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ABSTRACT
Multisystem inflammatory syndrome in children (MIS-C) is a rare
condition associated with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection and characterised by
systemic inflammation and T-cell dysfunction. A subset of patients
with MIS-C were found to harbour rare variants in the gene BTNL8
that disrupt BTNL8-BTNL3 heterodimer formation, likely leading to
inadequate γδ T-cell regulation and subsequent disrupted gut
homeostasis. MIS-C shares clinical features with Kawasaki disease
and similar mechanisms of pathogenesis with inflammatory bowel
disease, despite these diseases being clinically distinct entities. We
explore the common link between these diseases: the potentially
critical role gut immunity plays in the initiation and persistence of
disease through the tight regulation of γδ T cells via BTNL8 and
BTNL3. Understanding the role of BTNL8 in the context of the overlap
between these conditions may aid preventative measures and
treatment of these conditions.

Introduction
Multisystem inflammatory syndrome in children (MIS-C) is a
condition affecting ∼3 in 100,000 children worldwide following
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection (Whittaker et al., 2020; Dufort et al., 2020; La Torre et al.,
2023). The illness presents similarly to Kawasaki disease (KD),
another heterogeneous inflammatory condition affecting children.
Although the cause of KD remains unknown, multiple triggers –
including bacterial, viral and fungal infections – have been proposed
(Chang et al., 2014; Kang et al., 2022; Mofors et al., 2025;
Nakamura et al., 2019). Despite MIS-C having more profound
gastrointestinal involvement than KD, symptoms overlap, including
fever, rash, cardiovascular dysfunction and systemic inflammation
(Miller et al., 2020; Verdoni et al., 2020; Sancho-Shimizu et al.,
2021; Hoste et al., 2021). Patients are typically seropositive for
SARS-CoV-2, despite no active infection being detectable in the
upper respiratory tract, and possess elevated inflammatory markers
[C-reactive protein, TNFα (also known as TNF), interleukin (IL)-6]

with distinct interferon gamma (IFNγ) and nuclear factor kappa B
(NFκB) immune signatures (Sacco et al., 2022). Activation of T
cells, monocytes and neutrophils has been observed in the acute
phase of disease, with a specific polyclonal expansion of T-cell
receptor beta variable 11-2 (TRBV11-2) CD4+ and CD8+ T cells
(Moreews et al., 2021). This specific T-cell expansion supports the
hypothesis that superantigen-mediated T-cell activation is a driving
mechanism of MIS-C pathogenesis (Porritt et al., 2021; Moreews
et al., 2021). The cause of MIS-C remains debated, with several
mechanisms proposed, including T-cell exhaustion, SARS-CoV-2
antigen persistence, superantigen-mediated T-cell activation and,
most recently, Epstein–Barr virus (EBV) reactivation consequent to
elevated TGFβ (Consiglio et al., 2020; Beckmann et al., 2021;
Porritt et al., 2021; Yonker et al., 2021; Hsieh et al., 2022; Goetzke
et al., 2025). Meanwhile, genetic investigations into MIS-C
susceptibility have revealed gene defects in variants – specifically
in OAS1, OAS2 and RNASEL – and in butyrophilin-like 8 (BTNL8),
leading to aberrant inflammatory responses (Lee et al., 2023; Bellos
et al., 2024). Autosomal recessive variants in the OAS-RNaseL
pathway have been shown to lead to exacerbated cytokine
production in mononuclear phagocytes, whereas variants in
BTNL8 are thought to dysregulate the BTNL8-γδ T-cell axis.

A shared genetic risk locus has been observed in inflammatory
bowel disease (IBD), a condition resulting in chronic intestinal
inflammation, whereby a BTNL8-BTNL3 copy number variant
(CNV) has been identified as a risk modifier for disease (Dart et al.,
2023). This results in a 56 kb deletion, resulting in a fusion protein
lacking the extracellular domain of BTNL3, thus driving the T-cell
dysfunction and the profound phenotype observed (Dart et al.,
2023; Aigner et al., 2013). Despite KD, IBD and MIS-C being
clearly distinct clinical entities, they share similar features of disease
(MIS-C and KD) and mechanisms of pathogenesis (MIS-C and
IBD) via gut dysregulation, which may predispose to a hyper-
inflammatory state (Table 1). Understanding the overlap between
these inflammatory diseases could aid preventative measures and
treatment of these conditions. In this Perspective, we aim to draw
connections between these inflammatory diseases to propose future
research that could provide insights into multiple conditions.

Understanding the overlap between these
inflammatory diseases could aid preventative
measures and treatment of these conditions

T-cell dysregulation in the gut and the role of BTNL8
BTNL8 is a gene that has been implicated in both MIS-C and IBD,
albeit in different ways. BTNL8 is a transmembrane protein expressed
on the surface of healthy intestinal epithelial cells in complex with
BTNL3 (Chapoval et al., 2013; Di Marco Barros et al., 2016;
Vantourout et al., 2018; Maynard and Weaver, 2009). This complex
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specifically engages a subset of γδT cells, notably Vγ4+ intraepithelial
lymphocytes (IELs) (Willcox et al., 2019; Melandri et al., 2018). γδ
T cells are a unique class of T lymphocytes characterised by their
heterodimeric γ and δ chains (Li et al., 2023). They are generally
activated in a major histocompatibility complex (MHC)-independent
manner and directly recognise various antigens, including phospho
and lipid antigens (CD1D), and stress molecules including toll-like
receptor ligands (Vantourout and Hayday, 2013). These cells are
predominantly tissue resident and are enriched in the intestines, the
dermis and the lungs. Vγ4+ T cells make up a large proportion of
the IELs and have been implicated in proinflammatory responses
producing IL-17 and IFNγ (Vantourout and Hayday, 2013).
Dysregulation of T-cell populations, including γδ T cells, has been
reported in both coronavirus disease 2019 (COVID-19) and MIS-C,
with studies noting reduced peripheral blood γδ T-cell numbers in
patients with MIS-C (Carter et al., 2020). It is hypothesised that, in
the healthy gut environment, the BTNL8/BTNL3 complex acts as a
‘normality signal’, maintaining immune tolerance and preventing
inappropriate activation. Upon inflammation or infection, BTNL8
and BTNL3 expression is often reduced or absent. This loss of signal
is likely detected by γδ T cells, which then become activated and may
initiate immune surveillance or attack. Although this has not been
shown in the gut, it has been observed to some extent with Skint1,
another BTNL protein, involved in regulating γδ T cells in the skin
of mice (McKenzie et al., 2022).

BTNL8 and MIS-C
A recent gene burden analysis in patients with MIS-C revealed
enrichment for rare damaging variants in BTNL8 (odds ratio, 4.2;
95% confidence interval, 3.5-5.3; P<10−6) (Bellos et al., 2024). Of
the 25 variants identified in MIS-C, eight were hypomorphic based
on an in vitro assay testing surface expression, T-cell receptor (TCR)
engagement and T-cell activation, accounting for 2.3% of patients
(Bellos et al., 2024). The hypomorphic variants identified displayed a
reduction in BTNL8 surface expression, thus reducing availability of
BTNL3 for the Vγ4 ligand and providing a likely reason for the
impaired engagement of the protein with Vγ4+ γδ T cells, disrupting
TCR downregulation. Although these variants are hypomorphic
in vitro, they may phenocopy what is seen with the CNV in IBD
in vivo; however, this remains unknown. The variants identified were
evenly distributed throughout the protein, but the majority of those
with reduced function were located within the intracellular B30.2
domain responsible for forming the BTNL8-BTNL3 heterodimer

(Bellos et al., 2024). Although these variants are not predicted to
impact heterodimer formation with BTNL3, there may be other
proteins that BTNL8 can interact with via its B30.2 domain that
remain unknown. Furthermore, the individuals with MIS-C also
showed altered intestinal permeability and elevated plasma zonulin, a
marker for intestinal integrity (Bellos et al., 2024; Wang et al., 2000;
Fasano et al., 2000). SARS-CoV-2 has shown to cause dysbiosis
through excessive IL-6-mediated zonulin release, which is likely to
explain the increased intestinal permeability observed (Yonker
et al., 2021; Zari et al., 2024). γδ T cells play a crucial role in
maintaining gut homeostasis, disruption of which can result in both
localised inflammation and a widespread systemic response
(Nielsen et al., 2017; Chen et al., 2002). It is likely that the viral
trigger disrupts gut homeostasis, leading to prolonged inflammation
in the individuals with BTNL8 variants owing to poor restoration of
gut immunity, similar to what is hypothesised in IBD patients (Dart
et al., 2023).

BTNL8 and IBD
Variants in BTNL8 have also been implicated in IBD. IBD refers to a
group of diseases involving chronic inflammation of the gut and
primarily encompasses Crohn’s disease (CD) and ulcerative colitis,
affecting 3-20 in 100,000 and 0.5-31.5 in 100,000, respectively
(da Silva et al., 2014; Feuerstein and Cheifetz, 2017). An imbalance
in the microbiota, coupled with excessive activation of effector T cells,
is thought to contribute to proinflammatory cytokine production,
leading to chronic inflammation (Maynard and Weaver, 2009; Qiu
et al., 2022). However, genetic susceptibility has been reported as a
risk factor for disease (Maynard and Weaver, 2009; Gomez-Bris
et al., 2023; Jarmakiewicz-Czaja et al., 2022; Dart et al., 2023).
BTNL8 has been associated with CD severity, with a common CNV
polymorphism implicated as a risk modifier for the disease (Dart et al.,
2023). The CNV leads to the production of a hypomorphic BTNL8-
BTNL3 fusion protein lacking the B30.2 domain of BTNL8 and IgV
domain of BTNL3. Given the importance of the extracellular
interaction with BTNL3 and the Vγ4 TCR, the resultant protein
cannot interact with Vγ4+ T cells, rendering the protein non-functional
(Dart et al., 2023). Individuals with the CNV genotype display a more
profound IBD phenotype, with reduced Vy4+ cells from the CD103
compartment and phenotypically different Vy4+ T-cell populations,
expressing higher levels of CD5 (Dart et al., 2023). Although BTNL8
is implicated in IBD, it is likely that the effect of the CNV on γδ
T cells is also caused by the complete absence of BTNL3. This

Table 1. Comparison of characteristics of Kawasaki disease, multisystem inflammatory syndrome in children and inflammatory bowel disease

KD MIS-C IBD

Incidence ∼9 in 100,000 (Odingo et al., 2023) ∼3 in 100,000 (La Torre et al., 2023) 0.2-46.1 in 100,000 (Caron et al., 2024)
Presentation Systemic disease with occasional gut involvement Systemic disease with gut

involvement
Systemic disease that primarily affects the gut

Type of condition Acute inflammatory response with isolated
incidence

Acute post-viral inflammatory
response with isolated incidence

Autoinflammatory disorder; chronic
inflammation with relapse

Trigger Unknown – multiple pathogens proposed (Chang
et al., 2014, Kang et al., 2022, Mofors et al., 2025,
Nakamura et al., 2019, Burns, 2024)

SARS-CoV-2 (Whittaker et al.,
2020)

Diet, microbiome, stress, infection, medication
(Ananthakrishnan, 2013, Mann and Saeed,
2012, de Souza et al., 2017)

Age of
presentation

Children (median age <5 years) Children (median age 9 years) All ages

Treatment Immunosuppressive therapies (steroids and IVIG) Immunosuppressive therapies
(steroids and IVIG)

Anti-inflammatory, immunosuppressive
therapies and surgery

Outcome Life threatening with potential life-long cardiac
complications

Life threatening but likely full
recovery if treated

Rarely life threatening but can severely impact
quality of life

IBD, inflammatory bowel disease; IVIG, intravenous immunoglobulin; KD, Kawasaki disease; MIS-C, multisystem inflammatory syndrome in children;
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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is dissimilar to patients with MIS-C, who do not have any defect in
BTNL3. However, the CNV does not impact the baseline state of
intestinal epithelial cells in patients with IBD, and this is likely the case
for the variants identified in MIS-C, but it may impair the ability to
resolve the triggered inflammation. Vγ4+ T-cell populations were not
studied in the patients with MIS-C with the BTNL8 variants, so it
would be of interest to investigate their Vγ4+ T-cell populations to see
whether these differ like they do in individuals homozygous for
the BTNL8-BTNL3 CNV (Dart et al., 2023). Furthermore, certain
TCR gamma variable 4 (TRGV4) polymorphisms expressed on Vγ4+

T cells have been shown to hinder BTNL3 binding, reducing TCR
downregulation (Corcoran et al., 2023). It would be interesting to
determinewhether any of the patients withMIS-C carry these alleles as
this may offer another explanation for the phenotype observed in the
individuals without BTNL8 variants. Additionally, assessing whether
they would be more at risk for developing or presenting with IBD in
the future compared to those without hypomorphic variants would be
another particularly relevant question to follow up on.

Expanding BTNL8 investigations
So far, only specific TCR function has been tested in a heterologous
overexpression system (Bellos et al., 2024); therefore, future studies
would benefit from exploring other potential functions of BTNL8.
BTNL8 is highly expressed in the gut with reports of expression also
in the blood, specifically in neutrophils (https://www.gtexportal.
org/home/gene/BTNL8). However, there has been no functional
follow up, leaving the role of BTNL8 in the blood unknown. BTNL8
may have other functions, potentially independent of BTNL3 and
beyond γδ T cells, that are currently unexplored, especially given that
BTNL3 mRNA and protein expression in the blood is negligible
(https://www.proteinatlas.org/ENSG00000168903-BTNL3; https://
www.gtexportal.org/home/gene/BTNL3). This is something that
warrants further investigation as there may be cell type specificity to
BTNL8 function, and it would be of interest to determine whether
patient neutrophils display phenotypic or functional abnormalities.
Additionally, BTNL8 has been described as a possible marker for
macrophage-induced IL-10-expressing induced regulatory T cells.
These are a subset of regulatory T cells expressing the anti-
inflammatory cytokine IL-10 that are produced in response to
macrophage signalling (Riquelme et al., 2018). This suggests another
potential role for BTNL8 in the blood. Furthermore, genetic or
proteomic exploration of BTNL8 interacting partners may reveal
further molecular functions of BTNL8.
Current investigations in mouse models into butyrophilin-like

proteins have revealed their role in shaping the local T-cell population
and have highlighted the importance of heterodimerisation in their
activation (Di Marco Barros et al., 2016). Mouse models have been
very informative; however, biopsy-derived intestinal organoids
with loss-of-function BTNL8 variants co-cultured with Vγδ+ T cells
would be an ideal system in which to recreate a full model of the
intestine. Biopsy-derived intestinal organoids are regarded as more
physiologically relevant, faster to generate and better suited for
diseasemodelling thanmousemodels as they carry the desired patient
genotype (Hautefort et al., 2022). Alternatively, induced pluripotent
stem cell-derived organoids could be generated in a less invasive
manner as peripheral blood mononuclear cells can be reprogrammed
into intestinal cells without the need for a gut biopsy (McCracken
et al., 2011; Vlahos et al., 2019). They also offer the added advantage
of allowing reversal of cell polarity depending on the desired
downstream investigations (Kromann et al., 2024; Kakni et al., 2022).
However, these organoid models are likely to require more time
and validation to fully mimic the native intestine. Although these

organoid models would harbour the desired variants from the patient,
a previous study of intestinal organoids from IBD patients exhibited
a reversion towards a healthier phenotype after a few weeks in
culture, suggesting that additional elements, such as lymphocytes,
chemokines and dietary factors, are required to fully recapitulate the
phenotype in organoid cultures (Arnauts et al., 2020).We propose that
further insights into the pathogenic role of BTNL8 variants in both
MIS-C and IBD could be gained from further experiments in this area.

Despite KD, IBD and MIS-C being distinct clinical
entities, the potential role of gut immunity could
be the common link between these diseases

Implications for KD
KD is an inflammatory condition, similar to MIS-C, affecting 9 in
100,000 children under the age of 5 years (Odingo et al., 2023). The
aetiology of KD remains unclear; however, it is thought that an
infectious trigger in individuals who are genetically predisposed
initiates an aberrant immune response (Dietz et al., 2017; Burns,
2024). Although MIS-C and KD are both paediatric inflammatory
disorders, they were originally characterised by distinct triggers,
laboratory results, demographics and epidemiology (Sancho-Shimizu
et al., 2021; Hoste et al., 2021). However, similar to MIS-C, we
propose that gut immunity may also play a role in KD pathogenesis.
Despite gastrointestinal symptoms being less frequent, gut microbial
imbalance has been reported as a likely susceptibility factor for KD,
with patients having a higher abundance of pro-inflammatory bacteria
and lower proportion of bacteria known to suppress inflammation
(Chen et al., 2020; Takeshita et al., 2002). Studies also show
that gastrointestinal symptoms in KD are often liked to more severe
outcomes and resistance to intravenous immunoglobulin therapy
(Fabi et al., 2018). Moreover, increased intestinal permeability
has been previously hypothesised as KD patients have elevated
serum secretory IgA and mouse models exhibit a downregulation of
tight junction proteins including claudin-1, occludins and zonula
occludens-1 (Wang et al., 2023; Noval Rivas et al., 2019). Although
there are no known published findings implicating BTNL8 in KD,
we observed increased plasma zonulin in our KD cohort, albeit in a
small sample size, supporting the hypothesis of increased intestinal
permeability, which could indicate a potential shared mode of
pathogenesis between MIS-C and KD (Bellos et al., 2024).

The incidence of MIS-C decreased drastically from 1 in 4000
infected in 2020 to 1 in 10,000 in 2022 with the emergence of new
SARS-CoV-2 variants (Holm et al., 2021; Lopez et al., 2022). This
is likely due to increased natural or vaccine-induced immunity but may
also be due to differences in virus-host interactions with the different
variants (Cohen et al., 2023; Holm et al., 2021; Dufort et al., 2020; Lee
et al., 2023). Patients that present with MIS-C typically display
characteristics that are very similar to KD, making it harder to
distinguish between the two phenotypes (Verdoni et al., 2020;
Whittaker et al., 2020). However, owing to the similar treatment
approaches for MIS-C and KD, such diagnostic ambiguity is unlikely
to significantly impact immediate patient management. In fact, this
convergence may even facilitate research into KD, a condition for
which pathogenesis remains less clearly defined. Conversely,
the prolonged sequelae of MIS-C remain to be determined owing to
the recent emergence of the disease, and reports have been limited
(Fremed and Farooqi, 2022; Penner et al., 2021). Adding to the
diagnostic complexity, the TRBV11-2T cell expansion, which was a
distinguishing feature of MIS-C, has now been observed in pre-
pandemic samples in individuals with MIS-C-like phenotypes
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(Benezech et al., 2023). This may add to the confusion of diagnosis
betweenMIS-C andKDbut also suggests that other pathogens, such as
seasonal coronaviruses or EBV, can trigger similar hyperinflammatory
responses that resemble MIS-C (Benezech et al., 2023; Goetzke et al.,
2025). By elucidating the common mechanisms underlying these
inflammatory diseases, we can gain a deeper understanding of their
implications for prevention, diagnostics and therapeutics.

Conclusion
Despite KD, IBD and MIS-C being distinct clinical entities, the
potential role of gut immunity could be the common link between
these diseases. MIS-C and IBD share mechanisms of pathogenesis via
dysregulation of the BTNL8-γδ T-cell axis, potentially predisposing
patients to an inflammatory state. Similarities in genetic susceptibility
highlight the critical roles of this pathway, and gut immunity more
broadly, in these diseases. Conversely, MIS-C and KD do not have a
known mechanism of pathogenesis in common, but they display
similar features of disease. We propose that gut immunity may also be
important in the development of KD, although further work is needed
to elucidate this link. By understanding the overlap between
inflammatory diseases with shared genetic modulators, we can better
ascertain the implications for other diseases with similar phenotypes.
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