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A B S T R A C T

Aims: To compare the renal effectiveness of SGLT2 inhibitors (SGLT2i) versus GLP-1 receptor agonists (GLP-1RA) in metabolic dysfunction-associated steatotic liver 
disease (MASLD).
Methods: Using nationwide healthcare claims (2014–2023) of Korea, we constructed a cohort of MASLD patients who initiated SGLT2i or GLP-1RA. Patients were 
stratified on baseline status of chronic kidney disease (CKD). New-users of SGLT2i and GLP-1RA were 1:1 propensity score (PS) matched. Incidence rates (IRs) per 
1,000 person-years, hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated for a composite of end-stage renal diseases (ESRD).
Results: Of 333,082 MASLD patients who initiated SGLT2i or GLP-1RA, a total of 1,268 SGLT2i-GLP-1RA pairs were PS-matched in cohort with CKD, while 10,996 
pairs were matched in cohort without CKD. For the cohort with CKD, SGLT2i presented 33% lower risk of ESRD compared to GLP-1RA (20.3 vs. 30.0 events per 1,000 
person-years; HR 0.67, 95% CI 0.45–1.00). For the cohort without CKD, SGLT2i presented a 68% lowered risk of ESRD compared to GLP-1RA (0.9 vs. 2.5 events per 
1,000 person-years; HR 0.32, 95% CI 0.19–0.53).
Conclusions: The use of SGLT2i was associated with lower risk of ESRD compared to GLP-1RA in MASLD. The protective association was presented regardless of CKD 
status.

1. Introduction

Emerging evidence suggests that metabolic dysfunction-associated 
steatotic liver disease (MASLD) is closely associated with chronic kid
ney disease (CKD).[1,2] MASLD is characterized by chronic hepatic 
inflammation, which exerts systemic effects, [3] including the secretion 
of a range of pro-inflammatory cytokines and procoagulant factors, ul
timately contributing to renal inflammation and fibrosis. [4] Addition
ally, cardiometabolic risk factors common in MASLD, such as type 2 
diabetes (T2D), obesity, hyperlipidemia, and hypertension, could 
further drive the CKD progression. [5] Consequently, individuals with 
MASLD represent a high-risk population for CKD onset and progression, 

[6] which underscores the need for optimized treatment strategies to 
mitigate renal risk and slow disease progression.

Randomized controlled trials (RCTs) have demonstrated the renal 
protective effects of sodium-glucose cotransporter 2 inhibitors (SGLT2i) 
and glucagon like peptide-1 receptor agonists (GLP-1RA), initially 
developed as glucose-lowering agents for T2D. Based on findings from 
other populations, both drug classes are considered promising candi
dates for renal protection in MASLD patients. Landmark trials in T2D 
patients with atherosclerotic cardiovascular disease (ASCVD) have re
ported 15–24 % lowered risk of renal disease compared to placebo. 
[7–11] Moreover, trials dedicated to renal endpoints in patients with 
CKD have confirmed the efficacy of SGLT2i and GLP-1RA, showing 
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24–39 % lowered risk compared to placebo. [12–14] Alongside the 
potential for renal effectiveness, these agents hold significant promise as 
a holistic approach for individuals with MASLD, who often present with 
multiple interrelated complications. Considering the complex risk factor 
profile of MASLD patients, selecting the most appropriate treatment for 
renal protection is particularly critical when other baseline risk factors 
are comparable.

However, no trials have evaluated the comparative renal effective
ness of these agents, and evidence is lacking regarding the optimal stage 
of disease progression at which these agents should be started. To 
address this knowledge gap, we conducted a nationwide cohort study to 
compare the renal effectiveness of SGLT2i versus GLP-1RA in in
dividuals with MASLD. Given that baseline CKD status may influence 
both the incidence of end-stage renal disease (ESRD) and the distribu
tion of risk factors, we stratified the study population by CKD status to 
account for potential effect modification.

2. Methods

2.1. Data Source

Nationwide health administrative claims data between September 1, 
2014, and December 31, 2023, was obtained from the National Health 
Insurance Service (NHIS) of Korea. The NHIS is a single provider of 
health insurance and covers approximately 97 % of the Korean popu
lation (over 50 million people) [15]. The database includes anonymized 
patient-level data such as sociodemographic details, inpatient and 
outpatient diagnoses, emergency room visits, prescriptions, medical 
procedures, and biennial health examination results. Diagnoses are 
classified using the International Statistical Classification of Diseases, 
Tenth Revision (ICD-10) and the codes for Rare and Intractable Diseases 
(RID) registration program. In Korea, patients undergoing dialysis or 
renal transplantation are registered in the RID program and receive 
extended health insurance coverage, which reduces the costs associated 
with these treatments. To be registered, official documentation from a 
nephrologist that includes an overall clinical assessment of the patient is 
required. [16] Additionally, linked data from Statistics Korea provides 
information on mortality dates and causes. Health examination results 
also provide a range of key clinical variables such as serum creatinine, 
estimated glomerular filtration rate (eGFR), proteinuria, fasting blood 
glucose, and liver enzyme levels, and self-reported details on alcohol 
consumption and smoking behavior. The eGFR was calculated based on 
serum creatinine level, sex, and age using the Chronic Kidney Disease- 
Epidemiology Collaboration equation. [17] Finally, we conducted ano
nymized linkage of Kangbuk Samsung Health Study (KSHS) cohort to 
NHIS database, to perform validation of MASLD status in our study 
population (eAppendix 1). This study was approved by the Institutional 
Review Board of Sungkyunkwan University (IRB SKKU 2024–12-005) 
and followed the Strengthening the Reporting of Observational Studies 
in Epidemiology (STROBE) reporting guideline (Supplement 2) [18].

2.2. Study population and design

Following the target trial emulation framework, [19] we emulated 
the design of a hypothetical trial to strengthen the validity of causal 
inference within an observational claims database (eTable 1). We con
ducted an active-comparator, new-user cohort study including patients 
with MASLD who initiated SGLT2i (dapagliflozin, empagliflozin, ipra
gliflozin, or ertugliflozin) or GLP-1RA (dulaglutide, lixisenatide, lir
aglutide, or exenatide), between September 1, 2014, and December 31, 
2023. The index date was defined as the date of the first prescription of 
SGLT2i or GLP-1RA, with washout period of 1 year prior to index date, 
to ensure new-users of study drugs. Participants with an index date 
before September 1, 2014, when SGLT2i were first introduced in Korea, 
were excluded to ensure all study agents were available during the study 
period.

Among patients with T2D (ICD-10 code: E11-E14), we classified 
those exceeding the cut-off value of the fatty liver index (FLI) as having 
MASLD. [20,21] Using the linked database of NHIS-KSHS, an external 
validation study was performed. This linked database included results of 
abdominal ultrasonography performed in the fasting state to detect 
hepatic steatosis. Briefly, using this external dataset containing infor
mation for a subset of our study population, we took the hepatic steatosis 
detected by abdominal ultrasonography as the reference standard. The 
optimal cut-off value of FLI was calculated by receiver operating curve 
(ROC) analysis. We obtained a cut-off value of 53.5, with a positive 
predictive value of 95.4 % (eAppendix 2).

Among patients with MASLD, those with diagnosis of competing 
liver diseases other than MASLD (e.g. viral hepatitis, alcoholic liver 
disease, autoimmune hepatitis, hemochromatosis, Wilson’s disease, 
Budd-Chiari syndrome) any time before the index date were excluded 
(eTable 2). [22] Subsequently, we excluded patients diagnosed with 
ESRD or those with procedure records for renal dialysis, or type 1 dia
betes, or cancer any time before the index date. Finally, we excluded 
patients who initiated both SGLT2i and GLP-1RA on the same date to 
avoid exposure misclassification. We categorized these eligible patients 
by baseline CKD status, defined as a single eGFR record < 60 mL/min/ 
1.73 m2, and conducted separate analyses for those with and without 
CKD (Fig. 1 and eFig. 1).

2.3. Exposures and follow-up

We aimed to assess the comparative renal effectiveness of SGLT2i 
versus GLP-1RA, both of which are recommended for cardiovascular and 
kidney risk reduction in high-risk individuals with T2D, and eligible 
option for MASLD. [23] Following an as-treated approach, patients were 
followed from the day after the index date until the earliest of drug 
discontinuation, drug switching to or adding of GLP-1RA among SGLT2i 
initiators or vice versa, outcome occurrence, December 31, 2023 (study 
end date), or death. We considered a 90-day lag period after the index 
date to account for protopathic bias[24]; thus, outcomes occurred in the 
first 90 days of follow-up were censored as nonevents. Regarding drug 
discontinuation, we considered a drug to be continuously used if the gap 
between successive prescriptions did not exceed a 90-day grace period. 
Duration of follow-up and censoring reasons are presented in eTable 3.

2.4. Outcome Definition

The primary outcome was a composite of ESRD comprising a diag
nosis of CKD stage 5, kidney failure, dialysis, renal transplant, or renal 
death. As secondary outcomes, we also assessed each component of the 
primary outcome along with cardiovascular death, considering the fact 
that a large proportion of patients with ESRD die from cardiovascular 
disease. [25] All outcomes were captured through diagnosis or pro
cedure codes in primary or secondary positions in the inpatient setting. 
[26,27] Patients undergoing dialysis or renal transplantation were 
identified with specific codes for RID registration program, along with 
diagnosis or procedure codes. Renal death and cardiovascular death 
were defined as death caused by any renal or cardiovascular disease 
based on the diagnosis codes (eTable 4). [28].

2.5. Covariates

We assessed demographic characteristics (age, sex) and calendar 
year on the index date. Proxies for healthcare utilization behavior 
(number of hospitalizations, number of physician visits, and physician 
specialties) were assessed a year prior to the index date. Body mass index 
(BMI) from health examination results were assessed within 3 years 
prior to the index date and stratified based on Asian categories (normal 
weight, <23 kg/m2; overweight, 23 to <25 kg/m2; obese I, 25 to <30 
kg/m2, obese II, ≥30 kg/m2). [29] Also, smoking (never, past, current, 
unknown) and drinking (no, yes, unknown) behaviors were assessed 
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within 3 years prior to the index date.
Comorbidities and comedications were identified using diagnosis 

codes and prescription records a year prior to the index date (eTable 5). 
The use of antidiabetic drugs other than study drugs (insulin, alpha- 
glucosidase inhibitors, meglitinides, metformin, sulfonylureas, thiazo
lidinediones, and dipeptidyl-peptidase 4 inhibitors) and a history of 
diabetic microvascular complications were assessed. The levels of anti
diabetic treatments were assessed as follows: level 1, taking none or only 
one class of antidiabetic drug other than insulin; level 2, taking two or 
more classes of antidiabetic drugs without insulin; and level 3, taking 
insulin with or without other classes of antidiabetic drugs. Charlson 
Comorbidity Index (CCI) were identified using corresponding diagnosis 
codes. A range of clinical variables (waist circumference, serum creati
nine, eGFR, fasting blood glucose, blood pressure, total cholesterol, 
triglycerides, liver enzyme levels, and proteinuria) were obtained from 
health examination results. Proteinuria levels were classified based on 
urine dipstick test results. [30].

2.6. Statistical analyses

We fitted a multivariable logistic regression model to estimate the 
predicted probability of initiating SGLT2i versus GLP-1RA as the pro
pensity score (PS), considering all the covariates mentioned above as 
independent variables. Regarding covariates with missing values 
(smoking, drinking, and proteinuria level), we used missing indicators 
and then included them in the PS model. [31] Patients in each treatment 
group were matched 1:1 using the greedy nearest-neighbor method with 
a 0.05 caliper on the log scale. An absolute standardized difference 
(ASD) greater than 0.1 was considered indicative of significant baseline 
covariate imbalance between treatment groups. [32] Descriptive sta
tistics were used to present the baseline characteristics of each treatment 

group before and after PS matching, using mean and standard deviation 
(SD) for continuous variables and number and proportion (%) for cat
egorical variables. The number of events, person-years, incidence per 
1,000 person-years (IR) for the primary and secondary outcomes were 
calculated based on Poisson distribution in the PS-matched cohort. We 
fitted Cox proportional hazards model to estimate hazard ratios (HR) 
and 95 % confidence intervals (CI). Cumulative incidence curves were 
plotted using the Kaplan-Meier method and p-values for log-rank test 
were presented.

Subgroup analyses by age groups (<65 years, ≥65 years), sex, his
tory of liver cirrhosis, insulin use, and renin-angiotensin-aldosterone 
system inhibitors (RASi) use were conducted. PS were re-estimated for 
each subgroup, and 1:1 PS matching (PSM) between treatment groups 
was conducted using the same methods as in the main analysis. Several 
predefined sensitivity analyses were undertaken to ensure the robust
ness of the main findings. First, to address potential informative 
censoring, the exposure was redefined using an intention-to-treat 
approach and patients were followed for a maximum of 3 years, 
regardless of drug discontinuation or switching. Second, we repeated an 
as-treated analysis with a shorter grace period of 60 days rather than 90- 
day period in the main analysis. Third, the status of MASLD was rede
fined using the hepatic steatosis index instead of FLI (eAppendix 2). 
Fourth, we repeated the main analysis for a restricted cohort of patients, 
where the FLI was calculated using data collected within a year prior to 
the index date. Fifth, we assessed the competing risk for death and 
calculated the subdistribution HR and 95 % CI using the Fine-Gray 
model. [33].

Fig. 1. Flowchart for study participants selection. Abbreviations: ESRD, end stage renal disease; GLP-1RA, glucagon-like peptide 1 receptor agonists; SGLT2i, 
sodium-glucose cotransporter 2 inhibitors.
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3. Results

3.1. Baseline characteristics of study cohorts

Of 333,082 identified patients who initiated SGLT2i or GLP-1RA, 
17,677 (5.3 %) had CKD and 315,405 (94.7 %) did not have CKD at 
baseline. Among them, 320,786 (96.3 %) initiated SGLT2i and 12,296 
(3.7 %) initiated GLP-1RA (Fig. 1). Patients were stratified by their 
baseline CKD status, with 1:1 PSM in each subgroup. In the cohort with 
CKD, 1,268 pairs of SGLT2i-GLP-1RA were matched, while 10,996 pairs 
were matched in the cohort without CKD. As presented in Table 1, the 
cohort with CKD was older, had higher proportion of hypertension, 
RASi, CCBs, beta-blockers, aspirin, statin, and nitrates, compared to 
cohort without CKD. Compared to the initiators of SGLT2i, initiators of 
GLP-1RA in both cohorts had higher proportion of insulin use, level of 
antidiabetic treatment, and diabetic complications, suggesting greater 
diabetes severity. Each of the treatment groups (SGLT2i vs. GLP-1RA) of 
the two cohorts were well balanced after 1:1 PSM, with ASD < 0.1 across 
all covariates, including diabetes severity, eGFR, and proteinuria status 
(eTable 6).

3.2. Comparative renal effectiveness

Over a mean (SD) follow-up of 591.1 (580.3) days, the risk of ESRD 
was 33 % lower in SGLT2i versus GLP-1RA new-users (20.3 vs. 30.0 
events per 1,000 person-years; HR 0.67, 95 % CI 0.45–1.00, p-value 
0.048) in the cohort with CKD. For the cohort without CKD, over a mean 
(SD) follow-up of 733.2 (688.5) days, SGLT2i was associated with a 68 % 
lowered risk of ESRD compared to GLP-1RA (0.9 vs. 2.5 events per 1,000 
person-years; HR 0.32, 95 % CI 0.19–0.53) (Table 2). Cumulative inci
dence curves showed a lower incidence of ESRD among patients initi
ating SGLT2i compared to GLP-1RA in both cohorts (Fig. 2). Regarding 
the secondary outcomes, SGLT2i was associated with a 46 % lowered 
risk of progression to CKD stage 5 (HR 0.54, 95 % CI 0.32–0.91), and a 
47 % lowered risk of dialysis or transplant (HR 0.53, 95 % CI 0.31–0.92) 
compared to GLP-1RA for the cohort with CKD. SGLT2i also presented 
lowered risk of CKD stage 5 (HR 0.28, 95 % CI 0.10–0.80), kidney failure 
(HR 0.16, 95 % CI 0.07–0.40), and dialysis or transplant (HR 0.47, 95 % 
CI 0.24–0.90) for the cohort without CKD. There was no association 
between the use of SGLT2i and risk of cardiovascular death compared to 
GLP-1RA in cohort with CKD (HR 2.23, 95 % CI 0.78–6.32) and without 
CKD (HR 0.55, 95 % CI 0.24–1.26) (Table 2).

3.3. Subgroup and sensitivity analyses

As presented in Fig. 3, effect estimates were consistent across all 
subgroups in the cohort with CKD. In the cohort without CKD, the 
magnitude of the association was stronger with male sex (HR 0.34, 95 % 
CI 0.19–0.60), and insulin use (HR 0.47, 95 % CI 0.25–0.86), compared 
to their counterparts (HR 0.54, 95 % CI 0.22–1.31; HR 0.66, 95 % CI 
0.36–1.23, respectively), presenting significantly lower effect estimates 
for ESRD. All sensitivity analyses showed consistent results with the 
main analysis, except for the analysis using HSI to define MASLD, 
restricting patients with FLI within 1 year prior to index date, and 
competing risk analysis in the cohort with CKD, which might be 
attributed to an insufficient sample size (eTable 7–11).

4. Discussion

In this nationwide comparative effectiveness study of individuals 
with MASLD, we found that initiating SGLT2i was associated with a 
lowered risk of incident ESRD comprising chronic kidney disease stage 
5, kidney failure, dialysis, renal transplant, and renal death, compared 
with GLP-1RA. The incidence rate of ESRD was more than 10 times 
higher in the cohort with CKD compared to those without CKD. SGLT2i 
demonstrated a beneficial effect in both cohorts, showing a lower risk of 

ESRD compared to GLP-1RA, regardless of baseline CKD status. Several 
sensitivity and subgroup analyses presented consistent results.

Prior studies conducted among diverse populations provide grounds 
for comparison with our results. A prior meta-analysis of 23 cardiovas
cular outcome trials (CVOTs) showed that among patients with estab
lished ASCVD or with multiple risk factors for ASCVD, SGLT2i were 
superior to GLP-1RA in reducing the risk of progression to ESRD (RR 
0.78, 95 % CI 0.68–0.91). [34] Another meta-analysis of nine RCTs 
showed that SGLT2i were associated with significantly lower risk of 
renal outcomes, such as new onset of macroalbuminuria, ESRD, or 
decline in eGFR, in both patients with/without albuminuria (RR 0.75, 
95 % CI 0.63–0.89 and RR 0.59, 95 % CI 0.44–0.79, respectively) 
compared with GLP-1RA. [35] A retrospective cohort study using the 
Hong Kong Hospital Authority database showed that among patients 
with T2D, SGLT2i users had a lower risk (HR 0.77, 95 % CI 0.62–0.96) of 
composite kidney outcomes comprising eGFR decline, ESRD, macro
albuminuria and renal death compared with GLP-1RA. [36] Despite 
variations in study populations and definitions of outcome variables, the 
findings suggest that SGLT2i confer greater renal benefits compared to 
GLP-1RA. Although our study did not assess urine-based outcomes such 
as albuminuria or macroalbuminuria, the degree of albuminuria is 
known to be closely associated with CKD progression and mortality. 
[37] Thus, future large-scale population-based studies evaluating these 
outcomes in MASLD population could provide supportive evidence for 
our findings. Meanwhile, a recent RCT on semaglutide, a newly intro
duced agent in the GLP-1RA class, demonstrated a lowered risk of 
composite kidney disease in patients with T2D and CKD compared to 
placebo (HR 0.76, 95 % CI 0.66–0.88). [13] Since our study did not 
include this agent, future research assessing comparative effectiveness 
with the inclusion of semaglutide would be valuable.

Our study augments the evidence provided by prior studies of both 
agents, showing that SGLT2i exhibit greater renal effectiveness 
compared to GLP-1RA, even among individuals with MASLD. In the 
cohort with CKD, where the risk of ESRD was higher, the absolute 
magnitude of effectiveness was more pronounced. Significant renal 
effectiveness was also shown in the cohort without CKD, primarily 
driven by the prevention of kidney failure. This suggests the potential 
long-term protective effects of SGLT2 inhibitors, supporting the need for 
early intervention in individuals with MASLD. There are several bio
logical mechanisms that could explain the lowered risk of ESRD with 
SGLT2i versus GLP-1RA, which include both potential direct and indi
rect effects of treatment. SGLT2i reduce renal tubular glucose and so
dium reabsorption, thereby reducing intraglomerular pressure, and 
systemic blood pressure. [38,39] Meanwhile, GLP-1RA can act on 
intrinsic GLP1 receptor on kidney, and provide benefits by reducing 
cellular expression of proinflammatory and profibrotic mediators, [40] 
thereby potentially preventing fibrosis and mitigating kidney injury. 
However, while both agents have mechanistic plausibility, SGLT2i may 
offer more pronounced renal benefits by acting directly on the kidneys 
through hemodynamic mechanisms, which does not apply to GLP-1RA.

Besides the potential for direct effects on the kidney, the order and 
priority of antidiabetic drugs should be considered based on clustered 
metabolic risk factors in individuals with MASLD. Considering the well- 
documented cardiovascular and hepatic effectiveness of both agents in 
MASLD, [41,42] favorable effects on risk factors could indirectly 
contribute to renal protection while also addressing multiple compli
cations. As stated in the most current clinical guideline, SGLT2i and 
GLP-1RA are both recommended for cardiovascular and kidney risk 
reduction in high-risk individuals with T2D, with SGLT2i preferred in 
patients with CKD and GLP-1RA preferred for weight loss and mitigating 
risk of MASLD. [23] The baseline characteristics of our study population 
indicated a majority of patients classified as obese I and II, with more 
than half having prevalent hypertension, and a high prevalence of statin 
and RASi use. Furthermore, these risk factors were already prominent in 
populations without CKD and were aggravated in those with CKD. Since 
both agents in our study have pleiotropic benefits in MASLD with 
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Table 1 
Baseline characteristics of study participants with metabolic dysfunction-associated steatotic liver disease by chronic kidney disease status and treatment group before 
1:1 propensity score matching.

With chronic kidney disease Without chronic kidney disease

SGLT-2i GLP-1RA ASD SGLT-2i GLP-1RA ASD

Before PSM After PSM Before PSM After PSM

Number of patients 16,377 1300 ​ ​ 304,409 10,996 ​ ​
Age, years; mean (SD) 67.6 (10.6) 66.2 (10.7) 0.13 0.03 53.7 (11.2) 53.0 (11.8) 0.06 0.01
Sex, No. (%) ​ ​ 0.78 0.01 ​ ​ 0.19 0.00
​ Male 9962 (60.8) 787 (60.5) ​ ​ 215,919 (70.9) 6798 (61.8) ​ ​

​ Female 6415 (39.2) 513 (39.5) ​ ​ 88,490 (29.1) 4198 (38.2) ​ ​
Calendar year ​ ​ 0.15 0.10 ​ ​ 0.56 0.04
​ 2014 219 (1.3) 0 (0) ​ ​ 4071 (1.3) 32 (0.3) ​ ​
​ 2015 762 (4.7) 10 (0.8) ​ ​ 14,839 (4.9) 110 (1.0) ​ ​
​ 2016 1146 (7.0) 84 (6.5) ​ ​ 25,465 (8.4) 739 (6.7) ​ ​
​ 2017 1426 (8.7) 169 (13.0) ​ ​ 32,069 (10.5) 1939 (17.6) ​ ​
​ 2018 1341 (8.2) 237 (18.2) ​ ​ 31,761 (10.4) 2022 (18.4) ​ ​
​ 2019 1607 (9.8) 217 (16.7) ​ ​ 36,709 (12.1) 1795 (16.3) ​ ​
​ 2020 1355 (8.3) 154 (11.8) ​ ​ 29,405 (9.7) 1149 (10.4) ​ ​
​ 2021 1759 (10.7) 172 (13.2) ​ ​ 29,175 (9.6) 1127 (10.2) ​ ​
​ 2022 2011 (12.3) 179 (13.8) ​ ​ 30,474 (10.0) 1238 (11.3) ​ ​
​ 2023 4751 (29.0) 78 (6.0) ​ ​ 70,441 (23.1) 845 (7.7) ​ ​
Healthcare use ​ ​ ​ ​ ​ ​ ​ ​
​ Inpatient hospitalizations ​ ​ 0.08 0.02 ​ ​ 0.17 0.02
​ 0 11,921 (72.8) 876 (67.4) ​ ​ 247,630 (81.3) 8167 (74.3) ​ ​
​ 1–2 3946 (24.1) 363 (27.9) ​ ​ 52,264 (17.2) 2543 (23.1) ​ ​
​ ≥3 510 (3.1) 61 (4.7) ​ ​ 4515 (1.5) 286 (2.6) ​ ​
​ Number of physician visits ​ ​ 0.04 0.00 ​ ​ 0.21 0.08
​ 0–2 79 (0.5) 2 (0.2) ​ ​ 11,744 (3.9) 169 (1.5) ​ ​
​ 3–5 394 (2.4) 16 (1.2) ​ ​ 23,188 (7.6) 459 (4.2) ​ ​
​ ≥6 15,904 (97.1) 1282 (98.6) ​ ​ 269,477 (88.5) 10,368 (94.3) ​ ​
​ Physician speciality ​ ​ ​ ​ ​ ​ ​ ​
​ Cardiologist 4299 (26.3) 318 (24.5) 0.59 0.05 39,135 (12.9) 1383 (12.6) 0.35 0.00
​ Endocrinologist 3019 (18.4) 571 (43.9) 0.30 0.03 45,076 (14.8) 4231 (38.5) 0.55 0.03
​ Gastroentrologist 1752 (10.7) 163 (12.5) 0.24 0.04 25,048 (8.2) 1202 (10.9) 0.35 0.00
Body mass index; mean (SD) 29.0 (3.5) 29.4 (3.8) 0.09 0.04 29.5 (3.9) 30.1 (4.4) 0.14 0.00
Body mass index, No. (%) ​ ​ 0.12 0.11 ​ ​ 0.16 0.05
​ Normal weight 285 (1.7) 19 (1.5) ​ ​ 4593 (1.5) 164 (1.5) ​ ​
​ Overweight 1178 (7.2) 102 (7.8) ​ ​ 20,325 (6.7) 652 (5.9) ​ ​
​ Obese I 9341 (57.0) 685 (52.7) ​ ​ 160,574 (52.7) 5289 (48.1) ​ ​
​ Obese II 5573 (34.0) 494 (38.0) ​ ​ 118,917 (39.1) 4891 (44.5) ​ ​
Smoking, No. (%) ​ ​ 0.07 0.02 ​ ​ 0.12 0.00
​ Never 4485 (63.0) 352 (60.3) ​ ​ 52,759 (46.4) 2433 (52.0) ​ ​
​ Past 1573 (22.1) 135 (23.1) ​ ​ 24,318 (20.5) 890 (19.0) ​ ​
​ Current 1061 (14.9) 97 (16.6) ​ ​ 36,739 (32.3) 1358 (29.0) ​ ​
Drinking, No. (%) ​ ​ 0.00 0.00 ​ ​ 0.14 0.00
​ No 4791 (67.3) 423 (72.4) ​ ​ 50,440 (44.3) 2542 (54.3) ​ ​
​ 1 ~ 2 times/week 1494 (21.0) 111 (19.0) ​ ​ 38,913 (34.2) 1357 (29.0) ​ ​
​ 3 ~ 4 times/week 493 (6.9) 30 (5.1) ​ ​ 16,586 (14.6) 521 (11.1) ​ ​
​ 5 + times/week 341 (4.8) 20 (3.4) ​ ​ 7877 (6.9) 261 (5.6) ​ ​
Comorbidities ​ ​ ​ ​ ​ ​ ​ ​
​ Dyslipidemia 6437 (39.3) 536 (41.2) 0.16 0.00 138,480 (45.5) 5532 (50.3) 0.10 0.01
​ Hypertension 11,726 (71.6) 832 (64.0) 0.10 0.01 161,640 (53.1) 5527 (50.3) 0.06 0.00
​ Atrial fibrillation 901 (5.5) 44 (3.4) 0.06 0.02 4428 (1.5) 114 (1.0) 0.04 0.01
​ Cirrhosis 57 (0.3) 10 (0.8) 0.26 0.01 512 (0.2) 38 (0.3) 0.04 0.00
​ Dementia 231 (1.4) 19 (1.5) 0.01 0.01 829 (0.3) 37 (0.3) 0.01 0.01
​ Depression 1140 (7.0) 88 (6.8) 0.03 0.00 12,204 (4.0) 612 (5.6) 0.07 0.00
​ Hypothyroidism 412 (2.5) 39 (3.0) 0.00 0.03 5031 (1.7) 269 (2.4) 0.06 0.01
​ Hyperthyrodisim 83 (0.5) 7 (0.5) 0.01 0.03 2004 (0.7) 85 (0.8) 0.01 0.01
​ Gallbladder disease 409 (2.5) 34 (2.6) 0.07 0.00 5726 (1.9) 205 (1.9) 0.00 0.01
​ Cerebrovascular disease 1038 (6.3) 105 (8.1) 0.00 0.02 7071 (2.3) 410 (3.7) 0.08 0.00
​ COPD 1043 (6.4) 84 (6.5) 0.05 0.04 10,432 (3.4) 460 (4.2) 0.04 0.00
​ Peripheral vascular disease 1311 (8.0) 122 (9.4) 0.06 0.00 14,334 (4.7) 667 (6.1) 0.06 0.01
​ Heart failure 1582 (9.7) 102 (7.8) 0.01 0.02 8183 (2.7) 287 (2.6) 0.01 0.02
​ Ischemic heart disease 2969 (18.1) 233 (17.9) 0.04 0.04 25,972 (8.5) 960 (8.7) 0.01 0.01
Comedication ​ ​ ​ ​ ​ ​ ​ ​
​ Acetaminophen 10,508 (64.2) 856 (65.8) 0.11 0.01 174,033 (57.2) 6714 (61.1) 0.08 0.01
​ RAS inhibitors 13,561 (82.8) 1126 (86.6) 0.01 0.01 170,172 (55.9) 6601 (60.0) 0.08 0.00
​ CCB 10,276 (62.7) 808 (62.2) 0.01 0.02 125,838 (41.3) 4454 (40.5) 0.02 0.01
​ β-blockers 5858 (35.8) 472 (36.3) 0.05 0.03 49,960 (16.4) 1892 (17.2) 0.02 0.02
​ Diuretics 7892 (48.2) 657 (50.5) 0.00 0.01 65,806 (21.6) 2572 (23.4) 0.04 0.00
​ Systemic antibiotics 10,364 (63.3) 889 (68.4) 0.06 0.02 188,132 (61.8) 7359 (66.9) 0.11 0.01
​ Oral anticoagulants 1157 (7.1) 74 (5.7) 0.13 0.04 5224 (1.7) 161 (1.5) 0.02 0.03
​ Oral antiplatelets 4352 (26.6) 425 (32.7) 0.05 0.09 34,344 (11.3) 1635 (14.9) 0.11 0.00
​ NSAIDs 10,438 (63.7) 859 (66.1) 0.13 0.02 179,527 (59.0) 6873 (62.5) 0.07 0.00
​ Aspirin 5532 (33.8) 519 (39.9) 0.02 0.02 54,632 (17.9) 2637 (24.0) 0.15 0.01

(continued on next page)
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metabolic dysfunction associated with features of the metabolic syn
drome, [43,44] our findings have clinical implications in that they may 
serve as evidence, particularly in patients where renal protection should 
be the main goal.

4.1. Strength & limitations

To our knowledge, this is the first study to evaluate the comparative 
renal effectiveness of SGLT2i and GLP-1RA in individuals with MASLD, a 
population for whom these two agents could be prescribed and could 
have clinically relevant benefits. Our database provided information on 
a range of clinical variables, such as serum creatinine levels, proteinuria 
level, or fasting glucose level, enabling adjustment for important con
founders. Although we cannot prove causality with this study, our 
active-comparator, new-user design strengthens the causal inference of 
this cohort study. We also applied lag period to delicately address the 
potential impact of protopathic bias.

Our study has several limitations. First, since we conducted an 
observational study utilizing healthcare claims, the potential for 

unmeasured confounders cannot be ruled out. Although we incorpo
rated extensive baseline clinical covariates in the PS model to adjust for 
the severity of T2D and CKD, it is important to interpret our findings 
with caution, considering that the unadjusted population showed a 
higher disease severity among patients receiving GLP-1RA. Second, the 
mean duration of follow-up was relatively short (around 1.6 years for 
cohort with CKD, and 2.0 years for cohort without CKD) due to high 
rates of drug discontinuation (eTable 2). However, regardless of baseline 
CKD status, the consistent direction of point estimates across outcomes 
along the disease trajectory—from stage 5 CKD to kidney failure, 
transplantation, and renal death—suggests that our findings may 
cautiously indicate potential long-term implications, which should be 
validated in studies with longer follow-up. Moreover, the survival curves 
from landmark RCTs have shown the separation of curves within one 
year for renal endpoints. Therefore, we believe the duration of follow-up 
was sufficient to show the effects of treatments and our results represent 
what would be expected in real-world clinical practice where strict 
adherence to the index treatment is not guaranteed. Third, identifying 
ESRD through ICD-10 codes in the claims database lacks validation. 

Table 1 (continued )

With chronic kidney disease Without chronic kidney disease

SGLT-2i GLP-1RA ASD SGLT-2i GLP-1RA ASD

Before PSM After PSM Before PSM After PSM

​ Opioids 2002 (12.2) 167 (12.8) 0.05 0.02 27,541 (9.0) 1193 (10.8) 0.06 0.00
​ Systemic corticosteroids 8462 (51.7) 642 (49.4) 0.22 0.01 141,480 (46.5) 5268 (47.9) 0.03 0.00
​ Statins 12,814 (78.2) 1124 (86.5) 0.07 0.02 189,196 (62.2) 8044 (73.2) 0.24 0.01
​ Other lipid-lowering agents 5628 (34.4) 489 (37.6) 0.23 0.02 85,486 (28.1) 3556 (32.3) 0.09 0.02
​ Vitamin E 1159 (7.1) 182 (14.0) 0.02 0.00 17,958 (5.9) 987 (9.0) 0.12 0.02
​ Nitrates 1694 (10.3) 144 (11.1) 0.90 0.07 14,760 (4.8) 490 (4.5) 0.02 0.01
Antidiabetic drugs use ​ ​ ​ ​ ​ ​ ​ ​
​ Insulin 2637 (16.1) 719 (55.3) 0.04 0.00 22,202 (7.3) 3929 (35.7) 0.74 0.03
​ α-glucosidase inhibitors 351 (2.1) 35 (2.7) 0.00 0.03 3241 (1.1) 201 (1.8) 0.06 0.01
​ Meglitinides 86 (0.5) 20 (1.5) 0.10 0.00 496 (0.2) 54 (0.5) 0.06 0.01
​ Metformin 11,927 (72.8) 890 (68.5) 0.41 0.02 219,231 (72.0) 9575 (87.1) 0.38 0.03
​ Sulfonylureas 8486 (51.8) 925 (71.2) 0.18 0.04 109,888 (36.1) 6815 (62.0) 0.54 0.03
​ Thiazolidinediones 2502 (15.3) 291 (22.4) 0.45 0.02 31,983 (10.5) 2116 (19.2) 0.25 0.00
​ DPP4 inhibitors 11,239 (68.6) 1131 (87.0) 0.39 0.05 167,227 (54.9) 8490 (77.2) 0.48 0.03
Diabetic complications ​ ​ ​ ​ ​ ​ ​ ​
​ Nephropathy 2043 (12.5) 359 (27.6) 0.26 0.03 12,718 (4.2) 1016 (9.2) 0.20 0.01
​ Neuropathy 3307 (20.2) 408 (31.4) 0.33 0.01 35,121 (11.5) 2349 (21.4) 0.27 0.01
​ Retinopathy 3882 (23.7) 502 (38.6) 0.36 0.01 40,546 (13.3) 2749 (25.0) 0.30 0.00
Level of antidiabetic treatments ​ ​ 0.34 0.07 ​ ​ 0.88 0.07
​ 1 3773 (23.0) 42 (3.2) ​ ​ 113,291 (37.2) 1065 (9.7) ​ ​
​ 2 9967 (60.9) 539 (41.5) ​ ​ 168,916 (55.5) 6002 (54.6) ​ ​
​ 3 2637 (16.1) 719 (55.3) ​ ​ 22,202 (7.3) 3929 (35.7) ​ ​
CCI groups ​ ​ 0.31 0.03 ​ ​ 0.27 0.02
​ 0 1681 (10.3) 113 (8.7) ​ ​ 61,675 (20.3) 1633 (14.9) ​ ​
​ 1–2 5212 (31.8) 236 (18.2) ​ ​ 146,304 (48.1) 4400 (40.0) ​ ​
​ ≥3 9484 (57.9) 951 (73.2) ​ ​ 96,430 (31.7) 4963 (45.1) ​ ​
Health examination results; mean (SD) ​ ​ ​ ​ ​ ​ ​ ​
​ Waist circumference [cm] 96.4 (8.1) 97.9 (8.9) 0.18 0.03 95.9 (9.7) 97.3 (9.7) 0.15 0.00
​ Serum creatinine [mg/dL] 1.5 (1.9) 1.6 (0.6) 0.06 0.01 0.9 (0.2) 0.9 (0.2) 0.08 0.01
​ eGFR [mL/min/1.73 m2] 49.9 (9.0) 46.0 (10.6) 0.39 0.00 95.7 (15.8) 95.9 (16.9) 0.01 0.01
​ Fasting blood glucose [mg/dL] 149.0 (55.3) 165.3 (66.5) 0.27 0.01 161.6 (55.8) 177.3 (65.6) 0.26 0.01
​ Systolic blood pressure [mmHg] 132.1 (16.8) 131.1 (16.0) 0.06 0.06 131.3 (14.9) 130.5 (14.9) 0.05 0.01
​ Diastolic blood pressure [mmHg] 77.7 (10.8) 76.0 (10.3) 0.16 0.09 81.4 (10.5) 80.3 (10.3) 0.11 0.01
​ Total cholesterol [mg/dL] 178.2 (48.9) 171.5 (44.6) 0.15 0.04 196.4 (54.6) 186.6 (54.8) 0.18 0.02
​ Triglycerides [mg/dL] 222.7 (169.7) 228.9 (155.8) 0.04 0.01 245.3 (211.3) 241.7 (199.4) 0.02 0.00
​ GGT [IU/L] 60.5 (72.9) 54.7 (59.1) 0.09 0.05 76.8 (88.3) 68.4 (72.1) 0.10 0.01
​ Proteinuria; n (%) ​ ​ 0.25 0.07 ​ ​ 0.25 0.10
​ Negative 11,179 (68.3) 749 (57.6) ​ ​ 247,560 (81.3) 8480 (77.1) ​ ​
​ Trace 997 (6.1) 80 (6.2) ​ ​ 20,624 (6.8) 773 (7.0) ​ ​
​ 1+ 1640 (10.0) 157 (12.1) ​ ​ 20,512 (6.7) 867 (7.9) ​ ​
​ 2+ 1360 (8.3) 156 (12.0) ​ ​ 10,410 (3.4) 551 (5.0) ​ ​
​ 3+ 800 (4.9) 117 (9.0) ​ ​ 3639 (1.2) 214 (1.9) ​ ​
​ 4+ 280 (1.7) 30 (2.3) ​ ​ 985 (0.3) 61 (0.6) ​ ​
​ Unknown 121 (0.7) 11 (0.8) ​ ​ 679 (0.2) 50 (0.5) ​ ​

Abbreviations: ASD, absolute standardized difference; CCB, calcium-channel blockers; CCI, charlson comorbidity index; DPP4, dipeptidyl-peptidase 4; GLP-1RA, 
glucagon-like peptide 1 receptor agonists; NSAIDs, non-steroidal anti-inflammatory drugs; PS, propensity score; RAS, renin angiotensin aldosterone system; SD, 
standard deviation; SGLT2i, sodium-glucose cotransporter 2 inhibitors.
*Stratified by Asian body mass index categories: Normal weight, <23 kg/m2; Overweight, 23 to < 25 kg/m2; Obese I, 25 to < 30 kg/m2, Obese II, ≥30 kg/m2.
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However, we defined the outcome using diagnosis codes identified in the 
inpatient setting and verified through the RID program, thereby 
enhancing specificity. We also expect the outcome misclassification to 
be non-differential between the treatment groups. Fourth, we used semi- 
quantitative urine dipstick test results to assess proteinuria rather than 
specific measures of albuminuria. However, the distribution of urine 
dipstick test results was well balanced between the treatment groups 
after PS matching. Therefore, the bias resulting from the inability to 
accurately measure albuminuria is also presumed to be non-differential 
between the treatment groups. Fifth, baseline CKD status was defined 
using a single eGFR measurement obtained during a health screening 
rather than for diagnostic purposes. Since urine-based markers, such as 
the albumin-to-creatinine ratio, were not incorporated, misclassification 
of CKD status may have occurred. Finally, due to reimbursement policies 
in Korea, we were unable to include agents with higher glucose-lowering 
and weight loss efficacy, such as semaglutide, [13] in our analysis. Novel 
potent GLP-1RA are expected to improve multiple risk factors in the 
MASLD population—including glycemic control, blood pressure, and 
body weight—thereby conferring renal benefits. If these agents had been 
included in our study, the magnitude of the effect estimates might have 
been more modest.

5. Conclusions

In this nationwide cohort study, SGLT2i presented significantly 
lowered risk of ESRD compared to GLP-1RA in individuals with MASLD. 
The protective association was presented regardless of baseline CKD 
status, suggesting that SGLT2i may be a preferred option over GLP-1RA 
at any stage of the disease course. However, given the multifaceted 
metabolic risk factors in MASLD, it is crucial to assess the benefits of 
each agent while considering the patient’s individual risk profile for 

various complications. Further studies with more potent GLP-1RA 
would also be highly beneficial.
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Table 2 
Risk of end-stage renal diseases in individuals with metabolic dysfunction-associated steatotic liver disease initiating SGLT2 inhibitors versus GLP-1 receptor agonists 
by chronic kidney disease status.

SGLT2 inhibitors GLP-1 receptor agonists Rate 
differences  

(95 % CI)

Hazard ratio  

(95 % CI)

p- 
value

No./ 
total No.

Person- 
years

Incidence per 1000 
person-years 
(95 % CI)

No./ 
total No.

Person- 
years

Incidence per 1000 
person-years 
(95 % CI)

With chronic kidney 
disease

​ ​ ​ ​ ​ ​ ​ ​ ​

Primary outcome ​ ​ ​ ​ ​ ​ ​ ​ ​
Composite end-stage 

renal diseases
44/1268 2172.61 20.25 (15.07 to 

27.21)
58/1268 1931.59 30.03 (23.21 to 

38.84)
− 9.77 (− 19.5 to 
− 0.00)

0.67 
(0.45–1.00)

0.048

Secondary outcomes ​ ​ ​ ​ ​ ​ ​ ​ ​
Chronic kidney disease, 

Stage 5
22/1268 2202.47 9.99 (6.58 to 15.17) 36/1268 1978.03 18.20 (13.13 to 

25.23)
− 8.21 (− 15.5 to 
− 0.95)

0.54 
(0.32–0.91)

0.022

Kidney failure 18/1268 2184.04 8.24 (5.19 to 13.08) 22/1268 1958.19 11.23 (7.40 to 
17.06)

− 2.99 (− 9.04 to 
3.05)

0.73 
(0.39–1.36)

0.320

Renal dialysis or 
transplant

21/1268 2205.46 9.52 (6.21 to 14.60) 35/1268 1986.11 17.62 (12.65 to 
24.54)

− 8.10 (− 15.2 to 
− 0.98)

0.53 
(0.31–0.92)

0.023

Renal death 0/1268 N/A N/A 1/1268 2002.60 0.50 (0.07 to 3.54) N/A N/A N/A
Cardiovascular death 12/1268 2212.53 5.42 (3.08 to 9.55) 5/1268 2002.60 2.50 (1.04 to 6.00) 2.93 (− 0.84 to 

6.70)
2.23 
(0.78–6.32)

0.133

Without chronic 
kidney disease

​ ​ ​ ​ ​ ​ ​ ​ ​

Primary outcome ​ ​ ​ ​ ​ ​ ​ ​ ​
Composite end-stage 

renal diseases
22/ 
10996

25609.07 0.86 (0.57 to 1.30) 47/ 
10996

18534.87 2.54 (1.91 to 3.37) − 1.68 (− 2.49 to 
− 0.87)

0.32 
(0.19–0.53)

0.000

Secondary outcomes ​ ​ ​ ​ ​ ​ ​ ​ ​
Chronic kidney disease, 

Stage 5
5/10996 25631.43 0.20 (0.08 to 0.47) 11/ 

10996
18589.72 0.59 (0.33 to 1.07) − 0.40 (− 0.79 to 

− 0.01)
0.28 
(0.10–0.80)

0.018

Kidney failure 6/10996 25613.85 0.23 (0.11 to 0.52) 25/ 
10996

18546.00 1.35 (0.91 to 1.99) − 1.11 (− 1.67 to 
− 0.55)

0.16 
(0.07–0.40)

0.000

Renal dialysis or 
transplant

15/ 
10996

25628.93 0.59 (0.35 to 0.97) 22/ 
10996

18586.42 1.18 (0.78 to 1.80) − 0.60 (− 1.17 to 
− 0.02)

0.47 
(0.24–0.90)

0.023

Renal death 1/10996 25633.08 0.04 (0.01 to 0.28) 0/10996 N/A N/A N/A N/A N/A
Cardiovascular death 10/ 

10996
25633.08 0.39 (0.21 to 0.73) 13/ 

10996
18597.91 0.70 (0.41 to 1.20) − 0.31 (− 0.76 to 

0.14)
0.55 
(0.24–1.26)

0.156

Abbreviations: CI, confidence interval; GLP-1, glucagon-like peptide 1; SGLT2, sodium-glucose cotransporter 2.
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Fig. 2. Cumulative incidence of end-stage renal diseases in 1:1 propensity score matched initiators of SGLT2 inhibitors versus GLP-1 receptor agonists. Abbrevi
ations: CI, confidence interval; GLP-1RA, glucagon-like peptide 1 receptor agonists; HR, hazard ratio; SGLT2i, sodium-glucose cotransporter 2 inhibitors.
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