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Holographic Multi-User Multi-Stream Beamforming
Maintaining Rate-Fairness

W. Zhu1, H. D. Tuan1, E. Dutkiewicz1, H. V. Poor2, and L. Hanzo3

Abstract—We present the first investigation into the transmis-
sion of multi-stream information from a base station equipped
with reconfigurable holographic surfaces (RHS) to multiple users
with the aid of multi-antenna arrays. Building upon this, we
propose the joint design of RHS and baseband beamformers
that enables multi-stream delivery at fair rates across all users.
Specifically, we first introduce a max-min rate optimization
approach, which aims for maximizing the minimum rate for all
users through iterative solutions of quadratic problems. To reduce
complexity, we then propose a surrogate-based optimization
approach that offers a low-complexity design alternative relying
on closed-form updates. Our simulations show that the surrogate-
based approach achieves nearly the same minimum rate as
max-min optimization, while delivering sum-rates comparable
to those of sum-rate maximization, overcoming the rate-fairness
deficiency typical of the latter.

Index Terms—Multi-user communication, reconfigurable holo-
graphic surfaces, holographic beamformer, baseband beamfomer,
quality-of-service.

I. INTRODUCTION

In recent years, the field of wireless communications and
sensing has witnessed a significant transformation with the
advent of metasurfaces harnessed as massive antenna arrays
[1]–[9]. Beamforming techniques conceived for creating direc-
tional beams for specific end-users are capable of supporting a
massive number of connections and services in the Internet-of-
Things. However, the beamformers relying on reconfigurable
intelligent surfaces (RISs) [1], [2], [6] and on dynamic meta-
surfaces [3], [5], [6] employing phased arrays, known for
their high power consumption and excessive manufacturing
costs. By contrast, beamforming relying on reconfigurable
holographic surfaces (RHSs) utilizes low-cost electronically
scanned arrays for manipulating the radiation amplitudes [4],
[7], [9]–[11]. However, holographic beamforming design re-
lies on a considerable number of optimization variables and
constraints involved in the radiation amplitude optimization.
For instance, a holographic beamformer having a moderate-
sized RHS of 12×12 elements and eight feeds already entails
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122 × 8 = 1152 optimization variables subject to the cor-
responding amplitude constraints. Consequently, holographic
beamforming leads to a computationally demanding large-
scale nonconvex optimization problem that continues to chal-
lenge existing state-of-the-art algorithms, motivating the need
for scalable and efficient solutions. It is fair to say that holo-
graphic beamforming is still in its early stages of development
[7], [12]–[16]. The pioneering paper [15] utilized fractional
programming for the alternating optimization of a holographic
beamformer using the sum-rate objective function. However,
optimizing this fractional programming-based convex problem
does not necessarily result in an improved sum-rate, potentially
leading to convergence issues in the alternating optimization
procedure iterating between the baseband (digital) beamformer
and the holographic beamformer. In the simulation scenarios of
[15], a single data stream was transmitted to three 10-antenna
users, where at least four feeds were needed to accommodate
the baseband zero-forcing beamforming where the size of the
RHS ranged from 144 to 1600. In this convex formulation,
the number of optimization variables and constraints was
between 144 × 4 = 576 and 1600 × 4 = 6400, resulting
in a prohibitive complexity. It should be emphasized that the
sum-rate problem has frequently been considered in multi-
user communications due to its relatively low computational
complexity. Specifically, the smoothness of the the sum-
rate function enables efficient beamforming design through
iterative evaluation of low-complexity closed-form solutions.
Under the same allocation of resources (such as transmit power
or bandwidth), the maximized sum-rate continues to increase
with the number of users. However, this approach leads to
near-zero rates for certain users, which is primarily because
of prioritizing specific users having high rates owing to their
high channel quality, while sacrificing others by assigning
close to zero rates. Consequently, sum-rate maximization sac-
rifices rate-fairness amongst users. Against this background,
we lay down the computational foundations of holographic
beamforming designs conceived for serving multiple users
while maintaining rate-fairness. More explicitly, we have the
following contributions:

• We tackle the challenge of maximizing the minimum
rate among users (max-min rate optimization) to improve
their rate-fairness. In contrast to [15], which considered
scenarios involving the transmission of single informa-
tion stream to multi-antenna users, our approach allows
for multiple-stream transmissions. The user rate is now
defined by the logarithmic determinant (log-det) of a
nonlinear matrix-valued function of both the holographic
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and the baseband beamformers. Fractional programming
is unsuitable for their optimization. In this context, we
propose an alternating optimization algorithm harnessing
convex quadratic programming for iteratively generating
gradually improved feasible baseband and holographic
beamformers, while ensuring algorithmic convergence.

• We introduce a new penalized optimization framework
that incorporates amplitude constraints in holographic
beamformers into the optimization objective function.
This reformulation tends itself to a low-complexity al-
ternating optimization solution that maximizes the sum-
rate by iteratively evaluating low-complexity closed-form
solutions.

• To circumvent the cubically escalating complexity of con-
vex quadratic solvers harnessed for addressing the non-
smooth minimum rate function, we unveil a new surro-
gate optimization objective and develop a computational
method based on iterating by evaluating new closed-
form expressions, hence resulting in low computational
complexity. Optimizing this surrogate objective results
in high minimum user-rates and also achieves sum-rates
that are higher than those of conventional approaches.
Hence, our new surrogate optimization strategy meets
three key objectives: providing improved rate-fairness
relative to existing methods, maximizing the sum-rate,
and offering lower computational complexity than tradi-
tional solvers. Hence, the proposed surrogate optimization
strategy is particularly suitable for beamforming in multi-
user networks of realistic sizes, where it achieves high
minimum user-rates, improved fairness, and low compu-
tational complexity.

The paper is organized as follows. Section II presents the
system model and analyses the user rates achieved through
baseband and holographic beamforming. Section III focuses
on designing holographic and baseband beamformers for mul-
tiple multi-antenna users by maximizing their minimum rate.
This section develops an alternating optimization procedure
based on convex quadratic solvers to generate a sequence
of improved holographic and baseband beamformers, while
guaranteeing convergence. Section IV introduces a new penal-
ized optimization procedure that iterates by evaluating closed-
form expressions for maximizing the sum-rate. In Section
V, a new surrogate optimization problem is conceived for
attaining both high minimum rate and sum-rate, which may not
be achievable by max-min rate or by sum-rate maximization
alone. Importantly, the optimization of this objective function
is achieved by devising an efficient computational proce-
dure, relying on iterating closed-form expressions of scalable
complexity to find the optimal solution. This procedure is
eminently suitable for the design of holographic and baseband
beamformers of any scale. Section VI provides simulations for
verifying the accuracy of our results presented in the previous
sections, while Section VII concludes the paper. Appendices
are provided for the basic inequalities used in deriving the
results of Sections III-IV and for lengthy derivations.

Notation. Boldface fonts are specifically reserved for opti-
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Fig. 1: Illustration of RHS-assisted multi-user
communication system.

mization variables.1 We have ⟨X,Y ⟩ ≜ trace(XHY ) for the
matrices X and Y . We also use ⟨X⟩ for the trace of X when
X is a square matrix. X ≻ 0 (X ⪰ 0, resp.) means that
X is a Hermitian symmetric positive definite (positive semi-
definite, resp.) matrix. As such X ≺ Y means that we have
Y − X ≻ 0. ||X|| is the Frobenius norm of the matrix X ,
which is defined by

√
⟨XXH⟩. Furthermore, [X]2 stands for

XXH ⪰ 0, so ||X||2 = ⟨[X]2⟩. When X ⪰ 0, its square root√
X is a positive semi-definite matrix satisfying [

√
X]2 = X .

The symbol |X| represents the determinant of the matrix X , so
ln |X| denotes the natural logarithm of the determinant (log-
det), while vec(X) stacks the columns of the matrix X into
a single vector. The symbol I is commonly used to represent
the identity matrix. However, we also use ID to emphasize
that its size is D × D. Lastly, a summary of basic notations
used throughout the paper along with their descriptions are
presented in Table I for a quick reference.

II. SYSTEM MODEL

We begin by recalling the holographic interference principle
of [17], which forms the basis of holographic beamforming.

Consider an RHS-assisted multi-user communication sys-
tem, as depicted in Fig. 1. An RHS consists of K feeds indexed
by k ∈ K ≜ {1, . . . ,K} and a planar array of M ×M ele-
ments, indexed by (m,m′) ∈M×M withM ≜ {1, . . . ,M}.
The feeds are embedded in the bottom layer to generate
incident electromagnetic waves, while the planar array is
located at the Cartesian coordinates (x, y, z), where the RHS
resides in the (x, y)-plane. At the (m,m′)-th radiation, the
desired wave propagating in the direction (θ, φ) is represented
by Φ(pm,m′ , θ, φ) = e−ȷ⟨κ(θ,φ),pm,m′ ⟩, where κ(θ, φ) is the
desired directional propagation vector in free space and pm,m′

is the position vector of the (m,m′)-th element. The reference
wave generated by feed k is Φk(d

k
m,m′) = e−ȷ⟨κs,d

k
m,m′ ⟩,

where ks is the propagation vector of the reference wave,
and dkm,m′ is the distance vector spanning from feed k to the
(m,m′)-th element. The interference between the reference
wave and the desired object wave is defined as

ψk,m,m′ ≜ Φ(pm,m′ , θ, φ)Φ∗
k(d

k
m,m′). (1)

1The boldface font used for optimization variables explicitly distinguishes
them from feasible points in the algorithm design. This enhances the promi-
nence of optimization variables and helps to identify the specific structures
such as quadratic forms in the associated functions. These variables may
represent scalars, vectors, or matrices.
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TABLE I: Summary of Basic Notations

Notation Description

K
/
K number of feeds on RHS

/
index set {1, . . . ,K}

M
/
M number of vertical and horizontal elements on RHS

/
index set {1, . . . ,M}

Nu
/
Nu number of users

/
index set {1, . . . , Nu}

D number of each user’ antennas
Hν channel spanning from the BS to user ν
µk,m,m′ normalized amplitude of feed k and (m,m′)-th element on RHS
xk,m,m′ scaled amplitude of feed k and (m,m′)-th element on RHS
X holographic beamformer
Wν user ν’ baseband beamformer
W ≜ (W1, . . . ,WNu ) set of baseband beamformer
χχχ auxiliary variable in penalized optimization
rν(W,X) rate for user ν
W (ι+1), X(ι+1), χ(ι+1) values of W, X , χχχ generated at ι-th iteration

The holographic pattern is induced by the reference
wave Φk(d

k
m,m′) to engender the wave propagation

Φ(pm,m′ , θ, φ)|Φk(dkm,m′)|2. Accordingly, the radiation
amplitude of the (m,m′)-th element to generate the
object wave in the radiation direction (θ, φ) is defined as
ℜ{ψk,m,m′} = cos

(
⟨κ(θ, φ), pm,m′⟩ − ⟨κs, dkm,m′⟩

)
, which

is then normalized as

µk,m,m′ ≜
ℜ{ψk,m,m′}+ 1

2
. (2)

The holographic beamforming effect is achieved by scaling
the magnitude of µk,m,m′ using

αααk,m,m′ ∈ [0, 1], (k,m,m′) ∈ K ×M×M. (3)

Accordingly, we define xk,m,m′ = αααk,m,m′µk,m,m′ and form

xk ≜ vec
([

xk,m,m′
]
(m,m′)∈M×M

)
∈ RM

2

, k ∈ K. (4)

Then

X ≜
[
x1 . . . xK

]
∈ RM

2×K & x ≜ vec(X) =

x1

. . .
xK


(5)

represents the holographic beamformer, which is the objective
of our holographic beamformer design.

Next, we use the above RHS at a base station (BS) to
serve Nu users ν ∈ Nu ≜ {1, . . . , Nu} in the downlink.
Each of the users is equipped with a D-antenna array, where
D ≤ K. Let sν ∈ CD along with E(sνsHν ) = ID be the
multiple information stream intended for user equipment (UE)
ν. Given the holographic beamformer X defined in (5), the
hybrid beamformer for sν is in the form

XWνsν (6)

with the baseband beamformer given by:

Wν ≜ [Wν(k, d)](k,d)∈K×D ∈ CK×D, ν ∈ Nu. (7)

Let

Hν =

hν,1. . .
hν,D

 ∈ CD×M2

;hν,d ∈ C1×M2

, d ∈ D ≜ {1, . . . , D}

Sec. V. 
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Sec. IV. 
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Fig. 2: Flowchart of the proposed algorithms.

represent the channel spaning from the BS to user ν ∈ Nu,
whose full channel state information is assumed to be avail-
able. Then the signal received at UE ν is formulated as:

yν = Hν

∑
ν′∈Nu

XWν′sν′ + nb, (8)

where nb is the background noise of power σ. Thus, for W ≜
(W1, . . . ,WNu

), the rate of sν (in nats) is defined by the
log-det function:

rν(W,X) ≜ ln
∣∣ID + [HνXWν ]

2G−1
ν (W,X)

∣∣ , (9)

where Gν(W,X) : CK×(DNu)×RM2×K → CD×D is the so
called interference covariance mapping [18] defined by

Gν(W,X) ≜
∑
ν′ ̸=ν

[HνXWν′ ]2 + σID. (10)

In the given holographic multi-user multi-stream beam-
forming framework, we first investigate the max-min rate
optimization problem to ensure fairness in users’ rates. To
reduce computational complexity, we then tackle the sum-
rate maximization problem using a penalized optimization
approach for efficient computation. Additionally, we introduce
a surrogate optimization formulation that efficiently enhances
both the minimum rate and sum-rate. For clarity, Fig. 2
presents a flowchart of the proposed algorithms.

III. MAX-MIN RATE OPTIMIZATION OF HOLOGRAPHIC
BEAMFORMING

Define the minimum rate function as

f(W,X) ≜ min
ν∈Nu

rν(W,X). (11)
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We then address the following max-min rate optimization
problem, which aims to maintain fairness across users’ rates:

max
W,X

f(W,X) (12a)

s.t.
∑
ν∈Nu

||XWν ||2 ≤ P, (12b)

xk,m,m′ ∈ [0, µk,m,m′ ], (k,m,m′) ∈ K ×M×M, (12c)

where (12b) enforces the power constraint within the given
power budget P . This problem is computationally demanding,
not only because of the large number of optimization variables
but also due to the intricate structure of the objective function.
For instance, under a typical setting of (K,M,D,Nu) =
(4, 12, 2, 4), the baseband beamformer involves 32 complex
variables, while the holographic beamformer requires 576 real
variables. Moreover, the objective function f(W,X) in (12) is
not only highly nonlinear but also nonsmooth, as it represents
the pointwise minimum of log-det functions.

We now proceed to develop a computational algorithm
based on alternating optimization between the baseband and
holographic beamformers, leveraging convex quadratic pro-
gramming to address problem (12).

Let (W (0), X(0)) denote an initial feasible point of (12), and
suppose that (W (ι), X(ι)) is the feasible point obtained at the
(ι − 1)-st iteration. The alternating procedure then generates
the next feasible point (W (ι+1), X(ι+1)) at the ι-th iteration
as follows.

A. Alternating optimization for baseband beamforming

Define

r
(ι)
1,ν(W) ≜ rν(W, X(ι))

= ln
∣∣∣ID + [HνX

(ι)Wν ]
2G−1
ν (W, X(ι))

∣∣∣
= ln

∣∣∣ID + [H(ι)
1,νWν ]

2(G(ι)1,ν(W))−1
∣∣∣ , (13)

where
H(ι)

1,ν ≜ HνX
(ι), (14)

and
G(ι)1,ν(W) ≜

∑
ν′ ̸=ν

[H(ι)
1,νWν′ ]2 + σID. (15)

Accordingly, define the minimum rate function

f
(ι)
1 (W) ≜ min

ν∈Nu

r
(ι)
1,ν(W). (16)

To generate a baseband beamformer W (ι+1) such that

f(W (ι+1), X(ι)) > f(W (ι), X(ι)), (17)

we consider the following subproblem of baseband optimiza-
tion:

max
W

f
(ι)
1 (W) (18a)

s.t.
∑
ν∈Nu

⟨(X(ι))HX(ι), [Wν ]
2⟩ ≤ P, (18b)

where (18b) corresponds to the power constraint (12b) with
X held fixed at X(ι).

As the objective function in (18) is not concave, the problem
is nonconvex. To enable tractable optimization, we construct
a concave minorant of the objective function.

Applying the inequality (133) in Appendix A for (V̄ , Ȳ ) =

(V
(ι)
1,ν , Y

(ι)
1,ν ) ≜ (H(ι)

1,νW
(ι)
ν ,G(ι)1,ν(W

(ι))) and (V,Y) ≜

(H(ι)
1,νWν ,G(ι)1,ν(W)) yields:

r
(ι)
1,ν(W) ≥ r̃

(ι)
1,ν(W) (19)

with

r̃
(ι)
1,ν(W) ≜ a

(ι)
1,ν + 2ℜ{⟨(V (ι)

1,ν )
H(Y

(ι)
1,ν )

−1H(ι)
1,νWν⟩}

−⟨C(ι)1,ν ,
∑
ν′∈Nu

[H(ι)
1,νWν′ ]2⟩ (20)

= a
(ι)
1,ν + 2ℜ{⟨B(ι)

1,νWν⟩}

−⟨C̃(ι)1,ν ,
∑
ν′∈Nu

[Wν′ ]2⟩, (21)

where

a
(ι)
1,ν ≜ r

(ι)
1,ν(W

(ι))− ⟨[V (ι)
1,ν ]

2(Y
(ι)
1,ν )

−1⟩ − σ⟨C(ι)1,ν⟩,

C(ι)1,ν ≜ (Y
(ι)
1,ν )

−1 −
(
Y

(ι)
1,ν + [V

(ι)
1,ν ]

2
)−1

⪰ 0,

C̃(ι)1,ν ≜ (HνX
(ι))HC(ι)1,νHνX

(ι) ⪰ 0,

B(ι)1,ν ≜ (V
(ι)
1,ν )

H(Y
(ι)
1,ν )

−1H(ι)
1,ν .

(22)

Moreover, it is immediate to verify that

r
(ι)
1,ν(W

(ι)) = r̃
(ι)
1,ν(W

(ι)). (23)

Each r̃(ι)1,ν(W) is a concave quadratic function because C̃(ι)1,ν ⪰
0. Therefore, the function

f̃
(ι)
1 (W) ≜ min

ν∈N
r̃
(ι)
1,ν(W), (24)

is concave as the pointwise minimum of r̃(ι)1,ν(W) [19].
From (19) we have

f̃
(ι)
1 (W) ≤ min

ν∈N
r
(ι)
1,ν(W)

= f
(ι)
1 (W), (25)

and from (23) it follows that:

f̃
(ι)
1 (W (ι)) = min

ν∈N
r
(ι)
1,ν(W

(ι))

= f
(ι)
1 (W (ι)), (26)

i.e. f̃ (ι)1 (W) is a tight minorant of f (ι)1 (W) at W (ι).
We now generate the subsequent feasible baseband beam-

former W (ι+1) as the optimal solution of the following convex
quadratic problem

max
W

f̃
(ι)
1 (W) s.t. (18b). (27)

As there are NuKD variables in this problem, its computa-
tional complexity is on the order of O(N3

uK
3D3) [20].

Finally,

f
(ι)
1 (W (ι+1)) ≥ f̃

(ι)
1 (W (ι+1)) (28)

> f̃
(ι)
1 (W (ι)) (29)

= f
(ι)
1 (W (ι)), (30)



5

whenever f (ι)1 (W (ι+1)) ̸= f
(ι)
1 (W (ι)), which ensures (17).

Here, (28) follows from (25), (29) holds because W (ι+1) is
the optimal solution of the maximization problem (27) while
W (ι) is only feasible, and (30) follows from (26).

B. Alternating optimization for holographic beamforming

Define

r
(ι)
2,ν(X) ≜rν(W

(ι+1),X)

= ln
∣∣∣ID + [HνXW (ι+1)

ν ]2(G(ι)2,ν(X))−1
∣∣∣ , (31)

where
G(ι)2,ν(X) ≜

∑
ν′ ̸=ν

[HνXW
(ι+1)
ν′ ]2 + σID. (32)

Accordingly, define the minimum rate function

f
(ι)
2 (X) ≜ min

ν∈Nu

r
(ι)
2,ν(X). (33)

To generate a holographic beamformer X(ι+1) satisfying

f(W (ι+1), X(ι+1)) > f(W (ι+1), X(ι)), (34)

we consider the following subproblem of holographic opti-
mization:

max
X∈RM2×K

f
(ι)
2 (X) s.t. (12c), (35a)

||X
√
A(ι+1)||2 ≤ P, (35b)

where
A(ι+1) ≜

∑
ν∈Nu

[W (ι+1)
ν ]2, (36)

and (35b) corresponds to the power constraint (12b) with W
held fixed at W (ι+1).

Applying the inequality (133) in Appendix A for (V̄ , Ȳ ) =

(V
(ι)
2,ν , Y

(ι)
2,ν ) ≜ (HνX

(ι)W
(ι+1)
ν ,G(ι)2,ν(X

(ι))) and (V,Y) ≜

(HνXW
(ι+1)
ν ,G(ι)2,ν(X)) yields

r
(ι)
2,ν(X) ≥ r̃

(ι)
2,ν(X) (37)

with

r̃
(ι)
2,ν(X) ≜ a

(ι)
2,ν + 2ℜ{⟨(V (ι)

2,ν )
H(Y

(ι)
2,ν )

−1HνXW (ι+1)
ν ⟩}

−⟨C(ι)2,ν ,
∑
ν′∈Nu

[HνXW
(ι+1)
ν′ ]2⟩

= a
(ι)
2,ν + 2ℜ{⟨B(ι)

2νX⟩}

−⟨C̃(ι)2,ν , [X
√
A(ι+1)]2⟩, (38)

where

a
(ι)
2,ν ≜ r

(ι)
2,ν(X

(ι))− ⟨[V (ι)
2,ν ]

2(Y
(ι)
2,ν )

−1⟩ − σ⟨C(ι)2,ν⟩,

C(ι)2,ν ≜ (Y
(ι)
2,ν )

−1 −
(
Y

(ι)
2,ν + [V

(ι)
2,ν ]

2
)−1

⪰ 0,

C̃(ι)2,ν ≜ (Hν)
HC(ι)2,νHν ⪰ 0,

B(ι)2,ν ≜W
(ι+1)
ν (V

(ι)
2,ν )

H(Y
(ι)
2,ν )

−1Hν .

(39)

Moreover, it is immediate to verify that

r
(ι)
2,ν(X

(ι)) = r̃
(ι)
2,ν(X

(ι)). (40)

Algorithm 1 Convex quadratic solver based algorithm for
max-min rate optimization

1: Initialization: Initialize (W (0), X(0)) feasible for (12).
Set ι = 0.

2: Repeat until convergence: Generate a baseband beam-
former W (ι+1) by solving the convex quadratic problem
(27) and a holographic beamformer X(ι+1) by solving the
convex quadratic problem (44). Reset ι← ι+ 1.

3: Output (W opt, Xopt) = (W (ι), X(ι)).

Each r̃(ι)2,ν(X) is a concave quadratic function because C̃(ι)2,ν ⪰
0. Therefore, the function

f̃
(ι)
2 (X) ≜ min

ν∈N
r̃
(ι)
2,ν(X), (41)

is concave as the pointwise minimum of r̃(ι)2,ν(X) [19].
Similar to (25) and (26), it follows from (37) and (40) that

f̃
(ι)
2 (X) is a tight minorant of f (ι)2 (X) at X(ι), i.e.

f̃
(ι)
2 (X) ≤ f (ι)2 (X) ∀ X, (42)

and

f̃
(ι)
2 (X(ι)) = f

(ι)
2 (X(ι)). (43)

We then generate the subsequent feasible holographic beam-
former X(ι+1) as the optimal solution of the following convex
quadratic problem

max
X∈RM2×K

f̃
(ι)
2 (X) s.t. (12c), (35b). (44)

As there are M2K variables and M2K amplitude constraints,
the computational complexity of (44) is on the order of
O((M2K)4) = O(M8K4) [20].2

Similarly to (28)-(30), we have (34) as a consequence
of (42) and (43) and f̃

(ι)
2 (X(ι+1)) > f̃

(ι)
2 (Ξ) whenever

f̃
(ι)
2 (X(ι+1)) ̸= f̃

(ι)
2 (X(ι)), since X(ι+1) and X(ι) are the

optimal solution and a feasible point of the maximization
problem (44), respectively.

C. The algorithm and its convergence

Algorithm 1 provides the pseudo code of solving the max-
min rate problem of (12). It follows from (17) and (34) that
we have:

f(W (ι+1), X(ι+1)) > f(W (ι), X(ι)) (45)

as far as f(W (ι+1), X(ι+1)) ̸= f(W (ι), X(ι)), so the sequence
{(W (ι), X(ι))} of improved feasible points for (12) converges
to (W̄ , X̄).

2M2K amplitude constraints in (12c) can be expressed as M2K convex
quadratic constraints xk,m,m′ (µk,m,m′ − xk,m,m′ ) ≥ 0, (k,m,m′) ∈
K × M × M [19]. While these constraints do not introduce additional
computational difficulties, they certainly contribute to having an increased
computational complexity. As a result, the computational complexity of (44)
is not cubic but quartic in M2K.
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IV. SUM-RATE DRIVEN OPTMIZATION OF HOLOGRAPHIC
BEAMFORMING

By defining the sum-rate function as

fS(W,X) ≜
∑
ν∈Nu

rν(W,X), (46)

it is straightforward to see that the alternating optimization
procedure from the previous section can be adapted to solve
the following sum-rate problem:

max
W,X

fS(W,X) s.t. (12b), (12c). (47)

Alternating baseband optimization relies on the optimal so-
lution of the convex quadratic problem (27) with f̃

(ι)
1 (W)

defined by
∑
ν∈N r̃

(ι)
1,ν(W) instead of (24). As seen below,

this problem admits expressing the optimal solution in closed-
form. Furthermore, alternating holographic optimization is
based on the optimal solution of the convex quadratic problem
(44) with f̃ (ι)2 (X) defined by

∑
ν∈N r̃

(ι)
2,ν(X) instead of (41).

Its computational complexity remains high at O(M8K4) due
to having multiple amplitude constraints.

To handle the multitude of amplitude constraints (12c)
in (47), we utilize the widely used penalized optimization
framework [21], [22] to incorporate them into the optimization
objective as

fS,ρ(W,X,χχχ) ≜ fS(W,X)− ρ||vec(X)−χχχ||2, (48)

where ρ > 0 is the penalty parameter that drives the holo-
graphic beamformer X toward feasibility with respect to
constraint (12c) upon convergence. This yields the following
penalized optimization problem:

max
W,X,χχχ

fS,ρ(W,X,χχχ) (49a)

s.t. (12b), (49b)

χχχ ≜ vec
([
χχχ1 . . . χχχK

])
∈ RM

2K ,

χχχk ≜ vec
(
[χχχk,m,m′ ](m,m′)∈M×M

)
∈ RM

2

, (49c)
χχχk,m,m′ ∈ [0, µk,m,m′ ], (k,m,m′) ∈ K ×M×M, (49d)

The penalized optimization problem (49) eliminates the ex-
plicit amplitude constraints (12c) imposed on X . As the
penalty term approaches zero, a solution feasible for (49)
is also feasible for (47). More importantly, unlike (47), the
penalized reformulation (49) enables computationally tractable
alternating optimization in X and χχχ with scalable complexity.
The interested reader is referred to [21, Chapter 16] for further
insights into penalty optimization.

We now propose an alternating optimization algorithm that
iterates by evaluating closed-form expressions for addressing
(49).

Let (W (0), X(0), χ(0)) be an initial feasible point and
(W (ι), X(ι), χ(ι)) be the feasible point for (49) found from
the (ι − 1)-st iteration. Alternating optimization in each of
W, X and χχχ is progressed as follows.

A. Alternating optimization for baseband beamforming

Alternating baseband optimization aims for generating
W (ι+1) to ensure that

fS,ρ(W
(ι+1), X(ι), χ(ι)) > fS,ρ(W

(ι), X(ι), χ(ι))

⇔ fS(W
(ι+1), X(ι)) > fS(W

(ι), X(ι)). (50)

To achieve this, we define the sum-rate function

f
(ι)
1,S(W) ≜

∑
ν∈Nu

r
(ι)
1,ν(W), (51)

where r
(ι)
1,ν(W) is defined in (31)-(15), and consider the

following sum-rate maximization problem, instead of the max-
min rate problem (18):

max
W

f
(ι)
1,S(W) s.t. (18b). (52)

With the tight minorant r̃(ι)1,ν(W) of r(ι)1,ν(W) as defined in
(21)-(22), we obtain

f
(ι)
1,S(W) ≥ f̃

(ι)
1,S(W) (53)

with

f̃
(ι)
1,S(W) ≜

∑
ν∈Nu

r̃
(ι)
1,ν(W)

=
∑
ν∈Nu

[
a
(ι)
1,ν + 2ℜ{⟨B(ι)1,νWν⟩}

−⟨C̃(ι)1,ν ,
∑
ν′∈Nu

[Wν′ ]2⟩

]
=

∑
ν∈Nu

a
(ι)
1,ν +

∑
ν∈Nu

[
2ℜ{⟨B(ι)1,νWν⟩} (54)

−⟨C̃(ι)1 , [Wν ]
2⟩
]
, (55)

where:

C̃(ι)1 ≜
∑
ν∈Nu

C̃(ι)1,ν . (56)

In addition,

f̃
(ι)
1,S(W

(ι)) = f
(ι)
1,S(W

(ι)). (57)

The subsequent baseband beamformer W (ι+1) ensuring (50)
is then obtained as the optimal solution of

max
W

f̃
(ι)
1,S(W) s.t. (18b), (58)

which admits the following closed-form solution:

W (ι+1)
ν =



(C̃(ι)1 )−1(B(ι)1,ν)
H

if
∑
ν∈Nu

⟨(X(ι))HX(ι), [(C̃(ι)1 )−1(B(ι)1,ν)
H ]2⟩≤P,

(C̃(ι)1 + τ(X(ι))HX(ι))−1(B(ι)1,ν)
H

otherwise,
(59)
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where τ > 0 is found by bisection such that3∑
ν∈Nu

⟨(X(ι))HX(ι), [(C̃(ι)1 + τ(X(ι))HX(ι))−1(B(ι)1,ν)
H ]2⟩=P.

(60)
The computational complexity of expression (59) is on the
order of O(NuKD).

Similarly to (28)-(30), we have (50) as a consequence of
(53) and (57) and f̃

(ι)
1,S(W

(ι+1)) > f̃
(ι)
1,S(W

(ι)) whenever
f̃
(ι)
1,S(W

(ι+1)) ̸= f̃
(ι)
1,S(W

(ι)), since W (ι+1) and W (ι) are the
optimal solution and a feasible point of the maximization
problem (58), respectively.

B. Alternating optimization for holographic beamforming

Holographic alternating optimization aims for generating
X(ι+1) for ensuring that

fS,ρ(W
(ι+1), X(ι+1), χ(ι)) > fS,ρ(W

(ι+1), X(ι), χ(ι)). (61)

To this end, we define the sum-rate function as

f
(ι)
2,S(X) ≜

∑
ν∈Nu

r
(ι)
2,ν(X) (62)

where r(ι)2,ν(X) is given in (31). The penalized sum-rate is then

f
(ι)
2,S,ρ(X) ≜ f

(ι)
2,S(X)− ρ||vec(X)− χ(ι)||2, (63)

leading to the following optimization problem:

max
X

f
(ι)
2,S,ρ(X) s.t. (35b). (64)

With the tight minorant r̃(ι)2,ν(X) of r2,ν(X) as defined in
(38)-(39), we obtain

f
(ι)
2,S(X) ≥ f̃

(ι)
2,S(X) (65)

with

f̃
(ι)
2,S(X) ≜

∑
ν∈Nu

r̃
(ι)
2,ν(X)

=
∑
ν∈Nu

a
(ι)
2,ν + 2(b

(ι)
2 )T vec(X)

−vecT (X)D̃(ι)
2 vec(X) (66)

where
b
(ι)
2 ≜ vec

(
ℜ{(B̃(ι)2 )T }

)
∈ RM

2K ∋, (67)

and
D̃(ι)

2 ≜ ℜ{(A(ι+1))T ⊗ C̃(ι)2 } (68)

for A(ι+1) and (a
(ι)
2,ν ,B

(ι)
2,ν , C̃

(ι)
2,ν) defined in (36) and (39), and

B̃(ι)2 ≜
∑
ν∈Nu

B(ι)2,ν ,

C̃(ι)2 ≜
∑
ν∈Nu

C̃(ι)2,ν .
(69)

The derivation for (66) is provided in Appendix B.

3Bisection procedure. Define g(τ) ≜
∑

ν∈Nu
⟨(X(ι))HX(ι), [(C̃(ι)1 +

τ(X(ι))HX(ι))−1(B(ι)1,ν)
H ]2⟩. Find bounds τl and τu satisfying g(τl) >

P > g(τu). Then, set τ = (τl + τu)/2 and compute g(τ). Terminate the
procedure whenever g(τ) ≈ P . Otherwise, update τl ← τ if g(τ) > P or
update τu ← τ if g(τ) < P .

In addition,

f̃
(ι)
2,S(X

(ι)) = f
(ι)
2,S(X

(ι)). (70)

By further defining

f̃
(ι)
2,S,ρ(X) ≜ f̃

(ι)
2,S(X)− ρ||vec(X)− χ(ι)||2

=
∑
ν∈Nu

a
(ι)
2,ν + 2(b

(ι)
2 )T vec(X)

−vecT (X)D̃(ι)
2 vec(X)

−ρ||vec(X)− χ(ι)||2, (71)

it follows from (65) and (71) that

f̃
(ι)
2,S,ρ(X) ≤ f (ι)2,S,ρ(X) ∀ X, (72)

and

f̃
(ι)
2,S,ρ(X

(ι)) = f
(ι)
2,S,ρ(X

(ι)). (73)

In other words, f̃ (ι)2,S,ρ(X) is a tight minorant of the objective
function f (ι)2,S,ρ(X) in (64).

The power constraint (35b) in (64) can be written as

vecT (X)D̃(ι)
1 vec(X) ≤ P, (74)

with

D̃(ι)
1 ≜ ℜ{(A(ι+1))T } ⊗ IM2 . (75)

The subsequent holographic beamformer X(ι+1) is then ob-
tained as the optimal solution of

max
vec(X)

f̃
(ι)
2,S,ρ(X) s.t. (74), (76)

which admits the closed-form solution of

vec(X(ι+1))

=


(D̃(ι)

2 + ρIKM2)−1(b
(ι)
2 + ρχ(ι))

if ||
√
D̃(ι)

1 (D̃(ι)
2 + ρIKM2)−1(b

(ι)
2 + ρχ(ι))||2 ≤ P,

(D̃(ι)
2 + ρIKM2 + τD̃(ι)

1 )−1(b
(ι)
2 + ρχ(ι))

otherwise,
(77)

where τ > 0 is found by bisection so that

||
√
D̃(ι)

1 (D̃(ι)
2 +ρIKM2+τD̃(ι)

1 )−1(b
(ι)
2 +ρχ(ι))||2 = P. (78)

The computational complexity of expression (77) is on the
order of O(M2K).

Similarly to (28)-(30), we have (61) as a consequence of
(72) and (73) and f̃

(ι)
2,S,ρ(X

(ι+1)) > f̃
(ι)
2,S,ρ(X

(ι)) whenever
f̃
(ι)
2,S,ρ(X

(ι+1)) ̸= f̃
(ι)
2,S,ρ(X

(ι)), since X(ι+1) and X(ι) are
the optimal solution and a feasible point of the maximization
problem (76), respectively.
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Algorithm 2 Scalable-complexity algorithm for sum-rate op-
timization

1: Initialization: Initialize (X(0),W (0), χ(0)) feasible for
(49). Set ι = 0.

2: Repeat until convergence: Generate W (ι+1) by the
closed-form (59), X(ι+1) by the closed form (77), and
χ(ι+1) by the closed form (82). Reset ι← ι+ 1.

3: Output (Xopt,W opt) = (X(ι),W (ι)).

C. Amplitude optimization and control

The amplitude optimization and control aims for generating
χ(ι+1) so that

fS,ρ(W
(ι+1), X(ι+1), χ(ι+1)) >

fS,ρ(W
(ι+1), X(ι+1), χ(ι)) (79)

⇔||x(ι+1) − χ(ι+1)||2 < ||x(ι+1) − χ(ι)||2, (80)

for x(ι+1) ≜ vec(X(ι+1)). Hence, χ(ι+1) is obtained as the
optimal solution of

min
χχχ
||x(ι+1) −χχχ||2 s.t. (49d), (81)

i.e.4

χ
(ι+1)
k,m,m′ =arg min

χχχk,m,m′∈[0,µk,m,m′ ]
(x

(ι+1)
k,m,m′ −χχχk,m,m′)2

=


x
(ι+1)
k,m,m′ if 0 ≤ x(ι+1)

k,m,m′ ≤ µk,m,m′

0 if x
(ι+1)
k,m,m′ < 0

µk,m,m′ if x
(ι+1)
k,m,m′ > µk,m,m′ ,

(k,m,m′) ∈ K ×M×M. (82)

The computational complexity of expression (82) is on the
order of O(M2K).

D. The algorithm and its convergence

Algorithm 2 provides the pseudo code for computing the
problem (49). It follows from (50), (61) and (79) that

fS,ρ(W
(ι+1), X(ι+1), χ(ι+1)) > fS,ρ(W

(ι), X(ι), χ(ι)), (83)

as far as fS,ρ(W
(ι+1), X(ι+1), χ(ι+1)) ̸=

fS,ρ(W
(ι), X(ι), χ(ι)), so the sequence {(W (ι), X(ι), χ(ι))}

converges to (W̄ , X̄, χ̄). Furthermore, by choosing
a sufficiently large ρ > 0, we can ensure that
||vec(X(ι)) − χ(ι)||2 → 0 as ι → ∞, which means
that (W̄ , X̄) is a feasible point for (47), which turns out to
be at least a local solution [21].

V. SURROGATE OPTIMIZATION HAVING
SCALABLE-COMPLEXITY FOR ENHANCING BOTH THE

MIN-RATE AND SUM-RATE

It is plausible that one can utilize the following penalized
optimization formulation to address the max-min rate opti-
mization problem (12):

max
W,X,χχχ

[
f(W,X)− ρ||vec(X)−χχχ||2

]
4The notation argmin returns the argument (value of the variable) that

minimizes the objective function of the corresponding optimization problem.

s.t. (12b), (49c), (49d). (84)

However, due to the non-smooth nature of the function
f(W,X), this penalized optimization does not offer benefits,
since its computational complexity remains as high as that of
Algorithm 1.

Following [23]–[26] we scale each rate function rν(W,X)
as

rν,c(W,X) ≜ ln

∣∣∣∣ID +
1

c
[HνXWν ]

2G−1
ν (W,X)

∣∣∣∣ , (85)

with 0 < c ≤ 1. Here, rν,c(W,X) > rν,1(W,X) =
rν(W,X) and rν,c(W,X) → +∞ as c → 0. Maximizing
the non-smooth function fc(W,X) ≜ minν∈Nu rν,c(W,X)
enhances f(W,X). More importantly, fc(W,X) satisfies the
following two-sided inequality

fc(W,X) > − ln

∣∣∣∣∣ ∑
ν∈Nu

Πν(W,X)

∣∣∣∣∣ > fc(W,X)− lnNu,

(86)
where Πν(W,X) is defined in (88) (see the equation at
the bottom of the next page). As such, the smooth func-
tion − ln

∣∣∑
ν∈Nu

Πν(W,X)
∣∣ may be viewed as a soft ap-

proximation of the non-smooth pointwise minimum function
fc(W,X) [27]. Instead of maximizing the non-smooth ob-
jective function fc(W,X), our goal is now to maximize
its soft smooth approximation − ln

∣∣∑
ν∈Nu

Πν(W,X)
∣∣ or

equivalently, to minimize ln
∣∣∑

ν∈Nu
Πν(W,X)

∣∣ subject to
the constraints (12b) and (12c):

min
W,X

ln |Π(W,X)| s.t. (12b), (12c), (89)

where Π(W,X) is defined in (92) of the next page.
To solve (89) we introduce the penalized objective

φ(W,X,χχχ) ≜ ln |Π(W,X)|+ ρ||vec(X)−χχχ||2, (90)

and consider the smooth optimization problem

min
W,X,χχχ

φ(W,X,χχχ) s.t. (12b), (49c), (49d). (91)

We will develop an algorithm based on closed-form ex-
pressions to solve (91); specifically, closed-form updates for
W, X and χχχ are derived within an alternating-optimization
framework, yielding an efficient implementation.

Let (W (0), X(0), χ(0)) be an initial feasible point and
(W (ι), X(ι), χ(ι)) be the feasible point for (91) found from
the (κ − 1)-st iteration. The alternating optimization for W,
X , and χχχ then proceeds as follows.

A. Alternating optimization for baseband beamforming

Baseband alternating optimization aims for generating
W (ι+1) so that

φ(W (ι+1), X(ι), χ(ι)) < φ(W (ι), X(ι), χ(ι))

⇔ ln |Π(W (ι+1), X(ι))| < ln |Π(W (ι), X(ι))|. (93)

To achieve this, we define Π
(ι)
1 (W) as in (95) on the next-to-

next page, and consider the following optimization problem:

min
W

ln |Π(ι)
1 (W)| s.t. (18b). (94)



9

Using the inequality (136) in Appendix A for

(Vν ,Yν) = (H(ι)
1,νWν , [H(ι)

1,νWν ]
2

+c(
∑
ν′ ̸=ν [H

(ι)
1,νWν′ ]2 + σID)), ν ∈ Nu,

and

(V̄ν , Ȳν) = (V
(ι)
1,ν , Y

(ι)
1,ν )

≜ (H(ι)
1,νW

(ι)
ν , [H(ι)

1,νW
(ι)
ν ]2

+c(
∑
ν′ ̸=ν [H

(ι)
1,νW

(ι)
ν′ ]2 + σID)), ν ∈ Nu,

yields

ln |Π(ι)
1 (W)| ≤ f

(ι)
1 (W) (96)

with

f
(ι)
1 (W) ≜ a

(ι)
1 − 2

∑
ν∈Nu

ℜ{⟨B(ι)1,νWν⟩}

+
∑
ν∈Nu

⟨C(ι)1,ν , [H
(ι)
1,νWν ]

2

+c
∑

ν′∈Nu\{ν}

[H(ι)
1,νWν′ ]2⟩ (97)

= a
(ι)
1 − 2

∑
ν∈Nu

ℜ{⟨B(ι)1,νWν⟩}

+
∑
ν∈Nu

⟨C̃(ι)1,ν , [Wν ]
2⟩, (98)

where

a
(ι)
1 ≜ ln |Π(ι)

1 (W (ι))|

+
∑
ν∈Nu

⟨(Π(ι)
1 (W (ι)))−1(V

(ι)
1,ν )

H(Y
(ι)
1,ν )

−1V
(ι)
1,ν ⟩

+ c
∑
ν∈Nu

⟨C(ι)1,ν⟩, (99a)

B(ι)1,ν ≜(Π
(ι)
1 (W (ι)))−1(V

(ι)
1,ν )

H(Y
(ι)
1,ν )

−1H(ι)
1,ν , (99b)

C(ι)1,ν ≜(Y
(ι)
1,ν )

−1V
(ι)
1,ν (Π

(ι)
1 (W (ι)))−1(V

(ι)
1,ν )

H(Y
(ι)
1,ν )

−1 ⪰ 0,
(99c)

and

C̃(ι)1,ν ≜(H(ι)
1,ν)

HC(ι)1,νH
(ι)
1,ν

+ c
∑

ν′∈Nu\{ν}

(H(ι)
1,ν′)

HC(ι)1,ν′H(ι)
1,ν′ ⪰ 0, ν ∈ Nu.

(100)

In addition,

ln |Π(ι)
1 (W (ι))| = f

(ι)
1 (W (ι)). (101)

The function f (ι)1 (W) is convex quadratic, because C̃(ι)1,ν ⪰ 0.
The subsequent baseband beamformer W (ι+1) is obtained
as the optimal solution of the following convex quadratic
problem:

min
W

f
(ι)
1 (W) s.t. (18b), (102)

which admits the solution in the following closed-form

W (ι+1)
ν =



(C̃(ι)1,ν)
−1(B(ι)1,ν)

H

if
∑
ν∈Nu

⟨(X(ι))HX(ι), [(C̃(ι)1,ν)
−1(B(ι)1,ν)

H ]2⟩≤P,

(C̃(ι)1,ν + τ(X(ι))HX(ι))−1(B(ι)1,ν)
H

otherwise,
(103)

where τ > 0 is found by bisection so that∑
ν∈Nu

⟨(X(ι))HX(ι), [(C̃(ι)1,ν + τ(X(ι))HX(ι))−1(B(ι)1,ν)
H ]2⟩=P.

(104)
The computational complexity of expression (103) is on the
order of O(NuKD).

Similarly to (28)-(30), we have (93) as a consequence of
(96) and (101) and f

(ι)
1 (W (ι+1)) < f

(ι)
1 (W (ι)) whenever

f
(ι)
1 (W (ι+1)) ̸= f

(ι)
1 (W (ι)), since W (ι+1) and W (ι) are the

optimal solution and a feasible point of the minimization
problem (102), respectively.

B. Alternating optimization for holographic beamforming

Holographic alternating optimization aims for generating
X(ι+1) such that

φ(W (ι+1), X(ι+1), χ(ι)) < φ(W (ι+1), X(ι), χ(ι)) (105)

⇔ ln |Π(W (ι+1), X(ι+1))|+ ρ||vec(X(ι+1))− χ(ι)||2 <
ln |Π(W (ι+1), X(ι))|+ ρ||vec(X(ι))− χ(ι)||2. (106)

To this end, we define Π
(ι)
2 (X) as in (109) at the bottom of

the next page, and introduce

φ
(ι)
2 (X) ≜ ln |Π(ι)

2 (X)|+ ρ||x− χ(ι)||2 (107)

to consider the following optimization problem

min
X∈RM2×K

φ
(ι)
2 (X) s.t. (74). (108)

Applying the inequality (136) in Appendix A for

(Vν ,Yν) =(HνXW (ι+1)
ν , [HνXW (ι+1)

ν ]2

Πν(W,X) ≜

(
ID +

1

c
(HνXWν)

HG−1
ν (W,X)(HνXWν)

)−1

(87)

=ID − (HνXWν)
H
(
[HνXWν ]

2 + cGν(W,X)
)−1

(HνXWν). (88)

Π(W,X) ≜
∑
ν∈Nu

Πν(W,X)

=
∑
ν∈Nu

[
ID − (HνXWν)

H
(
[HνXWν ]

2 + cGν(W,X)
)−1

(HνXWν)
]
. (92)
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+ c(
∑
ν′ ̸=ν

[HνXW
(ι+1)
ν′ ]2 + σID)), ν ∈ Nu,

and

(V̄ν , Ȳν) =(V
(ι)
2,ν , Y

(ι)
2,ν )

≜(HνX
(ι)W (ι+1)

ν , [HνX
(ι)W (ι+1)

ν ]2

+ c(
∑
ν′ ̸=ν

[HνX
(ι)W

(ι+1)
ν′ ]2 + σID)), ν ∈ Nu,

yields

ln |Π(ι)
2 (X)| ≤ f

(ι)
2 (X) (110)

with

f
(ι)
2 (X) ≜ a

(ι)
2 − 2ℜ{⟨(

∑
ν∈Nu

W (ι+1)
ν B(ι)2,νHν)X⟩}

+
∑
ν∈Nu

⟨C̃(ι)2,ν , [XW (ι+1)
ν ]2

+c
∑

ν′∈Nu\{ν}

[XW
(ι+1)
ν′ ]2⟩ (111)

= a
(ι)
2 − 2(b

(ι)
2 )T vec(X)

+vec(X)T D̃(ι)
2 vec(X), (112)

where
b
(ι)
2 ≜ vec

(
ℜ{(B̃(ι)2 )T }

)
∈ RM

2K , (113)

and
D̃(ι)

2 ≜
∑
ν∈Nu

D̃(ι)
2,ν ⪰ 0. (114)

for

a
(ι)
2 ≜ ln |Π(ι)

2 (X(ι))|

+
∑
ν∈Nu

⟨(Π(ι)
2 (X(ι)))−1(V

(ι)
2,ν )

H(Y
(ι)
2,ν )

−1V
(ι)
2,ν ⟩

+ c
∑
ν∈Nu

⟨C(ι)2,ν⟩, (115a)

B(ι)2,ν ≜(Π
(ι)
2 (X(ι)))−1(V

(ι)
2,ν )

H(Y
(ι)
2,ν )

−1, (115b)

C(ι)2,ν ≜(Y
(ι)
2,ν )

−1V
(ι)
2,ν (Π

(ι)
2 (X(ι)))−1(V

(ι)
2,ν )

H(Y
(ι)
2,ν )

−1 ⪰ 0,
(115c)

and

B̃(ι)2 ≜
∑
ν∈Nu

W
(ι+1)
ν B(ι)2,νHν ,

C̃(ι)2,ν ≜ HH
ν C

(ι)
2,νHν ⪰ 0, ν ∈ Nu,

A(ι+1)
ν ≜ [W

(ι+1)
ν ]2 + c

∑
ν′∈Nu\{ν}[W

(ι+1)
ν′ ]2, ν ∈ Nu,

(116)
and

D̃(ι)
2,ν ≜ ℜ{(A(ι+1)

ν )T ⊗ C̃(ι)2,ν}. (117)

The derivation of (112) is provided in Appendix C.
In addition,

ln |Π(ι)
2 (X(ι))| = f

(ι)
2 (X(ι)). (118)

Now, define

φ̃
(ι)
2 (X) ≜ f̃

(ι)
2 (X) + ρ||x− χ(ι)||2 (119)

=
∑
ν∈Nu

λ(ι)ν a
(ι)
2,ν − 2(b

(ι)
2 + ρχ(ι))T vec(X)

+vec(X)T (D̃(ι)
2 + ρIKM2)vec(X)

+ρ||χ(ι)||2, (120)

which by (110) and (118) satisfies

φ
(ι)
2 (X) ≤ φ̃(ι)

2 (X) ∀ X, (121)

and
φ
(ι)
2 (X(ι)) ≤ φ̃(ι)

2 (X(ι)). (122)

The subsequent holographic beamformer X(ι+1) is then
obtained as the optimal solution of the following convex
quadratic problem:

max
vec(X)

φ̃
(ι)
2 (X) s.t. (74), (123)

which admits the closed-form solution

vec(X(ι+1))

=


(D̃(ι)

2 + ρIKM2)−1(b
(ι)
2 + ρχ(ι))

if ||
√
D̃(ι)

1 (D̃(ι)
2 + ρIKM2)−1(b

(ι)
2 + ρχ(ι))||2 ≤ P,

(D̃(ι)
2 + ρIKM2 + τD̃(ι)

1 )−1(b
(ι)
2 + ρχ(ι))

otherwise,
(124)

Π
(ι)
1 (W) ≜Π(W, X(ι))

=
∑
ν∈Nu

ID − (H(ι)
1,νWν)

H

[H(ι)
1,νWν ]

2 + c

∑
ν′ ̸=ν

[H(ι)
1,νWν′ ]2 + σID

−1

(H(ι)
1,νWν)

 , (95)

where H(ι)
1,ν is defined from (32).

Π
(ι)
2 (X) ≜Π(W (ι+1),X)

=
∑
ν∈Nu

ID − (HνXW (ι+1)
ν )H

[HνXW (ι+1)
ν ]2 + c

∑
ν′ ̸=ν

[HνXW
(ι+1)
ν′ ]2 + σID

−1

(HνXW (ι+1)
ν )

 . (109)
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Algorithm 3 Scalable-complexity algorithm for soft max-min
optimization

1: Initialization: Initialize a feasible point
(X(0),W (0), χ(0)) for (91). Set ι = 0.

2: Repeat until convergence: Generate W (ι+1) by the
closed-form (103), X(ι+1) by the closed-form (124), and
χ(ι+1) by the closed form (82). Reset ι← ι+ 1.

3: Output (W opt, Xopt) = (W (ι), X(ι)).

where τ > 0 is found by bisection so that

||
√
D̃(ι)

1 (D̃(ι)
2 + ρIKM2 + τD̃(ι)

1 )−1(b
(ι)
2 + ρχ(ι))||2 = P.

(125)
The computational complexity of expression (124) is on the
order of O(M2K).

Similarly to (28)-(30), we have (105)/(106) as a conse-
quence of (121) and (122) and φ̃

(ι)
2 (X(ι+1)) < φ̃

(ι)
2 (X(ι))

whenever φ̃(ι)
2 (X(ι+1)) ̸= φ̃

(ι)
2 (X(ι)), since X(ι+1) and X(ι)

are the optimal solution and a feasible point of the minimiza-
tion problem (76), respectively.

C. Amplitude optimization and control

The amplitude optimization and control aims for generating
χ(ι+1) so that

φ(W (ι+1), X(ι+1), χ(ι+1)) < φ(W (ι+1), X(ι+1), χ(ι))

⇔||x(ι+1) − χ(ι+1)||2 < ||x(ι+1) − χ(ι)||2 (126)

for x(ι+1) ≜ vec(X(ι+1)). As such, χ(ι+1) is obtained by the
closed-form (82).

D. The algorithm and its convergence

Algorithm 3 provides the pseudo code for solving the
problem (91). It follows from (93), (105) and (126) that

φ(W (ι+1), X(ι+1), χ(ι+1)) < φ(W (ι), X(ι), χ), (127)

as far as we have φ(W (ι+1), X(ι+1), χ(ι+1)) ̸=
φ(W (ι), X(ι), χ(ι)), so the sequence {(W (ι), X(ι), χ(ι))}
converges to (W̄ , X̄, χ̄). Furthermore, by choosing
a sufficiently large ρ > 0, we can ensure that
||vec(X(ι)) − χ(ι)||2 → 0 as ι → ∞, which means
that (W̄ , X̄) is a feasible point for (89), which turns out to be
at least a local solution [21]. The computational complexity
of each iteration for solving the problem (91) is equivalent to
that of Algorithm 2.

VI. NUMERICAL EXAMPLES

In this section, a multi-user system having a BS equipped
with a RHS relying on 12 × 12 radiation elements for
supporting 4 UEs is considered. The UEs are randomly
distributed within a cell radius of 150 meters. The height of
the BS and the UEs are set to 10 meters and 1.5 meters,
respectively. The carrier frequency is set to 28 GHz, with a
system bandwidth of 100 MHz. The noise power density is set
to −174 dBm/Hz. The propagation vector on the RHS is set
to |κs| =

√
3|κ|, where

√
3 is refractive index of the substrate

of the waveguide [15]. Adopting the channel structure from
[15], the propagation environment between the BS and UE
ν is characterized by a millimeter wave channel Hν =√
10−βν/10

√
M2D
L

∑L
ℓ=1 αν,ℓar

(
ϕrν,ℓ

)
aHt

(
ϕtν,ℓ, θ

t
ν,ℓ

)
,

where the path-loss of UE ν at distance dν is set to
βν = 53.22 + 35.3 log 10(dν) (in dB) [28], [29], the number
of paths is set to L = 15 [30], and the complex gain of the
ℓ-th path is set to αν,ℓ ∼ CN (0, 1). Furthermore, (ϕtν,ℓ, θ

t
ν,ℓ)

and ϕrν,ℓ represent the uniformly random angle of departure
(AoD) and angle of arrival (AoA) of ϕtν,ℓ, ϕ

r
ν,ℓ ∈ [0, 2π)

and θtν,ℓ ∈ [−π/2, π/2), respectively. Let λ denote the
wavelength, and assuming that the element spacing ds of
the RHS along both the x-axis and y-axis is set to quarter
of the wavelength, and the antenna spacing du at the UE
side is half-wavelength, the normalized transmit and receive
antenna array response vectors at

(
ϕtν,ℓ, θ

t
ν,ℓ

)
and ar

(
ϕrν,ℓ

)
are formulated as

at
(
ϕtν,ℓ, θ

t
ν,ℓ

)
=

1√
M2

[
1, ej

2π
λ [ds cos(ϕt

ν,ℓ) sin(θ
t
ν,ℓ)+ds sin(ϕt

ν,ℓ) sin(θ
t
ν,ℓ)], . . . ,

ej
2π
λ [(M−1)ds cos(ϕt

ν,ℓ) sin(θ
t
ν,ℓ)+(M−1)ds sin(ϕt

ν,ℓ) sin(θ
t
ν,ℓ)]

]T
,

(128)
and

ar
(
ϕrν,ℓ

)
=

1√
D

[
1, ej

2π
λ du sin(ϕr

ν,ℓ), · · · , ej 2π
λ du(D−1) sin(ϕr

ν,ℓ)
]T
.

(129)

Upon exploiting the superposition property of the holo-
graphic pattern, which maps all transmitted data onto a single
holographic pattern on the RHS, the initial holographic beam-
formers are computed as the arithmetic mean of the normalized
radiation amplitude corresponding to each object beam, i.e.,

µk,m,m′ = 1
Nu

∑Nu

ν

ℜ{ψk,m,m′ (dkm,m′ ,θν ,φν)}+1

2 .
The following legends are used to specify the proposed

implementations: (i) MM denotes the convex-quadratic-solver-
based max-min rate Algorithm 1; (ii) SR denotes the scalable-
complexity sum-rate Algorithm 2; (iii) SMM denotes the
scalable-complexity soft max-min rate Algorithm 3.

A. Algorithm validation in a simple single-antenna UE sce-
nario

Table II illustrates the computational complexity of the
proposed algorithms. The MM algorithm exhibits cubic com-
plexity, whereas the SR and SMM algorithms demonstrate
scalable complexity. Due to the high computational complexity
of the convex-solver-based MM algorithm, we commence by
examining the single-antenna UE scenario, where the BS
is equipped with K = 4 feeds. For the MM algorithm,
we initialize the holographic beamformer X(0) by randomly
generating elements x

(0)
k,m,m′ , (k,m,m′) ∈ K ×M×M that

satisfy the amplitude constraint (12c). Similarly, we randomly
generate the baseband beamformer W(0) satisfying the power
constraint (12b). For the SR and SMM algorithms, we utilize the
same X(0) and W(0) generated for the MM algorithm. Finally,
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TABLE II: Complexity of proposed algorithms

MM Alg. 1 SR Alg. 2 SMM Alg. 3

Baseband iter. O(N3
uK

3D3) O(NuKD) O(NuKD)
Holographic iter. O((M2K)4) O(M2K) O(M2K)
Amplitude iter. O(M2K) O(M2K)
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Fig. 3: Convergence performance of proposed algorithms for
D = 1 at P = 24 dBm.

the auxiliary variable χχχ(0)
k,m,m′ , (k,m,m′) ∈ K ×M×M is

initialized by adding a random perturbation to x
(0)
k,m,m′ while

ensuring the amplitude constraint (49d) is satisfied.
Fig. 3 characterizes the convergence performance of the

proposed algorithms for D = 1 at a transmit power of
P = 24 dBm. We use the arithmetic mean value of the
sum-rate objective to offer a compact representation of the
convergence patterns of all the proposed algorithms. For
the convex-solver-based MM algorithm, we consider the al-
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Fig. 4: The minimum rate vs. transmit power P for D = 1.
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Fig. 5: The sum-rate vs. transmit power P for D = 1.

gorithm to be converged, when the error tolerance of the
objective function reaches 10−3. For both the SMM and SR
algorithms, a penalized optimization approach is used for
addressing the real-domain amplitude constraints in holo-
graphic beamforming. The algorithm terminates when the
penalty term drops below 10−2. To find the optimal solu-
tion at satisfactory convergence speed, we commence with
a penalty factor ρ that aligns the magnitude of the penalty
term with that of the objective. Specifically, we set ρ =
fS(W

(0),X(0))/||vec(X(0)) − χχχ(0)||2 for the SR algorithm,
and set ρ = ln |Π(W(0),X(0))|/||vec(X(0)) − χχχ(0)||2 for
the SMM algorithm. The value of ρ is then slightly increased.
During our simulations, we observed that updating ρ→ 1.2ρ
whenever ||x(ι+1) − χ(ι+1)||2 > 0.9||x(ι) − χ(ι)||2 not only
results in a gradual reduction of the penalty term towards
zero but also achieves favorable user rates. Note that this
updating strategy is flexible and can be adjusted to balance the
convergence speed vs. rate for specific scenarios. Additionally,
the impact of the coefficient c on the minimum rate of the SMM
algorithm is evaluated by analyzing its convergence behavior
for different values of c, as illustrated in Fig. 3c. The selection
of c will be further discussed below.

Fig. 4 illustrates the minimum rate achieved by the proposed
algorithms. As expected, the MM algorithm yields the highest
minimum rate. However, the SR algorithm results in zero-
rate, making it unsuitable for multi-user communication. The
SMM algorithm, which maximizes an approximation of the
minimum rate objective, provides a solution, which is approx-
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TABLE III: The minimum rate achieved vs. c under different transmit powers P using the SMM algorithm for D = 1.

P = 16 dBm P = 18 dBm P = 20 dBm P = 22 dBm P = 24 dBm

c = 1 0.00 0.01 0.01 0.55 1.13
c = 0.5 0.06 0.26 0.83 1.56 2.08
c = 0.1 0.68 0.94 1.28 1.67 2.10

1 2 3 4

UE index

0

1

2

3

4

5

6

7

R
a

te
 (

b
p

s
/H

z
)

MM (D = 1, K = 4)
SMM (D = 1, K = 4)
SR (D = 1, K = 4)

zero-rate problem in
sum rate maximization

Fig. 6: The rate distributions for D = 1 at P = 24 dBm.

imately 85% of the minimum rate obtained by maximizing the
original minimum rate objective. Moreover, the SMM algorithm
offers an appealing scalable complexity compared to the cubic
complexity of the MM algorithm.

The sum-rate performance attained by the proposed algo-
rithms is depicted in Fig. 5. The SMM algorithm outperforms
the MM algorithm in terms of its sum-rate. Additionally, as
the transmit powers increase, the sum-rate achieved by the
SMM algorithm is approaching the value obtained by directly
maximizing the sum-rate.

It is noteworthy that the coefficient c in the SMM algorithm
will influence the minimum rate achieved, thus requires careful
selection. Table III provides guidance for selecting c by
comparing the minimum rate achieved under various values
of c, with c = 0.1 yielding the highest minimum rate.

Fig. 6 shows the distribution of individual rates achieved
by the proposed algorithms, illustrating the zero-rate problem
inherent in sum-rate maximization. Observe that the max-min
strategy excessively prioritizes fairness at the expense of users
with favorable propagation conditions, while maximizing the
sum-rate results in allocating a large portion of the total rate
to a few UEs having favorable channel conditions, leading
to zero-rate allocation for certain UEs. By contrast, the SMM
algorithm yields a more equitable rate distribution without
significantly compromising the total rate, while achieving a
total rate higher than that of the MM algorithm.

Note that given the parameter settings used in this subsec-
tion, the holographic beamforming optimization stage involves
M ×M × K = 576 optimization variables. As the size of
the RHS M × M or the number of feeds K continue to
expand, it becomes challenging for the MM algorithm to strike
a balance between the rate attained and the computational
efficiency, since this algorithm optimizes the minimum rate
using a convex solver having cubic complexity. Therefore, we
exclude the MM algorithm in the subsequent multi-antenna UE
scenarios.
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Fig. 7: Convergence performance of proposed algorithms for
D = 2 at P = 24 dBm.

B. Comparison of single-antenna and multi-antenna UE sce-
narios

Next, we examine the scenario of multi-antenna UEs having
D = 2 for comparing it to the single-antenna UE scenario.
To achieve a fair assessment, we assume that the BS is
equipped with K = 8 feeds, ensuring that the number of feeds
exceeds or equals the total number of UE antennas. Note that
in the multi-antenna UE scenario having the aforementioned
parameters, the holographic beamforming optimization stage
involves M ×M ×K = 1152 optimization variables, ruling
out the use of convex-solver-based algorithms for practical
implementations.

We initially characterize the convergence performance of
the SMM5 and SR algorithms at P = 24 dBm in the multi-
antenna UE scenario, where the rate function is formulated as
a log determinant. Fig. 7 demonstrates the efficiency of our
approaches in addressing the optimization of nonlinear log
determinant functions.

5The SMM algorithm with c = 0.5 exhibits the best minimum rate
performance for D = 2 with a transmit power of P = 24 dBm.
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TABLE IV: The average number of zero-rate UEs in maximizing the sum-rate for D = 1 & 2.

P = 16 dBm P = 18 dBm P = 20 dBm P = 22 dBm P = 24 dBm

SR (D = 1) 1.6 1.4 1.1 0.8 0.7
SR (D = 2) 1.6 1.3 1.2 0.9 0.8
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Fig. 8: The minimum rate vs. transmit power P for
D = 1 & 2.
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Fig. 9: The sum-rate vs. transmit power P for D = 1 & 2.

Fig. 8 compares the minimum rates achieved by the
scalable-complexity SMM and SR algorithms in the single-
antenna and multi-antenna UE scenarios. It emphasizes the
inadequacy of sum-rate optimization for multi-user communi-
cation, even upon increasing the number of UE antennas. We
present Table IV in support of this observation. The results
of both Fig. 8 and Table IV reveal that while maximizing the
sum-rate for increased transmit power reduces the probability
of allocating zero-rate to certain UEs, it does not guarantee
reliable connections for all UEs in all possible scenarios.

Fig. 9 compares the sum-rate obtained through the maxi-
mization of sum-rate and soft minimum rate. For D = 2, there
is a significant sum-rate enhancement compared to D = 1. The
SMM algorithm is capable of generating a sum-rate that closely
approaches the one achieved through direct maximization.
Moreover, with the number of feeds increased to 8, the SMM
algorithm yields approximately 95% of the sum-rate achieved
by the SR algorithm in the single-antenna UE scenario. In
the case of two-antenna UEs, the SMM algorithm still achieves
approximately 85% of the sum-rate. Thus, we may conclude
that the SMM solutions strike an attractive balance in achiev-

ing both an appealing minimum rate and sum-rate, without
significantly sacrificing one objective against another, as it is
often the case in conventional stand-alone minimum rate or
sum-rate maximization problems.

VII. SUMMARY AND CONCLUSIONS

The downlink of a network was considered, where the base
station is equipped with holographic reconfigurable surfaces
transmitting multi-stream information to multiple users having
multi-antenna arrays. To ensure rate-fairness, we explored
the joint design of holographic and baseband beamformers
to enhance the users’ minimum rates. Specifically, we have
developed an algorithm that utilizes quadratic solvers for
improving the minimum rates of users. Furthermore, we
introduced a new surrogate optimization problem aimed at
achieving both a minimum and a sum-rate comparable to that
attained by max-min rate optimization and sum-rate maximiza-
tion. This surrogate optimization problem has demonstrated
significant computational benefits, since its computation relies
on a scalable algorithm that iterates by evaluating closed-form
expressions.

APPENDIX A: FUNDAMENTAL TIGHT MINORANT AND
MAJORANT

According to [19, p. 366], a function f̄ is said to be a tight
minorant of a function f over the domain dom(f) at a point
z̄ ∈ dom(f) if it serves as a minorant of f :

f(z) ≥ f̄(z) ∀ z ∈ dom(f), (130)

and matches f at z̄:

f(z̄) = f̄(z̄). (131)

Note that f(zmax) ≥ f(z̄) for zmax ≜ argmaxz∈dom(f) f̄(z).
In other words, maximizing a tight minorant of f helps identify
a better point than z̄ for the maximization problem considered.

Similarly, f̄ is a tight majorant of f over dom(f) at z̄ ∈
dom(f) if it serves as a majorant of f :

f(z) ≤ f̄(z) ∀ z ∈ dom(f), (132)

and matches f at z̄ (see (131)). Since we have f(zmin) ≤
f(z̄) for zmin ≜ argminz∈∈dom(f) f̄(z), minimizing a tight
majorant of f helps identify a better point than z̄ for the
minimization problem.

The following matrix inequality holds for all V, V̄ , and
positive definite Y and Ȳ of appropriate dimension, as estab-
lished in [31]:

ln |I+ [V]2Y−1| ≥ ln |I+ [V̄ ]2Ȳ −1| − ⟨[V̄ ]2Ȳ −1⟩
+ 2ℜ{⟨V̄ H Ȳ −1V⟩}

− ⟨Ȳ −1 −
(
[V̄ ]2 + Ȳ

)−1
, [V]2 +Y⟩.

(133)
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Considering both sides of (133) as functions of (V,Y), the
right hand side equals the left hand side at the point (V̄ , Ȳ ).
Consequently, the right hand side provides a tight minorant of
the left hand side at (V̄ , Ȳ ). Maximizing the right hand side
of (133), referred to as tight minorant maximization, produces
an improved point over (V̄ , Ȳ ) for the sake of maximizing the
left hand side of (133).

For V ≜ (V1, . . . ,VNu
) and Y ≜ (Y1, . . . ,YNu

) associ-
ated with matrices Vν and Hermitian symmetric matrices Yν ,
ν = 1, . . . , Nu of appropriate dimension, and for

Π(V,Y) ≜
Nu∑
ν=1

(I−VH
ν Y−1

ν Vν), (134)

in the domain:

dom(Π) ≜
{
(V,Y) : [Vν ]

2 ≺ Yν , ν = 1, . . . , Nu
}
, (135)

the following inequality holds for all (V,Y) and (V̄ , Ȳ ), as
established in [23]:

ln
∣∣∣Π(V,Y)

∣∣∣ ≤ ln
∣∣∣Π(V̄ , Ȳ )

∣∣∣+ Nu∑
ν=1

⟨Π−1(V̄ , Ȳ )V̄ Hν Ȳ −1
ν V̄ν⟩

− 2

Nu∑
ν=1

ℜ{⟨Π−1(V̄ , Ȳ )V̄ Hν Ȳ −1
ν Vν⟩}

+

Nu∑
ν=1

⟨Ȳ −1
ν V̄νΠ

−1(V̄ , Ȳ )V̄ Hν Ȳ −1
ν Yν⟩.

(136)

Considering both sides of (136) as functions of (V,Y),
the right hand side provides a tight majorant of the left
hand side at (V̄ , Ȳ ), since these two coincide at this point.
Analogously, minimizing the right hand side of (136), referred
to as tight majorant minimization, produces an improved point
over (V̄ , Ȳ ) for the sake of minimizing the left hand side of
(136).

APPENDIX B: DERIVATION OF (66)
With the tight minorant r̃(ι)2,ν(X) of r2,ν(X) as defined in

(38)-(39), we have∑
ν∈Nu

r̃
(ι)
2,ν(X) =

∑
ν∈Nu

[
a
(ι)
2,ν + 2ℜ{⟨B(ι)2,νX⟩}

−⟨C̃(ι)2,ν ,XA(ι+1)XT ⟩
]

=
∑
ν∈Nu

a
(ι)
2,ν + 2ℜ{⟨B̃(ι)2 X⟩}

−⟨C̃(ι)2 ,XA(ι+1)XT ⟩, (137)

where (B̃(ι)2 , C̃(ι)2 ) and A(ι+1) are defined in (69) and (36),
respectively, with (a

(ι)
2,ν ,B

(ι)
2,ν , C̃

(ι)
2,ν) defined in (39).

Furthermore,

ℜ{⟨B̃(ι)2 X⟩} = (b
(ι)
2 )T vec(X) (138)

for b(ι)2 defined in (67), and6

⟨C̃(ι)2 ,XA(ι+1)XT ⟩ =||vec
(√
C̃(ι)2 X

√
A(ι+1)

)
||2

6The intermediate step follows from the vectorization identity
vec(AXB) = (BT ⊗ A)vec(X), where A, X , and B are matrices
of appropriate dimensions.

=vecT (X)
(
(A(ι+1))T ⊗ C̃(ι)2

)
vec(X)

=vecT (X)D̃(ι)
2 vec(X), (139)

for D̃(ι)
2 defined in (68).

Finally, (66) follows by substituting the expressions for
ℜ{⟨B̃(ι)2 ,X⟩} from (138) and for ⟨C̃(ι)2 ,XA(ι+1)XT ⟩ from
(139) into (137).

APPENDIX C: DERIVATION OF (112)

We have

RHS of (111) = a
(ι)
2 − 2ℜ{⟨B̃(ι)2 X⟩}

+
∑
ν∈Nu

⟨C̃(ι)2,ν ,XA(ι+1)
ν XT ⟩. (140)

with a(ι)2 and (B̃(ι)2 , C̃(ι)2,ν ,A
(ι+1)
ν ) defined in (115a) and (116),

respectively.
Furthermore,

ℜ{⟨B̃(ι)2 X⟩} = (b
(ι)
2 )T vec(X) (141)

with b(ι)2 defined in (113), and

⟨C̃(ι)2,ν ,XA(ι+1)
ν XT ⟩ =||vec

(√
C̃(ι)2,νX

√
A(ι+1)
ν

)
||2

=vec(X)T
(
(A(ι+1)

ν )T ⊗ C̃(ι)2,ν

)
vec(X)

=vec(X)T D̃(ι)
2,νvec(X), (142)

with D̃(ι)
2,ν defined in (117).

Finally, (112) follows by substituting the expressions for
ℜ{⟨B̃(ι)2 X⟩} from (141) and for ⟨C̃(ι)2,ν ,XA

(ι+1)
ν XT ⟩ from

(142) into (140).
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