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Epigenetic Crossover for Multi-objective Evolutionary Algorithms

by Sizhe Yuen

There are hundreds of different Evolutionary Computation approaches developed to solve
multi-objective optimisation problems. Among these approaches there are only two funda-
mental evolutionary concepts, split between the two main areas of the field: Evolutionary
Algorithms with genetic inheritance, and Swarm Intelligence with cultural inheritance.
Modern evolutionary biology has since continued to study further evolutionary and non-

genetic mechanisms that is relatively unexplored in Evolutionary Computation.

In this thesis, a framework to analyse existing Evolutionary Computation algorithms
is developed, based on evolutionary concepts from the Extended Evolutionary Synthesis.
The gap in epigenetic inheritance is identified through this analysis as an approach with
high potential due to its fast partially-genetic adaptability to dynamic changes in the
environment. Furthermore, a detailed benchmarking suite is used to test and compare
existing Genetic Algorithms and Particle Swarm Optimisation algorithms to determine

their differences and suitability to incorporate a new epigenetic mechanism.

Genetic Algorithms are therefore chosen for epigenetics because the increased diversity
balances the convergence properties of epigenetic fast adaptations. Next, a novel epigenetic
blocking mechanism based on gene silencing is developed and tested. Performance on static
and dynamic multi-objective problems show the improvement the epigenetic mechanism
can make, with improved performance across the duration of the optimisation process.
Further study and comparison of the hyperparameters and a gradient-based approach in-
dicate the mechanism can be both problem and algorithm specific. The choice of blocking
variables with all positive or negative gradients achieve the best general results, and util-
ising different hyperparameters specifically tuned for problems with changing Pareto sets

achieve the best performance.

Finally, the epigenetic mechanism is applied to a real-world voyage optimisation system.
Faster convergence is demonstrated for voyages in calm weather conditions, and savings

on fuel consumption are found for more complex voyages in severe weather conditions.
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Chapter 1

Introduction

1.1 Evolutionary Computation

The idea of applying evolutionary mechanics to algorithms was first proposed by Turing
in the 1950s [188] with a learning machine, drawing parallels between how a machine
could learn with Darwinian evolution and the survival of the fittest. He proposed that
the machine could incrementally improve itself through mutations, receiving punishments
and generating rewards as part of a teaching process. Holland successfully implemented a
Genetic Algorithm (GA) in 1969 [84, 85] which popularised the use of GAs by the 1980s.

Today, the Evolutionary Computation literature is divided between two general fields:

e Evolutionary Algorithms [11] (EA) - Algorithms with a foundation in genetics,
these date back to Turing’s learning machine [188], and include the branches of
Evolutionary Programming (EP), Evolution Strategies (ES), and Genetic Algorithms
(GA). These algorithms generally involve analogies to the genetic mechanisms of

selection, recombination (crossover) and mutation.

e Swarm Intelligence [22] (SI) - Algorithms based on collective intelligence with
patterns of communication and interaction in a population. Swarm Intelligence algo-
rithms cover a wide range of biological inspirations, from animal behaviour algorithms
such as Particle Swarm Optimisation [100] (PSO) and Ant Colony Optimisation [51]
(ACO) as well as more esoteric inspirations such as political anarchy (Anarchic So-

ciety Optimisation [1]).

In Evolutionary Algorithms, candidate individual solutions are represented in the
search space as genotypes, evolving with genetic operators. The algorithms use genetic op-
erators such as mutation and crossover to evolve the solutions through genetic inheritance.
Some EAs use a genotype-phenotype mapping, where the underlying genotype is decoded
into a phenotype candidate solution for evaluation, separating the search space from ob-

jective space. Throughout this thesis, the Evolutionary Algorithms discussed will not
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utilise this mapping unless explicitly stated, and instead there is no encoding process, i.e.
the genotype representation is the same as the candidate solution. In Swarm Intelligence
algorithms such as PSO, there is typically no separate encoding or genotype-phenotype
mapping. Behavioural metaphors such as hunting, foraging, and movement behaviours are
used to iteratively improve the candidate solutions. As the EAs discussed in this thesis
do not use a genotype-phenotype mapping, the two types of algorithms discussed use the

same representation, but different methods of traversing the search space.

As the field developed, Evolutionary Computation methods such as Genetic Algorithms
were found to perform well in more complex optimisation problems with multiple objec-
tives. This led to new methods of solving multi-objective problems with 2-3 objectives that
must be optimised at the same time, from the Pareto-based niching method of NSGA-II
[45] to the mathematical decomposition-based method of MOEA /D [217].

Evolutionary Computation algorithms are typically used to solve optimisation prob-
lems, as they can continue to search and develop solutions iteratively. Multi-objective
optimisation problems involve optimisation on multiple objectives at the same time. Multi-
objective optimisation problems have a wide range of real-world applications, from engi-
neering design and financial modelling, to detailed scheduling [52, 152, 177|. For Evolution-
ary Computation algorithms, multi-objective problems present a challenge to determine
how to assign a fitness value to a solution. Unlike single objective problems, objectives in
a multi-objective problem can contradict one another. Finding a better solution for one
objective may deteriorate the other objective, and it is difficult to define how one solution

may be better or worse than another for all objectives.

1.1.1 Biological analogies

In evolutionary biology, the Modern Synthesis [89] was developed throughout the first
half of the 1900s particularly during the 1930s, combining the ideas of Darwin’s theory of
evolution by natural selection [38] and Mendel’s principles of inheritance [15]. However,
new research into non-genetic concepts suggest that the idea of the Modern Synthesis
should be extended [148, 149] to include the effects such as epigenetics, cultural inheri-
tance, parental effects, and multi-level selection. These effects suggest that both genetic
and non-genetic inheritance have a strong effect on the process of evolution. While the
development of Evolutionary Algorithms can be compared directly to the concepts of the
Modern Synthesis, there have only been small steps to including these new modes of in-
heritance to the field of Evolutionary Algorithms, despite their increasing centrality to

modern evolutionary theory [35].
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1.2 Aim and objectives

The aims of this project are to: identify suitable new concepts in the Extended Evolution-
ary Synthesis for Evolutionary Computation, then to develop and test a new mechanism

based on the identified Extended Synthesis concept of epigenetics.

Due to the faster-than-generational adaptation capabilities of epigenetics, it is hypoth-
esised that the incorporation of epigenetic processes within Evolutionary Algorithms will
enable the algorithms to adapt more effectively to multi-objective optimisation problems,
particularly in dynamic scenarios where the problem or objectives change during the op-
timisation. The new mechanism could demonstrate improved performance in terms of

finding optimal solutions and adapting to dynamic environments.

This will be achieved with the following objectives:

1. Summary of opportunities for Evolutionary Computation from the Extended Evolu-

tionary Synthesis

While the development of Evolutionary Computation algorithms can be compared
directly to the concepts of the Modern Synthesis, there have only been small efforts to
including new concepts from the Extended Evolutionary Synthesis to the field of Evo-
lutionary Computation. A number of popular Evolutionary Algorithms and Swarm
Intelligence algorithms must be analysed to discover which concepts and mechanisms

of current evolutionary biology have been applied, and which have been overlooked.

2. Suitability of Evolutionary Algorithms and Swarm Intelligence algorithms

There are a large number of possible algorithms a new epigenetic mechanism could
be applied to. Notably there are two main classes of Evolutionary Computation
that must be considered: Evolutionary Algorithms, and Swarm Intelligence algo-
rithms. The algorithms are put through a rigorous benchmarking suite to determine
their strengths and weaknesses in performance. The methodology and benchmarking
framework used for testing and comparing the existing algorithms is then followed in

all future performance testing.

3. An epigenetic blocking mechanism

A new epigenetic mechanism is developed based on the research into the Extended
Evolutionary Synthesis. Two base algorithms identified during the benchmarking
work are used to test and evaluate the new mechanism. A further study into hyper-
parameters and dynamic multi-objective problems is performed to show the strengths
and weaknesses of the mechanism, and how it aligns to the expected behaviour and

circumstances of epigenetics in the natural world.
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1.3 Novelty

There are a large number of Evolutionary Computation algorithms in the current liter-
ature, from a multitude of variants of a single Genetic Algorithm, to a host of Swarm
Intelligence algorithms aiming to mimic different animal behaviours. Reviews in the lit-
erature focus on subsections of algorithms such as Genetic Algorithms or Particle Swarm
Optimisation algorithms, detailing their mechanics and approaches, but without linking
these mechanics back to their biological roots. It is difficult to distinguish between the
different algorithms on a fundamental level, especially in the vast number of Swarm In-
telligence algorithms, where each algorithms uses different terms and descriptions for the
same underlying processes. Criticism of this issue has been discussed in the literature
[9, 174], but new algorithms continue to be developed. The literature review in this
project describes the Evolutionary Computation algorithms and their mechanics from an
evolutionary biological perspective, grouping many similar algorithms together under a bi-
ological framework. The algorithms are analysed and key concepts relating to evolutionary

biology are extracted.

The few instances of epigenetic mechanisms and algorithms in the literature have only
focused on simple single-objective problems [30, 146, 178], or miss a key aspect of inheri-
tance [29]. Furthermore they have not been thoroughly tested against multiple algorithms,
and do not take advantage of epigenetics’ adaptability for dynamic environments. The
previous studies demonstrate performance improvements, suggesting the potential of an
epigenetic mechanism despite lacking key epigenetic features. The epigenetic mechanism
developed here can be added on to any existing Evolutionary Computation algorithm,
and is benchmarked against a large number of state-of-the-art static and dynamic multi-
objective test problems. Using many problems with a mixture of different categories of
problems allows the performance to be more accurately measured. Additionally, dynamic
elements to change the hyperparameters of the epigenetic mechanism is tested to show the
best case scenarios for the new mechanism. The epigenetic mechanism is further applied
onto a real-world voyage optimisation system to exhibit improved convergence properties

and optimising shipping routes with reduced fuel consumption.

1.4 Structure of thesis

Chapter 2 frames current Evolutionary Computation approaches in a biological framework,
demonstrating how few of the mechanisms that describe evolution have led to algorithms
inspired by those mechanisms. An analysis on the mechanics used in Evolutionary Algo-
rithms and Swarm Intelligence algorithms show a gap in epigenetic inheritance that is yet

to be explored.

Next, Chapter 3 analyses the differences between current state-of-the-art Genetic Al-
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gorithms and Particle Swarm Optimisation algorithms, the two most popular group of
algorithms within Evolutionary Computation. Comparisons and benchmarks between al-
gorithms in Evolutionary Computation are common, but they are usually done in the
context of using those algorithms to solve a specific problem [159, 175, 215], rather than
comparing algorithms as a whole against many different problems. Their performance is
compared across a range of 97 benchmark problems. The strengths and weaknesses of

each type of algorithm on specific problem categories are shown.

Chapter 4 introduces a new epigenetic mechanism that can be applied to any Evolution-
ary Algorithm based on epigenetic gene silencing with inheritance. Benchmarks problems
for static and dynamic multi-objective optimisation problems are tested on the two most
popular multi-objective Genetic Algorithms to show the performance of the mechanism,

its strengths and its weaknesses.

Chapter 5 delves deeper into testing the parameters of the epigenetic mechanism. The
effects of dynamically changing parameters, gradient calculations to decide on which deci-
sion variables to block, and hyperparameter optimisation are investigated to demonstrate
the best case performances of the epigenetic mechanism on dynamic multi-objective opti-

misation problems.

A real world application of the epigenetic mechanism is then presented in Chapter 6
with a commercial voyage optimisation problem, demonstrating the practical advantages
of an Evolutionary Algorithm with the epigenetic mechanism to save fuel usage and carbon

emissions.

Finally, Chapter 7 concludes the thesis, and points to directions that future work on
epigenetic mechanisms can take to improve on a gradient-based approach, and build an

adaptive and reversible epigenetic mechanism.

1.5 List of publications

The following chapters and sections have been submitted or published:

e Chapter 2:

S. Yuen, T. H. G. Ezard, A. J. Sobey. “Epigenetic Opportunities for Evolutionary
Computation” In: The Journal of Royal Society Open Science 10.5 (2023) 10:221256.
http://doi.org/10.1098 /rs0s.221256

e Section 5.2:

S. Yuen, T. H. G. Ezard, A. J. Sobey. “The effect of epigenetic blocking on dy-
namic multi-objective optimisation problems” In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO ’22. Pages 379 — 382.
https://doi.org/10.1145/3520304.3529022






Chapter 2

Epigenetic opportunities for

Evolutionary Computation

This Chapter reviews the literature in biological evolutionary theory, multi-objective opti-
misation, and evolutionary computation. First a review of the biological literature estab-
lishes the various concepts within the Modern Synthesis, then continues with the Extended
Synthesis and non-genetic concepts of inheritance and information transfer. Next, evolu-
tionary computation is introduced and related back to the biological literature to establish
the connection between the two fields. Then, the multi-objective optimisation problem is
defined, and different evolutionary computation algorithms are discussed in the context
of multi-objective optimisation and the evolutionary or non-genetic operators they use.
Finally, the possibilities within the Extended Synthesis that have not been well explored
in evolutionary computation is discussed, and the potential of epigenetic inheritance is
identified.

2.1 Review of current evolutionary theory

The current study of evolution has gone through significant iterations since Darwin’s orig-
inal theory of natural selection. Modern evolutionary theory has evolved to integrate
new discoveries, resulting in the further understanding of information transfer and non-
genetic inheritance. The Modern Synthesis provided a unifying framework that combined
Mendelian genetics with Darwinian evolution, but continued refinements within the Ex-
tended Evolutionary Synthesis further incorporate non-genetic factors like epigenetics,

niche construction, and developmental processes.

First, the major developments in evolutionary theory are reviewed, following its pro-
gression from the Modern Synthesis to the contemporary work on the Extended Evolu-

tionary Synthesis.
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2.1.1 The origins of evolution: The Modern Synthesis

The Modern Synthesis [89] was developed throughout the 1900s to combine the ideas of
Darwin’s evolution by natural selection [38] and Mendel’s principles of inheritance [15].
Darwin’s initial concepts in “On the Origin of Species by Means of Natural Selection” lay
down the building blocks of evolutionary theory with common descent and natural selec-
tion. Common descent discusses how different organisms descend from the same common
ancestors, and natural selection describes how some populations have traits which are more
suitable to an environment and therefore survive compared to others. However Darwin’s
theory struggled with incorporating heredity and inheritance and therefore describing how
important traits are passed down or developed in new generations. Meanwhile a new the-
ory of Mendelian inheritance grew popular after Mendel’s work on pea plant genetics was
rediscovered. Mendel’s work provided an important discovery on how genetic character-
istics in offspring individuals are inherited from their parents. These discoveries seemed
to oppose Darwin’s view of continuous variation through blending inheritance, where an
offspring inherits the average characteristics of its parents. These opposing theories were
consolidated by of Fisher [62] and Wright [202] who showed a mathematical framework for
how discrete Mendelian genes collectively demonstrated the effect of continuous variation

under Darwin’s theory.

The Modern Synthesis can be summarised with a number of key points [64]:

e Genetic mutation is random and there is no connection between the direction of

mutations and the direction of higher fitness.

e Inheritance is genetic but characteristics, traits acquired by individuals in their life-

time, are not inherited.
e Mutations have small effects which lead to gradual evolutionary changes with time.

e The relative frequency of genes in the population evolve due to chance (natural
selection, mutation, and genetic drift, where the frequency of genes change over time

from chance).

e Natural selection is the only explanation as to why organisms have traits that are

well adapted to their environment.

These ideas give a picture of evolution which revolves around random genetic varia-
tion, genetic inheritance, and natural selection. Organisms survive because their genetic

characteristics happen to fit into the direction of natural selection.

According to the Modern Synthesis, processes such as mutation and natural selection
affect components at different levels of an individual organism. An organism’s genetic
make-up consists of a number of components. Figure 2.1 shows the differences between

alleles, genotypes, and phenotype components of an organism. Alleles of genes, the form
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of a given gene variant, combine to form the genetic variation among individuals. The set
of genes are known as the genotype of an organism. Genetic mutation and recombination
occur at the level of genes and alleles, where offspring inherit the genes of its parents and

mutation can occur.

The phenotype of an individual refers to its observable traits such as physical appear-
ance and behaviour. It is affected by the individual’s inherited genotype, but can also
be affected by external factors such as environmental conditions and learnt behaviours.
The relationship between genotypes and phenotypes can be expressed as a mapping [4] to

determine how a genotype influences an individual’s phenotype.

[ ]
Allele I I I I
- - =
A b

a B

e |11 T I
&P & ¢
orrane () (%) (%) (L)

Figure 2.1: Simplified distinction between alleles, genotypes, and phenotypes.

2.1.2 Extending the Modern Synthesis

Starting from the 1990s, there have been a number of questions raised about the Modern
Synthesis, and new evidence on modes of non-genetic mechanisms that also have a role
to play in evolutionary theory [24, 134, 160]. As new discoveries were made, it became
increasingly difficult for the Modern Synthesis to answer new questions about the role of
development in evolution, different levels of selection, the relationship between evolution-
ary biology and ecology, and additional modes of inheritance. Pigliucci [148] and Miiller
[134] suggested that the ideas of the Modern Synthesis should be extended [149] to include
the additional biological effects such as epigenetics, cultural inheritance, evolutionary de-

velopmental biology, and multilevel selection.

The elements of the Extended Synthesis expand on to the existing concepts of the Mod-

ern Synthesis to allow for a broader range of ideas and explanations. Table 2.1 shows how
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each concept of the Modern Synthesis is expanded upon in the Extended Synthesis. More
nuance and flexibility regarding inheritance, variation, and the methods of evolutionary
change is added, allowing for more explanations on how organisms can adapt and change

to the environment, rather than a random, natural selection based explanation.

Table 2.1: Concepts of the Modern Synthesis are expanded upon in the Extended Evolu-
tionary Synthesis to build more understanding of the evolutionary process.

Modern Synthesis concept Extended Synthesis concept

Genetic inheritance Inclusive inheritance - extending the
concept of inheritance beyond ge-
netics to include epigenetic, ecolog-
ical, social and cultural modes of
non-genetic inheritance.

Random genetic variation Non-random variation - non-
random mutation leading to
developmental bias, so some char-
acteristics become more common
within a population

Natural selection Reciprocal causation - Developmen-
tal processes and niche construction
allow organisms to both affect and
be affected by the environment

Gradual evolutionary change Variable rates of change - Develop-
mental processes and epigenetic in-
heritance can result in varying rates
of evolutionary change as a response
to environmental cues
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Figure 2.2: Key concepts of Darwinism, the Modern Synthesis, and the Extended Synthe-
sis, based on Pigliucci and Miiller [149]. The green highlights concepts which have been
implemented in existing evolutionary algorithms.

Adding on to the list of concepts in the Modern Synthesis, Figure 2.2 lists the concepts

of the Extended Synthesis and shows how Darwin’s original theory of evolution and the
Modern Synthesis are contained within the Extended Synthesis.

Non-genetic inheritance

The different forms of non-genetic inheritance can be divided based on their mode of

transmission [36]:

e Epigenetic inheritance - In genetic inheritance, the evolution of species comes

from changes in the DNA sequence due to natural selection. Epigenetic mechanisms
alter DNA expression without altering the DNA sequence [50]. This allows for a rapid
change in phenotypes without a change in the inherited genotype, leading to faster
adaptation to selection pressures. Epigenetic marks trigger changes in an individ-
ual’s phenotype based on external factors such as the environment, and are passed on
from parent to offspring. While epigenetic marks can cause changes to a phenotype,
they can also remain dormant awaiting the triggering of the appropriate environ-
mental cue. This is a crucial difference between epigenetic and genetic inheritance.
Traits transmitted through genetics are considered much harder to change or revert

compared to epigenetics.

Cultural inheritance - Apart from inherited genotypes, information relevant to
survival can also be exchanged and inherited socially. Cultures themselves can also
“evolve” [127] and can be found in a large number of animal species. A trait is at

least partially culturally inherited if it follows the following four criteria [37]:
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1. The trait is expressed as a result of learning from other individuals, and not

inherited in another way.

2. The trait must be passed on through multiple generations. This allows socially
learned traits to become a part of evolution, as transmission across the same

generation will not lead to inheritance.

3. The phenotype of an individual must be changed as a result of social learning

for long enough to allow new individuals to observe and learn the same trait.

4. Changes to the individual’s phenotype must be general and adaptable to other

similar conditions.

e Ecological inheritance - Darwin [39], observed that individuals can alter their
surrounding environment to improve their chances of survival. Examples of this are
dams and nests made by animals that can sometimes be passed on to future genera-
tions. This can be both an in-generational and trans-generational effect, depending
on whether the ecological changes made by one generation is able to last for the next
generation’s benefit. This can lead to significant changes to the environment if the

ecological changes are accumulated over many generations [54].

Evolutionary developmental biology (Evo-devo)

Evolutionary developmental biology aimed to bridge the gap and explore the relationship
between developmental biology and evolutionary biology [109]. Evo-devo provides an
understanding for how individual development occurs and how the developmental process

is shaped by evolution.

In the Modern Synthesis theory of evolution, variations in phenotypes are based solely
on changes on genotype, through mutation and recombination of alleles and genes, and
the mapping from genotype to phenotype. However this makes it difficult to explain how

developmental processes, such as the development of embryos, are evolved.

Evidence of developmental bias also suggests that diversity among populations and
species are only partly due to natural selection, and some bias occurs during development
to increase the convergence of fit phenotypes. For example, cichlid fish from different lakes
were found to have similar body shapes even though they were genetically more related to
species of fish in their own lakes [5]. This evidence does not mean developmental bias goes
against the concepts of the Modern Synthesis, rather they build upon the building blocks
of genetic variation and natural selection. The theory of facilitated variation [66] illustrates
how small changes in genotypes can lead to larger innovative changes in the phenotype
through core processes and signalling pathways that are activated during developmental

stages based on small genetic mutations or environmental cues [91].

Niche construction

Niche construction [107] is the concept of changing the environment to better suit the

development of future generations. It follows from ecological inheritance and is the process
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in which individuals change the environmental state around them. In the traditional view
of the Modern Synthesis, natural selection is based on the fitness or suitability of the
phenotype of organisms to the environment. However, changes to the environment due
to niche construction can become a part of evolution when they in turn affect natural

selection by introducing selection bias from the changes made.

Niche construction becomes significant in evolution when [139]:

e The changes to the environment are non-random and create a selection bias in the
environment. For example when bacteria decompose compounds and excrete matter

that affects the chemical make up of the environment.

e The ecological inheritance from niche construction leads to stability in environmental

conditions lasting for multiple generations.

e The characteristic of modifying environments is inherited.

Even if only one species engages in niche construction activities, other species in the
same ecosystem may also be affected, leading to co-evolution which can occur in both

shorter and longer timescales.

Phenotypic plasticity

Phenotypic plasticity is the idea that an organism’s behaviour or physiology could change
due to environmental factors [154]. The plasticity is the ability of a single genotype to
produce multiple phenotypes in response to environmental cues, unlike the direct mapping
shown in Figure 2.1. The response can occur at any level of organisation, from development
to morphology [196]. Phenotypic plasticity specifically involves changing the phenotype
without any modification to the genotype. With high plasticity, one genotype could pro-
duce many different phenotypes for different environments that are more suitable. The
trigger for differing phenotypes can also come from developmental stages, linking back to
evo-devo. For example, queens and workers in honey bee colonies develop from the same
larva, but the diet of the larva determines whether it develops into a worker bee or a queen
bee [141].

The decoupling between an organism’s genotype and phenotype is a key aspect to
allow individuals to quickly adapt to drastic changes in the environment. For static op-
timisation problems changes to the environment do not occur. It could be argued that
the environment around a population of solutions changes depending on the depth of the
search, but this change does not happen retrospectively, in other words requiring evolved
solutions to be reversed to adapt to a different environment. When a natural environment
changes, the fitness landscape of biological organisms change accordingly, as the phenotype
and conditions for successful survival and reproduction become different. Organisms with
greater plasticity therefore gain an advantage in adapting to the new environment and

fitness landscape faster. The concept of including plasticity as a parameter or mechanic is
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therefore more important in the area of dynamic problems, where the fitness of solutions

can change dynamically and may require backtracking of genetically evolved solutions.

Evolvability and Genomic evolution

Evolvability in evolution is the capacity for an organism to evolve [102]. In evolutionary

literature, the definition ranges from a few different concepts:

e Heritability [86] - the existing pool of genetic variation available

e Variability [193] - the propensity for characteristics to vary depending on genetic

variation

e Innovation [126] - the capacity to overcome existing genetic and developmental con-

straints leading to radically different designs.

The effect of evolvability is to allow long-term adaptation through changes in an organ-
ism’s evolutionary processes and lead to major breakthroughs in behaviour and physiology
[147]. This relates to genomic evolution, the evolution of the genome architecture itself,
with evolvability being the capacity to allow this form of evolution to occur. Computa-
tionally, this is related to how variables and solutions to problems are structured, which

is often decided by the definition of the optimisation problem and solution.

Evolvability has been modelled computationally in the past by Valiant [189], to show
how it can be represented as a method of computational learning. However, his work is
focused on modelling biological evolution, to provide a means to determine which bio-
logical mechanisms are evolvable and which are not, rather than applying the concept of

evolvability to Evolutionary Computation.

Multilevel selection theory

Multilevel Selection is the idea that natural selection occurs at different levels such as the
genetic level [41], the individual organism level [138] or the species level. The existence of
altruism, a phenotype that contributes to group advantage at the cost of disadvantaging
itself [79], suggests that a disadvantage at one hierarchical level may be a advantage at
another level, justifying why this behaviour can be seen. The short term payoff is lower
because the altruistic individual sacrifices personal benefits, but over the longer term,

long-term benefits may be seen at the group level.

A key element to multilevel selection is group selection. That is the concept that
natural selection acts on an entire group of organisms rather than solely on individual
organism. There are three criteria used to determine what is a suitable unit of selection

in evolution [112].

1. Phenotypic variation must exist for that unit of selection

2. There is a correlation between the phenotype and the fitness of the phenotype
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3. The phenotype, and therefore the fitness, is heritable

For example in an individual organism, there exists different phenotypes, different
fitnesses according to those phenotypes, and heritability of the phenotypes. The question
is whether the same criteria could be applied to groups of individuals too. There have been
numerous experiments over the years testing group selection [70], showing how groups of
individuals can demonstrate traits and variation from other groups, and how such traits
are inherited in future generations of the same group. For example Wade in 1979 [192]
showed the effect of group selection on the population size of flour beetles. Muir in 1996
[133] demonstrated improvement on mortality and egg production in later generations of
hens with a group selection procedure, showing the heritability and fitness of the selected

groups.

2.2 Defining current bio-inspired algorithms within
the Extended Evolutionary Synthesis

In Evolutionary Algorithms, individuals are presented as a genotype that evolves with
genetic operators. The algorithms use genetic operators to evolve candidate solutions
through genetic inheritance. For real-value encoded algorithms and problems used in this
thesis, the genotype directly represents the candidate solutions, with no encoding and de-
coding step in between the algorithm and solution representations. The genetic operators
manipulate the genotypes to create new variations, and the fittest individuals are selected
for the next generation. While individuals in Swarm Intelligence algorithms could be seen
as phenotypes in the biological sense of an organism’s observable traits, computationally
they are represented the same as real-encoded EAs, directly representing problem solu-
tions. Update functions such as the velocity of particles are used to adjusts a solution’s
position in the search space to continually improve in subsequent iterations. Mathemati-
cally, the two types of algorithms have the same underlying mathematical representations
in terms of the problem and solution formulations using numeric representations, with dif-
ferent search operators, the details of which will be discussed shortly in section 2.3. The
focus of the Extended Evolutionary Synthesis is that there are many interacting routes
that influence the final phenotype, not only genetic inheritance, as encoded in Evolutionary
Algorithms, or within-generation cultural transmission, as encoded in Swarm Intelligence,
but rather a mix of influences both within and across generations. This diversity of in-
fluences reduces reliance on a single mode of inheritance and generates phenotypes from
a diversified portfolio of influences This allows hedging against maladaptations while also
providing more rapid adaptation when genetic, indirect genetic, and phenotypic effects
align [149].

A large focus in Evolutionary Computation has been put on improving the convergence

of existing algorithms through heuristics relevant to existing benchmark problems, such as
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Figure 2.3: Sources of information transmission for phenotypic variation linked to inspi-
ration for bio-inspired algorithms. Based off the framework and adapted from [35].

adjusting weight vectors for concave problems [81] or using predefined reference points to
classify and select solutions in many-objective problems [43], leaving potentially beneficial
concepts of the Extended Evolutionary Synthesis unexplored. Using a biological frame-
work for information transfer [35], Figure 2.3 shows how the genetic and cultural sources
of information are closely linked to Evolutionary Computation and Swarm Intelligence re-
spectively. The figure shows the biological elements of information transmission that leads
to variation between phenotypes. Phenotypic plasticity is the ability for the same genotype
to produce different phenotypes in response to epigenetic or environmental conditions [97].
On the far left, genetic inheritance has low plasticity as genotypes take many generations
to mutate and evolve. Genetic inheritance by itself cannot react to sudden changes to the
environment and adapt the genotype immediately. Cultural and non-transmitted informa-
tion leads to higher phenotypic plasticity (higher variation) in nature as adaptation can
occur quickly within a few generations, for example from social learning. On the far right,
non-transmitted information is information that is not inherited by future generations.
The mechanisms further right leverage non-genetic transmission more than those on the
left.

Non-transmitted information can include some algorithms that utilise a population
of individuals acting with certain behaviour that does not require interaction with other
individuals. Non-transmitted information has the highest plasticity as it can act imme-
diately on environmental changes, but is not stable and does not carry forward to future

generations.
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The categories of parental and ecological inheritance are omitted for simplicity as they
can be argued as a higher level of cultural inheritance from a computational perspective.
For example, niche construction [139] is the concept of changing the environment to better
suit the development of future generations. These changes become a part of evolution
when they affect natural selection, such as burrows and nests defending family units or
otherwise less fit organisms. However, niche construction can be seen as a form of cultural
inheritance where the trait for creating ecological change in the environment is passed
down through social learning. Similarly, parental effects can be classed as part of cultural
inheritance. Parental behaviour, which affects the offspring phenotype, can be passed on
through social learning, either horizontally (among the same generation) or vertically (to

the next generation).

Using this framework Tables 2.2 and 2.3 splits up the categories of genetic, epige-
netic and cultural inheritance shown in Figure 2.3 into mechanics from a computational

perspective.

2.3 Multi-objective optimisation problems

Evolutionary Computation algorithms are often used to solve closed box optimisation
problems. Multi-objective optimisation problems have more than a single objective func-
tion to be optimised. Multi-objective optimisation typically refers to problems with 2 — 3
objectives. Problems with more than 4 objectives are referred to as many-objective opti-
misation problems [43]. The different objectives for optimisation can often conflict with
each other. Therefore, rather than finding a single optimal solution to the problem, the
concept of Pareto optimality is applied to approximate a set of solutions with the best
possible trade-offs between all the objectives. Solutions are considered Pareto optimal
when there are no other solutions that can improve in one objective without sacrificing a

different objective.

A multi-objective optimisation problem can be defined as follows.

= (f1(x), fa(x), ..., fo(x))
subject to  g1(x) <0,92(x) <0,...,9p(x) <0 (2.1)
hi(x) =0,h2(x) =0,...,he(x) =0

Minimise or maximise F'(x)

where:

e F(x) are the objective functions, up to o objectives.

e x is a solution to the optimisation problem, defined as a vector of decision variables,

r1,T9,..., x4, up to d number of variables
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e gi(x) for i = 1,2,...,p are p inequality constraints that define the boundaries of the

feasible region in decision space.

e hj(x) for j =1,2,...,q are ¢ equality constraints that restrict the feasible region to

specific values.

The fitness of a solution x is determined by evaluating the objective functions F(x) =
(f1(x), f1(x), ..., fo(%,)), which map the decision variables to the objective space. In multi-
objective optimisation, fitness is not a single scalar value, but a vector of objective values,
each reflecting an objective function to form the trade-offs between conflicting objectives.
To compare solutions in a multi-objective problem, the concept of dominance is used to
identify which solutions may be “better” than another accounting for multiple objectives
simultaneously. The standard definition of dominance is Pareto dominance. It is defined

as solution x; dominates another solution x; if:

e X; is no worse than x; on all objective functions.

e And x; is strictly better than x; on at least one objective function.

Solutions dominated under this definition are considered to be weakly dominated. For
solutions to be strictly dominated, it must always be better in all objectives. Furthermore,
the concept of e-dominance extends Pareto dominance to allow for a small threshold pa-

rameter €, so a solution x; ¢ dominates another solution x; if:

e f(x;) is no worse than f(x;) + € for all objectives.

e And f(x;) is strictly better than x; — € on at least one objective.

The € threshold creates a tolerance in which solutions are allowed to be slightly worse in

some objectives as long as it improves significantly, by at least €, in at least one objective.

Solutions which are not dominated by another solution in the population are called
non-dominated solutions. A non-dominated set is the set of solutions where none of the
solutions in the set are dominated by any other solution within that set. It represents the
best solutions found within the current population so far. The non-dominated set at the
end of an algorithm’s optimisation is the best approximation of the true Pareto set found
by the algorithm. The true Pareto optimal set of solutions is the set of all possible solutions
in the decision space that are non-dominated, representing the globally optimal solutions
in the sense that no other solutions dominate them. The Pareto front is then the Pareto set
within the objective space, representing the optimal trade-offs between objectives, where

improvement in one objective would lead to worsening in at least another objective.

Decision variables x = (21, x2, ..., x4) can be represented in different forms depending
on the problem and algorithm. The most common representations are real number and

binary representations. In real number representations, each z; is a real number, typically
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constrained to a specific range of values. This is most suitable for continuous optimisation
problems such as engineering design problems. For binary representations, a binary value
of 0 or 1 is used, which is suitable for discrete decision spaces or combinatorial problems.
Other representations can be used for different types of problems, for example integer
representations for discrete problems such as scheduling or resource allocation, tree-based
representations where solutions are represented as a hierarchical tree structure for net-
work design and optimisation, or permutation representations where decision variables
represent a permutation of elements for ordering and sequencing problems. The choice of
representation is often based on the problem to be optimised, and impacts the evolution-
ary operators used. In this thesis, real number representation is the default representation

used unless stated otherwise.

2.3.1 Evolutionary operators

The canonical GA as formalised by Goldberg [69], serves as a foundational framework
for Evolutionary Computation. It typically operates on a population of binary-encoded
solutions, using selection, crossover, and mutation as the operators to evolve populations of
solutions over multiple generations. There is a fitness-based selection mechanism, a single-
point or multi-point crossover, and a bit-flip mutation. This canonical form assumes a
single-objective optimisation problem, where the fitness value directly correlates to solution
quality. In the context of multi-objective optimisation, as discussed here, these operators

are adapted to handle multiple objectives.

The evolutionary operators for genetic, cultural, and epigenetic inheritance described in
tables 2.2 and 2.3 can be further defined under the context of multi-objective optimisation

problems.

Selection is the process of choosing a set of parent solutions from the current pop-
ulation to reproduce part the next generation based on their fitness, inspired by natural
selection. For multi-objective problems, selection may be based on Pareto dominance.
Solutions that are not dominated by any others in the population form the Pareto front,
and selection prioritises these non-dominated solutions to approximate the optimal Pareto
set. To maintain diversity and prevent premature convergence, additional criteria like
crowding distance can be used to measure the density of solutions in the objective space,
and favour those in less crowded regions. Selection is based on the objective space, as the
objective value of each solution makes up the selection criteria. The selection process can
be defined as:

e Let P be the current population of solutions, where the objective values of a solution
x is F(x) = (f1(x), f2(x), ..., fo(x)) for o objectives.

e A selection operator S takes P as input to create a set of parent solutions P’ with

a size < P based on the selection criteria. For example, in algorithms like NSGA-II,
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solutions are ranked by non-domination levels. Then within the same rank, solutions
with higher crowding distance are preferred to ensure diversity. The operator S

selects the top-ranked solutions, often using tournament selection, until P’ is filled.

Recombination, also called crossover, takes a pair of the parent solutions from P’ as
input, using their decision variables to create new child solutions. There are many different
methods of crossover such as single-point crossover, where a single point from each parent’s
decision vector x is chosen and two child solutions x} and x/, inherit the decision variables
up to the single point from one parent, swapping the remaining variables with the other
parent, or multi-point crossover where multiple crossover points are used. In real number
representations, Simulated Binary Crossover (SBX) [42] is often used. The SBX operator
mimics the average and spread properties of binary single-point crossover, ensuring the
mean of the child variables equals the mean of the parent variables, and the spread factor
B; follows a polynomial probability distribution. SBX is applied to each decision variable
independently with a crossover probability p.. For each variable z;, a random number
r € [0,1] is generated, if r < p., crossover is performed, otherwise the child inherits the
parent’s variable value unchanged. To follow the average property, the values of the two
child solutions x} and x} created through recombination of the two parent solutions x;

and x9 are as follows:

x] = 0.5(x1 + x2) — 0.58(x2 — x1)

(2.2)
xh = 0.5(x1 + x3) — 0.58(x2 — x1)

The mutation operator adds random changes to a child solution’s decision variables.
In binary representations, this could be done as a bit-flip. Polynomial mutation is an
example of a mutation operator used in real number representations. Given a solution with
a decision vector x = x1, x2, ..., Tq, polynomial mutation works by applying a polynomial
distribution to each decision variable in x. Mutation is applied to each decision variable
independently with a mutation probability p,,, typically p,, = 1/d, where d is the number
of variables to ensure one mutation per solution on average. For each variable x;, a random

number r € [0, 1] is generated and if r < p,,, the mutation is performed.
The mutated variable is calculated as:
z; = x; + &; - (bound; max — bound; min (2.3)
where bound; min and bound; ymax are the variable’s bounds, and the perturbation J; is:

(2r)/ (i t1) 1 if r < 0.5,
5 — (2.4)
1—[2(1 —r)|YOm+D " otherwise,

with 7 € [0,1] a random number and 7,, > 1 (e.g., 20) the distribution index. A larger
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Nm produces smaller perturbations.

2.3.2 Cultural operators

For the cultural operators of specialised roles, individual social learning, and population
social learning, inheritance can be modelled as the process of knowledge transfer within the
population. Decision variables or learning strategies can be altered based on the knowledge

transfer, typically via a set of leaders or best solutions found so far.

In individual social learning, any individual x can update is strategy or variables based
on information gathered and shared by other individuals. The best solutions x* can be
chosen based on Pareto dominance, creating a set of non-dominated solutions. In the case
a single solution is used, the best can be chosen from this set based on a second desirable
metric such as crowding distance to measure diversity. Other individual solutions x;
can learn from the best solutions x; = L(x;,x*) where L is the learning strategy to be
updated. The different learning strategies and how they interact with function objectives

and decision variables are shown later for the different Swarm Intelligence algorithms.

In the case of population-level social learning, information is transferred between pop-
ulations rather than individuals. Take two populations (or sub-populations) P; and P,
all individuals from one population can learn from some or all individuals in the other
population P| = L(P;, P;). The population may be divided for specialised roles, where
each role focuses on a specific aspect or subset of the multi-objective optimisation problem.
Depending on the roles, each may have separate operators or objective functions to focus

on.

2.3.3 Epigenetic operators

As epigenetic inheritance operates on top of genetic inheritance, epigenetic operators would

be able operate on individuals on top of the genetic operators.

Mitotic epigenetic inheritance is the transmission of epigenetic marks from parents to
children. The marks can be represented as additional information on top of an individual
solution x. The decision vector x = x1,Z9,...,z4 would have an associated vector of
epigenetic marks e = eq, eg, ..., €4 to cause variation in the decision variables in the presence
of environmental cues. Depending on the epigenetic process involved, the marks could

cause, prevent, or reverse the effects of recombination and mutation.

In the context of multi-objective optimisation, germline epigenetic inheritance is the
propagation of changes made to the decision variables in following generations, in other

words the inheritance of the epigenetic marks e.
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2.4 Categorising algorithms

Using the definitions of multi-objective optimisation problems and their operators, Evolu-
tionary Computation algorithms can be described and broken down into each category of
inheritance. Table 2.5 breaks down each category of inheritance into the biological con-
cepts defined in Table 2.2, to show the overlap between the selected algorithms. Due to
the number of algorithms in the available literature, a representative set were chosen based
on a combination of performance, popularity, and to cover a range of different mechanics
in each algorithm family. While the use of citation count as a measure of popularity is not
a rigorous robust metric, but it indicates an estimate of the the uptake of the algorithms
in real world problems, and how often they are used in benchmarking test problems. The
full list of algorithms, and why they were chosen, are shown in Table 2.4. Multi-objective
versions of all algorithms are described in the following sections. While many of the orig-
inal algorithms are single-objective, the theory behind them is described generally then

related back to the multi-objective optimisation problem.

There is a split between Evolutionary Algorithms, which use the evolutionary opera-
tors of selection, crossover, and mutation operators, and Swarm Intelligence algorithms,
which utilise cultural operators of specialised roles for individuals, different forms of so-
cial learning and communication. While some algorithms fit neatly into Evolutionary
Algorithms or Swarm Intelligence based on the operators they use, contrasting with evo-
lutionary theory where multiple mechanisms act together, there are a number algorithms
that use a spread of multiple biological mechanisms together: ¢cMLSGA uses specialised
roles and social learning, while GB-ABC and Firefly Algorithm utilise elements of selec-
tion; HETA uses co-evolution to spread social learning; and Cuckoo Search uses crossover
and mutation genetic operators. Some other algorithms such as the Univariate Marginal
Distribution Algorithm (UMDA) [145] and Compact Genetic Algorithm (cGA) [82] fall
under the category of Estimation of Distribution Algorithms (EDAs), which do not fit
into the same biological categorisations as the other Evolutionary Algorithms and Swarm
Intelligence algorithms as they use explicit probability distribution models over biological

mechanisms.
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Table 2.2: Biological categories of transmission for the genetic and cultural levels of evo-

lution.

Category

Sub-category

Description

Genetic

Selection

In each generation, a subset of the population is chosen to re-
produce the next generation. In biological terms, this relates
to the survival of the fittest. Individuals with fitter genes are
typically able to find mates more easily. In computational
terms, individuals are selected based on their fitness against
the objective function.

Recombination

Also called crossover, when two individuals produce off-
spring, genetic material from both parents are used. This
results in offspring that share some attributes with both par-
ents. Crossover affects both diversity (avoiding inbreeding
depression) and convergence of the population as it is able
to create new combinations while keeping the same values
from its parents. However, without an addition form of di-
versity such as mutation, it becomes closely linked to the
epistasis of the environment.

Mutation

When offspring are formed, mutation can occur. Depend-
ing on the environment, these mutations could be neutral,
beneficial or detrimental to the survival of that individual.
Mutation helps improve diversity by producing values that
have not been explored before by the population.

Cultural

Specialised roles

Individuals in a population have different roles to fulfil. For
example, scout and guard bees in a colony, or mongooses
that form foraging niches [169] due to competition within the
population. In some cases, specialised roles are formed and
last through multiple generations, as in the case of ants and
bees. In others such as the mongooses, the specialised roles
may only form in a particular generation due to external
factors during the generation’s lifespan.

Social  learning
(individual level)

Individuals learning from other individuals in the population
through direct information sharing, teaching, environmental
stimulus or imitation and emulation of other individuals.

Social  learning
(population level)

Information transfer between populations (cultures) where
different populations may have different variations in be-
haviour as a result of social learning. Analogous to genetic
drift in classical genetic theory.
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Table 2.3: Biological categories of transmission for epigenetic inheritance.
Category | Sub-category Description
Mitotic The transmission of epigenetic marks directly from the par-
Epigenetic ent generation to the offspring generation. Epigenetic marks

allow variation to occur in an individual when the marks are
triggered as a response to environmental cues. Mitotic epi-
genetic inheritance only transfers the epigenetic mark across
one generation.

Germline

Epigenetic changes caused by environmental factors in the
parent are passed down to the offspring and to further gen-
erations [190]. This affects across multiple generations even
if the environmental factor that triggered the change only
happened during the first generation.

Experience-
dependent

Epigenetic marks that influence parental behaviour causing
the same epigenetic mark to appear in the offspring gen-
eration. The marks can persist across multiple generations,
but the transmission can also be broken when environmental
factors cause one generation to stop the same parental be-
haviour. For example maternal behaviour in rodents cause
the offspring to exhibit the same behaviour to their offspring.
But if there is a break in one generation where the maternal
behaviour does not occur, the epigenetic transmission stops
[25].
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Table 2.4: Evolutionary algorithms are chosen based on a combination of popularity via
citations, performance on benchmarking problems, application in real-world problems, and
for a variety of different computational mechanics and algorithm families.

Algorithm

Reason

NSGA-II [45]

Most popular multi-objective Genetic Algorithm
with good performance, over 50,000 citations, and
uses a crowding niching approach

MOEA/D [217]

A popular decomposition-based family of
multi-objective Genetic Algorithm.

IBEA [223]

An indicator-based Genetic Algorithm using an
indicator for selection, which contrasts with the
common Pareto dominance ranking used for
selection.

DE [180]

Original differential evolution algorithm which many
CEC single objective competition winners are based
off of.

CMA-ES [80]

An Evolution Strategy approach that uses a unique
mechanic of a covariance matrix to learn and adjust
a mutation distribution.

HEIA [116]

A multi-objective algorithm that utilises mechanics
from Immune algorithms and co-evolution.

cMLSGA [74]

A multi-objective algorithm that shows good
performance on real world problems [75] using
multilevel selection and co-evolution.

SMPSO [136]

Popular variant of the particle swarm optimisation
algorithm.

ACO [51]

A popular Swarm Intelligence algorithm with over

18,000 citations used primarily for path finding and

routing problems with a unique method of solution
construction based on probabilities.

ABC [3]

Algorithm based on the foraging behaviour of bees
with over 9,000 citations and a wide range of real
world applications [99].

Firefly Algorithm
[208]

Swarm Intelligence algorithm based on the flashing
behaviour of fireflies with an emphasis on
multimodal problems.

Cuckoo Search
[206]

Based on the Cuckoo species laying eggs in the nests
of other birds with over 9,000 citations and large
number of applications due to its simplicity and few
parameters, though there is a lack of mathematical
and benchmarking analysis [168].

GWO [129]

Algorithm inspired by the hunting behaviour of grey
wolves with over 17,000 citations and applications in
power engineering, image processing, and
bioinformatics [61]




Chapter 2. Epigenetic opportunities for Evolutionary Computation

26

[90g] yo1esg ooxony)

>SS

[80g) w3103y Agotrq

[621] OMD

[86] DAV

[18] 0DV

S S SIS S

[F12] OSAINS

[08] SA-VIND

[7L] vOSTIN®

[9TT] VIAH

>SS S

[L12] d/VAOIN

S S S S

S S S S S

S S S S

[S¥] TI-VOSN

(wony
-erndod) Sur
-UIed] [R100G

(ren
-prarpur) sut
-TIRS] [RID0S

so[o1
postreadg

Juepuadop
-oouortadxry

QUIULION)

OO

UOTJRININ

UOT}RUTIQUIODY]

UOT}09[0]

[eanymny

orjoual3idy

I LEY ETS

AL10893ed WYIIOI[Y

"90UR)LISYUI JO SULIOJ JUSISHIP I0] YIOMOUIRI] [BIS0[0Iq © OJUI }1j SW IO e paildsul-olq MO :G'g 9[qel,




2.4. Categorising algorithms 27

A justification of Table 2.5 is given in the following subsections. The algorithms ab-

breviations are listed as follows:

e NSGA-II: Non-dominated Sorting Genetic Algorithm IT

e MOEA/D: Multiobjective Evolutionary Algorithm Based on Decomposition
e CMA-ES: Covariance Matrix Adaptation Evolution Strategy

e HEIA: Hybrid Evolutionary Immune Algorithm

e cMLSGA: Co-evolutionary Multilevel Selection Genetic Algorithm

e SMPSO: Speed-constrained Particle Swarm Optimisation

e ACO: Ant Colony Optimisation

e ABC: Artificial Bee Colony

o GWO: Grey Wolf Optimiser

2.4.1 Genetic Algorithms

Genetic Algorithms (GA) are a branch of Artificial Intelligence, which primarily solve
incomplete search or optimisation problems. First suggested by Turing [188] as a means
to apply evolution as part of a learning machine, GAs were popularised by Holland [85] and
now used in a variety of real world applications such as finance, data analysis, medicine,
manufacturing, multi-criteria decision-making, and decision-making under uncertainty [14,
63, 125, 140, 167].

GAs are inspired by natural selection and evolution, evolving a population of potential
solutions towards an optimal solution. Solutions are coded and represented as a chromo-
some of genes, in some binary form or real number form. Figure 2.4 shows the basic flow
of a Genetic Algorithm. The selection, crossover, and mutation evolutionary operators are

applied to the population in each generation to create the next generation.

In addition to these operators, many GAs also incorporate other mechanics such as
elitism. Elitism [92] is a selection operator that keeps the best individuals in a popula-
tion, copying them directly into the next generation to improve convergence at the cost
of diversity. In multi-objective optimisation, the population of elite individuals can be

represented by the non-dominated solutions found so far.

Niching approaches

There are a number of niching methods used within genetic algorithms for the purpose

of improving the population diversity [171] such as fitness sharing, crowding, clearing, and
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Figure 2.4: Mechanics of the classic GA. The blue circles are individuals in the popula-
tion. During fitness evaluation, fit and less fit (yellow) individuals are identified. Next,
individuals are chosen for selection in green outline. In algorithms with elitism, some of
these individuals may be kept in the next generation. New individuals are created during
reproduction (in purple) through crossover of the selected parents, with a small chance of
mutation, represented by the purple and blue gradient.

clustering methods. The well-known NSGA-II [45] and NSGA-III [43] genetic algorithm
uses a crowding method to quantify the density of surrounding solutions. The algorithm
use two main mechanisms: an efficient form of non-dominated sorting, and a density esti-
mator with crowding distance. The non-dominated sorting is used to rank the population
into hierarchies of fronts based on Pareto dominance, where individuals with the highest
ranks have a higher probability for selection. A crowding distance metric is then used to
maintain diversity in the population by encouraging search in less dense regions of the

search space.

NSGA-IT improved upon the computational complexity of NSGA by calculating the

dominance relation between pairs only once, and calculating the distance between close
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individuals. This reduced the time complexity of the dominance ranking to O(M N?) and
the crowding distance to O(M NlogN). Although NSGA-IT has since been outperformed
by newer algorithms, it is still the most popular Genetic Algorithm used in a large number
of real world applications, and is consistently used as the baseline algorithm to benchmark

against.

In 2014, Deb and Jain developed the next iteration of the algorithm, NSGA-III [43].
NSGA-III improved upon NSGA-IT’s weak performance on complex problems with more
than two objectives. It uses predefined reference points instead of crowding distance as
the density estimator to maintain diversity. The points are either provided by a user, or
defined using a systematic approach to return a distributed set of points along the Pareto
Front. Benchmarking showed the improved performance of NSGA-IIT on problems with
many objectives [43, 166], but an issue in retaining strong performance for 1 or 2 objective
problems. The reliance on these reference points meant NSGA-III was affected by low

quality reference points.

The methods of NSGA-IT and NSGA-IIT were combined into a unified algorithm U-
NSGA-III in 2015 [166]. It used both the crowding distance calculation from NSGA-IT and
the reference points from NSGA-III during selection. This allowed for higher population
sizes and improved performance on 1 and 2 objective problems compared to NSGA-III
with a small decrease in performance on the higher objective problems. The main draw-
back of this branch of solvers is the restricted scalability in objective function space [49]

which requires a large population size to overcome.

Decomposition based approaches

The MOEA /D framework converts a multi-objective problem with M objectives into
N sub-problems and assigns a weight vector for each sub-problem. A neighbourhood is
defined for each specific sub-problem as the set of T" sub-problems closest to it based on
Fuclidean distance. During reproduction, individuals can only reproduce with individuals
within the same sub-problem or the same neighbourhood. Compared to other methods,
decomposition simplifies the difficulty of maintaining diversity and allocating fitness, as
each sub-population explores different regions of the search space. MOEA/D showed
strong performance in the CEC’09 unconstrained benchmark problems [218] compared to
NSGA-II, the most popular Genetic Algorithm at the time. Though it did not compete
on the constrained set of problems. The original MOEA /D framework also has a few
limitations, which spawned a number of variants aimed at addressing and refining these
limitations [205]:

e The use of fixed weight vectors is not suitable for problems with complex Pareto front
shapes.

e It is difficult to choose a suitable neighbourhood size for a given problem, as large

and small neighbourhoods have their advantages and disadvantages.



30 Chapter 2. Epigenetic opportunities for Evolutionary Computation

e Evolutionary operators that are not suitable for a range of different problems.

These limitations divide the MOEA /D variants into distinct categories for improvement:
decomposition methods [88, 120, 123, 194], weight vector generation [81, 113, 219], and
evolutionary operators [28, 114, 195]. New reproduction operators such as DE (Differential
Evolution) have also been included into MOEA /D to improve its performance [114]. Jiang
et al. [94] used two new decomposition methods that found strong performance improve-
ments: multiplicative scalarizing function (MSF) and penalty-based scalarising function
(PSF). Further variants aim to extend the algorithm to solve many-objective problems
[27, 34, 183], and constrained multi-objective problems [57, 58, 93] more effectively. Com-
pared to other approaches MOEA/D puts a large focus on mathematical methods and
optimising for specific types of problems. It outperforms other methods in unconstrained
and dynamic problems [120] by prioritising convergence over diversity, but is less effective

on constrained and discontinuous problems.

Co-evolutionary approaches

Another strategy that is used is to combine multiple methods in a hybrid or co-
evolutionary way with the goal to take advantage of the strengths of different approaches
while mitigating the weaknesses. A co-evolutionary Genetic Algorithm was first intro-
duced by Potter and De Jong in 1994 [153] as cooperative co-evolution, where different
algorithms worked together, sharing information between their sub-populations. Competi-
tive co-evolution was proposed in 1997 [162] where sub-populations would compete against
each other to reproduce. Decomposition has also been used to improve convergence by

working on a different sub-problem, then sharing the information to form solutions.

In 2009, Goh and Tan developed COEA (Competitive-Cooperative Coevolutionary
Algorithm) [68]. The algorithm decomposes a multi-objective problem into single-objective
problems, and solves each with distinct populations. Competition is used for individuals
to fight for a place in each population, and cooperation is used to combine the separate
populations together to form valid solutions. COEA exhibited strong performance for

dynamic problems, but weaker performance on discontinuous problems due to low diversity.

In 2016, BCE [115] and HEIA [116] were introduced as high diversity hybrid methods.
BCE used two different fitness calculation methods, a Pareto-based criterion (PC) for
convergence, and a Non-Pareto-based criterion (NPC) for diversity. PC used the normal
Pareto domination ranking while NPC used the Hypervolume [221] metric as its selection
criterion. HEIA used two different evolutionary strategies on its sub-populations. Al-
though SBX [42] and DE [179] were used in the original paper, HEIA was designed as a
framework to allow any two evolutionary strategies to be used. Instead of decomposing
the problem, the two strategies simply worked on different sub-populations. Then after
each generation, the best individuals from each sub-populations were saved in an exter-
nal archive and the sub-populations are cloned for the next generation with an Immune

Algorithm. HEIA showed strong performance across a range of benchmarks due to its
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emphasis on diversity. However, it has not been tested with a range of different evolution-
ary strategies in place of SBX and DE to see what performance benefits or loses occur on

different types of test problems.

Indicator-based approaches

Finally, another useful approach is to use a performance indicator when selecting indi-
viduals. This provides a concrete guide for algorithms to know when particular individuals
are closer to the Pareto front and should be selected for reproduction. These indicator
based algorithms draw parallels with non-genetic inheritance mechanisms from biology,

where individuals are affected by signals in the environment.

Zitzler and Kiinzli introduced the IBEA framework [223] in 2004 that used this method.
An indicator can be added to the fitness assignment of individuals to directly affect their
fitness based on their performance using a given indicator. With an indicator that ap-
plies to the distribution of solutions, additional diversity preservation mechanisms like the
crowding distance in NSGA-II are not required. Although, the convergence rate of IBEA
does not hold up to other state-of-the-art algorithms by itself, it has been shown to im-
prove performance when combined with other algorithms in a hybrid method like BCE
[115].

Multi-level selection approach

Although the levels of selection is an important aspect in the evolutionary biology
community, the first GAs to implement the concept did not find strong performance im-
provements over existing algorithms. A multi-level selection algorithm was developed by
Lenaerts et al. [110] where selection occurs at the group level when there is a large enough
variation between different groups. However, all groups were re-assigned in each gener-
ation, losing the advantages of group selection across multiple generations. Subsequent
methods of integrating a multi-level theory into GAs [2, 157] also fell short in improving

performance over the mainstream niching and decomposition based methods.

In 2017, Grudniewski and Sobey developed MLSGA (Multi-Level Selection Genetic Al-
gorithm) [72] and included co-evolutionary mechanics in the next iteration cMLSGA (Co-
evolutionary Multi-Level Selection Genetic Algorithm) [74]. This version of implementing
a multi-level selection concept into GAs was successful, as only one group of individuals
is removed in each generation, and separate mechanisms are used for its sub-populations.
MLSGA groups individuals into sub-populations called collectives. Collectives are formed
based on the similarities between the individuals. The individual and collective levels
used different mechanisms, instead of different mechanisms on each collective. MLSGA
further defines fitness separately for the individuals and collectives to maintain diversity.
In cMLSGA, different collectives now used different Evolutionary Algorithms to introduce
competitive co-evolutionary pressure on the collectives. After a number of generations
evolving independently, the collective with the worst fitness is eliminated and repopulated
with the best individuals from the other collectives. Similar to HEIA, cMLSGA provides
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a framework for different Evolutionary Algorithms to be used.

Evolution Strategies

Evolution Strategies [18] use the mechanics of selection, recombination and mutation to
evolve the population. However, unlike traditional GAs, Evolution Strategies are self-
adapting with a distinct set of endogenous and exogenous parameters. Endogenous pa-
rameters are evolved along with an individual solution and passed down to offspring in-
dividuals, independent of others in the population. This contrasts with GAs where all
parameters such as crossover and mutation rate are set beforehand, making them all ex-
ogenous. Endogenous parameters control the strategy of ES algorithms by changing the
statistical properties for mutation. There are two steps of recombination and mutation for

an individual ¢ in each generation:

Recombination to form the endogenous strategy parameters s(i).

Recombination to form the solution variables y(i).

Mutation of the strategy parameters.

e Mutation of the solution variables using the strategy parameters.

CMA-ES [80] is an improvement to the traditional ES algorithm. It uses a covari-
ance matrix to generate its mutation distribution which is adaptive and evolves with the
search. This allows the strategy parameters to adapt more closely during local search. The
parameters are adapted based on statistics gathered through previous generations. The
self-adaptive endogenous parameters can be seen as a form of evolvability. The mechanism
of passing down and evolving this extra set of parameters changes the capacity of evolution
in the population, as the mutation rate is changed and adapted based on previous genera-
tions. As evolvability is similar to tuning hyperparameters, the use of a set of self-adapting
parameters to control mutation automates tuning of the mutation rate. While CMA-ES
shows strong performance, it is mostly used in dynamic and single-objective problems
making it difficult to compare to state-of-the-art multi-objective algorithms. Despite its
additional features with parameter control, it does not make use of any cultural or epige-

netic forms of inheritance.

Differential Evolution

Differential Evolution [180] (DE) is another branch of Evolutionary Algorithms that is
similar to GAs. Selection, recombination and mutation operators are all used in DE. The
main difference between GAs and DE algorithms is the representation of the individual.
DE uses real value vectors rather than binary encodings in traditional GAs, though modern
multi-objective GAs such as NSGA-IT and MOEA /D also use real values directly rather
than a binary encoding. Hybrid combinations of GAs and DEs have shown to provide
benefits in algorithm performance as shown in MOEA/D-DE [114].
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Memetic algorithms

Memetic algorithms [118] are inspired by the human information concept of memes [41] as a
simple unit of knowledge that can be transferred and evolved in human society and culture.
Memetic algorithms take this concept and apply it onto an evolutionary framework. Ge-
netic algorithm concepts of selection and recombination are used, but instead of mutations
to make additional changes to offspring solutions, further local search techniques such as
simulated annealing [181] are used to improve the fitness of offspring solutions as much as
possible before the cycle is repeated for the next generations. The addition of local search
heuristics to improve offspring solutions is more similar to the concepts of evo-devo and
phenotypic plasticity than epigenetics or cultural information transfer. Multi-objective
memetic algorithms such as M-PAES (memetic-Pareto Archived Evolution Strategy) [104]
borrows the use of a nondominated archive of solutions, and combines them with local
search optimisers. These algorithms use selection and recombination mechanisms with
a variety of local search techniques that can be considered to be plastic or evolutionary
developmental approaches, but would not be considered epigenetic, as the local search be-
haviour does not change according to environmental changes. Hybrid memetic algorithms
that utilise PSO [118] or other Swarm Intelligence algorithms as their local search method

could be considered to include cultural elements of social learning.

2.4.2 Swarm Intelligence

Swarm Intelligence algorithms are made up of optimisation techniques inspired by collec-
tive group behaviour of biological organisms and systems. Solutions are represented as
individuals within the group that acts together to search for the optimal solutions, for
example, simulating the behaviour and movement of ants leaving pheromone trails [51]
or the hunting behaviour of grey wolf packs [129]. The abundance of Swarm Intelligence
algorithms based on a wide assortment of biological systems has created criticism over
their true novelty as the mathematical models are obscured by metaphoric language [174].
Here, the algorithms are presented with their mathematical formulations to distinguish

their differences and emphasise their similarities.

Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is an algorithm developed in 1995 by Eberhart and
Kennedy [100] for optimising nonlinear functions. The algorithm is based on the concept
of social behaviour and sharing information. In the classic PSO, a population of particles
represent potential solutions in the search space. Then, in each iteration, each particle
updates its velocity and position in the search space. The velocity update is based on a
combination of the best position found so far by the particle, and the best position found
so far by the entire swarm. Given the decision variables x = x1, x2, ..., x4 for d variables,

each variable is updated by adding a velocity v to its value. The new value of variable
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in each iteration is calculated as:
T =z + v (2.5)

where

vi = wv; + e1ry(pbest; — x;) + cara(gbest; — ;), (2.6)

pbest is the best solution found by the particle; gbest is the best solution found
by the entire swarm; both are decision vectors where pbest; and gbest; represent the ith
decision variable. v} is the updated velocity for the ith decision variable, replacing the
previous velocity v;; v = v, ve, ..., vq is the velocity vector for d variables; w is the inertia
weight, controlling the influence of the previous velocity and typically set around 0.5 or
linearly decreased (e.g., from 0.9 to 0.4) over iterations to balance global exploration early
and local exploitation later [170]; ¢; and ¢y are coefficients that balance the movement
towards personal and global bests found so far; finally, r1, 79 € [0, 1] are random numbers
drawn uniformly for each particle and iteration. The velocity update combines three com-
ponents: the inertia term (wv;) maintains the particle’s previous direction, the cognitive
term (cy71(pbest; — x;)) pulls the particle toward its personal best, and the social term
(cora(gbest; — x;)) pulls it toward the global best. Higher ¢; emphasises exploration based
on personal experience, while higher ¢, prioritises convergence toward the swarm’s best
solution. The best positions pbest and gbest are updated after every iteration based on
the fitness function. For multi-objective optimisation, pbest and gbest may be selected
using Pareto dominance or other criteria such as crowding distance. The learning strategy
of social learning x; = L(x;,2z*) for PSO is the velocity update in equation 2.5, with z*

being the pbest and gbest solutions.

Particles in the swarm can be connected to each other in any graph topology to share
the best global and local solutions found. Similar to Genetic Algorithms, there are multiple

approaches to solving multi-objective problems using PSO. They can be grouped as follows:

e Aggregating approaches - Aggregating approaches aim to combine the objectives in a
multi-objective problem in a single objective, in direct contrast to the decomposition-
based approach of Genetic Algorithms. Parsopoulos and Vrahatis [144] developed a
multi-objective PSO using different methods of weighted aggregation, with fixed, dy-
namic and random weights. However, the choice of weights is dependent on each
problem and are difficult to choose. Furthermore, the approach only finds one solu-
tion per run, as the aggregated single-objective problem will only have one solution,

making it computationally inefficient.

e Lexicographic ordering - The lexicographic ordering approach required user input to
rank objectives in order of importance. Each objective function could then be solved
separately in order of importance. Hu and Eberhart [203] introduced MOPSO that
optimised one objective at a time and added an external archive [204] to improve the
dynamic neighbourhood of their approach. The approach also requires user input

and tuning to determine the order of importance, which is not effective for real
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world applications with no a priori knowledge as the ordering significantly affects

performance.

e Pareto-based approaches - A more common approach is the use of Pareto dominance
to sort the best particles found and select leaders for the swarm. Reyes and Coello
[172] also used the concepts of Pareto dominance and nearest neighbour density esti-
mator to select leaders in OMOPSO. The algorithm uses two external archives: one
to store leaders and the other to store the set of non-dominated solutions found. The
algorithm outperformed a number of multi-objective algorithms including NSGA-II
and MOPSO on the ZDT and DTLZ benchmark problems. Further improvement to
OMOPSO was made in [53, 136] to develop SMPSO, where the velocity of particles

were constrained to disallow extreme values.

e Multi-swarm approaches - Multi-swarm approaches use independent swarms for each
objective, solving them as single-objective problems. The swarms may then exchange
information or recombine after some generations. This is similar to co-evolutionary
approaches in GAs like COEA, strictly separating each subpopulation for each ob-
jective. A multiple populations for multiple objectives (MPMO) approach was in-
troduced in [143] where information is shared using an external archive. CMPSO
was able to outperform algorithms such as NSGA-II, MOEA /D-DE and OMOPSO
on ZDT problems with a low number of function evaluations and had competitive
performance in DTLZ and WFG problems [216]. However, to gain the best perfor-
mance from CMPSO, the external archive and elitist learning strategy used have to

be tuned to balance convergence and diversity for different problems.

Ant Colony Optimisation

Ant Colony Optimisation (ACO) [51] simulates a population of ants that moves through
the search space probabilistically based on pheromone trails left behind by previous gener-
ations. Pheromone values decrease with each iteration so that old trails fade and new ones
form as the search space is explored. Some pheromone trails will be reinforced if the next
generations continue to follow the same path, leading to higher pheromone values, which
are associated with better solutions. Unlike most other Swarm Intelligence algorithms that
use a form of update function as the learning strategy, based on a combination of a local
or global best solutions found so far, Ant Colony Optimisation constructs each solution
based on the probability of candidate values at each variable, which is determined by the
pheromone trails. To construct a solution x, the probability that a value v; from a set of

V' candidate values will be selected for x; is

()] - [n(v:)])?
Pu;) = [7(vi)] [;7( i)] ; (2.7)
Y v cv T(Wr)]® - [n(vr)]
where 7(v;) is the pheromone value and n(v;) is a heuristic value for the candidate value v;.

P(v;) is the probability of selecting v; from the set of all candidates V. The parameters a



36 Chapter 2. Epigenetic opportunities for Evolutionary Computation

and S control the relative influence of the pheromone trail and the heuristic information,

respectively.

The pheromone trails for a candidate value v; is updated as follows:
T(v;)) = (1 —p) - 7(v;) + A7(v;) (2.8)

where p is the pheromone evaporation rate and A7(v;) is the amount of pheromone de-
posited by an ant on the trail associated with the v; value. The values of A7(v;) and
heuristic n(v;) may be defined differently depending on the problem and algorithm. The
construction of solution variables are then based on a combination of the probability for
each decision variable and a heuristic specific to the problem. To adapt ACO to multi-

objective problems, there are a three key aspects that must be considered:

e The pheromone matrix — In a single objective problem, each decision variable corre-
sponds to a pheromone value within a single pheromone matrix. In a multi-objective
problem, multiple pheromone matrices could be implemented with each matrix cor-

responding to one of the objectives.

e Solution construction — With multiple objectives and potentially multiple pheromone
and heuristic matrices, solutions can be construction through an evenly weighted
combination of all these values. Weights can be applied to specific objectives and
used for a subset of solutions in the population to effectively form a multi-ant colony
system [65].

e Solution evaluation — Like other multi-objective algorithms, solutions are no longer
evaluated by a single fitness value. Pareto-based approaches such as domination
ranking can be used to satisfy multiple objectives, but other approaches such as
decomposition-based [210] indicator-based methods [56] have been explored in the

literature.

Although ACO uses multiple iterations/generations, there is no information transfer
through genetic inheritance. The individuals in the previous generation leave behind
ecological changes with pheromone trails that affect the behaviour of new generations, but
there are no genetic operators in use. This can be seen as ecological inheritance, which
has been defined here as part of social learning. The use of pheromone trails is core to
the concept of ACO, but due to the probabilistic method of solution construction from

candidate values, the algorithm is more suited to problems with discrete variable ranges.

The ACO is based on social learning at the individual level and specialised roles can
be applied for multi-objective problems. The pheromones left by solutions of the previous
generation would not be considered inheritance as pheromones from all ants of the previous

generation are used rather than specific parents.
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Artificial Bee Colony

In an Artificial Bee Colony [3] (ABC), bees are used as the biological inspiration and
analogy for a multi-objective solution. The population is split into three different types of
solutions: employed solutions, onlooker solutions and scout solutions. This can be viewed

as three sub-populations P, P,, and Ps.

e Employed solutions search for better food sources, points in the decision variable
space, in their local neighbourhood and share that information to onlooker solutions
in the region. They are able to remember new points if they dominate an existing
point in its memory. To accomplish this, an archive of the non-dominated solutions
found so far is kept as memory. For each employed solution x;, the learning strategy
is to select a random solution x; from the archive. Then the variables of x; are

updated by moving towards the selected archive solution:
X, = X; + wy - r(x; — X;) (2.9)

where r is a vector of random numbers with values ranges [0, 1], and w; is a control
parameter on the importance of the archive solution x;. The new decision vector x;
is evaluated based on the objective functions, and if it dominates x; it replaces x;.

Otherwise a trial count is incremented.

e Onlooker solutions take the information given by employed solutions and move to-
wards new points in decision space based on the information. For k£ employed solu-

tions, each onlooker has a probability of selecting the employed solution x;
f’L't(Xi)

k .

> fit(xy)

with fit(xy) representing the quality of the solution xj; as the number of other so-

Pli) = (2.10)

lutions that x; dominates. After the selection process, the variables of the onlooker

solution are updated following equation 2.9.

e Scout solutions search for new points randomly without taking into account any
information, potentially replacing existing employed or onlooker solutions if their trial
counts go past a certain threshold. A new random decision vector x; is created. If x;

dominated the existing x, it replaces x. The trial count is reset to zero afterwards.

The scout solutions carry out the exploration phase of the search by moving randomly
while employed solutions carry out an exploitative search by searching locally for non-
dominated solutions. Social learning is observed as the solutions change behaviour based
on information from other solutions and contextual clues from the environment. The role
of an individual is not static, for example scout solutions become employed solutions if
their random solution dominates an existing solution that has not improved after a number
of trials. Some variants on the ABC algorithm include genetic operators (GB-ABC [142])
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to improve global and local search for binary optimisation problems, but have not been
adapted to multi-objective problems. The ABC algorithm uses both specialised roles and

social learning between individuals.

Grey Wolf Optimiser

The Grey Wolf Optimizer (GWO) [129] is an algorithm inspired by grey wolf social struc-
ture and hunting techniques. It mimics a leadership hierarchy with four types of grey
wolves: alpha, beta, delta, and omega. In a multi-objective optimisation problem, each
grey wolf represents a solution, denoted as x = x1, xo, ..., x4 for d decision variables. The

population is divided into the four groups:

e Alpha («): The best solution found so far x,
e Beta (f): The second best solution found so far x3
e Delta (§): The third best solution found so far x;

e Omega (w): The rest of the solutions in the population

Best solutions are chosen through a leader selection mechanism. To adapt the original
algorithm for multi-objective optimisation, an archive of non-dominated solutions is main-
tained, and the alpha, beta, and delta solutions are chosen using roulette wheel with
probabilities based on crowding distance in objective space [130]. The less crowded solu-

tions are more likely to be chosen as the alpha, beta, and delta solutions.

The omega solutions, the rest of the population, are updated based on the positions of
the alpha, beta, and delta solutions. For each omega solution x;, the distance vectors D,
Dg, D; are calculated as

D, = |Ci(xq — xi)]
Dj = [Calxs — i) (2.11)
Ds = |Cs(xs — x;)]

where C1, C,, and C3 are random coefficient vectors used to control the influence of each
leader solution on the position update. Each is calculated as C = 2 - ry, where ry is a
random vector with values in [0, 1]%. Three direction vectors based on the distance vectors
are then calculated and used to update x;:

x'a =X, —A1-D,

X3 = X3 — Ay - Dy (2.12)

X5 = x5 — A3 - Ds

Xo + X3+ X
¢:43—§L—3 (2.13)

A4, Ay, Aj are coefficient vectors calculated as

C=2-1 (2.14)



2.4. Categorising algorithms 39

A=2a-rs—a (2.15)

r; and ry are random vectors with values [0,1] and a is a constant vector with values

decreasing from 2 to 0.

The two coefficient vectors A and C are used to fluctuate between exploration and
exploitation. When |A| > 1 the wolves diverge from non-dominated solutions instead of
moving towards them. Similarly, |C| > 1 emphasises moving towards the non-domianted
solutions so the population move faster towards it while |C| < 1 de-emphasises this move-

ment.

There is a use of specialised roles among population to form the hierarchy and indi-
vidual social learning occurs during the optimisation, when the omega solutions follow
global best solutions represented by the alpha, beta, and delta solutions for direction. In-
formation exchange between solutions is used as the dominated solutions move to position
themselves based on the positions of the non-dominated solutions. The GWO algorithm

uses both specialised roles and social learning between individuals.

Firefly Algorithm

The Firefly Algorithm [207, 208] (FA) is based on the flashing patterns and behaviour of
fireflies. The fireflies represent the solutions to the optimisation problem as a vector of d
decision variables x = (1,2, ...,z4). The algorithm explores the search space by having
each solution be “attracted” to other solutions in the population based on dominance and

distance. Solutions that are dominated move towards non-dominating ones.

At each iteration, for every pair of solutions (i, ) where x; dominates x;, the update

of x; is defined as:

x| = x; + Boe T (xj—xi) +a-e (2.16)

where 606_7”3 is the brightness which scales with distance r;; between x; and x; based
on the inverse square law. [y is the attractiveness at distance 0, usually set to 1. ~ is the
light absorption coefficient, which determines the impact of distance on the attractiveness
between individual solutions. 7;; is the distance between the two solutions x; and xj,
usually calculated as the Euclidean distance. The « term is a randomisation coefficient,
and € is a vector of random numbers drawn from a Gaussian or uniform distribution.
Typically v = % and @ = 0.01(U — L), where U and L are the upper and lower
bounds values of x. picked from a uniform distribution.

Solutions that are non-dominated move based on the best solution gbest found so far:

X, =x; + gbest + a - ¢; (2.17)

As the solutions move based on the fitness of other nearby solutions, the algorithm
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can be seen as a similar variation to a Particle Swarm Optimisation algorithm. The main
difference is the lack of a single global best in the swarm, as each individual solution is
attracted to all others in the swarm, moving different distances based on the attractiveness.
This uses elements of selection, as individual solutions are more attracted to fitter non-
dominated solutions. Social learning is also observed, as an individual moving towards

non-dominated solution mayb become non-dominated themselves.

Cuckoo Search

Cuckoo Search [206] is an algorithm inspired by the aggressive egg laying behaviour of
cuckoo birds, which lay eggs in the nests of other birds. It is a population-based al-
gorithm that uses the concept of Levy flights [23] for exploration, and selection mecha-
nisms for exploitation. The biological analogy of “eggs” is used as the solution vector
x = (x1,x9,...,x4) for d variables. The algorithm follows three rules for multi-objective

problems with o objectives [209]:

e New solutions are generated by performing Lévy flights from existing solutions. The

new solution x; is generated as follows:
Xi+1 = X; + a - Lévy()\) (2.18)

where « is a step-size scaling factor and Lévy(\) is a step drawn from a Lévy distri-
bution defined by:
Lévy ~u=1t21<X<3 (2.19)

e Non-dominated solutions are carried forward into the next generation.

e A fraction p, of the most dominated (worst) solutions are discarded.

These rules balance exploration and exploitation towards the Pareto front, with poor
solutions discarded as a selection mechanism. The degree of exploration and exploitation
is controlled by the « and p, parameters, making the algorithm sensitive to parameter
tuning. Furthermore, Cuckoo Search requires additional hybrid mechanisms to handle
many-objective problems due to premature convergence and computional scaling issues
[32].

2.4.3 Summary of current algorithms in a biological framework

In general, most of the categories of algorithm use a single category of information transfer,
the Evolutionary Algorithms focus on different forms of genetic transfer with mechanisms
focused around changing the selection of the population to mate and Swarm Intelligence
focuses on different forms of cultural information transfer. Many of the popular Evolution-
ary Algorithms such as NSGA-II [45], MOEA/D [217], and SHADE [184] have diverged
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from their biological roots into mathematical or statistical methods. In the Swarm Intelli-
gence algorithms, many follow a learning strategy of updating the decision variables with

different formulae. For example,

e PSO velocity update

X, = x; +v; (2.20)
o Grey Wolf hunting strategy
X; — w (2'21)
3
o Artificial bees
X, = x; + wy *r(x; — X;) (2.22)

Each of these algorithms follows the mechanism of social learning in cultural inheritance.
Each solution representation x is updated based on its previous values and additional
information through other members of the population. Table 2.6 sums up the Swarm
Intelligence algorithms based on their biological analogy, update function, and information
transfer mechanics. While some are based on biological studies of animal behaviour, such
as Ant Colony Optimisation with pheromone trails to probabilistically construct a solution,
many are computational analogies for movement behaviour in variable space, with the

difference between algorithms being how the reference directions are computed.

Table 2.6: Swarm Intelligence Algorithm properties

. Biological Update Information
Algorithm inspiration Function Transfer
. . Global best
PSO Particles Velocity update and local best
Solution
Ant Colony .
o construction Pheromone
Optimization Ants .
based on trails
(ACO)
pheromones

Artificial Bee
Colony (ABC)

Bees (employed,
onlooker, scout)

Position update

Global best

Grey Wolf Wolves (alpha, N 3 global bests
Optimizer beta, delta) Position update (alpha, beta,
(GWO) ’ delta)
Firefly Algorithm . . All global
(FA) Fireflies Position update bests
Cuckoo Search . Selection and Lévy
(CS) Cuckoo birds position update flight-based

Existing studies [30, 146, 178] which investigate the use of epigenetics in Evolutionary
Computation will be further analysed in Chapter 4, presenting a discussion on the key

concepts of epigenetics and how these existing studies follow or miss the key concepts.
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2.5 Missing concepts

Despite the range of available algorithms, Evolutionary Computation can be closely linked
to a relatively small part of the evolutionary literature, focused on genetic inheritance
and the Modern Synthesis. Mechanisms from the Darwinian concepts and Modern Syn-
thesis have all been included, but there is limited inspiration taken from the Extended
Synthesis. A few elements from the Extended Evolutionary Synthesis have been explored:
Swarm Intelligence algorithms fit closely to the concepts of cultural inheritance and infor-
mation transfer; cMLSGA has been shown to be a successful implementation of multilevel
selection; Evolvability is represented by hyper-parameter choices, which algorithms such

as CMA-ES dynamically alter during a search.

While the Extended Synthesis provides a number of opportunities, not all of the el-
ements provide easy inspiration for practical optimisation problems. Evolutionary and
developmental biology (Evo-devo) includes the developmental stages of living organisms
and the evolution of developmental processes; which in many ways most closely replicat-
ing the initial vision proposed by Turing [188] of generating a child and teaching it to
learn. Adapting the concept for general Evolutionary Algorithms would require substan-
tial expansion of the simple genotype model of evolution used in evolutionary algorithms,
such as including properties relating to gene regulation, homeobox genes and allometry.
Evo-devo provides a number of developmental steps for fine tuning an organism, but in
the algorithmic world this is unnecessary when more generations can be run instead. It
is possible to apply evo-devo to specific applications, such as digital architectures [135],
where domain-specific concepts in architecture can be linked to evo-devo processes, and
the time required to generate solutions makes fewer generations more suitable. The design
of neural networks using Genetic Algorithms [103] mimics evo-devo concepts with limited
success as neural networks already learn through their training process, and Evolutionary
Algorithms are typically used to network parameters such as weights and architecture
[211].

Genomic evolution involves the evolution of genome architecture itself. In computa-
tional terms, genomic evolution would involve the evolution of the number of variables or
range of values in an optimisation problem. These values are typically set based on the

problem and do not require evolutionary mechanics applied to them.

This leaves epigenetics, niche construction, and phenotypic plasticity as unused mech-
anisms with the most promise for providing excellent bio-inspiration for new algorithms.
Particular focus is placed on the exploration of epigenetic mechanisms, alongside the pos-

sible benefits of niche construction and phenotypic plasticity.
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2.5.1 Phenotypic plasticity

The concept of phenotypic plasticity is the idea that an organism’s behaviour or physiology
could change due to environmental factors [154]. Information from the environment is
taken and used when creating the final phenotype from the genotype. For example, if a
genotype for a neutral network is evolved first through training, a plastic neural network
would be one that is able to learn and respond to the environment it is placed in, to alter
the final weights of the network, leading to a plastic phenotype after genetic evolution.
Further alterations such as change to the architecture of the network itself and number of
hidden layers is possible too. Plastic neural networks have been explored in the past [128,
173, 187] with success, showing the benefits of including phenotypic plasticity in intelligent
systems that need to run and adapt in the environments they are placed in. Learning can
be further extended as a developmental process to include altering the topology of the

network, although this has yet to be explored.

Algorithms such as Indicator-Based Evolutionary Algorithm (IBEA) [223] uses a perfor-
mance indicator, such as Hypervolume, to guide the selection process. This indicator-based
selection evaluates solutions based on their contribution to the quality of the approximated
Pareto front. By prioritising solutions that improve the indicator, IBEA can mimic aspects
of plasticity by focusing the search on regions of the objective space that adapt to changing
problem characteristics, such as shifting objectives or constraints. The class of optimisa-
tion problems that focuses on dynamic problems, where the objectives and constraints
may be unstable and change throughout the search, would also be suitable for algorithms
with flexible, plastic responses. Algorithms in Swarm Intelligence can exhibit some of this
behaviour, for example when candidate solutions take different roles in the Artificial Bee
Colony depending on the number of existing solutions in other roles. However, there is
no scale or range of plastic responses in reaction to a changing environment in the ABC

implementation.

Phenotypic plasticity is a relevant concept particularly in intelligent agents that require
adaptation in a working environment. While genotypes can be evolved during an opti-
misation search, phenotypic plasticity allows for learning and adaptation after the initial

search.

2.5.2 Niche construction

A separate concept from niching in genetic algorithms, niche construction is the concept
of organisms altering their environment to better suit their needs, and in doing so leaving
behind these useful alterations for the next generations to benefit from [139]. Because
this typically requires individuals in the population to change their own environment, it
is difficult to accomplish computationally. Optimisation problems are usually predefined

and the fitness landscape is dependent on the problem. If an algorithm is able to change
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the fitness landscape to suit the solutions it produces, it changes the problem definition,

meaning the solutions found may no longer be applicable or useful to the original problem.

However, the concept of niche construction can be expanded to not only look at the
fitness landscape as the environment that can be changed. The social environment in which
the methods of interaction between individuals could be changed over time. Improved
methods of communication and information flow can also be considered niche construction.
In this case algorithms such as the Ant Colony Optimisation could be argued as using niche
construction through the pheromone trails that change the information pathways between

workers.

2.5.3 Epigenetics

Epigenetics plays an important role in adapting a population to new conditions and envi-
ronments quickly. In computational terms, epigenetic mechanisms should help to improve
convergence, potentially spreading changes through a population faster than genetic evolu-
tion, and improve stability around a solution in the face of environmental changes. There
are a number of different epigenetics processes such as DNA methylation, bookmarking,
gene silencing, gene repression, and genomic imprinting that are triggered by different
factors such as environment, diet, or the presence of certain chemical compounds [77].
Because of the wide branch of epigenetics research, it is difficult to narrow down which

mechanisms may be helpful to the performance of Evolutionary Algorithms.

In the Modern Synthesis view of evolution, genetic changes occur randomly and fitness
is guided by natural selection. Similar to this, the development of modern genetic algo-
rithms focus on improving the selection process while keeping genetic changes random to
retain diversity. A number of generations is required for suitable traits with high fitness
to spread throughout a population, even with mechanisms such as elitism. Epigenetic
inheritance allows for faster changes based on environmental cues which can occur simul-
taneously among multiple individuals in the same generation. These adaptive adjustments
do not affect the underlying genotype, allowing regular genetic processes to occur and epi-
genetic processes to be reversed. For example, in Genetic Algorithms, the final solution to
an optimisation problem is generated from the phenotype consisting of the combination
genes and phenotypic changes from the epigenetic tags. This allows solutions or values not
found in the genotypes to be in the final solution, allowing rapid changes to not require
slower genetic propagation. These rapid changes are ideal for scenarios such as dynamic

optimisation problems or variable-length problems.

The inheritance of epigenetic tags in parallel with genetic inheritance results in con-
tinual rapid changes with a diverse set of tags among a population, without disrupting
underlying genetic processes [201]. This is an important aspect in evolutionary biology to
guide phenotypic variation in a direction suitable for the environment instead of relying

solely on random mutation and natural selection.
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Existing epigenetics studies in Evolutionary Computation

The key concept of epigenetics is to allow for fast variation when appropriate. Existing
studies [30, 146, 178] inspired by epigenetics are currently missing the key feature of trig-
gering mechanisms based on the fitness of the population to the environment. Mechanisms
are triggered probabilistically without any distinction between individuals, parents, and
how epigenetic marks are passed on. This probabilistic method is more akin to bet hedging
[105] than epigenetics, where the mechanics do not improve individual fitness in stationary
conditions with no drastic changes in the environment, but create advantages in extreme

conditions such as being stuck at a local optima.

An epigenetic algorithm based on intra-generational epigenetic processes used by bio-
molecules was developed by Periyasamy et al. [146]. This system mimics cellular organ-
isation, with individuals of bio-molecules performing independent tasks in a swarm-like
manner, and require specific conditions to be met. The focus on the epigenetic processes
uses no genetic operators, which misses a genetic component to contribute to the final
phenotype. The use of epigenetics was found to improve the convegence of this algorithm,
but it potentially loses diversity from the lack of genetics and can get stuck at local op-
tima. The intra-generational, self-creating system proposed is also not suitable for solving
practical multi-objective optimisations, and no concrete benchmarks were used or tested

in their work.

Chrominski et al. [30] used the epigenetic process of cytosine methylation in a Ge-
netic Algorithm to solve the Knapsack problem. This approach integrated the method of
cytosine methylation where a part of an individual’s genotype can be blocked during the
crossover operation. It aims to transfer a larger portion of the fitter parent’s genotype
while silencing the poorer parent individual. It was found that a 30-40% probability of the
epigenetics operation occurring results in the lowest number of generations to find the best
solution. Only the simple single objective Knapsack problem was tested, and performance
was only compared to an unmodified GA, so it is not known if the concept extends well to
complex multi-objective problems, or to more established evolutionary algorithms. Stolfi
and Alba [178] also explored the concept of methylation and gene silencing in their version
of an epiGenetic Algorithm (epiGA). Similar to Chrominski, a number of parent genes may
be masked based on the probability of the epigenetics mechanism occurring. Although the
algorithm was tested against the multi-dimensional Knapsack problem against multiple

competing algorithms, it is still only a single objective problem.

Chikumbo, Goodman, and Deb explored the use of epigenetic silencing in a multi-
objective land use management problem [29]. In their approach, decision variables are
randomly assigned a value out of the 111 possible options based on a beta distribution
at the start of the optimisation. Then selected variables are edited if the variable values
violated adjacency constraints. The epigenetic mechanisms utilised in this study helped
to ensure the constraints of the problem were satisfied, and thus was able to achieve

a speed up in computation time. The results illustrate the potential use of epigenetics
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in the specific multi-objective optimisation problem of land use management. It is not
yet known how the effects of the epigenetic mechanisms extend to other problems with
fewer objectives and constraints, or how the mechanisms aid multi-objective algorithms
in dynamic optimisation problems. Furthermore, the element of inheritance for epigenetic
changes were not explored, leaving many aspects of applying epigenetics to multi-objective

optimisation algorithms unknown.

So, while some algorithms inspired by epigenetics have been studied in the literature,
they are currently missing the key features that lead to the benefits seen in evolution.

These features are outlined in the following subsections.

Epigenetic tags - the epigenotype

A key aspect not captured by existing studies is the inheritance and transfer of epige-
netic information to future generations. While the epigenetic mechanisms implemented
were accurate, this transfer is important as it guides the direction of phenotypic change.
Without this aspect, the epigenetic mechanisms simply act as another form of mutation,
probabilistically switching genes on and off. To include the epigenetic information trans-
fer, epigenetic tags can be used to form an epigenotype [17], to keep a history of inherited
epigenetic changes and allow changes to an individual’s genotype to be triggered based on
these tags. Epigenetic tags can be added and removed based on signals from the environ-
ment, or based on inheritance and crossover operations when forming offspring individuals
[19]. Epigenetic tags can also help control gene expression in response to environmental
changes. In biology this helps to form “memory” based on changing environments [224].
The memory of the recent environment allows for fast adaptation and stability. By control-
ling how genes are expressed using an epigenotype, suitable traits are constantly adjusted

to improve fitness before longer term genetic changes can be applied.

1 0 0
Epigenotype ? (1) ?
1 1 1
Parent
Genotype 1 0 1 1 1 0 1 1

Figure 2.5: An epigenotype with epigenetic tags for some genes in the genotype.

Computationally, each variable in a solution can contain a set of tags that can be
inherited and modified. Figure 2.5 shows the epigenetic tags on top of some variables
in the genotype. The tag can be used to encode mechanisms to alter the variable after
genetic operators are applied. These mechanisms can then help increase convergence by
guiding phenotypic variation in a direction matching selection pressures. The underlying

genetic mechanisms are further unaffected by epigenetic changes, and epigenetic changes
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can be easily reversed, reducing the cost of poor mutations compared to genetic mutations.
The assumption of the one way flow from genotype to phenotype in biology is adopted,
where the epigenotype sits over the underlying genotype without a backwards flow of
information. It is possible that the underlying genome could benefit from learned changes
of the epigenotype. However, this could also affect genes that are suitable for the long
term being replaced by short term epigenetic adapations, leading to over convergence in
a local optima. The advantage of fast adapations that can be quickly turned on and off
could then be lost.

The epigenotype represents the three key aspects of epigenetics:

e the transfer of epigenetic information,
e self-adaptability to environmental changes,

e fast convergence from direction variation.

These aspects may have potential benefits especially for dynamic problems where the
Pareto set is not static. In dynamic multi-objective problems, both the Pareto optimal set
and its corresponding Pareto front may change over time due to shifting environmental
conditions or objectives. The self-adaptability and fast convergence would allow algorithms
with an epigenotype to adjust to a changing Pareto optimal set and its associated Pareto
front quickly. With the use of an epigenotype [17], epigenetic tags can be added, removed,
and inherited to future generations. An epigenotype alters the phenotype without changes
to the underlying genotype. The tags can then be used to encode different epigenetic
mechanisms to be triggered. The mechanisms have a range of effects on the genotype,
such as switching genes on and off, or reducing gene expression based on the location and

number of tags in the epigenotype.

Genomic imprinting

Genomic imprinting [26] restricts the expression of a gene to one parent. Imprinting is
useful when the imprinted alleles lead to different phenotypes that affect an individual’s
fitness. This process does not directly change the genotype and can prevent segregation
according to Mendel’s laws at the phenotype level. Epigenetic tags are imprinted in the

germline and cause the imprinted genes to be expressed from only one parent [200].

There are three hypothesised theories for the process of imprinting

e the kinship theory [78] — The theory suggests that an imbalance exists between
parental genes due to conflicting fitness strategies from both parents. This is mostly
apparent in sexual reproduction where the father and mother have differing interests

to pass on their own genes.

e The sexual antagonism theory [182] — This theory uses sex-specific selection pressure.

It predicts an uneven allele frequency between males and females when natural se-
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lection favours one sex over the other so that offspring genes are enriched to benefit

a particular sex.

e The maternal-offspring coadaptation theory [198] — Based on the correlation be-
tween the genes of the mother and the maternal genes of the offspring, the maternal-
offspring coadaptation theory states that the offspring is more likely to inherit from
its mother because it leads to a higher probability that the offspring has a positive

interaction with its maternal phenotype, and the interaction leads to higher fitness.

Gene regulation

The presence of epigenetic tags enables gene regulation mechanics to occur on the tagged
genes. There are multiple forms of gene regulation: gene silencing, gene activation, and
gene repression. All forms of gene regulation affect the expression of the affected genes
leading to variation in phenotypes from the same genotype [156]. Gene silencing is a
mechanism for turning entire sections of the genotype on and off independent of mutation.
In evolutionary biology gene silencing has the effect of protecting the host organism from
viruses [151] by silencing genes that are used in viral reproduction. In terms of convergence
and diversity, convergence should be increased and diversity decreased as silenced genes

are not fully expressed compared to other genes.

Gene repression acts on individual genes rather than entire sections of the genotype.
In evolutionary biology it switches off genes whose products are required to maintain cell
functions [164]. To implement this computationally, each variable in a candidate solution
can be switched on or off, based on the tags of the epigenotype. The modification of the
tags can be based on the fitness of the individual, adapted based on the progress of the

search or based on environmental cues.

2.6 Summary

The current development of multi-objective GAs trend towards the use of mathematical
functions, moving away from the biological inspirations of the algorithms. The niching
method of NSGA-II focuses on Pareto dominance to rank solutions and crowding distance
to maintain diversity. The decomposition based approach decomposes the problems into
well-distributed subproblems using defined weight vectors. None of these aspects have
strong links to phenomena or concepts in biology. The approaches also make improvements
to specific aspects of the algorithms to increase convergence with a priori knowledge, such
as the addition of reference points in NSGA-III.

The less popular indicator and co-evolutionary approaches are closer to their biological
inspirations. Co-evolutionary approaches have strong diversity mechanics making them
more effective on some real-world problems such as Classical Laminate Plate Theory [75]
and provide better generality. In particular, methods like HEIA and cMLSGA are able
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to combine the strong convergence aspects of niching or decomposition methods in a co-

evolutionary environment to maintain diversity.

For Swarm Intelligence, a similar trend can be seen. For instance, the best performing
PSOs on benchmarking problems are Pareto-based with a focus on convergence. Additional
mechanisms to improve performance such as weights [144], objective ordering [203] and
speed constraints [136] all take advantage of a priori knowledge of the test functions which
would not necessarily be available for real-world problems. Furthermore, many Swarm
Intelligence algorithms exhibit the same underlying mechanism of positional updates on
the solution vectors, the novelty coming from the use of animal behavioural terms and
slight alterations to the update function rightly drawing criticism [9, 174]. However there
are some unique cases, such as Ant Colony Optimisation which uses a probabilistic method

to solution construction, though it is more suitable to discrete problem domains.

The most successful additional of non-genetic processes is the use of multi-level selec-
tion in GAs. In the case of multi-level selection, previous iterations of the concept did not
provide significant improvements as they missed key features of multi-level selection until
the recent MLSGA. This shows that bio-inspired concepts only work when there is a bio-
mimickry of the key features. The success of MLSGA suggests there are more non-genetic
biological concepts that have only been briefly explored in the past, such as epigenetics,
that may show performance gains when applied to more complex multi-objective prob-
lems. Epigenetics provides benefits in convergence rate, stability in volatile environments,
and reversibility [131] compared to genetic mechanisms in evolution. This provides a
self-adaptive means to quickly converge and stabilise in a changing environment. Few
algorithms have explored epigenetics in depth and there are many underlying mechanisms

that are both self-adaptive and convergence based.

To help make distinctions between different novel algorithms it is important to under-
stand what the differences in their mechanisms are at the core. What are the biological
operators used? What are the key similarities and differences between two bio-inspired
algorithms apart from the terminology used? In some cases of the Swarm Intelligence
algorithms such as Particle Swarm Optimisation and the Grey Wolf Optimiser, different
biological inspirations are used but the underlying operators of learning strategy updates
are the same. To ensure that future bio-inspired algorithms do not recycle the same con-
cepts the key concepts and mechanisms are categorised under a biological framework. This
shows how current algorithms relate to each other and demonstrate gaps in the evolution-
ary synthesis that computational algorithms have yet to explore. Between the genetic
and cultural modes of information transfer, there is a gap in epigenetic mechanisms that
are not fully explored. The next step is to take specific algorithms from Evolutionary
Algorithms and Swarm Intelligence algorithms, test and compare them against a suite of
problems to determine if their performances differences match the biological differences

that are expected, and how suitable the algorithms are for epigenetic additions.
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Chapter 3

Evolutionary Algorithms vs

Swarm Intelligence

3.1 GA and PSO benchmarking

Genetic Algorithms (GAs) and Particle Swarm Optimisation (PSO) are often used inter-
changeably in multi-objective problems. However, there are currently limited comparisons
of state-of-the-art methods to determine which types of problems these methods are most
suited to. In many cases, new algorithms are developed for specific problems [150], al-
though this leads to repeated effort and lack of general applicability, in addition to the
general approaches which are used in a range of applications. Algorithm selection is
therefore difficult, especially to someone unfamiliar with the field. Two of the most pop-
ular bio-inspired computation methods are GAs and PSOs. However, determining when
each of these algorithms is most appropriate is difficult. PSO has traditionally been used
for single objective problems and GAs for multi-objective problems, but increasingly the
multi-objective literature features PSOs and in much of the applied literature, these two

methods are often used interchangeably.

There are two major differences [6] between the PSO algorithm and Genetic Algo-

rithms:

e GAs use parent selection and reproduction mechanisms to produce the next genera-
tion of individuals. While the reproduction mechanisms in GAs and velocity changes
in PSO are similar, PSO does not use a selection function to choose or remove in-
dividuals from the population. Instead, the search is guided by the leaders and the

best local and global solutions found so far.

e PSO’s velocity update can be seen as a directional mutation that is guided by the

best solutions found by the swarm and the individual so far. It will generally move
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in a similar direction if the two best solutions are close, or at an angle if the solutions

are different. In GAs, mutations can set the direction of search in any direction.

Although the two algorithms were inspired by two distinctly different biological con-
cepts, their general performance on current benchmarking problems are comparable, mak-

ing it difficult to distinguish their differences.

3.1.1 Motivation for comparing GAs and PSOs

There are a number of studies comparing GAs, PSOs, and other Evolutionary Computation
algorithms on specific applications [159, 175, 215] but these often use dated algorithms,
such as the original GA or PSO, and are rarely conclusive. In the Evolutionary Com-
putation literature, existing surveys of the state-of-the-art multi-objective optimisation
algorithms tend to focus on the performance of each algorithm, but do not compare differ-
ent classes [67]. The systematic differences between them are not compared to determine
which classes of problems are each most beneficial to. Table 3.1 shows the benchmarking
performed in the existing literature on the benchmark problems and algorithms that will
be tested in this chapter. Not all of the Evolutionary Computation algorithms have been
benchmarked, especially against the new multi-objective test sets, which introduce harder
problems more akin to many real world multi-objective problems. In particular, PSOs
have not been thoroughly benchmarked against these newer problems and are often ex-
cluded or poorly represented in benchmark comparisons, with new algorithms often tested
against the older test problems. In order to test which form of Evolutionary Computation
algorithms are best suited to further Extended Evolutionary Synthesis mechanisms, they

must be compared, and more details on their biological behaviour and properties studied.

Table 3.1: Summary for the current status of benchmarking of Genetic Algorithms and
Particle Swarm Optimisation algorithms in this chapter. This is not an exhaustive list of
all benchmarking literature.

Algorithm ZDT DTLZ WFG UF LZ09 IMB MOP DAS-CMOP
U-NSGA-IIT [166] [121, 166] [166]  [121, 166]

MOEA /D [116, 217] [116,217]  [88, 116]  [116] [114]  [119]  [120] [59]

IBEA [223] [12] [12]

HEIA [116] [116] [116] [116]

cMLSGA [75] [75] [75] [75] [75]  [75] [75]
OMOPSO 53, 172] 53, 172] [53] [67]

SMPSO | [53, 116, 136] [53, 116, 136] [53, 116]  [116]

CMPSO [216] [216] [216]
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3.1.2 Choice of benchmark problems

97 test problems from the multi-objective optimisation literature were selected for bench-
marking. The test set is selected so that it contains a diverse range of properties, from
simple concave shapes to larger multimodal problems and discontinuous Pareto Sets. The
test problems selected were: ZDT [47], WFG [88], LZ09 [114], UF [218], DTLZ [48], MOP
[120], IMB [119], and DAS-CMOP [59]. These cover the main test problems developed
for multi-objective problems in the recent literature. Appendix A summarises the test

problems chosen, grouping them into categories based on their properties.

3.1.3 Choice of algorithms to benchmark

5 GAs and 3 PSOs were chosen to be benchmarked and compared in this paper. HEIA,
cMLSGA and SMPSO were selected due to their current excellent performance on multi-
objective problems [75, 136], which are less commonly utilised. HEIA represents the
co-evolutionary family of GAs, and cMLSGA represents the non-genetic multi-level selec-
tion with elements of co-evolution. U-NSGA-III, MOEA/D and IBEA were selected as
the most commonly used algorithms in the other three families of multi-objective algo-
rithms: niching, decomposition-based, and indicator-based respectively. The U-NSGA-III
algorithm is selected in place of the original NSGA-II as it unifies the improvements made
in NSGA-IIT to problems with more than 3 objectives, and a tournament selection ap-
proach to decide between individuals assigned to the same reference direction and improve
performance on problems with fewer objectives. A large number of variants have been
developed for MOEA /D since it was first introduced [205]. Most of these variants improve
specific aspects of MOEA /D for better performance on specific types of problems. The
MOEA/D-DE variant [114] is chosen for its strong general performance, as the differential

evolution operator is able to find a widely and uniformly distributed set of solutions.

OMOPSO, the precursor to SMPSO was selected as it remains competitive with
SMPSO on certain sets of test problems [53]. Finally, CMPSO was selected for its multiple
swarm approach, which improves the diversity retention of the population compared to
traditional PSO approaches, a property which has shown to be important in more complex

multi-objective problems. The algorithms are summarised in Tables 3.2 and 3.3.

3.1.4 Experimental setup

Each algorithm was benchmarked with 100,000 function calls each, on 20 independent runs,
for each test problem. The solutions found are placed into an external unbounded archive,
storing non-dominated solutions found throughout the search rather than taking solutions

only from the current or final population [185]. Performance metrics are calculated every
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Table 3.2: Review of the selected Genetic Algorithm mechanisms

Algorithm

Year

Reason

Epsilon-
IBEA [223]

MOEA /D
[217]

U-NSGA-
111 [166]

HEIA [116]

cMLSGA
[75]

2004

2007

2014

2015

2019

An indicator based approach using the additive epsilon indica-
tor, IBEA uses the indicator during selection, along with a binary
tournament mating selector, to choose the individuals for the next
generation. This contrasts with the more common Pareto domi-
nance ranking used in the selection procedure of algorithms such
as NSGA-II.

A decomposition based Evolutionary Algorithm, MOEA/D de-
composes multi-objective problems into subproblems to be solved
simultaneously. Information is shared between neighbouring sub-
problems to reduce computational complexity. This leads to ex-
cellent performance on continuous search spaces but large discon-
tinuous regions may lead towards ineffective decomposition of the
problem.

Combines the approaches from NSGA-II for multi-objective prob-
lems (2-3 objectives) and NSGA-IIT designed for many-objective
(4-10 objectives) problems. It uses references points calculated in
the search space to guide the evolution of individuals. Compar-
isons between NSGA-II and U-NSGA-III [31, 90] show that U-
NSGA-IIT performs better on a majority of problems, especially
those with 3 objectives or fewer. It exhibits good performance on
most problem types.

The Hybrid Evolutionary Immune Algorithm uses cloned individ-
uals in subpopulations, based on multi-objective immune algo-
rithms. Rather than using the same evolutionary operator for
every individual, each subpopulation then evolves separately us-
ing different evolutionary strategies, with a Pareto and non-Pareto
based optimiser. Elites are also cloned back into different subpop-
ulations to enable information sharing between generations. This
provides high performance on most problem types.

A diversity first, multi-level selection approach, cMLSGA uses the
evolutionary concepts of multi-level selection and co-evolution at
the collective level, rather than the individual level used in most
popular algorithms, to combine different Evolutionary Algorithms.
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Table 3.3: Review of the selected Particle Swarm Optimisation mechanisms.

Algorithm | Year | Reason

OMOPSO 2005 | Study from [53] showed that OMOPSO outperformed a number of
[172] state-of-the-art multi-objective PSOs, including CLMOPSO, the
multi-objective variant of the single objective CLPSO with strong
global search properties and mechanisms to handle premature con-
vergence. This algorithm uses Pareto dominance and the crowding
distance to filter leader solutions, and two mutation operators on
subpopulations to balance between convergence and divergence.

SMPSO 2009 | SMPSO makes an enhancement to the OMOPSO algorithm by
[136] constraining the velocity of particles to disallow extreme values,
giving the algorithm better performance on ZDT and DTLZ prob-
lems compared to OMOPSO, which contain many local optima,
but worse on the WFG problems, which are mostly concave in

nature.
CMPSO 2013 CMPSO uses multiple populations to solve multi-objective prob-
[216] lems, with each population focusing on a single objective. CMPSO

shares information between swarms using an external archive. The
archive is updated with an elitist learning strategy to improve di-
versity. The algorithm also changes the velocity update function
of the traditional PSO to approximate the whole Pareto front with
information from different populations.

1,000 function calls to show algorithm performance over time.

The U-NSGA-III, MOEA /D-DE, Epsilon-IBEA, OMOPSO, and SMPSO algorithm im-
plementations are from the jMetalpy framework [16]. The HEIA, cMLSGA, and CMPSO
implementations are implemented based on their original papers. Table 3.4 shows the
hyperparameters used for each algorithm. The hyperparameters were chosen based on the
original algorithm papers where possible, to avoid hyperparameter tuning and to show
the performance in a scenario where a priori knowledge is lacking. Otherwise, generally
accepted values such as a high crossover probability and low mutation probability [44]
were used. MOEA/D used a differential evolution crossover and the other GAs used
simulated binary crossover. All the GAs and SMPSO used polynomial mutation as the
mutation method, with probabilities as shown in the table. cMLSGA was used with the
MOEA/D-MSF, HEIA variant for the collective algorithms as it has been shown to be the

top performing variant for bi-objective problems [74].
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Table 3.4: The selected hyperparameter settings for each algorithm. N is the size of the
population, D is the number of variables, M R and CR are the probabilities of mutation
and crossover respectively, and 7 is the distribution index of the SBX crossover. OMOPSO
uses the same mutation rate for its uniform and non-uniform mutation. H is the number
of points. F' is the differential weight for differential evolution. NS is the neighbourhood
size and NP is the neighbourhood selection probability for MOEA /D-DE. ¢1,co and c3
are the constants in the PSO velocity update equation.

Algorithm Hyperparameters
U-NSGA-III N=128, MR=1/d, CR=0.9,n=20,H = 16
MOEA/D-DE N=100, MR=1/d,CR=0.9,F =0.5,NS=3, NP =0.9
Epsilon-IBEA N=100, MR =1/d, CR = 0.9, = 20
cMLSGA N=1000, MR = 0.08, CR = 1,1 = 20, collectives = 8
OMOPSO N=100, MR =1/d, ¢; € [1.5,2], ¢ € [1.5,2]
SMPSO N=100, MR =1/d, ¢; € [1.5,2.5],c5 € [1.5,2.5]
CMPSO N=20, ¢c;1 = cyg =c3 = %

3.1.5 Performance metrics

In multi-objective benchmarking and evaluation, the true Pareto front, that is the set of all
non-dominated solutions, of a problem is often known and can be computed, to compare
against the approximated Pareto front generated by an algorithm. In addition to the
difficulties of evaluating solutions in multi-objective optimisation, determining the quality
of solutions found on the approximated front is also important and difficult. Zitzler, Deb,

and Thiele defined a good approximation of a true Pareto front as one which [222]:

e minimises the distance between the true Pareto front and its approximation,
e distributes of points across the approximated front,

e maximises the extent of the approximated front.

Solutions found by an Evolutionary Algorithm form the approximated Pareto front,
which aims to be as close to the true Pareto front as possible, well distributed across the
front, and find a wide range of values for each objective. For simplicity, the approximated
Pareto front found by an algorithm will be called the Pareto front throughout the rest of

the thesis, while the true Pareto front will be explicitly called as the true Pareto front.

Many performance indicators [220] have been developed to determine how ‘good’ a set
of solutions are. These metrics can be categorised based on their properties [158] into four

distinct categories:
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e Cardinality - The quantity of non-dominated solutions found by an algorithm. Cardi-
nality metrics are rarely used in state-of-the-art comparisons as they do not capture
the distribution or convergence of the set of solutions, both of which are strong indi-

cators of the quality of solutions founds.

e Convergence - The distance between the set of non-dominated solutions and the true

Pareto front.

e Distribution and diversity - The distribution of solutions across the Pareto front and
the extent of the solutions. Although these metrics are not very useful alone, they can
be used to compare algorithms with similar convergence to determine the diversity

of solutions found.

e Convergence and distribution - Capture both convergence and distribution metrics

together as a single score.

Two popular metrics used in the multi-objective literature are Inverted Generational
Distance (IGD) [165] and Hypervolume (HV) [221]. These metrics are popular as they
measure multiple categories with a single score. Both metrics were used in the bench-

marking.

The Inverted Generational Distance (IGD) [165] is a popular metric used to
determine the distance between a set of solutions and the true Pareto front. Given a set
of solutions S found by an algorithm, and a set of solutions P uniformly sampled along
the true Pareto front, the IGD(S, P) is calculated as

. d(x,5)

IGD(S,P) =22

5 (3.1)

where d(x, S) is the Euclidean distance between the solution x and the solution in S that
is nearest to x in the objective space. The true Pareto front is required to determine the
IGD metric and the more reference points used, the more accurate the IGD values can
be. This can be an issue as a small number of reference points leads to an inaccurate
generational distance. IGD values also cannot be calculated without knowledge of the
true Pareto front, making it unsuitable for evaluating real world applications where the
Pareto front is unknown. As the IGD computes the distance between solutions found by
an algorithm and the reference points on the Pareto front, it favours algorithms that return
few close solutions compared to distributed solutions further from the reference points. A
short distance of the points to the true solution and a uniform spread of solutions along
the true Pareto front leads to smaller IGD values. However, IGD is not Pareto-compliant.
A performance indicator is Pareto-compliant if, for two solution sets S; and Ss, it assigns
a better score to 51 whenever every solution in S is dominated by at least one solution in
S1. IGD is not Pareto-compliant because it focuses on minimising the average distance to
the true Pareto front, which may favour solutions closer to reference points even if they are

dominated, potentially leading to misleading quality assessments. The reference Pareto
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fronts used to calculated the IGD values for each benchmark problem are displayed in

A.15 in the appendix.

The HyperVolume (HV) metric [221] measures the volume of space between a
reference point and a solution. Given a set of solutions S found by an algorithm, the
HYV represents the volume of the objective space that is dominated by all the points in
S. The reference point for calculating the HV is usually set as the worst point in the
objective space, or the anti-optimal point, such that every solution dominates it. The
larger the volume, the further away the solutions are from the anti-optimal. The HV
captures both the closeness to the optimal Pareto front, and the diversity of solutions
across the objective space, as both are required to achieve a larger volume. Calculating
the HV can be expensive, and the method described by While et al. [197] is used due to
its rapid encoding. HV is a Pareto-compliant metric because it measures the dominated
volume, ensuring that sets with non-dominated solutions closer to the true Pareto front
and with better spread across the front are favoured. Due to its properties in capturing
both the convergence and diversity of solutions, and its Pareto-compliance, it is widely

used to compare and benchmark state-of-the-art algorithms.

When HV and IGD rank solutions differently, it often indicates that IGD is prioritising
proximity to reference points over dominance. Specifically, because IGD measures the
average Euclidean distance from each reference point on the true Pareto front to the
nearest solution in S, it rewards solutions sets with solutions that are geometrically closer
to the front, even if they are dominated. For example, with two solution sets S; and S5,
if 57 has solutions that are closer to the true Pareto front in terms of Euclidean distance
but has solutions that are better in at least one objective and no worse in others, in other
words dominated, S; may achieve a better IGD score due to the proximity to the true
Pareto front, while So will have a better HV because HV accounts for the dominated
volume, and therefore the non-dominated solutions. This difference implies that solution
sets with good IGD but worse HV may contain solutions that are geometrically close to
the true Pareto front but fail to dominate others, indicating poorer quality in terms of

Pareto optimality.

Furthermore, the average performance score (APS) [13] is calculated to compare
the performances of each algorithm against each other on every test problem. Given
n algorithms {Aj,..., A}, the performance score of an algorithm PS(A;) on any given

problem is defined as

PS(A)= > 6 (3.2)
JE{1,...,n}\{i}

where 0; ; = 1 if A; statistically outperforms A; according to a Wilcoxon rank-sum test
with p < 0.05. Otherwise, d; ; = 0. Type I errors are adjusted for using the Bonferroni
correction, where the threshold of 0.05 is divided by the number of pairwise tests. The

performance score PS(A;) indicates the number of algorithms that outperforms A;. The
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lower the score, the better the algorithm performs compared to other algorithms. The score
can be averaged across all problems or a subset of problems to give the relative performance
of A; to the other algorithms on those problems, forming the average performance score.
The APS is calculated every 1,000 function evaluations to provide the performance of

every algorithm over time.

3.2 Comparison between Genetic Algorithms and
Particle Swarm Optimisation

The algorithms are compared on the test problems at 100,000 function evaluations to
demonstrate the capabilities of each algorithm. Figure 3.1 displays the score averaged on
all problems. HV reference points are calculated using slightly worse (10%) nadir points.
For example in ZDT1, ZDT2, and ZDT4, the nadir point is (1.0, 1.0) and so a reference
point of (1.1, 1.1) is used for HV calculations. Uniform sampling is used to generate
the reference Pareto fronts, with the number of solutions in the reference set specified
in Appendix A. The performance scores calculated with both the IGD and HV metrics
are shown. When averaged on all problems, SMPSO and Epsilon-IBEA consistently out-
perform the other algorithms for a majority of the 100,000 function evaluations. Using
the IGD metric shows a much closer performance between Epsilon-IBEA and the two ge-
netic algorithms MOEA /D and U-NSGA-III, suggesting better convergence properties of
SMPSO compared to its diversity and spread across the Pareto front. As the IGD metric
is not Pareto compliant, a better IGD score compared to HV for SMPSO could imply that
solutions are closer in proximity to the true Pareto front. However, it does not guarantee
that all solutions dominate in Pareto terms. Furthermore, depending on coverage of the
reference Pareto set of the benchmark problem, gaps in the reference set would lead to IGD
penalising solutions near the gaps due to the distance to a reference solution. cMLSGA
performs the worst on both metrics, but is able to show the most continued improvement

with more function evaluations.

Figure 3.1: Average performance score for all problems tested.
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Further, the average performance scores over time show little variation between algo-
rithm performance at later stages of the optimisation. Most algorithms stay at the same
performance compared to the other algorithms after 40,000 function evaluations, with the
exception of Epsilon-IBEA. The first 10,000 — 20,000 function evaluations show the great-
est differences between the algorithm performances. For example, the PSO algorithms
have a strong start and a slight decrease in performance from 1,000 to 10,000 evaluations.
HEIA also displays this behaviour. Epsilon-IBEA shows interesting performance as it
improves at the beginning, but after 10,000 evaluations its performance slowly decreases,
being overtaken by SMPSO, and MOEA /D-DE when using IGD values, at the end of the
100,000 evaluations.
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Figure 3.2: Average performance score calculated with HV, grouped by problem category.

A focused overview on each problem category is illustrated in Figure 3.2. For the best
overall performing algorithm SMPSO, its performance category V discontinuous problems
is relatively worse compared to other algorithms. OMOPSO, the predecessor algorithm
to SMPSO finds similar performance patterns with increasingly worse performance with
more function evaluations. For further examples, both algorithms find poor performance
on discontinuous problems, and strong performance on diversity-hard and feasibility-hard
problems. On discontinuous problems, SMPSO is the third worst performing algorithm
from 20,000 function evaluations onwards, with OMOPSO as the second worst performing
algorithm. Mixed performances are found for all the Genetic Algorithms based on each
category of benchmark problem. Epsilon-IBEA generally performs the best, exhibiting low
average performance score throughout the optimisation on categories I, I1I, IV, V, and VI.
However, every Genetic Algorithm has problems where they show strong performance. For

example, MOEA/D is the top performing algorithm for category II and X problems while
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U-NSGA-III also strong performance on categories I, III, and V. Even though cMLSGA
showed the generally the worst performance from categories I to VII, on the DASCMOP set
of diversity-hard and feasibility-hard problem, cMLSGA exhibits an average competitive
performance while previously strong performance algorithms such as CMPSO and Epsilon-
IBEA show increased average performance scores. These mixed results suggest that the
performance of each algorithm is problem-dependent, and while some general findings
can indicate one or two algorithms showing an overall pattern of good performance, the
properties of specific problems can have a large impact on each individual algorithm’s

performance.

UF5
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Figure 3.3: HV values of discontinuous problems

Diving deeper into some specific problems, The PSO performance on discontinuous
problems are shown in Figure 3.3 with the HV values of each problem in this category.
While the WFG2 and DTLZ7 HV values of all the algorithms are similar and converge
quickly, the differences are more clear on the UF6 and UF9 problems. The fast convergence
and plateau for WFG2 and DTLZ7 point to the lower difficulty of the two problems
compared to the other UF problems where performance is mixed between the algorithms.
Genetic algorithms such as Epsilon-IBEA, MOEA /D-DE and U-NSGA-III are able to find
good solutions, specifically on UF5, UF6 and UF9, and start to converge compared to the
two PSO algorithms SMPSO and OMOPSO. However, CMPSO performance contrasts the
other two PSO algorithms on these discontinuous problems. Its performance surpasses
the genetic algorithms on UF9 after 60,000 function evaluations and is one of the few

algorithms to find good solutions on UF5 and MOP4, indicating the effectiveness of its
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multiple population approach. There is a trade-off with the CMPSO approach, as it
performs worse on other categories that SMPSO and OMOPSO perform well in such as
category VII imbalanced constrained problems or category IX feasibility-hard problems,

supporting the theorem of no free lunch [199].

For GAs, Epsilon-IBEA generally shows the top performance among the genetic algo-
rithms on the UF problems, however other algorithms such as MOEA /D-DE on UF6 or
CMPSO on UF9 are able to find better HV values towards the end of the optimisation.
Another example of improving performance over time is cMLSGA. In the UF9 problem,
cMLSGA begins as the worst performance algorithm in the first 30,000 evaluations, but
is able to find better solutions throughout, achieving higher HV values with more func-
tion evaluations and surpassing the performance of SMPSO, OMOPSO, and HEIA. Both
CMPSO and cMLSGA show interesting and similar behaviour as algorithms utilising co-
evolutionary mechanics, with cMLSGA utilising multilevel selection which may require
additional evaluations to provide performance benefits as suggested by the longer term

payoffs in multilevel altruistic behaviour [79].

3.2.1 Performance at an early stage in the optimisation.

As stated previously, much of the final performance at 100,000 function evaluations of the
algorithms are determined at the early stages of the optimisation. Figure 3.4 shows the
average performance scores from 1,000 to 30,000 evaluations. Here the initial convergence
properties of each algorithm can be seen. The fast convergence of PSO algorithms can
be seen across many categories such as category II the convex problems and category V
the discontinuous problems. The PSO algorithms show the strong starts at the first few
thousand evaluations, but the performance gets worse later on. For example in the convex
problems, SMPSO and OMOPSO both start strong but their performance is quickly over-
taken by the other algorithms after 7,000 evaluations. A similar pattern is seen for the
discontinuous problems, strong initial performance followed up other algorithms outper-
forming as more function evaluations are done. The performance contrast of CMPSO to
the other two PSO algorithms is seen in more detail. In the convex problems, SMPSO and
OMOPSO performance scores start to increase, but the CMPSO performance score is able
to decrease significantly after 20,000 function evaluations. The pattern repeats once again

for the discontinuous problems, indicating the function of CMPSO’s multiple populations.

Another interesting category is category VIII, the diversity-hard set of problems.
SMPSO and OMOPSO’s performance is strong initially, but is overtaken by genetic al-
gorithms such as Epsilon-IBEA, MOEA/D-DE, and U-NSGA-IIT at about 10,000 eval-
uations. However, the performance of the two algorithms improve quickly after 20,000
evaluations, with SMPSO becoming the best performing algorithm at 30,000 evaluations.
From the performance at the full 100,000 evaluations seen in Figure 3.1 both PSO al-
gorithms continue to retain their strong performance. Additionally, CMPSO finds good
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Figure 3.4: Average performance score up to 30,000 function evaluations.

solutions towards the end of the optimisation, with its performance score dropping from
4.5 to 2.8 in the last 5,000 function evaluations. The result is surprising as PSO algorithms
are traditionally seen as convergence-based while genetic algorithms are more diversity-
based. Strong performance combined with the HV metric indicates the PSO algorithms
are able to find a diverse set of solutions along the Pareto front. The observed performance
of PSO algorithms in the diversity-hard problems may come from the different techniques
and mechanisms developed in modern optimisation algorithms, to combat their inherent
limitations. For example, SMPSQO’s leader selection scheme using crowding distance in ad-
dition to domination, a mechanism similar to NSGA-II, or CMPSO’s multiple population
approach. In both cases it is no longer a simple diversity-convergence comparison between

PSOs and GAs.

For the genetic algorithms, performance is equally mixed between well-performing al-
gorithms such as Epsilon-IBEA, consistent performing algorithms such as MOEA /D-DE
or U-NSGA-III. In only the first 30,000 evaluations, cMLSGA, which showed mostly poor
results, is able to exhibit strong performance improvements in category IX feasibility-hard
problems from 5,000 to 15,000 function evaluations, going from an average performance
score of 5 to 2.17. In most cases, the performance at 30,000 evaluations is indicative of the
final performance of an algorithm at 100,000 evaluations with two exceptions: U-NSGA-
III for simple problems and CMPSO for convex problems. On simple problems at 30,000
evaluations, U-NSGA-III has an average performance score of 3.8, meaning an average
of 3.8 algorithms outperform U-NSGA-IIT at this point of the optimisation. However, by
100,000 evaluations, U-NSGA-III has an average performance score of 1.2 and is tied with
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Epsilon-IBEA as the best performing algorithm at the end of the optimisation. Similarly,
but not to the same extent, MOEA/D-DE is able to show better early performance in
the first 20,000 evaluations compared to later at 100,000 for the DASCMOP set of prob-
lems. For example on both diversity-hard and convergence-hard problems, MOEA /D-DE
achieves an average performance score of 0 from 10,000 — 20,000 evaluations and remains at
a low average performance score after 30,000 evaluations. Simiarly, MOEA /D-DE achieves
an average performance score of 1.17 at 30,000 evaluations for feasibility-hard problems.
However, performance over 100,000 evaluations as seen in Figure 3.1 shows MOEA /D-DE
getting an average performance score of 0.5, 3, and 0.5 for diversity-hard, feasibility-hard,
and convergence-hard problems respectively. The results show that most algorithm per-
formance is determined early on in the optimisation search, and while some fluctuations
and exceptions can occur, the general behaviour holds across multiple different algorithms

and problem categores.

3.2.2 Comparing Genetic Algorithms and Particle Swarm Optimisation

Individual algorithms may perform better or worse on specific problems and categories of
problem. The two different types of algorithms, genetic algorithms and particle swarm
optimisation algorithms, are compared to each other next. The performance differences
between the two types of algorithm are more clearly displayed in Figure 3.5. GAs are

coloured in red while PSO algorithms are coloured in blue.

There is not a clear distinctive difference between the two types of algorithms. On
each category of problems, there are categories where a PSO algorithm performs the best,
and categories where a GA performs the best. For example, categories 6 and 7 show two
PSO algorithms in the top three algorithms for most of the optimisation while categories

2 and 5 show a GA performing best throughout the 100,000 function evaluations.

A few performance patterns can be seen that stand out in some categories. The PSO
algorithms perform best at the early stages of category I, then their performance slowly
decreases as some of the GAs are able to find better solutions later in the optimisation.
However, even in this category I case, the results are more algorithm-dependent as one
GA performs consistently well, one GA’s performance improves substantially throughout
the optimisation, and the other three GAs all remain at poor performance worse the the
PSOs. Another example is category IV. Here all three PSOs seem to show relatively
poor performance. However, all other algorithms except one GA also show similarly poor
performance, indicating that the specific algorithm has a larger impact on performance
than the type of algorithm it is. This is further evidenced in category IX, where one
PSO performs best, one PSO performs similarly to most of the GAs, and finally one PSO
and one GA perform the worst. The range of performances in both GAs and PSOs on
the variety of problem categories demonstrates that in general use cases, the performance

different between the two classes of algorithms is more algorithm-dependent than problem-
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Figure 3.5: Average performance scores of GAs and PSOs on all ten categories, with GAs
shown in red and PSOs shown in blue.

dependent.

3.3 GAs and PSOs analogies to evolutionary bi-
ology

The results from comparing the GAs and PSOs show there is not a fundamental differ-
ence in their performance, each algorithm displays strengths and weaknesses on different
categories of problems, with only a few patterns occurring across the whole class of algo-
rithms. Notably, the differences in performance between algorithms across each bench-
mark problem category is dependent on the algorithm and problem, more so than the class
of algorithm it is, GA or PSO. Epsilon-IBEA and SMPSO are the two best performing
algorithms from GAs and PSOs respectively, but there are problems categories where one

or both of these algorithms are outperformed by another algorithm.

The multiple swarms with an elitist learning strategy employed within CMPSO is
an example of a mechanism to improve the diversity of PSO solutions. Having multiple
swarms should ensure the search does not get stuck at local optima. However, their inclu-
sion also impacts on the convergence of the algorithm, making its performance contrast
that of the other two PSO algorithms. While these mechanisms can help increase the
diversity of the solutions where CMPSO outperforms the other PSOs and gives a compa-

rable performance on the discontinuous problems such as UF9 to other good performing



66 Chapter 3. Evolutionary Algorithms vs Swarm Intelligence

algorithms, it generally does not outperform SMPSO across all problems.

The performance of these algorithms relates to some extent with theoretical work in
evolutionary biology [55, 106, 108, 155] and ecology [21, 71, 191] which is increasingly
focussed on variation amongst individuals within populations because those individual
responses aggregate to the population level. These individual differences are typically
related to differential processing of environmental cues - if the optimum/target is a different
shape (sharp vs flatter, wider peak) then the optimal combination of environmental cues
to deliver the best adapted traits will change. Angeline [6] discussed the philosophical and
performance differences of the classic GA and PSO, and found that while the PSO moved
towards a peak faster, it was less adept at finding fine-scale optima around the peak than
the GA due to being unable to scale the velocity steps dynamically to the problem. This
is similar to transgenerational components in Hoyle and Ezard [87] where strong maternal
effects can lead to overshooting the original phenotype, while negative effects that slow
down these movements towards an optimum leads to maximising fitness in the long term.
The success of CMPSO on problems where the other PSO algorithms struggle show the
potential of including additional biological mechanism in existing algorithms to alter their

behaviour.
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Chapter 4
Epigenetic blocking

4.1 Borrowing from the Extended Evolutionary
Synthesis

The Modern Synthesis [89], built from Darwin and Wallace’s ideas of natural selection [38,
40], and Mendel’s principles of inheritance [15], has been an important inspiration for the
concepts used in Evolutionary Algorithms. Despite the number of approaches available, the
core inspiration is often just genetic inheritance. However, modern evolutionary theory has
since continued to explore the mechanisms of evolution, extending the Modern Synthesis to
include concepts of non-genetic inheritance such as epigenetics, parental effects, multilevel
selection, and cultural inheritance in a portfolio proposed as the Extended Evolutionary

Synthesis.

In Chapter 2 the existing concepts from evolutionary theory were explored to determine
which have been incorporated into Evolutionary Computation, and which have not. The
concepts of cultural inheritance have been shown to be explored extensively in different
mechanisms developed within Swarm Intelligence. Epigenetics in evolutionary biology has
been demonstrated as a key component in rapid adaptation [10] of changing environments
and central to genetic regulation and phenotypic plasticity, but Evolutionary Computation
is not incorporating the same breadth of mechanisms. Chapters 3 explored the differences
between Genetic Algorithms and Particle Swarm Optimisation algorithms. The diversity
and generality of Genetic Algorithms and genetic inheritance is observed, compared to the
convergence properties of Particle Swarm Optimisation and culture inheritance. The rapid
adaptation of epigenetics can be seen as a strong convergence property, making Genetic

Algorithms more suitable compared to Particle Swarm Optimisation algorithms.

Epigenetic mechanisms in evolutionary theory can alter DNA expression, leading to a
change in phenotype without a change in the underlying genotype [50]. This “phenotypic

plasticity” leads to a faster rate of change to quickly adapt to changes in the environ-
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ment, and the ability to revert changes if the environmental conditions do not activate
the epigenetic mechanism. This is to allow more rapid adaptation to a natural world that
is changing, optimising an organism’s fitness without altering its underlying genotype. In
multi-objective dynamic problems, a similar set of challenges is reflected by changing the
optimal Pareto set or Pareto front over time [60]. This chapter explores a novel epigenetic
blocking mechanism, and how it might be used within Evolutionary Algorithms to improve

performance on static and dynamic multi-objective benchmark problems.

4.2 Epigenetic blocking mechanism

There are three forms of epigenetic transfer possible: mitotic, germline, and experience-
dependent [25, 190]. Germline transfer passes down epigenetic marks that direct the
epigenetic process for future generations, while mitotic transfer only propagates changes
in the same generation. Experience-dependent epigenetic changes are induced through
exposure to specific environmental conditions that trigger the change. For an exploration
of epigenetic mechanisms, genetic blocking is chosen for inspiration based on germline
transfer. A probabilistic blocking mechanism is used to block some number of decision
variables in each individual from being changed during crossover, where parent variables
are normally crossed over to create child solutions. The chosen variables form an epi-
genetic mask which can be inherited by child solutions. In the case where both parents
have an epigenetic mask, the masks are combined together. However, the parameters of
the epigenetic process are not inherited across multiple generations, remaining the same
throughout (Figure 4.1). A simple mechanism allows the properties to be analysed and
to more clearly understand the effect of an epigenetic process on the performance of an
algorithm. The simplicity also allows the mechanism to be adapted to any Evolutionary

Algorithm by altering the crossover method.

Estimation of Distribution Algorithms (EDAs) are optimisation algorithms with a simi-
lar mechanism to epigenetic blocking. Unlike Evolutionary Algorithms, EDAs use a proba-
bilistic model to learn from good solutions within the population and sample new solutions
using the probabilistic model. In univariate EDAs, each decision variable is sampled with
an independent distribution while multivariate EDAs use a joint probability distribution to
reflect dependencies and relationships between variables [83]. Similarly in epigenetic block-
ing, impactful decision variables can be identified and propagated to future generations,
allowing specific decision variables to be modified or retained. However, the distribution
models used in EDAs are global, affecting the entire population as each generation is sam-
pled from the global distribution. In contrast, the epigenetic blocking mask is inherited
and passed down by individual solutions, utilising the selection pressure of Evolutionary

Algorithms propagate epigenetic masks.

The mechanism has a probability to trigger during the reproduction stage for every

parent without bias towards fitness, as blocking both the fitter and less-fit parents have
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merits. Blocking fitter parents reduces stagnation of the population, i.e. maintains diver-
sity, should the variables or objectives of the dynamic problem change, while blocking less
fit parents increases the convergence of the population through more rapid selection at the

variable level.

Parent 1 Parent 2
\11010000\ ]00111010\
‘10111010\ ]00110000‘

Child 1 Child 2

Figure 4.1: A simplified view of the blocking mechanism where some variables are blocked
from carrying over to the next generation. The blue and yellow blocks are parent 1 and
parent 2’s variables. In a typical single point crossover, the two child solutions inherit
half of the variables from each parent. The red represents decision variables blocked from
being inherited, leading to child 1’s variables to contain more variables from parent 2.

This probabilistic mechanism is not fully epigenetic, as changes in the problem are
not directly reflected in how the mechanism reacts. However, by varying the probability
and the number of genes that are blocked, and controlling the duration of each dynamic
cycle in a problem, the impact of epigenetic blocking can be analysed and compared to
a baseline algorithm and to a constant probability of triggering the mechanism. The key
feature of inheritance is included, allowing the epigenetic mask of blocked variables to
be passed on. Importantly, the variables are not always blocked despite the inheritance
of the mask, effectively allowing the chosen variables to be blocked or unblocked within
two generations, greatly speeding up the rate of adaption to environmental changes. The
selection pressure of Evolutionary Algorithms further ensures inherited masks are blocking

variables which impact the fitness of the solution.

4.2.1 Algorithm

The steps of the epigenetic blocking process are shown in Algorithm 2. After the crossover
step is completed, the variables chosen to be blocked in the offspring are set to the un-
blocked parent variables. The step prevents the blocked parent variables from passing onto
the offspring only at the selected positions. The chosen positions are saved as an epigenetic
mask and passed onto the offspring. The mask is inherited even if the epigenetic mech-
anism does not take effect. Furthermore, if both parents contain an inherited epigenetic
mask, the two masks are combined and randomly sampled to create a combined mask of

the set mask length. In some cases, the selected variable positions may only contain vari-
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ables from the unblocked parent after crossover. In these cases, the epigenetic mechanism

will not take effect, as no blocked variables are present in the offspring solution.

Algorithm 1 Epigenetic step after crossover where ER is the probability for epigenetic
blocking to occur, the maskLength is pre-defined based on the number of decision variables
in a given optimisation problem, and both are globally defined by the algorithm. If either
parent have a mask, or the epigenetic mechanism is trigger and a new mask is created,
the child inherits the epigenetic mask.

function REPRODUCTION (parentl, parent2)
offspring < CROSSOVER(parentl, parent2)
epigeneticMask <
EPIGENETICBLOCKING (offspring, parentl, parent2, maskLength, ER)
if length(epigeneticMask) > 0 then
offspring.epigeneticM ask <+ epigeneticM ask
end if
MUTATION(offspring)
return offspring
end function

The epigenetic mask can be made up of a contiguous set of variables, such as {z1, z2, x3, 24}
for a decision vector of length 10 and a mask length of 4. Alternatively, the epigenetic
mask can be non-contiguous and consist of randomly selected positions, for example,

{4, x6, 9, 210}. Note that mutation steps continue to occur after the epigenetic process.

4.3 Benchmarking the epigenetic mechanism

In the development of epigenetic mechanisms for Evolutionary Algorithms, rigorous bench-
marking is performed to test the performance of the algorithms. This involves having a
wide range of benchmark problems, statistical tests, performance metrics, and qualitative

visualisations.

The work in the previous chapters comparing Evolutionary Computation methods pro-
vides a foundation for benchmark problems and metrics to measure and analyse the per-
formance of the epigenetic mechanism. The same benchmark problems and performance
metrics as before are used here, namely ZDT [47], WFG [88], LZ09 [114], CEC 09 (UF)
[218], DTLZ [48], MOP [120], IMB [119], and DAS-CMOP [59]. Similarly, the Wilcoxon
ranked sum test with a p-value of 0.05 is also used to determine whether the performance
of an algorithm with the epigenetic mechanism is statistically significant compared to the
performance without the mechanism. Both the IGD metric and the HV value is used to
quantitatively determine performance. An unbounded external archive is used to store
the best solutions found by each algorithm, which is re-evaluated in dynamic problems at

each time step.

Two variations of the epigenetic mechanism are tested: non — cont and cont. The

non — cont variant uses a mask of non-contiguous decision variables while the cont vari-
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Algorithm 2 Creating and applying the epigenetic mask to block variables specified in
the mask. If either parent has an epigenetic mask, use the parent’s mask instead.

function EPIGENETICBLOCKING (offspring, parentl, parent2, maskLength, ER)
Initialise epigeneticMask as a zero length array
if parentl & parent2 has epigeneticM ask then
combinedM ask < parent.epigeneticM ask U parent2.epigeneticM ask
epigeneticMask < RANDOMSAMPLE(combined M ask, maskLength)
epigeneticParent < RANDOMPARENT (parentl, parent2)
else if parentl has epigeneticMask then
epigeneticM ask < parentl.epigeneticM ask
epigeneticParent < parentl
else if parent2 has epigeneticMask then
epigeneticMask < parent2.epigeneticM ask
epigeneticParent < parent2
end if
if FR then
if length(epigeneticMask) < 0 then
epigeneticMask < RANDOMARRAY (maskLength)
end if
for varIndex in epigeneticMask do
offspring.variables|varIndex] < epigeneticParent.variables[varInder]
end for
end if
return epigeneticM ask
end function

ant uses a mask of contiguous decision variables. The same experimental methodology
as Chapter 3 is used, with 100,000 function evaluations and 20 independent runs. Re-
sults are recorded every 1,000 function evaluations to provide the performance over time.
The best solutions found throughout are saved into a non-dominated solutions archive.
The crossover mechanism employed is not changed from the base algorithms, for example
NSGA-IT employs SBX and MOEA/D-DE employs a DE crossover. In addition to the
same benchmarking problems and metrics, a new set of dynamic multi-objective problems

is used.

4.3.1 Dynamic multi-objective optimisation problems

Dynamic multi-objective optimisation problems use an additional time step as an external
variable to alter either the Pareto set or the Pareto front. The dynamic nature is captured
by an explicit time variable ¢t. Each increment of the time variable is referred to as a time
step. There are two factors that influence a dynamic problem, severity and frequency.
Severity, n;, refers to the magnitude of each dynamic change. Smaller values of n; corre-
spond to larger changes in the time variable at each step. Frequency, 7%, affects how often

a dynamic change occurs. For example, A 7; value of 10 means that dynamic changes
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occur every 10 generations. Generations refers to the evaluation of a full population of
candidate solutions. As algorithms with different population sizes would cause out of sync
comparisons in time step changes, both algorithms evaluated use the same population size
of 100. The value of t is computed as:

1

t=—.9 (4.1)

ng Tt

where g is the current generation counter. This time value is then used to alter the problem

with, typically defined as a function G(t) in benchmarking problems as:

Gt) = sin(%w 1) (4.2)

where ¢ is the number of generations produced by an algorithm.

To benchmark against dynamic multi-objective problems, dynamic variants of the
MOEA/D-DE and NSGA-II algorithms are used to give a fairer comparison. The MOEA /D-
DE algorithm [114] with the re-initialisation strategy outlined in [20], and the dynamic
NSGA-II (D-NSGA-II) as outlined in [46] are implemented as the baseline algorithms,
rather than using a non-dynamic version of the algorithms. The D-NSGA-II implemen-
tation in the jMetalpy library is used, and the MOEA /D-DE implementation in jMetalpy
is modified to include the re-initialisation strategy. In particular, the fast converging na-
ture of MOEA /D has been studied in dynamic problems in the past, and shown to adapt
quickly in changing environments [96]. An initial probability of 0.1 for the epigenetic
blocking mechanism is used, and a constant block size of number of variables / 5 are used
as arbitrary values to test the mechanism. Further exploration of these parameters will
be performed in the next Chapter 5. For the problem parameters, the severity value is set
at ny = 10, and frequency value at 73 = 5 for all problems used, as is the most common
recommended setting in the benchmarking suites [20, 60]; this gives 5 generations before
the problem changes and 10 distinct steps. In total there are 100 generations (50,000
iterations) to complete a full cycle back to the original variables and objectives of the

problem.

The FDA [60], JY [96], UDF [20], and CDF [73] benchmark functions are chosen for
the dynamic multi-objective test of problems. The FDA and UDF functions are considered
to be simpler unconstrained problems as they are based on the multi-objective ZDT [47]
problems while the JY problems are more complex [95], including elements such as linkage
between variables and multiple knee points. The CDF problems are based on the CF [218§]

and UDF problems with both dynamic and static constraints.

The dynamic problems can be categorised based on how the Pareto set and Pareto

front changes over time, forming four types of dynamic problems.

1. The Pareto set changes dynamically over time;
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2. the Pareto set and Pareto front change dynamically over time;
3. the Pareto front changes dynamically over time;

4. the Pareto set and Pareto front remain static, but the constraints or objective function

can change dynamically over time.

Appendix A categorises the dynamic problem sets and describes the shifts that occur to
the Pareto front and Pareto sets. Vertical and horizontal shifts are simpler, moving the
Pareto front or Pareto set in one axis while angular shifts represent a change in multiple
axes and are more complex to solve. To differentiate between the categories of static
problems and the new categories of dynamic problems, Roman numerals are used for the

static problem categories, and numbers are used for the dynamic problem categories.

4.3.2 Measuring performance

Performance metrics such as the IGD and HV values are obtained throughout an algo-
rithm’s optimisation process, not only the final value, to show how an algorithm performs

over the course of each dynamic change.

A reference Pareto front to compute the IGD is created for every time step. This ensures
the IGD calculation follows the dynamic changes of the problem. As the performance
metrics are captured every 1,000 evaluations, the performance metrics before and after
dynamic changes in the problem will be recorded. The same approach is applied to the
HV metric, where the HV value is recorded at each step to calculate average performance

over time.

4.4 Performance on static multi-objective optimi-
sation problems

First, the static multi-objective benchmark problems are tested on MOEA/D and U-
NSGA-III to compare the performance with and without the epigenetic mechanism. All
the same benchmark problems from Chapter 3 are used. Figures 4.2 and 4.3 show the
average performance score between the baseline algorithm and the algorithm with the
epigenetic mechanism included for 100,000 function evaluations for MOEA /D-DE and
U-NSGA-III respectively. The problems are categorised following the same categories
as Chapter 3, the details of which are displayed in Tables A.1 to A.10 in Appendix A.
The average performance score of one algorithm is a count of the number of times another
algorithm outperforms it. A lower average performance score indicates better performance

compared to the other algorithms.
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Figure 4.2: The average performance scores of MOEA /D with epigenetics on static bench-
mark problems, grouped by problem set, calculated by HV.

The performance of MOEA /D-DE with epigenetics shows improved performance over
most of the benchmark problems, notably the simple, concave, and imbalanced categories
of problems. On concave and imbalanced problems, there is a clear difference between the
baseline MOEA /D-DE algorithm and the epigenetic variants, where the epigenetic mecha-
nism displays consistently better performance throughout all 100,000 function evaluations.
In other categories such as the simple and discontinuous problems, MOEA /D-DE with epi-
genetics provided better performance from the early to middle segments of the optimisa-
tion, around 10,000 — 60,000 function evaluations, after which the baseline MOEA /D-DE
algorithm catches up, and for example in discontinuous problems, overtakes one of the

epigenetic variants.

A notable difference can be seen between the use of a contiguous and non-contiguous
epigenetic mask. For example, on all three types of DASCMOP problems, diversity-hard,
feasibility-hard, and convergence-hard, a non-contiguous epigenetic mask displayed the
best performance. This is likely because the non-contiguous mask allows the epigenetic
mechanism to block non-adjacent decision variables to promote further diversity. Espe-
cially in the case of DASCMOP problems, where the Pareto front is fragmented, or there
are tight feasibility constraints on the valid variable space, the use of non-contiguous
masks allows broader exploration to solve these complex problems. In contrast, a contigu-
ous mask showed comparable results to the baseline MOEA /D-DE on diversity-hard and
convergence-hard problems, and performed worse in the feasibility-hard problems, indi-
cating its disadvantage in complex and fragmented search spaces, where blocking masks
on variables that are less correlated in sequence is disadvantages. However, on convex

and linear problems, the contiguous epigenetic mask had better performance than the
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Figure 4.3: The average performance scores of U-NSGA-III with epigenetics on static
benchmark problems, grouped by problem set, calculated by HV.

non-contiguous mask due to the way those benchmark problems are setup with decision
variables that are correlated in sequence. For example, in DTLZ1 the decision vector
is formed of two ‘blocks’, the first o variables where o is the number of objectives form
the position variables, then the next n — M + 1 variables where n is the total number of
variables form the distance variables which is a contiguous block that affects the distance
function g. Similarly, the WFG problems use position and distance variables within the
decision vector for form the Pareto front, creating distinct contiguous blocks of variables

in which the contiguous-blocking mask of the epigenetic-mechanism has a better effect.

The performance improvements gained from the epigenetic mechanism can be seen for
U-NSGA-III in Figure 4.3. Here, performance improvements are shown for every problem
category. For some categories such as the concave and imbalanced problems, U-NSGA-III
with the epigenetic mechanism provides consistent improvement throughout the 100,000
function evaluations. On other categories such as the discontinuous and simple problems,
the baseline U-NSGA-III performance becomes more comparable near the end of the opti-
misation. These results are similar to the MOEA /D-DE results, indicating the epigenetic
mechanism is able to apply the same effects to both algorithms. Interestingly, there is
little difference between non-contiguous and contiguous epigenetic masks, both showing
similar performance scores throughout, which differs from MOEA /D-DE. This can be ex-
plained by the algorithm’s use of reference vectors along with crowding distance selection
to maintain diversity. The niching-based selection and elitism in U-NSGA-III may sup-
press the differences that mask configuration would otherwise introduce. However, in the
decomposition-based MOEA/D-DE, there is no such structured mechanism to maintain

diversity, which allows the epigenetic mask to have a more visible impact.
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The performance of the epigenetic mechanism can be split into two types: better
performance throughout, and better performance at the beginning with mixed performance
towards the end. The specifics of each will be discussed and analysed in the following

subsections.

4.4.1 Better performance throughout

On both algorithms, concave and imbalanced problems showed better performance of the
epigenetic mechanism throughout. Figure 4.4 displays the HV values of select problems
in the concave category, and Figure 4.5 displays the HV values of select problems in the
imbalanced category. A few selected problems from each category are shown to highlight
the performance differences. MOEA /D-DE and U-NSGA-III are separated to focus on the
performance differences between the baseline algorithms and the epigenetic variants, and

not on the performance differences of the two algorithms.

The same pattern of performance by the epigenetic mechanism is demonstrated across
the selected concave problems for both MOEA /D-DE and U-NSGA-III. A performance
gap between the epigenetic variants and the baseline algorithms is seen early in the op-
timisation, from 10,000 — 30,000 evaluations. This early performance difference is most
notable in DTLZ4. For MOEA /D-DE, problems such as UF4 show the improved per-
formance carrying on throughout the optimisation, with the baseline MOEA /D-DE HV
value statistically significantly lower than the two epigenetic variants. Many of the other

problems show only small differences between MOEA /D-DE and the epigenetic variants.

The strong performance throughout is more clear for U-NSGA-III. For example in
WEFG6 and WEFGS, the baseline U-NSGA-III algorithm plateaus at a lower HV value than
the epigenetic variants. In the UF4 and UF8 problems, the HV values are much closer but
there is a distinct difference that can be seen, and there is still a statistical significance.
Finally, for DTLZ4, the baseline U-NSGA-IIT and the epigenetic variants plateau at a
similar HV value with no statistical significance, but the epigenetic mechanism reaches
those values much earlier in the optimisation, where the large performance gap between
10,000 — 30,000 can be seen.

Figures 4.5 and 4.8 illustrate the same performance patterns in the imbalanced category
of problems. A few anomaly problems are displayed too, such as IMB1 and MOP1 where
the baseline MOEA /D-DE achieves high HV values, or IMB2 for U-NSGA-IIIL.

For MOEA /D-DE, many problems show a drastic improvement in performance for the
epigenetic variants, starting from early in the optimisation and throughout all 100,000
function evaluations. In some cases such as MOP6 and IMB3, the absolute differences
are small, less than 0.01 different in HV values, but a clear pattern emerges nonetheless.
Two major anomalies are noted where the baseline MOEA /D-DE finds much better per-

formance: MOP1 and IMB1. Both are convex problems with 10 decision variables and



4.4. Performance on static multi-objective optimisation problems

77

WFG6

34
22
30
20
>
T
26
24
22
] 20000 20000 50000 50000 100000 ] 20000 20000 50000 30000 100000 ] 20000 20000 50000 30000 100000
Evaluations Evaluations Evaluations
WFG8 DTLZ4
24
22
20
>
T
1 MOEA/D-DE
—— MOEA/D-epi-cont
—— MOEA/D-epi-non-cont
16
o 20000 30000 060 50000 100000 ] 20000 20000 0% 30000 100000
Evaluations Evaluations
UF4 UF8 WFG6
oars
0as0 025
22
oazs
020
0400 30
015
>0 > >
T T T
28
0350 010
0325 26
005
0300
24
000
07
3 20000 0000 0000 100000 1 20000 20000 50000 100000 5 20000 20000 80000 106000
Evaluations Evaluations Evaluations
. WFG8 . DTLZ4
23 07
22 06
0 0s
> >
T T
20 04
—— U-NSGA-IIl
1 o —— U-NSGA-Ill-epi-cont
—— U-NSGA-lll-epi-non-cont
18 0z
3 20000 0000 0000 100000 1 20000 20000 50000 100000
Evaluations Evaluations

Figure 4.4: Median HV values over time of selected benchmark problems from Category

III. Concave problems



78 Chapter 4. Epigenetic blocking

o031 j osso]
030 0s37s
. 0se7s ossso] |
028 0.6950 05325
.. 2 oo 2 oo
026 0.6900 05275
025 0.6875 05250
05225
024 0.6850
02 05200
0 20000 20000 50000 0000 100000 1) 20000 20000 50800 0000 100000 7 20800 20000 0600 50000 100000
Evaluations Evaluations Evaluations

0.490

068 ‘
015361 |

01535

> > 0480 >
T T T
062
0153
060
01533
038 o] L
1 20000 20000 0000 0000 100000 13 20000 20000 50800 0000 100000 7 20800 20000 G800 50000 100000
Evaluations Evaluations Evaluations
0.87 ’/"' 0.72 rﬁ 002 —
on
086
) 070 0.91
085
> > 06 >
T T T os0
o84
os8
083 067 059
0s6
082
088
065
3 20000 20800 s0300 0000 100000 3 20800 20000 0800 0000 100000 T 20800 0600 ) 50300 100000
Evaluations Evaluations Evaluations
MOEA/D-DE —— MOEA/D-epi-cont —— MOEA/D-epi-non-cont

Figure 4.5: Median HV values over time of selected benchmark problems from Category
VI. Imbalanced problems for MOEA /D-DE.

2 objectives. As Figure 4.2 showed, the epigenetic mechanism does not perform well for
MOEA/D-DE on convex problems. The number of objectives may also play a role as many
problems in the concave category are 3-objective problems, and the IMB4, IMB5, IMB6

problems are also 3-objective. Furthermore a majority of convex problems are 2-objective.

Figure 4.7 averages the performance scores from all 2- and 3-objective problems. The
epigenetic variants finds some success towards the middle sections of the optimisation,
but the use of non-contiguous masks performs similarly to the baseline algorithm. Fur-
ther, the baseline MOEA /D-DE on 2-objective problems achieved from 0.4 — 0.6 average
performance score, indicating it is not far behind the epigenetic variants. In contrast on
the 3-objective problems, the baseline MOEA /D-DE had over 1.0 average performance
score at many points of the optimisation, meaning it was out-performed by at least one

epigenetic variant at almost all times.

The same effect of the epigenetic mechanism on 2- and 3-objective problems can be
seen for U-NSGA-III to a lesser extent. There is a a clear improvement for U-NSGA-III on
both 2- and 3-objective problems, but the performance difference is larger for 3-objective

problems, achieving over 1.2 average performance score for the entire 100,000 function
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Figure 4.6: Median HV values over time of selected benchmark problems from Category
VI. Imbalanced problems for U-NSGA-III.

evaluations.

The epigenetic mechanism is shown to be effective for U-NSGA-III on the imbalanced
problems in Figure 4.8. Two forms of performance improvement can be seen, increased
convergence, and improved final solutions. For example, MOP6 and MOP7 show increased
convergence as both the baseline U-NSGA-III and epigenetic variants find the same final
solutions, but the epigenetic variants found the final solutions in fewer function evaluations.
In other examples such as MOP1, IMB4, IMB5, and IMB6, not only do the epigenetic
variants have increased convergence, they also find the better solutions as noted in the final
curves. The anomaly for U-NSGA-III on imbalanced problems is IMB2. Here, the algo-
rithm performs similarly until 25,000 function evaluations, where the baseline U-NSGA-III
achieves a (.03 increase in HV value while the epigenetic variants only find a 0.02 increase.
While IMB2 is a 2-objective problem, this is unlikely the reason for the epigenetic mech-
anism’s poor performance, as its performance on other imbalanced 2-objective problems
such as IMB7 — 13 all show increased convergence or improved final solutions, or in some

cases both.
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Figure 4.7: Average performance scores of MOEA /D-DE and U-NSGA-III with epigenetics
on 2- and 3-objective problems, calculated by HV values.

4.4.2 Better performance at the beginning

The behaviour showing faster convergence at the start of the optimisation problem can be
seen in a number of the previous examples, where there is a clear curve reaching higher HV
values with fewer function evaluations. The average performance score Figures 4.2 and
4.3 indicated that the simple and discontinuous problem categories exhibited the stronger

convergence behaviour the most.

Figure 4.9 shows the performance over time curves for MOEA /D-DE and U-NSGA-
IIT on the ZDT simple set of problems. For each problem, the baseline algorithm and
the epigenetic variants reach similar optimal solutions after 100,000 function evaluations

as indicated by the overlapping flat lines. However, the epigenetic variants are able to
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Figure 4.8: Median HV values over time of selected benchmark problems from Category
VI. Imbalanced problems for U-NSGA-III.

find those solutions earlier. The difference is much more obvious for U-NSGA-III, with a
clear gap between the baseline algorithm and the epigenetic variants. The differences in
performance mostly come from 10,000 — 30,000 function evaluations, similar to previous
examples, showing the recurring behavioural pattern across a number of different problems.
In some problems such as ZDT4 and ZDT6, the difference in performance is larger and
last longer until 50,000 function evaluations. Both the contiguous and non-contiguous
epigenetic masks perform similarly. The same differences are not as clear for MOEA /D-
DE. The epigenetic variants still exhibit faster convergence, but the performance of the
baseline algorithm is much closer. Furthermore, there is a noticeable difference between
the use of a contiguous and non-contiguous mask for MOEA/D-DE. For example, the
contiguous epigenetic mask has the best performance on ZDT4 and ZDT6, although the

non-contiguous mask finds early success for ZDT6 in the first 5,000 — 10,000 evaluations.

The results for discontinuous problems shows the same performance with a few in-
teresting aspects. Figure 4.10 shows the IGD values rather than the HV values as the
results on MOP4 are far from the true Pareto front resulting in low HV values. The fast
convergence behaviour is seen for example on UF6 for MOEA /D-DE and DTLZ7 for U-
NSGA-III. Interestingly, the use of a contiguous and non-contiguous mask plays a larger
role and its effect differs based on the algorithm. The contiguous mask achieves higher

performance on WFG2 for U-NSGA-III but has no difference on the same problem for
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Figure 4.10: IGD values over time of selected benchmark problems from Category V.

Discontinuous problems.
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MOEA/D-DE. The non-contiguous mask is better on MOP4 for MOEA/D-DE, yet the

contiguous mask achieves that performance for U-NSGA-TII.

4.4.3 Differences between a contiguous and non-contiguous epigenetic

mask
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Figure 4.11: Average performances scores comparing the contiguous and non-contiguous
epigenetic masks

The use of an epigenetic blocking mechanism is able to provide performance benefits in
the MOEA /D-DE and U-NSGA-III genetic algorithms on a number of static benchmark
problems. T'wo epigenetic variants are tested, one with a contiguous epigenetic mask and
one with a non-contiguous epigenetic mask. Both show similar performance improvements
compared to the baseline algorithms. Next the two variants are compared to each other
to evaluate their differences and determine if one variant outperforms another, or if the

effectiveness of a contiguous or non-contiguous mask is problem-dependent.
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The average performance scores of the two epigenetic variants are shown in Figure
4.11. In general there are few differences between the two variants. If there is no sta-
tistically significant difference between the two epigenetic variants, both would score a 0
on the performance score calculation. For MOEA /D-DE, four out of the ten categories
show low average performance scores for both variants, indicating little to no performance
differences for concave, discontinuous, imbalanced, and imbalanced constrained problems.
Additionally, of the other problem categories where more significant differences are found,
different variants may outperform another depending on the problem category. For exam-
ple, in convex and linear /mixed problems, the contiguous epigenetic mask outperforms the
non-contiguous epigenetic mask, maintaining an average performance score of 0 through-
out almost the entire 100,000 function evaluations. Conversely, for the DASCMOP set
of problems in diversity-hard, feasibility-hard and convergence-hard problems, the use
of a non-contiguous epigenetic masks provides performance benefits over the contiguous
mask, again throughout all 100,000 evaluations. As discussed earlier, these patterns of
performance are based on the way the benchmark problems are structured, leading to
one epigenetic variant outperforming the other on different categories of problems. The
DAS-CMOP problems are complex with hard feasibility, convergence, and diversity prop-
erties. Many of the feasible region are disconnected or constrained which is advantageous
for the non-contiguous due to its ability to block non-adjacent variables, helpful to escape
infeasible areas and exploring with more diversity. In contrast, the convex and linear prob-
lem structures reward contiguous masking, as variables are set in sequence and blocks of

different variables, such as position and distance variables.

The results on the simple set of ZDT problems are the most interesting, where the
contiguous mask performs best at the early stage of optimisation, before 30,000 evalua-
tions, and the non-contiguous mask performs better at the later stages. This highlights the
potential difference between the epigenetic variants relating to exploration and exploita-
tion, where the non-contiguous mask favours exploration and the contiguous mask favours
exploitation. These findings suggest that the choice of epigenetic mask should depend on
the problem structure and decision variable design. Contiguous masks are better suited to
correlated search spaces with decision variables relating in sequence to each other, while
non-contiguous masks are better suited in scenarios with complex constraints or irregular

and unrelated decision variables.

A similar result is seen for U-NSGA-III. Notably the average performance scores for U-
NSGA-III are in much lower than that of MOEA /D-DE. At least six of the ten categories
show no performances differences except a few small points of anomalies. Of the other four
categories where some performance differences are seen, the contiguous mask outperforms
the non-contiguous mask on concave and early portions of convex problems, while the non-
contiguous mask outperforms on the imbalanced problems. In the linear/mixed problems,
both variants have the same higher average performance scores after 70,000 function eval-
uations, which shows both have outperformed the other on a different problem in the same

problem category. These results demonstrate the difference the underlying algorithm can
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make to the effectiveness of the epigenetic blocking mechanism. U-NSGA-III use of nich-
ing and reference-point selection reduces the possible variance between the two epigenetic

variants, leading to similar positive results for both variants against the baseline.

4.4.4 Discussion of epigenetic performance on static problems

The epigenetic approaches are shown to outperform the baseline algorithms on a number
of different problems and problem categories. A larger effect is seen on the 3-objective
problems compared to the 2-objective problems, suggesting the mechanism is capable of
handling more complex problems, and fewer benefits are found for simpler problems. The
most notable gains are observed in concave and imbalanced problems, where the epigenetic
approach consistently outperforms the baseline algorithms throughout all function eval-
uations. For simpler and discontinuous problems, the epigenetic mechanism provides an
early advantage, increasing convergence between 10,000 and 60,000 function evaluations.
However, as the optimisation continues, the baseline algorithms often close the perfor-
mance gap, and in some cases, even surpass the epigenetic variants. This trend suggests
that while epigenetics can help guide the initial search efficiently, its impact diminishes

over time with more evaluations.

Few significant differences are found between the contiguous and non-contiguous epi-
genetic masks, as both variants are able to find success on a range of different problems.
Non-contiguous masks are more effective in complex problems such as the diversity-hard,
feasibility-hard, and convergence-hard cases from the DASCMOP test set. In contrast,
contiguous masks achieve better results in convex and linear problems, suggesting that the
effectiveness of each epigenetic approach is dependent on how the problem is structured
and the relation between decision variables, and further suggests that the configuration
of using a contiguous or non-contiguous mask could be considered hyperparameter of the
mechanism. If the order of variables were randomised within a benchmark problem, the
advantages of the contiguous mask may be lost, so the design of decision variable sequence

plays a role in the effectiveness of each epigenetic mask variant.

Overall, the results highlight the potential of epigenetic mechanisms to Evolutionary
Algorithms. However, the epigenetic approaches might require additional fine-tuning for
the best results. Developing more adaptive approaches to mask selection and hyperpa-
rameter tuning could help improve the benefits across a wider range of problems, on both

early-stage convergence and better sustained long-term performance.

The epigenetic adaptations lead to faster convergence properties akin to those seen in
biological mathematical models of epigenetic effects [87]. In dynamic changing environ-
ments, epigenetics can aid organisms to achieve faster adaptations with high convergence.
The adaptations are carried into future generations, and can be lost or reversed if the
environment returns to being stable [55]. Computationally with static multi-objective

benchmark problems, the faster convergence properties are noticeable, but the benefits
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are not fully realised in a non-changing environment. Next, the epigenetic mechanism
is benchmarked against dynamic multi-objective problems, where more improvements to

performance can be expected compared to the static problems

4.5 Performance on dynamic multi-objective op-
timisation problems

Next the dynamic benchmark problems are tested, with problems that have changing
Pareto fronts, Pareto sets or both at the same time. Figures 4.12 and 4.13 show the
cumulative average performance score of MOEA /D-DE and D-NSGA-II. Unlike the static
benchmark problems where there was a clear distinction between the baseline algorithms
and the algorithms with epigenetics, the performance differences for the dynamic problems
are mixed and there are interesting differences between the performance scores calculated
by HV and IGD metrics. The cumulated sum of average performance scores are presented
as the plots of the average performance scores are difficult to interpret with frequent

fluctuations between the tested algorithms and epigenetic variants.

The cumulative average performance score for an algorithm A; is calculated as

APS(A;) (4.3)

where T is the current evaluation counter and m is the number of problems. The
evaluation counter represents the recorded performance values, which occurs every 2000
evaluations. The maximum cumulative average performance score is therefore the eval-
uation counter multiplied by the number of other algorithms. However, it is important
to note achieving a maximum cumulative performance score indicates that the algorithm
outperforms all other algorithms on all problems at every evaluation counter. In the dy-
namic problems explored here, the maximum cumulative average performance score is
50 -2 = 100 as there are 50 evaluation points at which performance metrics are recorded,

and two other algorithms to compare against.

Notably, the epigenetic mechanism stands out in three cases: type I dynamic problems
for MOEA/D-DE on IGD values, type III dynamic problems for MOEA/D-DE on HV
values, and type IV dynamic problems for D-NSGA-IT on HV values. In these cases, there
is some part of the problem that remains stable across environmental changes, whether it is
because only one of the Pareto set or front changes, or only the constraints that change in
type IV problems, which allows the epigenetic mask to block useful variables. For example,
in type I problems, the Pareto front remains static while only the Pareto set shifts. The
epigenetic mask is able to help retain promising decision variables and enable the algorithm
to adapt rapidly to a shifted Pareto set. It should be noted that, the performance difference
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Figure 4.12: Cumulative average performance score for MOEA /D-DE.
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is very small compared to the maximum possible cumulative average performance score,
indicating very few problems where one approach outperforms another. However, type IV
problems with MOEA /D-DE with IGD values has the contiguous epigenetic mask at 19.0
cumulative average performance score at the end of the optimisation, showing its poor

performance compared to the non-contiguous mask and baseline MOEA /D-DE.

The type II of dynamic problems where both the Pareto set and Pareto front changes
over time shows mixed average performance score for all algorithms and performance
metrics, with the epigenetic mechanism occasionally showing poor performance and small
success, albeit with a small cumulative average performance score of 1 — 2 compared to
the maximum of 100, which indicates the variants performing on average 1 — 2% worse
than the baseline approach. Here, the shifts of both the Pareto set and front mean that
previously effective decision variables that were blocked in the epigenetic mask could now
contain misleading or out of date information, negatively affecting the adaptation to new
environments once both the optimal set and front have moved. For example, a contiguous
epigenetic mask on MOEA /D-DE when looking at IGD values has good early performance
up to 30,000 function evaluations, but as the problem shifts more substantially, outdated
decision variables spread through epigenetics degrades the performance over time, with
the baseline MOEA /D-DE algorithm maintaining lower average performance score after
45,000 evaluations. For D-NSGA-II, only the type IV of constrained dynamic problems
shows strong HV performance for epigenetics. In many other dynamic problem types, one
epigenetic variant performs significantly worse while the other variant only shows small
differences to the baseline D-NSGA-II.

Overall, these findings suggest that the effectiveness of epigenetic mechanisms in dy-
namic multi-objective optimisation is dependent on environmental stability. The mecha-
nism performs best when previously learned decision variables within the epigenetic mask
remain relevant, but becomes an issue when rapid disruptive changes cause the historical
information to become outdated. This highlights the need for methods to adaptive the
masking dynamically to better handle rapidly changing dynamic problems. As the per-
formance across all four dynamic problem types is mixed between the baseline algorithms
and the epigenetic variants, and the performance differences are small compared to the
maximum possible cumulative average performance score, the best and worst problems
for epigenetics will be discussed to highlight the kinds of problems where the epigenetics
mechanism performs well, and the problems where the mechanism performs poorly. There
are also a number of problems where there is no statistical significant difference between

the baseline algorithm and the epigenetic variants.

4.5.1 Epigenetic strengths

Figure 4.14 displays the problems where the epigenetic mechanism outperforms the base-

line algorithms. Both algorithms have different problems where the epigenetic mechanism
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Figure 4.14: Median HV values on dynamic problems where the epigenetic mechanism
performs well.

performs best. For MOEA/D-DE, JY7 shows a clear difference between the epigenetic
variants and the baseline algorithm, especially after 50,000 function evaluations. UDF6
and CDF11 show interesting patterns of performance with the dynamic shifts visible on
the with the HV values over time. In UDF6, the baseline MOEA /D-DE algorithm perfor-
mance is lower at each dynamic peak, with the largest difference seen at the beginning at
20,000 function evaluations. At the later peaks at 40,000, 60,000, 80,000, and 100,000 eval-
uations, the performances are much closer though a gap between the epigenetic variants
and the baseline can be seen. The same pattern is seen for CDF11, where the dynamic

shifts are only visible after 50,000 function evaluations.

In the two problems where D-NSGA-II with epigenetic performs well, JY1 is a con-
tinuous type I problem where only the Pareto set changes, and CDF10 is a continuous
type III problem where only the Pareto front changes. There is not an obvious or clear
pattern for D-NSGA-IT performing better specific types of dynamic problems, but some
performance similarities to MOEA /D-DE with epigenetics can be seen. In JY1, there is a
degradation in performance after 20,000 function evaluations and the epigenetic approach
is able to maintain better final solutions compared to the original baseline D-NSGA-II.
For CDF10, higher peaks for the contiguous epigenetic mask are seen at each dynamic

cycle. Furthermore, higher peak HV values are seen for the non-contiguous mask on the
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last three cycles, indicating the effect of inherited epigenetic masks in the non-contiguous
approach which was showing the same performance as the baseline algorithm until that

point.

4.5.2 Epigenetic weaknesses

Figure 4.15 displays the problems where the baseline algorithms outperform the epigenetic
mechanism. All three problems where MOEA /D-DE with epigenetic performs worse than
the baseline algorithm are type III problems where only the Pareto front changes. In all
three problems there is a clear distinction between the baseline algorithm and the epige-
netic variants through most if not all of the 100,000 function evaluations. It should be
noted the difference in HV value is low in some cases, for example there is a difference
of 0.0052 between the baseline MOEA /D-DE and the epigenetic mechanism with a con-
tiguous mask for JY5, and a difference of 0.0159 between the baseline and the epigenetic
mechanism with a non-contiguous mask. The low difference in HV values contrasts some
of the differences seen when the epigenetic mechanism performs better as described earlier,
for example with a 0.070 and 0.164 difference in HV value for JY7 at 50,000 evaluations
for a contiguous and non-contiguous mask respectively, and a difference of 0.418 and 0.280
difference for contiguous and non-contiguous epigenetic masks respectively in HV value for
UDF6 at 20,000 evaluations. Regardless, in all three problems, the baseline algorithm is
able to outperform the epigenetic variants. The poor performance of the epigenetic mech-
anism on type III problems is supported by Figure 4.12 where the baseline MOEA /D-DE
has a consistently lower average performance score compared to the epigenetic variants.
Problems with only a change in the Pareto front would be analogous to environmental
changes in the biological literature, as the objectives, or fitness, of the current environ-
ment changes. The poor performance of epigenetics on this set of problems is therefore
surprising, suggesting a possible mismatch in the hyperparameters or the process in which
the epigenetic masks are being activated or inherited. As the epigenetic mechanism has
shown to increase convergence for a range of static problems, there may be more details

or processes required to apply the mechanism well to dynamic problems.

For D-NSGA-II, the epigenetic variants performed most poorly on CDF2. There is
a degradation in performance over time, similar to JY1, for both the baseline algorithm
and the epigenetic approaches, but the epigenetic approaches are unable to stabilise after
50,000 evaluations. The lack of stability compared to the baseline algorithm suggests the
initial hyperparameters chosen may not be suitable in this particular case compared to
the baseline algorithm, as other problems did not display the same issue and the baseline
algorithm remains relatively stable. This could be caused by an overly aggressive blocking
of the decision variables, or poor choices of epigenetic masks particularly in the contiguous
case that leads to a lack of diversity. Therefore, specific tuning of the mechanism may be

required for different problems rather than a single configuration for dynamic problems.
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Figure 4.15: Median HV values on dynamic problems where the epigenetic mechanism
performs poorly. Evaluations begin at 10,000 to highlight the performance difference.

4.5.3 Epigenetic performance on dynamic problems

The results on dynamic multi-objective optimisation problems show mixed results com-
pared to the performance on static problems. Unlike the clearer benefits seen in static
problems, the performance differences in dynamic problems are more varied. The cumu-
lative average performance scores of MOEA /D-DE and D-NSGA-II indicate that while
epigenetics does provide advantages on certain problems, its effectiveness is highly depen-
dent on the nature of the dynamic changes. In cases where the problem retains some
elements of stability, such as a static Pareto front in type I problems or only changing
constraint in type IV problems, the epigenetic blocking mechanism can preserve effective
decision variables to enable rapid re-adaptation. However, when both the Pareto set and
front shifts like in type II problems, the information carried forward from being blocked
by the epigenetic mask can become out of date and worsen performance for dynamic opti-
misation. Furthermore, the performance results differ based on the metric used, with HV
and IGD providing contrasting results, indicating a difference in the spread of solutions

across the Pareto front.

Additionally, the results further demonstrate the difference between the two epigenetic
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mask approaches. In some scenarios, such as a contiguous mask on type III dynamic
problems, the epigenetic mechanism is able to outperform the baseline algorithm and non-
contiguous mask approach. However, the non-contiguous mask outperforms the contiguous

mask on type I dynamic problems.

4.6 Summary of the epigenetic mechanism

After testing the newly introduced epigenetic blocking mechanism on both static and dy-
namic multi-objective optimisation problems, it is shown the mechanism improves perfor-
mance on the static problems while providing limited benefits in performance for dynamic
problems. For static problems where the number of function evaluations are limited, the
epigenetic mechanism can improve performance due to its convergence properties, often
leading to problems where both the baseline and epigenetic variants of the algorithm reach
similar final solutions, but the epigenetic mechanism finds those solutions with fewer func-
tion evaluations. In dynamic problems, the performance is mixed and both the baseline
algorithms and the epigenetic variants perform similarly across many problems, with only
a few problems standing out with clear better or worse performance, indicating a limited
effect of the epigenetic approach. The findings highlight a need for more adaptive epige-
netic approaches and investigation into the hyperparameters of the mechanism. As the
evolutionary biological research shows there are tangible benefits of epigenetic effects in
changing environments [87] based on their adaptive capabilities, the next step is to study
the details necessary to improve the mechanism further, by investigating aspects such as

dynamically changing and selecting the probability, mask size, and masking regions.
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Chapter 5

Variants on the epigenetic

blocking mechanism

This chapter explores further alterations to the epigenetic blocking mechanism introduced
previously. The initial mechanism uses a constant probability, like the probability of
crossover or mutation, to trigger epigenetic blocking. The length of the epigenetic mask is
a constant value based on the number of variables of the problem, and the decision variables

selected in the mask are randomly chosen. These mechanisms are further explored through:

e variants that alter the probability and mask length dynamically

e investigating the use and effectiveness of variable gradients to determine which deci-

sion variables to block

e utilising hyperparameter optimisation to tune the probability and mask length ac-

cording to the problem

The different investigations are used to determine the most effective methods to enhance
performance of the epigenetic mechanism, with a focus on dynamic multi-objective opti-
misation problems. As epigenetics is dynamic in nature, the epigenetic mechanism should
also contain dynamic changes to match the biological inspiration, and to match the nature
of dynamic optimisation problems. Furthermore, the exact probabilities and mask lengths
are difficult to determine manually, and may have strong effects on different problems and

algorithms.

It is not clear which decision variables should be included in the epigenetic mask. Each
problem will have a different subset of variables which have a larger impact on the final
objectives and not all variables may contribute equally. Due to the inheritance of the
epigenetic mask and the selection pressure of an evolutionary algorithm, the epigenetic
mechanism should trend towards choosing the more impactful variables over time, as

epigenetic masks with poor variable choices lead to lower fitness and are less likely to be
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inherited. However, perhaps there is an approach to bias the selection of decision variables
in the epigenetic mask. The use of gradient values at each variable aims to study such an
approach. By calculating partial derivatives and finding the gradient for every decision

variable, the additional information could be used to enhance the epigenetic mechanism.

5.1 Experimental setup

The experimental setup for all the epigenetic variants tested in this Chapter will follow the
same methodology as the dynamic problem experiments in the previous chapter, with the
multi-objective dynamic problems sets of UDF [20], JY [96], CDF [73], and FDA [60] being
tested, the details of which can be found in Appendix A. The results use 20 independent
runs for each algorithm and problem with a total of 100,000 function evaluations. IGD
and HV values are measured every 1,000 function evaluations. A n; value of 10 and 7
value of 5 is used as parameters for the dynamic problem changes. All solutions are stored
in a separate unbounded non-dominated archive that is re-evaluated at each time step to

ensure it remains up to date with dynamic Pareto set or Pareto front changes.

The average performance score is calculated to measure statistically significant dif-
ferences at every 1,000 function evaluations by performing a Wilcoxon ranked-sum test
with a p-value threshold of 0.05. To account for statistical type I errors, the Bonferroni
correction is applied, adjusting the p-value threshold based on the number of pair-wise
comparisons made. This provides the performance over the during of the optimisation.
A lower average performance score for an algorithm or epigenetic variant indicates fewer
other approaches outperform it and it has better performance. As there are two algorithms
tested, MOEA /D-DE and D-NSGA-II, average performance scores of each are calculated
separately so the performance differences are measured between the baseline algorithms
and the epigenetic variants, and not measured between the two algorithms which could
inflate the performance scores. The cumulative average performance score is used to show
the performance difference over time. The maximum cumulative average performance
score indicates that can algorithm outperforms another every 1,000 function evaluations.
The hyperparameters used for MOEA /D-DE and D-NSGA-II are shown in Table 5.1.

5.2 Effects of changing mask length and probabil-
ity

To determine how the changes in the block rate and the probability of change affect
the performance, the two variants of the epigenetic mechanism are investigated. The
difference between each variant, the original mechanism, and the baseline algorithm are

then compared to demonstrate the improvement in performance.
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Table 5.1: Hyperparameters for the baseline algorithms used. N is the population size.
MR and CR are the mutation and crossover rates respectively. F is the differential weight
for differential evolution. NS is the neighbourhood size and NP is the neighbourhood
selection probability for MOEA /D-DE.

Algorithm Hyperparameters
D-NSGA-II N =128, MR=1/d,CR=0.9
MOEA/D-DE | N =1000MR=1/d, CR=0.9,F =0.5,NS =3, NP =0.9

Table 5.2: Hyperparameters for the epigenetic variants

Algorithm Hyperparameters
_ _ l
EIB ER=0.1,5s = == . d
l d
EIP ER= =2 .08,s=¢%

Two parameters are altered: the probability for the mechanism to trigger, and the
number of variables blocked in the process (mask length). A summary of the variants is

as follows:

e EIB - with a constant probability of 0.1 and a varying mask length from 1 up to the

total number of variables in the problem.

e EIP - with a varying probability from 0 up to a maximum of 0.8 with a constant
mask length of the number of variables divided by 5. A maximum epigenetic rate of

0.8 is used to prevent the mechanism from triggering too often.

Both the contiguous and non-contiguous masks are used.

The gradual increase in either probability or mask length is intended to increase the
convergence of the population, as epigenetic blocking more prevents diverse changes. The
maximum probability is limited to 0.8 to prevent stagnation where the blocking occurs
too often. Increases to probability are rounded to 0.01, increasing every 2 generations to
the maximum probability. The mask length increases are rounded to the nearest whole
number and depends on the number of variables. For example, a problem with 30 variables
and a population of 500 will increase the mask length every 4 generations. Continuing
to increase the probability and mask length in a second dynamic cycle of change in each
problem exaggerates the difference that can be achieved with a more aggressive epigenetic
mechanism. It is expected to see degraded performance towards the end of the optimi-
sation when the probability and mask sizes are large, as many decision variables will be
continually blocked during the reproduction process. However, the effect of changing each

parameter can be analysed in more detail.
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Details of these hyperparameters, can be found in Table 5.2. ER is the epigenetic rate,
or the probability for the epigenetic mechanism to trigger and s is the mask length. The
Inverted Generational Distance (IGD) [165] and HyperVolume (HV) [221] metrics are used
to show the performance of the epigenetic variants to the MOEA /D-DE algorithm. The
average performance score is used to compare performance between each variant. If any
variant performs statistically significantly better than another, the variants it outperforms
increment their average performance score. A lower score therefore indicates an algorithm
that is not outperformed by any other algorithm. The original variants E and baseline
algorithms without epigenetics are included in the average performance score calculations

to compare every variant with each other and the baseline.

The maximum cumulative average performance score is 100, as each variant has a
contiguous and non-contiguous configuration, and are being compared to the baseline
independently from the other variants, making the number of other algorithms in the

comparison 2.

5.2.1 Performance of EIB against the baseline

First, the average performance scores are presented to show the performance of the new
epigenetic approaches to the baseline algorithm. The cumulative average performance
scores are shown for clarity. The HV and IGD values are shown as differences in perfor-
mance with the two metrics are seen, and indicate each variants differences in convergence
and diversity for each dynamic problem type. There are a number of interesting obser-
vations that can be seen for each algorithm, and there are visible performance differences

between the two algorithms in some categories.

For the EIB variant where the size of the epigenetic mask increases over time, MOEA /D-
DE shows strong early performance on type I dynamic problems, mixed performance for
type 1I and III problems, and poor performance for type IV problems, as shown in Figure
5.1. Figure 5.2 displays the D-NSGA-II results, which show generally poor performance
for epigenetics except for type III problems. Since EIB uses a constant probability with
a gradually growing block size, as the optimisation continues, progressively more decision
variables will be blocked by the epigenetic mask, shifting the search from early exploration

to faster convergence.

On type I problems, both IGD and HV metrics show similar results on both algorithms.
MOEA/D-DE with epigenetics performs better than the baseline at the beginning of the
optimisation, up to 50,000 evaluations when the performance starts to degrade. Due to
EIB’s growing size of the epigenetic mask, more decision variables are blocked at later
stages of the optimisation. There is a larger difference average performance score for
IGD compared to HV, indicating the convergence properties of the epigenetic mechanism
and potential lack of diversity, a pattern that will be seen again later. IGD tends to

reward a close distance to the true Pareto front, while HV, being Pareto-compliant, is



5.2.  Effects of changing mask length and probability 99

Cumulative Average Performance Score

Cumulative Average Performance Score

5 20000 20500 S50 a0000 100000 5 20000 40500 S50 50300 100000
Evaluations Evaluations

1. IV.

Cumulative Average Performance Score
Cumulative Average Performance Score

] 20000 0600 106000, ] 20600 B0G00 100000,

20500 so000 20000 s0000
Evaluations Evaluations

MOEAD/D-DE ~ —+— MOEAD/D-cont-eib ~ —e— MOEAD/D-non-cont-eib

(a) Calculated by IGD values.

Cumulative Average Performance Score

Cumulative Average Performance Score

] 20000 00 8000 100000 ] 20600 40000 o0 80000 106000,

500 o0
Evaluations Evaluations

. V.

Cumulative Average Performance Score

Cumulative Average Performance Score

3 20000 80000 100000 ] 20000 50000 106000,

20000 50000 20000 0000
Evaluations Evaluations

MOEAD/D-DE~ —— MOEAD/D-cont-eib ~ —— MOEAD/D-non-cont-eib

(b) Calculated with HV values.

Figure 5.1: Cumulative average performance score for MOEA /D-DE against the EIB
epigenetic variant.
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Figure 5.2: Cumulative average performance score for D-NSGA-II against the EIB epige-
netic variant.
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more sensitive to the spread of solutions across the front. The pattern of better IGD but
worse HV therefore indicates that EIB promotes convergence but reduces spread as the

block size increases.

The strong early performance for EIB is seen for D-NSGA-II at a smaller scale for
only the first 10,000 evaluations. Poor performance is seen for both algorithms with EIB
on type II dynamic problems, though some strong early performance is seen once again.
Different results are found between the use of IGD and HV metrics here. As the IGD
measures the Euclidean distance between solutions found and the true Pareto front, good
IGD values indicates strong convergence properties in the algorithm. Conversely, HV is
Pareto compliant and therefore takes into account the diversity and spread of solution
across the Pareto front. The use of a contiguous mask for EIB with MOEA /D-DE shows
good diversity across the Pareto front on type II problems, with lower average performance
scores on HV, while the non-contiguous mask shows better convergence as seen on the
IGD calculated average performance scores. In both cases, the epigenetic variant can
out-perform the baseline algorithm in the first 50,000 function evaluations before the
performance worsens. The timing of this performance differences suggests that as the block
size grows too large, the epigenetic mechanism becomes a detriment to the optimisation.
This means an adaptive means to adaptive the block size, or resetting the block size could

preserve the early performance gains while avoiding early convergence.

5.2.2 Performance of EIP against the baseline

In the first type of dynamic problems where only the Pareto set changes, there is a signif-
icant difference for D-NSGA-II between the baseline algorithm and both EIB and EIP
variants. Comparatively, there is a much smaller difference for MOEA /D-DE in the same
type of problems. Both EIB and EIP for D-NSGA-II perform poorly compared to the
baseline, with both contiguous and non-contiguous masks performing poorly and the non-
contiguous mask performing the worse. This contrasts many other categories and variants
where mixed performance is seen. Similar to the static problems explored in Chapter
4, the difference between MOEA /D-DE and D-NSGA-II comes from the latter’s use of
non-dominated sorting and crowding distance, which prioritise diversity. EIB and EIP’s
increasing block size and increasing trigger probability, aim to retain fixed decision vari-
ables may no longer align with the new Pareto set, hence misguiding the algorithm. As
MOEA/D-DE decomposes the search into sub-problems, its neighbourhood replacement

makes the epigenetic bias less disruptive when only the Pareto set shifts.

Interestingly, there is a small window in the first 5,000 — 10,000 function evaluations
where the epigenetic variants perform better than the baseline on both EIB and EIP,
indicating the initial hyperparameter settings of the epigenetic mechanism for D-NSGA-II
were already suitable, and the increased probability and mask lengths impacted perfor-

mance even from early on after 10,000 function evaluations. A similar pattern is seen in
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Figure 5.3: Cumulative average performance score for MOEA/D-DE against the EIP
epigenetic variant.
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the second and fourth categories for D-NSGA-II.

There is noise and mixed performances in the second type of problem where both the
Pareto front and Pareto set changes, but there is a slow increase in average performance
score in later function evaluations for both EIB and EIP. The fourth type of constrained
problems for D-NSGA-II further shows the poor performance of the epigenetic mechanism
with both a high probabilities and mask lengths. The same performance is achieved as the
baseline algorithm up to 5,000 — 7,000 function evaluations, after which neither epigenetic

variant performed well.

Finally, there are mixed performances for both EIB and EIP on the third type prob-
lems, where only the Pareto front changes. The performance on the epigenetic variants
differs on MOEAD/D-DE compared to D-NSGA-II. Firstly, there is not a significant gap
between the the baseline and the epigenetic variants, with the average performance low
and consistent throughout the optimisation. EIP showed some worsening performance
from 65,000 — 95,000 function evaluations but the average performance score is still low
at 0.3. Furthermore there is a spike for the baseline MOEA/D-DE at 6,000 and 7,000
function evaluations but there is no indicative pattern of behaviour as the baseline has low

performance score otherwise throughout.

The EIP variation on the epigenetic mechanism increases the probability of triggering
the epigenetic mechanism over time. This mechanism favours frequent epigenetic blocking
at later stages, which promotes convergence when suitable blocks of variables exist but
can cause an over-biasing to a local optima when the Pareto front changes. While some
differences between IGD and HV values are shown for MOEA/D-DE, the results for D-
NSGA-II on both metrics are similar. Figure 5.3 and 5.4 display the cumulative average
performance scores of MOEA /D-DE and D-NSGA-II respectively with EIP.

5.2.3 Conclusions of changing mask length and probability

The epigenetic approaches, EIB and EIP, offer interesting insights in the performance of
the epigenetic blocking mechanism, but their performance varies significantly with problem
types and algorithms. EIB, with its increasing epigenetic mask lengths, demonstrates
strong early performances on type I dynamic problems for MOEA /D-DE;, indicating that
smaller masks can initially increase convergence. However, this performance diminishes
further into the optimisation, suggesting that the increasing mask lengths hinder at later
stages of optimisation. On the other hand, D-NSGA-II with EIB struggles across problem

types, except for type III, where the larger masks seem to improve performance.

The EIP variant, which increases the probability of triggering the epigenetic mecha-
nism over time, shows a different pattern. In the first category of dynamic problems, the
baseline D-NSGA-IT outperforms EIP, possibly due to the higher probabilities leading

to over-convergence, the higher initial average performance score of the baseline on the
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IGD metric supporting this possibility. Both algorithms and both EIB and EIP initially
outperform the baseline for type I problems. The point at which the baseline overtakes
the epigenetic variants depends on the algorithm and variant, but the trend implies that
the increasing probabilities and mask lengths are beneficial for problems with changing

Pareto sets, but require additional tuning to find better advantages.

These results highlight the partial success of the epigenetic mechanism, showing that
it can be fine tuned for better balance between convergence, with larger masks and higher
probabilities, and diversity, with smaller masks and lower probabilities. The results further
suggest a focus on adaptive mechanisms to adjust mask lengths and triggering probabilities

would be beneficial to more consistent performance.

5.3 Using gradients to determine epigenetic block-
ing locations

To study an adaptive mechanism of the length and locations for the epigenetic mask,
additional problem-specific information could be based on the sensitivity of each decision
variable to the final solution of the problem, following the ideas of gradient descent to
find the derivatives of the objective function. The difference here is the partial derivatives
of each variable are used instead, as each of their gradients are needed to inform the
epigenetic mechanism on whether to block that variable or not. The effect of using gradient
information of variables is not well known, though there are many algorithms using gradient
descent methods in machine learning [137]. Gradient information on objectives can show
whether the slope of the objective function is tending towards a maximum or minimum,

but it is more difficult to understand what the gradient of each variable represents.

There are two key aspects to the use of gradient information that is of interest to the
epigenetic mechanism. First, is there a difference between positive and negative gradients
for epigenetic blocking? Does utilising only positive or negative gradients in decision
variables correspond to the problems that maximise or minimise the objective? Secondly,
how significant is the magnitude of the gradients? Variables with larger gradients may
indicate their relative importance to the optimisation problem, making them better or

worse candidates for the epigenetic mechanism.

5.3.1 Calculating the gradients

Figure 5.5 shows the steps of the process for working out the partial derivatives and
calculating the gradients. The equations for each objective function of a problem are taken
and the partial derivatives calculated with respect to each variable. At every evaluation

step, the variable values are evaluated for every solution to find each variable’s gradient.
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Then, the values of the gradients are used to aid the epigenetic mechanism determine when
to block out that specific variable. Note that the use of gradient information moves the
optimisation from a black-box framework, where the details of the underlying problem are
unknown, to a white-box one, by accessing and calculating the function derivatives. This

approach only applies to optimisation problems with known function equations.

Find partial derivatives
of the objective functions
wrt each variable

\ 4

Algorithm generations
new solutions

New
solutions
Variable
Gradients inform gradients | Calculate gradients
epigenetic blocking [« with solution's
mechanism variable values

Figure 5.5: How the gradient calculation fits into the algorithm with epigenetics.

For example in the JY1 problem, the equation for the first objective is as follows,
folm) = (1+ ) (xi — Gt)?) - (wo + At - sin(Wt - 7 - 0)) (5.1)
r=1

where Gt, At, and Wt are constants, some of which change over time depending on the
problem. For JY1, only Gt changes over time. In this example, the derivative wrt xg
would be

1+ (xi— Gt)) + 7 At - Wt - cos(m - Wt - z) (5.2)
=1
and the derivatives wrt x; would be
Zo (2.%1' — QGt) (5.3)

The values of zg and all of z; are then calculated for every solution to find the gradients
for each decision variable. The gradients are summed to form a single gradient value per

decision variable, for a simple and computationally efficient method. The approach acts
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as a scalarisation of the objectives into a single directional value, which would prioritise
the objective with the larger magnitude. However, this approach loses the nuance of
opposing objectives, which can degrade the effectiveness of the approach, for example if
two opposing derivatives have a similar magnitude, the summed gradient would show a

low value indicating less importance of that decision variable.

Four variants are tested based on the value of the gradient at each variable:

e GP1 - All variables with positive gradients are blocked.
e GN1 - All variables with negative gradients are blocked.

e PP1 - A constant mask length is used and weighted probabilities are calculated based
on the value of the gradients is used to choose a variable. Larger values have a higher
probability. For each decision variable z; in the decision vector x = {x1, 2, ..., x5}

with an associated gradient g;, the probability p; of x; being chosen is

(9i — Gmin + 1)*

e 5.4
b S 1(9i — gmin +1)2 (5:4)

e PN1 - The same as PP1 except inversed such that larger negative gradients have

the higher probability and large positive values have lower probability.

The probability for the epigenetic mechanism to trigger still applies, with a constant
probability of 0.1 used in all gradient-based experiments. Because of this, not every solu-
tion will have its variables blocked by the epigenetic mask, but the choice of which variables
and the number of variables blocked are based on the calculated gradients. Therefore there

are not any contiguous or non-contiguous variants either.

5.3.2 Results of gradient-based epigenetic masks

The performance of the gradient-based methods are tested against the baseline algorithms
to determine the effects of choosing particular decision variables in the epigenetic mask.
The average performance score is calculated with all variants so the differences between
each variant is taken into account. First the overall performance averaged across all
dynamic problems is presented, then the performance is broken down into each dynamic
problem type to find the scenarios where gradient-based epigenetic masks are the most
effective. Here, the maximum cumulative average performance score is 200, as there are

50 evaluation counters and 4 other approaches compared against.

Figure 5.6 shows the cumulative average performance score for MOEA /D-DE with all
the gradient variants average across all the dynamic optimisation benchmark problems.
In the overall results, MOEA /D-DE with gradient epigenetic variants performs well on
both HV and IGD metrics. GN1 and GP1 show the best results with the lowest average
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Figure 5.6: Cumulative average performance score for MOEA /D-DE against all gradient-
based epigenetic variants for all dynamic problems.

performance scores based on HV, indicating the positive effect of blocking all decision
variables with either a positive or negative gradient, with negative gradients having the best
effect. Results from IGD metrics are less clear, with three gradient approaches performing
similarly and GP1 as the only approach that performs worse than the baseline. Note that
the cumulative average performance score is quite low, at 6 out a possible 200, indicating
there is little significance between the approaches, but as the score is averaged over all
dynamic problems, a maximum score of 200 means that the approach outperformed all
other approaches on every dynamic problem at every evaluation counter, which is highly
unlikely.

For D-NSGA-II, poor performance of the epigenetic blocking mechanism is seen in
general, across both metrics, as shown in Figure 5.7. This discrepancy is similar to the
difference between U-NSGA-III and MOEA/D-DE on the static benchmark problems,
where U-NSGA-III’s ranking-based selection provides a stronger selection pressure that
negates the effectiveness of epigenetic blocking, compared to the decomposition approach
of MOEA /D-DE. Due to the poor performance, there is little to differentiate between
the different gradient variants for D-NSGA-II. GP1 has the highest cumulative average
performance score, and GN1 has the lowest, demonstrating the same trend as MOEA /D-

DE where using negative gradients has a greater impact on performance.

Next, when grouping the results across the four dynamic problem types, the strengths

and weaknesses of the gradient-based approaches can be further analysed. The results for
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Figure 5.7: Cumulative average performance score for D-NSGA-II against all gradient-
based epigenetic variants for all dynamic problems.

MOEA/D-DE are presented in Figure 5.8. All variants outperform the baseline for type
I problems where only the Pareto set changes. Based on HV metrics, GP1 and GN1
outperform the baseline for type II and IV problems, with GP1 performing the worse on

type III problems and other variants performing similarly to the baseline.

However, when calculating based on IGD, none of the variants outperform the baseline
for type II problems, and GP1 and GN1 now perform poorly compared to PP1 and
PN1. Table 5.3 shows the magnitude of final cumulative average performance scores for all
gradient-based approaches with MOEA /D-DE. The low cumulative average performance
scores demonstrates the effectiveness of the gradient-based epigenetic methods, for example
GN1 has a cumulative APS of 0.29 across all 100,000 function evaluations on type I
problems, meaning it was almost never outperformed. In contrast, even though the baseline
algorithm has the best results on the IGD metric for type II problems, its cumulative APS
is the highest at 6.14 out of all the best performing results. The GN1 variant shows the
best consistent results, outperforming the baseline in all cases except on IGD for type II

problems.

This pattern indicates that gradient-based blocking, especially when all positive or neg-
ative gradients are blocked, is much more effective than using a probability to block based
on the gradient magnitude. This stems from the probabilistic method not consistently
blocking important variables, occasionally blocking unimportant variables, and discrep-

ancy from normalising the block probability, leading to many variables not blocked if there
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Figure 5.8: Cumulative average performance score for MOEA /D-DE against all gradient-
based epigenetic variants, grouped by dynamic problem type.



5.3. Using gradients to determine epigenetic blocking locations 111

Algorithm HV cumulative APS IGD cumulative APS
1. II. II1. IV. I II. II1. IV.
MOEA/D-DE | 67.57 | 34.21 | 3.45 40.0 61.0 6.14 13.30 | 32.0
GP1 6.57 5.86 21.64 | 1.0 5.71 23.0 26.36 | 1.50
GN1 0.29 7.43 1.27 2.5 2.29 18.5 6.18 14.0
PP1 22.71 | 22.14 | 7.18 63.0 22.29 | 9.50 8.36 41.50
PN1 20.14 | 19.43 | 7.55 56.05 | 12.57 | 7.71 3.36 57.50

Table 5.3: Final cumulative average performance scores for MOEA /D-DE with epigenetic
gradient-based approaches.

are one or two large gradient values, or most variables blocked if all gradient values are
simiarly low. A reason why the positive and negative gradients both have similar effects,
despite pointing in opposite directions comes from the summing of the objectives. Due to
the summing approach, is objectives have similar values pointing in different directions,
the nuance is lost. Whether the derivative value is small or large, both are treated equally
in the GP1 and GN1 approaches. This dilutes the effect of decision variables with large
gradient values, as small gradient values are treated the same, making both approaches
act similarly to each other. In the context of minimisation-based dynamic multi-objective
problems, which all the dynamic benchmark problems tested here are, positive gradients
indicate decision variables where increases to the value would worsen the objective values,
but the inverse is true that decreases to the value would improve the objective. In this
case, blocking positive and negative gradients have a similar effect, but the increase or
decrease of the variable value is not taken advantage of, as evolutionary algorithms do not

explicitly increase and decrease variable values.

The performance measured by the HV and IGD scores are consistent for MOEA /D-
DE except for type II problems. For HV, GP1 and GIN1 perform the best across all
the problem types, with GP1’s poor performance on type III problems reflected in both
HV and IGD scores. On type II problems, GP1 and GN1 performs the best when
measured with HV but perform the worst when measured by IGD. This indicates reduced
convergence when both Pareto front and set change if the epigenetic mechanism blocks all
positive or all negative gradients, but a retention in diversity and spread across the Pareto

front.

In general, using all the positive or negative gradients in the epigenetic mask is more
effective than a scaling probability of each decision variable being included based on its

value, due to the inconsistency of blocking variables..

The strong results of epigenetics on MOEA /D-DE are not replicated for D-NSGA-II
to the same extent. The gradient-based epigenetic variants perform poorly with D-NSGA-
IT except on type III problems. On type III problems, both the HV and IGD metrics
show the epigenetic variants with strong early performance and maintaining the good
performance for the rest of the optimisation except for PN1. Furthermore, D-NSGA-II

using the gradient approaches finds very poor results for type I and IV problems, where
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Algorithm HV cumulative APS IGD cumulative APS
1. II. II1. IV. I II. II1. IV.
D-NSGA-II | 2.0 8.21 4.73 9.0 3.71 11.0 6.91 15.0
GP1 50.71 | 16.50 | 2.36 72.50 | 45.29 | 14.79 | 3.46 60.50

GN1 40.0 16.0 2.45 65.0 37.86 | 13.14 | 2.45 61.50
PP1 49.43 | 12.0 1.91 | 7950 | 49.14 | 9.86 1.45 | 62.0
PN1 45.57 | 9.0 6.55 70.5 40.71 | 8.43 | 8.73 61.50

Table 5.4: Cumulative average performance scores for D-NSGA-II with epigenetic gradient-
based approaches.

the cumulative APS scores are high relative to the baseline algorithm’s scores, as shown in
Table 5.4, such as a 2.0 cumulative score for baseline D-NSGA-IT with cumulative scores

of 40.0 and more for the gradient variants.

Similar to MOEA /D-DE, the performances calculated by the HV and IGD metrics are
consistent for D-NSGA-II with the exception of type II problems. With performance based
on IGD, PP1 and PN1 shows good performance and the baseline algorithm performance
results between the two gradient-based approaches after 100,000 function evaluations.
When using HV to calculate performance, the order of performance of the gradient-based
approaches remains the same with PN1 performing best and GP1 performing the worst,
but now the baseline algorithm outperforms all the gradient methods. This demonstrates
the convergence properties of the epigenetic mechanism resulting in better IGD scores and
worse HV scores.

5.3.3 Computation issues with the gradient method

The time taken and computation required to calculate gradients is significantly costly
compared to other methods. Despite the derivative being pre-computed beforehand, the
gradient of each variable has to be recalculated for every individual in every generation
when the epigenetic mechanism is active. The computation costs quickly adds up, making
this method relatively expensive for improving performance of the epigenetic mechanism,
though with promising results for MOEA /D-DE.

Although real time used in performing computation can have high variability due to
hardware and other programs running at the same time, all computation is run on the
IRIDIS 5 High Performance Computing System to maintain equal and fair hardware usage
as much as possible. IRIDIS 5 uses Intel compute nodes with dual 2.0 GHz Intel Xeon Gold
6138 processors. Figure 5.10 shows the original baseline algorithms and original epigenetic
variants taking similar amounts of time when averaged across all the runs and benchmark
problems. There is a noticeable increase in average time taken for the gradient-based
approaches at about three times the time required. For example, MOEA /D-DE and the
contiguous and non-contiguous epigenetic variants have a median time taken of 504, 600,

and 703 seconds, compared to the gradient-based variants which all have a median time
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Figure 5.9: Final cumulative average performance score for D-NSGA-II against all
gradient-based epigenetic variants, grouped by dynamic problem type
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Figure 5.10: Box-plot of time taken per run for each algorithm and epigenetic variant.
The wallclock time is used to record the time taken for each algorithm.

taken over 1500 seconds at 1591, 1597, 1630, and 1585 seconds.

While the time taken is not the most important metric to measure the performance of
the algorithms, it can impact an algorithms real world application if a three times increase
in computation is required. A key consideration is then whether the improved performance

with the gradient-based approaches can result in fewer total evaluations.

5.3.4 Conclusions for gradient-based epigenetic blocking

The investigation into gradient-based epigenetic blocking highlights the potential of using
gradient information to guide the epigenetic mechanism. By calculating partial derivatives
of decision variables, the value of the gradient at each variable is used to selectively apply
epigenetic blocking. Four variations are tested: GP1, GN1, PP1, and PN1, which use

the gradient information differently when choosing to block decision variables.

The results demonstrate that gradient-based epigenetic approaches can significantly
enhance performance in specific problem types, particularly with all positive or negative
gradients blocked for MOEA /D-DE. Blocking variables with negative gradients in GIN1
consistently yields the best results across problem types. On the other hand, D-NSGA-II
exhibits poor performance with gradient-based epigenetics, except for type III problems,
where the approaches show little difference to each other. The difference between positive
and negative gradients is diluted due to the summing of objectives, losing some nuance
between each objective’s gradient direction. Furthermore, positive gradient values can
indicate improvement in the objective if the variable value is increased. However, as
evolutionary algorithms do not explicitly take advantage of this information, the difference

between blocking positive or negative gradients has the same effect.
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The computation cost of the gradient-based method is a consideration that must be
taken into account. The time required for gradient calculations is approximately three
times higher than running the baseline algorithms. While the improved performance can
justify the increased computation cost, it may not be suitable in applications with a high
number of small evaluations where this additional cost is more significant. However, in
applications with an existing high computation cost, the additional cost of computing

gradients may not be as noticeable.

5.4 Epigenetics with hyperparameter optimisation

Hyperparameter optimisation (HPO) is a common concept within artificial intelligence,
and especially machine learning, to optimise performance with hyperparameter choices. In
machine learning, tuning hyperparameters has been shown to improve performance com-
pared to default settings [124, 163]. The use of Evolutionary Computation for optimising
and tuning machine learning algorithms has also been extensively studied [111, 186, 213]
However, the effect of applying the same hyperparameter optimisation process to Evolu-
tionary Computation itself is not well documented. Tuning Genetic Algorithms has been
studied with manual methods [132], and there have been examples of specific problems

where hyperparameter optimisation has been used successfully [33].

There are many existing tools developed for hyperparameter optimisation such as
SMAC3 (Sequential Model-Based Algorithm Configuration) [117], MIP-EGO (Mixed-Integer
Parallel Efficient Global Optimisation) [176], ISAC++ [7], and irace [122]. In Evolutionary
Computation, these tools have been explored on specific problems. For example, in using
a Genetic Algorithm to identify ambulance locations [33], SMAC3 was used to choose
appropriate hyperparameter values. Ye at al. [212] compared the results of multiple hy-
perparameter optimisation approaches, specifically on a configurable framework for GAs
they previously developed, not using any specific state-of-the-art algorithm. Their results
showed mixed performance for all the compared approaches, with no single hyperparame-
ter optimisation approach outperforming the others, and a number of instances where the
tuned configurations did not outperform the default configuration. The use of Bayesian
Optimisation for hyperparameter optimisation has been shown to be effective on Evolu-
tionary Algorithms compared to other hyperparameter tuning methods such as MIP-EGO
and irace, which require more evaluations especially when it is expensive to compute a
single hyperparameter configuration [161]. Further, SMAC3 has been shown to be an
effective hyperparameter optimisation solution for Evolutionary Algorithms compared to
packages such as irace and ISAC++ [8]. As the different approaches gave similar perfor-
mance increases, and SMAC3 utilises Bayesian optimisation to reduce computation costs
and has previously shwon to be effective on Evolutionary Algorithms, it was chosen as the
hyperparameter optimisation library used. The library and repository for SMAC3 can be
found on GithHub (https://github.com/automl/SMAC3).
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Figure 5.11: Components within SMAC3

SMACS3 uses a Bayesian optimisation loop, keeping track of the number of trials and
wallclock time it has remaining. Figure 5.11 shows an overview of the different compo-
nents within the SMAC3 optimisation loop. A target function returns the fitness value for
the objective. In the case of optimising hyperparameters for Evolutionary Computation,
the fitness value is measured using a performance metric such as IGD or HV. The con-
figuration selector returns new hyperparameter configurations based on the initial design,
surrogate models such as random forests, target function, and history or previously tried
configurations. The configurations are evaluated and either intensified via aggressive rac-
ing, successive halving or Hyperband, or new configurations are generated. The loop then
repeats, with a history of configurations stored to inform both the configuration selector

and the intensifier.
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Table 5.5: Hyperparameters and the ranges used for the epigenetic mechanism.

Hyperparameter Value range Value type Comment
Crossover rate 0-1 Continuous
Mutation rate 0-1 Continuous
. . Only for
Mutation factor F 0-1 Continuous MOEA /D-DE
. . . Only for
Neighbourhood size 2 -100 Discrete MOEA /D-DE
Neighbourhood . Only for
selection probability 0-1 Continuous MOEA /D-DE
Epigenetic rate 0-1 Continuous iny fo.r
epigenetics
Mask length 1= m{mber of Discrete iny fo.r
variables epigenetics

5.4.1 Configuring the hyperparameter optimisation process

To setup hyperparameter optimisation, hyperparameters that are manually chosen such
as crossover rate and mutation rate are used for the HPO process. Table 5.5 shows the
range of values for each hyperparameter that the SMAC3 library explores. The algorithm
configuration facade for SMAC3 was chosen as it supports multi-objective and multi-
fidelity optimisation, while the hyperparameter optimisation facade does not have the
same support. Hyperparameters are tuned per problem so that each algorithm variant
has the best chance to succeed. Making each configuration of hyperparameters problem-
specific also emulates how it would be done for real world problems, where an algorithm

is chosen and then tuned to that specific problem.

To explore the use of hyperparameter optimisation with the epigenetic mechanism, the
probability and mask length of the mechanism are set as additional hyperparameters in the
SMACS3 library in addition to the baseline algorithm’s hyperparameters. As the variations
on dynamically changing the probability and mask length led to mixed results, with some
very impressive performances along with some quite poor performances, perhaps the use
hyperparameter optimisation can better provide suitable parameters for the epigenetic

mechanism.

The optimisation process is limited to a maximum trial-time of 24 hours, and a maxi-
mum trial count of 100. To keep the process fair, other hyperparameters such as population
size and crossover rate are optimised again for dynamic problems and with the epigenetic
mechanism. This leads to separate hyperparameters for the algorithm with and without
the mechanism, so the optimisation is not biased towards inclusion of the mechanism or

not. Due to the stochastic nature of Evolutionary Computation, a single SMAC3 trial
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uses objective values from 10 independent runs of the algorithm configuration, taking the
average performance metric values of the runs. Fewer independent runs are used compared
to the full benchmarking process to allow more trials to be performed in time. Here, trials
refers to a single hyperparameter configuration that is selected and tested, and a run is
any time an algorithm goes through the optimisation process on a given problem. Hy-
perparameters are optimised for 100,000 function evaluations per problem, with the mean

IGD and HV values across all 100,000 evaluations used as the metrics to be optimised.

The set of hyperparameters optimised are displayed in Table 5.5. The length of the
epigenetic mask and the epigenetic rate are hyperparameters specifically used by the epi-
genetic mechanism. Some other hyperparameters are specific to each algorithm, for ex-
ample the neighbourhood size and selection for MOEA /D-DE. After hyperparameters are
obtained through the SMAC3 process, they are used in 20 independent runs for each
algorithm-problem configuration. Here the maximum cumulative average performance
score is 50, as there is only one other algorithm that is compared against, the baseline

compared to the epigenetic approach, both with hyperparameter tuning.

5.4.2 Hyperparameter optimisation leads to strong performance

Using hyperparameter optimisation with the epigenetic mechanism provided a strong per-

formance increase, compared to the baseline algorithms with hyperparameter optimisation.
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Figure 5.12: Cumulative average performance score for MOEA /D-DE with and without
epigenetics using hyperparameter optimisation.

Figures 5.12 and 5.13 display the cumulative average performance scores averaged
across all the dynamic problems for MOEA /D-DE and D-NSGA-II respectively. MOEA /D-
DE with epigenetics shows a significant performance increase on all problems on the HV
metric, with a final cumulative average performance score of 4.7 compared to 17.1 for the
baseline algorithm, and a smaller but noticeable difference on IGD, with final cumulative

average performance scores of 8.1 for the epigenetic approach compared to 13.1. The re-
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sults are similar to the gradient results, with the epigenetic methods achieving better HV
values than IGD values compared to the baseline, indicating good diversity and spread of

solutions across the Pareto front with reduced convergence rates.

D-NSGA-II finds similar results when looking at the HV wvalues, at 10.3 cumulative
average performance score for epigenetics compared to 20.2. The larger scores indicate
there are more problems where one approach outperforms the other. When using IGD
calculations for D-NSGA-II, there is less performance gains made by the epigenetic mech-
anism, as its early performance is worse but its later performance after 55,500 evaluations
is better. Both algorithms show better HV values with the epigenetic mechanism, demon-
strating its increased diversity properties with fine tuned hyperparameters while retaining

competitive on convergence as shown by the IGD metric.

All dynamic problems All dynamic problems

Average Performance Score
Cumulative Average Performance Score

(a) Calculated by IGD values. (b) Calculated with HV values.

Figure 5.13: Cumulative average performance score for D-NSGA-II with and without
epigenetics using hyperparameter optimisation.

Next, the cumulative average performance scores are calculated and grouped by the
dynamic problem type. The strengths and weaknesses of each dynamic type can be seen
for MOEA /D-DE in Figure 5.14 and D-NSGA-II in Figure 5.15. Both algorithms show
similar behaviour with epigenetics on a number of problem types. For example on type IV
dynamic problems, both algorithms on both IGD and HV show early worse performance
for epigenetics, then from 20,000 — 40,000 function evaluations the epigenetic approach has
0 average performance score until the end of the optimisation, meaning it is always the
best compared to the baseline. The two algorithms differ at when the epigenetic approach
remains at 0 performance score. MOEA/D-DE achieves this point later at 28,000 and
30,000 for IGD and HV respectively while D-NSGA-II achieves this point earlier at 12,000
evaluations for both IGD and HV metrics. D-NSGA-II with epigenetics is able to achieve
0 average performance score at an earlier point in the optimisation. However, before
reaching this score, D-NSGA-II exhibits higher cumulative average performance scores of
9 and 8 based on HV and IGD respectively, while MOEA /D-DE scores 4 and 7 on the
same metrics. These results show that D-NSGA-II with epigenetics is worse earlier on in
the first 10,000 evaluations compared to the baseline, a trade-off to MOEA /D-DE where it

takes longer to reach 0 average performance score but is closer to the baseline before that
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Figure 5.14: Cumulative average performance score for MOEA /D-DE with and without
epigenetics using hyperparameter optimisation grouped by dynamic problem type.
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point. Notably for D-NSGA-II, the baseline algorithm also achieves 0 average performance

score for the first 10,000 evaluations.

On the other dynamic problem types, MOEA/D-DE with epigenetics demonstrates
strong overall performance with a low cumulative average performance score for type II
and III dynamic problems with HV. The same strong performance is seen for IGD values for
type II problems, though the IGD for type III problems is more mixed, with both the base-
line and epigenetic approaches having high average performance scores and the baseline
outperforming by a little. Finally, type I problems show good convergence for epigenetics
based on IGD values and good early performance based on HV. However, the epigenetic
performance degrades towards the end of the optimisation, with both approaches having
a similar total average performance score after 100,000 function evaluations. Further, the
cumulative average performance score is low at 8 compared to the much higher scores in
the type IT and III problems. As the maximum cumulative average performance score here
is 50, the scores of 20+ for type II and type IV problems with MOEA /D-DE indicate its

significant difference compared to performance on type I problems.

Interestingly, D-NSGA-II displays the same behaviour on type I problems based on
HV, with good performance early and similar total average performance score to the
baseline at the end. For the other problem types with D-NSGA-II, the HV values also
show good performance for epigenetics for type II and type III performance, but the IGD
values show mixed performance. Notably the mixed performance still leads to a high
cumulative average performance scores, indicating that rather than both the baseline and
epigenetic approaches having no significant differences, both approaches have different
problems where one approach is statistically significantly better than the other. This
suggests the tuning of the epigenetic probability and mask lengths greatly increase diversity
of the mechanism at the cost of convergence, particularly when both the Pareto front and

Pareto set changes.

5.4.3 Specific strengths and weaknesses for fine-tuned epigenetics

On some problems, certain behavioural patterns can be observed with epigenetics. The
HV values between MOEA /D-DE with and without the epigenetic mechanism, across the
full 100,000 function evaluations for problems where the mechanism performs significantly
better are shown in Figure 5.16. UDF4, CDF5, and CDF6 are type II problems, and
CDF12 and JY5 are type III problems. In these examples, the algorithm with epigenetic
blocking achieves significantly higher HV values than the baseline algorithm. In all cases,
the epigenetic mechanism performs well early on, and the performance becomes similar
towards the end of the 100,000 function evaluations. In particular, CDF6 and JY5 show
significant differences in the first 20,000 — 30,000 evaluations with and without the epi-
genetic mechanism. After 50,000 evaluations the HV values of both the baseline and the

epigenetic approach are close to each other until the end. CDF5 is an exaggerated example
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Figure 5.15: Cumulative average performance score for D-NSGA-II with and without
epigenetics using hyperparameter optimisation grouped by dynamic problem type.
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Figure 5.16: Median HV values on dynamic problems for MOEA /D-DE where the epige-
netic mechanism performs well when both the mechanism and the baseline algorithm have

fine-tuned hyperparameters.

of the same epigenetic behaviour found in CDF6. The baseline algorithm performs poorly
at the beginning, and the epigenetic approach continues to outperform until the end of
the optimisation. Furthermore, the peaks and troughs are always higher for epigenetics,
indicating its rapid adaptive properties to dynamic changes and improving in solution

quality after further changes.

Figure 5.17 shows the same benchmark problems for D-NSGA-II. Similar performance
patterns are seen, but the effect of the epigenetic mechanism is reduced. For example,
CDF6 shows no significant differences between the two approaches and only the first
two peaks show a visible different for CDF5. For JY5, MOEA/D-DE with epigenetics
maintained its strong performance until 50,000 evaluations, but for D-NSGA-II, the two
approaches reach the same HV values by 20,000 evaluations. It is important to note in
this case, the performance of the epigenetic mechanism is the same for both algorithms,
reaching an HV value of 1.08 in 5,000 for MOEA/D-DE and 6,000 for D-NSGA-II. So
the performance difference comes from the baseline D-NSGA-II algorithm showing better
performance than the baseline MOEA /D-DE algorithm with optimised hyperparameters.
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tuned hyperparameters.

5.5 Comparison of the epigenetic mechanism’s vari-
ations

The use of hyperparameter optimisation leads to a strong positive increase in performance
for the epigenetic mechanism, but how strong is this effect compared to the other variations

explored previously?

Figures 5.18 shows the cumulative average performance score with all the different epi-
genetic variations explored compared together. For clarity, only a select few variations from
the previous sections are used where there are similar performances between the variations,
namely epi-cont for the original variations with a contiguous mask, EIB for the variation
with increasing mask length, GN1 for the gradient variation, and finally HPO for the
epigenetic mechanism with optimised hyperparameters. The use of hyperparameter opti-
misation performing much more poorly compared to all the other variations including the
original baseline is surprising. When compared to the hyperparameter-optimised baseline,
the epigenetic approach found significantly improved performance. This suggests the hy-

perparameter optimisation approach is not suitable to dynamic problems, as the SMAC3
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Figure 5.18: Cumulative average performance score for each epigenetic variant across all
dynamic problems.

framework optimises for a single metric value, which is averaged over the optimisation
in dynamic problems. The other approaches all show competitive results to each other,
with the gradient-based approach showing the best performance for MOEA /D-DE and
the baseline algorithm without epigenetics showing the best performance of D-NSGA-II.

Next when dividing the problems into the four dynamic problem types, more inter-
esting performance behaviours are shown. Figure 5.19 first shows the cumulative average
performance scores for MOEA /D-DE and its epigenetic variants. In the first dynamic
problem type with only changing Pareto sets, the gradient-based approach, but more
notably the hyperparameter optimisation approach perform extremely well compared to
the other methods. The gradient-based approach with negative gradients in the epigenetic
mask demonstrates the best consistent performance across all four dynamic problem types.
The performance difference is reduced on type II and III problems, where all other vari-
ants and the baseline MOEA /D-DE perform similarly, but a gap can be seen that exhibits
the gradient approach’s superior performance. The HPO approach retains low average
performance score throughout the optimisation for type I problems. This is interesting
because the hyperparameter optimisation shows the worst performance when the average

performance score is taken from all problems. Its poor performance is continued to be
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Figure 5.19: Cumulative average performance scores for MOEA /D-DE and each epigenetic
variant split by dynamic problem type.

seen in the type II and III dynamic problems, both of which feature dynamically changing
Pareto fronts. Additionally, epigenetics with hyperparameter optimisation is below aver-
age among the variants for the fourth type of dynamic problems with dynamic constraints.
The results point to hyperparameter optimisation being less suitable for problems with
changing Pareto fronts.

When applying the epigenetic mechanism to D-NSGA-II, the same performance gains
are not seen, suggesting some Evolutionary Algorithms are better suited to the epigenetic
mechanism than others. In each dynamic problem type, one or two of the epigenetic
variants may have a lower cumulative average performance score than the baseline D-

NSGA-II, but the baseline consistently performs well on all types of dynamic problems.

5.5.1 Hyperparameter optimisation’s ‘poor’ performance

Delving deeper into the individual problems to determine the cause of the poor perfor-
mance from hyperparameter optimisation, Figure 5.20 shows both the median HV values

and the cumulative average performance scores for four example type II problems. UDF1
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Figure 5.20: Type II dynamic problems where the HPO variant performs best and worst
in.
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and CDF6 are problems with diagonal shifts while UDF5 and CDF8 are problems with
angular shifts. There is a significant performance contrast between the problems where
HPO performs well and poorly. However notably, the cumulative average performance
scores for UDF5 and CDF8 for the worst performing variant are significantly higher, at
over 500, than the scores in UDF1 and CDFG6, at less than 120. The HPO approach’s poor
performance on angular shifting problems points to an overfitting of the hyperparameters,
improving performance on suitable problem while losing robustness. The angular shifting
nature of the true Pareto front means not only a positional shift of objectives, but also
a directional rotational change, more heavily impacting parameters fit for one direction
of the front and not another. Another technical reason for the poor performance is other
variants all showing similar median HV values and so when they all perform worse against
the HPO variant but not each other, their performance scores only increment by 1 at each
time step. When the HPO variant performs worse, its performance score increments by 4
or more as all the other variants perform better, leading to its average performance score

across all dynamic problems to be much higher than its performance indicates. The same
effect is seen for both MOEA /D-DE and D-NSGA-II.

Note that this is an issue stemming from the large number of variants added in the
average performance score calculations, which affects the HPO variant more severely than
in previous comparisons using the average performance score when only 2 or 3 variants,
or 5 in the gradient-based approaches, are compared together at one time. In this case, 13

variations are compared together, leading to the inflation of average performance scores.

Instead of averaging and summing the inflated performance scores, Figure 5.21 shows
a cumulative count of the number of problems that each variant performs best in, every
1,000 function evaluations. Here, each variant receives a count of 1 if its performance
score is the lowest at every 1,000 function evaluations to show how many problems each
performs best in. Now it can be seen that the use of hyperparameter optimisation for
MOEA /D-DE maintains the best performance for type I dynamic problems, its perfor-
mance is competitive for type II problems only just below the other variants for type III
problems. Additionally, the GIN1 gradient-based approach continues to show its good per-
formance and surprisingly the contiguous mask with the basic epigenetic hyperparameters
achieves a high performance count for type II problems. For D-NSGA-II, the GN1 vari-
ant exhibits superior performance compared to what the cumulative average performance

scores suggests, and the HPO approach remains poor performing.

5.5.2 Best general performance

The gradient-based epigenetic approach to block decision variables with negative gradients
demonstrates the best performance for dynamic multi-objective optimisation problems.
The approach comes at the cost of additional computation time required to compute the

gradient values.
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Figure 5.21: Cumulative count of problems each epigenetic variant performs best in (i.e,
has the lowest performance score.

The hyperparameter optimisation approach displays extremely strong performances on
problems without changing Pareto fronts, because the static objective ensures that tuned
parameters remain effective throughout the optimisation. However, on problems with an-
gular shifting Pareto fronts, this method can lead to poor performance as the fine-tuned
parameters do not dynamically adapt to the shifting front and the epigenetic blocking
mechanism becomes misaligned, making the epigenetic masks unsuitable throughout as
the hyperparameter optimisation process takes the average performance as its tuning met-
ric. Angular shifts in the Pareto front are particularly difficult for the HPO approach
because it is not only the objectives that change, but the direction of the trade-off, as
vertical and horizontal shifts still maintain the same trade-off directions. This makes the
HPO approach a high risk strategy, where the properties of the dynamic problem should
be known beforehand to utilise it well. The other epigenetic approach in EIB and EIP for
increasing probability and epigenetic mask lengths can show some good performance but
often shows similar and mixed performances to the baseline without epigenetics. Therefore
in general cases, the gradient-based approach is recommended if the additional computa-
tion cost is acceptable relative to the gains in performance and convergence. In specific

dynamic problems where only the Pareto set changes over time, a hyperparameter opti-
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misation approach is recommended, and if a full hyperparameter optimisation process is
not feasible due to resource, time, or computation constraints, a less granular grid search

to fine-tune the epigenetic hyperparameters can be used.
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Chapter 6

Application on a real-world voyage

optimisation problem

To apply and test the epigenetic mechanism on a real-world problem, a commercial voyage
optimisation problem is run based on a Voyage Optimisation Software tool (T-VOS). The
problems are performed on a test set initially developed by Khan et al. [101]. Two ob-
jectives are optimised in this problem: fuel consumption and voyage time. By minimising
fuel consumption, both the cost of a vessel’s voyage, and emissions per voyage can be
reduced. Further, using voyage time as an objective allows the Pareto front to suggest a
variety of arrival times to best suit a particular voyage. Met-ocean data models are used
to provide information such as wind speeds, ocean currents, and weather updates, all of
which feed into the calculation for fuel consumption. As a ship travels on different routes,
the kinds of weather and ocean data changes, resulting in a complex optimisation problem
with irregular weather constraints. This makes the epigenetic mechanism a potentially

suitable mechanism in this application.

6.1 The voyage optimisation problem

A total of 10 voyages are tested, 6 have calm weather conditions and 4 have more severe
weather conditions. These problems are considered constrained multi-objective optimisa-
tion problems. A grid of nodes are generated to form the route, with constraints added
to prevent grounding, provide ship safety in severe weather, and adhere to ship traffic and
routing schemes in certain regions. A mesh is generated over the voyage to limit the search
space within the relevant ocean routes based on the First Order Approximation (FOA)
route. By default, the width of the mesh is 2000km, 1000km on each side of the FOA
route, which means that optimiser can route the vessel up to 1000km from the shortest
great-circle route. The decision variables are made up of the sequence of nodes, forming

the waypoints of the route contained within the mesh, and the speed of the vessel between
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each pair of waypoints. Re-routing may occur depending on the weather conditions during
the voyage, requiring new changes to the route. More severe weather would require more
re-routing compared to the calmer weather voyages. Historical Met-ocean data is used to
provide the weather information, which may differ from the real-time use of the software
that utilises weather forecasts instead, but is a useful approximation to how the software
adapts re-routing in changing weather. The met-ocean constraints were set to 6 metres for
wave heights and 40 knots for wind speed. The T-VOS system uses a Speed Over Ground
(SOG) operational mode, which means that the SOG is optimised for each waypoint on

the route and then assumed to be constant between waypoints.

Epigenetic rate | Mask length | Min fuel | Min time | Overall
0 0 10.5833 13.6667 12.1250
0.333 0.1 9.5833 9.8333 9.7083
0.666 0.1 8.5000 9.3333 8.9167
0.9 0.1 12.2500 9.9167 11.0833
0.333 0.4 9.9167 11.6667 10.7917
0.666 0.4 11.2500 11.6667 11.4583
0.666 0.7 14.6667 11.2500 12.9583
0.75 0.1 8.4167 8.5000 8.4583
0.75 0.2 4.6667 7.3333 6.0000
0.75 0.3 9.1667 11.6667 10.4167
0.75 0.25 11.0000 10.2500 10.6250
0.75 0.15 9.5000 10.5000 10.0000
0.71 0.2 15.5000 12.4167 13.9583
0.8 0.2 11.1667 12.0833 11.6250
0.7 0.2 12.5000 12.0000 12.2500
0.666 0.2 14.3333 15.7500 15.0417
0.69 0.2 8.1667 13.2500 10.7083
0.74 0.2 12.3333 8.6667 10.5000
0.76 0.2 11.3333 7.2500 9.2917

Table 6.1: The hyperparameter grid search done to find the best performing epigenetic
rate and mask length. The minimum fuel and time solutions are ranked, and the average
rank is displayed to find the best hyperparameters. The grid search is limited due to the
computational resources of the T-VOS platform. The epigenetic rate and mask lengths
of 0 represent the standard algorithm without epigenetics. The algorithm can be quite
sensitive to changes in the parameters, as small changes can lead to a large degradation
of performance.

Voyages with severe weather make the optimisation problem more difficult due to
more frequent re-routing and safety constraints of the vessel. Each voyage and algorithm
configuration were benchmarked over 7 runs. A total of 664 generations are generated in
each run. The number of runs and generations are due to the computational resources
and operational costs of running the T-VOS system. There is a termination condition
on the number of evaluations, with a soft limit at 400,000 evaluations and a hard limit
at 800,000. The optimisation is always run up to the soft limit, and if no navigable

and safe route is found within that limit, the optimisation is then run up until the hard
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limit. All routes here finished within the 400,000 evaluation soft limit. For the epigenetic
blocking mechanism, a grid search was used to determine the best probability and mask
length as it was less feasible to run hyperparameter optimisation libraries such as SMAC3
with the the expensive computations involved. The proprietary nature of the voyage
optimisation software further made it difficult to implement a gradient-based approach
with the epigenetic mechanism. An epigenetic rate of 0.2 and a mask length of of 0.75 of
the number of decision variables was found to provide the best results. A non-uniform grid
search was done across the parameter space, with initial exploratory values of 0.3, 0.6, and
0.9 for the epigenetic rate, and 0.1, 0.4, and 0.7 for the mask length. Then a more focused
dense search was done for mask lengths in the range of [0.6, 0.8], and epigenetic rates in the
range of [0.1,0.2]. Table 6.1 shows the detailed hyperparameters that were tested, and how
they ranked compared to each other and the standard approach without epigenetics. As
the problem contains decision variables in a correlated sequence, a contiguous epigenetic

mask is used.

The T-VOS software uses cMLSGA [74] as the underlying evolutionary algorithm. A
variation on the SBX crossover method is used and by default the optimiser sets waypoints
spaced 250km apart in open waters, and changes speed approximately every 5 waypoints.
While near coasts or within traffic schemes, this restriction is relaxed. The default restric-
tions can be changed based on route and client preferences, but are put in place to reduces
the number of nodes necessary to explore in the route-finding mesh, reducing computa-
tional needs. Furthermore, end-user experience from captains and routing operators do
not prefer overly detailed and jagged routes with constant turning and speed changes, as
it creates questions and uncertainty as to why so many routing adjustments are necessary,
reducing adoption and trust of the voyage optimisation software. Therefore, the restric-
tion of the optimisation search space not only helps to reduce computational resources,

but reflects human preferences.

Both IGD and HV values are calculated as performance metrics. The IGD values are
calculated by taking the best route found by the voyage optimisation software from all
historic runs as the “true” Pareto front. However, only a sample of 14 Pareto optimal
fronts are used in the reference set from the historical best runs stored on the system as
some of the older best solutions were lost. Therefore the “true” Pareto front used in the
IGD calculations may not be adequate and should be interpreted cautiously, not as a final

metric that definitively determines performance on the problems.

6.2 Performance of epigenetics in voyage optimi-
sation

Table 6.2 displays the averaged final IGD and HV values for the best route found in each

run in the voyage optimisation problem. The calm and severe weather voyages and listed
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below, along with their associated reference points for Hypervolume calculation, which are
10% worse than the nadir points found for each route, in the form (Time in hours, Fuel

in tonnes).

Voyages with calm weather conditions:

e Houston — Halifax (358.80, 238.38)

Houston — Cuxhaven (789.06, 526.12)

Recife — Bangkok (1640.40, 972.09)

Corpus Christi — Cape Town (1386.40, 760.41)

Rio de Janeiro — Ningbo (1924.07, 1098.56)

Ras Tanura — Mailiao (813.58, 573.68)
Voyages with severe weather conditions:

e London — Sunny Point (647.68, 376.51)
e London — Sunny Point 2 (676.06, 388.22)
e San Francisco — Kushiro (714.41, 413.27)

e Cape Horn — Tauranga (813.89, 436.77)

HyperVolume reference points are taken from the nadir points of the reference Pareto
fronts, which takes all routes from historical runs to create a Pareto optimal front using

non-dominated sorting, forming a single reference front.

None of the six calm weather voyage showed a statistically significant difference between
the epigenetic and non-epigenetic approach, indicating there is limited if any difference
between the algorithms by the end of the optimisation. The epigenetic approach neither

improves or detracts from the original approach on these calm weather problems.

On the four severe weather routes, there is a statistical significance between the two
approaches on all the routes, with the epigenetic approach finding the best results in all four
routes for both IGD and HV. There are significant differences between the metric values
with IGD, for example in the Cape Horn to Tauranga voyage, the epigenetic approach
has a final IGD value of 2.736 compared to 4.8187 for the baseline algorithm. Due to the
rough IGD calculation on few optimal fronts, it is not indicative of performance, but does
suggest performance improvements when compared to the values of the two approaches
on calm weather voyages. The HV values further support the performance improvements

made by the epigenetic mechanism, as the same results are shown for both metrics.

Figure 6.1 displays the trade-off fronts between the fuel and time objectives for prob-
lems with a statistically significant IGD and HV wvalue. In each of these routes, non-

dominated solutions are found with epigenetics that show an improvement in fuel savings
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Route Epi IGD HV
P Average Std | Sig | Average | Std | Sig
Houston — Halifa /| 04731 [0.2301 || 0.0593 [ 0.0005 | _
v Hax x| 0.6394 | 0.2419 0.0590 | 0.0005
Howston — Cuochave /| 18391 [11269 [ | 0.0379 | 0.0008 |
uston = Luxhaven x | 3.0688 | 0.6180 0.0369 | 0.0004
. v | 2.2563 | 0.6646 0.0356 | 0.0003
Recife — Bangkok % | 21264 | 0.7793 | | 0.0356 | 0.0003 | *
. v | 1.5868 | 0.3358 0.0415 | 0.0002
CorpusChristi — CapeTown |1 6003 | 03970 | % | 0.0415 | 0.0003 | *
Rio Ningbo /| 20052 | 1.3648 | | 0.0354 | 0.0005 |
! me x| 2.6012 | 1.2843 0.0355 | 0.0005
RosTamura — Mailino /| 13803 [ 05660 | | 0.0139 [0.0003 |
S Latur H % | 1.5356 | 0.3515 0.0138 | 0.0002
_ v | 1.0574 | 0.1907 0.0482 | 0.0001
London — SunnyPoint « | 1.4005 | 01761 | ¥ | 0.0476 | 0.0001 | ¥
. 7 | 0.8322 | 0.1252 0.0443 | 0.0002
London — SunnyPoint2 « | 12221 | 01583 | ¥ | 0.0438 | 0.0002 | ¥V
. . v | 0.9649 | 0.2364 0.0346 | 0.0002
San Francisco — Kushiro « | 1.9946 | 0.6014 | ¥ | 0.0335 | 0.0005 | ¥
v | 2.7360 | 0.5269 0.0266 | 0.0005
Cape Horn — Tauranga « | as187 | L1710 | ¥ | 00257 | 0.0007 | ¥

Table 6.2: Final IGD and HV values for each voyage. Statistical significance is calculated
with a Wilcoxon rank sum test. The best values for each voyage are highlighted in bold.
A total of

without an increase in the time required for the journey. In some cases such as the
Cape Horn to Tauranga route, the epigenetic algorithms finds solutions that dominate in
both fuel saved and voyage time objectives, though there is a trade-off where the baseline

method finds solutions that save time for a lower fuel cost after 575 tonnes of fuel.

6.2.1 Fuel savings

As it is difficult to determine performance improvements solely on IGD and HV metrics,
the objective of fuel consumption on a route is analysed to determine further performance
differences between the two approaches. The average saving of fuel consumption, across
all voyages, with the epigenetic approach is 1% compared to the voyage optimisation
without epigenetics. The potential savings are significantly higher when operating on
severe weather conditions, with additional savings of 1.7 — 3.3%. Additionally, for all
voyages, the epigenetic approach has a higher convergence rate, reaching higher fuel savings
in fewer generations. This provides a considerable benefit, reducing the cost of providing

these simulations in a real world application.

The calm weather problems are relatively simple requiring limited re-routing. In these

problems, the most optimal points are found after 300 — 400 generations by both variants.
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Figure 6.1: Approximate Pareto fronts found in all runs
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Figure 6.2: Routes found with the best fuel consumption per generation in calm weather

condition voyages.
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Therefore no significant savings are observed when looking at the final approximated
Pareto fronts. The IGD and HV values further showed no statistical significance on the
calm weather routes except for the Houston to Cuxhaven route in the final approximated
Pareto fronts. However, the higher convergence rate of the epigenetic mechanism can be
seen when viewing the fuel usage over time in Figure 6.2. The best single route with
the lowest fuel consumption after 664 generations is shown, as that is the route that
matters most a voyage optimisation problem trying to save fuel and emissions. Both
the epigenetic and non-epigenetic algorithms converge after 300 — 400 generations with
negligible differences after, but the epigenetic approach is able to converge faster within
the first 100 — 200 generations. A gap is seen between the two approaches before the
optima are reached, showing the epigenetic mechanism’s rapid adaptation even in calm
weather conditions. On some voyages such as Rio de Janeiro to Ningbo, the epigenetic
mechanism shows faster convergence as early as the first 20 generations of optimisation.
In practical terms, the faster convergence means a lower computational soft limit can be
used, saving on computational resources and operational costs. This in turn impacts the
scalability of the system, allowing more routes and vessels to be computed with the same

computational resources.
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yyyyyyyyyyyy
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Figure 6.3: Routes found with the best fuel consumption per generation in severe weather
condition voyages.

In severe weather conditions, the safety of the vessel is threatened due to the constantly
changing weather and thus more re-routing is required. Figure 6.3 shows the epigenetic
approach finding better optimal routes once both approaches converge, leading to signifi-

cant fuel savings in these problems. The fast convergence properties are maintained, with
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lower fuel consumption routes found in fewer generations. For example in the Cape Horn
to Tauranga voyage, the epigenetic mechanism finds routes that consume 540 tonnes of
fuel or less by 100 generations of computation, compared to the algorithm without epi-
genetics which never finds a route with less than 540 tonnes of fuel even after all 664
generations. The epigenetic approach maintains a higher convergence rate in addition to
better optimal routes. The requirements for more complex re-routing enables the adaptive
nature of epigenetics to improve final fuel savings. The results demonstrates the strengths

of the epigenetic approach in problems that are more complex.
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Figure 6.4: Fuel saved with the epigenetic approach compared to the baseline without
epigenetics. Positive values mean fuel saved with the epigenetic approach and negative
values mean fuel saved using the baseline algorithm.

The difference in fuel savings between calm and severe weather voyages is shown in
Figure 6.4. The first six voyages are the calm weather voyages and the last four are the
severe weather voyages. Negative values represent voyages where the baseline approach
without epigenetics saves more fuel, for example Corpus Christi to Cape Town at maximum
generations. The relative fuel savings at 100 generations and the maximum 664 generations

are both shown for comparison of convergence.

On the calm weather voyages at the maximum number of generations, there is little to
no fuel savings found between the baseline approach and the epigenetic approach, with no
voyage having over 2 tonnes of fuel saved in favour of the baseline or epigenetic approach.
When taking the fuel differences at 100 generations, significant fuel savings are found for

the calm weather voyages using the epigenetic mechanism, demonstrating the benefits of
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the higher convergence rate. In systems with less computational resources, or voyages with
higher computational demands, the ability to find the best routes in fewer generations is
crucial. Furthermore, fuel savings are found for the severe weather voyages after both
100 and the maximum 664 generations after the algorithm converges, demonstrating not
only the increased convergence rate, but the epigenetic mechanism’s ability to find more

optimal voyage routes under more complex situations which require more re-routing.

6.2.2 Time savings

The other objective that is optimised in this voyage optimisation problem is the time it
takes to reach the destination port. Compared to the performance improvements found in
fuel usage, the epigenetic approach finds insignificant differences to the baseline approach

at 0.07% across all voyages, and only 0.15% on only the severe weather voyages.

Houston to Halifax Houston to Cuxhaven

Generations Generations

(a) Houston — Halifax (b) Houston — Cuxhaven

Ras Tanura to Mailiao Corpus Christi to Cape Town

(¢) Ras Tanura — Mailiao (d) Corpus Christi — Cape Town

Figure 6.5: Routes found with the best voyage time per generation in calm weather con-
dition voyages.

When looking at the results over time for voyage time, no clear performance improve-
ments are seen for the epigenetic approach. Figure 6.5 shows the voyage time over time.
Generally the epigenetic approach has slower convergence in the first 100 generations and
both approaches converge within 1 hour of the other. For example, the Houston to Cux-
haven route converges at 373.9 hours for the baseline and 372.6 hours for the epigenetic

approach, and the Corpus Christi to Cape Town route ends at 541.1 hours for the baseline
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and 541.4 hours for the epigenetic approach. These small differences make little to no

impact on the final routes used by the vessels.

Furthermore, the range of voyage time values is quite small between the most and
least optimised routes, indicating there is less possible room for optimisation. The average
percentage differences between the routes from generation 1 and generation 664 is 11% for
the voyage time objective and 24% for the fuel consumption objective. This is compounded
by the fact that 1 ton of fuel saved represents a significantly larger economic cost than 1

hour of time in commercial shipping.
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Figure 6.6: Routes found with the best voyage time per generation in severe weather
condition voyages.

When examining the voyage times for the severe weather routes, there are no significant
performance differences for the epigenetic approach over the baseline method. Figure 6.6
illustrates the voyage time comparison over all generations. On the London to Sunny Point
2 voyage, the epigenetic algorithm shows slower convergence while on the Cape Horn to
Tauranga route, the baseline algorithm shows slower convergence, both within the first 100
generations. The final voyage times after all 664 generations show no significant difference
between the approaches, with an average percentage difference of 0.15%. Similar to the
calm weather voyages, both approaches performed comparably, further indication that

there is less possible optimisation for voyage time compared to fuel consumption.
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6.3 Epigenetic effects on voyage optimisation

The application of the epigenetic mechanism to a real-world voyage optimisation prob-
lem shows promising results in both calm and severe weather conditions to reduce fuel
consumption in commercial shipping. Comparable results are found when analysing the
voyage time objective, and good results are found for the objective of fuel consumption.
Increased convergence properties are notable for the calm weather voyages, where close to
optimal fuel savings are found within the first 100 — 200 generations of optimisation, com-
pared to the 300 — 400 generations required for the baseline algorithm without epigenetics.
Better final solutions for fuel savings are found in addition to the increased convergence in
severe weather voyages. The IGD and HV performance metrics further demonstrate sta-
tistically significant results for the epigenetic approach on severe weather voyages, with no
statistically significant results on all but one calm weather voyages, where the epigenetic

approach outperforms the baseline.

In practical terms, although voyages time are drastically longer than computation
times, hundreds of hours compared to a few minutes, there is still a practical need for
efficient and fast optimisation algorithms. First, platforms such as T-VOS have end-users
which expect fast responses from the software and not have to wait 10+ minutes or over
an hour if a brute force or inefficient approach was used. Secondly, in practical scenarios,
vessels require periodic updates typically every twenty-four hours, but potentially as fre-
quently as every six hours, to account for changing weather, port, or traffic constraints.
For large-scale operations where thousands of ships all utilise the same system, the com-
putational efficiency of an algorithm optimising routes becomes important. For example,
if a fleet of 1,000 ships requires re-routing every 24 hours, and the system takes 10 minutes
per ship, the total computation time would be 600,000 seconds, or 167.67 hours every 24
hours. This becomes a significant operational cost when scaling up to more ships and more
frequent updates, and highlights the practical impact of efficient optimisation approaches.
The results demonstrate the epigenetic mechanism’s application to a real world multi-
objective optimisation problem providing impact on both theoretical performance from
IGD and HV metric, and practical reductions of fuel and emissions for planned shipping

voyages.
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Conclusions

On an initial glance, the field of Evolutionary Computation looks to be full of diverse
mechanisms and algorithms. There are different families and flavours of Evolutionary Al-
gorithms and Genetic Algorithms, and a large number of Swarm Intelligence algorithms
inspired by diverse forms of different animal behaviour. However, from an evolutionary
perspective, most of the existing algorithms and mechanisms use the same few evolutionary
concepts. Swarm Intelligence in particular has many algorithms with the same fundamen-
tal mechanics of position updates to create new generations of solutions, differing only in
the update function or exploration mechanics, leaving a gap in Evolutionary Computation

to explore well researched contemporary evolutionary mechanisms.

This thesis set out to investigate the non-genetic evolutionary concept of epigenetics,
from the Extended Evolutionary Synthesis, with the hypothesis that it would improve on
dynamic multi-objective optimisation problems by improving convergence, as epigenetics
in nature captures the rapid adaptation of organisms to changing environments. It was
found that while a probabilistic epigenetic blocking mechanism can improve on a variety
of static optimisation benchmark problems, additional mechanics are required to improve

its performance on dynamic problems.

7.1 Key findings

The main contributions of the work in this thesis can be split into two main sections:

A biological framework is developed to analyse and break down Evolutionary Compu-
tation algorithms based on evolutionary theory from the Extended Evolutionary Synthesis.
Then, a focused benchmarking study on Genetic Algorithms and Particle Swarm Optimi-

sation algorithms illustrates their differences and analogies to evolutionary theory.

e In Swarm Intelligence, all algorithms use some form of social learning and com-

munication. While the details of the methods may be different, the fundamental



144

Chapter 7. Conclusions

mechanism is the same. With the exception of Ant Colony Optimisation, the other
Swarm Intelligence algorithms all utilise a form velocity or positional update, with
differences in the update function such as using the top three global best solutions

in the Grey Wolf Optimiser, or drawing from a Lévy distribution for Cuckoo Search.

The performance of Genetic Algorithms and Particle Swarm Optimisation algorithms
exhibit different strengths and weaknesses depending on the specific algorithm, rather
than a fundamental performance gap. Additional strategies such as incorporating
multiple swarms in PSOs can improve both convergence and diversity on a different
set of problems than the original algorithm, at the cost of reduced effectiveness on

previously well-performing problems.

An epigenetic blocking mechanism is developed and thoroughly tested. The blocking

mechanism takes inspiration from epigenetic gene silencing, where genes are inherited but

not expressed into the phenotype. The aspect of inheritance is incorporated, allowing the

positions of blocked decision variables to be transferred and reused in future generations.

The initial iteration of the mechanism shows shows strong convergence properties for

static problems, but mixed performance on dynamic problems, where epigenetics would

have been expected to improve an organism’s fitness in the natural world. The use of

a contiguous mask works best on problems with decision variables that are correlated in

sequence. In contrast, a non-contiguous mask is more suitable for problems with irregular

or uncorrelated decision variables. Investigating further into the conditions and variations

on the epigenetic blocking mechanism for dynamic problems found that:

e The use of gradient values to inform the epigenetic mechanism on which decision

variable to be blocked results in significantly improved performance at the cost of
additional computation required to compute the variable gradients. However, due to
Evolutionary Algorithms not having explicit mechanisms to increase or decrease vari-
able values, the advantage of using positive or negative gradients becomes nullified,

making both approaches perform similarly well to each other.

Optimising the hyperparameters on a per-problem basis can lead to the best results
when using the same hyperparameter optimisation process on the same algorithm
without epigenetics. When compared to the other epigenetic variations, hyperpa-
rameter optimisation can lead to the best results on problems with changing Pareto
sets, or diagonal shifts in the Pareto front. However, the hyperparameter optimisa-
tion process struggles on problems with angular Pareto front shifts, leading to the
worst results on these types of problems. The properties of the dynamic problem
must therefore be known beforehand to utilise hyperparameter optimisation for the

epigenetic mechanism.

Finally, the application of the epigenetic mechanism in a real world voyage optimisation

software system led to significant performance improvements. The epigenetic mechanism
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demonstrated faster convergence in calm weather voyages and improved final solutions on
more dynamic severe weather voyages, indicating the strength of its adaptive properties,

and exhibiting potential economic and environmental benefits in fuel savings.

7.2 Discussion and future work

The results of this thesis show the potential of epigenetics as a modern evolutionary mech-
anism applied in Evolutionary Algorithms, with promising results in solving both static
and dynamic multi-objective optimisation problems. Additional modifications to the ap-
proach, such as the use of gradient information led to improved performance with the

epigenetic mechanism, but there are areas where more adaptive methods could be used:

1. Dynamic adaptation to calculating decision variable gradients

The results from the gradient-based approach found that choosing to block vari-
ables with positive or negative gradients in the epigenetic mask provides the most
consistent performance improvements. However, the meaning behind positive or neg-
ative values is lost due to the lack of explicit mechanisms to act on decision variable
values. Furthermore, the computational cost of computing every variable gradient is
expensive. To build on this approach, the magnitude of variable gradients can be used
instead. The probabilistic approach showed inconsistent performance, indicating that
a threshold of gradient value should be used instead, and all decision variables above
the threshold should be blocked. Methods to reduce the number of gradient calcu-
lations such as gradient approximation or calculating the gradients less frequently
can be explored. The summing of objectives to form the gradient value also loses
nuance of objectives trade-offs in opposite directions and only favours the objective
with the largest magnitude. Incorporating all objectives could further increase the

performance improvement gained.

2. Creating an epi-genotype

The epigenetic masks created and inherited by the epigenetic blocking mechanism
incorporates elements of inheritability and memory. In evolutionary biology, epige-
netic changes occur due to environmental changes, and can be reversed when the
environment reverts back to its original properties. The current epigenetic blocking
mechanism can make changes to increase convergence, inherit the changes in the
next generation, and inherit the epigenetic mask to remember which decision vari-
ables are to be blocked, but does not revert the changes. Additional information such
as the values of the masked parent’s previous decision variables, or previous gradi-
ent information could be stored by creating an epi-genotype that records and marks
epigenetic changes, allowing them to be reversed or turned off when necessary. This

further relates to an improved adaptive approach, where the epigenetic mechanism
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is triggered from environmental cues during optimisation such as dynamic shifts or

premature convergence rather than probabilistically.

3. An element of memory

The current inheritance mechanism of the epigenetic masks enables future generations
to store the epigenetic masks of its parents, creating a trans-generational epigenetic
effect. However, there is no means to remove or forget the epigenetic masks, which
may lead the population to inherit masks which are biased towards the early stages of
optimisation. Selection pressure can alleviate part of the issue, as solutions with poor
epigenetic masks are less likely to be chosen to reproduce the next generation, but
this only applied when the epigenetic mechanism is active and the mask is actively
silencing decision variables. Otherwise, poor epigenetic masks can continue to be
carried onto future generations like a recessive gene. To counteract this, additional
mechanisms can be put in place to wipe the epigenetic memory from the population.
A naive approach could remove epigenetic masks after a set number of generations.
More advanced approaches may incorporate the epi-genotype to evaluate and encode
the fitness of an epigenetic mask independent to the fitness of the parent or child

solutions.

Furthermore, other epigenetic processes should also be considered and studied, along-
side the epigenetic blocking mechanism to determine their cooperative effects. For exam-
ple, genomic imprinting [200] where decision variables from a parent are imprinted onto
child solutions, but not expressed until the epigenetic mechanism is triggered. Instead of
blocking the decision variable immediately during reproduction, the imprints are carried

on by the child and only utilised later.
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Selected state-of-the-art static and dynamic multi-objective benchmark problems. The

problems are categorised based on their properties. The problem categories are based on
the categories in [76] where additional problems such as LZ_09 [114] and DTLZ [48] are

added.

e d is the number of variables.

o0 is the number of objectives.

Categories I — VI are static unconstrained problems.
Categories VII — X are static constrained problems.

Types I — IV are the dynamic problems.

A.1 Benchmark problem categories

Table A.1: Category I. Simple unconstrained problems

Problem | d | o Properties
ZDT1 30 | 2 Convex
ZDT2 30 | 2 Concave
ZDT3 30 | 2 Disconnected
ZDT4 10 | 2 Convex, multimodal
ZDT6 10 | 2 | Biased, concave, multimodal
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Table A.2: Category II. Convex unconstrained problems

Problem | d | o Properties
UF1 30 | 2 Complex Pareto set, non-linear
UF2 30 | 2 Complex Pareto set, non-linear
UF3 30 | 2 Complex Pareto set, multimodal
LZ09.F1 | 10 | 2 Complex Pareto set, convex
LZ09F2 | 30 | 2 Complex Pareto set, convex
LZ09F3 | 30 | 2 Complex Pareto set, convex
LZ09F4 | 30 | 2 Complex Pareto set, convex
LZ09F5 | 30 | 2 Complex Pareto set, convex
LZ09F6 | 10| 3 Complex Pareto set, convex
LZ09_F7 | 10 | 2 | Complex Pareto set, convex, multimodal
LZ09_F8 | 10 | 2 | Complex Pareto set, convex, multimodal
Table A.3: Category III. Concave unconstrained problems
Problem | d | o Properties
UF4 30 | 2 Concave, complex Pareto set
UF8 30| 3 Disconnected
UF10 30| 3 Complex Pareto set
WFG4 22 | 3 Concave, multimodal
WFG5 22 | 3 Concave, deceptive
WFG6 22 13 Concave, non-separable
WFG7 22 | 3 Biased, concave
WFGS8 22 | 3 Biased, concave, non-separable
WFG9 22 | 3 Biased, concave, non-separable
DTLZ2 12 | 3 Concave
DTLZ3 |12 | 3 Concave, multimodal
DTLZ4 12 | 3 Biased, concave, degenerate
DTLZ5 |12 | 3 Degenerate
DTLZ6 12 | 3 Biased, disconnected
LZ09_F9 | 30 | 2 | Concave, non-linear, Complex Pareto set

Table A.4: Category IV. Linear/Mixed unconstrained problems

Problem | d | o Properties
UF7 30 | 2 Complex Pareto set, linear
WFG1 22| 3 Biased, Mixed
WFG3 22 | 3 | Non-separable, linear, degenerate
DTLZ1 713 Linear, multimodal
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Table A.5: Category V. Discontinuous unconstrained problems

Problem | d | o Properties
UF5 30 | 2 | Complex Pareto set, discrete points, linear
UF6 30 | 2 Complex Pareto set, disconnected
UF9 30| 3 Complex Pareto set
WFG2 22 | 3 Convex, disconnected, non-separable
DTLZ7 |22 3 Biased, disconnected, multimodal
MOP4 10 | 2 Discontinuous

Table A.6: Category VI. Imbalanced unconstrained problems

Problem | d | o Properties

MOP1 10 | 2 Convex

MOP2 10 | 2 Convex
MOP3 10 | 2 Concave
MOP5 10 | 2 Convex

MOP6 10 | 3 Linear

MOP7 10 | 3 Concave

IMB1 10 | 2 Convex

IMB2 10 | 2 Linear

IMB3 10 | 2 Concave

IMB4 10 | 3 Linear

IMB5 10| 3 Concave

IMB6 10 | 3 Linear

IMB7 10 | 2 | Convex, non-separable
IMBS 10 | 2 | Linear, non-separable
IMB9 10 | 2 | Concave, non-separable
IMB10 10 | 3 Linear

Table A.7: Category VII. Imbalanced constrained problems

Problem | d | o | Properties
IMB11 10 | 2 Convex
IMB12 10 | 2 Linear
IMB13 10 | 2 Concave
IMB14 10 | 3 Linear
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Table A.8: Category VIII. Diversity-hard problems

Problem d|o Properties
DAS-CMOP1(5) | 30 | 2 Concave, disconnected
DAS-CMOP2(5) | 30 | 2 Mixed, continuous
DAS-CMOP3(5) | 30 | 2 | Disconnected, linear, multimodal
DAS-CMOP4(5) | 30 | 2 Concave, disconnected
DAS-CMOP5(5) | 30 | 2 Mixed, disconnected
DAS-CMOP6(5) | 30 | 2 Discrete points, disconnected

Table A.9: Category IX. Feasibility-hard constrained problems

Problem d |o Properties
DAS-CMOP1(6) | 30 | 2 Concave, disconnected
DAS-CMOP2(6) | 30 | 2 Mixed, continuous
DAS-CMOP3(6) | 30 | 2 | Disconnected, linear, multimodal
DAS-CMOP4(6) | 30 | 2 Concave, disconnected
DAS-CMOP5(6) | 30 | 2 Mixed, disconnected
DAS-CMOP6(6) | 30 | 2 Discrete points, disconnected

Table A.10: Category X. Convergence-hard constrained problems

Problem d|o Properties
DAS-CMOP1(7) | 30 | 2 Concave, disconnected
DAS-CMOP2(7) | 30 | 2 Mixed, continuous
DAS-CMOP3(7) | 30 | 2 | Disconnected, linear, multimodal
DAS-CMOP4(7) | 30 | 2 Concave, disconnected
DAS-CMOP5(7) | 30 | 2 Mixed, disconnected
DAS-CMOP6(7) | 30 | 2 Discrete points, disconnected

Table A.11: Type I dynamic problems, where only the Pareto set changes.

Problem Continuity PS shift PF shift
JY1 Continuous Vertical shift No change
JY6 Continuous Vertical shift No change

FDA1 Continuous Vertical shift No change

CDF1 Continuous Curvature change No change
. r re chan,

CDEF2 Continuous Cﬁo;]ia;t;lnfaf sii fgte, No change

CDF3 Discontinuous Curvature change No change

CDF4 Discontinuous Vertical shift No change
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Table A.12: Type II dynamic problems, where both the Pareto set and Pareto front

changes.

Problem Continuity PS shift PF shift
UDF1 Continuous Vertical shift Diagonal shift
UDF2 Continuous Curvat}lre chz‘mge, Diagonal shift

vertical shift
UDF4 Continuous Horizontal shift Angular shift
UDF5 Continuous Vertical shift Angular shift
UDEFS8 Continuous Random shift Random shift
UDF9 Continuous Random shift Random shift
JY2 Continuous Curvature change Angular shift
JY3 Continuous Curvature change Angular shift
JY7 Continuous Vertical shift Angular shift
FDA3 Continuous Vertical shift Vertical shift
CDF5 Continuous Diagonal shift Diagonal shift
CDF6 Continuous Diagonal shift Diagonal shift
CDF7 Discontinuous Curvatgre ch(fmge, Diagonal shift

vertical shift
CDF8 Discontinuous Curvature change Angular shift
CDF13 Discontinuous Random shift Random shift
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Table A.13: Type III dynamic problems, where only the Pareto front changes.

Problem Continuity PS shift PF shift
UDF3 Discontinuous No change Diagonal shift
. : Angular shift,
UDF6 Distinct points No change diagonal shift
UDFET7 Continuous No change Radial shift
JY4 Discontinuous No change Drsconmety
shift
JY5 Continuous No change Angular shift
JY8 Continuous No change Angular shift
FDA2 Continuous No change Angular shift
Curvature
CDF9 Continuous No change change, diagonal
shift
CDF10 Continuous No change Curvature change
CDF11 Discontinuous No change Horizontal shift
Curvature
CDF12 Discontinuous No change change, angular
shift

Table A.14: Type IV dynamic problems, where the constraints change over time.

Problem Continuity PS shift PF shift
CDF14 Discontinuous No change No change
CDF15 Discontinuous No change No change
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A.2 Reference set sizes

The sizes of the reference Pareto fronts used to calculated the IGD values of each problem

are displayed in tables

Problem Reference set size Source Reference point
ZDT1 - 6 1000 iMetal library (1.1, 1.1)
UF1 - 4,6, 7 1000 (1.1, 1.1))
UF5 21 jMetal library (1.1, 1.1)
UFS - 10 10000 (1.1, 1.1, 1.1)
LZ09F1 - 5,79 500 Metal Tibrary (1.1, 1.1)
LZ09_F6 990 (1.1, 1.1, 1.1)
DTLZ1 000 (0.55, 0.55, 0.55)
DTLZ2, 3, 7 Metal library (1.1, 1.1, 1.1)
DTLZ4 1000 (1.1, 1.1, 1.1)
DTLZ5, 6 200 (0.78, 0.78, 1.1)
IMB1 — 14 3000 Self-generated (1.1, 1.1)
MOP1 -7 2000 Self-generated (1.1, 1.1)
WFG1 1113
WFG2 119
WFG3 916
WFG4 1326
WFEGH 837 jMetal library (2.2, 4.4)
WFG6 426
WFG7 2494
WFGS8 527
WFG9 2600
DASCMOP1,2,4,5(5) 504 (1.1, 1.1)
DASCMOP3,6(5) 11 (1.1, 1.1)
DASCMOP1,2,4,5(6) 1000 (1.65, 1.65)
DASCMOP3,6(6) 124 Original paper (1.65, 1.65)
DASCMOP1,4(7) 717 (1.1, 1.1)
DASCMOP2,5(7) 1000 (1.1, 1.1)
DASCMOP3,6(7) 124 (1.1, 1.1)

Table A.15: Reference set sizes for the static benchmark problems.
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Problem Reference set size Source Reference point
UDF1,2,4,5,7,8 10000 Self-generated (1.1, 1.1) - (2.2, 2.2)
UDF3,6, 22 (1.1, 1.1) — (2.2, 2.2)
CDF1,2,5,6,10 10000 (1.1, 1.1)
CDF3,7,11 20 (1.1, 1.1) - (2.2, 2.2)
CDF4 1065 (1.1, 1.1)
CDF5,6 10000 (1.1, 1.1) - (2.2, 2.2)
CDF8 4668 — 6149 Self-generated (1.1, 1.1) — (0.88, 1.1)
CDF9 6722 — 10000 (1.1, 1.1) - (2.2, 2.2)
CDF12 6217 — 6251 (1.1, 1.1)
CDF13 7501 (1.1, 1.1)
CDF14 1000 — 10000 (1.1, 1.1)
CDF15 3414 - 6412 (1.1, 1.1)
JY1 -8 10000 Self-generated | (1.1, 1.1) — (2.2, 2.2)
FDA1 -3 10000 Self-generated | (1.1, 1.1) — (2.2, 2.2)

Table A.16: Reference set sizes for the dynamic benchmark problems.
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