in the GUE, GOE, and GSE universality
classes. In all three cases convergence to the plateau is manifest and the radius of convergence is
infinite. The height of the asymptotic plateau is 1/(8

√
2πβ3/2). Curves were obtained for β = 1 and

using a truncated topological expansion including terms for g = 0, . . . , 100.

Example I: Airy model. In the Airy model, the radius of convergence τmax of Kβ(τ) is infinite

in all three universality classes.7 We can illustrate this numerically: in figure 3 we compare the

different τ-scaled SFFs in the Airy model. Convergence is evident, where the transition to the

plateau occurs at τ ∼ 1. We can also see an interesting non-monotonicity in the GSE SFF. All

three curves eventually converge to the same plateau value ⟨ZAiry(2β)⟩ = 1/(8
√
2πβ3/2), which

provides a consistency check on our results.

Example II: (2, 3) minimal string. In the (2, p) minimal string model for p = 3 we also

computed closed-form expressions for the coefficients in the topological expansion. While Kβ(τ)

is still given by a convergent genus expansion, the radius of convergence is no longer infinite (see

7This is trivial to see for GUE (see (2.17)), as well as for the sums over Bg- and Cg̃-coefficients in GOE/GSE
(see (2.39)). For the Ag-coefficients in GOE/GSE, the infinite radius of convergence follows from the very slow
growth of the numbers appearing in (2.39): 1

g 2F1(2g, 2g, 2g+1;−1)+ψ(g+1) ∼ log(g) as g → ∞. Another useful

estimate is 2F1(2g, 2g, 2g + 1;−1) ∼ 2−2g+1 as g → ∞.
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Figure 4: The τ-scaled SFF Kβ(τ) for the (2, 3) minimal string model in the GUE, GOE, and GSE
universality classes. The genus expansion converges, but the radius of convergence is finite: solid
dots indicate the largest value τmax for which the respective genus expansion converges. Curves
were obtained for β = 1, κ = 20, and using a truncated topological expansion including terms for
g = 0, . . . , 300.

also [47] for the GUE case). For the three ensembles the radius of convergence is:8

τGUE
max = τGSE

max =
1

3

√
2κ , τGOE

max =
1

6

√
2κ . (2.61)

See figure 4 for illustration. Since Kβ(τ) is smooth and its series expansion has a finite radius of

convergence, it can be analytically continued to τ > τmax.

Example III: JT gravity. In JT gravity the radius of convergence of the τ-scaled genus

expansion is finite (thus allowing analytic continuation), but too small to visualize the convergence

to the plateau (see also [47]).

8This can be confirmed by applying the ratio test to the three types of terms appearing in the topological
expansion:

(τmax)
2 = min

{
lim
g→∞

∣∣∣∣ Ag(ρ0;β)

Ag+1(ρ0;β)

∣∣∣∣ , lim
g→∞

∣∣∣∣ Bg(ρ0;β)

Bg+1(ρ0;β)

∣∣∣∣ , lim
g̃→∞

∣∣∣∣ Cg̃(ρ0;β)

Cg̃+1(ρ0;β)

∣∣∣∣} . (2.60)

All three limits give the same radius of convergence for the (2, p = 3) minimal string, i.e., (2.61).
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3 Topological recursion in non-orientable topological grav-

ity

In this section, we investigate gravitational aspects of the τ-scaling limit. As described in section

1.3, the non-orientable case presents several novel subtleties. Our strategty will be to work in the

Airy limit of JT gravity. This serves as a testing ground to explore some of the complications in

non-orientable gravitational path integrals: in the Airy limit, crosscap divergences turn out to be

absent, thus removing one technical issue and allowing us to focus on questions relating to the

late-time limit. Due to the absence of crosscap divergences, we obtain a convergent topological

recursion for the Weil-Petersson volumes of the non-orientable Airy model, V Airy
g,n , which are

manifestly finite. This recursion will be shown to be dual to the loop equations of the GOE

matrix model, arising as a limit of the duality established in [23]. We present a table of explicit

expressions for the non-orientable Airy Weil–Petersson volumes (table 1).

3.1 Review of non-orientable topological recursion

We briefly review the calculation of the Euclidean JT gravity path integral Zg

(
β1, ..., βn

)
cor-

responding to non-orientable hyperbolic surfaces with n Schwarzian boundaries and arbitrary

numbers of handles g. This non-perturbative calculation relies on computing various Weil-

Petersson (WP) volumes of moduli spaces of non-orientable bordered hyperbolic surfaces. Since

we only discuss non-orientable ensembles from here onwards, we shall no longer use special labels

to indicate this.

The decomposition into “external” trumpet factors glued to “internal” WP volumes was

described in (1.15). In order to compute such a path integral for given (g, n), it is desirable

to have a systematic way of calculating the WP volumes. This is achieved by Mirzakhani’s

topological recursion [50] and its non-orientable generalization [23], which we review briefly.

The non-orientable extension of Mirzakhani’s topological recursion [50] was developed in [23].

It expresses the WP volumes Vg,n+1 for the moduli space of non-orientable genus-g surfaces with

n + 1 geodesic boundaries b1, . . . , bn+1 in terms of the moduli space volumes for lower genus or
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lower number of boundaries:

∂b

[
bVg,n+1(b,b)

]
=

n+1∑
i=2

∫ ∞

0

b′db′
(
H(b′, b+ bi) +H(b′, b− bi)

)
Vg,n(b

′,b\bi)

+
1

2

∫ ∞

0

b′db′ b′′db′′ H(b′ + b′′, b)

Vg−1,n+2(b
′, b′′,b) +

∑
stable

b=b1∪b2

Vg1,|b1|+1(b
′,b1)Vg2,|b2|+1(b

′′,b2)


+

1

2

∫ ∞

0

b′db′
[
b′H(b′, b) + 2 log

(
1 + e

b−b′
2

)(
1 + e−

b+b′
2

)]
Vg− 1

2
,n+1(b

′,b)

(3.1)

Amongst the boundaries b1, . . . , bn+1, one singles out one boundary, w.l.o.g. b ≡ b1. Then, b =

{b2, ..., bn+1} represents the lengths of the other fixed external boundaries. The recursion is

obtained by removing from Σg,n+1 a three-holed sphere, one of whose boundaries is b. The

different terms in (3.1) describe different possible fates for the remaining two boundaries of the

three-holed sphere:

(i) First line: the three-holed sphere is glued to the rest of the surface along one internal

geodesic boundary b′. The third hole is an external geodesic boundary bi.

(ii) Second line: the three-holed sphere is glued to the rest of the surface along two internal

geodesic boundaries b′ and b′′. The first term involving Vg−1,n+2 descibes the case where

the rest of the surface is connected. The sum over “stable” decompositions accounts for

the case where the rest of the surface is disconnected. In the latter case, the two internal

gluings attach the three-holed sphere to two disconnected surfaces that obey g1+g2 = g and

b1∪b2 = b. The sum over such stable decompositions excludes cases where one component

would involve the once- or twice-punctures spheres, V0,1 or V0,2.

(iii) Third line: the three-holed sphere is glued to the rest of the surface along one internal

geodesic boundary b′. The third hole is closed off with a crosscap.

The integration kernels encode the details of the Riemannian geometries (i.e., the information

about JT gravity). They are found to be:

H(x, y) =
1

1 + e
x+y
2

+
1

1 + e
x−y
2

. (3.2)

We give an illustrative example in figure 5. For more detailed explanations and derivations, we

refer the reader to the literature [50, 56, 23].

Note that the topological recursion for orientable geometries takes the same form as (3.1)

with two small differences: the third line is absent in the orientable case, and the first line is
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Figure 5: Illustration of the topological recursion for non-orientable WP volumes. We show the
different types of decompositions in the same order in which they appear in (3.1) for the case of
V1,2(b1, b2). The three-holed sphere with boundary b ≡ b1 is shaded in each case.

multiplied by a factor 1
2
(the inclusion of crosscaps leads to pairs of equivalent geometries with a

single internal gluing surface).

The initial conditions for the non-orientable recursion are given as follows:

V0,2(bi, bj) =
2

bi
δ(bi − bj) , V0,3(bi, bj, bk) = 4 , V 1

2
,1(b) =

1

2b tanh
(
b
4

) . (3.3)

The topological recursion for non-orientable WP volumes becomes ill-defined when crosscaps

shrink to zero. A simple cure is to impose a minimum length ϵ on all one-sided geodesics,

computing volumes on this “ϵ-regularized” moduli space. For small ϵ, the recursion still holds with

only its initial conditions tweaked. In fact, these regularized volumes have been shown to coincide

with those of the (2, p) minimal string model, with p = ϵ−1 [23, 43]. Equivalently, one can show

that the non-orientable recursion reproduces the loop equations of a double-scaled orthogonal

matrix integral whose spectral curve behaves like y(z) ∼ sin(2πz). In contrast, Mirzakhani’s

original orientable recursion matches the unitary version of the same integral [57, 58], which

underpins its formal duality with JT gravity.

Here we adopt an alternative way to eliminate divergences by taking the Airy limit, i.e.,

sending the geodesic boundary lengths to infinity.9

9The Airy limit can be thought of as scaling towards the edge of the spectral curve. Since non-zero density acts
as an order parameter for causal symmetry breaking, scaling towards the edge is akin to approaching a quantum
critical point where the order parameter vanishes. For details see [59, 60].
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3.2 Topological recursion in the Airy limit

We will now derive topological recursion relations for the Airy model. The strategy is to employ a

certain long-boundary limit of the JT gravity theory. We first recall this intuition in the orientable

case, before generalizing to non-orientable WP volumes.

It was argued in [42] that the WP volumes of the Airy (topological) model can be obtained

from JT gravity in the limit of long geodesic boundary lengths. Let us briefly recall the derivation

of this argument. Consider the JT gravity path integral with n boundaries at inverse temperatures

β1, . . . , βn:

ZJT(β1, ..., βn) =
∑
g≥0

eχS0 ZJT
g,n(β1, ..., βn) , χ = 2− 2g − n . (3.4)

It is known that the Airy limit of the n-boundary path integral is obtained from a homogeneous

scaling of the boundary lengths and an infinite shift (renormalization) of the extremal entropy S0

[42]:

ZAiry
g,n (β1, ..., βn) ≡ lim

Λ→∞
eχ(S0+

3
2
log Λ) ZJT

g,n(Λβ1, ...,Λβn) . (3.5)

This equation can be translated into a scaling limit for the WP volumes by writing both sides

using the gluing prescription with trumpet wave functions:

ZJT/Airy
g,n (β1, ..., βn) =

 n∏
i=1

∫ ∞

0

bidbi
e
− b2i

4βi√
4πβi

V JT/Airy
g,n (b1, ..., bn) . (3.6)

The large boundary limit of the full gravitational path integral (3.5) thus translates directly into

the scaling limit for WP volumes:

V Airy
g,n (b1, ..., bn) ≡ lim

Λ→∞
Λ3−3g−n V JT

g,n (
√
Λ b1, ...,

√
Λ bn) . (3.7)

It is not obvious that (3.7) should also apply to non-orientable WP volumes. We will show that

the analogous statement holds in the non-orientable case, where the long boundary limit of the

WP volumes for non-orientable JT is given by the WP volumes for non-orientable Airy. We

will take the limit directly at the level of the topological recursion and perform a number of

consistency checks.

We can apply the scaling limit of WP volumes (3.7) to Mirzakhani’s recursion formula. The

only input required for this is the large-boundary limit of the integration kernel H(x, y):

lim
Λ→∞

H
(√

Λ x,
√
Λ y
)
= 1 + θ(y − x)− θ(y + x) , (3.8)

and similarly for the logarithm in the last line of (3.1).
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b2

<latexit sha1_base64="WcyGYAOywgLSEBzkpWyy2iX/TYY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMvu2rXtrejFYwXbCu2yZNNsG5p9kGSFsuyf8OJf8eJBEa+CN/+N6WNBRQcCw8x8yZfxYkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iko4Jh0csYjfekgQRkPSkVQychtzggKPkZ43uZz5vTvCBY3CGzmNiROgUUh9ipFUkluupoP5JX0+8pzU0I261TDPqoZu21atYSvSbDYblp15rpW55UqegHkC5glo6sYcFbBE2y1/DIYRTgISSsyQEH3TiKWTIi4pZiQrDRJBYoQnaET6ioYoIMJJ5wtl8EQpQ+hHXJ1Qwrn6fSJFgRDTwFPJAMmx+O3NxL+8fiL9hpPSME4kCfHiIT9hUEZwVhEcUk6wZFNFEOZU7QrxGHGEpSqypErIfwr/J11LN8/12nWt0rpY1lEER+AYnAIT1EELXIE26AAM7sEjeAYv2oP2pL1qb4toQVvOHIIf0N6/AIOJm0c=</latexit>

b2

<latexit sha1_base64="jLla349VToCn5nYEY4yo2bld0yY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMtu3bZ6K3rxWME+YLss2TRtQ7MPkqxQlv0TXvwrXjwo4lXw5r8xu21BRQcCw8x8yZfxIkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iow5Jh0cspD3PSQIowHpSCoZ6UecIN9jpOdNrzK/d0e4oGFwK2cRcXw0DuiIYiSV5JarySC/xOZjz0kM/cKo15vNqqEbptVo1jJSt84atdRzzdQtV5YJuEzAZQKaupGjAhZou+WPwTDEsU8CiRkSwjaNSDoJ4pJiRtLSIBYkQniKxsRWNEA+EU6SL5TCE6UM4Sjk6gQS5ur3iQT5Qsx8TyV9JCfit5eJf3l2LEfnTkKDKJYkwPOHRjGDMoRZRXBIOcGSzRRBmFO1K8QTxBGWqsiSKmH5U/g/6dZ0s6FbN1aldbmoowiOwDE4BSZogha4Bm3QARjcg0fwDF60B+1Je9Xe5tGCtpg5BD+gvX8BSpKbIA==</latexit>

b1

<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0
<latexit sha1_base64="WcyGYAOywgLSEBzkpWyy2iX/TYY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMvu2rXtrejFYwXbCu2yZNNsG5p9kGSFsuyf8OJf8eJBEa+CN/+N6WNBRQcCw8x8yZfxYkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iko4Jh0csYjfekgQRkPSkVQychtzggKPkZ43uZz5vTvCBY3CGzmNiROgUUh9ipFUkluupoP5JX0+8pzU0I261TDPqoZu21atYSvSbDYblp15rpW55UqegHkC5glo6sYcFbBE2y1/DIYRTgISSsyQEH3TiKWTIi4pZiQrDRJBYoQnaET6ioYoIMJJ5wtl8EQpQ+hHXJ1Qwrn6fSJFgRDTwFPJAMmx+O3NxL+8fiL9hpPSME4kCfHiIT9hUEZwVhEcUk6wZFNFEOZU7QrxGHGEpSqypErIfwr/J11LN8/12nWt0rpY1lEER+AYnAIT1EELXIE26AAM7sEjeAYv2oP2pL1qb4toQVvOHIIf0N6/AIOJm0c=</latexit>

b2

<latexit sha1_base64="jLla349VToCn5nYEY4yo2bld0yY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMtu3bZ6K3rxWME+YLss2TRtQ7MPkqxQlv0TXvwrXjwo4lXw5r8xu21BRQcCw8x8yZfxIkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iow5Jh0cspD3PSQIowHpSCoZ6UecIN9jpOdNrzK/d0e4oGFwK2cRcXw0DuiIYiSV5JarySC/xOZjz0kM/cKo15vNqqEbptVo1jJSt84atdRzzdQtV5YJuEzAZQKaupGjAhZou+WPwTDEsU8CiRkSwjaNSDoJ4pJiRtLSIBYkQniKxsRWNEA+EU6SL5TCE6UM4Sjk6gQS5ur3iQT5Qsx8TyV9JCfit5eJf3l2LEfnTkKDKJYkwPOHRjGDMoRZRXBIOcGSzRRBmFO1K8QTxBGWqsiSKmH5U/g/6dZ0s6FbN1aldbmoowiOwDE4BSZogha4Bm3QARjcg0fwDF60B+1Je9Xe5tGCtpg5BD+gvX8BSpKbIA==</latexit>

b1

<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0

<latexit sha1_base64="v2Wq44n2LSlWtP14F6ufLbuZvos=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXgnoM6MFjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwup35rSdUmsfywYwT9CM6kDzkjBor1S96xZJbducgq8TLSAky1HrFr24/ZmmE0jBBte54bmL8CVWGM4HTQjfVmFA2ogPsWCpphNqfzA+dkjOr9EkYK1vSkLn6e2JCI63HUWA7I2qGetmbif95ndSEN/6EyyQ1KNliUZgKYmIy+5r0uUJmxNgSyhS3txI2pIoyY7Mp2BC85ZdXSfOy7F2VK/VKqXqXxZGHEziFc/DgGqpwDzVoAAOEZ3iFN+fReXHenY9Fa87JZo7hD5zPH3UNjLo=</latexit> +

<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0

<latexit sha1_base64="v2Wq44n2LSlWtP14F6ufLbuZvos=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXgnoM6MFjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwup35rSdUmsfywYwT9CM6kDzkjBor1S96xZJbducgq8TLSAky1HrFr24/ZmmE0jBBte54bmL8CVWGM4HTQjfVmFA2ogPsWCpphNqfzA+dkjOr9EkYK1vSkLn6e2JCI63HUWA7I2qGetmbif95ndSEN/6EyyQ1KNliUZgKYmIy+5r0uUJmxNgSyhS3txI2pIoyY7Mp2BC85ZdXSfOy7F2VK/VKqXqXxZGHEziFc/DgGqpwDzVoAAOEZ3iFN+fReXHenY9Fa87JZo7hD5zPH3UNjLo=</latexit> +

<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0

<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0

<latexit sha1_base64="6G2zO5sN5J7ICBpeRRExDqC4K/o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPEU9iVoB4DevAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh6Bc7hVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u12yyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AiWWNUw==</latexit>

b00

<latexit sha1_base64="jLla349VToCn5nYEY4yo2bld0yY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMtu3bZ6K3rxWME+YLss2TRtQ7MPkqxQlv0TXvwrXjwo4lXw5r8xu21BRQcCw8x8yZfxIkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iow5Jh0cspD3PSQIowHpSCoZ6UecIN9jpOdNrzK/d0e4oGFwK2cRcXw0DuiIYiSV5JarySC/xOZjz0kM/cKo15vNqqEbptVo1jJSt84atdRzzdQtV5YJuEzAZQKaupGjAhZou+WPwTDEsU8CiRkSwjaNSDoJ4pJiRtLSIBYkQniKxsRWNEA+EU6SL5TCE6UM4Sjk6gQS5ur3iQT5Qsx8TyV9JCfit5eJf3l2LEfnTkKDKJYkwPOHRjGDMoRZRXBIOcGSzRRBmFO1K8QTxBGWqsiSKmH5U/g/6dZ0s6FbN1aldbmoowiOwDE4BSZogha4Bm3QARjcg0fwDF60B+1Je9Xe5tGCtpg5BD+gvX8BSpKbIA==</latexit>

b1
<latexit sha1_base64="WcyGYAOywgLSEBzkpWyy2iX/TYY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMvu2rXtrejFYwXbCu2yZNNsG5p9kGSFsuyf8OJf8eJBEa+CN/+N6WNBRQcCw8x8yZfxYkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iko4Jh0csYjfekgQRkPSkVQychtzggKPkZ43uZz5vTvCBY3CGzmNiROgUUh9ipFUkluupoP5JX0+8pzU0I261TDPqoZu21atYSvSbDYblp15rpW55UqegHkC5glo6sYcFbBE2y1/DIYRTgISSsyQEH3TiKWTIi4pZiQrDRJBYoQnaET6ioYoIMJJ5wtl8EQpQ+hHXJ1Qwrn6fSJFgRDTwFPJAMmx+O3NxL+8fiL9hpPSME4kCfHiIT9hUEZwVhEcUk6wZFNFEOZU7QrxGHGEpSqypErIfwr/J11LN8/12nWt0rpY1lEER+AYnAIT1EELXIE26AAM7sEjeAYv2oP2pL1qb4toQVvOHIIf0N6/AIOJm0c=</latexit>

b2

<latexit sha1_base64="jLla349VToCn5nYEY4yo2bld0yY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMtu3bZ6K3rxWME+YLss2TRtQ7MPkqxQlv0TXvwrXjwo4lXw5r8xu21BRQcCw8x8yZfxIkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iow5Jh0cspD3PSQIowHpSCoZ6UecIN9jpOdNrzK/d0e4oGFwK2cRcXw0DuiIYiSV5JarySC/xOZjz0kM/cKo15vNqqEbptVo1jJSt84atdRzzdQtV5YJuEzAZQKaupGjAhZou+WPwTDEsU8CiRkSwjaNSDoJ4pJiRtLSIBYkQniKxsRWNEA+EU6SL5TCE6UM4Sjk6gQS5ur3iQT5Qsx8TyV9JCfit5eJf3l2LEfnTkKDKJYkwPOHRjGDMoRZRXBIOcGSzRRBmFO1K8QTxBGWqsiSKmH5U/g/6dZ0s6FbN1aldbmoowiOwDE4BSZogha4Bm3QARjcg0fwDF60B+1Je9Xe5tGCtpg5BD+gvX8BSpKbIA==</latexit>

b1
<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0
<latexit sha1_base64="v2Wq44n2LSlWtP14F6ufLbuZvos=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXgnoM6MFjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwup35rSdUmsfywYwT9CM6kDzkjBor1S96xZJbducgq8TLSAky1HrFr24/ZmmE0jBBte54bmL8CVWGM4HTQjfVmFA2ogPsWCpphNqfzA+dkjOr9EkYK1vSkLn6e2JCI63HUWA7I2qGetmbif95ndSEN/6EyyQ1KNliUZgKYmIy+5r0uUJmxNgSyhS3txI2pIoyY7Mp2BC85ZdXSfOy7F2VK/VKqXqXxZGHEziFc/DgGqpwDzVoAAOEZ3iFN+fReXHenY9Fa87JZo7hD5zPH3UNjLo=</latexit> +

<latexit sha1_base64="6G2zO5sN5J7ICBpeRRExDqC4K/o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPEU9iVoB4DevAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh6Bc7hVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u12yyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AiWWNUw==</latexit>

b00

<latexit sha1_base64="WcyGYAOywgLSEBzkpWyy2iX/TYY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMvu2rXtrejFYwXbCu2yZNNsG5p9kGSFsuyf8OJf8eJBEa+CN/+N6WNBRQcCw8x8yZfxYkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iko4Jh0csYjfekgQRkPSkVQychtzggKPkZ43uZz5vTvCBY3CGzmNiROgUUh9ipFUkluupoP5JX0+8pzU0I261TDPqoZu21atYSvSbDYblp15rpW55UqegHkC5glo6sYcFbBE2y1/DIYRTgISSsyQEH3TiKWTIi4pZiQrDRJBYoQnaET6ioYoIMJJ5wtl8EQpQ+hHXJ1Qwrn6fSJFgRDTwFPJAMmx+O3NxL+8fiL9hpPSME4kCfHiIT9hUEZwVhEcUk6wZFNFEOZU7QrxGHGEpSqypErIfwr/J11LN8/12nWt0rpY1lEER+AYnAIT1EELXIE26AAM7sEjeAYv2oP2pL1qb4toQVvOHIIf0N6/AIOJm0c=</latexit>

b2
<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0

<latexit sha1_base64="6G2zO5sN5J7ICBpeRRExDqC4K/o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPEU9iVoB4DevAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh6Bc7hVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u12yyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AiWWNUw==</latexit>

b00

<latexit sha1_base64="jLla349VToCn5nYEY4yo2bld0yY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMtu3bZ6K3rxWME+YLss2TRtQ7MPkqxQlv0TXvwrXjwo4lXw5r8xu21BRQcCw8x8yZfxIkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iow5Jh0cspD3PSQIowHpSCoZ6UecIN9jpOdNrzK/d0e4oGFwK2cRcXw0DuiIYiSV5JarySC/xOZjz0kM/cKo15vNqqEbptVo1jJSt84atdRzzdQtV5YJuEzAZQKaupGjAhZou+WPwTDEsU8CiRkSwjaNSDoJ4pJiRtLSIBYkQniKxsRWNEA+EU6SL5TCE6UM4Sjk6gQS5ur3iQT5Qsx8TyV9JCfit5eJf3l2LEfnTkKDKJYkwPOHRjGDMoRZRXBIOcGSzRRBmFO1K8QTxBGWqsiSKmH5U/g/6dZ0s6FbN1aldbmoowiOwDE4BSZogha4Bm3QARjcg0fwDF60B+1Je9Xe5tGCtpg5BD+gvX8BSpKbIA==</latexit>

b1
<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0
<latexit sha1_base64="v2Wq44n2LSlWtP14F6ufLbuZvos=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXgnoM6MFjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwup35rSdUmsfywYwT9CM6kDzkjBor1S96xZJbducgq8TLSAky1HrFr24/ZmmE0jBBte54bmL8CVWGM4HTQjfVmFA2ogPsWCpphNqfzA+dkjOr9EkYK1vSkLn6e2JCI63HUWA7I2qGetmbif95ndSEN/6EyyQ1KNliUZgKYmIy+5r0uUJmxNgSyhS3txI2pIoyY7Mp2BC85ZdXSfOy7F2VK/VKqXqXxZGHEziFc/DgGqpwDzVoAAOEZ3iFN+fReXHenY9Fa87JZo7hD5zPH3UNjLo=</latexit> +

<latexit sha1_base64="6G2zO5sN5J7ICBpeRRExDqC4K/o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPEU9iVoB4DevAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh6Bc7hVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u12yyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AiWWNUw==</latexit>

b00

<latexit sha1_base64="WcyGYAOywgLSEBzkpWyy2iX/TYY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMvu2rXtrejFYwXbCu2yZNNsG5p9kGSFsuyf8OJf8eJBEa+CN/+N6WNBRQcCw8x8yZfxYkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iko4Jh0csYjfekgQRkPSkVQychtzggKPkZ43uZz5vTvCBY3CGzmNiROgUUh9ipFUkluupoP5JX0+8pzU0I261TDPqoZu21atYSvSbDYblp15rpW55UqegHkC5glo6sYcFbBE2y1/DIYRTgISSsyQEH3TiKWTIi4pZiQrDRJBYoQnaET6ioYoIMJJ5wtl8EQpQ+hHXJ1Qwrn6fSJFgRDTwFPJAMmx+O3NxL+8fiL9hpPSME4kCfHiIT9hUEZwVhEcUk6wZFNFEOZU7QrxGHGEpSqypErIfwr/J11LN8/12nWt0rpY1lEER+AYnAIT1EELXIE26AAM7sEjeAYv2oP2pL1qb4toQVvOHIIf0N6/AIOJm0c=</latexit>

b2
<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0
<latexit sha1_base64="6G2zO5sN5J7ICBpeRRExDqC4K/o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPEU9iVoB4DevAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh6Bc7hVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u12yyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AiWWNUw==</latexit>

b00

<latexit sha1_base64="jLla349VToCn5nYEY4yo2bld0yY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMtu3bZ6K3rxWME+YLss2TRtQ7MPkqxQlv0TXvwrXjwo4lXw5r8xu21BRQcCw8x8yZfxIkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iow5Jh0cspD3PSQIowHpSCoZ6UecIN9jpOdNrzK/d0e4oGFwK2cRcXw0DuiIYiSV5JarySC/xOZjz0kM/cKo15vNqqEbptVo1jJSt84atdRzzdQtV5YJuEzAZQKaupGjAhZou+WPwTDEsU8CiRkSwjaNSDoJ4pJiRtLSIBYkQniKxsRWNEA+EU6SL5TCE6UM4Sjk6gQS5ur3iQT5Qsx8TyV9JCfit5eJf3l2LEfnTkKDKJYkwPOHRjGDMoRZRXBIOcGSzRRBmFO1K8QTxBGWqsiSKmH5U/g/6dZ0s6FbN1aldbmoowiOwDE4BSZogha4Bm3QARjcg0fwDF60B+1Je9Xe5tGCtpg5BD+gvX8BSpKbIA==</latexit>

b1
<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0
<latexit sha1_base64="v2Wq44n2LSlWtP14F6ufLbuZvos=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXgnoM6MFjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwup35rSdUmsfywYwT9CM6kDzkjBor1S96xZJbducgq8TLSAky1HrFr24/ZmmE0jBBte54bmL8CVWGM4HTQjfVmFA2ogPsWCpphNqfzA+dkjOr9EkYK1vSkLn6e2JCI63HUWA7I2qGetmbif95ndSEN/6EyyQ1KNliUZgKYmIy+5r0uUJmxNgSyhS3txI2pIoyY7Mp2BC85ZdXSfOy7F2VK/VKqXqXxZGHEziFc/DgGqpwDzVoAAOEZ3iFN+fReXHenY9Fa87JZo7hD5zPH3UNjLo=</latexit> +

<latexit sha1_base64="6G2zO5sN5J7ICBpeRRExDqC4K/o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPEU9iVoB4DevAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh6Bc7hVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u12yyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AiWWNUw==</latexit>

b00

<latexit sha1_base64="WcyGYAOywgLSEBzkpWyy2iX/TYY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMvu2rXtrejFYwXbCu2yZNNsG5p9kGSFsuyf8OJf8eJBEa+CN/+N6WNBRQcCw8x8yZfxYkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iko4Jh0csYjfekgQRkPSkVQychtzggKPkZ43uZz5vTvCBY3CGzmNiROgUUh9ipFUkluupoP5JX0+8pzU0I261TDPqoZu21atYSvSbDYblp15rpW55UqegHkC5glo6sYcFbBE2y1/DIYRTgISSsyQEH3TiKWTIi4pZiQrDRJBYoQnaET6ioYoIMJJ5wtl8EQpQ+hHXJ1Qwrn6fSJFgRDTwFPJAMmx+O3NxL+8fiL9hpPSME4kCfHiIT9hUEZwVhEcUk6wZFNFEOZU7QrxGHGEpSqypErIfwr/J11LN8/12nWt0rpY1lEER+AYnAIT1EELXIE26AAM7sEjeAYv2oP2pL1qb4toQVvOHIIf0N6/AIOJm0c=</latexit>

b2

<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0

<latexit sha1_base64="6G2zO5sN5J7ICBpeRRExDqC4K/o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPEU9iVoB4DevAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh6Bc7hVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u12yyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AiWWNUw==</latexit>

b00

<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0

<latexit sha1_base64="6G2zO5sN5J7ICBpeRRExDqC4K/o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPEU9iVoB4DevAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh6Bc7hVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u12yyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AiWWNUw==</latexit>

b00

<latexit sha1_base64="jLla349VToCn5nYEY4yo2bld0yY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMtu3bZ6K3rxWME+YLss2TRtQ7MPkqxQlv0TXvwrXjwo4lXw5r8xu21BRQcCw8x8yZfxIkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iow5Jh0cspD3PSQIowHpSCoZ6UecIN9jpOdNrzK/d0e4oGFwK2cRcXw0DuiIYiSV5JarySC/xOZjz0kM/cKo15vNqqEbptVo1jJSt84atdRzzdQtV5YJuEzAZQKaupGjAhZou+WPwTDEsU8CiRkSwjaNSDoJ4pJiRtLSIBYkQniKxsRWNEA+EU6SL5TCE6UM4Sjk6gQS5ur3iQT5Qsx8TyV9JCfit5eJf3l2LEfnTkKDKJYkwPOHRjGDMoRZRXBIOcGSzRRBmFO1K8QTxBGWqsiSKmH5U/g/6dZ0s6FbN1aldbmoowiOwDE4BSZogha4Bm3QARjcg0fwDF60B+1Je9Xe5tGCtpg5BD+gvX8BSpKbIA==</latexit>

b1

<latexit sha1_base64="WcyGYAOywgLSEBzkpWyy2iX/TYY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMvu2rXtrejFYwXbCu2yZNNsG5p9kGSFsuyf8OJf8eJBEa+CN/+N6WNBRQcCw8x8yZfxYkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iko4Jh0csYjfekgQRkPSkVQychtzggKPkZ43uZz5vTvCBY3CGzmNiROgUUh9ipFUkluupoP5JX0+8pzU0I261TDPqoZu21atYSvSbDYblp15rpW55UqegHkC5glo6sYcFbBE2y1/DIYRTgISSsyQEH3TiKWTIi4pZiQrDRJBYoQnaET6ioYoIMJJ5wtl8EQpQ+hHXJ1Qwrn6fSJFgRDTwFPJAMmx+O3NxL+8fiL9hpPSME4kCfHiIT9hUEZwVhEcUk6wZFNFEOZU7QrxGHGEpSqypErIfwr/J11LN8/12nWt0rpY1lEER+AYnAIT1EELXIE26AAM7sEjeAYv2oP2pL1qb4toQVvOHIIf0N6/AIOJm0c=</latexit>

b2
<latexit sha1_base64="jLla349VToCn5nYEY4yo2bld0yY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMtu3bZ6K3rxWME+YLss2TRtQ7MPkqxQlv0TXvwrXjwo4lXw5r8xu21BRQcCw8x8yZfxIkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iow5Jh0cspD3PSQIowHpSCoZ6UecIN9jpOdNrzK/d0e4oGFwK2cRcXw0DuiIYiSV5JarySC/xOZjz0kM/cKo15vNqqEbptVo1jJSt84atdRzzdQtV5YJuEzAZQKaupGjAhZou+WPwTDEsU8CiRkSwjaNSDoJ4pJiRtLSIBYkQniKxsRWNEA+EU6SL5TCE6UM4Sjk6gQS5ur3iQT5Qsx8TyV9JCfit5eJf3l2LEfnTkKDKJYkwPOHRjGDMoRZRXBIOcGSzRRBmFO1K8QTxBGWqsiSKmH5U/g/6dZ0s6FbN1aldbmoowiOwDE4BSZogha4Bm3QARjcg0fwDF60B+1Je9Xe5tGCtpg5BD+gvX8BSpKbIA==</latexit>

b1
<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0
<latexit sha1_base64="v2Wq44n2LSlWtP14F6ufLbuZvos=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXgnoM6MFjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwup35rSdUmsfywYwT9CM6kDzkjBor1S96xZJbducgq8TLSAky1HrFr24/ZmmE0jBBte54bmL8CVWGM4HTQjfVmFA2ogPsWCpphNqfzA+dkjOr9EkYK1vSkLn6e2JCI63HUWA7I2qGetmbif95ndSEN/6EyyQ1KNliUZgKYmIy+5r0uUJmxNgSyhS3txI2pIoyY7Mp2BC85ZdXSfOy7F2VK/VKqXqXxZGHEziFc/DgGqpwDzVoAAOEZ3iFN+fReXHenY9Fa87JZo7hD5zPH3UNjLo=</latexit> +

<latexit sha1_base64="6G2zO5sN5J7ICBpeRRExDqC4K/o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPEU9iVoB4DevAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh6Bc7hVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u12yyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AiWWNUw==</latexit>

b00
<latexit sha1_base64="6G2zO5sN5J7ICBpeRRExDqC4K/o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPEU9iVoB4DevAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh6Bc7hVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u12yyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AiWWNUw==</latexit>

b00

<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0
<latexit sha1_base64="WcyGYAOywgLSEBzkpWyy2iX/TYY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMvu2rXtrejFYwXbCu2yZNNsG5p9kGSFsuyf8OJf8eJBEa+CN/+N6WNBRQcCw8x8yZfxYkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iko4Jh0csYjfekgQRkPSkVQychtzggKPkZ43uZz5vTvCBY3CGzmNiROgUUh9ipFUkluupoP5JX0+8pzU0I261TDPqoZu21atYSvSbDYblp15rpW55UqegHkC5glo6sYcFbBE2y1/DIYRTgISSsyQEH3TiKWTIi4pZiQrDRJBYoQnaET6ioYoIMJJ5wtl8EQpQ+hHXJ1Qwrn6fSJFgRDTwFPJAMmx+O3NxL+8fiL9hpPSME4kCfHiIT9hUEZwVhEcUk6wZFNFEOZU7QrxGHGEpSqypErIfwr/J11LN8/12nWt0rpY1lEER+AYnAIT1EELXIE26AAM7sEjeAYv2oP2pL1qb4toQVvOHIIf0N6/AIOJm0c=</latexit>

b2

<latexit sha1_base64="jLla349VToCn5nYEY4yo2bld0yY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMtu3bZ6K3rxWME+YLss2TRtQ7MPkqxQlv0TXvwrXjwo4lXw5r8xu21BRQcCw8x8yZfxIkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iow5Jh0cspD3PSQIowHpSCoZ6UecIN9jpOdNrzK/d0e4oGFwK2cRcXw0DuiIYiSV5JarySC/xOZjz0kM/cKo15vNqqEbptVo1jJSt84atdRzzdQtV5YJuEzAZQKaupGjAhZou+WPwTDEsU8CiRkSwjaNSDoJ4pJiRtLSIBYkQniKxsRWNEA+EU6SL5TCE6UM4Sjk6gQS5ur3iQT5Qsx8TyV9JCfit5eJf3l2LEfnTkKDKJYkwPOHRjGDMoRZRXBIOcGSzRRBmFO1K8QTxBGWqsiSKmH5U/g/6dZ0s6FbN1aldbmoowiOwDE4BSZogha4Bm3QARjcg0fwDF60B+1Je9Xe5tGCtpg5BD+gvX8BSpKbIA==</latexit>

b1
<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0
<latexit sha1_base64="v2Wq44n2LSlWtP14F6ufLbuZvos=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXgnoM6MFjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305ubX1jcyu/XdjZ3ds/KB4eNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwup35rSdUmsfywYwT9CM6kDzkjBor1S96xZJbducgq8TLSAky1HrFr24/ZmmE0jBBte54bmL8CVWGM4HTQjfVmFA2ogPsWCpphNqfzA+dkjOr9EkYK1vSkLn6e2JCI63HUWA7I2qGetmbif95ndSEN/6EyyQ1KNliUZgKYmIy+5r0uUJmxNgSyhS3txI2pIoyY7Mp2BC85ZdXSfOy7F2VK/VKqXqXxZGHEziFc/DgGqpwDzVoAAOEZ3iFN+fReXHenY9Fa87JZo7hD5zPH3UNjLo=</latexit> +

<latexit sha1_base64="6G2zO5sN5J7ICBpeRRExDqC4K/o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPEU9iVoB4DevAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh6Bc7hVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u12yyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AiWWNUw==</latexit>

b00
<latexit sha1_base64="6G2zO5sN5J7ICBpeRRExDqC4K/o=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPEU9iVoB4DevAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh6Bc7hVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u12yyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AiWWNUw==</latexit>

b00

<latexit sha1_base64="WcyGYAOywgLSEBzkpWyy2iX/TYY=">AAACFXicdVBLSwMxGMzWV62vqkcvwSJ4KMvu2rXtrejFYwXbCu2yZNNsG5p9kGSFsuyf8OJf8eJBEa+CN/+N6WNBRQcCw8x8yZfxYkaFNIxPrbCyura+UdwsbW3v7O6V9w+6Iko4Jh0csYjfekgQRkPSkVQychtzggKPkZ43uZz5vTvCBY3CGzmNiROgUUh9ipFUkluupoP5JX0+8pzU0I261TDPqoZu21atYSvSbDYblp15rpW55UqegHkC5glo6sYcFbBE2y1/DIYRTgISSsyQEH3TiKWTIi4pZiQrDRJBYoQnaET6ioYoIMJJ5wtl8EQpQ+hHXJ1Qwrn6fSJFgRDTwFPJAMmx+O3NxL+8fiL9hpPSME4kCfHiIT9hUEZwVhEcUk6wZFNFEOZU7QrxGHGEpSqypErIfwr/J11LN8/12nWt0rpY1lEER+AYnAIT1EELXIE26AAM7sEjeAYv2oP2pL1qb4toQVvOHIIf0N6/AIOJm0c=</latexit>

b2
<latexit sha1_base64="c8pyFcPo4kz2igrUiQzRfrwfTmg=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ6KokU9VjQg8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9cS1EbF6xHHC/YgOlAgFo2ilh+CsVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezSCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimG134mVJIiV2y+KEwlwZhM3yZ9oTlDObaEMi3srYQNqaYMbThFG4K3+PIyaV5UvMtK9b5art3mcRTgGE7gHDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyjajSI=</latexit>

b0

<latexit sha1_base64="ilm6u3EllfnYiw6vCPvxW5OnMEI=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhAsJNxJUMugjWUC5gOSI+xt5pI1e3vH7p4QjoC9jYUitv4kO/+Nm49CEx8MPN6bYWZekAiujet+Oyura+sbm7mt/PbO7t5+4eCwoeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh7cRvPqLSPJb3ZpSgH9G+5CFn1Fipdt4tFN2SOwVZJt6cFGGOarfw1enFLI1QGiao1m3PTYyfUWU4EzjOd1KNCWVD2se2pZJGqP1seuiYnFqlR8JY2ZKGTNXfExmNtB5Fge2MqBnoRW8i/ue1UxNe+xmXSWpQstmiMBXExGTyNelxhcyIkSWUKW5vJWxAFWXGZpO3IXiLLy+TxkXJuyyVa+Vi5eZpFkcOjuEEzsCDK6jAHVShDgwQnuEV3pwH58V5dz5mrSvOPMIj+APn8web9405</latexit>,

<latexit sha1_base64="ilm6u3EllfnYiw6vCPvxW5OnMEI=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhAsJNxJUMugjWUC5gOSI+xt5pI1e3vH7p4QjoC9jYUitv4kO/+Nm49CEx8MPN6bYWZekAiujet+Oyura+sbm7mt/PbO7t5+4eCwoeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh7cRvPqLSPJb3ZpSgH9G+5CFn1Fipdt4tFN2SOwVZJt6cFGGOarfw1enFLI1QGiao1m3PTYyfUWU4EzjOd1KNCWVD2se2pZJGqP1seuiYnFqlR8JY2ZKGTNXfExmNtB5Fge2MqBnoRW8i/ue1UxNe+xmXSWpQstmiMBXExGTyNelxhcyIkSWUKW5vJWxAFWXGZpO3IXiLLy+TxkXJuyyVa+Vi5eZpFkcOjuEEzsCDK6jAHVShDgwQnuEV3pwH58V5dz5mrSvOPMIj+APn8web9405</latexit>, <latexit sha1_base64="ilm6u3EllfnYiw6vCPvxW5OnMEI=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhAsJNxJUMugjWUC5gOSI+xt5pI1e3vH7p4QjoC9jYUitv4kO/+Nm49CEx8MPN6bYWZekAiujet+Oyura+sbm7mt/PbO7t5+4eCwoeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh7cRvPqLSPJb3ZpSgH9G+5CFn1Fipdt4tFN2SOwVZJt6cFGGOarfw1enFLI1QGiao1m3PTYyfUWU4EzjOd1KNCWVD2se2pZJGqP1seuiYnFqlR8JY2ZKGTNXfExmNtB5Fge2MqBnoRW8i/ue1UxNe+xmXSWpQstmiMBXExGTyNelxhcyIkSWUKW5vJWxAFWXGZpO3IXiLLy+TxkXJuyyVa+Vi5eZpFkcOjuEEzsCDK6jAHVShDgwQnuEV3pwH58V5dz5mrSvOPMIj+APn8web9405</latexit>,

<latexit sha1_base64="ilm6u3EllfnYiw6vCPvxW5OnMEI=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhAsJNxJUMugjWUC5gOSI+xt5pI1e3vH7p4QjoC9jYUitv4kO/+Nm49CEx8MPN6bYWZekAiujet+Oyura+sbm7mt/PbO7t5+4eCwoeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh7cRvPqLSPJb3ZpSgH9G+5CFn1Fipdt4tFN2SOwVZJt6cFGGOarfw1enFLI1QGiao1m3PTYyfUWU4EzjOd1KNCWVD2se2pZJGqP1seuiYnFqlR8JY2ZKGTNXfExmNtB5Fge2MqBnoRW8i/ue1UxNe+xmXSWpQstmiMBXExGTyNelxhcyIkSWUKW5vJWxAFWXGZpO3IXiLLy+TxkXJuyyVa+Vi5eZpFkcOjuEEzsCDK6jAHVShDgwQnuEV3pwH58V5dz5mrSvOPMIj+APn8web9405</latexit>,

<latexit sha1_base64="wPXRFxsGY5nzUKXUCda5SAvrq0g=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUC9CQA8eEzAPSJYwO+lNxszOLjOzQgj5Ai8eFPHqJ3nzb5wke9DEgoaiqpvuriARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0e3Mbz2h0jyWD2acoB/RgeQhZ9RYqX7TK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpoXZe+yXKlXStW7LI48nMApnIMHV1CFe6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gCQVYzM</latexit>=

<latexit sha1_base64="Y5pCXGhdZjPxNRYEpuPUNqAtJNs=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoOQKtyJqGXQxjIB8wHJEfY2c8mavb1jd08IR8DexkIRW3+Snf/GzUehiQ8GHu/NMDMvSATXxnW/ndza+sbmVn67sLO7t39QPDxq6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/Vbj6g0j+W9GSfoR3QgecgZNVaql3vFkltxZyCrxFuQEixQ6xW/uv2YpRFKwwTVuuO5ifEzqgxnAieFbqoxoWxEB9ixVNIItZ/NDp2QM6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO97E3F/7xOasJrP+MySQ1KNl8UpoKYmEy/Jn2ukBkxtoQyxe2thA2poszYbAo2BG/55VXSPK94l5WL+kWpevM0jyMPJ3AKZfDgCqpwBzVoAAOEZ3iFN+fBeXHenY95a85ZRHgMf+B8/gCV5401</latexit>

(
<latexit sha1_base64="Y5pCXGhdZjPxNRYEpuPUNqAtJNs=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoOQKtyJqGXQxjIB8wHJEfY2c8mavb1jd08IR8DexkIRW3+Snf/GzUehiQ8GHu/NMDMvSATXxnW/ndza+sbmVn67sLO7t39QPDxq6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/Vbj6g0j+W9GSfoR3QgecgZNVaql3vFkltxZyCrxFuQEixQ6xW/uv2YpRFKwwTVuuO5ifEzqgxnAieFbqoxoWxEB9ixVNIItZ/NDp2QM6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO97E3F/7xOasJrP+MySQ1KNl8UpoKYmEy/Jn2ukBkxtoQyxe2thA2poszYbAo2BG/55VXSPK94l5WL+kWpevM0jyMPJ3AKZfDgCqpwBzVoAAOEZ3iFN+fBeXHenY95a85ZRHgMf+B8/gCV5401</latexit>

(

Figure 6: Different terms in the topological recursion in the Airy model (3.10) can be interpreted
as ribbon graphs. We illustrate how the g = 1 Riemann surfaces from figure 5 degenerate into
inequivalent ribbon graphs in the Airy (long boundary) limit. Internal boundaries b′ and b′′ are
drawn in black and should be glued together across the “×”. Cross caps degenerate into “twists”,
as shown in the third line. Handles can equivalently be obtained from planar graphs with twists
(bracket in the first line). We do not show graphs obtained by exchanging b1 ↔ b2.

Applying the homogeneous scaling (3.7) to the non-orientable topological recursion (3.9), we

find the following recursion for the Airy model:

∂b

[
b V Airy

g,n+1(b,b)
]
=

n+1∑
i=2

(∫ b+bi

0

b′db′ +

∫ |b−bi|

0

b′db′

)
V Airy
g,n (b′,b\bi)

+
1

2

∫ b

0

b′db′
∫ b−b′

0

b′′db′′

V Airy
g−1,n+2(b

′, b′′,b) +
∑
stable

b=b1∪b2

V Airy
g1,|b1|+1(b

′,b1)V
Airy
g2,|b2|+1(b

′′,b2)


+
b

2

∫ b

0

b′db′ V Airy

g− 1
2
,n+1

(
b′,b

)
.

(3.9)

Equivalently, the recursion can be written without the derivative:
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b V Airy
g,n+1(b,b)

=
n+1∑
i=2

(∫ b+bi

0
b′db′(b+ bi − b′) + sgn(b− bi)

∫ |b−bi|

0
b′db′(|b− bi| − b′)

)
V Airy
g,n (b′,b\bi)

+

∫ b

0
b′db′

∫ b−b′

0
b′′db′′

b− b′ − b′′

2

V Airy
g−1,n+2(b

′, b′′,b) +
∑
stable

b=b1∪b2

V Airy
g1,|b1|+1(b

′,b1)V
Airy
g2,|b2|+1(b

′′,b2)


+

∫ b

0
b′db′

b2 − b′2

4
V Airy

g− 1
2
,n+1

(
b′,b

)
(3.10)

This version of the non-orientable topological recursion is free of any crosscap divergences and

therefore is an exact expression. With the initial conditions

V Airy
0,2 (bi, bj) =

2

bi
δ(bi − bj) , V Airy

0,3 (bi, bj, bk) = 4 , V Airy
1
2
,1

(b) =
1

2b
, (3.11)

we can calculate non-orientable Airy volumes in a systematic way.10 Each term in the topological

recursion can also be identified with a ribbon graph. This leads to a systematic geometrical

enumeration of all terms appearing in the topological recursion. Some examples for (g, n) = (1, 2)

are given in figure 6.

Applying the topological recursion (3.9) repeatedly, we find the Weil-Petersson volumes for

the moduli spaces of non-orientable geometries displayed in table 1. The WP volumes for n = 2

boundaries are consistent with those obtained in [48] using a different method.

In these examples, it is interesting to note how non-analyticities appear: the Weil-Petersson

volumes have the form of a symmetric polynomial (as in the orientable case) plus non-symmetric

polynomials multiplying step-functions that impose for the sum of some subset of boundary

lengths to be larger than the sum of another subset. As the number of boundaries n grows, an

increasing number of polynomials is required to characterize the WP volumes. For example:

V Airy
g,1 (b) = P

(1)
g,2 (b) ,

V Airy
g,2 (b1, b2) = P

(1)
g,2 (b1, b2) + θ(b1 − b2)P

(2)
g,2 (b1, b2) + perm. ,

V Airy
g,3 (b1, b2, b3) = P

(1)
g,3 (b1, b2, b3) + θ(b1 − b2)P

(2)
g,3 (b1, b2, b3) + θ(b1 + b2 − b3)P

(3)
g,3 (b1, b2, b3) + perm.

(3.13)

where P
(i)
g,n({bi}) are polynomials of degree (6g + 2n − 6), and “+perm” indicates a sum over

10There is again an orientable version of the formula (3.10): one simply has to multiply the first line by 1
2 and

drop all terms involving half-integer genus geometries (in particular the last line). In the orientable case the initial
conditions are:

V GUE,Airy
0,2 (bi, bj) =

1

bi
δ(bi − bj) , V GUE,Airy

0,3 (bi, bj , bk) = 1 . (3.12)
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n = 1 V Airy
1,1 (b) = 7 b2

48

V Airy
3
2
,1

(b) = b5

180

V Airy
2,1 (b) = 37 b8

442368

V Airy
5
2
,1

(b) = b11

1496880

V Airy
3,1 (b) = 887 b14

267544166400

n = 2 V Airy
1
2
,2

(b1, b2) = θ(b1 − b2)b1 + perm. ≡ max(b1, b2)

V Airy
1,2 (b1, b2) =

(
b41
32

+
7b21b

2
2

96

)
+ θ(b1 − b2)

b41+2b1b32
24

+ perm.

V Airy
3
2
,2

(b1, b2) =
(

23b71
40320

+
7b51b

2
2

1920
+

7b41b
3
2

1152

)
+θ(b1 − b2)

(
41b71
40320

+
43b51b

2
2

5760
+

b31b
4
2

128
+

5b1b62
1152

)
+ perm.

V Airy
2,2 (b1, b2) =

(
377b101

46448640
+

863b81b
2
2

5160960
+

b71b
3
2

7560
+

97b61b
4
2

122880
+

b51b
5
2

7200

)
+θ(b1 − b2)

(
5b101

580608
+

3b81b
2
2

35840
+

b61b
4
2

69120
+

b31b
7
2

15120
+

b1b92
22680

)
+ perm.

V Airy
5
2
,2

(b1, b2) =
1

45·215

(
907b131
13860

+
32743b111 b22

20790
+

37b101 b32
18

+
377b91b

4
2

36
+

37b81b
5
2

4
+

143b71b
6
2

9

)
+θ(b1 − b2)

1
225·215

(
46547b131
108108

+
49177b111 b22

4158
+

50527b91b
4
2

756
+

10483b71b
6
2

63

+
4351b51b

8
2

36
+

551b31b
10
2

18
+

13b1b122
4

)
+ perm.

n = 3 V Airy
0,3 (b1, b2, b3) = 4

V Airy
1
2
,3

(b1, b2, b3) =
(

b31
6
+ b1b2b3

3

)
+ θ(b1 + b2 − b3)

(b1+b2−b3)3

12
+ perm.

V Airy
1,3 (b1, b2, b3) =

(
3b61
320

− b51b2
80

+
5b41b

2
2

48
− 3b31b

3
2

72
+

b41b2b3
16

+
b31b

2
2b3
24

+
7b21b

2
2b

2
3

144

)
+θ(b1 − b2)

(b1−b2)5b3
240

+ θ(b1 + b2 − b3)
(b1+b2−b3)5(b1+b2+2b3)

720
+ perm.

n = 4 V Airy
0,4 (b1, ..., b4) =

2b21
3

+ perm.

V Airy
1
2
,4

(b1, ..., b4) =
(

17b51
720

+
b41b2
48

+
5b31b

2
2

24
+

b31b2b3
4

− b21b
2
2b3
8

+
b21b2b3b4

4

)
+ θ(b1 − b2)

(b1−b2)5

120

+θ(b1 + b2 − b3 − b4)
(b1+b2−b3−b4)5

480

+θ(b1 + b2 + b3 − b4)
(b1+b2+b3−b4)5

360
+ perm.

n = 5 V Airy
0,5 (b1, ..., b5) =

(
b41
12

+
2b21b

2
2

3

)
+ perm.

n = 6 V Airy
0,6 (b1, ..., b6) =

(
b61
180

+
b41b

2
2

4
+

2b21b
2
2b

2
3

3

)
+ perm.

Table 1: Weil-Petersson volumes Vg,n in the non-orientable Airy model. The notation “+perm.”
means a sum of the given expression over all n! permutations of the boundary lengths bi (i = 1, . . . , n).
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all n! permutations of b1, . . . , bn. The first term P
(1)
g,n({bi}) thus gives a symmetric polynomial

contribution, while the non-analytic terms also get symmetrized. The volumes must, of course,

be permutation symmetric and we have chosen to present them in a way that makes this property

manifest.

3.3 Loop equations in the Airy GOE matrix model

The topological recursion for non-orientable surfaces in the Airy limit can be mapped to the

loop equations of the GOE Airy matrix model. The derivation is analogous to the one for non-

orientable JT gravity in [23], which we refer to for more details. See also [48] for a discussion of

loop equations in the GOE Airy model.

The basic quantity of interest in the loop equations is the resolvent (Laplace transform of the

WP volume):

Rg,n(−z21 , . . . ,−z2n) ≡ (−1)n
∫
Vg,n(b1, . . . , bn)

n∏
j=1

bjdbj
e−bjzj

2zj
. (3.14)

The loop equations for a GOE matrix model with spectral curve y(−z2) are then given by:

Rg,n+1(−z2,X) =
1

2πiz

∫
δ+iR

z′2dz′

z′2 − z2
Fg,n+1(−z′2,X)

y(−z2) , (3.15)

where X = {−z22 , . . . ,−z2n+1} and the integrand satisfies the recursion

Fg,n+1(x,X) =
n+1∑
i=2

(
1

2
√−x√−xi(

√−x+√−xi)2
+

1

(x− xi)2

)
Rg,n(x,X\xi)

+Rg−1,n+2(x, x,X) +
∑
stable

X=X1∪X2

Rh1,|X1|+1(x,X1)Rh2,|X2|+1(x,X2)

− ∂xRg− 1
2
,n+1(x,X) . (3.16)

Starting from the Airy topological recursion in (3.10), the first two lines are identical to the

orientable case and are known to match with the Airy GUE loop equations [58]. We are left with

the task of matching the last line in (3.10),

b V Airy
g,n+1(b,b) ⊃

∫ b

0

b′db′
b2 − b′2

4
V Airy

g− 1
2
,n+1

(
b′,b

)
, (3.17)
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to the only remaining term in the GOE loop equations, namely the last term in (3.16):

Rg,n+1(−z2,X) ⊃ 1

2πiz

∫
δ+iR

z′2dz′

z′2 − z2
1

y(−z′2)
1

2z′
∂z′Rg− 1

2
,n+1(−z′2,X) . (3.18)

To show they match, we substitute Rg,n+1 and Rg− 1
2
,n+1 in terms of WP volumes, using the

relationship (3.14). After inverting the Laplace transform of Vg,n+1(b,b) [23], we obtain:

V Airy
g,n+1(b,b) ⊃

∫ ∞

0

b′db′ V Airy

g− 1
2
,n+1

(b′,b)

∫
δ+iR

dz

i

sinh(bz)

y(−z2)

(
−∂z

e−b′z

z

)
. (3.19)

For this to match the corresponding term in the Airy topological recursion, the z integral should

be equal to: ∫
δ+iR

dz

i

sinh(bz)

y(−z2)

(
−∂z

e−b′z

z

)
= θ(b− b′)

b2 − b′2

4
, (3.20)

where the Airy matrix model spectral curve is y(−z2) = 2πz. This integral identity can be derived

by using the residue theorem for the pole at z = 0. In particular, the following result is useful:

1

2πi

∫ δ+i∞

δ−i∞

e−bz

z
dz = θ(−b

)
, (3.21)

where the θ(−b) follows from having to close the contour to the right if b > 0, without enclosing

any poles, and to the left if b < 0, enclosing the z = 0 pole. The identity establishes the match

between the Airy limit of the non-orientable topological recursion and the loop equations of the

GOE Airy matrix model. Note that in the loop equations we have not performed any scaling

limits. Instead we have simply used the Airy curve y(−z2) = 2πz and obtained the same result.

4 Cancellations in WP volumes of non-orientable topo-

logical gravity

Having observed the finiteness of WP volumes in the Airy model, we will now use this toy example

to explore and resolve the complexities involved in the τ-scaling limit for non-orientable models of

gravity. Recall the two-boundary spectral form factor in the analytically continued configuration

β1,2 = β ± iT :

ZAiry
g,2 (T, β) ≡ 1

4π
√
T 2 + β2

∫ ∞

0

b1db1 b2db2 e
− 1

4(T2+β2)
[β(b21+b22)−iT (b21−b22)] V Airy

g,2 (b1, b2) . (4.1)

For the orientable case, this produces the well-known result (2.18) genus by genus. The non-

orientable case is significantly more complicated. The first few terms in the genus expansion in
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the non-orientable case are of the following form:

ZAiry(τ, β) ≡ lim
T,eS0→∞
τ fixed

∑
g=0, 1

2
,1,...

e−(2g+1)S0 ZAiry
g,2 (T = τ eS0 , β)

= lim
T,eS0→∞
τ fixed

{(
1

2πβ
+ . . .

)
τ+

(
− 1√

2πβ
+ . . .

)
τ2 − 1

π

(
log

(
β

2T

)
+

9 + 1

3
+ . . .

)
τ3

+

(
−

√
2π

3π
T

1
2 +

8
√
2πβ

3π
+ . . .

)
τ4 +

4β

π

(
log

(
β

2T

)
+

170−7

60
+ . . .

)
τ5

+

(
1

15
√
2π

T
3
2 +

17β

6
√
2π

T
1
2−64(2πβ)

3
2

15π2
+ . . .

)
τ6

− 32β2

3π

(
T 2

240β2
+ log

(
β

2T

)
+

9800−1503

3360
+ . . .

)
τ7 + . . .

}
(4.2)

where, in each bracket, we drop terms that vanish as T → ∞ with τ held fixed. See also [48], where

this expression was first discussed. For consistency, this expression should match the universal

RMT result (2.40):

ZAiry(τ, β)
?
= KAiry

β (τ) . (4.3)

Evidently, for such an equality to be true, a resummation of all terms with explicit T dependence

must occur to make them subleading. We highlighted in blue the terms that match corresponding

terms in (2.40). Crucially, the remaining terms in (4.2) are divergent term by term as T → ∞.

A non-trivial resummation is required to obtain a complete match with the RMT result (2.40).

Instead of attempting to explicitly resum the divergent expression,11 we will offer a complemen-

tary perspective: we will give evidence for the finiteness of the τ-scaling limit of the gravitational

SFF by working in microcanonical variables. We will also put focus on the following, more hidden

feature of (4.2): the naive degree of divergence of a genus g term is actually much worse than (4.2)

shows. Many naively divergent terms are absent due to cancellations amongst the coefficients in

the WP volumes V Airy
g,2 . We will discuss different perspectives on these cancellations and conjecture

their general form.

4.1 The microcanonical ramp from gravity

The divergences and required resummation that complicate the result of the canonical gravita-

tional path integral (4.2) can be avoided by working at fixed energy. This is achieved through an

11See also [48], where similar observations were made and mathematical identities were given that may play a
role in an explicit resummation.
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inverse Laplace transform of (4.1):

ZAiry
g,2 (T,E) ≡

∫
dβ

πi
e2βE ZAiry

g,2 (T, β)

≈ 2

πT

∫ ∞

0

b1db1 b2db2 e
i

4T
(b21−b22) δ

(
b21 + b22
T 2

− 8E

)
V Airy
g,2 (b1, b2) ,

(4.4)

where we used T ≫ β. In rescaled average/difference variables b1,2 =
√
T (b̄± δb), this becomes:

ZAiry
g,2 (T,E) ≈ 2T 3g+1

π

∫ ∞

−∞
dδb

∫ ∞

δb

db̄
(
b̄2 − δb2

)
ei δb b̄ δ

(
b̄2 + δb2 − 4ET

)
V Airy
g,2

(
b̄+ δb, b̄− δb

)
=

2T 3g+1

π

∫ √
4ET

−
√
4ET

dδb
2ET − δb2√
4ET − δb2

ei δb
√
4ET−δb2 V Airy

g,2

(√
4ET − δb2 + δb,

√
4ET − δb2 − δb

)
(4.5)

In the τ-scaling limit ET = eS0Eτ so for energies E ≫ e−S0

τ
we can approximate the integral by:

ZAiry
g,2 (T,E) ≈

√
4ET T 3g+1

π

∫ ∞

−∞
dδb ei

√
4ET δb V Airy

g,2

(√
4ET + δb,

√
4ET − δb

)
(4.6)

Corrections to every term in this expansion are O
(

1
e2S0τ2ρ40

)
and therefore negligible for energies

E ≫ e−S0

τ
. We compare this to the expected early time “ramp part” of the GOE microcanonical

SFF in the τ ≪ ρ0(E) expansion (i.e., the first term in the minimum function in (1.12)):

KAiry
E (τ)

∣∣
ramp

=
τ

π
− τ2

2π2ρ0
+

τ3

4π3ρ20
− τ4

6π4ρ30
+

τ5

8π5ρ40
+O

(
τ2g+1

ρ2g0

)
(4.7)

where ρ0 ≡ ρAiry
0 (E) = 1

2π

√
E.

By plugging the WP volumes (table 1) into (4.6), it is possible to match (4.7) genus by

genus.12 The fixed energy gravitational path integral of topological gravity then reproduces the

“ramp part” of the τ-scaled SFF in the GOE Airy matrix model:

KAiry
E (τ)

∣∣
ramp

= lim
eS0→∞

∑
g=0, 1

2
,1,...

e−(2g+1)S0 ZAiry
g,2

(
τ eS0 , E

)
(4.9)

where the left hand side is the universal τ-scaled RMT result and the right hand side is the

12The required integrals are simple Fourier transforms of the form∫ ∞

−∞
dδb ei

√
4ET δb (δb)n θ(δb) = in+1 n! (4ET )−

n+1
2 . (4.8)
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gravitational path integral evaluated genus by genus for Eτ ≫ e−S0 .

Crucially, (4.9) is finite in the τ-scaling limit! No late time divergences occur, unlike in the

canonical ensemble computation in (4.2). In fact, note how the terms in the series (4.7) become

more and more divergent near E = 0, rendering the Laplace transform to the canonical ensemble

divergent. The first divergent term occurs at g = 1, given by ∼ τ3

E
, and all subsequent terms are

more divergent.13

Let us now comment on the subtle effects that give rise to the correctness and finiteness of

(4.9). The WP volumes entering the integrals (4.6) are generically piecewise polynomials of the

form

V Airy
g,2 = P

(1)
g,2 (b1, b2) + θ(b1 − b2)P

(2)
g,2 (b1, b2) + perm. (4.10)

characterized by two polynomials of degree 6g − 2:

P
(1)
g,2 (b1, b2) =

⌊3g−1⌋∑
γ=0

Csym
6g−2−γ,γ b

6g−2−γ
1 bγ2 ,

P
(2)
g,2 (b1, b2) =

6g−2∑
γ=0

C>
6g−2−γ,γ b

6g−2−γ
1 bγ2 .

(4.11)

See table 1 for examples. Two properties are crucial in the above derivation:

(1) Non-analyticities: First, the integrals (4.6) are only non-trivial because of the step-function

terms in the non-orientable WP volumes, i.e., the polynomials P
(2)
g,2 : only those terms contribute

to (4.9). The analytic terms P
(1)
g,2 give vanishing contributions to the expression (4.6) (except for

g = 0, trivially). This is consistent with the fact that in the GUE, where the WP volumes are

always just symmetric polynomials, the expansion (4.9) truncates after the first term, c.f., (2.1).

That is, both in the orientable and in the non-orientable case, the symmetric polynomials in the

WP volumes are only relevant for the “plateau” (determined by small energies).

(2) Cancellations in WP volumes: Second, the step-function terms involve non-trivial co-

efficients C>
α,γ (α + γ = 6g − 2). For a generic piecewise polynomial (4.10), the integral (4.6)

produces:

e−(2g+1)S0 ZAiry
g,2 (T,E)

ET≫1≈ τ2g+1 × 2

π

2g−1∑
k=0

(−1)k+1(2k + 1)! C(k)
g (4πρ0)

6g−4k−4 T 4g−2k−2

C(k)
g ≡

6g−2∑
γ=0

[
k∑

r=0

(−1)r
(
γ

r

)(
6g − 2− 2γ

2k + 1− 2r

)]
C>

6g−2−γ,γ

(4.12)

13The only non-divergent term when passing to the canonical ensemble is g = 1
2 and can thus be easily

reproduced in JT gravity [42].
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For k = 0, . . . , 2g − 2 these are divergent as T → ∞ with τ held fixed. The fact that these do

not spoil (4.9) is due to cancellations between the coefficients C>
α,γ for each of the WP volumes

individually. We claim that the constraints C(k)
g = 0 for k = 0, . . . , 2g − 2. The final term

(k = 2g − 1) gives the finite contributions collected in (4.9). Further contributions vanish upon

τ-scaling, and we do not show them in the above formula. For illustration, we give some examples

of these cancellations and then formulate a conjecture about their generalization.

Genus g = 1:

e−3S0ZAiry
1,2 (T,E) ≈ −64π

(
2C>

4,0 + C>
3,1 − C>

1,3 − 2C>
0,4

)
ρ20 T

2τ3

+
3

2π3

(
2C>

4,0 − C>
3,1 + C>

1,3 − 2C>
0,4

)
ρ−2
0 τ3 + . . .

(4.13)

One can check that the coefficients given in table 1 are such that the first line (green combination)

vanishes and the second line produces the τ3 term in (4.9).

Genus g = 3
2
:

e−4S0ZAiry
3
2
,2
(T,E)

≈ −211π4
(
7C>

7,0 + 5C>
6,1 + 3C>

5,2 + C>
4,3 − C>

3,4 − 3C>
2,5 − 5C>

1,6 − 7C>
0,7

)
ρ50T

4τ4

+ 48
(
35C>

7,0 + 5C>
6,1 − 5C>

5,2 − 3C>
4,3 + 3C>

3,4 + 5C>
2,5 − 5C>

1,6 − 35C>
0,7

)
ρ0T

2τ4

− 15

4π4

(
21C>

7,0 − 9C>
6,1 + C>

5,2 + 3C>
4,3 − 3C>

3,4 − C>
2,5 + 9C>

1,6 − 21C>
0,7

)
ρ−3
0 τ4 + . . .

(4.14)

Again, the coefficients are such that the divergent first two lines vanish and the third line yields

the τ4 term in (4.9).

Genus g = 2:

e−5S0ZAiry
2,2 (T,E)

≈ −218π7
(
5C>

10,0 + 4C>
9,1 + 3C>

8,2 + 2C>
7,3 + C>

6,4 − C>
4,6 − 2C>

3,7 − 3C>
2,8 − 4C>

1,9 − 5C>
0,10

)
ρ80T

6τ5

+ 3 · 213π3
(
15C>

10,0 + 6C>
9,1 + C>

8,2 − C>
7,3 − C>

6,4 + C>
4,6 + C>

3,7 − C>
2,8 − 6C>

1,9 − 15C>
0,10

)
ρ40T

4τ5

− 960

π

(
63C>

10,0 − 7C>
8,2 + 3C>

6,4 − 3C>
4,6 + 7C>

2,8 − 63C>
0,10

)
T 2τ5

+
315

π5

(
15C>

10,0 − 6C>
9,1 + C>

8,2 + C>
7,3 − C>

6,4 + C>
5,6 − C>

4,7 − C>
3,8 + 6C>

2,9 − 15C>
0,10

)
ρ−4
0 τ5 + . . .

(4.15)

Again, the first three lines vanish, while the last line gives the correct universal τ5 term in (4.9).

It would clearly be interesting to understand these cancellations better. In general we find

that (2g − 1) linear combinations of C>
α,γ must vanish to produce a finite contribution to the

τ-scaled SFF at genus g. Such cancellations are reminiscent of similar cancellations in the GUE

44



case, where an underlying mathematical structure (KdV hierarchy) can be employed to explain

this conspiracy [47]. A goal for a future investigation of such structures would be to prove the

following statement (which we have confirmed up to g = 3):

Conjecture: For any fixed-genus g, the microcanonical gravitational path integral (4.6) has

a finite τ-scaling limit and reproduces the universal RMT coefficient multiplying ρ−2g
0 τ2g+1.

This is possible due to (2g − 1) cancellations amongst coefficients C>
α,γ of the non-analytic

parts of the Weil-Petersson volumes:

0
!
= C(k)

g ≡
6g−2∑
γ=0

[
k∑

r=0

(−1)r
(
γ

r

)(
6g − 2− 2γ

2k + 1− 2r

)]
C>

6g−2−γ,γ (k = 0, . . . , 2g − 2). (4.16)

4.2 Cancellations in the canonical SFF

One can directly evaluate the canonical gravitational path integral (4.1) genus by genus. An

interesting class of terms is the log
(

β
2T

)
terms visible in (4.2). These were partly discussed in [48],

so we will be brief.

Consider again the generic form of a genus g WP volume, (4.10). We can plug this ansatz

into the trumpet path integral (4.1) and find the following contribution:

ZAiry
g,2 (β1, β2) =

26g−2

π

⌊3g−1⌋∑
γ=0

Csym
6g−2−γ,γ Γ

(
3g − γ

2

)
Γ
(
1 +

γ

2

)
β
3g− 1+γ

2
1 β

1+γ
2

2

+
26g−2

π

6g−2∑
γ=0

C>
6g−2−γ,γ

[
Γ
(
3g − γ

2

)
Γ
(
1 +

γ

2

)
β
3g− 1+γ

2
1 β

1+γ
2

2

− Γ(3g + 1)

3g − γ
2

β3g+1
1√
β1β2

2F1

(
3g + 1, 3g − γ

2
, 3g + 1− γ

2
; −β1

β2

)]
+ [β1 ↔ β2]

(4.17)

with β1,2 = β ± iT . The naive degree of divergence for e−(2g+1)S0ZAiry
g,2 in the τ-scaling limit is

T 4g−2 (multiplying τ2g+1 for a total power of time T 6g−1). However, we find that these divergences

largely cancel as they are proportional to special linear combinations of the coefficients in the WP

volumes. We will now give some examples for these cancellations and then formulate a conjecture

for arbitrary genus.
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Genus g = 1:

e−3S0ZAiry
1,2 (T, β) = − 4

π

(
2C>

4,0 + C>
3,1 − C>

1,3 − 2C>
0,4

) T 2 τ3

β2

+
12

π

(
C>

3,1 − C>
1,3

)
log

(
β

2T

)
τ3

− 2

π

(
42C>

4,0 − C>
3,1 − 8C>

2,2 + C>
1,3 − 10C>

0,4 + 32Csym
4,0 − 16Csym

2,2

)
τ3 .

(4.18)

The first line diverges as T 2, but the linear combination of coefficients cancels for the actual genus

1 WP volume. This constraint is the same as derived in (4.13). The second line also diverges,

but it does not cancel: 12
π
(C>

3,1 − C>
1,3) = − 1

π
. A different mechanism (resummation of the genus

expansion) is required to remove this logarithmic divergence. The last line is finite upon τ-scaling

and produces the corresponding O(τ3) term in (4.2).

Genus g = 3
2
:

e−4S0ZAiry
3
2
,2
(T, β)

= − 15√
2π

(
7C>

7,0 + 5C>
6,1 + 3C>

5,2 + C>
4,3 − C>

3,4 − 3C>
2,5 − 5C>

1,6 − 7C>
0,7

) T 4 τ4

β7/2

− 12√
2π

(
35C>

7,0 + 35C>
6,1 + 25C>

5,2 + 9C>
4,3 − 9C>

3,4 − 25C>
2,5 − 35C>

1,6 − 35C>
0,7

) T 2 τ4

β3/2

+
48√
2π

(
35C>

7,0 − 10C>
5,2 + 8C>

3,4 − 16C>
1,6 + 35Csym

7,0 − 16Csym
6,1 − 10Csym

5,2 + 8Csym
4,3

)√
T τ4

− 30√
2π

(
21C>

7,0 + 91C>
6,1 + 21C>

5,2 − 5C>
4,3 + 5C>

3,4 − 21C>
2,5 − 91C>

1,6 − 21C>
0,7

)√
β τ4 .

(4.19)

The first two lines vanish, thus giving two constraints on the WP volumes. One can check that

these constraints are equivalent (but interestingly not identical) to those found in (4.14). The

third line does not cancel and thus leads to a powerlaw divergence, which requires a different

mechanism to remove. The last line is finite under τ-scaling, see O(τ4) in (4.2).
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Genus g = 2:

e−5S0ZAiry
2,2 (T, β)

= −768T 6τ5

πβ5

(
5C>

10,0 + 4C>
9,1 + 3C>

8,2 + 2C>
7,3 + C>

6,4 − [C>
α,γ → C>

γ,α]
)

− 384T 4τ5

πβ3

(
55C>

10,0 + 50C>
9,1 + 41C>

8,2 + 29C>
7,3 + 15C>

6,4 − [C>
α,γ → C>

γ,α]
)

− 96T 2τ5

πβ

(
495C>

10,0 + 420C>
9,1 + 441C>

8,2 + 394C>
7,3 + 235C>

6,4 − [C>
α,γ → C>

γ,α]
)

+ 720Tτ5
(
21
(
C>

9,1 + C>
1,9 + 2Csym

9,1

)
− 7

(
C>

7,3 + C>
3,7 + 2Csym

7,3

)
+ 5

(
C>

5,5 + 2Csym
5,5

))
+

48 βτ5

π
log

(
2T

β

)(
2520C>

9,1 − 420C>
7,3 − [C>

α,γ → C>
γ,α]
)

+
48 βτ5

π

(
24445C>

10,0 − 4914C>
9,1 − 4269C>

8,2 − 973C>
7,3 − 419C>

6,4 + 931C>
4,6 + 973C>

3,7

+ 1197C>
2,8 + 4914C>

1,9 + 1155C>
0,10 + 25600Csym

10,0 − 3072Csym
8,2 + 512Csym

6,4

)
(4.20)

The notation “−[C>
α,γ → C>

γ,α]” means that we subtract the same combination of terms with

indices swapped (see (4.18) and (4.19) for illustration of this structure). The vanishing of the

first three linear combinations provides three constraints on the coefficients in the WP volumes

equivalent to those found in (4.15). The last highlighted linear combination also vanishes; this

therefore provides one constraint, which is of a different type as it also involves the coefficients

Csym
α,γ . The logarithmic divergence survives and the last line remains finite in the τ-scaling limit,

see O(τ5) in (4.2).

Further examples:

At g = 5
2
we find four constraints on C>

13−γ,γ from cancellation of divergences scaling as

T 8, T 6, T 4, T 2. The cancellations are equivalent to the linear combinations C(k)

g= 5
2

in (4.16) for

k = 0, . . . , 3. Two divergences scaling as T 3/2 and T 1/2 survive and their removal requires all-

order resummation, see O(τ6) in (4.2).

At g = 3 we find five constraints on C>
16−γ,γ from the cancellation of divergences∼ T 10, T 8, T 6, T 4

and T 2 log(2T/β), which are equivalent to C(k)
g=3 in (4.16) for k = 0, . . . , 4. We also find one

constraint involving both C>
16−γ,γ and Csym

16−γ,γ from the cancellation of divergences ∼ T :

e−7S0ZAiry
3,2 (T, β) ⊃ −1814400 βTτ7

(
1001

(
C>

15,1 + C>
1,15 + 2Csym

15,1

)
− 143

(
C>

13,3 + C>
3,13 + 2Csym

13,3

)
+33

(
C>

11,5 + C>
5,11 + 2Csym

11,5

)
− 7
(
C>

9,7 + C>
7,9 + 2Csym

9,7

))
.

(4.21)

The two divergences that survive the cancellations scale as T 2 and log(2T/β), see O(τ7) of (4.2).
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At g = 7
2
, we find six constraints on C>

19−γ,γ from cancellation of divergences∼ T 12, T 10, . . . , T 2.

The surviving three divergences scale as T 5/2, T 3/2, T 1/2.

General structure:

Based on the above observations, we are in the position to classify the divergences into three

types and conjecture their general properties. We conjecture that e−(2g+1)S0ZAiry
g,2 (T, β) exhibits

the following divergences and cancellations as T → ∞ with τ = Te−S0 held fixed:

• Type I: The first type of divergences is associated with terms that would scale as

[type I] ∼


{

T 2+2n

πβ3−g+2n
log

(
2T

β

)}
0≤n≤⌊ g−3

2
⌋

and

{
T 2+2n

πβ3−g+2n

}
⌊ g−3

2
⌋<n≤2g−2

(g ∈ Z+){
T 2+2n

√
πβ3−g+2n

}
0≤n≤2g−2

(g ∈ 1
2
+ Z+)

(4.22)

These divergences multiply vanishing linear combinations of C>
α,γ, which always appear

in the antisymmetric combination C>
α,γ − C>

γ,α. These cancellations thus provide (2g − 1)

constraints on C>
α,γ, which are equivalent to those formulated in (4.16).

• Type II: For integer genus, there could be additional divergences which would scale as

[type II] ∼
{
T 1+2n

β2−g+2n

}
0≤n≤⌊ g

2
⌋−1

(g ∈ Z+) (4.23)

These divergences multiply linear combinations of C>
α,γ and Csym

α,γ , always appearing in the

symmetric combination C>
α,γ + C>

γ,α + 2Csym
α,γ . Their vanishing thus provides a further ⌊g

2
⌋

constraints on the coefficients of WP volumes, which are manifestly independent of type I.

• Type III: Finally, we observe terms, which scale as

[type III] ∼


βg−1

π
log

(
2T

β

)
and

{
T 2+2n

πβg−3+2n

}
0≤n≤⌊ g−3

2
⌋

(g ∈ Z+){
T

1
2
+n

√
πβ

3
2
−g+n

}
0≤n≤⌊g−1⌋

(g ∈ 1
2
+ Z+)

(4.24)

These divergences do not cancel at any fixed-genus. Their removal, required for consistency

of the τ-scaling, must be due to a non-trivial resummation of the genus expansion.

It would be very interesting to prove (or improve) these conjectures. We note that a subset of

the above (namely, type II cancellations and the powerlaw divergences of type III) are analogous
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to the constraints appearing in the orientable case [61, 48]. The remaining cancellations are

new and exclusive to the non-orientable scenario: we emphasize again that type I divergences

– if they didn’t cancel – would be more severe than in the orientable case, where the highest

degree of any potential divergence is only T g−1 τ2g+1, rather than T 4g−2 τ2g+1. We expect that a

proper understanding will require new mathematical insights, for example about a generalization

of intersection numbers to non-orientable geometries.

5 Lessons about the genus expansion to all orders

In this section, we draw some lessons and formulate some challenges regarding the GOE genus

expansion.

5.1 Resumming the genus expansion

Recall the following convenient split of the universal GOE sine kernel into a GUE piece, a low

energy “plateau” piece and a high energy “ramp” contribution (c.f., (A.1)):

KGOE(τ) = 2×KGUE(τ) +KGOE
− (τ) +KGOE

+ (τ) . (5.1)

KGOE
+,E from gravity. We showed in (4.9) that the fixed energy gravitational path integral of

the Airy model reproduces genus by genus the prediction from the GOE Airy matrix integral in

the τ-scaling limit:

lim
eS0→∞

∑
g=0, 1

2
,1,...

e−(2g+1)S0 ZAiry
g,2 (τ eS0 , E) =

τ

π
+

∑
g= 1

2
,1, 3

2
,...

(−1)2g τ2g+1

4gπ2g+1ρ2g0
. (5.2)

The genus expansion we have obtained in this way is now convergent and can be resummed to:

(5.2) =
τ

π
− τ

2π
log

(
1 +

τ

πρ0(E)

)
. (5.3)

The expansion converges within a finite radius |τ| < πρ0(E), set by the nearest singularity of the

logarithm, but can be analytically continued to arbitrary τ > 0. The resummed expression is equal

to the first argument in the minimum function in the GOE microcanonical SFF, (1.12). Working

with the fixed energy gravitational path integral has thus allowed us to reproduce the prediction

of RMT for times before the Heisenberg/plateau time τ < τH = 2πρ0 via a convergent genus

expansion. After resummation, we can pass to the canonical ensemble via a Laplace transform.

The expression we obtained from gravity is trustworthy only before the plateau time, i.e., for high
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energies E > E∗(τ). Therefore:∫ ∞

E∗

dE e−2βE

(
τ

π
− τ

2π
log

(
1 +

τ

πρ0(E)

))
=

τ

2πβ
+KGOE

+,β (τ) ⊂ KGOE
β (τ) . (5.4)

This is exactly the linear ramp plus the “high energy” piece KGOE
+,β in the RMT canonical SFF,

which we analyze and Laplace transform in section 2.2. The explicit expression for KGOE
+,β can be

found in appendix A and is analyzed in detail in section A.1.2. Its behavior is plotted in figure

7; we can see that it asymptotes to a constant plateau, although with the wrong height.

Let us pause to comment on the significance of this equality. Recall that non-orientable two-

dimensional gravity did not have a well-defined τ-scaling limit, since each genus g two-boundary

wormhole is divergent in this limit: Z
(unor.)
g,2 (β, T = eS0τ) → ∞, see (4.2). This was not the case in

the simpler orientable/GUE case where each genus g wormhole admitted a finite τ-scaling limit

and individually produced a contribution AGUE
g (β)τ2g+1, which in turn can be resummed to the

canonical RMT SFF KGUE
β (τ).

We concluded that for non-orientable two-dimensional gravity to have a well-defined τ-scaling

limit, a non-trivial genus resummation must occur, which cancels the late time divergences and

produces a finite result, matching the RMT prediction (see (4.24) and c.f. [43]). We have now

directly exhibited such a resummation and obtained a finite τ-scaled SFF from gravity which

reproduces the high energy piece of the RMT prediction, KGOE
+,β ⊂ KGOE

β (τ). To perform the

resummation and cure the divergences of the canonical SFF in gravity it was crucial to work with

the fixed energy gravitational path integral, computing and resumming the genus g contributions

at fixed energy, and only transforming back to fixed temperature after the resummation. Any

potential divergences were cancelled due to (2g − 1) “type I” cancellations amongst WP volume

coefficients.

Towards the plateau. Having reproduced from gravity the full microcanonical RMT SFF

for times before the plateau time τ < τH , it is natural to pose the question of how to proceed

beyond and access the plateau region. In the GUE, a microcanonical gravitational derivation

of the plateau can be achieved fully. We exhibit this in Appendix D. The upshot is that

the microcanonical KGUE
E (τ) admits a formal genus expansion, where the plateau is realized

as an infinite sum of delta-functions. The orientable gravitational path integral reproduces this

structure term-by-term. Terms that would naively diverge upon τ-scaling are a priori produced,

but they occur with vanishing coefficient due to (g − 1) cancellations between coefficients of WP

volumes, c.f., (D.15). These cancellations were discussed using different methods in [61, 47].

The fact that the GUE Airy model admits a finite description in gravity, allows us to declare

victory regarding the second of three pieces of the microcanonical GOE SFF (5.1), i.e., the

contribution 2KGUE
E (τ). We note that it seems to make physical sense to split off this contribution:

50



the GUE WP volumes as well as the analytic part of the GOE volumes are symmetric positive

polynomials. As one can check, the GOE WP volumes are such that after subtracting twice their

GUE counterpart, the analytic piece remains a symmetric positive polynomial. The missing low-

energy piece KGOE
−,E is therefore entirely determined by the non-analytic terms in the WP volumes,

and its own “reduced” symmetric positive polynomial.

We end with another observation about KGOE
−,E . Note that the cancellations in the GUE Airy

model have an analog in the GOE: for integer genus, there are ⌊g
2
⌋ “type II” cancellations of

the same type, plus ⌊g−1
2
⌋ “type III” polynomial divergences: together they amount to (g − 1)

combinations of WP volume coefficients analogous to those in the GUE, but only half of the

combinations cancel. The other half needs to be resummed to combine with log(T ) divergences

and produce a finite SFF. At half-integer genus, the number of cancellations of the type analogous

to the GUE is zero, and the full set of ⌊g − 1⌋ combinations survives in the form of “type III”

powerlaw divergences.

The fact that the GOE exhibits fewer “type II” cancellations poses an obstruction to obtaining

a finite result from the gravitational path integral. We leave a detailed investigation as an

important challenge for the future.

5.2 Periodic orbits and gravity

The series expansion (5.2) has been explained previously (for general ρ0) in terms of encounters

in periodic orbit theory [62]. The basic idea is to write the spectral density as a sum over classical

periodic orbits, weighted by an action. Spectral correlations therefore display strong oscillations

weighted by differences of classical orbit actions. The dominant contributions thus come from

pairs of classical orbits with almost equal action. The leading term in (5.2) is due to orbits with

equal action [63], the τ2 term is explained by orbit pairs with a single close encounter in phase

space [64], and all subsequent terms are systematically due to multiple encounters [65, 62]. In the

GUE, different encounters always cancel, except at the leading order τ. This does not happen in

the GOE, thus giving rise to the series (5.2).

Logarithmic divergences in encounter theory and gravity. Having seen an exact match

between the microcanonical SFF in encounter theory and the high-energy gravitational path

integral computations in the Airy model, we can now ask about the canonical ensemble. As

anticipated by [42], the naive contribution of the genus g piece in (5.2) in encounter theory

should be

e−S0 KAiry
β (τ)

?⊃
∫ ∞

1
T

dE e−2βE

(
(−1)2g τ2g+1

4gπ2g+1ρ2g0

)
(encounter theory) . (5.5)
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The low energy cutoff is estimated such that the regime ET < 1 is excluded from the integration:

in this region the encounter picture breaks down because the orbit action becomes O(1). We

recognize the integral as precisely the coefficient d
(δ)
n (ρ0; β), which featured in the general formula

for the τ-scaled SFF in the Airy model, with the cutoff chosen as δ = 1
T
. The above contribution

is therefore precisely one of the terms in the general result (2.31), but with the specific cutoff

δ = 1
T
. Indeed, for integer g, this physical choice of cutoff yields a particularly nice result:

g ∈ Z+ : (5.5) =
4g−1

gπ
d
( 1
T
)

2g (ρ0; β) τ
2g+1

=
4g−1

gπ

[
(−1)g

(g − 1)!
log

(
1

T

)
+

(−1)g−1

(g − 1)!
(ψ(g)− log(2β)) + . . .

]
(2β)g−1 τ2g+1 .

(5.6)

The logarithmic term matches precisely the analogous term in the gravitational calculation (4.2).

We recall that these terms are divergent in the τ-scaling limit and need to be resummed. It is

remarkable that the natural periodic orbit cutoff in (5.5) produces exactly the same logarithmic

divergences as the gravitational path integral for all g. Being cutoff-independent, the finite terms

in (5.6) of course also match the corresponding terms in (2.38).

At half-integer genus we similarly find that the universal finite piece of (5.5) matches the

one entering in the Cg̃ coefficient of the τ-scaled SFF (2.32). The divergent terms have the same

structure (i.e., the same powers in β and T ) as type III divergences classified above; the numerical

coefficients, however, are not universal (see below).

Finiteness of τ-scaling in RMT. To summarize, we encountered different perspectives on IR

divergences. For notational simplicity, consider integer genus g (half-integer is analogous). The

gravitational path integral, using WP volumes and trumpet wave functions, yields divergences of

type III:

gravity: e−(2g+1)S0ZAiry
g,2 (T, β) ∼

(−8β)g−1

πg!
log

(
T

2β

)
+

⌊ g−3
2

⌋∑
n=0

c(grav)n

T 2+2n

β3−g+2n
+ (finite)

 τ2g+1.

(5.7)

The simple periodic orbit estimate (5.5) yields similar divergences but with different coefficients:

encounters: e−(2g+1)S0 ZAiry
g,2 (T, β) ∼

(−8β)g−1

πg!
log

(
T

2β

)
+

⌊ g−3
2

⌋∑
n=0

c(enc.)n

T 2+2n

β3−g+2n
+ (finite)

 τ2g+1

(5.8)
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The exact Laplace transform of the universal RMT sine kernel yields a finite result:

RMT: e−(2g+1)S0 ZAiry
g,2 (T, β) ≡ KGOE,Airy

β (τ) =

[
(−8β)g−1

πg!
log

(
1

2βτ2

)
+ (finite)

]
τ2g+1. (5.9)

The exact RMT expression is derived from the same coefficients d
(δ)
n , but it extracts only their

finite piece. The polynomially divergent contributions cancel exactly. The reason is laid out in

detail in Appendix A, but we wish to summarize it briefly: the Laplace transform is performed

by a contour integral around the cut of a suitable discontinuous function, which extends along an

interval of real energies E. The contour is then deformed and ultimately yields two contributions:

an integral of a discontinuity along the cut (C(δ)
1 in figure 8) and an integral along a small circle

around the branch point E = 0 (C(δ)
2 in figure 8). The former is precisely the same integral that

features in the periodic orbit calculation; the latter is an additional contribution that cancels all

scheme-dependent divergences to produce a finite result.

The encounter result (5.8) is only an effective estimate and there is no reason for it to be

independent of the IR cutoff. However, the gravitational result (5.7) should in principle match the

finite RMT expression (5.9) after summing over geometries. This suggests that the divergences in

the gravitational calculation have to resum into a finite expression. In particular, the resummation

must turn log(T ) into log(τ−2) [48]. The finiteness of the Laplace transformed RMT expression

thanks to contour deformation suggests that there might exist a prescription to improve the

gravitational path integral calculation: there might exist a different contour in the (analytically

continued) moduli space of two-boundary ribbon graphs along which the τ-scaled path integral is

finite for any fixed g. It would be very interesting to find such a prescription, which would yield

(5.9) directly, genus by genus.

UV/IR relations. We wish to give a different perspective on the structure of τ-scaling di-

vergences and how they reflect properties of the spectral curve. As we discussed in section 2.2,

all information about the spectral curve required to construct the τ-scaled genus expansion was

encoded in the coefficients c2g and d
(δ)
n , which we reproduce here:

c2g(ρ0; β) ≡
1

(2π)2g

∮
dE

2πi
e−2βE ρ0(E)

−2g ,

d(δ)n (ρ0; β) ≡
1

(2π)n

∫ ∞

δ

dE e−2βE ρ0(E)
−n .

(5.10)

and dn(ρ0; β) entering the SFF is the finite part of d
(δ)
n (ρ0; β) as δ → 0.

We emphasize the following property of these coefficients, which can be observed in examples

(e.g., (2.37)) as well as in the general analysis of divergences (Appendix A): the coefficients are not

independent! The integrals d
(δ)
n are divergent as δ → 0. They exhibit both powerlaw divergences
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(for any genus) and a logarithmic divergence (for integer genus), in addition to the finite piece

that defines dn. The powerlaw divergences are a non-universal artifact of working with the IR

cutoff regulator. But the coefficient of the logarithmic divergence in d2g is scheme-independent

and it captures precisely the low-energy coefficient c2g:

c2g(ρ0; β) = coefflog(1/δ)

(
d
(δ)
2g (ρ0; β)

)
,

d2g(ρ0; β) = coeffδ0
(
d
(δ)
2g (ρ0; β)

)
.

(5.11)

This holds not only for the Airy model, but for any spectral curve.

A similar relation holds in terms of the analytic regulator g → g − ε, see (2.35). This scheme

is minimal (analogous to dimensional regularization) in the sense that it does not lead to any

non-universal divergences and the universal 1
ε
divergence produces the meaningful coefficient c2g:

c2g(ρ0; β) = coeffε−1

(
d2(g−ε)(ρ0; β)

)
,

d2g(ρ0; β) = coeffε0
(
d2(g−ε)(ρ0; β)

)
.

(5.12)

We propose to think of these as “UV/IR relation” similar to those appearing in dispersion

relations.14 The c2g coefficients encode universal information about the strict IR limit of the

density of states; on the other hand, the d2g coefficients encode information from all energy

scales (projected onto the IR). In the general τ-scaled SFF for the GOE, (2.32), we can view the

Bg coefficients multiplying log(τ) as containing only UV information – these terms are entirely

associated with the “plateau”. The other coefficients (Ag and Cg̃) contain both UV and IR

information.

6 Conclusion

The τ-scaling limit has been proposed as a way to study universal RMT behavior within a

convergent topological expansion. In the first part of this paper, we derived expressions for

canonical τ-scaled spectral form factors in non-orientable matrix models with generic spectral

curve. We found that these offer qualitatively new features compared to the orientable case, and

ultimately also admit a convergent topological expansion. In the second part of the paper, we

studied aspects of path integrals in non-orientable gravitational theories. We used the Airy model

as a convenient example that does not exhibit moduli space divergences, thus allowing us to focus

on implementing topological recursion in detail and studying its implications for τ-scaling.

We observed, and conjectured, an intricate pattern of cancellations among coefficients defining

the Weil-Petersson volumes for non-orientable ribbon graphs (Airy model). These structures call

14Indeed, the derivation in Appendix A is reminiscent of techniques appearing in the study of dispersion relations
and UV constraints on effective field theory, see, for example, [66] and recent studies such as [67, 68].
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for a detailed and mathematically rigorous understanding. We expect that this will require new

insights, such as a non-orientable generalization of intersection numbers.

We reiterated a feature of the gravitational path integral computation of the late-time spectral

form factor (c.f. [48]): the τ-scaling limit of individual geometries with fixed-genus is divergent in

the non-orientable setting. Some of these divergences survive the cancellations in the WP volumes

and obstruct τ-scaling at fixed-genus. We gave an indirect argument that these divergences must

cancel upon all-order resummation of the topological expansion. However, an explicit mechanism

for this resummation within the canonical ensemble remains to be uncovered. It would also be

interesting to generalize this analysis to JT gravity: our expression (2.52) suggests that the fixed-

genus τ-scaling divergences proliferate in JT gravity and more terms need to be resummed in

order for the gravitational path integral to reproduce the universal RMT results.

A possible approach to this problem is as follows. In [69], the authors have provided a

Lorentzian calculation of the microcanonical spectral form factor for the GUE universality class.

The Lorentzian calculation seemingly circumvents the need for intricate cancellations inherent

in the Euclidean calculation, though perhaps it is still interesting to understand the role played

by the mathematical structure responsible for these cancellations [47]. In moving to the more

generic non-orientable cases, one alternative to the Euclidean approach would be to utilize a

similar Lorentzian calculation to reproduce the microcanonical SFF. This would require placing

the Lorentzian conical singularities of [70] on nonorientable surfaces (whereas Euclidean defects

are related to changes in the dilaton potential, or equivalently to the spectral density). One could

then expect a match between the Lorentzian spacetimes and periodic orbits in the boundary

theory, term by term in the τ-expansion.

In section 5 we commented on the close relation between high- and low-energy spectral

information and how they enter in the τ-scaled SFF. These observations resonate with the

phenomenon known as Riemann-Siegel lookalike [71, 72] (see [73] for a recent discussion). It

would be interesting to connect this to our discussion in section 5.2 and see if the plateau can be

obtained using only the input from the ramp that we already reproduced from gravity.
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A Derivation of τ-scaled topological expansion

In this appendix we give detailed derivations of the τ-scaled topological expansions for general

spectral curves. The template is the derivation given in section 2.1 for GUE. Here we discuss the

derivation of (2.31) (for GOE) and (2.57) (for GSE).

A.1 GOE: Derivation of eq. (2.31)

In the GOE universality class, there are non-trivial integrals for both the low- and the high-energy

parts of the Laplace transform. We recall the split (2.30):

KGOE
β (τ) = 2×KGUE

β (τ)

− τ

2π

∫ E∗

0

dE e−2βE log

( τ
π
+ ρ0(E)

τ
π
− ρ0(E)

)
︸ ︷︷ ︸

≡ KGOE
−,β

− τ

2π

∫ ∞

E∗

dE e−2βE log

(
1 +

τ

πρ0(E)

)
︸ ︷︷ ︸

≡ KGOE
+,β

.

(A.1)

The three pieces are illustrated for the Airy model in figure 7. In the following, we bring

the integrals KGOE
−,β and KGOE

+,β into a simple form to express the coefficients of the topological

expansion, following a similar strategy as in the GUE case. The main physical novelty is that the

coefficients in the topological expansion are no longer only sensitive to the analytic structure of

ρ0(E) near E = 0, but instead we encounter integrals along all E ≥ 0.

0.0 0.5 1.0 1.5 2.0

-0.05

0.00
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Figure 7: Illustration of the physical significance of the three pieces in (A.1) for the GOE Airy
model (for β = 1). Each piece plateaus, but only their sum approaches the correct plateau height.
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A.1.1 Low energy integral KGOE
−,β

We start with the low energy integral. The analysis is similar as for the GUE case and we will

therefore be brief. We again define a function that has a prescribed discontinuity along the branch

cut 0 ≤ ρ0 ≤ τ
2π
:

f1(ρ0) =
τ

2π

∫ τ
2π

0

dρ′

2πi

1

ρ′ − ρ0
log

( τ
π
+ ρ′

τ
π
− ρ′

)
. (A.2)

The discontinuity is by construction the integrand relevant for KGOE
−,β . We find:

f1(ρ0) =
τ

4π2i

[
Li2

(
z − 1

z − 2

)
− Li2

(
z − 1

z + 2

)
+ Li2

(
z

z + 2

)
− Li2

(
z

z − 2

)
+ log

(
z − 1

z

)
log

(
2 + z

2− z

)]
z=

2πρ0
τ

(A.3)

This function allows us to turn the real integral into a contour integral which can be deformed

away from the original interval. Taking |ρ0| large as in the GUE case, we can expand f1(ρ0) in

powers of τ. For illustration, note that these operations commute: the τ-expansion can also be

obtained by first expanding the integrand in (A.2) and then integrating term by term:

f1(ρ0) = − τ

2π

∞∑
n=0

1

ρn+1
0

∫ τ
2π

0

dρ′

2πi
(ρ′)n log

( τ
π
+ ρ′

τ
π
− ρ′

)
= − 1

2πi

∞∑
n=1

an

(
τ
2π

)n+1

ρn0
, (A.4)

where the coefficients in the expansion are revealed to be the following ‘moments’:

an =

∫ 1

0

dx xn−1 log

(
2 + x

2− x

)
=

log(3)

n
− 1

n(n+ 1)
2F1

(
1,
n+ 1

2
,
n+ 3

2
;
1

4

)
. (A.5)

Finally we deform the contour again for each term to a small circle near E = 0, as in the GUE

case (see figure 2), and find

KGOE
−,β =

∮
[0,E∗]

dE e−2βE
(
f1(ρ0) + f1(−ρ0)

)
= − 1

2π

∞∑
n=1

an (cn(ρ0; β) + cn(−ρ0; β)) τn+1 ,

(A.6)

with cn(ρ0; β) defined in (2.3). As in the GUE case, the two terms in the sum cancel for odd n

and we are left with a sum over even n = 2g:

KGOE
−,β = −

∑
g≥1

1

2πg(2g + 1)

[
(2g + 1) log(3)− 2F1

(
1, g +

1

2
, g +

3

2
;
1

4

)]
c2g(ρ0; β) τ

2g+1 . (A.7)
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Note that the coefficient outside of the square bracket is precisely two times the one appearing

in the GUE case, see (2.3).

A.1.2 High energy integral KGOE
+,β

The new high energy integral is associated with the GOE ramp and features a non-compact

integration region, making the manipulations more subtle. To work with a compact integration

region, let us introduce a UV cutoff Λ → ∞. To turn KGOE
+,β into a contour integral we need

to find a function f
(Λ)
2 (ρ0) which has a cut for E ∈ [E∗,Λ] with discontinuity − τ

2π
log
(
1 + τ

πρ0

)
.

Given such a function, we could then write:

KGOE
+,β = lim

Λ→∞

∮
[E∗,Λ]

dE e−2βE
(
f
(Λ)
2 (ρ0(E)) + f

(Λ)
2 (−ρ0(E))

)
, (A.8)

where the contour wraps the interval [E∗,Λ] counterclockwise. Following the same prescription

as before, we find an integral expression for f
(Λ)
2 (ρ0) that can be evaluated exactly:

f
(Λ)
2 (ρ0) =

τ

2π

∫ Λ

τ
2π

dρ′

2πi

1

ρ′ − ρ0
log

(
1 +

τ

πρ′

)
=

τ

4π2i

[
Li2

(
z − 1

z + 2

)
− Li2

(
z − Λ

z + 2

)
− Li2

(
z − 1

z

)
+ Li2

(
z − Λ

z

)
+ log

(
z + 2

z

)
log

(
z − Λ

z − 1

)] (A.9)

One should keep the regulator and only take Λ → ∞ in the end. However, with the benefit of

hindsight, we note that this limit does not lead to any subtleties. We will therefore take the limit

now, and – in slight abuse of notation – treat E = ∞ as a point which contours can wrap around.

We can then consider the simplified function

f2 (ρ0) = lim
Λ→∞

f
(Λ)
2 (ρ0) =

τ

4π2i

[
Li2

(
2 + z

3

)
− Li2(z)− log(3) log(1− z) +

1

2
(log 3)2

]
z=

2πρ0
τ

(A.10)

This function has a cut along z > 1 as expected. The discontinuity across the cut comes from the

combined discontinuities of the dilogarithms and the log(1− z). These combine to the correct

discontinuity − τ
2π

log
(
1 + 2

z

)
. The function f2(ρ0) is only defined up to an additive constant,

which does not contribute to the expansion below. The high-energy integral becomes:

KGOE
+,β =

∮
[E∗,∞)

dE e−2βE (f2(ρ0(E)) + f2(−ρ0(E))) , (A.11)

where the contour wraps around [E∗,∞) counterclockwise.
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Our goal is to extract from this the topological expansion, i.e., a power series in τ. We would

therefore like to expand the function that enters in the contour integral:15

f2(ρ0) + f2(−ρ0) =
τ

4π2i

∑
n≥1

{[
4−n

n
Φ

(
−1

2
, 1, 2n

)
+

1

2n2
− 1

2n

(
log(4)− 4−n log(9)

)
+

1

2n

(
log

(
2πρ0
τ

)
+ log

(
−2πρ0

τ

))](
τ

πρ0

)2n

+
1

2n− 1

(
log

(
2πρ0
τ

)
− log

(
−2πρ0

τ

))(
τ

πρ0

)2n−1
} (A.12)

Note that performing this expansion inside the contour integral (A.11) is subtle. The reason

is that the term-by-term analytic structure of (A.12) is different than the analytic structure of

the original function f2(ρ0) + f2(−ρ0). Before expanding, the original contour for the energy

integration is a loop wrapping the E-interval [E∗,∞), see figure 8(a). This must be deformed

such as to avoid all singularities that appear after expanding. It turns out that this makes the

integration contour independent of E∗ (see figure 8(b)), thus making all time dependence explicit.

Since we are expanding in inverse powers of ρ0, we have to choose a contour at large energy. We

can then deform that contour at infinity, for each term separately. Each of the terms in the

expansion has different analytic properties which determine the type of contour deformation

needed to evaluate the energy integrals. While in the GUE case all terms in the expansion were

even powers of ρ leading to meromorphic functions of E, we now also have odd powers as well as

logarithms which lead to functions with cuts.

More conceptually, these observations mean that the analysis is now sensitive to features of

the density of states at all energies, not only their expansion near E = 0. This can be expected

on general grounds. In the GUE case the semi-classical genus expansion at fixed (high) energy is

trivial and all higher genus corrections in the canonical ensemble come from low energies. For the

case of the GOE, every energy window in the Laplace transform already has a non-trivial genus

expansion, and therefore all energy windows contribute to any fixed-genus term.

We proceed by considering the three types of terms in (A.12) separately and plugging each of

them into (A.11). First, let us choose the branch cut of ρ0(E) (see (1.3)). It turns out to be most

convenient to choose the branch cut of
√
E along E ∈ [0,∞). The branch cut of log(z) is taken

along z ∈ (−∞, 0] as usual. With this choice, we have the following branch cut discontinuities:

DiscE log

(
2πρ0(E)

τ

)
= 2πi = DiscE log

(
−2πρ0(E)

τ

)
for E ∈ [0,∞) . (A.13)

15To obtain this expansion, one needs to be careful about the branch cuts of f2(ρ0)+ f2(−ρ0). In practice, one
can first write this function as indicated by (A.10); then one uses the dilogarithm reflection identity to bring every
term in a form where z > 0 does not collide with the branch cut of Li2( · ). This avoids any branch cut ambiguities
and leads to an expression that can be expanded in large z.
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Figure 8: Illustration of the contour deformation: (a) we begin with a contour wrapping the interval
[E∗,∞); (b) we extend the contour around E = 0 such as to avoid all singularities encountered after
expanding the function f2 (ρ0) + f2 (−ρ0); (c) finally we treat the (divergent) integral around E = 0
separately from the integral of the discontinuity.

(1) Odd powers of τ. The first type of contribution in (A.12) is of the form

f2(ρ0) + f2(−ρ0) ⊃
τ

4π2i

∑
g≥1

[
4−g

g
Φ

(
−1

2
, 1, 2g

)
+

1

2g2
− 1

2g

(
log(4)− 4−g log(9)

)]( τ

πρ0

)2g

.

(A.14)

This is of the same form as in the GUE case. As there, it necessitates a deformation of the

contour wrapping [E∗,∞) into one that includes E = 0. Subsequently, the expansion (A.14) is

allowed inside the integral and leads to the following contribution:

KGOE
+,β ⊃ KGOE

+,odd,β ≡ 1

2π

∞∑
g=1

[
1

g
Φ

(
−1

2
, 1, 2g

)
+

4g

2g2
− 4g

2g

(
log(4)− 4−g log(9)

)]
c2g(ρ0; β) τ

2g+1

(A.15)

where cn(ρ0; β) was defined in (A.6) and captures the behavior of ρ0 near E = 0.

(2) Even powers of τ multiplying logarithms. The even powers of τ in the expansion are

of the form

f2 (ρ0) + f2 (−ρ0) ⊃
τ

4π2i

∑
n≥1

1

2n− 1

[
log

(
2πρ0
τ

)
− log

(
−2πρ0

τ

)](
τ

πρ0

)2n−1

. (A.16)

Before implementing this expansion, we must deform the E-contour in (A.11) such as to avoid the

branch cut of (A.16). Using the choices described above, the branch cut extends along E ∈ [0,∞).

We are therefore required to extend the original contour wrapping [E∗,∞) to a new contour that

wraps [0,∞), see figure 8(b). With our choice of branch cuts, the difference of logarithms is
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constant everywhere along the contour:

log

(
2πρ0(E)

τ

)
− log

(
−2πρ0(E)

τ

)
= −πi . (A.17)

The contour integral receives non-vanishing contributions due to the odd power of ρ0(E), which

again has a branch cut along [0,∞). We split the integration contour into two pieces, C(δ)
1 ∪ C(δ)

2 :

the first piece consists of integrating the discontinuity across the branch cut along [δ,∞), where

δ is a small infrared regulator. The second piece consists of the integration around E = 0 along

a circle of radius δ. See figure 8(c) for illustration.

(i) The first contribution arises from integrating the discontinuity encountered in odd powers of

ρ0(E) along C(δ)
1 :

DiscE

(
τ

πρ0(E)

)2n−1

= 2

(
τ

πρ0(E)

)2n−1

, E ∈ [0,∞) . (A.18)

Plugging this into the (IR-regulated) energy contour integral (A.11), we get a contribution:

KGOE
+,β ⊃ KGOE

+,even-A,β ≡ −
∞∑
n=1

4n−1

π(2n− 1)
d
(δ)
2n−1(ρ0; β) τ

2n ,

where d
(δ)
2n−1(ρ0; β) ≡

∫ ∞

δ

dE e−2βE 1

(2πρ0(E))2n−1
.

(A.19)

Note that the integrals d
(δ)
2n−1 are divergent as δ → 0. We return to this issue momentarily.

(ii) The second contribution is due to integration along the small circle around E = 0 at a

regulated radius |E| = δ, called C(δ)
2 in figure 8:

KGOE
+,β ⊃ KGOE

+,even-B,β ≡ −
∞∑
n=1

4n−1

2π(2n− 1)
r
(δ)
2n−1 τ

2n ,

where r
(δ)
2n−1 ≡

∫
C(δ)
2

dE e−2βE 1

(2πρ0(E))2n−1

(A.20)

The integrals r
(δ)
2n−1 are also divergent as δ → 0. We claim that the divergences cancel between

(A.19) and (A.20). To see this, note that the integrand is the same in both cases and has a small

energy expansion of a particular form:

e−2βE

(2πρ0(E))2n−1
= E

1
2
−n
(
1 + b1E + b2E

2 + . . .
)
. (A.21)

To extract the divergent pieces, this small-E expansion is sufficient. The anti-derivative in this
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limit is: ∫
dE

e−2βE

ρ0(E)2n−1
= E

3
2
−n

(
1

3
2
− n

+
b1E
5
2
− n

+
b2E

2

7
2
− n

+ . . .

)
(A.22)

This can be used to evaluate both (A.20) and the divergent part of (A.19). It is then obvious that

both d
(δ)
2n−1 and r

(δ)
2n−1 have divergences of the form δ−a for a = n− 3

2
, . . . , 1

2
. It is also clear that

these divergences cancel precisely between d
(δ)
2n−1 and r

(δ)
2n−1.

16 To find the finite piece of (A.19),

one has to go beyond the small-E expansion.

In summary, we see that all divergences cancel and we receive a finite contibution to the

spectral form factor. The finite piece comes entirely from d
(δ)
2n−1 and we can therefore give a

simplified prescription:

KGOE
+,β ⊃ KGOE

+,even,β ≡ KGOE
+,even-A,β +KGOE

+,even-B,β

= −
∞∑
n=1

4n−1

π(2n− 1)
d2n−1(ρ0; β) τ

2n ,

where d2n−1(ρ0; β) ≡
1

(2π)2n−1

[∫ ∞

δ

dE e−2βE 1

ρ0(E)2n−1

]
finite

.

(A.23)

The notation simply means that the integral is to be evaluated with an IR cutoff, but only the

finite piece is kept. In the final result (second line of (2.31)), we leave the prescription to pick the

finite piece implicit. There, we also use a half-integer index g̃ ≡ n − 1
2
to account for the terms

(A.23).

(3) Odd powers of τ multiplying logarithms. Finally, (A.12) contains terms of the form

f2(ρ0) + f2(−ρ0) ⊃
τ

4π2i

∑
n≥1

1

2n

[
log

(
2πρ0
τ

)
+ log

(
−2πρ0

τ

)](πρ0
τ

)2n
. (A.24)

This gives another series of terms with odd powers of time, namely

KGOE
+,β ⊃

∑
g≥1

4g−1

πg
dlog2g (ρ0; β) τ

2g+1 (A.25)

where we defined

dlog2g (ρ0; β) =
1

(2π)2g

∮
[0,∞)

dE

2πi
e−2βE ρ0(E)

−2g

[
log

(
2πρ0
τ

)
+ log

(
−2πρ0

τ

)]
. (A.26)

16To confirm the cancellation of divergences, note two subteleties. First, d
(δ)
2n−1 only has a single divergent

boundary term, while r
(δ)
2n−1 receives an identical divergence from both ends of the integration contour. This is

consistent because the coefficient of the two integrals also differs by a factor 2, c.f., (A.19) and (A.20). Second, the

divergence in r
(δ)
2n−1 naively appears to have the wrong sign. However, the sign works out correctly if one carefully

accounts for our choice of branch cut of
√
E along [0,∞).
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Note that the integrand has a pole at E = 0 and a branch cut along [0,∞). It is convenient to

split off a piece without branch cut containing log(τ):

dlog2g (ρ0; β) = −2 c2g(ρ0; β) log(τ) +
1

(2π)2g

∮
[0,∞)

dE

2πi
e−2βE ρ0(E)

−2g [log (2πρ0) + log (−2πρ0)] ,

(A.27)

where we recognize the term proportional to log(τ) as a contour integral that can be contracted

to a small circle around the pole at E = 0, i.e., an expression involving the coefficient c2g. It gives

a contribution to the spectral form factor of the form

KGOE
+,β ⊃ KGOE

+,log,β ≡ −
∞∑
g=1

4g

2πg
c2g(ρ0; β) log(τ) τ

2g+1 . (A.28)

The remaining integral has branch cuts and it will be convenient to turn the logarithms into

powerlaw dependence via the identity x−2(g−ε) = x−2g(1 + 2ε log x+ . . .). This gives:

dlog2g (ρ0; β) = −2 c2g(ρ0; β) log(τ) +
1

2
lim
ε→0

d

dε

∮
[0,∞)

dE

2πi
e−2βE

[
(2πρ0)

−2(g−ε) + (−2πρ0)
−2(g−ε)

]
,

(A.29)

As before, we split the integration into two piecewise contours C(δ)
1,2 , see figure 8(c). The two

contribute as follows:

(i) The integral along C(δ)
1 picks up the discontinuity across the cut, which exists for ε > 0 and

takes the following form:

DiscE
[
(2πρ0)

−2(g−ε) + (−2πρ0)
−2(g−ε)

]
= −2i sin(2π(g − ε)) |2πρ0|−2(g−ε) for E ∈ [δ,∞).

(A.30)

This gives the following contribution to the spectral form factor:

KGOE
+,β ⊃ KGOE

+,odd-A,β ≡
∞∑
g=1

4g−1

πg
d
(δ)
2g (ρ0; β) τ

2g+1 ,

where d
(δ)
2g (ρ0; β) ≡ − 1

2π
lim
ε→0

d

dε
sin(2π(g − ε))

∫ ∞

δ

dE e−2βE |2πρ0|−2(g−ε)

=

∫ ∞

δ

dE e−2βE (2πρ0)
−2g .

(A.31)

As in the previous discussion, the integral is IR-divergent, featuring powers δ−a for a = 1, . . . , g−1.

Additionally, there is a log(δ) divergence and a finite piece.
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(ii) The contour integral along the small circle around the origin C(δ)
2 is

KGOE
+,β ⊃ KGOE

+,odd-B,β ≡
∞∑
n=1

4g−1

πg
s
(δ)
2g (ρ0; β) τ

2g+1 ,

where s
(δ)
2g (ρ0; β) ≡

1

2
lim
ε→0

d

dε

∫
C(δ)
2

dE

2πi
e−2βE

[
(2πρ0)

−2(g−ε) + (−2πρ0)
−2(g−ε)

]
.

(A.32)

As in the previous analysis, this integral produces divergences that precisely cancel those in

(A.31). To see this, consider the small energy expansion

e−2βE

(2πρ0(E))2g
= E−g

(
1 + b̃1E + b̃2E

2 + . . .
)
. (A.33)

The IR divergences of (A.31) evidently are of the form

d
(δ)
2g (ρ0; β) =

1

(g − 1)δg−1
+

b̃1
(g − 2)δg−2

+ . . .+
b̃g−2

δ
− b̃g−1 log(δ) + [finite] (A.34)

In (A.32) we need to keep the regulator until after integration:

s
(δ)
2g (ρ0; β) = −1

2
lim
ε→0

d

dε

[
1

2πi
(Eε + (−E)ε)

×
(

1

(g − 1)Eg−1
+

b̃1
(g − 2)Eg−2

+ . . .+
b̃g−2

E
− 1

ε
b̃g−1 +O(E)ε0 +O(ε)

)]E=δ−i0

E=δ+i0

(A.35)

As before, our convenient convention is to place the branch cut of fractional powers along the

positive real axis. We thus pick up the following discontinuity:

s
(δ)
2g (ρ0; β) = − lim

ε→0

d

dε

[ (
ε+ ε2 log(δ) +O(ε3)

)
×
(

1

(g − 1)δg−1
+

b̃1
(g − 2)δg−2

+ . . .+
b̃g−2

δ
− 1

ε
b̃g−1 +O(δ)ε0 +O(ε)

)]

= − 1

(g − 1)δg−1
− b̃1

(g − 2)δg−2
− . . .− b̃g−2

δ
+ b̃g−1 log(δ) ,

(A.36)

thus exactly canceling the divergent terms in (A.34).

In summary, we can combine (A.31) and (A.32) to obtain a finite contribution to the τ-scaled
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spectral form factor:

KGOE
+,β ⊃ KGOE

+,odd,β ≡ KGOE
+,odd-A,β +KGOE

+,odd-B,β

=
∞∑
g=1

4g−1

πg
d2g(ρ0; β) τ

2g+1 ,

where d2g(ρ0; β) ≡
1

(2π)2g

[∫ ∞

δ

dE e−2βE 1

ρ0(E)2g

]
finite

.

(A.37)

Summary. This completes the derivation. Let us collect all the pieces. The contributions

(A.7), (A.15), and (A.28) combine into terms involving the “low-energy” coefficients c2g(ρ0; β).

When combining (A.7)+(A.15), the following identity is useful:

Φ

(
−1

2
, 1, 2g

)
+

1

(2g + 1)
2F1

(
1, g +

1

2
, g +

3

2
,
1

4

)
=

4g

2g
2F1(2g, 2g, 2g + 1,−1) . (A.38)

Furthermore, (A.23) and (A.37) yield contributions determined by (the finite part of) the co-

efficients d2g(ρ0; β) and d2g̃(ρ0; β). Adding up all these contributions, we get the final result

(2.31).

A.2 GSE: Derivation of eq. (2.57)

The low-energy part of the Laplace transform in the GSE is identical to the GUE case, except

that the integration limit is now defined by ρ0(E∗) =
τ
4π
. Therefore:

KGSE
β (τ) = KGUE

β

(τ
2

)
− τ

8π

∫ ∞

E∗

dE e−2βE log

∣∣∣∣1− τ

2πρ0(E)

∣∣∣∣︸ ︷︷ ︸
KGSE

+,β

. (A.39)

The new high energy (ramp) integral involves − τ
8π

log |1 − τ
2πρ0

|. The function f3(ρ0) which has

this expression as its discontinuity across the cut for ρ0 >
τ
4π

is found using the Stieltjes transform:

f3 (ρ0) =
τ

16π2i

[
Li2

(
1

2z

)
− Li2

(
1

2− 2z

)
+

1

2
log

(
1

z

)2

+
1

2
log

(
1

z − 1

)2

+ log(z − 1) log

(
1

z

)
− log(2− 2z) log

(
z − 1

z

)]
z=

2πρ0
τ

(A.40)

One can indeed check that this function has a branch cut along z > 1
2
. The discontinuity is

Disc(f3(ρ0)) = − τ
8π

log
(
1
z
− 1
)
along 1

2
< z < 1, and Disc(f3(ρ0)) = − τ

8π
log
(
1− 1

z

)
for z > 1.
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As for GUE and GOE, we symmetrize f3(ρ0) and expand in large z. This gives:

f3(ρ0) + f3(−ρ0) =
τ

16π2i

∑
n≥1

{[
3F2

(
1, 1, 1− 2n; 2, 2;

1

2

)
− H2n−1

n
+

1

22n+1n2

+
1

2n

(
log

(
4πρ0
τ

)
+ log

(
−4πρ0

τ

))](
τ

2πρ0

)2n

− 1

2n− 1

(
log

(
4πρ0
τ

)
− log

(
−4πρ0

τ

))(
τ

2πρ0

)2n−1
}
.

(A.41)

Even though some numerical factors differ, the structure of this expression is the same as in the

GOE case, (A.12). For example, the second line is obtained from (A.12) by replacing τ → τ
2

and multiplying the result by an overall factor 1
2
. Similarly for the third line, with an additional

minus sign. The first line appears in the given form after analyzing (A.40) term by term; it can

be rewritten as follows:

3F2

(
1, 1, 1− 2n; 2, 2;

1

2

)
− H2n−1

n
+

1

22n+1n2
=

1

2n2

(
2F1 (2n, 2n, 2n+ 1;−1) + 1− n log(4)

)
.

(A.42)

We recognize the right hand side as the same combination that appears in 1
2
× AGOE

g (ρ0; β), see

(2.32). Due to this non-trivial simplification, we can apply an analysis that is essentially identical

to the GOE case. This yields the result (2.57).

B Details on τ-scaled GOE JT gravity

In this appendix we give further details on the τ-scaled JT gravity matrix model in the GOE

universality class. Section B.1 contains a recursive construction of the high-temperature expan-

sion. Section B.2 shows how to resum the high-temperature expansion into a low-temperature

expansion.

B.1 High-temperature expansion

Here, we develop a method for computing the coefficients appearing in the τ-scaled SFF for non-

orientable (GOE) JT gravity in a small-β expansion. Consider the following generalization of the

binomial formula (x assumed real):

(1 + a)x =
∞∑
k=0

Γ(x+ 1)

Γ(x− k + 1)Γ(k + 1)
ak . (B.1)
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Note that the expansion coefficients are the analytic continuation of the usual binomial coeffi-

cients. Furthermore, if x is a positive integer then for every k > x the numerator has a pole and

therefore the series truncates and becomes the usual binomial formula. The series converges if

|a| < 1. Using this, we can write (for any E):[
1

4π2
sinh

(
2π

√
E
)]−n

= (8π2)ne−2πn
√
E

∞∑
k=0

(−1)kΓ(1− n)

Γ(1− n− k)Γ(k + 1)
e−4πk

√
E (B.2)

We now Laplace transform each term in the sum,∫ ∞

0

dE e−2βEe−2π(n+2k)
√
E =

1

2β
− (n+ 2k)(2π)

3
2

8β3/2
e

π2(n+2k)2

2β

[
1− Erf

(
π(n+ 2k)√

2β

)]
=

∞∑
m=0

Γ(2m+ 2)

(2π2)m+1 Γ(m+ 1)

(−β)m
(n+ 2k)2(m+1)

(B.3)

Note that it is important that β and n+ 2k are positive, otherwise the integral has saddle point

contributions which would not be analytic in β. For this range of parameters the expression is

analytic around β = 0, i.e. there is a series expansion in β for each of the integrals appearing in

the t expansion. This gives then

dn
(
ρJT0 ; β

)
= (4π)n

∞∑
k=0

(−1)kΓ(1− n)

Γ(1− n− k)Γ(k + 1)

∞∑
m=0

Γ(2m+ 2)

(2π2)m+1 Γ(m+ 1)

(−β)m
(n+ 2k)2(m+1)

(B.4)

To simplify the coefficient of βm we need to perform the sum over the k variable. Define

Ir(a, n) ≡
∞∑
k=0

(−1)kΓ(1− n)Γ(r)

Γ(1− n− k)Γ(k + 1)
(−n)r−1(an+ 2k)−r . (B.5)

We can derive a recursive expression for Ir(a, n). From the definition it follows that dIr
da

= Ir+1.

This allows an iterative evaluation of Ir in terms of repeated derivatives of the seed function I1:

Ir(a, n) = ∂r−1
a I1(a, n) , I1(a, n) =

Γ(1− n) Γ(an
2
)

2 Γ(1− n+ an
2
)
. (B.6)

Thus we obtain

dn
(
ρJT0 ; β

)
= (4π)n

∞∑
m=0

I2m+2(1, n)

(−2nπ2)m+1m!

(
β

n

)m

. (B.7)

Explicit examples can be found in (2.53) and (2.54).
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B.2 Resummation of the high-temperature expansion

To compare our results at high and low temperatures requires a non-trivial all-order resummation

in β. Expressions to all orders in the low temperature regime were obtained in [43] using

gravitational calculations at genus 1
2
and for genus 1. We will show how their expressions can be

resummed into our all-order high-temperature results.

Genus g = 1
2
: We can use the high-temperature expressions (B.3) to obtain the τ-scaled genus

expansion in terms of infinite sums of error functions. For example, at order τ2 (genus 1
2
) we find

the following contribution to the SFF as a power series in small β:

KGOE,JT
β (τ) ⊃ CGOE

g̃= 1
2

(
ρJT0 ; β

)
τ2

= −4
∞∑
k=0

[
1

2β
− (2k + 1)(2π)

3
2

8β3/2
e

π2(2k+1)2

2β Erfc

(
π(2k + 1)√

2β

)]
τ2

=
∞∑
k=0

[
− 2

((2k + 1)π)2
+

6β

((2k + 1)π)4
− 30β2

((2k + 1)π)6
+ . . .

]
τ2

=

[
−1

4
+
β

16
− β2

32
+

17β3

768
− 31β4

1536
+ . . .

]
τ2

(B.8)

This, of course, is nothing but the τ2 term in (2.55). We would like to understand how this is

consistent with our low temperature result (2.52) (which is an expansion around β = ∞). In

ref. [43], the complete large β expansion was derived, thus generalizing (2.52) to all orders; see

their eq. (4.8). To resum, we formally expand their eq. (4.8) in small β (i.e., outside the radius

of convergence):

[
KGOE,JT

β (τ)
]
[43]

⊃ − 1√
2πβ

[
1 +

∞∑
k=1

(−1)k

(
2− k

√
2πβ e

βk2

2 Erfc

(
k

√
β

2

))]
τ2

= − 1√
2πβ

[
1 +

∞∑
k=1

(−1)k
(
2− k

√
2πβ + 2k2β − k3

4π
(2πβ)

3
2 + . . .

)]
τ2 .

(B.9)

These sums can be regularized using ζ-function regularization. This regularization renders the

sums multiplying integer powers of β finite and sets those with half-integer powers to zero. Using

such a scheme, the power expansion in β then exactly matches (B.8).

Genus g = 1: A similar check can be performed for the SFF at order τ3 (genus 1), where [43]

offer a similar resummed result to compare with. Our analysis yields the third line of (2.55).

This should be compared with eq. (4.10) of [43]. Again, their result is convergent for large β, but
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we can resum the small β expansion using ζ-function regularization:17

[
KGOE,JT

β (τ)
]
[43]

⊃
[
−

1
3
+ γ + log(2βτ2)

π
+

4

π

∞∑
k=1

(
−1 +

1

2
(1 + βk2) e

βk2

2 E1

(
βk2

2

))]
τ3

=

[
−

1
3
+ γ + log(2βτ2)

π
+

4

π

∞∑
k=1

{
log
(
2
β

)
− 2− γ

2
+

+ (· · · )k2 + (· · · )k4 + (· · · )k6 + . . .−
∞∑
ℓ=0

(
(2ℓ+ 1)

2ℓℓ!
βℓ log(k)k2ℓ

)}]
τ3

=

[
−

1
3
+ γ + log(2βτ2)

π
+

4ζ(0)

π

log
(
2
β

)
− 2− γ

2
+

∞∑
ℓ=0

(2ℓ+ 1)

2ℓ−2πℓ!
ζ ′(−2ℓ)βℓ

]
τ3

=

[
5

3π
− 2

π
log(4πτ) +

∞∑
ℓ=1

(−1)ℓ Γ
(
3
2
+ ℓ
)

2ℓ−2 π2ℓ+ 3
2

ζ(2ℓ+ 1) βℓ

]
τ3 ,

(B.11)

where the omitted terms in the second line involve even powers of k that vanish after regular-

ization. The last line precisely matches our corresponding term at O(τ3) in (2.55) to arbitrarily

high orders.18

C Two-boundary partition function in non-orientable topo-

logical gravity

For completeness, we give in table 2 some exact results for the two-boundary gravitational path

integral in the non-orientable Airy model. We present the results as functions of Euclidean

boundary lengths β1,2. These expressions can be obtained from (4.17).

17We use the following identities:

ζ ′(s) = −
∑
k≥1

k−s log(k) and ζ ′(−2ℓ) =
(−1)ℓ(2ℓ)!

22ℓ+1 π2ℓ
ζ(2ℓ+ 1) , ℓ ∈ Z+ . (B.10)

18We note one caveat: the very first k-independent term in (B.11) is not exactly what the authors of [43] obtain
directly from a gravity calculation. Their result from a purely gravitational calculation at genus 1 is divergent in
the τ-scaling limit. Writing it in the form of the first term in (B.11) involves a non-trivial all-genus resummation,
see [48]. This is necessary in order to find a match with our manifestly finite τ-scaled analysis. This issue is
separate from the resummation of the β-expansion and we comment on it in section 4.
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g = 0 ZAiry
0,2 (β1, β2) =

√
β1β2

π(β1+β2)

g = 1
2

ZAiry
1
2
,2
(β1, β2) = − 1√

π

{
β1β2√
β1+β2

− β1
√
β2 − β2

√
β1

}
g = 1 ZAiry

1,2 (β1, β2) =
1
3π

{√
β1β2

(
7β2

1 + 2β1β2
)
+ 3β1β

2
2 arctan

(√
β1√
β2

)
+ [β1 ↔ β2]

}
g = 3

2
ZAiry

3
2
,2
(β1, β2) =

1
48

√
π

{√
β1
(
4β4

2 + 8β1β
3
2 + 8β2

1β
2
2 + 5β3

1β2
)

+(−5β3
1β2 − β2

1β
2
2)
√
β1 + β2 + [β1 ↔ β2]

}
g = 2 ZAiry

2,2 (β1, β2) =
1

90π

{√
β1β2

(
185β5

1 + 435β4
1β2 + 60π β

7
2
1 β

3
2
2 + 869β3

1β
2
2 + 45π β

5
2
1 β

5
2
2

)
+60 β1β

4
2(β1 + 2β2) arctan

(√
β1√
β2

)
+ [β1 ↔ β2]

}
.

g = 5
2

ZAiry
5
2
,2
(β1, β2) =

1
90

√
π

{
80 β7

1

√
β2 + 117 β

13
2
1 β2 + 368 β

11
2
1 β2

2

+752 β
9
2
1 β

3
2 + 968 β

7
2
1 β

4
2 + 704 β

5
2
1 β

5
2 + 320 β

3
2
1 β

6
2

− (117β6
1 β2 + 217β5

1β
2
2 − 450β4

1β
3
2)
√
β1 + β2 + [β1 ↔ β2]

}
g = 3 ZAiry

3,2 (β1, β2) =
1

5670π

{√
β1β2

(
6209β8

1 + 26005β7
1β2 + 2520π β

13
2
1 β

3
2
2 + 78533β6

1β
2
2

+7560π β
11
2
1 β

5
2
2 + 142378β5

1β
3
2 + 15120π β

9
2
1 β

7
2
2 + 170198β4

1β
4
2

)
+5040 β1β

5
2(β1 + β2) (2β

2
1 + β1β2 + β2

2) arctan
(√

β1√
β2

)
+ [β1 ↔ β2]

}
Table 2: Two-boundary partition functions in non-orientable topological gravity (GOE Airy model).

D The microcanonical plateau in orientable topological

gravity

The plateau in the universal SFF is due to spectral correlations at very small energies. The

approximations used in section 4.1 to arrive at the general formula (4.6) are therefore not valid.

In this appendix we explore the structure of the E → 0 correlations for the GUE Airy model.

D.1 The microcanonical genus expansion

In this section, we develop a formal microcanonical genus expansion of the GUE spectral form

factor. Consider the universal microcanonical SFF for the GUE:

KGUE
E (τ) = min

{ τ

2π
, ρ0(E)

}
=

τ

2π
+
[
θ
(
ρ0(E)−

τ

2π

)
− θ(ρ0(E))

] ( τ

2π
− ρ0(E)

)
. (D.1)
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We expand the distributional contribution in a formal Taylor series:

θ
(
ρ0 −

τ

2π

)
− θ(ρ0) =

∞∑
n=1

(−τ)n

n!
δ(n−1)(2πρ0) (D.2)

We also note the following identity:

xk δ(n−1)(x) = (−1)k
(n− 1)!

(n− 1− k)!
δ(n−1−k)(x) (n− 1− k ≥ 0) . (D.3)

Using these identities, we can write:

KGUE
E (τ) =

τ

2π
+
( τ

2π
− ρ0(E)

) ∞∑
n=1

(−τ)n

n!
δ(n−1)

(
2πρ0(E)

)
=

τ

2π
−

∞∑
n=0

(−τ)n+2

2π(n+ 2)!
δ(n)
(
2πρ0(E)

)
.

(D.4)

Due to the square root edge of ρ0(E), we can anticipate that only odd n = 2g− 1 will contribute

to the sum. We write the resulting expression as follows:

KGUE
E (τ) =

τ

2π
−

∞∑
g=1

1

2πg(2g + 1)
c2g
(
ρ0;E

)
τ2g+1 ,

c2g
(
ρ0;E

)
= − 1

2(2g − 1)!
δ(2g−1)

(
2πρ0(E)

)
.

(D.5)

The first term is the microcanonical ramp. The second term gives rise to the formal genus

expansion of the plateau, which is singularly supported at E = 0. Its ρ0-dependent coefficient

corresponds to the characteristic coefficients c2g, now written in the microcanonical variables, c.f.,

(2.2).

Example: Airy model. For the Airy spectral curve, the expression (D.5) can readily be

written in terms of delta-functions localized at E = 0, using

δ(2g−1)
(√

E
)
= 2 (−1)g

(2g − 1)!

(g − 1)!
δ(g−1)(E) . (D.6)
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Plugging into (D.5), we find:

c2g
(
ρAiry
0 ;E

)
=

(−1)g−1

(g − 1)!
δ(g−1)(E)

⇒ KGUE,Airy
E (τ) =

τ

2π
+

∞∑
g=1

(−1)g

2π(2g + 1)g!
δ(g−1)(E) τ2g+1 .

(D.7)

It is trivial to confirm that the Laplace transform of these expressions recovers the canonical

results (2.17) and (2.18).

Example: (2, 3) minimal string. For the spectral curve of the (2, 3) minimal string, we

can similarly work out the microcanonical expansion coefficients. We observe the following

generalization of (D.6), which can be confirmed by integrating against a test function:

δ(2g−1)
(√

E
(
1 + 2

3κ
E
))

= 2 (−1)g
g−1∑
k=0

(2g + k − 1)!

k!(g − 1− k)!

(
2

3κ

)k

δ(g−1−k)(E)

=
2(−1)g(2g − 1)!

(g − 1)!

(
3κ

2

)2g

U

(
2g, 3g;

3κ

2
∂E

)
δ(3g−1)(E) .

(D.8)

This is, of course, directly related to the inverse Laplace transform of (2.21) and consistency with

the canonical discussion thus follows.

D.2 The microcanonical plateau from gravity

Let us now reproduce the genus expansion of the plateau (D.7) from the GUE topological gravity

path integral. We could achieve this on a case-by-case basis by simply computing the inverse

Laplace transform of the exact orientable two-boundary partition functions.19 Instead we wish to

give a slightly more general perspective. We return to the starting point, the path microcanonical

path integral (4.1), and systematically analyze the limit E → 0. We expand the trumpet path

integral in a power series in β:

ZAiry
g,2 (T, β) =

1

4π
√
T 2 + β2

∫ ∞

0

b1db1 b2db2

∞∑
n=0

1

n!

(
− β(b21 + b22)

4(T 2 + β2)

)n

e
iT

4(T2+β2)
(b21−b22) V Airy

g,2 (b1, b2) .

(D.10)

19The first few (g = 1, 2, 3) are given by:

ZGUE,Airy
g,2 (β, T ) ∈

{√
T 2 + β2

4πβ
, − (T 2 + β2)

3
2

6π
,
β(T 2 + β2)

5
2

10π
, . . .

}
(D.9)
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We can make the T -scaling explicit by rescaling bi →
√

4(T 2+β2)
T

bi:

ZAiry
g,2 (T, β) =

26g

π

∞∑
n=0

(−β)n
n!

T 3g−n

(
1 +

β2

T 2

)3g+ 1
2
∫ ∞

0

b1db1 b2db2
(
b21 + b22

)n
ei(b

2
1−b22) V Airy

g,2 (b1, b2) .

(D.11)

The corresponding microcanonical expression is obtained by expanding the factor (1 + β2

T 2 )
3g+ 1

2

up to the required order and then replacing powers βn → 2−nδ(n)(E):

ZAiry
g,2 (T,E) =

26g

π

∞∑
n=0

(−2)−n

n!
T 3g−n

[
δ(n)(E) +

(6g + 1)

8T 2
δ(n+2)(E) +

(36g2 − 1)

128T 4
δ(n+4)(E) + . . .

]
×
∫ ∞

0

b1db1 b2db2
(
b21 + b22

)n
ei(b

2
1−b22) V Airy

g,2 (b1, b2) .

(D.12)

Note that the second line is independent of T or E and simply corresponds to a certain universal

symmetrized moment of the WP volume.

So far, the expression is in principle valid for orientable as well as non-orientable geometries.20

Recall now that in the orientable case, V GUE,Airy
g,2 (b1, b2) is a symmetric polynomial. The integrals

over bi for these types of terms can easily be performed, using the following Fresnel-type integrals:∫ ∞

0

db bm e±ib2 =
1

2
e±

iπ
4
(m+1) Γ

(
m+ 1

2

)
. (D.13)

The WP volumes for the orientable model are well known (e.g., [47]):

V GUE,Airy
1,2 (b1, b2) =

b41 + 2 b21b
2
2 + b42

192
,

V GUE,Airy
2,2 (b1, b2) =

b101 + 152 b81b
2
2 + 58 b61b

4
2

4423680
+ perm. ,

V GUE,Airy
3,2 (b1, b2) =

5 b161 + 200 b141 b
2
2 + 2156 b121 b

4
2 + 8048 b101 b

6
2 + 6070 b81b

8
2

4280706662400
+ perm. ,

(D.14)

and so on. Explicit evaluation then yields:

e−3S0 ZGUE,Airy
1,2 (T = τeS0 , E) = − τ3

6π
δ(E) +O

(
e−S0

)
,

e−5S0 ZGUE,Airy
2,2 (T = τeS0 , E) = 0× eS0 δ(E) +

τ5

20π
δ′(E) +O

(
e−S0

)
,

e−7S0 ZGUE,Airy
3,2 (T = τeS0 , E) = 0× e2S0 δ(E) + 0× eS0 δ′(E)− τ7

84π
δ′′(E) +O

(
e−S0

)
,

(D.15)

20In the non-orientable case, the integrals in (D.12) require regularization.
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and so on. These terms build precisely the microcanonical distribution-valued expansion of the

plateau, derived from RMT universality in (D.7). At genus g, the first (g − 1) terms would

be divergent upon τ-scaling, but their coefficients turn out to be zero. This is due to (g − 1)

cancellations among the coefficients of the WP volumes. For the GUE, these cancellations have

been understood before [47, 61], so we will not discuss them in detail here. Our main observation

is that the τ-scaled plateau has a formal microcanonical genus expansion in the GUE, which can

be obtained from orientable topological gravity term-by-term.
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