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Spectral statistics of quantum chaotic systems are governed by random matrix universality.
In many cases of interest, time-reversal symmetry selects the Gaussian Orthogonal Ensemble
(GOE) as the relevant universality class. In holographic CEFTs, this is mirrored by the presence
of non-orientable geometries in the dual gravitational path integral. In this work, we analyze
general properties of these matrix models and their gravitational counterparts. First, we develop
a formalism to express the universal level statistics in the canonical ensemble for arbitrary spectral
curves, leading to a topological expansion with finite radius of convergence in the late-time -
scaling limit. Then, we focus on topological gravity and study topological recursion on the moduli
space of non-orientable surfaces. We find that the Weil-Petersson volumes display non-analytic
behaviour multiplying polynomials in the boundary lengths. The volumes give rise to wormholes
with late-time divergences, in contrast with the orientable case, which is finite. We identify
systematic cancellations among WP volumes implied by the consistency and finiteness of the
T-scaling limit. In particular, the cancellation of late-time divergences requires a nontrivial genus
resummation. Working in the gravitational microcanonical ensemble, we derive and resum all

orders of the topological expansion matching the GOE matrix model in the high-energy regime.
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1 Introduction and summary of results

1.1 Motivation

The gravitational path integral has proven to be a very successful tool in the study of quantum
gravity and black holes. A lot of progress has come from understanding the correct rules according
to which geometries should be included in the path integral. This has led to breakthrough
results on the late-time physics of black holes [1, 2], the statistical realization of random matrix
universality in semi-classical gravity [3-5], and many other problems. At the heart of these
advances is the realization that spacetimes with nontrivial topologies must be included in the
path integral to solve this problem.

The necessity of non-orientable geometries in AdS/CFT. One class of spacetimes that
has often been neglected consists of non-orientable geometries. It has only recently been appre-
ciated that these should be included in the path integral on very general symmetry grounds. In
quantum gravity, global symmetries are expected to be absent, whether continuous or discrete.
In the context of AdS/CFT, this statement has been proven to hold in [6], and we can explore its
consequences by examining the symmetries of the dual CFT. Since CR7T is a symmetry of any
relativistic quantum field theory [7], including Conformal Field Theories, it is also a symmetry of
the dual AdS quantum gravity. Since no global symmetries can exist in gravity, CR7T (and any
other symmetries like R and C7) must be a bulk gauge symmetry.

The consequences of gauging such a discrete spacetime symmetry in gravity were recently
studied in [8]. It was shown that gauging spacetime inversions implies the necessary inclusion of
non-orientable spacetimes in the gravitational path integral. Furthermore, these geometries are
not necessarily subleading and there is a priori no reason to exclude them from the path integral.
In fact, in [8] a specific example was exhibited, where a CRT -twisted BTZ black hole needs to
be included to match a boundary CFT prediction. It was pointed out [9, 10] that in Euclidean
signature, these simply belong to the class of SL(2,7Z) black holes, which in Lorentzian signature
may be rendered non-orientable. Thus, inadvertently, non-orientable geometries were already
included in the partition function of pure three-dimensional gravity which sums over all SL(2,7Z)
black holes [11, 12]. In particular, failing to include these non-orientable contributions would lead
to a violation of modular invariance. On the other hand, summing over all the SL(2,7Z) black
holes leads to the well-known problem of the Maloney-Witten density of states being negative in
certain regions of the spectrum [13]. This has led to several resolutions and proposals for what
else to include in the path integral (e.g., [14-17]).

In two-dimensional Jackiw—Teitelboim (JT) gravity, dual to an ensemble average, bulk gauge
symmetries are realized as global symmetries in each member of the ensemble [18, 19]. If the

dual quantum mechanical system is time reversal 7 symmetric, such as the SYK model with
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g = 0mod4 [20, 21], then we must gauge 7 in the bulk theory by summing over both orientable
and non-orientable surfaces in the gravitational path integral. Stanford and Witten [19] showed
that JT gravity, when non-orientable geometries are included, is dual to an ensemble of random
Hamiltonians with time-reversal symmetry 7, belonging to the Gaussian Orthogonal Ensemble
(GOE) universality class. As an application, crosscap contributions to correlation functions were
considered in [22] and found to modify the late-time plateau. Recently, a version of topological
recursion for non-orientable surfaces was developed in [23], which we will discuss in detail in the

main text.

The connection between random matrices and discrete symmetries is an old subject which
goes far beyond two-dimensional gravity. In fact, any quantum mechanical system which exhibits
chaos in the form of random matrix statistics will fall into one of several universality classes
according to its discrete symmetries [24-26]. The specific symmetry class will change qualitatively
and quantitatively the random matrix ensemble that describes the statistics of the energy levels
of the quantum system under consideration. The GUE universality class of Hermitian random
matrices, corresponding to systems with no anti-unitary symmetries such as time reversal, is
extremely useful and practical due to is technical simplicity. However, since relativistic quantum
field theories are CR7T -invariant, there is always an anti-unitary symmetry acting on the Hilbert
space and consequently the Gaussian Unitary Ensemble (GUE) is not the relevant symmetry
class. This motivates us to study other symmetry classes, particularly the GOE and Gaussian
Symplectic Ensemble (GSE), since these are relevant for chaotic QFTs. From the holographic
perspective, this provides another reason why contributions from non-orientable geometries are
not only necessary but essential: their inclusion is required to correctly capture the chaotic
behaviour expected of dual CFTs.

Quantum chaos and the case of AdS3;/CFT,. Let us consider the case of AdS;/CFTy in
some more detail. Consider a unitary 2d CFT with ¢, = cg, not assuming that it is parity
invariant. The Hamiltonian decomposes into blocks with fixed spin H = € ez Hj. The CFT
is RT -invariant and the R7 symmetry preserves a spin-j block, namely it sends j — j. Since
there is an antiunitary symmetry acting within a block H; which squares to (R7)? = (—1)%, the
universality class of a block H; is GOE for bosonic states and GSE for fermionic states, including

j=0.!

On the AdS;3 side, this means we should include contributions from non-orientable geometries.
This reasoning was applied in [29] where it was pointed out that one should also include a time-
reversal of the Cotler-Jensen torus wormhole [5], to account for the correct slope of the linear ramp

In Lorentzian cylinder quantization, 7 and R both send j — —j so RT preserves H ;- In Euclidean radial
quantization, the Osterwalder-Schrader time-reversal © acts as conjugation ©L,0~! = LI = L_,, [27, 28], leaving
j invariant. In particular, © and R7T correspond to each other, since they have the same action on Virasoro
generators. Further assuming that the CFT is parity R-invariant only implies that the spectra of H; and H_;
coincide.



in the spectral form factor (SFF). Another class of geometries which can be obtained by crosscap-
type identifications in 3D gravity is given by so-called twisted I-bundles, considered in [30] in the
framework of Virasoro TQFT [31] and in [29] in the semiclassical approximation. Simply put,
these are Zs-quotients of two-boundary wormholes along a two-dimensional slice which results in
a single-boundary contribution to the path integral.

In the near-extremal limit of AdSs; black holes and wormholes, we expect JT gravity to
correctly capture the relevant physics [17]. The gauged R7T symmetry implies that the correct
effective theory in the near-extremal limit of AdS; gravity is non-orientable JT gravity. Similar
conclusions should be valid in higher-dimensional AdS/CFT, since JT gravity has been shown
to be the correct effective theory for near-extremal black holes in several contexts [32-34]. In
particular, the contribution of non-orientable geometries was not included in the work of Maxfield
and Turiaci [17], which considered only ordinary orientable JT gravity. In light of this, it would
be very interesting to revisit their calculation in non-orientable JT gravity with defects. The
interplay between crosscaps and defects has not been discussed before. From the matrix integral
side, the conclusion of [17] was simply that one has to consider a matrix model with a shifted
edge Fy < 1 with respect to the semiclassical black hole threshold, set to E = 0 by convention. A
shifted edge GOE matrix model is the obvious candidate that should correspond to non-orientable
JT with defects, where the sum over defects is simply the gravitational counterpart of the Fy < 1
expansion. Matching the effective 2D theory to 3D gravity sets Fy = (’)(6_50/ 2) and similarly
for the defect coupling A = (’)(6*50/ 2). A possible subtlety lies in the fact that a 4k defect
contribution is of the same order as the contribution of a genus g = 4k surface, where the genus
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can now take half-integer values due to crosscaps: g =0, 5,1,3,....

Going beyond the density of states, to correctly describe the RMT statistics of chaotic 2D
CFTs and their AdS; holographic duals, it is crucial to consider the constraints coming from
Virasoro symmetry and modular invariance. Recently, a subset of the authors constructed
RMTS,, a fully modular-invariant random matrix ensemble which captures the nontrivial interplay
between random matrix statistics in CFTy and modular invariance [35, 36] (see also [37-39)]).
RMT, serves as a benchmark for chaos in CFTy and produces candidate partition functions for
off-shell wormholes in AdS; pure gravity. RMTs can be developed for any of the GUE, GOE
and GSE symmetry classes (and in principle for the other seven classes of the Altland-Zirnbauer
classification [25]), but to apply it consistently to CF Ty, we should use the GOE ensemble.?

The necessity and importance of including non-orientable manifolds are transparent, particu-
larly for understanding chaos in the form of random matrix universality in gravity and CFT. This
motivates us to consider the SFF in GOE matrix integrals and correspondingly the topological
expansion in non-orientable JT gravity. This physically relevant case is unfortunately not a
simple generalization of the GUE case. There are several both qualitative and quantitative
differences between orientable and non-orientable cases, among which are the presence of two

2See also [40, 41] for further comments on the importance of considering the GOE class in this context.



types of divergences and an overall significantly more complex analytic structure, as explored in

section 1.3.

Objectives. We will focus on the SFF as a diagnostic of random matrix universality which
has a characteristic ramp-plateau structure in all symmetry classes. It was shown in [42] that
in orientable JT gravity it is possible to capture the ramp-plateau transition by considering the
topological e~ expansion of the SFF in the T-scaling limit, where T = Te™ is held fixed
as T,e% — oo. This is an extremely non-trivial property since the topological expansion is
asymptotic and the plateau is usually understood to be a doubly non-perturbative effect in gie™
from the GUE matrix integral. The T-scaling limit reorganizes the topological expansion into
a series with a finite radius of convergence, which upon analytic continuation describes the full
ramp-plateau transition in canonical variables. From the gravity side, this shows that the plateau,
which indicates the discreteness of black hole microstates, is obtained by resumming infinitely

many wormhole geometries and does not necessarily require new non-perturbative effects.

In this work, we extend and generalize these lessons to other symmetry classes, with a
particular focus on time-reversal invariant systems described by GOE matrix models. As we
will see, the T-scaling limit is considerably more subtle in this case and it involves qualitatively
new ingredients and challenges. Nevertheless, ultimately it still leads to a convergent topological

expansion, allowing for a perturbative study of the plateau.

In the remainder of this section we give a light introduction and an overview of our results.

1.2 Random matrix universality and t-scaling

In this paper, we study spectral correlators in random matrix theory with particular focus on
two-point correlators. We denote the connected SFF as

K(B1, B2) = (Te(e” ) Tr(e™)) (1.1)

where the expectation value indicates a connected matrix integral of the form

()= %/d}[( . )e—NTW(H)_ (1.2)

The characteristics of the matrices H, as well as the matrix potential, depend on the discrete
symmetries. We will consider cases where they belong to one of the following universality classes:

e GUE: H are Hermitian and Vo(H) = $H?; a model for systems without time-reversal

symmetry.



e GOE: H are real-symmetric and Vo(H) = $H?; a model for systems with time-reversal
symmetry in which 72 = 1.

e GSE: H are Hermitian quaternionic and Vo(H) = H?; a model for systems with time-

reversal symmetry in which 72 = —1 (e.g., fermionic systems).

While we review the GUE for illustration and discuss the GSE as an interesting generalization,
our main focus will be on the GOE. The latter is often the most realistic universality class for
systems of interest in holography.® We note that further generalizations taking into account
additional symmetries exist and would be interesting to study further [25].

In the double-scaling limit, we take N — oo and suitably tune the model parameters to zoom
in on the edge of the spectrum. The matrix model can then be characterized by a continuous

spectral curve, which we assume to be of the form

E
p(E) = po(E) ™ = \2/—7: (1+aE+aB* +...) ™, (1.3)

where Sy is a large parameter that controls the double-scaling limit. The SFF admits a topological

expansion in powers of e=:

KB, B) = Y, Kga(Br,Ba)e ™%, (1.4)

1 3
9:07571757'"

where half-integer terms are only relevant for the GOE and the GSE. Much of this paper is
concerned with the analysis of this expansion, such as finding the coefficients K, as a function

of the coefficients a; of the spectral curve. For example, a simple universal result is the genus-0

Koa(B, B2) = %51%%2 , (1.5)

contribution:

with Cque = 1, Ccor = 2, Cask = 3-

We will use the following standard analytic continuation of (1.1). In canonical expressions,

we write
and denote the corresponding SFF as Kj3(7'). The corresponding microcanonical expression is

related by a Laplace-Fourier transform:

Kp(w) = / " dBdw e~ Ks(T). (1.7)

o0

3See [19, 22, 23, 29, 43] for some recent discussions.
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Figure 1: Universal spectral form factors in three universality classes, for the Airy model. Left:
Microcanonical variables (fixed £ = 1); the non-smooth transition between ramp and plateau is
indicated by dots. Right: Canonical variables (fixed § = 1); the transition to the plateau is smooth.

More conveniently, we will often consider the microcanonical SFF in the time domain, i.e.

Kp(T) = /_ " A e Ky(T) (1.8)

oo

The t-scaling limit. It has been suggested in [42] (see also [44, 45]) that a simple scaling limit
of K3(T) can be used to focus on the physics at the scale of the average level spacings and thereby
extract the universal RMT behavior. Furthermore, it turns out that the canonical SFF is best
suited for this: it leads to a convergent topological expansion that displays a smooth transition
to the plateau. We define this t-scaling limit of the SFF as follows:

T-scaling: T — o0, So — 00, T=Te ™ fix. (1.9)
In this limit, the topological expansion simplifies, and we write:

Ks(t) = T}qiolgoo e Kg(T = te™). (1.10)
T fixed

For instance, the genus-0 term (1.5) implies a universal contribution KCz(T) D 4(;—2.

A conjecture due to [42] (see also [46, 21, 47] and [48, 43] for related recent discussions in the
context of the GOE) is that the t-scaled SFF agrees exactly with the universal expression (“sine
kernel”) derived in the corresponding Gaussian random matrix model. That is, one expects:

Ko(r) 2 /OoodEewE (), (1.11)



where the universal expressions for spectral correlators in RMT are [49]:

GUE RMT: Kg(t) = min {l ,OO(E)} ,

2
| Cmind T T LT g (TETE)
GOE RMT: Kg(t) = min {7? o log (1 + ng(E)) , 2p0(F) o log (T —o(B) :
. T T T
(1.12)

See figure 1 (left) for illustration. The GUE expression is continuous but not differentiable across
the “ramp-to-plateau transition” at energy E, determined by po(E.) = z-. The universal GOE
SFF is twice differentiable across the same transition. In the GSE case, the transition happens

at po(E,) = 4= and is twice differentiable; in addition there is a discontinuity in the “ramp” at
po(Ey) = 5.

In section 2, we study in detail the Laplace transform of the universal t-scaled RMT corre-
lators, see (1.11). Our main result is a derivation of the coefficients in the T-scaled topological
expansion of Kg(T) for the three universality classes for an arbitrary spectral curve (1.3). We find
that all of them lead to a convergent topological expansion of the form

’CB(T):%T+ D [Ag(po; B) + Bylpo; ) log(D)] T+ > Cylpo; )77 (1.13)
17 =13

The coefficients in this expansion for general spectral curves can be found for GUE, GOE, and
GSE in (2.3), (2.32), and (2.57), respectively. While the GUE only features the A, coefficients,
the GOE and GSE attain the general structure shown above, where g € Z indicates integer-genus
contributions and g € Z + % labels half-integer-genus contributions. The latter are associated in

gravity models with non-orientable crosscap geometries. See figure 1 (right) for an example of
Ks(7).

To derive these results, we develop tools to perform the Laplace transform of the universal
expressions (1.12) for arbitrary po(E). We also give evidence that these universal expressions do
indeed capture the t-scaling limit of SFF’s computed in various models of interest. Furthermore,
we confirm in examples that the topological expansion in the T-scaling limit is convergent.

1.3 Non-orientable gravity and late-time divergences

Besides universal RMT correlators, we also study the t-scaling limit of spectral correlators in toy
models of gravity with a known matrix model description.

The paradigmatic example is the non-perturbative JT gravity path integral, which is known

10



to admit a genus expansion [4]:

Z By, Ba) = <z(@1)...z(5n)> =30 20 (B, ..., Ba) (1.14)

920

where y := 2 — 2g — n is the Euler characteristic of the hyperbolic surface, which the path
integral is evaluated on. The genus g partition function is computed by gluing external throats
(“trumpets”) to internal geometries with g handles and n punctures:

=170

with associated trumpet wavefunction

Zix(Biy bi) = (1.16)
and V.)V(by, ..., b,) being the Weil-Petersson (WP) volumes for the genus g moduli space with n
geodesic boundaries. Geodesic lengths are denoted by b;, and they serve as gluing boundaries
between the trumpets and the hyperbolic surfaces.

In order to compute the gravitational path integral, one requires a systematic way of cal-
culating the WP volumes. This is achieved by Mirzakhani’s topological recursion [50] and its
non-orientable generalization [23]. The geometric intuition behind the recursion is a cutting and
pasting procedure, which describes the moduli space of surfaces X, ,, in terms of the moduli space
of surfaces either with lower genus or fewer boundaries.

Stanford and Witten [19] first examined the JT gravity path integral on non-orientable
surfaces, showing that it diverges due to contributions from small crosscaps. In the moduli
space integral, the measure for a crosscap of size a is [51, 19]:

_da (1.17)
2tanh (%)

which diverges near a = 0. This has long posed an obstacle to formulating a version of Mirza-
khani’s topological recursion for non-orientable surfaces and relating it to a dual matrix integral
in the GOE symmetry class. Recently, Stanford [23] overcame this by demonstrating an analog
of Mirzakhani’s recursion for suitably regularized WP volumes of non-orientable surfaces, and

showed its correspondence with the loop equations of a GOE matrix integral.

The recursion relation, together with its integral kernels, is finite; however, the resulting
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volumes diverge. This led to a definition of e-regularized volumes V', of the general form:

2g
VT, ) = Y log(e7h) ugalby, ... ba) + O(e). (1.18)
k=0

In practice, however, performing the necessary integrals and computing v, is challenging. One
way of practically computing V;,, is by considering instead the spectral curve of the (2, p) minimal
string and identifying p = % On the matrix model side, this method was used in [43] to compute
the vy, up to genus g = 1 and n = 1,2. The structure of the volumes v, becomes significantly
more complex as they are no longer simply given by symmetric polynomials in the geodesic lengths
b;. Instead, they feature multiple polylogarithms of exponentials of the lengths b; of the form
Ligy,) (e")), where L({b;}) are linear functions of b;. This functional form is based on a limited

set of examples, and higher topologies could give rise to new functions.

Remarkably, the t-scaling limit is well defined in the GOE class and yields a convergent genus
expansion that captures the late-time ramp-plateau structure of the spectral form factor. To
appreciate the nontrivial nature of this result from the gravitational perspective, it is instructive
to compare it with the 1T-scaling limit in conventional orientable JT gravity. There are three main
reasons why the T-scaling limit in non-orientable gravity is significantly more challenging than

the orientable one:

e Crosscap divergences: Due to the UV divergences generated by small crosscaps, the
regularized WP volumes depend explicitly on the regulator e. In contrast, the t-scaled SFF
is manifestly regulator-independent, raising the question of how the e-dependent volumes
Vg‘g’e can reproduce it. For the cases g = % and g = 1, and up to O(t?), taking the -

scaling limit prior to sending € — 0 yields the correct e-independent result [48]. However,

the general mechanism behind this remains unclear.

e Volume cancellations and integrable structure: In the GUE case, the t-scaling limit
was traced to special cancellations in the WP volumes [42, 47], first observed in [52], which
reduce the degree of divergence of the topological expansion. These cancellations ensure
that the t-scaling limit yields a topological expansion with a finite radius of convergence.
As explained in [47], this phenomenon is rooted in the integrable KdV hierarchy struc-
ture underlying matrix models and intersection numbers, and the cancellations were later
proven rigorously in [53]. Thus, for the GUE case, the t-scaling limit is understood as a
manifestation of a rich integrable mathematical structure. The fact that the GOE class also
admits such a limit suggests the presence of an analogous—albeit more intricate—integrable
structure governing it. In the GUE analysis, a key role was played by the fact that
the volumes are symmetric polynomials, making the cancellations manifest in the basis
of elementary symmetric polynomials. By contrast, the non-orientable volumes involve

a significantly more complicated functional form, featuring polylogarithms, rendering the
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existence of the T-scaling limit even more nontrivial than in the already rich GUE case.

e Late-time divergences: The way the T-scaling limit is realized in GUE JT gravity is
particularly simple: the limit can be taken directly at the level of a single geometry of

29+1 "and these terms can be resummed

fixed-genus. Each fixed-genus contribution scales as T
into a convergent series. In the GOE case, however, taking the t-scaling limit for a single
geometry leads to divergences, as the limit retains dependence on both 7" and T. For
instance, at genus ¢ = 1 one encounters a logarithmic divergence of the form ~ T3logT
[43]. The fact that the full SFF nevertheless admits a well-defined T-dependent limit
indicates that the sum over geometries must involve a nontrivial resummation canceling

these divergences.

Taken together—the crosscap divergences, the cancellations and underlying integrable structure,
and the late-time divergences—these features make the t-scaling limit in non-orientable gravity
particularly challenging to analyze, underscoring the nontriviality of its very existence. Remark-
ably, the limit not only exists, but can also be computed analytically in closed form, as derived
in section 2.

In section 3, we review the non-orientable topological recursion, and derive its simpler version
for topological gravity (Airy model). A central result is (3.10), a manifestly finite topological
recursion for non-orientable geometries (or ribbon graphs) in the Airy model. We work out many
examples (see table 1) and describe the general structure of non-orientable WP volumes in this
model. Generally, they consist of a piece which is a symmetric polynomial in the boundary
geodesic lengths {b;}, as well as a non-analytic piece consisting of step functions multiplying
polynomials. This simple yet non-trivial appearance of non-analyticities serves as a valuable toy
model for the more challenging case of non-orientable JT gravity. We also describe how the
topological recursion for the Airy model is connected to a corresponding set of loop equations,

see section 3.3.

In section 4, we consider the recursively obtained Airy WP volumes for n = 2 boundaries in
more detail, adding to the recent analysis of [48, 43]. We use the WP volumes to compute the
gravitational path integral (1.15) in the T-scaling limit. We observe a large number of potential
divergences in the T-scaling limit. We give evidence that many of these divergences are absent
due to fortuitous cancellations between the coefficients defining the WP volumes. We conjecture
the general form of these constraints for any genus, for example (4.16). Some divergences do not
cancel and their removal requires a non-trivial resummation of the topological expansion.

Note: Ref. [54] appeared while this work was nearing completion. It overlaps with section 4.
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2 The t-scaled spectral form factor in GUE/GOE/GSE

In this section, we derive the t-scaling limit of the SFF in the GOE and GSE universality classes
for arbitrary spectral densities po(E). We start by reviewing the derivation for the GUE class
(following appendix D of [42]), in a way that will be useful in preparation for the non-orientable

cases.

2.1 Review of the GUE t-scaled SFF

Our task is to compute the following Laplace transform of the microcanonical SFF, see (1.9) and
(1.12):

K" (t ):/OoodEe_zﬁ mln{; : po(E)} . (2.1)

The resulting SFF is written as a topological expansion that corresponds to a power series in T:

]CGUE _|_ Z AGUE . 29+1 (22)

with coefficients given in terms of the following contour integral over the spectral density:

A i) = g en(s8), D)= o § e (29

g 2mg(2g +1) T o (2m)% Jo 2mi po(E)%
There are two remarkable properties of this expression: (i) the canonical ensemble has smoothed
the SFF from a non-analytic function into an analytic one (c.f., figure 1), and (i7) the topological
(or small T) expansion has become convergent, with a finite radius of convergence. Thanks to
these properties, the transition from the ramp to the plateau is accessible by resumming this

convergent series.

We will now review how to derive this formula. The reader may want to jump to section 2.1.1

for examples.

Derivation. It is convenient to treat the genus-0 term separately from the rest. That is, we

write (2.1) as follows:

K57 () = — B / " a2 (pg(E) - %) (2.4)

— GUE
=KGU]
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where F, is the energy where the two terms in (2.1) exchange dominance, po(E,) = 5=. The

notation Kg%E indicates that we are considering a low-energy integral (£ < FE,). In the GOE
and GSE cases, there will also be non-trivial high-energy integrals for £ > F,.

Consider now KS’%E We review the general idea used in [42] and show how it can be further
refined. We first write the expression as an integral in the complex py plane:

P B T
KEY = / dpo E'(po) e~ 27F @) (Po - %> : (2.5)
0

We wish to find a function f(po), which has a branch cut in the complex py plane along po € [0, 5]

(ie., for £ € [0, £,]), and whose discontinuity across the cut is the integrand py — 5-. We can

then replace the integral with a contour integration for a contour that wraps the interval [0, 7=].
In this case the integrand is simple and this can be done exactly, but for later sections it will

prove useful to find a way of obtaining the expanded result systematically.
We use the general way to recover a function from its cuts, the dispersion relation (or Stieltjes

M- [FHIE (hees o l]) 20

which gives a function whose discontinuity is the prescribed

transform),

Disc,, [f(po)] = f(po —i0) = f(po +10) = po — % , M€ [0, %} : (2.7)

We find the following function:*

o = g5~ en 1 55) - 5] 2

We can then write:

-

KC_;%E :/0 dpo E'(po) G_QﬁE(pO)DiSCpO [f(po)} :j{[

) E'(po) e ) f(py),  (29)
037

where the notation indicates a contour integral along a contour that wraps the interval [0, -]

counterclockwise.

The expression (2.6) constructs a function which has a cut as a function of py, by using an
integral in the p’-plane. This is distinguished from the cut as a function of E: The density is a
double-valued function of F, and from the function f(pg) given in (2.8), we form the symmetric
combination; this gives the discontinuity as a function of py in terms of the discontinuity as a

4The dispersive expression does not require any corrections by “subtractions” as the function of interest decays
sufficiently fast at infinity.
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A IE A IE A IE
0 Euj* 5 o s— > o >
T > A > 4 U
(a) along interval (b) around branch cut (¢) around pole

Figure 2: Illustration of the contour deformation: the initial integral along E € [0, E,] is first
turned into a contour integral around a branch cut, and subsequently into a sum over contour
integral around a pole at £ = 0.

function of E, which is what is needed to evaluate the integral in the F-plane. We find for the

functions of interest:

Disc,, [f(po)] = Discg [ f(po(E))] + Discg [ f(—po(E))]. (2.10)

Note that in the E-plane, the logarithm contains a branch cut for £ < 0. This contribution is
zero since the symmetric combination for the discontinuity as a function of E vanishes:

Discp<o[f(po(E))] + Discgeo[f(—po(E))] = 0. (2.11)

Therefore, the only contribution to the discontinuity comes from the interval [0, E,]. Thus,
converting the py contour integral into an E contour integral, we obtain:

KOUF = /0 "dE e {Discy [ f(po(E))] + Discx [ f(—po(E))] }

_ 7[4 4B E) + () (2.12)

This is illustrated in figure 2, (a) and (b).

The contour integrals are suited for extracting the topological expansion. To this end, we
need to expand the function f(pg) in powers of T, or equivalently in inverse powers of pg. More

precisely, we deform the E contour to enclose the original interval but taking |po| arbitrarily large.

1
P —po

Since |p'| is bounded we can expand as a geometric series inside the integral:

=dp Ty ()] Lo (&) 1
f(Po):/D ﬁ(ﬂ—§>z o :—%Zn<n+1>p—n~ (2.13)



Forming the symmetric combination f(po) + f(—po), this gives

n+l 1 dFE 1 1
KgUE —_ T f — 6_2’8E ( —I— ) . 214
B = e 1) @) S 2 B T Cr(E)" (2.14)

n=1

Note that only the even powers n = 2¢g survive in the symmetric combination:

o 2g+1
KSF = - 5 g : 2 f O e % (2.15)
’ ] 27Tg(2g —+ 1) (27’(’) 9 [0,E.] 27 pg(E) 9

For even powers, the integrand is then a meromorphic function of E (recall (1.3)). While the
branch cut disappears, a pole at £ = 0 remains. The last step is therefore to deform the F contour
for individual terms in the sum to a small circle around E = 0, see figure 2(c). Contracting the
contour in this manner yields the final expression for the t-scaled SFF, (2.2).

2.1.1 Examples

For illustration of the general formula (2.2), we discuss a few examples.

Example I: Airy model. The simplest example of a double-scaled random matrix model with
a spectral curve of the form (1.3) is the Airy model:

VE

o

o (B) = (2.16)

we have

iry —26)97! iry —2 g—l_
CQg(POA 75) - % = ASUE(/)OA 76) - _275(2gﬁ_i)_ Lg!

Plugging these coefficients into the general formula (2.2), we can perform the sum over g explicitly

(2.17)

and find the known expression:

ICgUE,Airy (T) o

= WE%(@T) . (2.18)

Example II: (2,p) minimal string for p = 3. The (2,p) minimal string with p = 3 has a
matrix model description with the spectral density [55, 4]

o= gy o YE (1, 2 p 2.1
e =5 (14 2 E) (2.19)

17



In this case we compute the coefficients (2.3) using the following expansion:

L = 71'29 M _3 ’ k—g
[pé2,p3)(E)]2g_(2 ) ; (29—1)!]{5! ( 3%) E . (2‘20)

To compute the residue at £ = 0, we note that the integrand in (2.3) has a pole of order g at

E = 0. This lets us compute the following residue:

p= 1 (d\! 2g+k—11 7 2\F
w5 = =55 1 (i) [Zm<‘3—> e

k620 (2.21)
1 2\’ 5ot
= — | —— 3k6)* U (2¢9,3g; 3 .
i () U 2330
This yields the coefficients in the genus expansion of ICEUE (1):
GUE [ (2,p=3) (_2)9 3g—1 2g
AV (o 7T B) = s B (3k)* U (29, 393 3Kk8) (2.22)

4(29 +1)g!

Note that the confluent hypergeometric function appearing here truncates for any integer g, i.e.,

it is a finite polynomial in .

Example III: JT gravity. Next, we compute ASUE for JT gravity with density of states given
by
sinh (277\/@)
n(E) = 2

Using the series expansion of sinh(z), we can work out the expansion required for the computation

(2.23)

of the integrals co,(pyT; 3); this involves a sum over integer partitions to account for all terms
appearing in the coefficient of any given power of E:

! 2g=(27‘r)292 (271')2]0 Z F@Q"’ZTWT)H 1 (_( 1 )!>mr EP79 (2.24)

[P} (E)] o o I'(29) 4 m,! 2r +1

where each set {m,}, = {m1,...,m,} denotes an integer partition of p of the form p =>_ rm,.
Performing the residue (2.3) term by term, we find the following coefficients:

gT gy L . I'(29+>,my) 1 (2m)* \™ g—1-3, rm,
w8 ) =gy 2 |Tg—sorm (‘(%H)!) ](—2&) i

mi,ma,...= r

(2.25)
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where the sums over m, are now unconstrained. But note that the summand is zero whenever
>..rmy > g, so for any given g there are only finitely many terms. Also, all powers of § are
positive, so the expression is a finite polynomial. The term with m; = my = ... = 0 corresponds
to the Airy result. An alternative way of writing the result, which is evident from the construction
but more efficient for explicit calculations, is:

oo (027 3) — 1 i o 028y 21\/y N
29033 ) (g—1)! <dy) (sinh(?wﬂ)) ' (226)

y=0
For later reference, we record the first few coefficients:
Ca (PgT, ) = 17
2(27)?
cr(pfs0) = - 22 2,
JT (2m)* 2 2 (2.27)
ey’ B) = =5 +2(2m)°8 +25%,
16(2m)° 28(27r) (27r) 4
JT, _ _ _ - B3
C8(P0 ) )_ 35 6 ﬁ 36 .
The t-scaled SFF follows by plugging (2.27) into (2.2):
T B O . S LT e L A AT RS S

A8 6w 30m 3157 2T

One can check by expanding to arbitrary orders in T that the above derivation is consistent with
the closed-form expression given in eq. (2.12) of [42].

2.2 The GOE T-scaled SFF

We will now generalize the method from above to the GOE ensemble. Our task is to compute

the Laplace transform of the universal sine kernel in the GOE universality class:

R : +mpo(E)
KCGOP _/ dE e mind = — —log (14 —— ), 2pp(E) — —— log [ ——L2=]
Q 0 ‘ P T T o 8 i mpo(E) )’ po(E) or e \1 = po(E)

(2.29)
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This is equal to the following three contributions:

’CGOE( ) — 9 x ’CGUE( )

2 Jo

First we have (twice) the GUE result, second there is a low energy contribution associated with the
microcanonical plateau (times T > 2mpy(E)), and third is the high energy contribution associated
with the microcanonical ramp (times T < 2mwpo(F)).

We will proceed by presenting the general result and discussing some examples. We leave the
details of the derivation to Appendix A. For a general spectral density p(E) = po(E)e®® we find
the following t-scaled spectral form factor:

KGR (1) = 55+ S [ASP (i 8) + B (g ) log()] w20
g=1,2,...
o0 ) (2.31)
DI e
=13
where
2 497129+ 1
A?OE(,)O; B) = ~Ima2g T D) {1 ( ) (9 log(4) — 2F1(29,29,29 + 1, —1) — 1) | c24(po; )
491 d
+ g 29(p07 ﬁ) 3
GOE 491
By (po; B) = — o 2¢24(po; B) ,

g—1

C5%(po; B) = 5 dag(po; B) -

(2.32)
The information about the specific choice of py(E) is encoded in the coefficients
1 dE -
CQQ(pO; 6) = (27T) \% 271_2 2PE PO(E) 2 )
] (2.33)
) (po; B) = / dE e 7 po(E)™".
(2m)™ Js

and d,(po; B) is the finite part of d,(f)(po;ﬁ) as 0 — 0.

5The three pieces are illustrated for the Airy model in figure 7.
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We observe three kinds of terms based on their T-dependence: the A-type terms, which are

291 similar to the GUE case; the B-type terms, which multiply odd powers

times logarithms, log(t)T?/™!; and the C-type coefficients corresponding to half-integer genus

odd powers of T

contributions, which produce even powers of T. Note that the GUE piece and the low energy

IGOE

plateau contrbution /5" contribute only to the A-type terms, while the high energy ramp part

If;ng is solely responsible for the B- and C-type terms and for part of the A-type terms.

The dependence on (3, encoded in ASOE (po; B), BEOE(pO; B), C’;}OE(pO; B), is very sensitive to
the choice of spectral curve. This is a qualitatively new feature: while the GUE spectral form
factor was only sensitive to the behavior of the spectral density near £ = 0 via cy4(po; 3), the
GOE case features new coefficients d,(po; §), which are sensitive to po(E) at all energies. In the
GUE, this meant that the genus g term was only sensitive to the first g — 1 terms in the low
energy expansion of po(FE). For instance, in GUE JT gravity the t-scaled SFF was not sensitive
to the high energy exponential growth of the density of states for any g. Instead in the GOE
case, there is a non-trivial high-energy contribution to the Laplace transform (2.29). We discuss
this contribution in detail in Appendix A.1.2. This shows how the GOE is more generic and

qualitatively sensitive to new physics.

A few more comments are in order:

(7) In the above expressions we introduce the following notation: g and g are both interpreted
as ‘genus’. However, g € Z, indicates integer genus, while g € %—l— Z, indicates half-
integer genus contributions. Half-integer genus contributions are associated with crosscap

geometries when a geometric calculation is available.

(11) The coefficients BFO¥ and CF°F only exist in the non-orientable symmetry classes (GOE
and - as discussed later — GSE). Further, the very first term in AJOF equals twice AJYF,
but it receives additional additive corrections. As will become clear, the coefficients always

add up such that the logarithmic dependence is actually of the form log(237?).

(#7i) The coefficients d,, are infrared-divergent, both for n = 2¢g even and for n = 2§ odd. This is
parametrized by the cutoff § — 0. There appear powerlaw divergences up to degree 697!
and (for integer genus) a logarithmic divergence logd. In the genus expansion, we only keep
the finite piece in the limit of small . We note that this prescription is not ad hoc, but
follows from the detailed derivation in Appendix A, where we show that any divergences
indeed get removed. For a summary of this mechanism, see section 5.

(7v) We can also work with a different regulator, which is often more convenient in practice. In
many examples the finite piece of d'? can be extracted by analytic continuation in genus.
As we will illustrate, for half-integer genus, ds; can often be obtained by using integral
formulas valid for Re(g) < 1 and analytically continuing the result to the desired value of

g. A similar strategy also works for dy, (i.e., even integer index), but with an additional
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subtlety: analytic continuation of d,, proceeds from Re(n) < 1 to n = 2(g — ¢), shifted
from an even integer by a small amount €. In the limit ¢ — 0, one obtains a divergent
contribution scaling as %, as well as a finite contribution; again we need to extract the finite

one, which we can write as:

d2g(po; 8) = coefl.o (d2(g—6)(p0§ ﬁ)) = ll_{% dig [5 da(g—<)(po; ﬁ)} (2.34)

where the infrared cutoff is no longer important. We note that the coefficient ¢y, is also

encoded in dy,_., but via the divergent part:
Cag(po: B) = coeffomr (dagg—e)(po; B)) = lim & dag—e)(po; B)] - (2.35)

We can therefore extract all required coefficients from a single calculation that obtains the
finite and divergent pieces of dy,—.) and dy—.). See section 5 for more discussion of this.

2.2.1 Examples
Example I: Airy model

We begin with the Airy model pOA iry (E) = *2/—? The coefficients sensitive to low energies are the
same as in the GUE:

cag (P55 B) = (28)7~". (2.36)

Next, we discuss the coefficients d,,, which are sensitive to all energies. For illustration we discuss
different regularization schemes.

Infrared cutoff reqularization: With an infrared regulator §, we find

(-1 o1 N (287 1 (=28
i [(g) —log (28)] (28)*~" + mzﬂ mlg—1=m)iom  (g=1) log(0) + O(6) ,

dy) (os™; B) =

dyg (0™ 6) =T(1 = §)(26) " +

(2.37)
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The powerlaw divergences are scheme-dependent and irrelevant for the SFF. The relevant (and

scheme-independent) terms, according to (2.31), are the finite ones:

Airy Airy, 1 —lo o
dzg(Po /6) [ ( B):|ﬁn1te (9 1)! W}(g) o8 (EN R (2.38)

dag (o™ ) = [d) (043 8)] =T(1—g)(28)"

nite

We also note that the coefficient of log(d) reproduces c¢y,; we discuss this in more detail in section
5. Plugging into (2.32), we infer the expansion coefficients in the t-scaled SFF (2.31):

agon(ai, gy (Z2B (807 [5 JF1 (29,29, 29 + 1, 1) + (g + 1) — log (85)

(29 + 1)g! 7g!
2(—4)9_1 _
GOE Alr 1
GOE [ Airy 491 ~ g-1
3" (0™ ) = == T(1 = 9) (26)
(2.39)
Explicitly, up to genus g, we get:
1 1 1/1 8 1
’CGOE Airy 2~ | = 1 9 2 — (2 =
)= 55T g x5t e )T o mh)e 2.40)

64

1572 (zﬂﬁ)% T+

43 7
— === log(26T
+7T< 6O+’y+og(5 ))
This is consistent with the expressions obtained using a different method in [48]. Note that, after
dividing by an overall factor of T3, (2.40) only depends on T and 3 through the combination St2.

This is a simplification of the Airy model, which can be useful to study the late-time behavior.

Analytic continuation in genus: For illustration, consider now the other regulator described in

the comments after (2.31), i.e., analytic continuation in genus. We use the formula
o0
/ dE e PP E* =T(1 4+ x)(2B) "1, (2.41)
0

which converges for Re(z) > —1. For half-integer genus g, we immediately find the finite piece
of dyz by analytically continuing this formula to z = —g, in agreement with (2.38). For integer
genus ¢, we analytically continue to x = —¢g + ¢ and expand in small €. The result is finite in the
IR regulator ¢ (so we can drop it), but divergent as e — 0:

((;1_)91_)! é +1(g) —log (26) + O(e) | (26)*~". (2.42)

d2(g—6 (pOAIryaﬁ) =
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Both the finite and the divergent pieces have physical meaning. As anticipated on general grounds,
the finite piece agrees with (2.38), thus confirming (2.34). The divergent piece is ¢y, as expected
from (2.35).

Example II: (2, p) minimal string for p =3

Let us again consider the density of states for the (2, p = 3) minimal string, (2.19). The coefficients
o4 were already computed for the GUE, using the binomial expansion (2.20):

g-1 3g—1
eag (p7 775 B) = <—3) %U@gﬁg; 3k)

3 L'(g) (2.43)
o (Y 2g(g — 1) (3g —2)!
= c29(pp™; ) [1+—3/€B +..F 29— 1)!(3%)9‘1] :

We compute the coefficients d,, using analytic continuation in genus. We start with the formula

[ o2 e () oot o

where U(a, b; x) is the confluent hypergeometric function. The integral converges for Re(z) > —2.

As illustrated before, we can extract the relevant pieces of d,, by analytically continuing (2.44) to
r=—2gand z = —2(g — ). We find:®

oy (o1 5) = T (1 = 3) (26)7 (368) U (24,33: 315) .

o (2.45)
Doty (27 8) =T (1 — g + &) (26)~" (365)2 U (2g — <), 3(g — 2): 3w5) .

As a consistency check, note that the k — oo limit of these coefficients reproduces the Airy
expressions in (2.38). Equivalently, the leading terms in the large § expansion yield the Airy
results. It is interesting to observe that the Airy results in fact contribute in a multiplicative way
and can naturally be factored out:

dog (07 B) = dog (™ B) x (368)% U (24, 337 313)
d2(g 5)( (2p=3). B)—dg(gg(pglr B){ |:1+M++ (39_2)‘ :|

3k (29 — 1)!(3rB)9
2(29—1) 8¢® —15¢* +2g +2 )
5{ 310 B } —|—(9(5)}
(2.46)

These expressions imply that all coefficients in the topological expansion (with g > 1) receive

6We rewrite the hypergeometric functions using the identity U(a,b;2) = 2! P U(1 +a — b,2 — b; 2).
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corrections in negative powers of (35k), relative to the Airy model:

ir 29(g — 1 39 —2)!
ASOE(péQp 3),5) :AgGOE(pOA y’ﬁ) {1_'_ 9(g )+ 4 (39 —2) ]

3k (29 — D)(3kB)91
iry 2g -1 8g° — 15¢%> + 29 + 2

— BSOR(py™; B) {—< g%ﬁ ) _ 8 2(??/4;5)2 J } :

BEOR (p27=; ) = 2 ,> (887" (3k5)* U(2g, 39; 3r5)
mg!
BGOE Alr 1 (3g — 2)! (2.47)
a [ T 3&5 +"'+ (29—1>!(3HB)9‘1] ’
GOE ( (2,p=3), _ 49~ 1P l—g 29

Cy %% (oo "1 8) = YTLR=9) (51 (38 U (25, 34 365)

2g(g—1) 27 g
CGOE Alry7 |i g g _|_ ( g+ ).?

- SLECIY

(9 —
3r0)?
where the Airy coefficients are given in (2.39).

Having analytic expressions, we can also work out the small § expansion. For example, the

expansion of CQGOE does not truncate and is therefore non-trivial to expand in small (:

CSOF (p7=: )

_ (8T 2ra-g9rEi-n [ 3(25-2) 3(20—4),
B (@) 7T (25 +1) {1 T 65 -4) (k5) + 2(65 — 4) (RE) 4] (2.48)
+ %(3};)%( 39) [1 + 2606 + (32; +11)( B+ ...)] (2B8)%7!

Importantly, note that this expression has no negative powers of § and thus a well-defined high-

temperature limit (the same true for ASO¥ and BFOF). This was not manifest in (2.47).

Example III: JT gravity

Finally, we turn to computing the canonical SFF for non-orientable JT gravity with density of
states (2.23). We will evaluate the general formula (2.31) in different ways. It is instructive to
consider expansions in both low and high temperatures separately.

Low temperature expansion. In the low temperature limit, we can again consider the
expansion of inverse powers of pjT given in (2.24). That expansion holds for any g, not necessarily

integer. The computation of the coefficients d,(pj';3) then reduces to a sum over Laplace
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transforms of powers of E:

du(pg":8) =D |(2m)* ) F(n;(%mr>ﬂ 1 (— : )!)mT D(p+1-3)@g)F

p>0 {mr}p o (2r+1
(2.49)

For odd integer n = 24, this expansion is finite but does not truncate. It determines the coefficients
of even powers 1971 in the t-scaled SFF via (2.32). For example:

2 Tt 3176
dy (07T B) = 7 (208)7 % |1 — = —
1(po: ) = m (2mB) { 63 1208 10083 |
2 177 45776
dolodT-8) = —9 (2285 |14+ T _ 2.
4 3 572 9rt 36770
JT. = — (2 2 |1l+—=4+—= - —F+ ...
ds(py': ) = 5 (2m) [ 25 T8 1008 }

We can similarly use (2.49) to evaluate the coefficients of the remaining terms in the topological

expansion. Of course, (2.49) diverges for n = 2g an even integer, so we employ our usual
regularization scheme and instead evaluate at n = 2(g — ). For instance:

da—a:(p}"5 B) = % + [—(’Y +log(28)) —

8m?] 1
da—2:(pp 3 B) = [—25 - g] Z

2772+ Azt 3270 5127710+
33 158% 18983  34658° |

872 1 8874 99276
+ [2ﬁ(v+log(2,8) 1)+ % <7+log(2,8) + 2) n 457; - WZQ +] , .
A .
do—2:(p)"; B) = {2ﬁ2 + 8728 + 1218; ] i

+ [— 25° ('y + log(28) — ;) — 8% <7 + log(28) — g)

12874 31 611276 1849678
e <7+10g(2[3)—|—>— dE F }

15 48 9456 472532 +
We can again confirm that the divergent pieces are exactly co4(pp"; 8), c.f., (2.27).

From these coefficients (and (2.27)) we can readily construct the coefficients in the genus
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5

expansion (2.31). We find for the SFF in non-orientable JT gravity up to genus 3:

1

GOE,JT, \ _
Ks (1) = 35 T
1 w2 7t 3176 9
——|1-=+ 5 — T
V2P 66 = 12032 10083
1/1 2 4md 3270
— (= log(267%) | — == I T
+[ 7T<3+7+ og( 5r)> 3B+1552 18963+ }T
8 1 2 177t 45776 2.59
> 2mB)2 |1+ = — B (2.52)
+ 3, 26 { Y95 12082 504088 T } T
48 (T 5 167 (83 5 17673 5
Z(-= log (2 — (= log (2
+[7r ( ot og ﬁ’c)>+ 3 <6O+7—|— og( BT))—#— 57 +...T
64 3 572 9rt 36776
——— 2 It st — ——— ... | T
T2 (270) [ 95 T8e T T00s5 T ]T

+ ...

This quantity was also computed in [43] up to order T3, see their eq. (4.19). Our result matches
theirs up to that order. We observe that just like the simpler GUE case, it is still true that for
each power of T, the leading term in the low temperature expansion corresponds to the Airy SFF
in (2.40). However, in addition there is not only an infinite series in powers of 5 at each genus,
but also new logarithmic terms, appearing at O(t°) for the first time (and proliferating at higher
genus).

High temperature expansion. In Appendix B.1, we derive recursive formulas for the coef-
ficients d,, in JT gravity, expanded in small 5. The first few coefficients are (for half-integer

genus):
177 317
di(?Tg)y =" - T gy T g2 3 44
105 h) =316t 557 ~ 7P Tl T
3 35 1927 w3 — 107 1773 — 1687

da(p?T: ) = - 4+ T - 2 3. 2.53
3(p0"; B) st —— F TR T (2.53)

375 375 — 4073 975 — 10073 + 1207
ds(p'iB) = 5 — =B+ S B+
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and (for integer genus):

15¢(5)

8t

105¢(7)
3276

~3¢3)

272

B+ GRS

dg_ge(pgT; 6) = % + [2(1 — log(4m)) B3+ .. } + ...

2 2
diac(py'; 8) = [—87; — 25] % + {8;; (6log(4m) — 5) + <4 log(4) + 4¢(3) — 232> 3

+ D O g O — D) g, IISEAD) 6O g, ] o (254)
7T4 71'4
do—2¢(p)"; B) = [12185 + 8728+ QﬂQ] %—i‘ [— 62425 (60 log(47) — 47)

42
+1—5(101 — 60log(4m) —48{(3))5-#..} +...

Note that the divergent terms match with the low temperature expansion, (2.51), because their
series expansion (in ) truncates. However, the finite terms have been resummed in a non-trivial
way, which we explore further in Appendix B.2.

Collecting all the above results, we can write down the first few terms in the genus expansion
of the JT SFF at high temperatures:

JCGOBIT () _ 27r1ﬁT

r 2 3 4

+ __411+166_§2+177658_?;§6+'”]T2

N 27;2+ 12g7r2 5 101—27r2 o 1682—8;77r2 B3+---] A

N :_ o8 107 20C0) | WCEVZC0N gy 4 P ar? 1 39) tog(arr) | @
r 4 2 a4 4 2

. __24; 807 5 6rt ,_ 97 101057r +12052+...] 6

+ ..

(2.55)

This should be compared to the low temperature expansion (2.52). Evidently, the two are related
by a non-trivial resummation. In Appendix B.2 we confirm this resummation explicitly for low

genus, using zeta-function regularization.
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2.3 The GSE t-scaled SFF

In the GSE ensemble, the universal expression we wish to compute is

IG5 (1) = /Ooo dE ¢?F min {4l - 8% log ‘1 - %' , pO(E)} . (2.56)

T 27 po

The two terms exchange dominance at p(£,) = . In addition to the non-analyticity at the

transition point, the expression for the ramp is also divergent at py = 5-. Using similar methods

as before, we will find:

S = 37 s B s Q)] G
£ X ) (5) (257
with
A (poi B) = %ASOE(po,B),
By (po; B) = %BEOE(po;B) : (2.58)
C§ (i 5) =~ CL°% i )

Note that the coefficients encode no new information compared to GOE. The GSE expression is
obtained from the corresponding GOE expression (2.31) by the following simple rule:

’CGSE( ) = ]CGOE (’;)

(2.59)

CFOF (po;8)——C§OF (po;B)

The similarity with GOE is to be expected because both the GOE and GSE have a time-reversal
symmetry 7, but in the former it is idempotent (72 = 1) while in the latter it satisfies T2 = —
The derivation of (2.57) is given in Appendix A.2. We shall not discuss examples, as they follow
immediately from the GOE expressions.

2.4 Convergence of the 1-scaled topological expansion

The explicit expressions for the topological expansion in the T-scaling limit are (2.2), (2.31),
(2.57). In this subsection we study the convergence properties of these expansions. The most
important feature is that all of them have a finite radius of convergence. Its value, however,
depends on the details.
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Airy model
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Figure 3: The t-scaled SFF Kg(t) for the Airy model in the GUE, GOE, and GSE universality
classes. In all three cases convergence to the plateau is manifest and the radius of convergence is
infinite. The height of the asymptotic plateau is 1/ (8@63/ 2). Curves were obtained for 8 = 1 and
using a truncated topological expansion including terms for g = 0, ..., 100.

Example I: Airy model. In the Airy model, the radius of convergence Tyax of Kg(T) is infinite
in all three universality classes.” We can illustrate this numerically: in figure 3 we compare the
different T-scaled SFFs in the Airy model. Convergence is evident, where the transition to the
plateau occurs at T ~ 1. We can also see an interesting non-monotonicity in the GSE SFF. All
three curves eventually converge to the same plateau value (ZA™(23)) = 1/(8v/273%?), which

provides a consistency check on our results.

Example II: (2,3) minimal string. In the (2,p) minimal string model for p = 3 we also
computed closed-form expressions for the coeflicients in the topological expansion. While Kg(T)
is still given by a convergent genus expansion, the radius of convergence is no longer infinite (see

"This is trivial to see for GUE (see (2.17)), as well as for the sums over By- and Cj-coefficients in GOE/GSE
(see (2.39)). For the A,-coefficients in GOE/GSE, the infinite radius of convergence follows from the very slow
growth of the numbers appearing in (2.39): % 2F1(29,29,29+1; —1)+¢(g+1) ~ log(g) as g — oo. Another useful

estimate is 2 F1 (29, 29,29 + 1; —1) ~ 272971 as g — oo.
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(2,3) minimal string
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Figure 4: The t-scaled SFF Kg(7) for the (2,3) minimal string model in the GUE, GOE, and GSE
universality classes. The genus expansion converges, but the radius of convergence is finite: solid
dots indicate the largest value Tyax for which the respective genus expansion converges. Curves
were obtained for f = 1, kK = 20, and using a truncated topological expansion including terms for
g=20,...,300.

also [47] for the GUE case). For the three ensembles the radius of convergence is:®
1 1
Toax = Tmax = 3V26,  Toae = V26, (2.61)

See figure 4 for illustration. Since ICg(T) is smooth and its series expansion has a finite radius of

convergence, it can be analytically continued to T > Tyax.

Example III: JT gravity. In JT gravity the radius of convergence of the t-scaled genus
expansion is finite (thus allowing analytic continuation), but too small to visualize the convergence
to the plateau (see also [47]).

8This can be confirmed by applying the ratio test to the three types of terms appearing in the topological

expansion:
Ag(po; B) ‘ By(po; B) ‘ C3(po; B) ‘} 2,60
Ag+1(po; B) RS Byt1(po; B) oo Cav1(po; B)|) (2.60)

All three limits give the same radius of convergence for the (2, p = 3) minimal string, i.e., (2.61).

) )

(Tmax)? = min{ lim ’
g—o0
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3 Topological recursion in non-orientable topological grav-
ity

In this section, we investigate gravitational aspects of the t-scaling limit. As described in section
1.3, the non-orientable case presents several novel subtleties. Our strategty will be to work in the
Airy limit of JT gravity. This serves as a testing ground to explore some of the complications in
non-orientable gravitational path integrals: in the Airy limit, crosscap divergences turn out to be
absent, thus removing one technical issue and allowing us to focus on questions relating to the
late-time limit. Due to the absence of crosscap divergences, we obtain a convergent topological
recursion for the Weil-Petersson volumes of the non-orientable Airy model, Vgﬁ?y, which are
manifestly finite. This recursion will be shown to be dual to the loop equations of the GOE
matrix model, arising as a limit of the duality established in [23]. We present a table of explicit

expressions for the non-orientable Airy Weil-Petersson volumes (table 1).

3.1 Review of non-orientable topological recursion

We briefly review the calculation of the Euclidean JT gravity path integral Z, (Bl, ceey 5n) cor-
responding to non-orientable hyperbolic surfaces with n Schwarzian boundaries and arbitrary
numbers of handles g. This non-perturbative calculation relies on computing various Weil-
Petersson (WP) volumes of moduli spaces of non-orientable bordered hyperbolic surfaces. Since
we only discuss non-orientable ensembles from here onwards, we shall no longer use special labels
to indicate this.

The decomposition into “external” trumpet factors glued to “internal” WP volumes was
described in (1.15). In order to compute such a path integral for given (g,n), it is desirable
to have a systematic way of calculating the WP volumes. This is achieved by Mirzakhani’s
topological recursion [50] and its non-orientable generalization [23], which we review briefly.

The non-orientable extension of Mirzakhani’s topological recursion [50] was developed in [23].
It expresses the WP volumes V41 for the moduli space of non-orientable genus-g surfaces with

n + 1 geodesic boundaries by, ...,b,+1 in terms of the moduli space volumes for lower genus or
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lower number of boundaries:

n+1 00
0y [bvwl(b, b)] =" /0 Wb (H(b’,b+bi) +H(b',b—bz~))vgm(b',b\bi)

1 o
+3 / W' V'db" HY +b",0) | Vecrmg2 (0,0, 0) + D Vi oy 1 (0, 1) Vs o1 (B, b2)
0
L[~ AN / b=b’ _btd! /
+5 [ v [b H®',b) + 2log <1—|—e : ) (1+e : )} V, 1, (b.b)
0
(3.1)
Amongst the boundaries by, ...,b,,1, one singles out one boundary, w.l.o.g. b = b;. Then, b =

{b,...,bn11} represents the lengths of the other fixed external boundaries. The recursion is
obtained by removing from ¥, a three-holed sphere, one of whose boundaries is b. The
different terms in (3.1) describe different possible fates for the remaining two boundaries of the
three-holed sphere:

(1) First line: the three-holed sphere is glued to the rest of the surface along one internal
geodesic boundary . The third hole is an external geodesic boundary b;.

(77) Second line: the three-holed sphere is glued to the rest of the surface along two internal
geodesic boundaries o' and b”. The first term involving Vj_; 1o descibes the case where
the rest of the surface is connected. The sum over “stable” decompositions accounts for
the case where the rest of the surface is disconnected. In the latter case, the two internal
gluings attach the three-holed sphere to two disconnected surfaces that obey g, +g» = g and
b, Uby = b. The sum over such stable decompositions excludes cases where one component
would involve the once- or twice-punctures spheres, V;; or Vj .

(24¢) Third line: the three-holed sphere is glued to the rest of the surface along one internal
geodesic boundary b'. The third hole is closed off with a crosscap.

The integration kernels encode the details of the Riemannian geometries (i.e., the information
about JT gravity). They are found to be:

1 1

H(:If, y) = x + x— .

1+ e# 1+ eTy

(3.2)

We give an illustrative example in figure 5. For more detailed explanations and derivations, we
refer the reader to the literature [50, 56, 23].

Note that the topological recursion for orientable geometries takes the same form as (3.1)
with two small differences: the third line is absent in the orientable case, and the first line is
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Figure 5: Illustration of the topological recursion for non-orientable WP volumes. We show the
different types of decompositions in the same order in which they appear in (3.1) for the case of
Vi,2(b1,b2). The three-holed sphere with boundary b = b; is shaded in each case.

multiplied by a factor % (the inclusion of crosscaps leads to pairs of equivalent geometries with a
single internal gluing surface).

The initial conditions for the non-orientable recursion are given as follows:

9 1
%,2<biabj> = b—5(bl - bj)7 %,3<b’i7bj7bk) = 4’ V%’l(b) - thanh (9) ’
i 4

(3.3)

The topological recursion for non-orientable WP volumes becomes ill-defined when crosscaps
shrink to zero. A simple cure is to impose a minimum length € on all one-sided geodesics,
computing volumes on this “e-regularized” moduli space. For small €, the recursion still holds with
only its initial conditions tweaked. In fact, these regularized volumes have been shown to coincide
with those of the (2, p) minimal string model, with p = e [23, 43]. Equivalently, one can show
that the non-orientable recursion reproduces the loop equations of a double-scaled orthogonal
matrix integral whose spectral curve behaves like y(z) ~ sin(27z). In contrast, Mirzakhani’s
original orientable recursion matches the unitary version of the same integral [57, 58], which
underpins its formal duality with JT gravity.

Here we adopt an alternative way to eliminate divergences by taking the Airy limit, i.e.,
sending the geodesic boundary lengths to infinity.”

9The Airy limit can be thought of as scaling towards the edge of the spectral curve. Since non-zero density acts
as an order parameter for causal symmetry breaking, scaling towards the edge is akin to approaching a quantum
critical point where the order parameter vanishes. For details see [59, 60].
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3.2 Topological recursion in the Airy limit

We will now derive topological recursion relations for the Airy model. The strategy is to employ a
certain long-boundary limit of the JT gravity theory. We first recall this intuition in the orientable
case, before generalizing to non-orientable WP volumes.

It was argued in [42] that the WP volumes of the Airy (topological) model can be obtained
from JT gravity in the limit of long geodesic boundary lengths. Let us briefly recall the derivation
of this argument. Consider the JT gravity path integral with n boundaries at inverse temperatures

/817---7671:

ZJT(61a7Bn) :ZGXSO Z;E\z(ﬁlv?B’n)) XZQ—QQ—TL (34)

9>0

It is known that the Airy limit of the n-boundary path integral is obtained from a homogeneous
scaling of the boundary lengths and an infinite shift (renormalization) of the extremal entropy Sy
[42]:

,n

Z;Mry(ﬁl, 7671) = Alglolo ex(So-l—%logA) Z;E(Aﬁh ,Aﬁn) . (35)

This equation can be translated into a scaling limit for the WP volumes by writing both sides

using the gluing prescription with trumpet wave functions:

2
b3

e i

VIT/AY (py b)) (3.6)

ZIVAY (B Ba) = / oobidbi
g,n (517 a/B) :lel 0 \/m g,n

The large boundary limit of the full gravitational path integral (3.5) thus translates directly into
the scaling limit for WP volumes:

VAR (by,.,b,) = lim A9 VIT(VAD, . VA D) (3.7)

A—oo

It is not obvious that (3.7) should also apply to non-orientable WP volumes. We will show that
the analogous statement holds in the non-orientable case, where the long boundary limit of the
WP volumes for non-orientable JT is given by the WP volumes for non-orientable Airy. We
will take the limit directly at the level of the topological recursion and perform a number of
consistency checks.

We can apply the scaling limit of WP volumes (3.7) to Mirzakhani’s recursion formula. The
only input required for this is the large-boundary limit of the integration kernel H(z,y):

A113210171(VKJ;,\/Ky):1+9(y—gg)—e)(y+gc), (3.8)

and similarly for the logarithm in the last line of (3.1).
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Figure 6: Different terms in the topological recursion in the Airy model (3.10) can be interpreted
as ribbon graphs. We illustrate how the ¢ = 1 Riemann surfaces from figure 5 degenerate into
inequivalent ribbon graphs in the Airy (long boundary) limit. Internal boundaries b’ and b” are
drawn in black and should be glued together across the “x”. Cross caps degenerate into “twists”,
as shown in the third line. Handles can equivalently be obtained from planar graphs with twists
(bracket in the first line). We do not show graphs obtained by exchanging b < bs.

Applying the homogeneous scaling (3.7) to the non-orientable topological recursion (3.9), we
find the following recursion for the Airy model:

n+l b+b; [b—b;] .
By [bng,;fjl(b b)} 3 / Vb + / pay | VAR (1, b\b,)
i—2 0 0
b VA Ai Ai
/ b/db// b// b/l lyn+2 b/ b// Z ‘/"gl |t}:1|+1 bl bl)‘/‘vg%ngI_,'_l(b”,bQ)
bb1ibs

b ’ / 711 1 /AIr /
+§/O vay VI L (VD).
(3.9)

Equivalently, the recursion can be written without the derivative:
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Air

n+1

b+b; |b—b;| .
— Z (/ b'dv (b +b; — b') + sgn(b — b; )/ v'dv' (|b— b — b/)> V;},;ry(b', b\b;)
0

b—b’ b//
/ 11/ // /A Airy N/ Airy / Airy 1/
/ bdb/ b db VAR L)+ > VA (b VY (1 by)
stable
b=Db1Ub>

b/ /bQ_bl2 Airy /
+/0 v —— V" (D)

J

(3.10)

This version of the non-orientable topological recursion is free of any crosscap divergences and
therefore is an exact expression. With the initial conditions

i 2
%€TY(bi, b]) = — 5((), — bj) , VAII'y(b b], bk) =4, VAlry(b)

bi o (3.11)

we can calculate non-orientable Airy volumes in a systematic way.!® Each term in the topological
recursion can also be identified with a ribbon graph. This leads to a systematic geometrical
enumeration of all terms appearing in the topological recursion. Some examples for (g,n) = (1, 2)
are given in figure 6.

Applying the topological recursion (3.9) repeatedly, we find the Weil-Petersson volumes for
the moduli spaces of non-orientable geometries displayed in table 1. The WP volumes for n = 2
boundaries are consistent with those obtained in [48] using a different method.

In these examples, it is interesting to note how non-analyticities appear: the Weil-Petersson
volumes have the form of a symmetric polynomial (as in the orientable case) plus non-symmetric
polynomials multiplying step-functions that impose for the sum of some subset of boundary
lengths to be larger than the sum of another subset. As the number of boundaries n grows, an

increasing number of polynomials is required to characterize the WP volumes. For example:
VAN (b) = (),
VAlry(bl,bz) P(Q(bl,bg) +9(b1 — bg) (bl,bg) +perm
VAlry(bl,bg,bg) = P Q(bl,bg,bg) +6(b1 — bg)P (bl,bg,bg) +0(b1 —|—b2 —bg)P (bl,bg,bg) +perm
(3.13)

where Pg(ZT)L({bz}) are polynomials of degree (6g + 2n — 6), and “+perm” indicates a sum over

0There is again an orientable version of the formula (3.10): one simply has to multiply the first line by % and
drop all terms involving half-integer genus geometries (in particular the last line). In the orientable case the initial

conditions are: 1
%(’}QUE,Airy(bijbj) = 5(bi — b)), VGUE Alry(b biby) =1. (3.12)

i
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n=1|ViY@p) =1L
V) -
Vi (b) = it
Vi () = e
Van™(8) = serbirtesin
n=2 v;;-‘f(bl, by) = (b1 — by)by + perm. = max(by, by)
Vvlf‘}iry(bl’bz) _ <§_‘£ 7b b2 ) (b — by) Y bt +2b1b2 + perm.
VAlry(bh 52) (iﬁ + 71%?2% 71171‘{51;23 )
0001 — bo) (s + 2ot + 552 + S o perm.
V01,00 = (Rl + S04 + 44+ 420% + 4)
+0(by — by) (5282528 + 5,’223% + 612961b;0 + 1?11)250 + 21)215880> + perm.
VAlry<bl’ by) = = 215 (9;)37812; 1 3272%)3;1;101115 1 37b10b3 I 377b9b4 X 37b8b5 X 143b7b6)
+O(by — by) 2251.215 <4f8;1:g§;3 i 491117;3;11;3 i 50527b9b4 5 10483b7b6
+4351b5b8 i 551b3b10 4 13b1b} 2) + perm.
n=3| Vyy? (b, bo, bs) = 4
VY (b, ba bs) = (5 + B8 ) 4 0(by + by — bg) ©L o perm,
VAH (b1, by, by) = (% bsgz i 51111:2 3b732bg n b4b2b3 I bi’gibg 4 7bibéb§>
+0(by — by) wl_;fzob?’ +6(by + by — b3) b1+b2_b3):2(gl+b2+2b3) + perm.
n=4 VAlry(bl, vy by) = @ + perm.
VAlry(bh vy b) = (177216? b% n 51)23fg n b3b2b3 B b%bggbg L4 b2b3b4) 4 0(by — by) (bl;Q%Q)S
+0(b1 + by — bs — by) (bl+b24;%37b4)5
+60(by + by + bg — by) W + perm.
n="5| VA (by, ... bs) = (% L 2 bz) " perm,
n==6 VAlry(bl, wnbg) = (% + h b2 + 2b2b2b2) + perm.

Table 1: Weil-Petersson volumes V, , in the non-orientable Airy model. The notation “+perm.”
means a sum of the given expression over all n! permutations of the boundary lengths b; (i = 1,...,n).
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all n! permutations of by,...,b,. The first term Pg(lyz({bz}) thus gives a symmetric polynomial
contribution, while the non-analytic terms also get symmetrized. The volumes must, of course,
be permutation symmetric and we have chosen to present them in a way that makes this property

manifest.

3.3 Loop equations in the Airy GOE matrix model

The topological recursion for non-orientable surfaces in the Airy limit can be mapped to the
loop equations of the GOE Airy matrix model. The derivation is analogous to the one for non-
orientable JT gravity in [23], which we refer to for more details. See also [48] for a discussion of
loop equations in the GOE Airy model.

The basic quantity of interest in the loop equations is the resolvent (Laplace transform of the
WP volume):

Rgm(—z%,...,—zi)z(—l)"/ w1, .. by Hb db] 2, (3.14)

The loop equations for a GOE matrix model with spectral curve y(—z2) are then given by:

1 /2d / F n _ IQ,X
Rg,n+1<_227X) = . / 22 ° 2 2 +1( ZQ ) ) (315>
2z Sy = y(—2)
where X = {—23,..., —22,,} and the integrand satisfies the recursion
n+1

1
Foma (@, X) = Z (2\/_—3;\/—_:@(\/—_3: N S TRt

+ Ry tnia(w, 2, X) + Y Ry x4 (2, X0) By 41 (2, Xo)

stable
X=X1UX2

—0,R, 1, (1.X). (3.16)

) Ry n(x, X\z;)

Starting from the Airy topological recursion in (3.10), the first two lines are identical to the
orientable case and are known to match with the Airy GUE loop equations [58]. We are left with
the task of matching the last line in (3.10),
A b b2 _ b/2 Aj
1T / / 1T /
bV (b,b) 5 /ObdeV " (¥.b). (3.17)

n+1
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to the only remaining term in the GOE loop equations, namely the last term in (3.16):

Rl %) 2 / e ey () (3.18)
" % ) 2/ vy 1 —Z . .
gt 2miz S1iR o2 52 y<_2/2) 247 g—5n+1

To show they match, we substitute R,,41 and Rg%’n 41 in terms of WP volumes, using the

relationship (3.14). After inverting the Laplace transform of V,1(b,b) [23], we obtain:
; > ; dz sinh(bz) e vz
VAN (b,b) D [ VdY VMY (W.b / ————0.— . 3.19
) [y o) [ SR (Lo (3.19)
For this to match the corresponding term in the Airy topological recursion, the z integral should

: —b'z 2 12
/ dz sinh(bz) (—8Z€ ) ) b —b | (3.20)
5+ % 4

r 1 Y(—2?%)

where the Airy matrix model spectral curve is y(—2%) = 2wz. This integral identity can be derived

be equal to:

by using the residue theorem for the pole at z = 0. In particular, the following result is useful:

1 d+i00 e—bz

211

dz = 6(-b), (3.21)

d—io0 <

where the 6(—b) follows from having to close the contour to the right if b > 0, without enclosing
any poles, and to the left if b < 0, enclosing the z = 0 pole. The identity establishes the match
between the Airy limit of the non-orientable topological recursion and the loop equations of the
GOE Airy matrix model. Note that in the loop equations we have not performed any scaling
limits. Instead we have simply used the Airy curve y(—z2) = 27z and obtained the same result.

4 Cancellations in WP volumes of non-orientable topo-

logical gravity

Having observed the finiteness of WP volumes in the Airy model, we will now use this toy example
to explore and resolve the complexities involved in the T-scaling limit for non-orientable models of
gravity. Recall the two-boundary spectral form factor in the analytically continued configuration
B2 =0 *T:

B(b3+b3)—iT (b2 —b3)]

ZX(T, ) = bydb, bydby ¢ T VAN (b by) . (A1)

1 oo
dm\/T? + (B2 /o

For the orientable case, this produces the well-known result (2.18) genus by genus. The non-
orientable case is significantly more complicated. The first few terms in the genus expansion in
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the non-orientable case are of the following form:

ZAY (1 B) = lim Z e~ (29+1)S0 Zji;y(T = 1%, B)
T,e50 —00 ’
T fixed 9= 0727 "

—  lim ! (e 2L (g (L P2 v
_TGSO_)OO 271-6 \/m - g oT 3
+( T + 8T+...>T4+¥(10g(%)+1720_7+...>T5

3
73y 178 oy 64(2n) +___)T6
15\/27r 6\/27r 1572

3287 ron (B) 98001503 )
3 24052 &\ o7 3360

where, in each bracket, we drop terms that vanish as 7" — oo with T held fixed. See also [48], where

+

(4.2)

this expression was first discussed. For consistency, this expression should match the universal
RMT result (2.40):

ZA (1, 3) = K5 (). (4.3)
Evidently, for such an equality to be true, a resummation of all terms with explicit 7" dependence
must occur to make them subleading. We highlighted in blue the terms that match corresponding
terms in (2.40). Crucially, the remaining terms in (4.2) are divergent term by term as 7" — oo.

A non-trivial resummation is required to obtain a complete match with the RMT result (2.40).

Instead of attempting to explicitly resum the divergent expression,*!

we will offer a complemen-
tary perspective: we will give evidence for the finiteness of the t-scaling limit of the gravitational
SFF by working in microcanonical variables. We will also put focus on the following, more hidden
feature of (4.2): the naive degree of divergence of a genus g term is actually much worse than (4.2)
shows. Many naively divergent terms are absent due to cancellations amongst the coefficients in
the WP volumes VAlry We will discuss different perspectives on these cancellations and conjecture

their general form.

4.1 The microcanonical ramp from gravity

The divergences and required resummation that complicate the result of the canonical gravita-
tional path integral (4.2) can be avoided by working at fixed energy. This is achieved through an

See also [48], where similar observations were made and mathematical identities were given that may play a
role in an explicit resummation.
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inverse Laplace transform of (4.1):

T

ZN(T,B) = / W 2o 73, )
(4.4)

2 0 i 12 32 b2 + b2 ir
~ ﬁ/o bydby bydby e7r 1Y b2>5< 1T2 —8E) VA (by,by)

where we used 7' >> (. In rescaled average/difference variables by » = +/T (b= 6b), this becomes:

Ai 2T39+1 . 7 ) Ai
Zy5¥(T, E) / dsb / db (b° — 6b%) P 6(b* + 6b° — 4ET) V5™ (b+ 6b, b — 6b)

939+l VAET 2ET — b T A;
_ dob =L 07 ioo/ABT =5 y Ainy <\/4ET — 502 + b, VAET — 01 — 5b>

T /\/m VAET — 6b2 92
(4.5)

In the Tt-scaling limit ET = e

. /4ET T39+1 (%S) ) )

ZgA;rY(T’ E) ~ —/ dsb 61\/4ET5b VgA21ry <1 /AET + 5b7 \AET — 5b> (46)
b 71— oo b}

Corrections to every term in this expansion are O (ﬁ) and therefore negligible for energies
0

SFF in the T K po(F) expansion (i.e., the first term in the minimum function in (1.12)):

. - 2 3 ™ ™ T29+1
’CAlry T — + _ + + @) 4.7
E ( ) |ramp T 27T2p0 47‘(‘3,0% 677'4/)8 87T5pé p(2)g ( )

where po = py™(E) = LVE.

By plugging the WP volumes (table 1) into (4.6), it is possible to match (4.7) genus by
genus.'? The fixed energy gravitational path integral of topological gravity then reproduces the
“ramp part” of the T-scaled SFF in the GOE Airy matrix model:

ramp €50 =00 T
9=0,5,1,...

]Cgiry(’f” — lm Z e~ (29+1)50 Z;izry<’teSO,E) J (4 9)

where the left hand side is the universal t-scaled RMT result and the right hand side is the

12The required integrals are simple Fourier transforms of the form

/ dsb eVAET b (5p)" 9(5b) = i"! ! (4ET) ™" . (4.8)
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gravitational path integral evaluated genus by genus for Et > =%,

Crucially, (4.9) is finite in the T-scaling limit! No late time divergences occur, unlike in the
canonical ensemble computation in (4.2). In fact, note how the terms in the series (4.7) become
more and more divergent near I/ = 0, rendering the Laplace transform to the canonical ensemble
divergent. The first divergent term occurs at g = 1, given by ~ % and all subsequent terms are

more divergent.'3

Let us now comment on the subtle effects that give rise to the correctness and finiteness of
(4.9). The WP volumes entering the integrals (4.6) are generically piecewise polynomials of the
form

VAP = P be) + 00 — ) P, )+ per (410)

g,
characterized by two polynomials of degree 6g — 2:

[39—1]
1 sym —2—
Pg(,Z)(bbe) = Z 06277 2— 'y'yb69 ? ’Yb;’ )

v=0
- (4.11)

b17 b2 Z 69 2—7,7y b69_2_'7 b’; :

See table 1 for examples. Two properties are crucial in the above derivation:

(1) Non-analyticities: First, the integrals (4.6) are only non-trivial because of the step-function

terms in the non-orientable WP volumes, i.e., the polynomials Pg%)

: only those terms contribute
to (4.9). The analytic terms Pg(}Q) give vanishing contributions to the expression (4.6) (except for
g = 0, trivially). This is consistent with the fact that in the GUE, where the WP volumes are
always just symmetric polynomials, the expansion (4.9) truncates after the first term, c.f., (2.1).
That is, both in the orientable and in the non-orientable case, the symmetric polynomials in the

WP volumes are only relevant for the “plateau” (determined by small energies).

(2) Cancellations in WP volumes: Second, the step-function terms involve non-trivial co-
efficients C7 (a 4+~ = 6g — 2). For a generic piecewise polynomial (4.10), the integral (4.6)

produces:
29—1
o~ (29+1)50 Z:izry(T7 E) EINV>>1 AR, % Z(_l)k+1(2k + 1)! Cék) (47Tp0)6g—4k—4 TAg—2k—2
o T[S N o2 (4.12)
9 = ; [;(_D (7“) (2]{: +1-— 27")] Cog—2-7
15The only non-divergent term when passing to the canonical ensemble is ¢ = % and can thus be easily

reproduced in JT gravity [42].
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For k = 0,...,29 — 2 these are divergent as T" — oo with T held fixed. The fact that these do
not spoil (4.9) is due to cancellations between the coefficients C for each of the WP volumes
individually. We claim that the constraints Cék) = 0 for k = 0,...,29g — 2. The final term
(k = 2g — 1) gives the finite contributions collected in (4.9). Further contributions vanish upon
T-scaling, and we do not show them in the above formula. For illustration, we give some examples
of these cancellations and then formulate a conjecture about their generalization.

Genus g = 1:

e S0 ZNY(T, E) = —647 (207, + O, — C7y — 207,) pr T
3 > > > >\ 2.3 (4.13)
One can check that the coefficients given in table 1 are such that the first line (green combination)

vanishes and the second line produces the T term in (4.9).

3.

Genus g = 5:

e 45 Z‘%*EY(T, E)

~ =2t (707, 4+ 5C5, +3C5, + Cry — O3, — 3C55 — 5Cs — 7Cq) Tt
+ 48 (35C7, + 5Cg, — 5C5, — 3CTs + 3C5, + 5C5 5 — 5CT — 35C5 ;) poT

15
_@(

(4.14)

Again, the coefficients are such that the divergent first two lines vanish and the third line yields
the  term in (4.9).

Genus g = 2:
o550 Z2A712ry(T, E)
~ =2 (501>0~0 + 409>,1 + 3052 + 207>,3 + Cﬁ>,4 - Cfﬁ - 2057 - 502>8 - 4059 - 500>,10) PgT6T5
+3: 287 (1500 + 6Cy, + Cgy — C75 — Cgy + Cig + C5p — O3y — 6CTy — 15C7 ) poT*°

960 , ) ‘ ,
-— (63CT0 — 7C5y + 3C, — 3056+ 7055 — 63C7 ) T?T°

315 i
+F(15CI>0’0_609>’1+08>’2+C7>’3_ 6>,4+C5>,6_ 4>’7_ §8+602>,9_15O(ilo)p04/-[’5+"'

(4.15)

Again, the first three lines vanish, while the last line gives the correct universal > term in (4.9).

It would clearly be interesting to understand these cancellations better. In general we find
that (29 — 1) linear combinations of C; must vanish to produce a finite contribution to the
T-scaled SFF at genus g. Such cancellations are reminiscent of similar cancellations in the GUE
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case, where an underlying mathematical structure (KdV hierarchy) can be employed to explain
this conspiracy [47]. A goal for a future investigation of such structures would be to prove the
following statement (which we have confirmed up to g = 3):

Conjecture: For any fized-genus g, the microcanonical gravitational path integral (4.6) has\
a finite T-scaling limit and reproduces the universal RMT coefficient multiplying pa2g’t29+1.

This is possible due to (2g — 1) cancellations amongst coefficients C;, of the non-analytic
parts of the Weil-Petersson volumes:

P v\ (69 — 2 — 2y
Lok = —1) L . = -
0=clh= ;0 ;0( 1) (r) (2k+ L QT)] Connn  (k=0,...,29—2). (4.16)
- J

4.2 Cancellations in the canonical SFF

One can directly evaluate the canonical gravitational path integral (4.1) genus by genus. An

interesting class of terms is the log(%) terms visible in (4.2). These were partly discussed in [48],
so we will be brief.

Consider again the generic form of a genus ¢ WP volume, (4.10). We can plug this ansatz
into the trumpet path integral (4.1) and find the following contribution:

26972 [39—1]

ir sym Y y 39— 1ty 1ty
Zﬁ,2y<61,52) = 06272777711 (39 — _> T (1 + _> 19 2 ﬁ2 3

2 2
v=0
o6g—2 692 3g— 1ty Liy
+ Z 06>g—2—'y,'y |:F (39 — %) r (1 + %) 19 2 62 2
v=0
I'(3g+1) " ( o y 61”
— Fi{3¢g4+1,3¢g—=,3g+1— =, ——
39_% TleQl g g 9 g 9 ,
+ [B1 <> o)

(4.17)

with 812 = £ ¢T. The naive degree of divergence for e_(29+1)SOZ£ier in the t-scaling limit is
T%9~2 (multiplying T for a total power of time T%~!). However, we find that these divergences
largely cancel as they are proportional to special linear combinations of the coefficients in the WP

volumes. We will now give some examples for these cancellations and then formulate a conjecture
for arbitrary genus.
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Genus g = 1:

—38y r7Airy 4 > > > > T
e 72y (T, B) = e (204,0 +C5, — Cf5 — 200.4) 7
12 15}
—(C7, — 7)1 — 3 4.18
+ - ( 3,1 1,3) og (QT) T ( )
2
-- (42C7 — C5y — 8C5, + Crs — 10CG, + 32050 — 16C%") T°.

The first line diverges as 7, but the linear combination of coefficients cancels for the actual genus
1 WP volume. This constraint is the same as derived in (4.13). The second line also diverges,
but it does not cancel: %(C; , —C13) = —%. A different mechanism (resummation of the genus
expansion) is required to remove this logarithmic divergence. The last line is finite upon T-scaling
and produces the corresponding O(T?) term in (4.2).

Genus g = %

e 407 gi;y(T? B)

15 N . - S > > > > T4 14
=~ (TG0 + 505+ 3C35 + Cis = G = 8035 = 507 = 1C57)

12 . e BN > > > Y>> = > T214

N — (300770 +35C%, +25C5, +9C 3 — 905, — 25C5 5 — 35CT ¢ — 300“’7> B33/2

V2r

48 3 > SyIm 10 SyImn B Sy1m C Sy1m
- (35C2, — 10C5, + 8C5, — 16CT + 35C5," — 16C2" — 10C25" + 8C") VT t*
= | | , , ,

30
v (21C7y + 91C5, + 2105, — 5CF5 4 5C5 4 — 21C5 5 — 91CT — 21C5 ;) VBT
e

(4.19)

The first two lines vanish, thus giving two constraints on the WP volumes. One can check that
these constraints are equivalent (but interestingly not identical) to those found in (4.14). The
third line does not cancel and thus leads to a powerlaw divergence, which requires a different

mechanism to remove. The last line is finite under t-scaling, see O(t') in (4.2).
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Genus g = 2:

e 2,57 (T, B)

768 1515
- _7]'—65 (501>00 + 40()>1 + 308>2 + 207>‘3 + O(i/l - [C’(i,\/ — O"?(}] )
384 T7°
— TT (55CTh 0 + 50Cq, + 4105, 4+ 29C75 + 15Cg, — [Co, — C5])
96 TQT5 EY> > > > = Y> > >
- =3 (495CT o 4+ 420Cy, + 441Cg, + 394C7 5 + 235C;, — [CF, — C7,])
+ 72077 ( )

+

48/T (T
85 T log (?> (252005, — 42002, — [C2, — C2,])

48 p1°
m

+ (2444505070 — 4914C5, — 426903, — 973C7, — 41907, + 93107 + 973C3;

+ 119705 + 4914C7 + 1155C7, + 25600055 — 3072055™ + 5120;7;“)
(4.20)

The notation “—[C7., — C7,]” means that we subtract the same combination of terms with
indices swapped (see (4.18) and (4.19) for illustration of this structure). The vanishing of the
first three linear combinations provides three constraints on the coefficients in the WP volumes
equivalent to those found in (4.15). The last highlighted linear combination also vanishes; this
therefore provides , which is of a different type as it also involves the coefficients
O The logarithmic divergence survives and the last line remains finite in the T-scaling limit,

see O(T°) in (4.2).

Further examples:

At g = g we find four constraints on C’1>3_%7 from cancellation of divergences scaling as

T8, 7% 7% T2 The cancellations are equivalent to the linear combinations C;]i)é in (4.16) for
-2

k=0,...,3. Two divergences scaling as T%? and T/? survive and their removal requires all-

order resummation, see O(t°) in (4.2).

At g = 3 we find five constraints on Cf;_, _ from the cancellation of divergences ~ T, 7% T, T*
and T?log(2T/B), which are equivalent to Cfgi)g in (4.16) for k = 0,...,4. We also find
involving both Cf;_ _ and Cf§™ _ from the cancellation of divergences ~ T

e 0 ZIY (T, B) D —1814400 BT (

)

(4.21)

The two divergences that survive the cancellations scale as 72 and log(27'/3), see O(t7) of (4.2).
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_7 o constraints >
At g = 3, we find six constraints on Cfy_

The surviving three divergences scale as T%2, T3/ T/

from cancellation of divergences ~ T2 T .. T2,

General structure:

Based on the above observations, we are in the position to classify the divergences into three
types and conjecture their general properties. We conjecture that e*(Zg“)SOZﬁ’ M(T, B) exhibits
the following divergences and cancellations as T — oo with T = T'e™° held fixed:

e Type I: The first type of divergences is associated with terms that would scale as

T2+2n 2T T2+2n
———— log (—) } and {—} (9 € Zy)
{Wﬁg'g”” B 7 ) ocnso52) I ] a5t ensag 2

T2+2n L
—_— (9€3+Zy)

{ \/7_Tﬁ3 g+2n }O<n<29—2 ?
(4.22)

which always appear

[type I] ~

These divergences multiply vanishing linear combinations of C7_,
in the antisymmetric combination C;_ — C7,. These cancellations thus provide (29 — 1)

constraints on C~

o~» Which are equivalent to those formulated in (4.16).

e Type II: For integer genus, there could be additional divergences which would scale as
T1+2n
[type 1T} ~ {m} (9 €Zy) (4.23)
s 0<n<|4]-1

. . . o S svm L
These divergences multiply linear combinations of C7_ and CfYJ', always appearing in the

symmetric combination C; _ + CZ, + 2C. Their vanishing thus provides a further
on the coefficients of WP volumes, which are manifestly independent of type I.

e Type III: Finally, we observe terms, which scale as

59—1 <2T) { T2+2n }
log|( — ) and < ——— geZ
T i 7 39-3+2n 0<n<]852) ( +)

ltype T11] ~ { e } (4.24)
1
i (9€3+2Zy)

VB J sty

These divergences do not cancel at any fixed-genus. Their removal, required for consistency
of the T-scaling, must be due to a non-trivial resummation of the genus expansion.

It would be very interesting to prove (or improve) these conjectures. We note that a subset of
the above (namely, type II cancellations and the powerlaw divergences of type III) are analogous
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to the constraints appearing in the orientable case [61, 48]. The remaining cancellations are
new and exclusive to the non-orientable scenario: we emphasize again that type I divergences
— if they didn’t cancel — would be more severe than in the orientable case, where the highest
degree of any potential divergence is only 79~ t2*! rather than 7492121, We expect that a
proper understanding will require new mathematical insights, for example about a generalization

of intersection numbers to non-orientable geometries.

5 Lessons about the genus expansion to all orders

In this section, we draw some lessons and formulate some challenges regarding the GOE genus

expansion.

5.1 Resumming the genus expansion

Recall the following convenient split of the universal GOE sine kernel into a GUE piece, a low
energy “plateau” piece and a high energy “ramp” contribution (c.f., (A.1)):

KGO (1) = 2 x KEVB(1) + KE9% (1) + K$O¥ (7). (5.1)

KE%E from gravity. We showed in (4.9) that the fixed energy gravitational path integral of
the Airy model reproduces genus by genus the prediction from the GOE Airy matrix integral in
the T-scaling limit:

2g 29+1

. 7(2 +1)S Air
lim Z ’ OZ y( + Z 4g7T29+1 Agm29+1 29 (5.2)

€50 —00 1 3
92075717"' 9= 2a1727

The genus expansion we have obtained in this way is now convergent and can be resummed to:

T T T
(5.2) = — — — log <1 + 7T,00(E)> . (5.3)

The expansion converges within a finite radius |t| < mpo(E), set by the nearest singularity of the

logarithm, but can be analytically continued to arbitrary T > 0. The resummed expression is equal
to the first argument in the minimum function in the GOE microcanonical SFF, (1.12). Working
with the fixed energy gravitational path integral has thus allowed us to reproduce the prediction
of RMT for times before the Heisenberg/plateau time T < Ty = 27mp, via a convergent genus
expansion. After resummation, we can pass to the canonical ensemble via a Laplace transform.

The expression we obtained from gravity is trustworthy only before the plateau time, i.e., for high
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energies ' > F,(1). Therefore:

/OO dE@—%E(% _ % log (1 + Wp;@))) o + KSOF(1) ¢ KSOF (1) (5.4)

This is exactly the linear ramp plus the “high energy” piece KGOE in the RMT canonical SFF,
KGOE
+

which we analyze and Laplace transform in section 2.2. The expllclt expression for can be
found in appendix A and is analyzed in detail in section A.1.2. Its behavior is plotted in figure

7; we can see that it asymptotes to a constant plateau, although with the wrong height.

Let us pause to comment on the significance of this equality. Recall that non-orientable two-
dimensional gravity did not have a well-defined Tt-scaling limit, since each genus g two-boundary
wormbhole is divergent in this limit: Z;?znor')(ﬁ , T = e%1) — 00, see (4.2). This was not the case in
the simpler orientable/ GUE case where each genus g wormhole admitted a finite T-scaling limit

and individually produced a contribution AgUE(B)TQQH, which in turn can be resummed to the
canonical RMT SFF K§VF ().

We concluded that for non-orientable two-dimensional gravity to have a well-defined T-scaling
limit, a non-trivial genus resummation must occur, which cancels the late time divergences and
produces a finite result, matching the RMT prediction (see (4.24) and c.f. [43]). We have now
directly exhibited such a resummation and obtained a finite t-scaled SFF from gravity which
reproduces the high energy piece of the RMT prediction, KE%E C ngOE(T). To perform the
resummation and cure the divergences of the canonical SFF in gravity it was crucial to work with
the fixed energy gravitational path integral, computing and resumming the genus g contributions
at fixed energy, and only transforming back to fixed temperature after the resummation. Any
potential divergences were cancelled due to (2g — 1) “type I” cancellations amongst WP volume
coefficients.

Towards the plateau. Having reproduced from gravity the full microcanonical RMT SFF
for times before the plateau time T < Ty, it is natural to pose the question of how to proceed
beyond and access the plateau region. In the GUE, a microcanonical gravitational derivation
of the plateau can be achieved fully. We exhibit this in Appendix D. The upshot is that
the microcanonical KEYE(t) admits a formal genus expansion, where the plateau is realized
as an infinite sum of delta-functions. The orientable gravitational path integral reproduces this
structure term-by-term. Terms that would naively diverge upon t-scaling are a prior: produced,
but they occur with vanishing coefficient due to cancellations between coefficients of WP

volumes, c.f., (D.15). These cancellations were discussed using different methods in [61, 47].

The fact that the GUE Airy model admits a finite description in gravity, allows us to declare
victory regarding the second of three pieces of the microcanonical GOE SFF (5.1), i.e., the
contribution 2 LEVE(T). We note that it seems to make physical sense to split off this contribution:
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the GUE WP volumes as well as the analytic part of the GOE volumes are symmetric positive
polynomials. As one can check, the GOE WP volumes are such that after subtracting twice their
GUE counterpart, the analytic piece remains a symmetric positive polynomial. The missing low-
energy piece KS%E is therefore entirely determined by the non-analytic terms in the WP volumes,

and its own “reduced” symmetric positive polynomial.

We end with another observation about KE}%E Note that the cancellations in the GUE Airy
model have an analog in the GOE: for integer genus, there are “type II” cancellations of
the same type, plus L%j “type III” polynomial divergences: together they amount to (g — 1)
combinations of WP volume coefficients analogous to those in the GUE, but only half of the
combinations cancel. The other half needs to be resummed to combine with log(7T") divergences
and produce a finite SFF. At half-integer genus, the number of cancellations of the type analogous
to the GUE is , and the full set of |¢ — 1| combinations survives in the form of “type III”

powerlaw divergences.

The fact that the GOE exhibits fewer “type II” cancellations poses an obstruction to obtaining
a finite result from the gravitational path integral. We leave a detailed investigation as an

important challenge for the future.

5.2 Periodic orbits and gravity

The series expansion (5.2) has been explained previously (for general py) in terms of encounters
in periodic orbit theory [62]. The basic idea is to write the spectral density as a sum over classical
periodic orbits, weighted by an action. Spectral correlations therefore display strong oscillations
weighted by differences of classical orbit actions. The dominant contributions thus come from
pairs of classical orbits with almost equal action. The leading term in (5.2) is due to orbits with
equal action [63], the T2 term is explained by orbit pairs with a single close encounter in phase
space [64], and all subsequent terms are systematically due to multiple encounters [65, 62]. In the
GUE, different encounters always cancel, except at the leading order T. This does not happen in
the GOE, thus giving rise to the series (5.2).

Logarithmic divergences in encounter theory and gravity. Having seen an exact match
between the microcanonical SFF in encounter theory and the high-energy gravitational path
integral computations in the Airy model, we can now ask about the canonical ensemble. As
anticipated by [42], the naive contribution of the genus g piece in (5.2) in encounter theory
should be

) 2 oo -1 29 +2g+1
e % ng\lry(’t) > / dE PP (L) (encounter theory) . (5.5)

2g+1 29
& Agm29+ipy
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The low energy cutoff is estimated such that the regime ET" < 1 is excluded from the integration:
in this region the encounter picture breaks down because the orbit action becomes O(1). We
recognize the integral as precisely the coefficient a (po; B), which featured in the general formula
for the t-scaled SFF in the Airy model, with the cutoff chosen as § = % The above contribution
is therefore precisely one of the terms in the general result (2.31), but with the specific cutoff
0= % Indeed, for integer g, this physical choice of cutoff yields a particularly nice result:

4971 (1) 29+1
gE€Zy: (55)= o dyg " (po; B) T

_49__1 ﬂ 0 1 (=1 —lo 9-1 2g+1
- ogm [(g—l)! 1 g(T> + (G—1) (¥(g) —log(2B)) +...| (28)9 't '
(5.6)

The logarithmic term matches precisely the analogous term in the gravitational calculation (4.2).
We recall that these terms are divergent in the T-scaling limit and need to be resummed. It is
remarkable that the natural periodic orbit cutoff in (5.5) produces exactly the same logarithmic
divergences as the gravitational path integral for all g. Being cutoff-independent, the finite terms
in (5.6) of course also match the corresponding terms in (2.38).

At half-integer genus we similarly find that the universal finite piece of (5.5) matches the
one entering in the Cj coefficient of the t-scaled SFF (2.32). The divergent terms have the same
structure (i.e., the same powers in 8 and T') as type I1I divergences classified above; the numerical

coefficients, however, are not universal (see below).

Finiteness of 1-scaling in RMT. To summarize, we encountered different perspectives on IR
divergences. For notational simplicity, consider integer genus g (half-integer is analogous). The
gravitational path integral, using WP volumes and trumpet wave functions, yields divergences of

type III:

' (—85)9*1 T 145 2+2n
' n=0

(5.7)
The simple periodic orbit estimate (5.5) yields similar divergences but with different coefficients:

125
-1 2 2+2n
. —(2¢9+1)S Airy ~ (_86)5] T (enc.) T . 2g-+1
encounters: e~ 0T ZRY(T, 3) o log % + E_O Cp T + (finite) | T

(5.8)
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The exact Laplace transform of the universal RMT sine kernel yields a finite result:

(—88)""
mg!

. . 1
RMT: e~ (otDS0 Z28(T, g) = KGOV (1) = { log (2 BT2) + (ﬁnite)] 9+ (5.9)

The exact RMT expression is derived from the same coefficients dg), but it extracts only their
finite piece. The polynomially divergent contributions cancel exactly. The reason is laid out in
detail in Appendix A, but we wish to summarize it briefly: the Laplace transform is performed
by a contour integral around the cut of a suitable discontinuous function, which extends along an
interval of real energies . The contour is then deformed and ultimately yields two contributions:
an integral of a discontinuity along the cut (Cfa) in figure 8) and an integral along a small circle
around the branch point E = 0 (Céé) in figure 8). The former is precisely the same integral that
features in the periodic orbit calculation; the latter is an additional contribution that cancels all

scheme-dependent divergences to produce a finite result.

The encounter result (5.8) is only an effective estimate and there is no reason for it to be
independent of the IR cutoff. However, the gravitational result (5.7) should in principle match the
finite RMT expression (5.9) after summing over geometries. This suggests that the divergences in
the gravitational calculation have to resum into a finite expression. In particular, the resummation
must turn log(7T') into log(t~2) [48]. The finiteness of the Laplace transformed RMT expression
thanks to contour deformation suggests that there might exist a prescription to improve the
gravitational path integral calculation: there might exist a different contour in the (analytically
continued) moduli space of two-boundary ribbon graphs along which the t-scaled path integral is
finite for any fixed g. It would be very interesting to find such a prescription, which would yield
(5.9) directly, genus by genus.

UV/IR relations. We wish to give a different perspective on the structure of t-scaling di-
vergences and how they reflect properties of the spectral curve. As we discussed in section 2.2,
all information about the spectral curve required to construct the t-scaled genus expansion was
encoded in the coefficients ¢y, and d,(f), which we reproduce here:

1 dE _
ng(ﬂo;ﬁ) = —]{—6 2ﬁE,Oo(E) 2g,

(2m)% | 2mi
O = ] < B (5.10)
n p076> = (271')” 5 dEe PO(E> :

and d,(po; B) entering the SFF is the finite part of a? (po; B) as § — 0.

We emphasize the following property of these coefficients, which can be observed in examples
(e.g., (2.37)) as well as in the general analysis of divergences (Appendix A): the coefficients are not
independent! The integrals d'? are divergent as 6 — 0. They exhibit both powerlaw divergences
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(for any genus) and a logarithmic divergence (for integer genus), in addition to the finite piece
that defines d,,. The powerlaw divergences are a non-universal artifact of working with the IR
cutoff regulator. But the coefficient of the logarithmic divergence in dy, is scheme-independent
and it captures precisely the low-energy coefficient cyg:

CQg(pO; /8) = Coeﬂlog(l/zS) (dg;) (p()a ﬁ)) ’

(5.11)
dag(po; B) = coeffz (dS) (po; B)) -

This holds not only for the Airy model, but for any spectral curve.

A similar relation holds in terms of the analytic regulator ¢ — g — ¢, see (2.35). This scheme
is minimal (analogous to dimensional regularization) in the sense that it does not lead to any

non-universal divergences and the universal % divergence produces the meaningful coefficient cy,:

CQg(pO; ﬁ) = Coeffs—l (d2(g—€) (pOa ﬁ)) )

5.12
dag(po; B) = coeffoo (dagg—c)(po; B)) - (512

We propose to think of these as “UV/IR relation” similar to those appearing in dispersion
relations.!* The coq coefficients encode universal information about the strict IR limit of the
density of states; on the other hand, the dy, coefficients encode information from all energy
scales (projected onto the IR). In the general T-scaled SFF for the GOE, (2.32), we can view the
B, coefficients multiplying log(T) as containing only UV information — these terms are entirely
associated with the “plateau”. The other coefficients (A, and Cj) contain both UV and IR
information.

6 Conclusion

The T-scaling limit has been proposed as a way to study universal RMT behavior within a
convergent topological expansion. In the first part of this paper, we derived expressions for
canonical T-scaled spectral form factors in non-orientable matrix models with generic spectral
curve. We found that these offer qualitatively new features compared to the orientable case, and
ultimately also admit a convergent topological expansion. In the second part of the paper, we
studied aspects of path integrals in non-orientable gravitational theories. We used the Airy model
as a convenient example that does not exhibit moduli space divergences, thus allowing us to focus
on implementing topological recursion in detail and studying its implications for T-scaling.

We observed, and conjectured, an intricate pattern of cancellations among coefficients defining

the Weil-Petersson volumes for non-orientable ribbon graphs (Airy model). These structures call

14Tndeed, the derivation in Appendix A is reminiscent of techniques appearing in the study of dispersion relations
and UV constraints on effective field theory, see, for example, [66] and recent studies such as [67, 68].
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for a detailed and mathematically rigorous understanding. We expect that this will require new

insights, such as a non-orientable generalization of intersection numbers.

We reiterated a feature of the gravitational path integral computation of the late-time spectral
form factor (c.f. [48]): the T-scaling limit of individual geometries with fixed-genus is divergent in
the non-orientable setting. Some of these divergences survive the cancellations in the WP volumes
and obstruct T-scaling at fixed-genus. We gave an indirect argument that these divergences must
cancel upon all-order resummation of the topological expansion. However, an explicit mechanism
for this resummation within the canonical ensemble remains to be uncovered. It would also be
interesting to generalize this analysis to JT gravity: our expression (2.52) suggests that the fixed-
genus T-scaling divergences proliferate in JT gravity and more terms need to be resummed in

order for the gravitational path integral to reproduce the universal RMT results.

A possible approach to this problem is as follows. In [69], the authors have provided a
Lorentzian calculation of the microcanonical spectral form factor for the GUE universality class.
The Lorentzian calculation seemingly circumvents the need for intricate cancellations inherent
in the Euclidean calculation, though perhaps it is still interesting to understand the role played
by the mathematical structure responsible for these cancellations [47]. In moving to the more
generic non-orientable cases, one alternative to the Euclidean approach would be to utilize a
similar Lorentzian calculation to reproduce the microcanonical SFF. This would require placing
the Lorentzian conical singularities of [70] on nonorientable surfaces (whereas Euclidean defects
are related to changes in the dilaton potential, or equivalently to the spectral density). One could
then expect a match between the Lorentzian spacetimes and periodic orbits in the boundary
theory, term by term in the t-expansion.

In section 5 we commented on the close relation between high- and low-energy spectral
information and how they enter in the t-scaled SFF. These observations resonate with the
phenomenon known as Riemann-Siegel lookalike [71, 72] (see [73] for a recent discussion). It
would be interesting to connect this to our discussion in section 5.2 and see if the plateau can be
obtained using only the input from the ramp that we already reproduced from gravity.
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A Derivation of t-scaled topological expansion

In this appendix we give detailed derivations of the T-scaled topological expansions for general
spectral curves. The template is the derivation given in section 2.1 for GUE. Here we discuss the
derivation of (2.31) (for GOE) and (2.57) (for GSE).

A.1 GOE: Derivation of eq. (2.31)

In the GOE universality class, there are non-trivial integrals for both the low- and the high-energy
parts of the Laplace transform. We recall the split (2.30):

K§OP(t) = 2 x K§V%()

E T
T . B 4+ po(E) T [ B T
— | dEePF o (W— ——/ dE e P log (1 + —— ) .
27 Jo "\T=n(®) o *U T T (B)

N - 7

(A1)

The three pieces are illustrated for the Airy model in figure 7. In the following, we bring
the integrals KQ%E and KE%E into a simple form to express the coefficients of the topological
expansion, following a similar strategy as in the GUE case. The main physical novelty is that the
coefficients in the topological expansion are no longer only sensitive to the analytic structure of
po(E) near E = 0, but instead we encounter integrals along all £ > 0.

0.10+
— 2 x K§U8(7)
0.05+ KE9®
GOE
Kz
0.00
-0.05"
0.0 05 1.0 15 2.0

Figure 7: Illustration of the physical significance of the three pieces in (A.1) for the GOE Airy
model (for 5§ =1). Each piece plateaus, but only their sum approaches the correct plateau height.
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: GOE
A.1.1 Low energy integral K>3

We start with the low energy integral. The analysis is similar as for the GUE case and we will
therefore be brief. We again define a function that has a prescribed discontinuity along the branch

cut 0 < pg < %:
T (= dp 1 4y
filpo) = 5 / - 10g< ) (A.2)
T Jo 2w p'— po P
The discontinuity is by construction the integrand relevant for KQ%E We find:
T z—1 z—1 z z
LN Y 14 Li 1
fi(po) 47r22[ 12 (z—2> b} (z+2) + Lip (Z+2> 12 (Z_2)
z—1 24z
e () e (G55
z 2—2) ], _2m0

This function allows us to turn the real integral into a contour integral which can be deformed

(A.3)

away from the original interval. Taking |po| large as in the GUE case, we can expand fi(pp) in
powers of T. For illustration, note that these operations commute: the t-expansion can also be

obtained by first expanding the integrand in (A.2) and then integrating term by term:

2 PO, )T
Z n+1/ 27m g(%_P')__%nzlan oo (A4)

o Po

where the coefficients in the expansion are revealed to be the following ‘moments’:

! 2 log(3 1 1 31
ay, :/ dz 2" ' log R 08(3) — oF7 | 1, ia nE o] (A.5)
: 2—x n n(n+1) 2 2 4

Finally we deform the contour again for each term to a small circle near £ = 0, as in the GUE
case (see figure 2), and find

Kg%E _ }{ dE ¢~ 28E (fl(po) + fl(_p0>)
[0,E.]

o (A.6)

=3 ;an (en(po; B) + en(—po; B)) T,

with ¢, (po; 8) defined in (2.3). As in the GUE case, the two terms in the sum cancel for odd n

and we are left with a sum over even n = 2g:

1 1 3 1
O i CAR LR COTa 3 R
g1
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Note that the coefficient outside of the square bracket is precisely two times the one appearing
in the GUE case, see (2.3).

A.1.2 High energy integral K¢9F

The new high energy integral is associated with the GOE ramp and features a non-compact
integration region, making the manipulations more subtle. To work with a compact integration
region, let us introduce a UV cutoff A — oco. To turn KE%E into a contour integral we need
to find a function fz(A) (po) which has a cut for E € [E,, A] with discontinuity — = log (1 + ﬂ—;o)

Given such a function, we could then write:

K = Jim dB e (1N () + £ (=po(E))) (A.8)
A—o0 (B, Al

where the contour wraps the interval [E,, A] counterclockwise. Following the same prescription

as before, we find an integral expression for fQ(A)(pO) that can be evaluated exactly:

A ’
W)= = [ 9L (14
12" (po) 2T /21 21 p' — po s\t o

™

T z—1 z—A z—1 z—A
_ : T T ; A9
WJLIQ(H?) Ll?(z+2) Ll?( 2 >+L12( 2 ) A9
(z+2> (Z—A)]
+ log | —— | log
Z z—1

One should keep the regulator and only take A — oo in the end. However, with the benefit of

hindsight, we note that this limit does not lead to any subtleties. We will therefore take the limit
now, and — in slight abuse of notation — treat £ = oo as a point which contours can wrap around.
We can then consider the simplified function

o) = Jim f5 (o) = [Lia (2;"2) ~ Lin(2) — log(3) log(1 — =) + »(og3)’

4724

2mp,
z="—-0

(A.10)

This function has a cut along z > 1 as expected. The discontinuity across the cut comes from the
combined discontinuities of the dilogarithms and the log(1 — z). These combine to the correct
discontinuity —%log(l + %) The function f5(po) is only defined up to an additive constant,
which does not contribute to the expansion below. The high-energy integral becomes:

K§3" = 7[{; . dE e *F (fo(po(E)) + fo(=po(E))) , (A.11)

where the contour wraps around [F, o) counterclockwise.
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Our goal is to extract from this the topological expansion, i.e., a power series in T. We would

therefore like to expand the function that enters in the contour integral:'®

f2(po) + fo(=po) = 47:%. Z { [4: o (—%, 1,2n) + 2%12 - % (log(4) -4 10%(9))

n
n>1

+ % (log (27;[)0) + log (—27;[)0)) ] <7Tip0> N (A.12)
e (e () () ()

Note that performing this expansion inside the contour integral (A.11) is subtle. The reason

is that the term-by-term analytic structure of (A.12) is different than the analytic structure of
the original function fo(po) + fo(—po). Before expanding, the original contour for the energy
integration is a loop wrapping the E-interval [F,, c0), see figure 8(a). This must be deformed
such as to avoid all singularities that appear after expanding. It turns out that this makes the
integration contour independent of E, (see figure 8(b)), thus making all time dependence explicit.
Since we are expanding in inverse powers of pg, we have to choose a contour at large energy. We
can then deform that contour at infinity, for each term separately. Each of the terms in the
expansion has different analytic properties which determine the type of contour deformation
needed to evaluate the energy integrals. While in the GUE case all terms in the expansion were
even powers of p leading to meromorphic functions of E, we now also have odd powers as well as
logarithms which lead to functions with cuts.

More conceptually, these observations mean that the analysis is now sensitive to features of
the density of states at all energies, not only their expansion near £ = 0. This can be expected
on general grounds. In the GUE case the semi-classical genus expansion at fixed (high) energy is
trivial and all higher genus corrections in the canonical ensemble come from low energies. For the
case of the GOE, every energy window in the Laplace transform already has a non-trivial genus
expansion, and therefore all energy windows contribute to any fixed-genus term.

We proceed by considering the three types of terms in (A.12) separately and plugging each of
them into (A.11). First, let us choose the branch cut of po(E) (see (1.3)). It turns out to be most
convenient to choose the branch cut of v/E along E € [0,00). The branch cut of log(2) is taken
along z € (—o0,0] as usual. With this choice, we have the following branch cut discontinuities:

2 E 2 E
Discg log (%) = 2mi = Discg log (—%()) for E € [0,00). (A.13)

15To obtain this expansion, one needs to be careful about the branch cuts of f2(po) + fo(—po). In practice, one
can first write this function as indicated by (A.10); then one uses the dilogarithm reflection identity to bring every
term in a form where z > 0 does not collide with the branch cut of Liz(-). This avoids any branch cut ambiguities
and leads to an expression that can be expanded in large z.
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(a) before expansion (b) after expansion (¢) IR regularization

Figure 8: Illustration of the contour deformation: (a) we begin with a contour wrapping the interval
[Ex,0); (b) we extend the contour around E = 0 such as to avoid all singularities encountered after
expanding the function fa (po) + f2 (—po); (c) finally we treat the (divergent) integral around E = 0
separately from the integral of the discontinuity.

(1) Odd powers of 1. The first type of contribution in (A.12) is of the form

o+ 5m) > 15 [0 (1 120) 4 gk o) - 10w ()

TPo

(A.14)

This is of the same form as in the GUE case. As there, it necessitates a deformation of the
contour wrapping [F,, oo) into one that includes £ = 0. Subsequently, the expansion (A.14) is
allowed inside the integral and leads to the following contribution:

KSOF 5 KGOE ziz To(-Lqo —|—£—£(lo (4) — 47710g(9)) | cag(po; B) T
+.8 +,0dd,8 o q 97 g 2g2 2g g g 29\ 003
g=1

(A.15)
where ¢, (po; 8) was defined in (A.6) and captures the behavior of py near E = 0.

(2) Even powers of T multiplying logarithms. The even powers of T in the expansion are

of the form

Faloo) + (=) > 5 S0 o [bg (QTO) ~log (_QZPO)] <i)2nl (A16)

T
n>1 Po

Before implementing this expansion, we must deform the E-contour in (A.11) such as to avoid the
branch cut of (A.16). Using the choices described above, the branch cut extends along E € [0, c0).
We are therefore required to extend the original contour wrapping [E,, c0) to a new contour that
wraps [0, 00), see figure 8(b). With our choice of branch cuts, the difference of logarithms is
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constant everywhere along the contour:

o (25 _ g (2D _ e

T

The contour integral receives non-vanishing contributions due to the odd power of po(E), which
again has a branch cut along [0,00). We split the integration contour into two pieces, Cfé) U Céa):
the first piece consists of integrating the discontinuity across the branch cut along [0, 00), where
0 is a small infrared regulator. The second piece consists of the integration around E = 0 along

a circle of radius §. See figure 8(c) for illustration.

(7) The first contribution arises from integrating the discontinuity encountered in odd powers of
po(E) along Cfé):

Discy (WOL(E))M —9 (MOL(E)YM . Eel0,00). (A.18)

Plugging this into the (IR-regulated) energy contour integral (A.11), we get a contribution:

o 4n—1 5 .
KSG D KQas =— ) @n—1) ) (po; B) T,

n=i (A.19)
1

E)prT

where d(i)_ B = /OO dE e %°F
2 1<p0 ) 5 (27Tp0(

Note that the integrals dgi)fl are divergent as 6 — 0. We return to this issue momentarily.

(77) The second contribution is due to integration along the small circle around £ = 0 at a

regulated radius |E| = 9, called ¢ in figure 8:

& 4n71
GOE COE _ Z (6 . 2n
KJr,ﬁ ) K+,even—B,ﬁ = 27r(2n _ 1) Top—1T
= (A.20)

1
h O = / dE e~ 2°F
TR Ton cf® ‘ (27 po(E))> !

The integrals réi)fl are also divergent as 6 — 0. We claim that the divergences cancel between

(A.19) and (A.20). To see this, note that the integrand is the same in both cases and has a small
energy expansion of a particular form:
o—28E

(2mpo(E))2nt

—E7 " (1+ W E+bE>+...). (A.21)

To extract the divergent pieces, this small-F expansion is sufficient. The anti-derivative in this
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limit is:

e 2PE 3_, 1 b E b2E2

§—n 2—77, §—n

This can be used to evaluate both (A.20) and the divergent part of (A.19). It is then obvious that
both dg,?_l and réi)_l have divergences of the form 6= for a =n — 3,..., 3. It is also clear that
these divergences cancel precisely between dg;)_l and T2n_1.16 To find the finite piece of (A.19),

one has to go beyond the small-E expansion.

In summary, we see that all divergences cancel and we receive a finite contibution to the
spectral form factor. The finite piece comes entirely from dg;)_l and we can therefore give a
simplified prescription:

GOE GOE — wGOE GOE
K-‘r,ﬂ - K—i—,even,ﬁ = K+ even-A,3 + K+ even-B,3

L 2n
= Z 7'( d2n I(IOOa /6) ) <A23)
. ; ( -,3):; dE —QBE;
where 2n—1{00; - (27.‘.)2n—1 s € pO(E)2n_1 finit .

The notation simply means that the integral is to be evaluated with an IR cutoff, but only the
finite piece is kept. In the final result (second line of (2.31)), we leave the prescription to pick the

finite piece implicit. There, we also use a half-integer index g = n — % to account for the terms
(A.23).

(3) Odd powers of T multiplying logarithms. Finally, (A.12) contains terms of the form

1 2 2 n
Pl + 5) > {bg( TO) +log (— TO)} (T (a2

This gives another series of terms with odd powers of time, namely

Z dlog 0; B) T2 (A.25)

g>1

where we defined

1 dFE 2w 2w
log b _9o8E —2g Lo __4TPo
day (po; B) = 2ny %{0700) 57 € po(E) {log ( - ) + log < - ﬂ . (A.26)

16To confirm the cancellation of divergences, note two subteleties. First, dg;)_l only has a single divergent

boundary term, while réi)_l receives an identical divergence from both ends of the integration contour. This is

consistent because the coefficient of the two integrals also differs by a factor 2, c.f., (A.19) and (A.20). Second, the

divergence in réi)_l naively appears to have the wrong sign. However, the sign works out correctly if one carefully

accounts for our choice of branch cut of v/E along [0, 00).
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Note that the integrand has a pole at £ = 0 and a branch cut along [0,00). It is convenient to

split off a piece without branch cut containing log(T):

1

o dE
0500 B) = —2 oy (p0: ) log(T) + - ][f o
0,00

5 ¢ " po(E)™* [log (2mpo) + log (=2mpo)] ,

(A.27)
where we recognize the term proportional to log(T) as a contour integral that can be contracted

(27)29

to a small circle around the pole at £/ = 0, i.e., an expression involving the coefficient cy4. It gives
a contribution to the spectral form factor of the form

o0

49
KER D Kilogs = = 2 gy Coslpoi ) log(r) 07 (A.28)
g=1

The remaining integral has branch cuts and it will be convenient to turn the logarithms into

powerlaw dependence via the identity x72097%) = 729(1 + 2¢ logx + ...). This gives:

1 d dF
dlog . - _9 . 1 Z lim — —28E | (9 —2(g—¢) _9 —2(g9—¢)
2g (p07 6) CQg(pOa B) Og<T) + 2 ;_r)% de 0.00) oi € ( WPO) + ( 7Tp0) )
(A.29)

As before, we split the integration into two piecewise contours Cfg , see figure 8(c). The two
contribute as follows:

(1) The integral along Cié) picks up the discontinuity across the cut, which exists for ¢ > 0 and
takes the following form:

Discp [(2mpo) 207 + (=2mpy) 2079)] = —2isin(27(g — €)) [2mpy| 2~ for E € [§, 00).

(A.30)
This gives the following contribution to the spectral form factor:
GOE GOE ¥ 2g+1
K¥s D Kigdaas = Z ETS da, (po; B) T,
g=1
1 d >
where dg‘” (po; B) = —— lim — sin(27w(g — 5))/ dE e PP |21 po| 72972 (A.31)
g 2w e=0 de 5
= / dE e *PF (21py) =29 .
5

As in the previous discussion, the integral is IR-divergent, featuring powers 6= fora = 1,...,g—1.

Additionally, there is a log(d) divergence and a finite piece.
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(77) The contour integral along the small circle around the origin Céa) is

KE%E - KE,?)Ed—B,B = Z g Sgg) (PO, ﬁ) ,.[-294-1 )
7121 4 JE (A.32)
h &) . = - lim — —28E | (9 —2(g—¢) _9 —2(g—¢)
where o)) = 3 im 21 [ SE e [amn) 0 4 (am)

As in the previous analysis, this integral produces divergences that precisely cancel those in
(A.31). To see this, consider the small energy expansion

o—28E
(27 po(E))%

The IR divergences of (A.31) evidently are of the form

—E (1 F 0B+ b E? + ) . (A.33)

S

1 b P .
4 0) = g T e T T et 1og(8) + [t (A34)

In (A.32) we need to keep the regulator until after integration:

1 a1, .
Sggs;)(Po;ﬁ) =-3 llg% e lz—m (B + (=E)°)
1 b b 1 o
1 g—2 7 0
=== —=b,_ FE
" ((9 —1)Eot - (9 —2)B92 teet B = Vg1 +O(E)e” + (9(5)> E=5+i0
(A.35)

As before, our convenient convention is to place the branch cut of fractional powers along the
positive real axis. We thus pick up the following discontinuity:

_d
s39 (po: B) = = lim —| (= + & log(6) + O(=*)

e—0

1 by by o 1- 0
" ((g “hgt T gy oty T b PO O(€>>

B 1 b -2 3
ST (o gl lesld),

S

(A.36)

thus exactly canceling the divergent terms in (A.34).

In summary, we can combine (A.31) and (A.32) to obtain a finite contribution to the t-scaled
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spectral form factor:

GOE GOE  _ 1-GOE GOE
K75 DKy jqas = Kisdaas T K gaan s

— i 4! d ( 5) 29+l
= 2 _ 2g\00; ) <A37)

| o _opp 1
where  dy,(po; 5) = (272 [/5 dEe WL o

Summary. This completes the derivation. Let us collect all the pieces. The contributions
(A.7), (A.15), and (A.28) combine into terms involving the “low-energy” coefficients coq(po; ).
When combining (A.7)4(A.15), the following identity is useful:

1 1 1 31 49
d(—=,1,2 ——LFi (1 — —, - | = — oF1(29,2¢9,2 1,-1). A.38
( 27ag)+(2g+1)21(79+27g+274) 2g21(g7 gvg+7 ) ( )
Furthermore, (A.23) and (A.37) yield contributions determined by (the finite part of) the co-
efficients da,(po; ) and dog(po; 5). Adding up all these contributions, we get the final result
(2.31).

A.2 GSE: Derivation of eq. (2.57)

The low-energy part of the Laplace transform in the GSE is identical to the GUE case, except
that the integration limit is now defined by po(£,) = £=. Therefore:

(A.39)

ICSSE(T) = ICBGUE (g) —l/ dE e %PE Jog

(. J

The new high energy (ramp) integral involves —g-log |1 — 27er0 |. The function f3(py) which has

this expression as its discontinuity across the cut for py > ;- is found using the Stieltjes transform:

T 1 1 1 1\* 1 1\’
= |Lig [ =) - Li “log( =) 4+ Zlog( ——
s (o) 16%{ 2 (22) 12(2—22)+2 Og(z) "3 Og(z—l)
1 -1
+log(z — 1) log (—) —log(2 — 2z) log <Z ) ]
z z o= 27P0

One can indeed check that this function has a branch cut along z > % The discontinuity is

Disc(f3(po)) = —g=log(L — 1) along < z < 1, and Disc(f3(po)) = —5=log(1 — 1) for z > 1.

(A.40)
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As for GUE and GOE, we symmetrize f3(po) and expand in large z. This gives:
T 1 Hap 1
—po) = F(1,1,1-2n;2,2; - | —
f3<p0) + f3( pO) 167T2'L. ; { |:3 2 ( 5 Ly n; 4, 43 2) n + 22n+1n2

1 47 pg 47 pg T \*"
— (1 1 _
+2n(0g( T )—i—og( T ))}<27TP0)
1 | 47 po | 47 po  \*"!
— 0 —log | — .
2n —1 & T & T 27 po

(A.41)

Even though some numerical factors differ, the structure of this expression is the same as in the
T

GOE case, (A.12). For example, the second line is obtained from (A.12) by replacing T — 3

and multiplying the result by an overall factor % Similarly for the third line, with an additional
minus sign. The first line appears in the given form after analyzing (A.40) term by term; it can

be rewritten as follows:

1\ Hy, s 1 1
3 by <1, 1,1—-2n;2,2; 5) - + SEnTiE = ﬁ(ﬂﬂ (2n,2n,2n+1;,—-1)+1—n 10g(4)) )
(A.42)

We recognize the right hand side as the same combination that appears in % X A?OE(po; B), see

(2.32). Due to this non-trivial simplification, we can apply an analysis that is essentially identical
to the GOE case. This yields the result (2.57).

B Details on t-scaled GOE JT gravity

In this appendix we give further details on the T-scaled JT gravity matrix model in the GOE
universality class. Section B.1 contains a recursive construction of the high-temperature expan-
sion. Section B.2 shows how to resum the high-temperature expansion into a low-temperature
expansion.

B.1 High-temperature expansion

Here, we develop a method for computing the coefficients appearing in the t-scaled SFF for non-
orientable (GOE) JT gravity in a small-3 expansion. Consider the following generalization of the
binomial formula (z assumed real):

- +1) k
(1 . B.1
o) ;Fw—ﬂ Tk+1)” (B-1)
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Note that the expansion coefficients are the analytic continuation of the usual binomial coeffi-
cients. Furthermore, if  is a positive integer then for every k > = the numerator has a pole and
therefore the series truncates and becomes the usual binomial formula. The series converges if
la| < 1. Using this, we can write (for any E):

s sun(rB)] = et S S e e

We now Laplace transform each term in the sum,

° L (n+2k)(21)° 2o m(n + 2k)
/0 dE ¢ 2BE o —2n( +2k)\/E__B_We {1—Erf<W)} o
B f: D(2m +2) (-B)" 3

(272)m+1T (m + 1) (n + 2k)20m+1)

m:O

Note that it is important that § and n + 2k are positive, otherwise the integral has saddle point
contributions which would not be analytic in 5. For this range of parameters the expression is
analytic around § = 0, i.e. there is a series expansion in 3 for each of the integrals appearing in

the t expansion. This gives then

o0

- IBLIN 1 —n) I'(2m +2) (—B)™
dn JT, 4 n B.4
(Poy ) X;F 1—n—kI(k+1) Z‘B 2W2m+lrm+1>(n+2k)2(m+l) (B.4)

To simplify the coefficient of 5™ we need to perform the sum over the k variable. Define

(=D'(1 = n)I(r)
T(1—n—kI(k+1)

(—n) " an + 2k)". (B.5)

I
WE

I.(a,n)

b
Il

0

We can derive a recursive expression for I,.(a,n). From the definition it follows that % =1r41.
This allows an iterative evaluation of [, in terms of repeated derivatives of the seed function I;:

P —n) (5

2T(1—n+9)"

I.(a,n) = 0" 'I(a,n), Li(a,n) = (B.6)

Thus we obtain
o0

Lopmio(1,n) B\
JT, _ n 2m+2
dn(p() ’ E 2n7TQ m+1m' (5) . (B7)
0

Explicit examples can be found in (2.53) and (2.54).
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B.2 Resummation of the high-temperature expansion

To compare our results at high and low temperatures requires a non-trivial all-order resummation
in 5. Expressions to all orders in the low temperature regime were obtained in [43] using
gravitational calculations at genus % and for genus 1. We will show how their expressions can be
resummed into our all-order high-temperature results.

Genus g = % We can use the high-temperature expressions (B.3) to obtain the T-scaled genus
expansion in terms of infinite sums of error functions. For example, at order t> (genus %) we find

the following contribution to the SFF as a power series in small 5:
GOE,JT ,
KCSOBT () 5 CSPB(pi ) 2

211 (2k+1)271)F Per? T2k +1)\ |
=4 § — T e 2 e~
= [25 s 7 P T ))”

_ - 2 63 30832 2
= 2 |:_ ((2k + 1)m)? + ((2k + D)) - (2% + 1)m)® + .. ] T

(B.8)

18 B g s )
_{4+16 32 "7’ 1536 )"

This, of course, is nothing but the 1 term in (2.55). We would like to understand how this is
consistent with our low temperature result (2.52) (which is an expansion around f = o0). In
ref. [43], the complete large 8 expansion was derived, thus generalizing (2.52) to all orders; see
their eq. (4.8). To resum, we formally expand their eq. (4.8) in small 8 (i.e., outside the radius
of convergence):

[/CEOEJT(T)} 2 —\/;r_ﬁ 1+ ;(—N (2 k278 e Brfc (k:@))

,[.2

(B.9)
_ ! “1* (92— k/or 2 _k_g 8)2 +
= "5 1+k1( 1) (2 k+/2mB + 2k*S 1 (27 B) >

.

These sums can be regularized using (-function regularization. This regularization renders the
sums multiplying integer powers of 3 finite and sets those with half-integer powers to zero. Using

such a scheme, the power expansion in  then exactly matches (B.8).

Genus g = 1: A similar check can be performed for the SFF at order t (genus 1), where [43]
offer a similar resummed result to compare with. Our analysis yields the third line of (2.55).
This should be compared with eq. (4.10) of [43]. Again, their result is convergent for large /3, but
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we can resum the small 3 expansion using (-function regularization:!”

- . )
[ICSOE,JT(T)] y 5 +’Y+;0g 267%) Z ( 1 +5k52) B, (%f))] 3

T 2

[ L4+ log(287?) 10g(%)—2—7
=|-2 +;Z{ +

k=1

+("')k2—|—("')]{34—|—("')k’6+...—Z((22;;‘ )55 ( )k‘%)} T3

é_ -
L 2 2) _ o9 _ 0 .
14+~ +log(267%)  4¢(0) log (/3) 2 — (20 + 1)
= (208 T
_ 5 00 1)@ 1"(% _|_€) , ,
B 37T B %log (477) + ; 90—2 20+ C20+1)8°| ™,

(B.11)

where the omitted terms in the second line involve even powers of k that vanish after regular-
ization. The last line precisely matches our corresponding term at O(t?) in (2.55) to arbitrarily
high orders.'®

C Two-boundary partition function in non-orientable topo-
logical gravity
For completeness, we give in table 2 some exact results for the two-boundary gravitational path

integral in the non-orientable Airy model. We present the results as functions of Euclidean
boundary lengths ;2. These expressions can be obtained from (4.17).

1"We use the following identities:

¢(s) =— Z k= log(k) and  ('(-20) = (2242% C(20+1), (e€Zy. (B.10)

k>1

18We note one caveat: the very first k-independent term in (B.11) is not exactly what the authors of [43] obtain
directly from a gravity calculation. Their result from a purely gravitational calculation at genus 1 is divergent in
the t-scaling limit. Writing it in the form of the first term in (B.11) involves a non-trivial all-genus resummation,
see [48]. This is necessary in order to find a match with our manifestly finite t-scaled analysis. This issue is
separate from the resummation of the S-expansion and we comment on it in section 4.
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9=0| Zo5* (B, B) = 750

g=3| 20081 8) =~ {5 - BV - BV}

g=1| 2 (B, 5o) = £ { VAR +260:8) + 365 arctan (X2) + 51 > ]}
g=3| Z4(Br B) = m{m (484 + 88,33 + 86253 + 5816.)

+ (=583 — BB VAT B+ (61 o 5ol

9 =2 | Z857 (51, 82) = g {/iBa (18557 + 435816; + 60m 5 3 + 8698383 + 5w 5/ 55 )
+60 88181 + 25,) arctan< ) 61 & 52]}

9=5| 25, (Br. o) = m{% BTV/Ba + 117 B iy + 368 6, 3

+752 B2 B3 + 968 B B3 + T04 BF B3 + 320 52 53

— (11788 B + 2078353 — 4508168) VB Bz + [B1 > fu] |
g=3 | Z} (), B,) = ﬁ{m (6209518 + 26005873 + 25207 B,% A7 + 7853343552
175607 By% B3 + 1423786563 + 151207 B2 B2 + 1701985134

5040 3138y + ) (267 + 518 + B3) anctan (V) + (1 > 5]}

Table 2: Two-boundary partition functions in non-orientable topological gravity (GOE Airy model).

D The microcanonical plateau in orientable topological

gravity

The plateau in the universal SFF is due to spectral correlations at very small energies. The
approximations used in section 4.1 to arrive at the general formula (4.6) are therefore not valid.
In this appendix we explore the structure of the £ — 0 correlations for the GUE Airy model.

D.1 The microcanonical genus expansion

In this section, we develop a formal microcanonical genus expansion of the GUE spectral form

factor. Consider the universal microcanonical SFF for the GUE:

KEVR(T) = min{ =, po(E) |} = o=+ [0 (po(B) = 5= ) = 0po(E))] (5= = mol(B)) . (D)

2 27 27
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We expand the distributional contribution in a formal Taylor series:

0 (= ) ~ 0w = 32 S o ) D2)
n=1
We also note the following identity:
n— (n B 1)' n—1—
2* 5D (z) = (=1 (n—l—k)!é( 1=5) () (n—1—k>0). (D.3)

Using these identities, we can write:

KE50) = b (= o) 30 500 (2 ()
= (D.4)

Due to the square root edge of po(E), we can anticipate that only odd n = 2g — 1 will contribute

to the sum. We write the resulting expression as follows:

GUE T S 1 2g+1
Kg (1) = o g; 2mg(2g + 1) 29 (03 E) T (D.5)
| .
g (po: E) =~ 37 877 (2ol E))

The first term is the microcanonical ramp. The second term gives rise to the formal genus
expansion of the plateau, which is singularly supported at £ = 0. Its pg-dependent coefficient

corresponds to the characteristic coefficients cy,, now written in the microcanonical variables, c.f.,
(2.2).

Example: Airy model. For the Airy spectral curve, the expression (D.5) can readily be
written in terms of delta-functions localized at £ = 0, using

5= (VE) :2(_1)9%5@ V(E). (D.6)
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Plugging into (D.5), we find:

e (06" E) =
(D.7)

| X (—1)
- K:GUE,Alry _ l ( 5(g71) E 2g+1 )
B =g g g BT

It is trivial to confirm that the Laplace transform of these expressions recovers the canonical
results (2.17) and (2.18).

Example: (2,3) minimal string. For the spectral curve of the (2,3) minimal string, we
can similarly work out the microcanonical expansion coefficients. We observe the following

generalization of (D.6), which can be confirmed by integrating against a test function:

g—1 . k

R () s )

This is, of course, directly related to the inverse Laplace transform of (2.21) and consistency with

(D.8)

the canonical discussion thus follows.

D.2 The microcanonical plateau from gravity

Let us now reproduce the genus expansion of the plateau (D.7) from the GUE topological gravity
path integral. We could achieve this on a case-by-case basis by simply computing the inverse
Laplace transform of the exact orientable two-boundary partition functions.'” Instead we wish to
give a slightly more general perspective. We return to the starting point, the path microcanonical
path integral (4.1), and systematically analyze the limit £ — 0. We expand the trumpet path

integral in a power series in 3:

o

Air 1 > 1 BO? +03) \" T _202) < anr
Zyo (T, B) = PN = ), b1dby badbs ZO ] _—4(T2 5 7T 1) A (Y
(D.10)
YThe first few (g = 1,2,3) are given by:
GUE, Airy VIP+ B (T2+ 823 BT +8%)3
Zgs (B.T) € { e . o (D.9)

72



AT24B%) 3 .
AT p.

We can make the T-scaling explicit by rescaling b; —

269 X \n 2\ 39+5 poo
ZX(T, B) = (=5)" risg—n <1+5—> / budby badby (b3 +03)" W= VAR (b, by) .
0

(D.11)

The corresponding microcanonical expression is obtained by expanding the factor (1 + )39+2
up to the required order and then replacing powers " — 276 (E):

(69 + 1)

36¢% — 1

) gy 227 7/
g () + 12874

ZAlry T E Z ng_n |:5(n)(E) -+
n=0
X / bydby bydby (b3 +03)" €179 VA (b, by) .
0

(D.12)

Note that the second line is independent of 7" or F and simply corresponds to a certain universal
symmetrized moment of the WP volume.

So far, the expression is in principle valid for orientable as well as non-orientable geometries.?’
Recall now that in the orientable case, VQ%UE’Airy(bl, by) is a symmetric polynomial. The integrals

over b; for these types of terms can easily be performed, using the following Fresnel-type integrals:

00 o 1 Lin 1
/O dbb™ eilb N ij(m+1) T (%) i <D13>

The WP volumes for the orientable model are well known (e.g., [47]):

[\D

bt + 20262 + bl

‘/'1’G2UE,AiI‘y<b17 b2> —

192 ’
- bi0 + 152 802 + 58 b6
VGUE,Alry b b)) — 1 1Y2 1Y2 . D.14
. 5b1% + 200 b1*b3 + 2156 bi%b3 + 8048 b1°bS + 6070 b7b3
vGUE,AlI‘y b b — 1 1 Y2 1 Y2 1 Y2 1¥2 ]
32 (b1 b) 1280706662400 +perm.,

and so on. Explicit evaluation then yields:

) 3
e~3% ZFPAY (T = 1% F) = _6% §(E) + 0(6_50) ,

6—550 ZZC};JE,Airy(T — T@SO,E) - x GSO 5( )+ W 5/( )+ O(G_SO) : (D15)
’ ™

. 7
e ™90 Z AT = 1% B) = 0 x e* §(E) + 0 x % §'(E) — T §E) + O(e),

841

20Tn the non-orientable case, the integrals in (D.12) require regularization.
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and so on. These terms build precisely the microcanonical distribution-valued expansion of the
plateau, derived from RMT universality in (D.7). At genus g, the first (¢ — 1) terms would
be divergent upon T-scaling, but their coefficients turn out to be zero. This is due to

among the coefficients of the WP volumes. For the GUE, these cancellations have
been understood before [47, 61], so we will not discuss them in detail here. Our main observation
is that the t-scaled plateau has a formal microcanonical genus expansion in the GUE, which can
be obtained from orientable topological gravity term-by-term.

74



References

1]

[10]

[11]

[12]

[13]

[14]

[15]

A. Almbheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields
and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063
[1905.08762].

G. Penington, Entanglement Wedge Reconstruction and the Information Paradox, JHEP
09 (2020) 002 [1905.08255].

P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity,
1806.06840.

P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matriz integral, 1903.11115.

J. Cotler and K. Jensen, AdS; gravity and random CFT, JHEP 04 (2021) 033
[2006.08648].

D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity,
Commun. Math. Phys. 383 (2021) 1669 [1810.05338].

R.F. Streater and A.S. Wightman, PCT, spin and statistics, and all that, Princeton
University Press (1989).

D. Harlow and T. Numasawa, Gauging spacetime inversions in quantum gravity,
2311.09978.

D. Grabovsky and M. Kolanowski, Spin-refined partition functions and CRT black holes,
JHEP 12 (2024) 013 [2406.07609].

Y. Chen and G.J. Turiaci, Spin-statistics for black hole microstates, JHEP 04 (2024) 135
[2309.03478].

A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three Dimensions,
JHEP 02 (2010) 029 [0712.0155].

C.A. Keller and A. Maloney, Poincare Series, 3D Gravity and CFT Spectroscopy, JHEP 02
(2015) 080 [1407.6008].

N. Benjamin, H. Ooguri, S.-H. Shao and Y. Wang, Light-cone modular bootstrap and pure
gravity, Phys. Rev. D 100 (2019) 066029 [1906.04184].

N. Benjamin, S. Collier and A. Maloney, Pure Gravity and Conical Defects, JHEP 09
(2020) 034 [2004.14428)].

L.F. Alday and J.-B. Bae, Rademacher Expansions and the Spectrum of 2d CFT, JHEP 11
(2020) 134 [2001.00022].

75


https://doi.org/10.1007/JHEP12(2019)063
https://arxiv.org/abs/1905.08762
https://doi.org/10.1007/JHEP09(2020)002
https://doi.org/10.1007/JHEP09(2020)002
https://arxiv.org/abs/1905.08255
https://arxiv.org/abs/1806.06840
https://arxiv.org/abs/1903.11115
https://doi.org/10.1007/JHEP04(2021)033
https://arxiv.org/abs/2006.08648
https://doi.org/10.1007/s00220-021-04040-y
https://arxiv.org/abs/1810.05338
https://arxiv.org/abs/2311.09978
https://doi.org/10.1007/JHEP12(2024)013
https://arxiv.org/abs/2406.07609
https://doi.org/10.1007/JHEP04(2024)135
https://arxiv.org/abs/2309.03478
https://doi.org/10.1007/JHEP02(2010)029
https://arxiv.org/abs/0712.0155
https://doi.org/10.1007/JHEP02(2015)080
https://doi.org/10.1007/JHEP02(2015)080
https://arxiv.org/abs/1407.6008
https://doi.org/10.1103/PhysRevD.100.066029
https://arxiv.org/abs/1906.04184
https://doi.org/10.1007/JHEP09(2020)034
https://doi.org/10.1007/JHEP09(2020)034
https://arxiv.org/abs/2004.14428
https://doi.org/10.1007/JHEP11(2020)134
https://doi.org/10.1007/JHEP11(2020)134
https://arxiv.org/abs/2001.00022

[16] G. Di Ubaldo and E. Perlmutter, AdS3 Pure Gravity and Stringy Unitarity, Phys. Rev.
Lett. 132 (2024) 041602 [2308.01787].

[17] H. Maxfield and G.J. Turiaci, The path integral of 3D gravity near extremality; or, JT
gravity with defects as a matriz integral, JHEP 01 (2021) 118 [2006.11317].

[18] P.-S. Hsin, L.V. Tliesiu and Z. Yang, A wiolation of global symmetries from replica
wormholes and the fate of black hole remnants, 2011.09444.

[19] D. Stanford and E. Witten, JT gravity and the ensembles of random matrixz theory, Adv.
Theor. Math. Phys. 24 (2020) 1475 [1907.03363].

[20] Y.-Z. You, AAW.W. Ludwig and C. Xu, Sachdev-ye-kitaev model and thermalization on the
boundary of many-body localized fermionic symmetry-protected topological states, Physical
Review B 95 (2017) .

[21] J.S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S.H. Shenker et al., Black Holes
and Random Matrices, JHEP 05 (2017) 118 [1611.04650].

[22] C. Yan, Crosscap contribution to late-time two-point correlators, JHEP 12 (2023) 051
[2203.14436).

[23] D. Stanford, A Mirzakhani recursion for non-orientable surfaces, 2303 .04049.

[24] F. Haake, Quantum Signatures of Chaos, Physics and astronomy online library, Springer
(2001).

[25] A. Altland and M.R. Zirnbauer, Nonstandard symmetry classes in mesoscopic
normal-superconducting hybrid structures, Physical Review B 55 (1997) 1142-1161.

[26] M.R. Zirnbauer, Symmetry classes, 2010.

[27] D. Simmons-Duffin, The Conformal Bootstrap, in Theoretical Advanced Study Institute in
Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 1-74, 2017, DOI
[1602.07982].

28] P.H. Ginsparg, APPLIED CONFORMAL FIELD THEORY, in Les Houches Summer
School in Theoretical Physics: Fields, Strings, Critical Phenomena, 9, 1988
[hep-th/9108028].

[29] C. Yan, More on torus wormholes in 3d gravity, JHEP 11 (2023) 039 [2305.10494].

[30] S. Collier, L. Eberhardt and M. Zhang, 3d gravity from Virasoro TQFT: Holography,
wormholes and knots, SciPost Phys. 17 (2024) 134 [2401.13900].

76


https://doi.org/10.1103/PhysRevLett.132.041602
https://doi.org/10.1103/PhysRevLett.132.041602
https://arxiv.org/abs/2308.01787
https://doi.org/10.1007/JHEP01(2021)118
https://arxiv.org/abs/2006.11317
https://arxiv.org/abs/2011.09444
https://doi.org/10.4310/ATMP.2020.v24.n6.a4
https://doi.org/10.4310/ATMP.2020.v24.n6.a4
https://arxiv.org/abs/1907.03363
https://doi.org/10.1103/physrevb.95.115150
https://doi.org/10.1103/physrevb.95.115150
https://doi.org/10.1007/JHEP05(2017)118
https://arxiv.org/abs/1611.04650
https://doi.org/10.1007/JHEP12(2023)051
https://arxiv.org/abs/2203.14436
https://arxiv.org/abs/2303.04049
https://doi.org/10.1103/physrevb.55.1142
https://doi.org/10.1142/9789813149441_0001
https://arxiv.org/abs/1602.07982
https://arxiv.org/abs/hep-th/9108028
https://doi.org/10.1007/JHEP11(2023)039
https://arxiv.org/abs/2305.10494
https://doi.org/10.21468/SciPostPhys.17.5.134
https://arxiv.org/abs/2401.13900

[31] S. Collier, L. Eberhardt and M. Zhang, Solving 3d Gravity with Virasoro TQF'T,
2304 .13650.

[32] L.V. Iliesiu and G.J. Turiaci, The statistical mechanics of near-extremal black holes,
2003.02860.

[33] L.V. Iliesiu, M. Kologlu and G.J. Turiaci, Supersymmetric indices factorize, 2107 .09062.

[34] M. Heydeman, L.V. Iliesiu, G.J. Turiaci and W. Zhao, The statistical mechanics of
near-BPS black holes, 2011.01953.

[35] G. Di Ubaldo and E. Perlmutter, AdS;/RMT> duality, JHEP 12 (2023) 179 [2307.03707].

[36] J. Boruch, G. Di Ubaldo, F.M. Haehl, E. Perlmutter and M. Rozali, Modular-Invariant
Random Matriz Theory and AdS3 Wormholes, Phys. Rev. Lett. 135 (2025) 121602
[2503.00101].

[37] F.M. Haehl, C. Marteau, W. Reeves and M. Rozali, Symmetries and spectral statistics in
chaotic conformal field theories, JHEP 07 (2023) 196 [2302.14482].

[38] F.M. Haehl, W. Reeves and M. Rozali, Symmetries and spectral statistics in chaotic
conformal field theories. Part II. Maass cusp forms and arithmetic chaos, JHEP 12 (2023)
161[2309.00611L

[39] F.M. Haehl, W. Reeves and M. Rozali, Fuclidean wormholes in two-dimensional conformal
field theories from quantum chaos and number theory, Phys. Rev. D 108 (2023) 1101902
[2309.02533].

[40] D.L. Jafferis, L. Rozenberg and G. Wong, 3d gravity as a random ensemble, JHEP 02
(2025) 208 [2407.02649).

[41] J. de Boer, J. Kames-King and B. Post, Surgery and statistics in 3d gravity, 2506.04151.

[42] P. Saad, D. Stanford, Z. Yang and S. Yao, A convergent genus expansion for the plateau,
2210.11565.

[43] J. Tall, T. Weber, J.D. Urbina and K. Richter, Chaos and moduli space volumes in
unorientable JT' gravity, 2411.08129.

[44] F. Haake, P. Braun, A. Altland, S. Heusler and S. Miiller, Periodic-orbit theory of universal
level correlations in quantum chaos, New J. Phys. 11 (2009) 103025.

[45] K. Okuyama and K. Sakai, Multi-boundary correlators in JT gravity, JHEP 08 (2020) 126
2004 .07555].

7


https://arxiv.org/abs/2304.13650
https://arxiv.org/abs/2003.02860
https://arxiv.org/abs/2107.09062
https://arxiv.org/abs/2011.01953
https://doi.org/10.1007/JHEP12(2023)179
https://arxiv.org/abs/2307.03707
https://doi.org/10.1103/4hhn-c6mp
https://arxiv.org/abs/2503.00101
https://doi.org/10.1007/JHEP07(2023)196
https://arxiv.org/abs/2302.14482
https://doi.org/10.1007/JHEP12(2023)161
https://doi.org/10.1007/JHEP12(2023)161
https://arxiv.org/abs/2309.00611
https://doi.org/10.1103/PhysRevD.108.L101902
https://arxiv.org/abs/2309.02533
https://doi.org/10.1007/JHEP02(2025)208
https://doi.org/10.1007/JHEP02(2025)208
https://arxiv.org/abs/2407.02649
https://arxiv.org/abs/2506.04151
https://arxiv.org/abs/2210.11565
https://arxiv.org/abs/2411.08129
https://doi.org/10.1088/1367-2630/11/10/103025
https://doi.org/10.1007/JHEP08(2020)126
https://arxiv.org/abs/2004.07555

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

S. Miiller, S. Heusler, P. Braun, F. Haake and A. Altland, Periodic-orbit theory of
universality in quantum chaos, Physical Review E 72 (2005) .

A. Blommaert, J. Kruthoff and S. Yao, An integrable road to a perturbative plateau, JHEP
04 (2023) 048 [2208.13795).

T. Weber, J. Tall, F. Haneder, J.D. Urbina and K. Richter, Unorientable topological gravity
and orthogonal random matriz universality, JHEP 07 (2024) 267 [2405.17177].

J. Liu, Spectral form factors and late time quantum chaos, Phys. Rev. D 98 (2018) 086026
[1806.05316].

M. Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered
Riemann surfaces, Invent. Math. 167 (2006) 179.

P. Norbury, Lengths of geodesics on non-orientable hyperbolic surfaces, 2007.

B. Eynard and D. Lewanski, A natural basis for intersection numbers., Rend. Ist. Mat.
Univ. Trieste 55 (2023) 6 [2108.00226].

B. Eynard, E. Garcia-Failde, P. Gregori, D. Lewanski and R. Schiappa, Resurgent
Asymptotics of Jackiw-Teitelboim Gravity and the Nonperturbative Topological Recursion,
Annales Henri Poincare 25 (2024) 4121 [2305.16940].

T. Weber, M. Lents, J. Dieplinger, J.D. Urbina and K. Richter, Topological gravity for
arbitrary Dyson index, 2507 .03172.

J.M. Maldacena, G.W. Moore, N. Seiberg and D. Shih, Ezact vs. semiclassical target space
of the minimal string, JHEP 10 (2004) 020 [hep-th/0408039].

R. Dijkgraaf and E. Witten, Developments in Topological Gravity, Int. J. Mod. Phys. A 33
(2018) 1830029 [1804.03275].

B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion,
Commun. Num. Theor. Phys. 1 (2007) 347 [math-ph/0702045].

B. Eynard and N. Orantin, Weil-Petersson volume of moduli spaces, Mirzakhani’s recursion
and matrix models, 0705.3600.

A. Altland, K.W. Kim, T. Micklitz, M. Rezaei, J. Sonner and J.J.M. Verbaarschot,
Quantum chaos on edge, Phys. Rev. Res. 6 (2024) 033286 [2403.13516].

A. Altland, J. van der Heijden, T. Micklitz, M. Rozali and J.T. de Miranda, The
universality class of the first levels in low-dimensional gravity, 2505.18957.

78


https://doi.org/10.1103/physreve.72.046207
https://doi.org/10.1007/JHEP04(2023)048
https://doi.org/10.1007/JHEP04(2023)048
https://arxiv.org/abs/2208.13795
https://doi.org/10.1007/JHEP07(2024)267
https://arxiv.org/abs/2405.17177
https://doi.org/10.1103/PhysRevD.98.086026
https://arxiv.org/abs/1806.05316
https://doi.org/10.1007/s00222-006-0013-2
https://doi.org/10.13137/2464-8728/35487
https://doi.org/10.13137/2464-8728/35487
https://arxiv.org/abs/2108.00226
https://doi.org/10.1007/s00023-023-01412-z
https://arxiv.org/abs/2305.16940
https://arxiv.org/abs/2507.03172
https://doi.org/10.1088/1126-6708/2004/10/020
https://arxiv.org/abs/hep-th/0408039
https://doi.org/10.1142/S0217751X18300296
https://doi.org/10.1142/S0217751X18300296
https://arxiv.org/abs/1804.03275
https://doi.org/10.4310/CNTP.2007.v1.n2.a4
https://arxiv.org/abs/math-ph/0702045
https://arxiv.org/abs/0705.3600
https://doi.org/10.1103/PhysRevResearch.6.033286
https://arxiv.org/abs/2403.13516
https://arxiv.org/abs/2505.18957

[61] T. Weber, F. Haneder, K. Richter and J.D. Urbina, Constraining Weil-Petersson volumes
by universal random matriz correlations in low-dimensional quantum gravity, J. Phys. A 56
(2023) 205206 [2208.13802].

[62] S. Miiller, S. Heusler, P. Braun, F. Haake and A. Altland, Periodic-orbit theory of
universality in quantum chaos, Phys. Rev. E 72 (2005) 046207.

[63] M.V. Berry, Semiclassical Theory of Spectral Rigidity, Proceedings of the Royal Society of
London Series A 400 (1985) 229.

[64] M. Sieber and K. Richter, Correlations between periodic orbits and their réle in spectral
statistics, Physica Scripta 2001 (2001) 128.

[65] S. Heusler, S. Miiller, P. Braun and F. Haake, Universal spectral form factor for chaotic
dynamics, Journal of Physics A: Mathematical and General 37 (2004) L31.

[66] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality,
analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014
[hep-th/0602178].

[67] B. Bellazzini, M. Riembau and F. Riva, IR side of positivity bounds, Phys. Rev. D 106
(2022) 105008 [2112.12561].

[68] M. Herrero-Valea, A.S. Koshelev and A. Tokareva, UV graviton scattering and positivity
bounds from IR dispersion relations, Phys. Rev. D 106 (2022) 105002 [2205.13332].

[69] A. Blommaert, J. Kruthoff and S. Yao, The power of Lorentzian wormholes, JHEP 10
(2023) 005 [2302.01360].

[70] J. Louko and R.D. Sorkin, Complezx actions in two-dimensional topology change, Class.
Quant. Grav. 14 (1997) 179 [gr-qc/9511023].

[71] M.V. Berry and J.P. Keating, A rule for quantizing chaos?, Journal of Physics A:
Mathematical and General 23 (1990) 4839.

[72] E.B. Bogomolny, Semiclassical quantization of multidimensional systems, Nonlinearity 5
(1992) 805.

[73] M. Winer and B. Swingle, Reappearance of Thermalization Dynamics in the Late-Time
Spectral Form Factor, 2307 .14415.

79


https://doi.org/10.1088/1751-8121/acc8a5
https://doi.org/10.1088/1751-8121/acc8a5
https://arxiv.org/abs/2208.13802
https://doi.org/10.1103/PhysRevE.72.046207
https://doi.org/10.1098/rspa.1985.0078
https://doi.org/10.1098/rspa.1985.0078
https://doi.org/10.1238/Physica.Topical.090a00128
https://doi.org/10.1088/0305-4470/37/3/l02
https://doi.org/10.1088/1126-6708/2006/10/014
https://arxiv.org/abs/hep-th/0602178
https://doi.org/10.1103/PhysRevD.106.105008
https://doi.org/10.1103/PhysRevD.106.105008
https://arxiv.org/abs/2112.12561
https://doi.org/10.1103/PhysRevD.106.105002
https://arxiv.org/abs/2205.13332
https://doi.org/10.1007/JHEP10(2023)005
https://doi.org/10.1007/JHEP10(2023)005
https://arxiv.org/abs/2302.01360
https://doi.org/10.1088/0264-9381/14/1/018
https://doi.org/10.1088/0264-9381/14/1/018
https://arxiv.org/abs/gr-qc/9511023
https://doi.org/10.1088/0305-4470/23/21/024
https://doi.org/10.1088/0305-4470/23/21/024
https://doi.org/10.1088/0951-7715/5/4/001
https://doi.org/10.1088/0951-7715/5/4/001
https://arxiv.org/abs/2307.14415

	Introduction and summary of results
	Motivation
	Random matrix universality and -scaling
	Non-orientable gravity and late-time divergences

	The -scaled spectral form factor in GUE/GOE/GSE
	Review of the GUE -scaled SFF
	The GOE -scaled SFF
	The GSE -scaled SFF
	Convergence of the -scaled topological expansion

	Topological recursion in non-orientable topological gravity
	Review of non-orientable topological recursion
	Topological recursion in the Airy limit
	Loop equations in the Airy GOE matrix model

	Cancellations in WP volumes of non-orientable topological gravity
	The microcanonical ramp from gravity
	Cancellations in the canonical SFF

	Lessons about the genus expansion to all orders
	Resumming the genus expansion
	Periodic orbits and gravity

	Conclusion
	Derivation of -scaled topological expansion
	GOE: Derivation of eq. (2.31)
	GSE: Derivation of eq. (2.57)

	Details on -scaled GOE JT gravity
	High-temperature expansion
	Resummation of the high-temperature expansion

	Two-boundary partition function in non-orientable topological gravity
	The microcanonical plateau in orientable topological gravity
	The microcanonical genus expansion
	The microcanonical plateau from gravity


