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Abstract

We describe the structure of F—dense acts over E—dense semigroups in an analogous
way to that for inverse semigroup acts over inverse semigroups. This is based, to a large
extent, on the work of Schein on representations of inverse semigroups by partial one-to-
one maps. We also study cancellative actions of semigroups as a type of generalisation
of group actions and characterise locally free cancellative acts over FF—dense semigroups
that are also E—unitary.

Mathematics Subject Classification 2010: 20M30, 20M50, 20M99.
Keywords Semigroup, monoid, F—dense, E—inversive, E—unitary, semigroup acts, F/—dense
acts.

1 Introduction and Preliminaries

Let S be a semigroup. By a left S—act we mean a non-empty set X together with an action
S x X — X given by (s,x) — sx such that for all z € X,s,t € S, (st)x = s(tz). If Sis a
monoid with identity 1, then we normally require that 1z = z for all x € X. A right S—act
is defined dually. If X is a left S—act then the semigroup morphism p : S — T (z) given
by p(s)(z) = sz is a representation of S. Here 7(X) is the full transformation semigroup
on X consisting of all maps X — X. Conversely, any such representation gives rise to an
action of S on X. If X is both a left S—act and a right T—act for semigroups/monoids S
and T and if in addition (sz)t = s(xt) then X is said to be an (S,T)—biact. Throughout
this paper, unless otherwise stated, all acts will be left S—acts. We refer the reader to [7]
for basic results and terminology in semigroups and monoids and to [2] and [8] for those
concerning acts over monoids.

If S is an inverse semigroup then we can replace T (X) by Z(X), the inverse semigroup
of partial one-to-one maps. A comprehensive theory of this type of representations was
given by Boris Schein in the early 1960’s and an account of that work can be found in [1]
and [7]. Here we wish to emulate that approach for E—dense semigroups and do so in
section 2. After introducing the definition of an E—dense action and providing some basic
results, we describe the structure of graded actions over E—dense semigroups. Transitive
acts are then introduced and a fairly comprehensive structure of such acts is presented. In
section 3, motivated by the use of the discrete log problem of groups in some cryptographic



applications, we apply some of these results to consider cancellative semigroup actions and in
particular consider the structure of E—dense actions when S is an F—dense and E—unitary
semigroup.

Recall that an idempotent in a semigroup S is an element s € S such that s> = s. A band is
a semigroup consisting entirely of idempotents whilst a semilattice is a commutative band.
We shall denote the idempotents of a semigroup S as E(S) or more generally F when the
context allows. In section 2, many of our results will concern E—dense semigroups whose
idempotents form a semilattice. Let S be a semigroup and let W(s) = {s’ € S|s'ss’ = ¢}
be the set of weak inverses of s and V(s) = {s' € W(s)|s € W(s)} be the set of inverses of
s. In general of course either or both of these sets may be empty. However, if S is a group
then clearly W (s) = V(s) = {s7'} for all s € S, whilst if S is a rectangular band, that is to
say a band in which xyx = z for all z,y € S, then W(s) = V(s) = S for each s € S. Notice
that if s’ € W(s) then s's,ss’ € E and if e € E then e € W(e). If A C S, is a subset of S,
then W (A) will denote the set W(A) = {s’ € W(s)|s € A}.

Lemma 1.1 ([19, Corollary 3.3]) Let S be a semigroup in which E # . Then E is a
band if and only if for all s,t € S, W (st) = W ()W (s).

From the proof of [4, Lemma 7.14] we can deduce

Lemma 1.2 Let S be a semigroup with band of idempotents E. Then for all s € S,s’ €
W(s),e € E it follows that ses’,s'es € E.

If the conclusions of Lemma 1.2 hold, we say that S is weakly self conjugate. We shall make
frequent use of both the previous properties of semigroups in the case when FE is a band
without further reference. Notice also that if ' € W (s) then ss’s € V(s') C W (s'), a fact
that we shall also use frequently. In particular, s’ is a regular element of S.

It was shown by Mitsch [11] that the following is a natural partial order on any semigroup
S
a < b if and only if there exists z,y € S,a = 2b = by, za = ay = a.

If there exist idempotents e and f such that a = eb = bf then it follows that a = ea = af
and so a <pq b. If a is a regular element of S then it is easy to check that e = aa’z € F and
f=wydae€E for any @’ € V(a), and that a = eb = bf. Hence if a is regular then

a < b if and only if there exists e, f € E,a = eb = bf.

In particular, this is true if @ € E. It is also worth noting here that if E is a semilattice then
the restriction of <4 to E is compatible with multiplication, a fact that we shall use later.

Let A be a subset of a semigroup S and define
Awp = {s € Sla <pq s for some a € A}.

If A = {a} then we shall write Awprq as awpaq. It is easily seen that (Awa)wm = Awam
and that if A C B then Awaypg € Bwyy, from which we deduce that if A C Bwa then
Awp C Bwpg. We call Awpag the (wag—)closure of A and say that A is (waq—)closed if
A = Awpq. Notice that if A C B with B being (waq—)closed, then Awaq C B.

If T is a subset of a semigroup S then we say that T is left (resp. right) dense in S if for all
s € S there exists s’ € S such that s's € T (resp. ss’ € T'). We say that T is dense in S if
it is both left and right dense in S. We are particularly interested in the case where T = F
the set of idempotents of S and we shall refer to semigroups in which E is dense in S as
E—dense or E—inversive semigroups. This concept was originally studied by Thierrin [18]



and subsequently by a large number of authors (see Mitsch [14] for a useful survey article, but
note that the term F—dense has a slightly different meaning there). Included in this class of
semigroup are the classes of all regular semigroups, inverse semigroups, groups, eventually
regular semigroups (that is to say semigroups in which every element has a power that is
regular), periodic semigroups (every element is of finite order) and indeed finite semigroups.

Let S be a semigroup, let L(s) = {s’ € S|s's € E}. Then it is well known that W (s) C L(s).
Moreover, for each s’ € L(s),s'ss’ € W(s) and so W(s) # @ if and only if L(s) # @. The
following is then immediate.

Lemma 1.3 Let S be an E—dense semigroup. Then for all s € S there exists s' € S such
that s's,ss’ € E.

Let S be an F—dense semigroup with a band of idempotents E and define a partial order
on S by

s <t if and only if either s =t or there exists e, f € E with s = te = ft

and note that < C <, and that if F' is a semilattice then < is compatible with multiplication
by weak inverses. If s is regular (in particular idempotent) then s < ¢ if and only if s < t.
If A is a subset of S then define

Aw = {s € S|a < s for some a € A}

and notice that A C Aw C Awpg. It is also clear that (Aw)w = Aw and that from above, if
A C FE then Awag = Aw. We shall make use of w in Section 2.

Weak inverses of elements will not in general be unique and in section 2 we will often need
to deal with more than one weak inverse of a given element. The following useful result is
easy to establish and a brief proof is given.

Lemma 1.4 Let S be an E—dense semigroup with a semilattice of idempotents E.
1. If s e W(s) and e, f € E then es’'f € W(s).

2. (W(s),<) is a lower semilattice. In more detail, if s',s* € W(s) then s'ss* € W (s)
and s'ss* = s' N\ s*, the meet of s and s* in (W(s), <).

3. If s e W(s) and s € W(s') then s = s"*s's = ss's"* and for alle € E,es"™ <s. In
particular s < s. In addition, s's™*s’ € W (s).

4. If & € W(s) then W(W(s)) = sW(s)s and V(s') = {ss's}.
5. Let W= {s" e W(s)|ls € S}. Then W is a full inverse subsemigroup of S.

6. If T is an inverse semigroup and if t € T then W(t) = [t7!] = {z € T|lz < t7'}.
Hence for all s € S,s" € W(s), W(s'") = [ss's].

7. For all s € S, W(W (W (s))) = W(s).
Proof. Let E and S be as stated.

1. Suppose that e, f € E and s’ € W(s). Then (es'f)s(es'f) = es' fss'f = es’f and so
es'f € W(s).

2. This is straightforward on noting that (s'ss*)s(s'ss*) = s'ss’ss*ss* = s'ss*. Note
also that s'ss* = s*ss’. It is clear that s'ss* < s’,s*, so suppose that t < s, s*.
Then there exist e, f,g,h € E(S) such that t = es’ = §'f = gs* = s*h. Hence since
t=s'st = (s'ss*)h and t = tss’ = gs*ss’ = g(s'ss*) then t < s'ss* as required.



3. If & € W(s') then s = §'*5's"™ = §'*s'ss's"™* = s5's/*s's"™* = s5's"™* = §*s's"*s's =

s"*s's. Finally notice that for all ¢ € E,

i / !/ / !/ !/ / / / / / / !/ 7
s(s's"s'es™s's) = (ss's"*s'es™s')s = s 'es"™ = es’*s's = es’™*

and so es™ < s. Finally,

(8/8/*8/)8(8/8/*8/) — 818/*8/8/*81 — S/SI*S/

and s's’ x s € W(s).

4. Let s’ € W(s). Then clearly ss’s C W(s’). On the other hand, if s € W(s’) then by

part (3), s* = ss's’™* = ss's'*s’'s and §'s"™*s’ € W(s).

Now let s € V(s') C W(s'). Since s's"™ = §'s'*s's = §'s then s'* = s5's"* = s¢'s.

5. Clearly W # . Let ¢',t' € W with s’ € W (s),t’ € W(t) then it is easy to check that
st € W(ts) C W and by part (4), |V (s")| =1 for each s’ € W and so W is an inverse
subsemigroup of S. Alternatively, note that W = Reg(.S) the set of regular elements
of S. It is full as e € Wi(e) for all e € E(S5).

6. Let t' € W(t) so that ¢/ = t't't = t/tt='t'. Then ¢’ = t~1(t') = (t)t! and so
t' € [t71]. Conversely if ' € [t7!] then ¢’ = et~! for some e € E(T) and so t'tt' =
et7ltet™ = et™! =t as required. If s € S, s’ € W(s') then since E(S) = E(W) and
by the previous 2 parts it follows that W (s') = [ss's].

7. Let s € W(s),s"™* € W(s'), s € W(s'*). Then by part (3), s*'ss™ = s'*'ss's"*s'*' =
s"'s"*s"" = §'*'. On the other hand s’ = s'ss’ = s(ss's)s’ € W(W(s')) and the result
follows easily.

Lemma 1.5 ([12, Proposition 2]) A semigroup S is a group if and only if for every ele-
ment s € S, |L(s)| = 1.

It is also easy to see that
Lemma 1.6 Let S be an E—dense monoid. Then S is a group if and only if |E| = 1.

A subset A of a semigroup S is called unitary in S if whenever sa € A or as € A it necessarily
follows that s € A. If E is a unitary subset of S then we shall refer to S as an E—unitary
semigroup.

Lemma 1.7 ([16], [14, Theorem 6.8]) Let S be an E—dense semigroup. Then S is
E—unitary if and only if E is a band and Ew = E.

Lemma 1.8 ([3, Proposition 1.2]) Let S be an E—unitary semigroup. For all s € S, if
s’ € L(s) then s € L(s).

As an aside, there is an interesting observation to be made from Lemma 1.4 (2). If S is a
semigroup and s € S we can define an operation * on S by x xy = xsy. It is easy to check
that (S, *) becomes a semigroup which we refer to as a variant of S by s and is denoted by
S*. Notice then that while W(s) is in general a subset of S, it is a subsemigroup, and indeed
a subsemilattice of the variant S®. See [6] for more information on variants of semigroups.



2 FE—dense actions of F’—dense semigroups

In this section we take inspiration from the theory of inverse semigroup actions, which in
turn is based on Schein’s representation theory of inverse semigroups by partial one-to-one
maps (see [1] and [7]).

Let S be an E—dense semigroup, let X be a non-empty set and let ¢ : S x X — X be a
partial map with the property that ¢(st,x) exists if and only if ¢(s, ¢(¢,x)) exists and then

(b(Stv 1‘) = ¢(57 ¢(t’ x))

We will, as is usual, denote ¢(s,z) as sz and simply write (st)z as stz when appropriate.
By a partial map we of course mean that not every element of S need act on every element
of X. A more formal definition can be found in [7]. We say that ¢ is an E—dense action of
S on X, and refer to X as an E—dense S—act, if

1. the action is cancellative; meaning that whenever sx = sy then x = y;

2. the action is reflexive; that is to say, for each s € S, if sx exists then there exists
s’ € W(s) such that s'(sz) exists.

The domain of an element s € S is the set
DX = {2 € X|sx exists}.

We shall denote DX as simply Dy when the context is clear. We shall denote the domain
of an element x € X by

D* ={s e S|z € D;} = {s € S|szx exists}.
Clearly x € Dy if and only if s € D*. It also follows from the definition that x € Dy if and
only if z € Dy, for some s’ € W(s).

If S is a group then an F—dense act X is simply an .S—set, while if S is an inverse semigroup
then an F—dense act is an inverse semigroup act defined by the Wagner-Preston represen-
tation p : S — Z(X) where sz = p(s)(z) and Dy = dom(p(s)) (see Example 2.2 below for a
generalisation).

Let X be an E—dense S—act and let x € X. We define the stabilizer of an element z as the
set Sy = {s € S|sx = x}. The following is easy to establish and the proof is omitted.

Lemma 2.1 Let S be an E—dense semigroup and X an E—dense S—act. Let s,t € S,x,y €
X. Then

1. END* C (END%)wC Sy,
if s € W(s) then Dy = Dsy,

if s € D® then sx =y if and only if there exists s € W(s) N DY such that x = s'y,

if s,t € D* then sx = tz if and only if there exists s’ € W (s) such that s't € S,. In
addition, any such s’ necessarily satisfies s’ € D%,

The following is an important example. It demonstrates how we can construct F—dense
actions from (ordinary) actions and hence justifies the existence of interesting E—dense
actions of S.



Example 2.2 (Wagner-Preston action) Let S be an E—dense semigroup with semilattice of
idempotents E and X a left S—act (in other words the action of S on X, x — sz for s €
S and x € X, is a total action). For each s € S define

Dy = {x € X| there exists s' € W(s),x = s'sz} = {s'sz|zr € X,s" € W(s)}
and define an E—dense action of S on X by s *x = sz for all x € Dy.

To see that * really is an E—dense action suppose that € Dy, so that there exists (st)’ €
W (st) such that z = (st)’(st)x. By Lemma 1.1 there exists s’ € W (s),t € W(t) such that
(st)) = t's’ and so x = t's'stx. Then t'tx = t'tt's'ste = t's'ste = x and so € D;. In
addition, s'stx = s'stt’s'stx = tt's'stx = tx and tx € D,. Conversely, suppose that x € D,
and tz € D,. Then there exists t' € W (t),s" € W(s) such that z = ¢tz and tz = §'stz and
so x = t's'stx € Dg. Clearly, (st) xx = s* (t*x). Finally, if x,y € Dy and s*xx = s*y
then there exists s’ € W(s), s* € W (s) such that x = s'sz,y = s*sy and such that sz = sy.
Hence
x=s'st = 5'sy=5"ss"sy = s*ss'sy = s*ss'sx = s*sx = s* sy = 4.

In addition, if x € D, then x = §'sz for some s’ € W (s), and so letting (s's)’ = s's € W(s's)
then
(s's) (s's)x = s'sx =2

and x € Dy as required. Hence * satisfies the conditions of an F—dense action.

In particular, we can take X = S, or indeed any left ideal of S, with (total) action given by
multiplication in S.

A element x of X is said to be effective if D* # (). An E—dense S—act X is effective if all
its elements are effective. An E—dense S—act is transitive if for all z,y € X, there exists
s € S with y = sz. Notice that this is equivalent to X being locally cyclic in the sense
that for all x,y € X there exists z € X,s,t € D* with x = sz,y = tz. We shall consider
transitive acts in more detail in Section 2.2 below.

If X is an F—dense S—act and Y is a subset of X then we shall say that Y is an EF—dense
S—subact of X if for all s € S,y € DXNY = sy € Y. This makes Y an E—dense S—act
with the action that is induced from X and DY = DX NY for all s € S.

Let X and Y be two E—dense S—acts. A function f : X — Y is called an (E—dense)
S—map if for all s € S, x € DX if and only if f(x) € DY and then f(sz) = sf(x).

For example, if Y is an S—subact of an F—dense S—act X, then the inclusion map¢:Y — X
is an S—map. See Theorem 2.12 below for a more interesting example.

Let x € X and define the S—orbit of = as
Sz = {sxz|s € D} U {x}.

If x is effective, then there exists s € D and so for any s’ € W(s) N D**, x = §'sx € {tz|t €
D*} = Sx. However if z is not effective then {sz|s € D*} = @ and Sz = {z}. (Given
the standard notation in semigroup theory it may be more sensible to denote the orbit by
Sz, but we have chosen not to do so in this paper). Notice also that Sz is an E—dense
S—subact of X (the subact generated by x) and that the action is such that, for all tz € Sz
and all s € S, tz € D% if and only if z € DX and in which case s(tx) = (st)x. Then we
have

Lemma 2.3 For all x € X, if x is effective then so is Sx, in which case Sz is a transitive
E—dense S—act. Conversely, if an E—dense S—act is effective and transitive then it has
only one S—orbit.



Proof.  Suppose that x is effective. Then let s € D* so that sz € Sz, and notice that
there exists s’ € W(s) N D**. Therefore ss'(sx) = sz € Sz and hence Sz is effective. If
y = s1z and z = sox then put t = s185, where s € W(sa) N D* toget y =tz (ifx =y # 2z
then take ¢t = sb; if x = 2 # y then take ¢ = s; while if x = y = 2 take t = s’s where
se€ D” s € W(s) N D).

The converse is easy. Note that in this case Sz = {sz|s € D*}. [

It is clear that Sz = Sy if and only if y € Sz and so the orbits partition X.

Recall that Green’s L—relation is given by a£b if and only if S'a = S'b. As is normal, we
shall denote the L£L—class containing a as L.

Proposition 2.4 Let S be an E—dense semigroup with semilattice of idempotents E and
consider S as an E—dense S—act with the Wagner-Preston action as in Example 2.2.

1. Ife € E then S, = ew and Se = L..

2. For all s € S and for all s € W(s), Ss C (ss')w = Sss and Ss C Ls. In addition
Ss = (ss")w for some s’ € W(s) if and only if s is reqular, in which case Ss = Ly and
we can assume without loss of generality that s’ € V (s).

3. For all se € Se (the orbit of €), Sse = (ses’)w for some s’ € W(s) and Sse = L.
4. Forall s € S,s" € W(s) it follows that Sy = (s's)w and Ss' = L.

Proof. 1. If ¢t € S, then there exists t' € W(t) such that e = t'te = t'e. Hence
e=ce(t't) = (tet')t and so e < ¢ and t € ew.

Conversely, if e < t then there exists f,g € E such that e = ft = tg and it is easy to
check that e = et = te. Since e € W(e) then there exist ¢/ € W(e),t' € W(t) such
that e = €’t’ and so t'te = t'tee’t’ = ee’t’ = e and t € D¢ and since te = e then t € S,
as required.

If te € Se then there exists ¢’ € W (t) such that e = t'te. Hence teLe. On the other
hand, if sLe then there exist u,v € S such that us = e, ve = s, from which we deduce
that se = s. If s = e then obviously s € Se, otherwise note that s’ = eu € W(s) and
so since s'se = euse = e then s € D® and s = se € Se and hence the orbit of e and
the L£—class containing e coincide.

2. If s is not an effective element of S then S, = Ss = @. Otherwise, let ¢ € S, so that
there exists ¢’ € W (t) such that s = t'ts and ts = s. Then

ss' =tss’ = t(t'tss’) = (tss't')t
and so t € (ss')w. If rs € Ss then there exists ' € W(r) such that s = r'rs and so

rsLs and Ss C L.

If (ss')w C Ss then in particular ss’ € S; and so s’ € D*. Hence there exists s €
W (s") such that s = s"*s’s and so s = s"* € W (s') which means that s is regular and
s’ € V(s). Conversely, if s is regular then there exists s’ € V(s) and so ss’ € S;.
Hence (ss')w C Ss since Ss is closed. In this case, since £ is a right congruence, then
for any s’ € V(s)

ts € Ss «= t€ D¥ = tc D% <« tss' € Sss' <= tss'Lss <= tsls

Hence Ss = L.



3. This follows from part (2) since e = s’se for some s’ € W (s) and so se is regular.

NED

4. Since s’ is regular then from part(2) there exists s € V(s') such that Sy = (s's™)w
and Ss’ = Ly. But from Lemma 1.4 (4), s = ss’s and the result follows.
L]

Let € X and set E* = EN D®. In analogy with group theory, and following [5], we shall
say that an E—dense S—act X is locally free if for all x € X, S, = (E®)w.

Theorem 2.5 Let S be an E—dense semigroup with semilattice of idempotents FE and let
X be an E—dense S—act. Then X is locally free if and only if for oll x € X,s,t € D¥,
whenever sx = tx there exists e € S, such that se = te.

Proof.  Suppose that S acts locally freely on X and that sz = tx for some x € X, s,t €
D*. Then there exists s’ € W(s) with s'¢ € S, and so there exist f,g € E,e € E* with
(s't)g = f(s't) = e. Since e € W(e) then there exist t' € W(¢),s™ € W(s'), f' € W(f) with
e =t's™ f'. Hence since ge = eg = e, t'te = e¢ and ss’'s™* = s’* then

se =sfs'tt's™ f' = tt'sfs'tt's™ f' = tt'ss’tgt' s [ = tt'tgt's™* f = tt'tge = te.

Conversely, suppose that s € S, so that sx = x. Then there exists s’ € W (s) such that sz =
s'sz. By assumption there exists e € E* such that se = s'se = es’s. But ses’ = es’'ss’ = es’
and so se = (ses’)s € E* and hence s € (E*)w and X is locally free. ]

2.1 Graded actions

Let S be an E—dense semigroup with semilattice of idempotents E. We can consider E as an
E—dense S—act with action given by the Munn representation on E. This is an important
E—dense act and is related in some respects to the Wagner-Preston action on S. In more
detail, let e € E and let [e] denote the order ideal generated by e. This is the set

[e] ={seS|s<e}={se€ FEls=es=se} =¢kE.

The final equality is easy to establish on observing that [¢] C E (see [13, Lemma 2.1]).

Lemma 2.6 Let S be an (E—dense) semigroup with semilattice of idempotents E. Then
for alle € E, [e] =W (e).

Proof. If s € [e] then s = es = se and so ses = s> = 5. Hence [e¢] C W(e). Conversely,
if s € W(e) then ses = s and so es,se € E. Hence s = ses = seces € E. Consequently,
s=se=es € [e] and so [e] = W (e). [

The action of S on E is given as follows. For each s € S define Dy = Uy ey () [s's] and for
each x € Dy C F define an action sxz = sxs’ where = € [s's] with s’ € W (s). Notice that if
x € [s*s]N[s's] and &, s* € W(s) then z = §'sx = zs's and © = s*sx = xs*s. Consequently,

sxs’ = sxs*ss’ = ss'sxs* = sxs*.

So the action is well-defined. If € Dy then x < (st)'(st) for some (st)’ € W(st). Since,
by Lemma 1.1, W(st) = W (¢t)W(s) then there exists s’ € W(s),t’ € W(t) such that z =
t's'stx = xt's’'st. Hence xt't = t'tx = t'tt's’'stx = t's’sz = x and so x € Dy.

In addition s's(tzt’) = (tat’)s’s = tat's'stt’ = tat’ and so t x x € D;.



Conversely, suppose that € D, and ¢ *x x € Dy so that x = t'tz = xtt for some t' € W (%)
and that tzt’ = §'stxt’ = tat’s's for some s’ € W(s). Then

xt's'st =t's'ste = t's'stat’'t =t'txt't =
and so x € Dg;.

Now, if € Dy, then for some (st)’ € W(st),s' € W(s),t' € W(t) we have
(st) xx = (st)z(st) = stat's’ = s (tat’) = s * (t x ).

If sxx = sxy then © = §'sx = xs's,y = s*sy = ys*s and sxs’ = sys™ for some ¢, s* € W (s).
Hence x = s'sxs’s = s'sys*s and so x < y. Dually y < z and so z = y.

Finally, if 2 € D, then there exists s’ € W (s) such that z = s'sx = xs’s. Since s's € W(s's)
then it easily follows that x € Dy . Consequently we have established that F is an EF—dense
S—act with action given as above.

Notice that for e € E, DF = Ugew (e [€’e], but since e € W(e) and W (e) = [e] we deduce
that DF = [e¢]. We shall require this fact later.

Let X be an E—dense S—act. Following [17] we say that the action is graded if there exists
a function p : X — E such that for all e € E, D, = p~1([e]), and refer to p as the grading.

Lemma 2.7 Let S be an E—dense semigroup with semilattice of idempotents E, and X a
graded E—dense S—act with grading p. Then X is effective and for all x € X, p(x) is the
minimum idempotent in Sy.

Proof.  Suppose that X is graded with grading p : X — E and let x € X. Then as
z € p~!([p(x)]) = Dy for all 2 € X it follows that X is effective. Notice also that
p(x) € S, N E. Suppose that there exists e € S, N E. Then z € D, = p~!([e]) and so
p(z) € [e]. Hence p(x) < e as required. [

The following is fairly clear.

Proposition 2.8 Let S be an E—dense semigroup with semilattice of idempotents E, and
X a graded E—dense S—act with grading p : X — E. Then X 1is locally free if and only if
forallz e X, S; = p(z)w.

Conversely, if X is an E—dense S—act with the property that for all x € X there exists
e, € E with S; = eyw, then X is locally free and graded with grading p : X — E given by
p(z) = ey.

Proof.  Suppose that X is locally free. If s € S, = (E®)w then there exists e € E* such
that e < s. Then since e € S, it follows that p(z) < e < s. On the other hand, it is clear
that p(z)w C (E®)w C S, and so S, = p(z)w.

On the other hand, if S, = p(z)w then clearly S, C (E*)w. But (E*)w C S, and so X is
locally free.

Conversely, from the given condition and Lemma 2.1, we see that
(E®)w C S, = (ez)w C (B®)w
and so X is locally free. In addition, for any e € E,
pril([e])@)p(x)§e<:>ex§e(:>e€emw<:>665x<:)x€De,

and so p is a grading for X. |



It follows from Lemma 2.7 that the grading function p is unique. It also follows that if p(x)’ €
W (p(z)) N DP®? then p(z)'p(z) € S, and so p(x) € S,. Consequently p(z)p(z)’ € S,.
Moreover p(x) < p(z)'p(z), p(z)p(x) from which we easily deduce that p(x) = p(z)'p(z) =
p(z)p(x)’. But then p(z)" = p(z)'p(z)p(x)" = p(x)p(z)" = p(z).

Lemma 2.9 Let S be an E—dense semigroup with semilattice of idempotents E and X a
graded E—dense S—act with grading p. Then for x € Dy, if s's = p(x) for s’ € W(s) then
ss’ = p(sx).

Proof.  Suppose that s's = p(z). Then z € Dy s and so x € Dy. In addition, sz € Dy and
so ss’ € Sg, which means that p(sz) < ss’ by Lemma 2.7. Now s's = s'ss’s > s'p(sx)s (since
E is a semilattice). But since s'p(sz)s € Sy N E then by Lemma 2.7, p(z) = s's = s'p(sz)s
and so ss’ = sp(z)s’ = ss'p(sx)ss’, or in other words ss’ < p(sz). But as ss’ > p(sz) then
p(sx) = ss’ as required. m

Corollary 2.10 Let S be an E—dense semigroup with semilattice of idempotents E and X a
graded E—dense S—act with grading p. Let s € S and x € Ds. Then for all s € W (s)ND**,
p(sz) = sp(x)s.

Proof. Let t = sp(z) and let s’ € W(s) N D**. Then t' = p(z)s’ € W(sp(z)) = W(t).
Hence 't = p(z)s'sp(z) = s'sp(z) = p(x) as s's € S,. In addition, tx = sp(x)r = sz and so
by Lemma 2.9, p(sx) = p(tx) = tt’ = sp(x)p(x)s’ = sp(x)s’ as required. L]

Proposition 2.11 (Cf. [17, Proposition 1.1]) Let S be an E—dense semigroup with semi-
lattice of idempotents E and X a graded E—dense S—act with grading p and let s € S. Then

Ds =Uyew(o P~ ([8's]) and sX = {szlx € D} = U, ew (s p~ ([s5])-
Proof. Letse€ S,z € Dy,s' € W(s)ND**. Then z € Dy, = p~1([s's]) and so

Ds c Us’GW(s)p 1([3/8]) - DS'

/

Since p(sz) = sp(x)s’ = (sp(x)s’)(ss’) = (ss')(sp(x)s’) < ss’ then p(sz) € [ss'] and so
sz € p~1([ss’]). On the other hand, if y € p~!([ss']) = Dy then y = ss'y = sz where
x = s'y. Hence sX = Uy ' ([55]): n

In the following Theorem, recall that E is an EF—dense S—act with action given by the
Munn action, s * e = ses’, with e € [s's], s’ € W (s).

Theorem 2.12 Let S be an E—dense semigroup with semilattice of idempotents E and X
an E—dense S—act. The following are equivalent.

1. X is a graded E—dense S—act,

2. there exists an E—dense S—map f: X — FE,

3. X is an effective E—dense S—act and for all x € X, S, contains a minimum idempo-
tent.

Proof. (1) = (2). Ifz € DX then from Corollary 2.10, for all s € W (s)ND**, p(sz) =
sp(x)s’ = s p(x) and p(z) € Uy ey (s)[s's]. Hence p(z) € DE. Conversely, if p(x) € DF
then p(z) € Uy e (s)[s's] and so there exists s’ € W(s) such that z € p~Y([s's]) € DX. In
addition s * p(x) = sp(x)s’ = p(sz) and it follows that p is an S—map.
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(2) = (3). Suppose that X is an S—act with an E—dense S—map f : X — E and let
2 € X. Then as f(x) € D}E(m), it follows that x € D;((I) and X is effective. Notice also that

f(z) € S,NE. Suppose then that there exists e € S, NE. Then z € DX so f(z) € DF = [¢]
and so f(x) < e as required.

(3) = (1). If X is an effective E—dense S—act and for all z € S, S, contains a minimum
idempotent, say e,, then define a function p : X — E by p(z) = e,. Suppose then that
e€ Eand x € DX. Then e € S, N E and so p(x) < e. Hence p(z) € [e] or in other words
z € p~Y([e]) and so DX C p~!([e]). On the other hand, if x € p~!([e]) then p(x) € [e] and
so p(z) = p(z)e and since © € Dy, then x € D, as well. Hence D, = p~!([e]) and p is a
grading. [ ]

It is easy to check that F is a graded E—dense S—act with grading 1p : £ — E, the identity
function. The following is clear.

Corollary 2.13 If X is an effective E—dense S—act and E is finite then X is graded.

2.2 Transitive S—acts

An F—dense S—act is called indecomposable if it cannot be written as the coproduct (i.e.
disjoint union) of two other F—dense S—acts. In particular, a transitive S—act is easily seen
to be indecomposable. Conversely, if X is indecomposable, then suppose that Y = X \ Sz #
@ for some r € X. Then Y cannot be a subact of X as X is indecomposable, so there
exists y € Y,s € S with sy € Sz and hence y € Sz, a contradiction. Therefore X = Sz is
transitive. The transitive S—acts are therefore the ‘building blocks’ of E—dense S—acts. In
this section, we restrict our attention, in the main, to those E—dense semigroups where F
is a semilattice.

Suppose that S is an E—dense semigroup and that H is a subsemigroup of S. If for all
h € HW(h)NH # @ then we will refer to H as an E—dense subsemigroup of S. For
example, if £ is a band then E is an E—dense subsemigroup of S.

Lemma 2.14 Let S be an E—dense semigroup with semilattice of idempotents E and let H
be an E—dense subsemigroup of S. Then Hw is an E—dense subsemigroup of S.

Proof.  Suppose that z,y € Hw so that there exist a,b € H such that a < z,b0 < y. In
addition, there exists o’ € W(a) N H,b' € W(b) N H. Hence there exists e, f, g, h € FE such
that a = ze = fz,b = yg = hy. Let 2’ € W(z), f' € W(f),y € W(y),h' € W(h) be such
that o' =2/ f' € W(a),b' = y’'h’ € W(b). Then, bearing in mind that f',h’ € E, we deduce
that

(zy)(y'D'ha' f' fy) = (ayy'B'ha [ ) (wy) =
zyy'h'ha' ' fahy = zhyy' W'’ f' fehy =
fxhyy' W 2’ f' fxhy = abb'a’ab € H

and so zy € Hw and Hw is a subsemigroup of S. Now suppose that z € Hw so that there
exists h € H and e, f € E such that h = ex = xf. Suppose also that b’ € W (h) N H so that
there exists 2’ € W(x), f' € W(f) such that h’ = f'z’. Then since f' € W(f) = [f],

(xffa) = (@zvff ' = ffa'aa’ = fla' =W e H
and so 2’ € Hw and Hw is an E—dense subsemigroup of S. [ ]

Lemma 2.15 Let S be an E—dense semigroup with semilattice of idempotents E and let
H be an E—dense subsemigroup of S. Let x,y € S,2’ € W(x),y € W(y),e € E. Then if
r'ey € Hw then 'y € Hw.
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Proof. Let z,y € S,2’ € W(x),y € W(y),e € E and note that by Lemma 2.14, Hw
is an F—dense subsemigroup of S. By assumption there exists f,g € E,a € H such that
a = (z'ey)f = g(z'ey). Since there exists a’ € W(a) N H then there exists f' € W(f),y €
W(y),e' € W(e),z"” € W(x') such that o’ = f'y’e’z”. Consequently
ad'a =2'eyff'y'e a2 eyf =
xlyff/y,ee/x//xleyf — z/y(]c/y/611,//:17/6,!!.}(') —

1.0 1

aeyff'fy'eex’z'y = (x’eyf yer )x’y
and so ad’a < 2’y and 2’y € Hw as required. [

Proposition 2.16 Let S be an E—dense semigroup with semilattice of idempotents E and
let H be an E—dense subsemigroup of S. Then the following are equivalent

1. H is w—closed in S;
2. H is unitary in S;
3. H is wa—closed in S.

Proof. (1) = (2). Suppose that H is w—closed in S and suppose that hs = h; for
some s € S, h,hy € H. Then there exists h’ € W(h)NH,h} € W(hy1) N H and so there exist
s’ € W(s),h* € W(h) such that h] = s'h* € W(hs). Then

s(s'h'hh*hs) = (ss'hW'hh*h)s = W' hss'h*hy = h'hihih, € H

and so s € Hw = H. Consequently H is left unitary in S. The right unitary property
follows in a similar way.

(2) = (3). Suppose H is unitary in S and that s >a¢ h for h € H. Then there
exist z,y € S with h = xs = sy,xh = hy = h. Let ¥ € W(h) N H and notice that
hhyh'h = Whi'h = h'h € H. Therefore y € H and so s € H and H is wa—closed in S.
(3) = (1). As H C Hw C Hw then this is clear. [

In view of the above result, we shall simply say that a set A is closed if it is w—closed.

Theorem 2.17 Let S be an E—dense semigroup and X an E—dense S—act. For allx € X,
S, is either empty or a closed E—dense subsemigroup of S.

Proof.  Assume that S, # O. If s,t € S, then & = sz = s(tx) = (st)z and so S, is a
subsemigroup. Also sx = x implies that z = s’z for any s’ € W(s) N D** and so S, is an
E—dense subsemigroup of S. Let s < h with s € S,. Then there exist e, f € F such that
s = he = fh. Consequently e € D* and h € D** = D” and so hx = hex = sx = x which
means that h € S,. Hence S, is w—closed and so closed. ]

We briefly review Schein’s theory of partial congruences when applied to E—dense semi-
groups which have a semilattice of idempotents (see [1, Chapter 7] or [7, Chapter 5] for
more details of the case for inverse semigroups).

Let T C S be sets and suppose that p is an equivalence on T. Then we say that p is a partial
equivalence on S with domain T'. It is easy to establish that p is a partial equivalence on S
if and only if it is symmetric and transitive. If now T is an F—dense subsemigroup of an
E—dense semigroup S and if p is left compatible with the multiplication on S (in the sense
that for all s € S, if (u,v) € p then either su,sv € T or su,sv € S\ T and (su,sv) € p in
the former case) then p is called a left partial congruence on S and the set T'/p of p—classes
will often be denoted by S/p.
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Theorem 2.18 Let H be a closed E—dense subsemigroup of an F—dense semigroup S and
suppose that E is a semilattice. Define

g ={(s,t) € S x S|Fs' € W(s),s't € H}.
Then wy is a left partial congruence on S and the domain of Ty is the set
Dy ={s € S|3s' e W(s),s's € H}.

The (partial) equivalence classes are the sets (sH)w for s € Dyg. The set (sH)w is the
equivalence class that contains s and in particular H is one of the wy—classes.

Proof. Tt is clear that mp is reflexive on Dp. First, if there exists ' € W(s) such that
s't € H then s'ss’'t € H and so since H is unitary, s's € H. Suppose then that (s,t) € 7.
Then there exists s’ € W(s),t’" € W(t) such that s's,t't,s't € H. Let t* € W (t),s™* € W(s')
be such that t*s™ € W (s't) N H. Then let z = t's and 2’ = (s't)(t't) € W(z) so that
™ = ({t't)(t*s™*) € W(2') N H. By Lemma 1.4 z’* = (¢'t)2’* < z and so t's = 2 € H and
hence 7y is symmetric.

Now suppose that (s,t), (t,7) € . Then there exists s’ € W(s),t' € W(t),r € W(r) such
that s's, s't, t't,t'r,r'r € H. Consequently

(s'r)(r'tt'ss'r) = (s'rr'tt's)(s'r) = s'tt'rr'ss'r = $'tt'rr'r € H

and so s'r € Hw = H and 7y is transitive.

Suppose that (s,t) € 7y and that r € S and suppose further that rs,rt € Dg. Then there
exists s’ € W(s),t’ € W(¢) such that s's,t't,s't € H. Further, there exists s* € W(s),t* €
W(t),r',r* € W(r) such that s*r'rs,t*r*rt € H. From Lemma 1.4, s*ss’ € W(s) and
so (rs)(rt) = s*ss'r'rt = s*r'rss't € H. Hence (rs,rt) € 7y and 7y is a left partial
congruence on S.

Now suppose that s € (tH)w where t't € H. Then there exists h € H such that th < s and so
there exists e, f € E such that th = se = fs. Hence t'th =t'se =t'fs = t'tt' fs = (' ft)t's
and so t'th < t's and t's € Hw = H. Consequently s € [t]r,. On the other hand, if
$ € [t]xy then there exists s’ € W(s),t’ € W(t) such that s's,t't, s't € H. Hence there exists
t* € W(t),s™ € W(s') such that t*s™* € W(s't) N H. Now by Lemma 1.4, t£*s™* < s and
hence s € (tH)w.

Finally, if s € Dy then there exists s’ € W(s) such that s's € H and so s(s's) = (ss')s € sH
and hence s € (sH)w. In particular, for all hy,hy € H we see that hymghy and so H =
Hw = (hH)w for all h € H is an equivalence class. |

The sets (sH)w, for s € Dy, are called the left w—cosets of H in S. The set of all left
w—cosets is denoted by S/H. Notice that (sH)w is a left w—coset if and only if there exists
s’ € W(s) such that s’s € H. The following is then immediate.

Proposition 2.19 Let H be a closed E—dense subsemigroup of an E—dense semigroup S
in which E is a semilattice, and let (aH)w, (bH)w be left w—cosets of H. Then the following
statements are equivalent:

1. (aH)w = (bH)w;

2. amgb that is, there exists b € W(b), b'a € H;
3. a € (bH)w;

4. be (aH)w.
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Lemma 2.20 With H and S as in Theorem 2.18,
1. precisely one left w—coset, namely H, contains idempotents,
2. each left w—-coset is closed,
3. my is left cancellative, i.e. xamwgab implies that awgb,

4. ((st)H)w is an w—coset if and only if (tH)w and (s((tH)w))w are w—cosets and then
(((tH o) o = ((st)H ).

Proof. 1. If e is an idempotent contained in an w—coset then there exists ¢’ € W(e)
with ¢’'e € H. As ¢’e < e then e € Hw = H. As H is an F—dense subsemigroup of S
then for each h € H there exists i’ € W (h)NH and so h’h € H and hence E(H) # .

2. This is clear.

3. Suppose that (xza,zb) € gy so that there exists (za)’ € W (za) such that (xa) (xb) €
H. Then there exists 2’ € W(z),a’ € W(a) such that a’z’zb € H. It follows from
Lemma 2.15 that a’b € H. Hence amgb.

4. Suppose that ((st)H)w is an w—coset, so that there exists (st)’ € W(st) such that
(st)'(st) € H. Then there exist s’ € W(s),t’ € W (t) such that ¢'s’ = (st)’. Since
t's'st € H and H is closed then it follows from Lemma 2.15 that 't € H and so
(tH)w is an w—coset. If z € (s((tH)w))w then there exists y € (tH)w such that
sy < x and there exists h € H such that th < y. Hence there exist idempotents
e1, ea, f1, fo such that sy = e;x = «f; and th = esy = yfo. Now let ' € W(h) so
that h't’ € W(th) = W(yf2) and so there exists fi € W(f2) and y' € W (y) such that
Wt = fly'. But y's’ € W(sy) = W(zf1) and so there exist fj € W(f;) and 2’ € W(x)
such that y's’ = f{z’. Hence

z(frfofofi frfox'x) = (xfifafofi frfon’)x
= sthfyfiz'zfifa = st(hh/'t's'sth) € (st)H

and so z € ((st)H)w.

On the other hand, suppose that = € ((st)H)w so that there exists e, f € E,h € H such
that ex = 2 f = sth. Then s(th) < zand th € tH C (tH)w and hence z € (s((tH)w))w.

Conversely, if (tH)w and (s((tH)w))w are w—cosets then as t € (tH)w it follows
that st € s((tH)w) C (s((tH)w))w. Which means that (s((tH)w))w is the w—coset
containing st and so equals ((st)H)w.

L]

From Lemma 2.20 we can easily deduce the following important result, which provides a
converse for Theorem 2.17.

Theorem 2.21 If H is a closed E—dense subsemigroup of an E—dense semigroup S with
semilattice of idempotents E then S/H is a transitive E—dense S—act with action given by
s+ X = (sX)w whenever X,sX € S/H. Moreover, it is easy to establish that Sp., = H.

Proof. Let X = (rH)w be an w—coset and suppose that s,t € S and that X € Dg,.
Then by Lemma 2.20, ((st)X)w = (st(rH)w)w is an w—coset and

(st) - X = ((st) X)w = ((str)H)w =s - (t - X).
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In addition if s- X = s-Y then (sX)w = (sY)w and so by Lemma 2.20 X =Y. Now
suppose that X € D,. We are required to show that there exists s’ € W (s) N D*¥X. Suppose
then that X = (rH)w so that s - X = ((sr)H)w. Then there exists (sr)’ € W(sr) such that
(sr)(sr) € H. Hence there exist s’ € W(s),r" € W(r) such that r's’sr € H. Consequently,
r's'(ss's)s’sr € H and since 1's'(ss’s) € W(s'sr) then there exists (s'sr)’ € W(s'sr) such
that (s'sr)'(s'sr) € H and so ((s'sr)H)w is an w—coset of H and s’ € W(s) N D*X as
required.

If (sH)w and (tH )w are w—cosets then there exist s’ € W (s),t’ € W (t) such that s's,t't € H.
Now as s'(ss’s)t! = s'st’ € W(ts's) and as s'st'ts’s = t'ts's € H then ((ts’s)H)w is an
w—coset. Moreover, as (ts's)t't = tt'(ts’s) € tH then ts's € (tH)w and so (tH)w =
((ts's)H)w = (ts') - ((sH)w) and S/H is transitive.

Finally Sg,, = {s € S|(sH)w = Hw}. Hence for s € Sg,,s € Hw = H as required. ]

The converse of Theorem 2.21 is also true.

Theorem 2.22 Let S be an E—dense semigroup with semilattice of idempotents E, let X
be an effective, transitive E—dense S—act, let x € X and let H = S,. Then X is isomorphic
to S/H. Additionally, if K is a closed E—dense subsemigroup of S and if X is isomorphic
to S/K then there exists x € X such that K = S,.

Proof. Let y € X and notice that since X is transitive then there exists s € S such that
y = sz. It then follows that there exists s’ € W(s) N D** such that s's € S, = H. Moreover
if y = tx for some t € S then sz = tx and so s't € H and hence (sH)w = (tH)w. Therefore
we have a well-defined map ¢ : X — S/H given by

P(y) = (sH)w.

Since ¢(sx) = (sH)w for all (sH)w € S/H then ¢ is onto. If (sH)w = (tH)w then s't €
H = S, and so sz = tx and ¢ is a bijection. Finally, suppose ¢(y) = (sH)w and t € S.
Then y € Dy if and only if t € DY if and only if ts € D7 if and only if there exists
(ts)" € W (ts) such that (ts)'(ts) € S, = H if and only if ((¢s)H)w is an w—coset if and only
if ¢(y) = (sH)w € D;. In this case it is clear that ¢(ty) = té(y) and ¢ is an isomorphism.

By assumption there is an isomorphism 6 : S/K — X. Let z = (Kw) so that sz = 0((sK)w)
for all s € Dg. Notice also that since 6 is an S—map then s € D* if and only if s € Dg. If
s € S, then §(Kw) = 6((sK)w) and so s € K as 6 is an isomorphism. On the other hand,
if s € K then sz = 0((sK)w) = 0(Kw) = x and so s € S, as required. [

Recall that L. denotes the L—class of S containing e and that S is an F—dense S—act with
respect to the Wagner-Preston action.

Theorem 2.23 Let S be an E—dense semigroup with a semilattice of idempotents E and
let X be a locally free, transitive, graded E—dense S—act with grading p. Then there exists
e € E such that X =2 Se = L,. Conversely, if e € E then the orbit Se of e in the E—dense
S—act S (with the Wagner-Preston action) is a locally free, transitive, graded E—dense
S—act.

Proof. If X is transitive then X = Sz for some (any) x € X. Using a combination of
Theorem 2.21, Proposition 2.8 and Proposition 2.4, we deduce

X =8/5, = 8/p(x)w = S5/Spwm) = Sp(x) = Ly(y)-

Conversely, the orbit Se is clearly a transitive F—dense S—act. By Proposition 2.4, S;. =
(tet’)w and so by Proposition 2.8, Se is locally free and graded with grading p : Se — E
given by p(te) = tet’. [
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Lest X be a graded S—act with grading p and let z € X. If p(z) € D? then there exists
s’ € W(s) such that p(z) = s’'sp(x) and so it follows that x € DX. Conversely, if z € DX
then there exists ' € W(s) N D** and so p(z) < s’s. Consequently p(x) = s'sp(x) and
p(z) € DF. Hence the map Sp(x) — Sz given by sp(x) — sz is an S—map which is clearly
onto. We have therefore demonstrated

Proposition 2.24 Let S be an E—dense semigroup with a semilattice of idempotents E
and let X be a graded E—dense S—act. Then X is a quotient of a locally free graded S—act.

The question now arises as to when two transitive E—dense S—acts are isomorphic.

Lemma 2.25 Let H be a closed E—dense subsemigroup of an E—dense semigroup S with a
semilattice of idempotents E. Let (sH )w be a left w—coset of H so that there exists s' € W(s)
such that s's € H. Then sHs" C S(sp).-

Proof. Let h € H and consider (shs’) - ((sH))w. First notice that (shs’s)Hw is an
w—coset as for any b/ € W(h) N H, s'sh’s’ € W(shs's) and (s'sh’s")(shs’s) € H. So
(shs') - ((sH))w = ((shs's)H)w = (sH)w and so sHs" C S(p)e- [

If H and K are two closed F—dense subsemigroups of an E—dense semigroup S with
semilattice of idempotents F, then we say that H and K are conjugate if S/H = S/K (as
E—dense S—acts).

Theorem 2.26 Let H and K be closed E—dense subsemigroups of an E—dense semigroup
S with semilattice of idempotents E. Then H and K are conjugate if and only if there exist
s € S,s € W(s) such that

s’Hs C K and sKs' C H.

Moreover, any such element s necessarily satisfies ss' € H,s's € K.

Proof.  Suppose that H and K are conjugate. Then by Theorem 2.21 there is an w—coset,
(sK)w say, such that S;x), = H. So by Lemma 2.25 there exists s' € W(s) such that
s's € K and sKs' C H. Hence ss’ € H. In addition, for each h € H, (hsK)w = (sK)w and
so hsmgs. Consequently s’hs € K and so s'Hs C K as required.

Conversely suppose there exist s € S, s’ € W(s) such that s’ Hs C K and sKs' C H. Then
ss’'Hss' C sKs' C H. If e € E(H) then ss’ess’ = ess’ = ss'e € H and since H is unitary
in S then ss’ € H from which we deduce that s’s € K. Therefore (sK)w is an w—coset of
K in S. Now suppose that ¢ € S(sx),. Then ((ts)K)w = (sK)w and so tsmxs. Therefore
s'ts € K and so ss’tss’ € H and since H is unitary in S we deduce that ¢ € H. Conversely
if t € H then s'ts € K and so smkts or in other words ((ts)K)w = (sK)w and t € S(sx)e-
Hence H = S(sk),. Define ¢ : S/H — S/K by ¢((tH)w) = (tsK)w and notice that ¢ is a
well-defined morphism. To see this note that there exists t' € W (t) with ¢'t € H. Tt follows
that s'(t't)s € K and since s't’ € W (ts) then ((ts)K)w is an w—coset. If (tH)w = (rH)w
then there exists ' € W(r) such that r'r,r't € H = S k). and so (rsK)w = (tsK)w.
Finally, as H = S(sk)., then ¢ is injective and as S/K is transitive then ¢ is onto and so an
isomorphism as required. [ ]

In fact we can go a bit further

Theorem 2.27 Let H and K be closed E—dense subsemigroups of an E—dense semigroup
S. Then H and K are conjugate if and only if there exist s € S,s" € W(s)

(§Hs)w =K and (sKs')w = H.

Moreover, any such element s necessarily satisfies ss' € H,s's € K.
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Proof.  From Theorem 2.26, if H and K are conjugate, then there exists s € S, s’ € W (s)
such that
s’Hs C K and sKs C H.

Now it is clear that (s’ Hs)w C K solet k € K, k' € W(k)NK and let | = skk'ks’ € H. Now
put m = s'ls = 'skk’ks’s € s’ Hs and notice that m < k and so k € (s'Hs)w as required. m

If ss’ € H then s'Hs is an E—dense subsemigroup of H. To see this note that it is clearly
a subsemigroup and that s'h'ss’s € W(s'hs) N s'Hs for any b’ € W(h) N H. In particular
from Theorem 2.17 we immediately deduce

Proposition 2.28 Let S be an E—dense semigroup with a semilattice of idempotents E
and let X be an E—dense S—act. Let s € S and x € D,. Then sS.s' is an E—dense
subsemigroup of S for any s’ € W(s) N D**.

Theorem 2.29 Let S be an E—dense semigroup with semilattice of idempotents E and let
X be an E—dense S—act. Let s € S and x € Ds. Then S, and S, are conjugate.

Proof. Since Sz = Ssx the result follows from Theorem 2.22. In fact, we have that
(8Sys")w = Ssy for any s € W(s) N D, n

If H is a closed F—dense subsemigroup of an E'—dense semigroup S with semilattice of
idempotents E, then we say that H is self-conjugate if H is only conjugate to itself.

Proposition 2.30 Let H be a closed E—dense subsemigroup of an E—dense semigroup S
with semilattice of idempotents E. Then H is self-conjugate if and only if for all s € S and
all s € W(s) such that s's € H then sHs' C H.

Proof. If s € S and s’ € W(s) with s's € H then by Lemma 2.25, sHs" C S(p),. By
Theorem 2.22, S, )., is conjugate to H and so since H is self-conjugate, sHs" C H.

Conversely, suppose that K is a closed F—dense subsemigroup of S and that K is conjugate
to H. Then by Theorem 2.21 there is an w—coset, (sH )w say, such that S, ), = K. Hence
there exists s’ € W(s) such that s's € H. If k € K then stgks and so s'ks € H and in
addition, since s's € H and sHs' C H then ss’ = s(s's)s’ € H. Hence s(s'ks)s’ € sHs' C H
and so K C H as H is unitary in S. Since ss’ = (ss's)s’ and since ss’'s € W(s') then
s'H(ss's) C H and so s'"Hs C H as H is unitary. Consequently, for all h € H, stphs and
SOHQS(SH)WZK. ]

An alternative characterisation of self-conjugacy is given by

Proposition 2.31 Let H be a closed E—dense subsemigroup of an E—dense semigroup S
with semilattice of idempotents E. Then H is self-conjugate if and only if for all s,t €
S, st € H implies ts € H.

Proof. If st € H then there exists t' € W(t),s’ € W(s) such that t's" € W(st) and
t's'st € H. Hence (t't)(t's'st) € H and so 't € H. Since tHt' C H then tt’ € H. But then
ts(tt') = tstt'tt’ = t(stt't)t’ € tHt' C H and so ts € H as H is unitary in S.

Conversely, suppose that s € S,s’ € W(s) with s's € H and let h € H. Then s'(shs’s) =
(s's)h(s's) € H and so shs' = (shs's)s’ € H and H is self-conjugate. L]

If H is self-conjugate then S/H has a richer structure. First notice that
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Lemma 2.32 Let H be a self-conjugate closed E—dense subsemigroup of an E—dense semi-
group S with semilattice of idempotents E. Then Dy is a closed E—dense subsemigroup of

S.

Proof. Let s,t € Dy and s’ € W(s),t' € W(t) with s's,¢'t € H. By Proposition 2.31
tt’ € H and since tt't € W(t') then ¢’ Htt't C H. Then t's’ € W (st) and t's'st = t's'stt't €
t'Htt't C H so that st € Dy. Further, as ss’ € H and as ss's € W(s') then s’ € Dy.
Hence Dy is an EF—dense subsemigroup of S. Now suppose that s < r with » € S so that
there exist e, f € E such that s = re = fr. Hence there exists f' € W(f),r’" € W(r) such
that s’ = ' f’ Consequently, r'rs's = r'rv'f'fr =r'f'fr =s's € H and so r'r € H as H is
unitary in S. Hence Dy is a closed E—dense subsemigroup of S. |

As a consequence we can deduce the following interesting result.

Theorem 2.33 Let H be a self-conjugate closed E—dense subsemigroup of an E—dense
semigroup S with semilattice of idempotents E. Then S/H is a group under the multiplica-
tion

((sH)w)((tH)w) = ((st) H)w.

Proof.  The multiplication given is well defined as if (s;1H)w = (soH)w and (t1H)w =
(toH)w with s1, $2,1,t2 € Dy then there exist s € W(sy),t) € W(¢1) such that sisqe,tits €
H and so by Proposition 2.31 we have tat] € H and s)saotot] € H and so t)s)sate € H.
Hence ((s1t1)H)w = ((s2t2)H)w as required. Multiplication is clearly associative and it is
easy to see that Hw is the identity. It is also clear that (s'H)w € W((sH)w) and so S/H
is an E—dense monoid. Let (sH)w € E(S/H) so that s's> € H. Since s's € H and H is
unitary in S then s € H and so |E(S/H)| = 1. Hence by Lemma 1.6, S/H is a group. =

In particular, if H is self-conjugate and Dy = S then my is a group congruence on S.

Proposition 2.34 Let H be a self-conjugate closed E—dense subsemigroup of an E—dense
semigroup S with semilattice of idempotents E. Then for each s € Dy ps : S/H — S/H
given by ps(X) = (sX)w is a bijection. The map p : Dy — Sym(S/H) given by p(s) = ps
is a semigroup homomorphism with ker(p) = mpy.

Proof. If s,t € Dy then it is clear that ps; = psp: and so p is a homomorphism.
Let X € S/H so that X = (tH)w for some t € Dy. If s € Dy then st € Dy and
s0 ps(X) = (sX)w = ((st)H)w € S/H. In addition there exists s’ € Dy N W(s) and
so 8's € Dy and pys(X) = ((s'8)X)w = ((¢'st)H)w = (tH)w = X. In a similar way
pss'(X) = ((88") X)w = X and so py is the inverse of p;.

If (s,t) € ker(p) then in particular ps(Hw) = pi(Hw) and so (s,t) € mg. Conversely
if (s,t) € g then (sH)w = (tH)w and so since S/H is a group then for any r € Dy,
(srH)w = (trH)w or in other words (sX)w = (tX)w for any X € S/H. Therefore (s,t) €
ker(p). [

3 Cancellative acts

In this section we consider the (total) action of semigroups on sets, focussing mainly over
E—dense semigroups. The original motivation for this section came from the observation
that many modern cryptographic applications make implicit use of the inherent difficulty
of solving the discrete log problem in groups. In many cases, it is possible to view the
encryption process in terms of a suitable group action. As a simple example, let G = U,_;
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be the group of units of the ring Zp,l and X = Zp, the ring of integers modulo a prime p.
For n € G,x € X define
n-x=z".

This is a group action of G on X, which is in fact free. We can think of x as the ‘plaintext’
and n - x as the ‘ciphertext’, with n as the ‘key’. From a cryptographic persepective, two of
the more important properties of this action are

n-z=n-y=z=yand (VneG)3n' € G)n - (n-z) ==z.

The first property says that ‘decryption’ is feasible and the second that we can decrypt using
the same type of group action, albeit with a potentially different key. Noticing the obvious
similarity with E—dense actions of EF—dense semigroups, we consider what is required in
order to extend some of the material of Section 2 to total semigroup actions. We shall see
that the use of such actions in cryptographic applications is probably rather limited.

Let S be a semigroup and X a (total) left S—act and suppose that the action on X is
cancellative in the sense that for all s € S and all z,y € X if sx = sy then x = y. Let
K(s,xz) = {t € S|ts € S;} and notice that we require that the stabilizers S, be left dense
in S in order to guarantee that K(s,z) # O for all s € S. For a cancellative act, the map
x + sx is injective and the set K (s, ) provides the ‘keys’ with which to invert this map.
We provide characterisations of the left dense and cancellative properties, and derive use-
ful descriptions of the key set K(s,x). Finally we consider E—dense semigroups that are
also E—unitary and describe a general construction of suitable cancellative acts where the
semigroups have an arbitrarily, but finite, number of idempotents.

Proposition 3.1 Let S be a semigroup and X an S—act, not necessarily cancellative. The
following are equivalent;

1. for all x € X, S, is left dense in S,

2. for all x € X, Sz is a transitive S—act and x € Sz,

3. every locally cyclic S—subact of X is transitive and for all z € X, x € St.

Proof. (1) = (2). For all s,r € S there exists ¢ € S such that tsx = x and so
(rt)sz = rxz. Hence Sz is transitive and = € Sz.

(2) = (3). Let Y be a locally cyclic S—subact of X and let 2,y € Y. Then there exists
z € Y such that z,y € Sz and so since Sz is transitive then there exists s € S such that
Yy = sx as required.

(3) = (1). Let x € X so that by assumption € Sz. It is clear that Sx is locally cyclic
and so transitive. Consequently, for all s € S there exists t € S such that ¢(sx) = 2 and S,
is left dense in S. [

The following result is straightforward to prove, but note that in proving (1) = (2) =
(3) = (4) we do not require S to be E—dense.

Lemma 3.2 Let S be an E—dense semigroup and X an S—act. The following are equivalent
1. X is cancellative,
2. forallz e X, ECS,,
3. forallrze X, Fw C S,,
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4. foralls€ S,z € X if s € L(s) then s's € S,.

Note that from property (2), L(s) C K(s,z) for all s € S,z € X. Notice also from property
(4) that if X is a cancellative S—act then for all x € X, S, is left dense in S. So if S is an
FE—dense semigroup, then by Proposition 3.1 all cancellative cyclic acts are automatically
transitive. Therefore the question arises as to how we can construct a cancellative S—act over
an F—dense semigroup. We know the structure of F—dense transitive acts over F'—dense
semigroups and these are automatically cancellative. In fact it is then clear that if S is
FE—dense, a total S—act X is cancellative if and only if it is an F—dense S—act in which
for each s € S, D, = X.

Let S be an EF—dense semigroup, let X be a cancellative S—act and s € S and let s’,s" €
L(s). Then for any € X we see that

se=(s"s)(s'z) = s"(ss'x) = s"x.
As with EF—dense S—acts we have
Lemma 3.3 Let S be an E—dense semigroup and let X be a cancellative S—act. Then for
all z € X, S, is w—closed.
For any = € X, s € S we know that W(s) C L(s) C K(s,x).

Theorem 3.4 Let S be an E—dense semigroup and X be a cancellative S—act with x € X
and s € S.

1. K(s,x) is wp—closed,
2. (W(s))wm C (S:W(8)Ssx) wm C K(s,z),
3. if E is a band then (S;W(s)Ssz)w = K(s,z),
4. if S is an inverse semigroup then K(s,z) = (S’ws_l) w.
Proof. Let S, s and x be as in the statement of the theorem.
1. If t € K(s,z) and if t < r then there exist a,b € S such that t = ar = rb,at = tb = t.
Hence if b’ € W(b) then rsx = r(bb/'sx) = tb'sz = tbb'sx = tsx = x and so r € K(s,z).

2. First, if &' € W (s) then s’ = (s's)s'(ss’) and s's € S, while ss’ € S,,. Now let t € S,
s € W(s) and let r € Ss;. Then (ts'r)(sz) = ts'sz = tx = © and so ts'r € K(s,x)
and the result then follows by part (1).

3. Let t € K(s,z) and note that for any s’ € W(s) and any ¢’ € W(t) it follows that
tss't't € S, W (s)Sse. But ss't’t € E since F is a band and tss’t’ € E since S is weakly
self-conjugate. Hence tss't't <t and so K(s,z) C (SuW(s)Ssz)w.

4. Ift € S, then ts~! =ts 1ss™! € S, L(5)Ss, and so (Sys 1)w C K(s,x). Conversely,
let t € K(s,x) so that tsz = z. Then tss~! € S,s™! and since tss™! < t the result
follows.

In particular, if S is a group then K(s,x) = S,s~! and so |K(s,z)| = |S,|. A group S
is said to act freely on a set X if for all z € X, S, = {1}. Clearly in this case, for each
s,|K(s,x)] = 1. However if the action is not free then |K(s,z)| > 1. Notice also that for
any F—dense semigroup S and for all z € X, Ew C S,. As with F—dense acts, we shall
say that a cancellative S—act X is locally free if for all x € X, S, = Ew. This is a different
definition from the usual concept of freeness in S—acts (see [8]).
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Example 3.5 Let S be an E—dense semigroup with a band of idempotents E and let I be
a left ideal of S. Then I is a locally free S—act.

To see this suppose that s € S,z € I and that sz = x. Then for 2’ € W(z),s’ € W(s)
it follows that sza’s's = za's's € E since E is a band. However, sxz's's = s(xa’s's) =
(sxza’s")s and since za's’'s, sza’s’ € E it follows that s > sza’s’s so that S, C Fw.

The set K (s, z) consists of those elements in S which ‘undo’ the action of s on x. There may
be occasions where we would wish to minimise the size of K (s, z) and so if S is an E—dense
semigroup then we may wish to consider those semigroups for which Fw = E, which in
the case of those E—dense semigroups with a band of idempotents is, by Lemma 1.7, an
E—unitary semigroup. We shall refer to such semigroups as E—unitary dense semigroups.
Notice that in this case, if X is locally free, K (s,x) = {t|ts € S, } = {t|ts € E} = L(s) for
x € X. Note also that by Lemma 1.5, if |L(s)| = 1 then S is a group.

Proposition 3.6 Suppose that S is an E—unitary dense semigroup with a semilattice of
idempotents E and suppose that X is a locally free cancellative S—act. Then for all s €
S,z e X,K(s,x) = (W(s))w.

Proof. By Theorem 3.4, K(s,z) = (EW(s)E)w and by Lemma 1.4, EW (s)E C W(s).
Hence K(s,z) C (W(s))w. But if 8’ <t for some s’ € W(s),t € S then there exist e, f € E
such that s’ = et = ft. Consequently fts = s's € E and so ts € F as S is E—unitary.
Hence (W (s))w C L(s) = K(x,s) and the result follows. [

There have been many results concerning the structure of F—unitary dense semigroups
based on the celebrated results of McAlister ([9], [10]) and we present here a version of
the one first given in [3]. First notice that if S is a semigroup and if 1S is the monoid
obtained from S by adjoining an identity element 1 (regardless of whether S already has
an identity), then S is an E—unitary dense semigroup if and only if 1S is an ! E—unitary
dense monoid. This observation allows us to present the construction for F—unitary dense
monoids, without much loss of generality. We use, for the most part, the terminology of [4].

Let C be a small category, considered as an algebraic object, with a set of objects, Obj C and
a disjoint collection of sets, Mor(u,v) of morphisms, for each pair of objects u,v € Obj C'.
The collection of all morphisms of C' is denoted by Mor C, for each object u € Obj C the
identity morphism is denoted by 0, and composition of morphisms, denoted by p + ¢ for
p,q € Mor C, is considered as a partial operation on Mor C'. Note that, despite the notation,
we do not assume that + is commutative. For each object v € Obj C' the set Mor(u, u) is a
monoid under composition and is called the local monoid of C' at u. We shall say that C' is
locally idempotent if each local monoid Mor(u, u) is a band, and that C' is strongly connected
if for every wu,v € Obj C,Mor(u,v) # Q.

Let G be a group. An action of the group G on a category C, is given by a group action on
Obj C and Mor C' such that

1. if p € Mor(u,v) then gp € Mor(gu, gv),
2. glp+q) =gp+gq for all g € G,p,q € Mor C, (whenever both sides are defined),
3. g0y = Oy for all g € G,u € Obj C.

The action is said to be transitive if for all objects u,v € Obj C there exists g € G, gu = v,
and free if the action on the objects if a free action (i.e. G, = {1} for all u € Obj C). Notice
that if the action is both transitive and free then for each pair u,v € Obj C there exists a
unique g € G with gu = v.
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Now suppose that C' is a strongly connected, locally idempotent category and that the group
G acts transitively and freely on C. Let u € Obj C and let

Cu={(p,9)|lg € G,p € Mor(u, gu)}.

Then C,, is a monoid with multiplication defined by

(p,9)(q,h) = (p+ gq, gh).

Theorem 3.7 ([3, Proposition 3.2, Theorem 3.4]) Let S be a monoid with band of
idempotents E. Then S is E—unitary dense if and only if there exists a strongly connected,
locally idempotent category C and a group G that acts transitively and freely on C' and S is
isomorphic to C,, for some (any) u € Obj C.

Notice that the idempotents of S correspond to the elements of the form (p,1). Also we see
that L((p,g)) = {(q,97') € S} and so |L((p,g))| = [Mor(u, g~ u)|. Consequently we see by
Lemma 1.5 that S is a group if and only if for all g € G, |Mor(u, gu)| = 1. In fact we see
from Lemma 1.6 that in order for G not to be a group we require |E| > 1 (this would not
be true if S is not a monoid).

If we wish to work with E—unitary dense semigroups rather than monoids, we can simply
remove the need for an identity element in Mor(u,u) (see [3] for more details).

The above construction gives us a mechanism to build a suitable F—unitary dense semigroup
S. However we need our S—act X to be a locally free cancellative S—act, so let us revisit
the theory of E—dense S—acts. If E(S) is a finite semilattice, then by Corollary 2.13 every
effective £—dense act is graded and so by Theorem 2.23, X is a locally free transitive
E—dense S—act if and only if X = | JSe; for some idempotents e;, where the action is that
given in Example 2.2. As previously observed, if X is a cancellative total act then it is
automatically reflexive and hence an F—dense act. Consequently, if X is locally free then as
every idempotent acts on e;, we can immediately deduce that for each 7, e; = f, the minimum
idempotent in S. Conversely if f is the minimum idempotent in S then Sf = S/fw is a
locally free transitive cancellative total S—act. We have therefore shown

Theorem 3.8 Let S be an E—dense semigroup with finite semilattice of idempotents E, let
s € S and let f be the minimum idempotent in S. Then X is a locally free cancellative S—act
if and only if X =2 |JSf. In addition, if S is E—unitary then for each x € X, K(s,x) =
(W (s))w.

As an example, let S = G x FE where G is a group and F is a finite semilattice. Let f be
the minimum idempotent in E and note that for s = (g,e) € S, then W (s) = {(g7,¢)|¢’ €
W(e) = [e]} from which we can easily deduce that (W (s))w = {g~'} x E. Consequently
[K (s, )] = |E].
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