# Genetic determinants of the complement and coagulation pathways in invasive meningococcal disease

Evangelos Bellos, PhD, a,b\* Karin van Leeuwen,c\* Amedine Duret, MBBChir, a Stephanie Hodeib, PhD, a Meg Mashbat, PhD, a Daniela S. Kohlfuerst, PhD, Navin P. Boeddha, PhD, Luregn J. Schlapbach, PhD, Victoria J. Wright, PhD, Colin G. Fink, PhD, Michiel van der Flier, PhD, Luregn J. Schlapbach, PhD, Tom Sprong, PhD, Margarita López-Trascasa, PhD, Margarita López-Lera, PhD, Margarita López-Trascasa, PhD, Alberto López-Lera, PhD, Palarito Martinón-Torres, PhD, Antonio Salas, PhD, Dilys Santillo, Werner Zenz, PhD, Gertjan J. Driessen, PhD, Suzanne T. Anderson, PhD, Fatou Secka, PhD, Stephane Paulus, PhD, Ronald de Groot, PhD, Marieke Emonts, PhD, Luregn J. Carrol, PhD, Jethro Herberg, PhD, Mike Levin, PhD, Vanessa Sancho-Shimizu, PhD, A and Taco Kuijpers, PhD, No.W\* on behalf of the EUCLIDS

Consortium† London, Southampton, Coventry, Oxford, Newcastle upon Tyne, and Liverpool, United Kingdom; Amsterdam, Rotterdam, Nijmegen, Utrecht, and Maastricht, The Netherlands; Graz, Austria; Brisbane, Queensland, Australia; Madrid and Santiago de Compostela, Spain; and Fajara, The Gambia

Background: The complement and coagulation pathways are implicated in the systemic manifestations of invasive meningococcal disease (MD). However, the genetic landscape of these 2 interconnected plasma proteolytic pathways has not been systematically explored.

Objective: We sought to investigate how genetic variation in the complement and coagulation pathways contributes to invasive MD.

Methods: Whole-exome sequencing (WES) and high-coverage amplicon-based sequencing were performed in a large series of 229 patients with MD. A group of 275 patients with other invasive bacterial infections was used as a control cohort. Results: WES data showed an enrichment of rare variants in the complement and coagulation genes in MD, namely, *CFP* and *FCGR2A*. In a subcohort of severe MD, *CFP* and *SERPINE1* were enriched for rare variants compared with the control cohort. Combining the amplicon panel and the WES data sets, 1 mild hemophilia A case, 5 properdin mutated individuals, and 4 digenic complement deficiencies were identified. In addition, a significant copy number variant association in the *CFH*/

CFHR1-5 gene cluster was reported. This provides strong support for the role of complement regulation in MD. Furthermore, there are pathogenic variants in VWF, PROS1, and SERPINC1, relevant to coagulation and fibrinolysis. Conclusions: The study demonstrates the value of a mechanistic pathway approach to describe the genetic landscape of infectious disease, particularly in understanding its course and outcome. Notably, we identify complement-mediated thrombotic microangiopathy as a key pathophysiologic mechanism involved, particularly in MD. (J Allergy Clin Immunol 2025;

Key words: Complement pathway, coagulation, Neisseria meningitidis, sepsis, human genetics

Gene burden analysis is emerging as a powerful tool for elucidating novel pathophysiologic mechanisms by identifying associations between rare allelic variants and disease states. Beyond identifying Mendelian deleterious variants with severe

From athe Department of Paediatric Infectious Diseases, Imperial College, London; Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton; <sup>c</sup>Sanguin Research Institute and Landsteiner Central Laboratory at the Academic Medical Center, Amsterdam University Medical Center, University of Amsterdam, Amsterdam; dthe Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz; ethe Department of Pediatric Infectious Diseases and Immunology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam; <sup>f</sup>Faculty of Medicine, University of Queensland, Brisbane, Queensland; <sup>g</sup>Micropathology Ltd, University of Warwick, Coventry; hthe Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, Radboud University Medical Center, Nijmegen; ithe Department of Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht; <sup>j</sup>the Department of Internal Medicine, Radboud University Medical Center, and kthe Department of Internal Medicine, Canisius Wilhelmina Hospital, Nijmegen; <sup>1</sup>Departamento de Medicina, Universidad Autónoma de Madrid, mHospital La Paz Institute for Health Research (IdiPaZ), and <sup>n</sup>the Centre for Biomedical Network Research on Rare Diseases (CI-BERER) U-754, Madrid; othe Translational Pediatrics and Infectious Diseases Section, Pediatrics Department, Santiago de Compostela; Pthe Department of Pediatrics, MosaKids Children's Hospital, Maastricht University Medical Center, Maastricht; 4the MRC Clinical Trials Unit, University College London, London; rthe Medical Research Council Unit The Gambia, Fajara; sthe Department of Paediatrics, University of Oxford, Oxford; <sup>1</sup>the Paediatric Infectious Diseases and Immunology Department, Newcastle upon Tyne Hospitals Foundation Trust, Great North Children's Hospital, and <sup>1</sup>the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne; <sup>3</sup>the Department of Clinical Infection Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, Liverpool; and <sup>3</sup>the Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam.

\*These authors contributed equally to this work.

†A list of the EUCLIDS authors is provided in the acknowledgments section. Received for publication March 28, 2025; revised September 9, 2025; accepted for publication September 15, 2025.

Corresponding author: Evangelos Bellos, PhD, Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Institute of Developmental Sciences Building MP887, Tremona Rd, Southampton SO16 6YD, UK. E-mail: e.bellos@soton.ac.uk.

0091-6749

© 2025 The Authors. Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jaci.2025.09.011

Abbreviations used

AF: Allele frequency

CADD: Combined annotation-dependent depletion

CM-TMA: Complement-mediated thrombotic microangiopathy

CNV: Copy number variation

EUCLIDS: European Union Childhood Life-threatening Infectious

Disease Study

FH: Factor H

MD: Meningococcal disease

NGS: Next-generation sequencing

OR: Odds ratio

PAI-1: Plasmin activator inhibitor 1

TTP: Thrombotic thrombocytopenic purpura

VUS: Variant of unknown significance

WES: Whole-exome sequencing

functional impact, this approach can identify enrichment of rare variants within specific biological networks or regulatory processes, particularly if a pathway-based framework is used. Rare invasive bacterial infections are a compelling context for such applications, because host-pathogen interactions shape both susceptibility to infection and disease severity.

Our understanding of genetic susceptibility to severe bacterial infections has largely been shaped by studies of inborn errors of immunity in affected individuals, often children. One of the most well-characterized genetic predispositions to severe bacterial infections involves defects in the complement system,<sup>2</sup> a proteolytic cascade integral to noncellular innate immunity, which comprises 3 branches: classical, lectin, and alternative.<sup>3</sup> Its activation leads, among other effector functions, to the formation of a membrane attack complex and subsequent bacteriolysis. The intricate interplay between the complement and coagulation pathways is now well established (see Fig E1 in this article's Online Repository at www.jacionline.org); the activation of C3 and C5 can be facilitated by various coagulation factors, 4 whereas complement regulator factor H (FH) reversibly interacts with coagulation components.<sup>5</sup> The central role of FH is supported by experimental models as well as by the pathogenesis of complement-mediated thrombotic microangiopathy (CM-TMA), wherein genetic variants in both the complement and coagulation pathways can cause disease.5-8

Although complement deficiencies have been implicated in bacterial sepsis caused by various pathogens, help confer a particular susceptibility to *Neisseria meningitidis* because of its encapsulated nature. Invasive meningococcal disease (MD) involves not only bacterial invasion but also an overwhelming systemic inflammatory response, leading to shock, microvascular ischemia, and disseminated intravascular coagulation. These complications contribute to the high mortality associated with the disease, whereas sustained poor peripheral perfusion can necessitate amputations and skin grafts. It is hypothesized that these severe or milder and chronic manifestations may be more frequent in individuals with genetic defects in complement and coagulation pathways.

This study applied gene burden analysis and pathway-based approaches to a cohort of pediatric patients with severe bacterial infections, comparing cases of invasive MD with controls with

severe infections caused by other pathogens, as well as to a reference healthy population. The primary objective was to assess the use of gene burden analysis in immunology and infectious disease research. The secondary objective was to further characterize the role of complement and coagulation genetics in the pathogenesis of severe bacterial illness in childhood, in particular for invasive meningococcal susceptibility and severity.

## **METHODS**

#### Patient recruitment and clinical data collection

Patients in this study were recruited through either the UK Meningococcal Study<sup>13</sup> or the European Union Childhood Lifethreatening Infectious Disease Study (EUCLIDS), an international prospective cohort study of children with severe infections between July 1, 2012, and December 31, 2015. <sup>14</sup> The protocols of the study recruitment and clinical data collection have been described previously. <sup>14</sup> Briefly, patients were eligible if they were between age 1 month and 18 years, admitted with sepsis and/or severe focal infection (see this article's Methods section in the Online Repository at www.jacionline.org).

Admission to pediatric intensive care unit (PICU) was considered as a surrogate marker of MD severity. However, variability in PICU admission criteria across study centers limited its reliability as a standalone measure. Instead, disease severity was assessed using a composite outcome incorporating amputation, skin grafting, and/or mortality.

#### DNA processing and whole-exome sequencing

Genomic DNA was isolated from the blood of a subset of patients for downstream analysis: our study considered 504 patients (229 with MD and 275 with other bacteria) (see Fig E2 in this article's Online Repository at www.jacionline.org). The methods for DNA processing and whole-exome sequencing (WES) have been described previously (see this article's Methods section in the Online Repository).

#### Genetic variant filtering

Our MD cohort comprised mostly individuals of European descent, with other ancestries representing less than 8% combined. Given the differing allelic landscape across ancestries, each ancestral group needed to be analyzed separately, with a minimum of 10 individuals per group required for statistical analysis. Therefore, only individuals confidently predicted to be of European ancestry through principal-component analysis were considered for downstream analysis. This encompassed 430 individuals (204 with MD and 226 with other bacterial infections). Considering the low prevalence of MD, only variants recorded as rare in the general population were included in the analysis. To that end, 2 different allele frequency (AF) cutoffs (1% and 0.1%) were used to separate the rare from the ultrarare variants. Combined annotation-dependent depletion (CADD), 15 a widely adopted tool for predicting variant deleteriousness, was used as a proxy for variant pathogenicity. Variants with CADD scores of 20 or higher were prioritized, capturing the top 1% of the deleteriousness spectrum. The interpretation of the potential functional implications of gene variants was carried out following the American College of Medical Genetics and Genomics guidelines<sup>16</sup> (see the Online Repository).

#### burdenMC

Following variant filtration, we applied burdenMC, our custom rare variant burden testing framework, as described previously. burdenMC allows the identification of genes that may be enriched for rare variants in the MD cohort versus ethnically matched controls derived from gnomAD. We performed the same analysis for the other bacterial infections as our sepsis control groups to highlight common and distinct mechanisms across pathogens.

### Multigenic burdenMC

We extended the capabilities of the burdenMC framework to assess multigenic variant enrichment. Starting with the same variant simulation strategy as the original burdenMC, instead of aggregating variants across individuals, the new version generates a gene-level count for each sample. This allows us to identify individuals carrying variants in more than 1 gene within a predetermined set/pathway and thus build the distribution of expected multigenic burden from simulated gnomAD controls. Using this approach, we can evaluate the combined effect of rare variants across genes and identify potential synergistic effects beyond the individual gene burden.

# Coagulation-complement gene next-generation sequencing panel

The WES approach was supplemented with a tailor-made next-generation sequencing (NGS) gene panel for high coverage and independent confirmation when sufficient DNA was available. This 44-gene Ampliseq panel included coagulation and complement genes (see this article's Methods section in the Online Repository). In total, NGS was performed successfully on 189 individuals with MD (Fig E2).

#### **RESULTS**

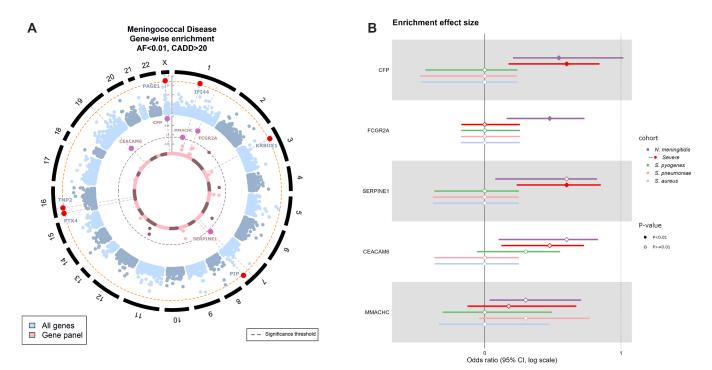
#### Clinical description of study cohort

The 504 individuals included in this study were recruited in the United Kingdom, Austria, Spain, the Netherlands, Germany, Lithuania, France, Belgium, Luxembourg, and Switzerland. A total of 229 individuals with MD who had undergone WES were considered, alongside 275 individuals with invasive bacterial infections (referred to as "bacterial controls" hereafter) including Staphylococcus aureus (n = 96 [34.5%]), Streptococcus pneumoniae (n = 100 [37.0%]), and Streptococcus pyogenes (n = 79 [28.4%]). MD and bacterial controls had a similar proportion of male and female individuals (54.2% in the MD group and 52.9% in sepsis controls). The median age of patients with MD was 2.7 years (interquartile range, 1.0-7.3), compared with 3.6 years in the bacterial control group (interquartile range, 1.1-9.7) (Table I). Although PICU admission was higher in bacterial controls, mortality was higher in the MD group, suggesting PICU admission indeed did not reflect disease severity. As expected, amputation and grafts were more common in the MD group than in bacterial controls, because these are more typical sequelae of MD pathophysiology.

TABLE I. Clinical characteristics of our cohort

| Characteristics                                              | Patients infected with N meningitidis (n = 229) | Bacterial controls (n = 275) |
|--------------------------------------------------------------|-------------------------------------------------|------------------------------|
| Demographic                                                  |                                                 |                              |
| characteristics                                              |                                                 |                              |
| Sex: male, n (%)                                             | 124 (54.2)                                      | 144 (52.4)                   |
| Age (y), median (IQR)                                        | 2.7 (1.0-7.3)                                   | 3.7 (1.1-9.7)                |
| Genetically predicted ancestry, n (%)                        |                                                 |                              |
| AMR                                                          | 6 (2.6)                                         | 8 (2.9)                      |
| AFR                                                          | 5 (2.2)                                         | 15 (5.5)                     |
| EUR                                                          | 204 (89.1)                                      | 226 (82.2)                   |
| SAS                                                          | 6 (2.6)                                         | 14 (5.1)                     |
| EAS                                                          | 0 (0)                                           | 2 (0.7)                      |
| Unknown                                                      | 8 (3.5)                                         | 10 (3.6)                     |
| Microorganism, n (%)                                         |                                                 |                              |
| N meningitidis                                               | 229 (100)                                       | 0 (0)                        |
| S pyogenes                                                   | 0 (0)                                           | 79 (28.7)                    |
| S aureus                                                     | 0 (0)                                           | 96 (34.9)                    |
| S pneumoniae                                                 | 0 (0)                                           | 100 (36.4)                   |
| Severity, n (%)                                              |                                                 |                              |
| ICU*                                                         | 113 (49.3)                                      | 204 (74.2)                   |
| Death*                                                       | 24 (10.5)                                       | 16 (5.8)                     |
| Skin graft*                                                  | 40 (17.5)                                       | 10 (3.6)                     |
| Amputation*                                                  | 29 (12.7)                                       | 5 (1.8)                      |
| Composite end point<br>(death, skin graft, or<br>amputation) | 72 (31.4)                                       | 29 (10.5)                    |

AFR, African; AMR, admixed American; EAS, East Asian; EUR, European; ICU, intensive care unit; IQR, interquartile range; SAS, South Asian.


# Exome-based enrichment analysis of complement/ coagulation genes in MD compared with bacterial controls

The burdenMC analysis was performed on WES data, using the thresholds of CADD scores greater than 20 and AFs less than 0.01, focusing on the complement-coagulation pathways and on genes previously associated with MD.<sup>17</sup> Rare predicted-deleterious variants were found enriched exclusively in patients with MD in CFP (P = .001579), which encodes the properdin glycoprotein, and FCGR2A (p.V52M, p.E122X) (P = .005984), a gene encoding the Fc gamma receptor II-A (Fig 1, A). Individuals with rare predicted-deleterious variants in CFP exhibited a 3.5-fold increase in the odds of presenting with MD (odds ratio [OR], 3.5; 95% CI, 1.75-7). This trend was not observed in any of the bacterial control groups. The effect size of the FCGR2A enrichment was slightly less pronounced, but still specific to MD (OR, 3; 95% CI, 1.5-3) (Fig 1, B).

Properdin is a major protein of the alternative complement pathway, being released from innate immune cells including neutrophils and monocytes. All individuals with *CFP* variants in the WES data set (c.403+1G>A, p.D299N, p.E180V, p.W432G) were confirmed to be male, as *CFP* is X-linked, making this observation particularly relevant. *FCGR2A* plays a crucial role in immune response and has been linked to susceptibility to meningococcal infections through its impact on antibodymediated immune defense, and a nonsense variant was identified in the cohort. Both *CFP* and *FCGR2A* are well-established risk factors for susceptibility to *N meningitidis*, providing proof of concept to our analysis and reinforcing the critical role these genes play in meningococcal infections. <sup>18-20</sup>

<sup>\*</sup>Not mutually exclusive.

4 BELLOS ET AL J ALLERGY CLIN IMMUNOL



**FIG 1.** Gene burden analysis of the WES data set. **A,** Manhattan plot of gene-wise rare variant burden in MD. Only variants with an AF less than 1% in the population and a CADD score greater than 20 contributed to this analysis. Each dot represents the P value of a gene as generated by burdenMC. The outer ring depicts the exome-wide results, and the inner ring depicts the results in the gene panel. Genes achieving exome-wide statistical significance in the outer ring are highlighted in red ( $P < 1 \times 10^{-6}$ ). Genes achieving nominal significance in the inner ring are highlighted in magenta (P < .05). **B,** Forest plot depicting the effect sizes of the panel genes identified as enriched in the burden analysis. In addition to MD and severe MD, the effects of the genes on the other bacterial groups are also depicted for comparison. Ethnically matched simulated controls from gnomAD are used as comparators. Genes in *boldface* are statistically significant in the gene panel analysis (P < .01).

In addition, we observed a nominal enrichment of rare predicted-deleterious variants in the innate immune gene *CEA-CAM6* (P = .019) and CM-TMA-associated metabolic gene *MMACHC* (P = .042).

# Exome-based enrichment analysis of complement/ coagulation genes in MD by severity

Gene burden testing of patients with severe MD presenting with death, amputations, or skin grafts revealed enrichment of rare deleterious variants in CFP (P = .0073) and SERPINE1 (P = .001378) (Fig 1, B). This is in line with literature supporting the association of properdin deficiency with particularly severe manifestations of meningococcal infection. The enrichment in SERPINE1 was specific to the severe MD subgroup, conferring a 4-fold increased risk of extreme disease presentation (Fig 1, B). SERPINE1 encodes the plasmin activator inhibitor 1 (PAI-1), which negatively regulates fibrinolysis and impairs the dissolution of clots. PAI-1 is released from activated monocytes and endothelial cells, blocking fibrinolysis. It is regarded as a propagating factor in disseminated intravascular coagulation and thromboembolic complications. Children with meningococcal sepsis have been shown to have higher than normal concentrations of PAI-1 in plasma, which combined with widespread microvascular thrombosis suggested an impairment of fibrinolysis, linked to the so-called 4G/5G promoter polymorphism.<sup>21</sup>

# Gene panel-based analysis of CFH/CFHR1-5 gene cluster in MD

WES can have limitations in certain genes with a high degree of homology and frequent structural variations. Notably, this includes the CFH gene and its extended genomic locus, containing genes CFHR1-5. CFH encodes complement FH, a protein notably linked to MD. 13 The CFHR genes are also known to harbor copy number variation (CNV), which directly affects the translated protein levels of FH in plasma. <sup>16</sup> Initially, we examined the presence of CNV in the locus using cnvCapSeq, our previously described WES-based inference technique.<sup>22</sup> Using this approach, 37.9% of our MD cohort was predicted to be nondiploid in the CFH locus. This represents a slight overrepresentation compared with the expected frequency of 36.4% in 3812 ethnically matched individuals from gnomAD, although it does not achieve statistical significance. However, given the complexity of the locus and the confounding effects of target capture, we decided to supplement this analysis with an orthogonal approach for confirmation.

Therefore, we performed high-coverage amplicon-based resequencing of a 44-gene panel, which includes the *CFH* locus, in 189 patients with MD from our cohort. Patients with other bacterial infections were not included at this stage. The amplicon-based data set allowed us to directly identify CNVs from the raw sequencing data. Using this accurate approach, we recalculated the nondiploid CNV frequency in MD cases of European

ancestry (n = 162) as 43.2%, which represents a significant enrichment (P = .044 [Barnard exact test]) (Table II). The agreement between the WES-based and the amplicon-based CNV calling was 95%. The WES CNV calling was generally more conservative, exhibiting higher specificity at the cost of sensitivity. Thus, in the absence of amplicon resequencing for the other bacterial infections, we applied cnvCapSeq to the rest of our exome cohort to obtain estimates of the CNV frequency. Although these estimates are expected to be lower than those generated through amplicon resequencing, they provide the basis for relative comparisons to the WES-derived CNV calls for the MD cohort. In this analysis, all other bacterial groups exhibited CNV frequencies slightly below the expected, indicating an MD-specific enrichment (Table II).

In addition to these more complex findings, we identified short deleterious variants using the high-coverage amplicon data set. We classified variants as damaging, on the basis of existing literature, overrepresentation (>10 times the gnomAD frequency), high pathogenicity scores (CADD > 20; [REVEL] > 0.65; and Grantham > 100),<sup>23,24</sup> and intolerance according to MetaDome.<sup>25</sup> We prefer the term *damaging* instead of (likely) *pathogenic*, because protein-level effects do not always lead to disease in a fully penetrant, Mendelian manner. If not considered damaging at the protein level, the rare variants were listed as variants of unknown significance (VUS).

In the *CFH* locus, these variants included premature stop codons, splice defects, and damaging missense variants in the *CFHR* gene cluster: c.431-2A>G (*CHFR1*, splice defect); p.C72Y and p.Y264C (*CFHR2*); p.1280Kfs\*7 (*CFHR3*); c.799+3A>C (*CFHR4*, splice defect); and p.E163Rfs\*35, p.C208R, and p.C568X (*CFHR5*). The latter findings are reinforced through an ultrarare (AF < 0.01) variant burden analysis, in which *CFHR5* exhibits a significant enrichment (P = .00102; OR, 3; 95% CI, 2-6) (see Fig E3 in this article's Online Repository at www.jacionline.org).

#### Multigenic complement cases

Using our extended burdenMC approach, we investigated whether there was an overrepresentation of MD cases carrying variants in multiple complement genes. This multigenic burden analysis identified a significant enrichment in the terminal complement genes (C5, C6, C7, C8A, C8B, C8G, and C9), unique to MD and absent from other bacterial infections (Fig 2). Specifically, 4 patients with MD presented with rare digenic variants in terminal complement compared with just 1 expected (P = .008). These included individuals with rare predicted-deleterious variants (AF < 0.01; CADD > 20) in C5/C6, C6/C7, C6/C8A, and C8A/C8B. Given the sequential obligatory nature of the terminal complement cascade, it would be highly likely that monoallelic variants in consecutive terminal complement genes would result in impairment. The amplicon-based approach identified an additional patient with 2 rare variants in CFHR5 (Table III).

# Gene panel-based analysis of complement/ coagulation genes in MD

In addition to 13 variants with strong evidence for deleteriousness (Table III), we identified 109 variants classified as damaging or VUS. We found that 65 of 189 MD cases carried 1 variant of interest, 31 carried 2, 11 carried 3, and 2 carried 4 variants in total. In the complement genes (including the *CFHR* genes mentioned

earlier, but excluding the CNVs in those genes), there were 41 damaging and 64 VUS alleles, representing a total of 34 and 56 patients, respectively. In the coagulation genes, we found a total of 23 damaging and 40 VUS alleles in 22 and 37 patients, respectively (see the Online Repository).

Three hemizygous individuals were identified with X-linked recessive variants. One individual carried a mild hemophilia A variant (F8: c.6623A>G, p.Q2208R), and the other 2 patients carried (likely) pathogenic X-linked *CFP* gene variants. Of these variants, 1 was a reported properdin deficiency (c.559C>T, p. Q187X) and 1 was a novel missense variant (c.1294T>G, p. W432G), also identified by WES.

Autosomal-dominant (AD) inheritance is known in genes of both proteolytic cascades. Regarding coding variants in the complement genes, enhanced complement factor C3 (C3) and factor I (CFI) may result in aberrant complement regulation as a cause of CM-TMA, some of which were also present in our MD cohort (Table III).

We also identified multiple variants in the coagulation genes, some of which reported as autosomal-dominant and disease-causing for *VWF*, *PROS1*, and *SERPINC1* (Table III). <sup>26-32</sup> Factor V-Leiden (p, R506Q), associated with thrombophilia, was present as expected on the basis of minor AF. To note, *SERPINE1* encoding PAI-1 is not part of the amplicon-based NGS panel.

In summary, the gene panel approach provided an in-depth analysis of all genes at high coverage allowing for the assessment of complex genetic regions such as the *CFHR* cluster. Individual-level analysis of variants identified a total of 20 individuals (10.6%) harboring pathogenic/likely pathogenic variants in the correct mode of inheritance (mostly AD, but also hemizygous, biallelic, and digenic) and hence potentially with a genetic diagnosis.

#### **DISCUSSION**

The major role of the complement system in MD is exemplified by deficiencies in components of the alternative pathway of complement activation and the terminal pathway leading to the membrane attack complex. <sup>2,14,33</sup>

In our study, we identified 5 deleterious CFP variants (WES: c.403+1G>A, p.D299N, p.E180V, p.W432G; amplicon: p. W432G, p.Gln187Ter) and an F8 variant as hemizygous affected patients. Complex genetic variations were also identified. We had previously substantiated the functional meaning of the CFH/ CFHR1-5 cluster in MD at genome-wide association (GWAS) level,<sup>34</sup> shown to be linked to the lead single nucleotide polymorphism rs75703017 in intron 1 of *CFHR3* in a follow-up study.<sup>35</sup> The minor allele had a protective effect related to FH plasma levels in a protein quantitative trait loci analysis. When the data of this analysis were taken into account, the deletion of CFHR3/CFHR1 was associated with a significantly higher genetic risk in MD (P = .008). Although we lack intronic sequence data to judge the role of the protective rs75703017 (A) allele, we here confirm the effect of heterozygous CFHR3/CFHR1 deletions in MD. Digenic defects were also identified in our MD cohort with gene variants in the terminal pathway deficiency, confirming previous studies.<sup>3,12,36</sup> None of these patients met our severity composite end point; this is in keeping with reports that patients with terminal complement deficiencies, although highly predisposed to MD, may have milder courses of illness, perhaps due to lower endotoxin release in these individuals.<sup>37,38</sup> In addition,

TABLE II. CNV analysis of the CFH locus in individuals of European ancestry

| Diploid individuals | Nondiploid individuals        | Total                               | Nondiploid frequency (%)                                                                                             | P value compared with gnomAD                                                                                                                                      |
|---------------------|-------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                               |                                     |                                                                                                                      |                                                                                                                                                                   |
| 2425                | 1387                          | 3812                                | 36.4                                                                                                                 |                                                                                                                                                                   |
|                     |                               |                                     |                                                                                                                      |                                                                                                                                                                   |
| 121                 | 74                            | 195                                 | 37.9                                                                                                                 | .339                                                                                                                                                              |
| 51                  | 21                            | 72                                  | 29.2                                                                                                                 | .108                                                                                                                                                              |
| 50                  | 24                            | 74                                  | 32.4                                                                                                                 | .248                                                                                                                                                              |
| 52                  | 22                            | 74                                  | 29.7                                                                                                                 | .123                                                                                                                                                              |
|                     |                               |                                     |                                                                                                                      |                                                                                                                                                                   |
| 92                  | 70                            | 162                                 | 43.2                                                                                                                 | .044                                                                                                                                                              |
|                     | 2425<br>121<br>51<br>50<br>52 | 2425 1387  121 74 51 21 50 24 52 22 | 2425     1387     3812       121     74     195       51     21     72       50     24     74       52     22     74 | 2425     1387     3812     36.4       121     74     195     37.9       51     21     72     29.2       50     24     74     32.4       52     22     74     29.7 |

The expected frequency of nondiploid ethnically matched (European) individuals was extracted from gnomAD v2.1. The European subset of our WES cohort was analyzed with cnvCapSeq to infer the presence of CNV in the locus (chr1:196.71Mb-196.81Mb; GRCh37). Amplicon-based CNV calling was also performed for improved accuracy. The MD cohort exhibits an increased nondiploid frequency in the *CFH* locus, whereas the other bacterial groups exhibit a slight decrease. Boldface entries indicate statistical significance.

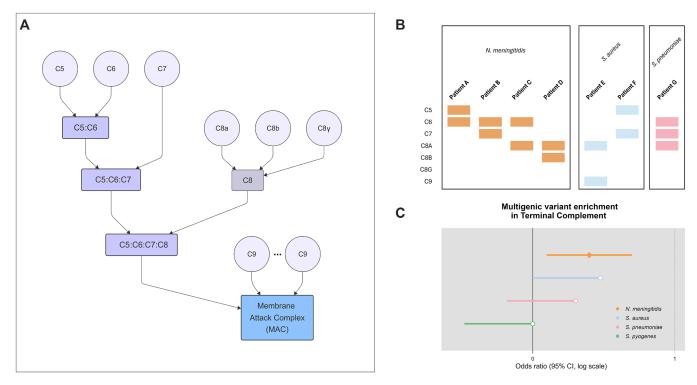



FIG 2. Multigenic terminal complement analysis in WES. A, Schematic of the terminal complement pathway and how its components interact to form the membrane attack complex. B, Patients in the WES cohort with multiple rare predicted-deleterious variants in different genes of the terminal complement. Gene combinations highlighted per patient (4 individuals from the MD group and 3 from the other bacterial groups). Only variants with an AF less than 1% in the population and a CADD score greater than 20 contributed to this analysis. Patient A in the WES analysis corresponds to patient 186 in the amplicon data set, and patient B corresponds to patient 175. C, Forest plot depicting the effect size of the multigenic variant enrichment in the terminal complement pathway as quantified by burdenMC. A significant multigenic burden is observed in the MD group (OR, 2.5; 95% Cl, 1.25-5; P = .00869), but not in the other bacterial groups.

many damaging variants have been found in other patients, which require further functional testing to firmly implicate in disease.

The role of the complement and coagulation systems in MD makes it an infection-induced TMA. TMA is chiefly caused by Shigatoxin-producing *Escherchia coli*, followed by complement-mediated TMA and pneumococcal hemolytic uremic syndrome (HUS). Congenital thrombotic thrombocytopenic purpura (TTP) caused by *ADAMTS13* gene defects, vitamin B<sub>12</sub> metabolism defects (*MMACHC* variants), and other disorders (*DGKE* variants) most often present as early-onset TMA. In CM-TMA due to genetic variants in *CFH*, *CFHR3-CFHR1*, *C3*, *CFB*, *CFI*, and

CD46, <sup>39-46</sup> infection has been recognized as an initiating trigger. <sup>47,48</sup> In congenital TTP, the "second hit" model fits well with what is known about infections, excessive alcohol consumption, and pregnancy as common triggers of acute disease episodes. <sup>4</sup> In MD, complement activation, thrombosis, and/or bleeding activation may be invoked because of reduced levels of FH. <sup>6,7</sup> Our analysis showed neither a significant abundance of gene variants in the bacterial control group nor in severity of disease, which distinguishes MD from the other invasive infections. The limitation of this comparison is the heterogeneity of pathogens (ie, *S pyogenes* group A, *S pneumoniae*, and *S aureus*).

TABLE III. Deleterious variants identified in the gene panel through amplicon sequencing

| Patient ID      | Locus               | Genotype | Gene     | HGVS consequence | CADD<br>PHRED | OMIM inheritance | gnomAD<br>AF | Expected<br>alleles in<br>cohort | ACMG classification |
|-----------------|---------------------|----------|----------|------------------|---------------|------------------|--------------|----------------------------------|---------------------|
| P13             | chr12:6125802:A-T   | 0/1      | VWF      | p.Ser1731Thr     | 24.5          | AD               | 0.0012       | 0.45                             | LP                  |
| P20             | chr5:41176606:TG-T  | 1/1      | C6       | p.Gln380Serfs*7  | _             | AR               | 0.0004       | 0.14                             | P                   |
| P23; P104; P117 | chr12:6143978:C-T   | 0/1      | VWF      | p.Arg854Gln      | 35            | AD, AR           | 0.005        | 1.94                             | P                   |
| P58; P165*      | chr1:173873176:C-A  | 0/1      | SERPINC1 | p.Ala416Ser      | 27            | AD, AR           | 0.0015       | 0.57                             | P                   |
| P86             | chrX:154090093:T-C  | 1        | F8       | p.Gln2208Arg     | 24.1          | XLR              | 0            | 0                                | P                   |
| P163            | chrX:47483790:A-C   | 1        | CFP      | p.Trp432Gly      | 23.2          | XLR              | Novel        | Novel                            | VUS                 |
| P164            | chr1:196963258:C-CA | 0/1      | CFHR5    | p.Glu163Argfs*35 | _             | AD               | 0.00359      | 1.41                             | LP                  |
|                 | chr1:196964861:T-C  | 0/1      |          | p.Cys208Arg      | 23.2          | AD               | 0.0024       | 0.95                             | VUS                 |
| P175†           | chr5:40959622:C-A   | 0/1      | C7       | p.Arg521Ser      | 31            | AR               | 0.00311      | 1.22                             | P                   |
|                 | chr5:41150035:A-G   | 0/1      | C6       | c.2381+2T>C      | 25            | AR               | 0.0028       | 1.10                             | P                   |
| P183            | chrX:47486885:G-A   | 1        | CFP      | p.Gln187*        | 20.9          | XLR              | 0            | 0                                | LP                  |
| P186†           | chr5:41155176:C-G   | 0/1      | C6       | p.Asp667His      | 23.5          | AR               | 0.00073      | 0.29                             | VUS                 |
|                 | chr9:123725027:G-A  | 0/1      | C5       | p.Arg1476*       | 44            | AD, AR           | 0.0001       | 0.03                             | LP                  |

The reported variants are classified as P, LP, or VUS according to the ACMG criteria. VUS variants are included only in the context of digenic or compound heterozygosity. *ACMG*, American College of Medical Genetics and Genomics; *AD*, autosomal dominant; *AR*, autosomal recessive; *HGVS*, Human Genome Variation Society; *LP*, likely pathogenic; *OMIM*, Online Mendelian Inheritance in Man; *P*, pathogenic; *XLR*, X-linked recessive.

Both loss-of-function and gain-of-function variants in *C3*, *CFB*, *CFI*, and *CD46* may predispose to CM-TMA. These gain-of-function variants are not causative but predisposing with incomplete penetrance instead. Most cases of complement-mediated CM-TMA required an environmental trigger (eg, infection, pregnancy, and hypertension) to initiate complement activation, revealing a latent regulatory defect. This ultimately led to the successful introduction of the C5 inhibitors, such as eculizumab. <sup>5,41</sup> A single infusion to maintain endothelial viability and normal organ function might be highly beneficial in severe invasive bacterial disease such as MD, once antibiotics and supportive care have been started. Although developed to treat congenital TTP, <sup>49</sup> additional therapeutic applications of recombinant ADAMTS13 could also be explored, because low ADAMTS13 levels have been shown to correlate with worse outcomes in MD. <sup>50,51</sup>

## Conclusion

Our analysis indicates a strong genetic interaction of von Willebrand factor—dependent inflammation, complement-mediated endothelial damage, and microvascular thrombosis, which in MD as a prime candidate may be further explored for novel therapeutic approaches. The identification of variants in well-established genes such as *CFP*, including 1 pathogenic and 1 likely pathogenic variant, provides reassuring consistency with known disease mechanisms. Importantly, the detection of digenic variants suggests a novel and potentially underrecognized genetic architecture contributing to invasive MD susceptibility. These findings highlight the value of individual-level genetic analysis and underscore the need for functional validation to fully understand the clinical significance of nonmonogenic complement deficiencies.

# **DISCLOSURE STATEMENT**

This work was partially supported by the European Seventh Framework Programme for Research and Technological Development (FP7) (under EUCLIDS grant agreement no. 279185), the DIAMONDS program (no. H2020 GA-848196), and the

UK Research and Innovation (UKRI) Future Leaders Fellowship (no. MR/S032304/1). The sponsor of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Disclosure of potential conflict of interest: The authors declare that they have no relevant conflicts of interest.

## **EUCLIDS Consortium members**

Michael Levin, Lachlan Coin, Stuart Gormley, Shea Hamilton, Jethro Herberg, Bernardo Hourmat, Clive Hoggart, Myrsini Kaforou, Vanessa Sancho-Shimizu, Victoria Wright, Amina Abdulla, Paul Agapow, Maeve Bartlett, Evangelos Bellos, Hariklia Eleftherohorinou, Rachel Galassini, David Inwald, Bayarchimeg Mashbat, Stephanie Menikou, Sobia Mustafa, Simon Nadel, Rahmeen Rahman, Hannah Shailes, Clare Thakker, Sumit Bokhandi, Sue Power, Heather Barham, Nazima Pathan, Jenna Ridout, Deborah White, Sarah Thurston, Saul Faust, Sanjay Patel, Jenni McCorkell, Patrick Davies, Lindsey Crate, Helen Navarra, Stephanie Carter, Raghu Ramaiah, Rekha Patel, Catherine Tuffrey, Andrew Gribbin, Sharon McCready, Mark Peters, Katie Hardy, Fran Standing, Lauren O'Neill, Eugenia Abaleke, Akash Deep, Eniola Nsirim, Andrew Pollard, Louise Willis, Zoe Young, Collin Royed, Sonia White, Peter-Marc Fortune, Philip Hudnott, Federico Martinón-Torres, Antonio Salas, Fernando Álvez González, Ruth Barral-Arca, Miriam Cebey-López, María José Curras-Tuala, Natalia García, Luisa García Vicente, Alberto Gómez-Carballa, Jose Gómez Rial, Andrea Grela Beiroa, Antonio Justicia Grande, Pilar Leboráns Iglesias, Alba-Elena Martínez-Santos, Nazareth Martinón-Torres, José María Martinón-Sánchez, Beatriz Morillo Gutiérrez, Belén Mosquera Pérez, Pablo Obando Pacheco, Jacobo Pardo-Seco, Sara Pischedda, Irene Rivero-Calle, Carmen Rodríguez-Tenreiro, Lorenzo Redondo-Collazo, Sonia Serén Fernández, María del Sol Porto Silva, Ana Vega, Lucía Vilanova Trillo, Susana Beatriz Reyes, María Cruz León, Álvaro Navarro Mingorance, Xavier Gabaldó Barrios, Eider Oñate Vergara, Andrés Concha Torre, Ana Vivanco, Reyes Fernández, Francisco Giménez Sánchez, Miguel Sánchez Forte, Pablo Rojo, Jesus Ruiz Contreras, Alba Palacios, Cristina Epalza Ibarrondo, Elizabeth Fernández Cooke, Marisa Navarro, Cristina Álvarez, María José Lozano, Eduardo Carreras, Sonia Brió Sanagustín, Olaf Neth, Maria Del Carmen Martínez-Padilla, Luis Manuel Prieto Tato, Sara Guillén, Laura Fernández Silveira, David Moreno, Ronald de Groot, Anne Marceline Tutu van Furth, Michiel van der Flier, Navin P. Boeddha, Gertjan J.A. Driessen, Jan Hazelzet, Taco W. Kuijpers, Dasja Pajkrt, Elisabeth A.M. Sanders, Diederik van de Beek, Arie van der Ende, Ria H.L.A. Philipsen, Abdul O.A. Adeel, Mijke A. Breukels, Danielle M.C. Brinkman,

<sup>\*</sup>Digenic coagulation case with additional VUS variant in VWF (p.Arg236Cys).

<sup>†</sup>Digenic complement cases with at least 1 of the variants classified as LP/P.

Carla C.M.M. de Korte, Esther de Vries, Wouter J. de Waal, Roel Dekkers, Anouk Dings-Lammertink, Rienus A. Doedens, Albertine E. Donker, Mieke Dousma, Tina E. Faber, Gerardus P.J.M. Gerrits, Jan A.M. Gerver, Jojanneke Heidema, Jenneke Homan-van der Veen, Monique A.M. Jacobs, Nicolaas J.G. Jansen, Pawel Kawczynski, Kristine Klucovska, Martin C.J. Kneyber, Yvonne Koopman-Keemink, Veerle J. Langenhorst, José Leusink, Bettina F. Loza, Istvan T. Merth, Carien J. Miedema, Chris Neeleman, Jeroen G. Noordzij, Charles C. Obihara, Lidy A.T. van Overbeek-van Gils, Geriska H. Poortman, Stephanus T. Potgieter, Joke Potjewijd, Philippe P.R. Rosias, Tom Sprong, Gavin W. ten Tusscher, Boony J. Thio, Gerdien A. Tramper-Stranders, Marcel van Deuren, Henny van der Meer, Andre J.M. van Kuppevelt, Anne-Marie van Wermeskerken, Wim A. Verwijs, Tom F.W. Wolfs, Luregn J. Schlapbach, Philipp Agyeman, Christoph Aebi, Christoph Berger, Eric Giannoni, Martin Stocker, Klara M. Posfay-Barbe, Ulrich Heininger, Sara Bernhard-Stirnemann, Anita Niederer-Loher, Christian Kahlert, Paul Hasters, Christa Relly, Walter Baer, Enitan D. Carrol, Stéphane Paulus, Hannah Frederick, Rebecca Jennings, Joanne Johnston, Rhian Kenwright, Colin G. Fink, Elli Pinnock, Marieke Emonts, Rachel Agbeko, Suzanne Anderson, Fatou Secka, Kalifa Bojang, Isatou Sarr, Ngange Kebbeh, Gibbi Sey, Momodou Saidykhan, Fatoumata Cole, Gilleh Thomas, Martin Antonio, Werner Zenz, Daniela S. Kohlfürst, Alexander Binder, Nina A. Schweintzger, Manfred Sagmeister, Hinrich Baumgart, Markus Baumgartner, Uta Behrends, Ariane Biebl, Robert Birnbacher, Jan-Gerd Blanke, Carsten Boelke, Kai Breuling, Jürgen Brunner, Maria Buller, Peter Dahlem, Beate Dietrich, Ernst Eber, Johannes Elias, Josef Emhofer, Rosa Etschmaier, Sebastian Farr, Ylenia Girtler, Irina Grigorow, Konrad Heimann, Ulrike Ihm, Zdenek Jaros, Hermann Kalhoff, Wilhelm Kaulfersch, Christoph Kemen, Nina Klocker, Bernhard Köster, Benno Kohlmaier, Eleni Komini, Lydia Kramer, Antje Neubert, Daniel Ortner, Lydia Pescollderungg, Klaus Pfurtscheller, Karl Reiter, Goran Ristic, Siegfried Rödl, Andrea Sellner, Astrid Sonnleitner, Matthias Sperl, Wolfgang Stelzl, Holger Till, Andreas Trobisch, Anne Vierzig, Ulrich Vogel, Christina Weingarten, Stefanie Welke, Andreas Wimmer, Uwe Wintergerst, Daniel Wüller, Andrew Zaunschirm, Ieva Ziuraite, Veslava Žukovskaja, Martin L. Hibberd, Sonia Davila, and Isabel Delany.

We thank Colin Wheeler (Oxford Gene Technologies, Oxford, United Kingdom) and Eli Pinnock (Micropathology Ltd, Coventry, United Kingdom) for their contribution to sequencing and DNA extractions of the samples.

Clinical implications: Understanding the genetic landscape may enable further exploration of novel complement- and TMAdirected therapies.

#### **REFERENCES**

- Bellos E, Santillo D, Vantourout P, Jackson HR, Duret A, Hearn H, et al. Heterozygous BTNL8 variants in individuals with multisystem inflammatory syndrome in children (MIS-C). J Exp Med 2024;221:e20240699.
- Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 2022;42:1473-507.
- Mastellos DC, Ricklin D, Lambris JD. Clinical promise of next-generation complement therapeutics. Nat Rev Drug Discov 2019;18:707-29.
- Irmscher S, Doring N, Halder LD, Jo EAH, Kopka I, Dunker C, et al. Kallikrein cleaves C3 and activates complement. J Innate Immun 2018;10:94-105.
- Heurich M, McCluskey G. Complement and coagulation crosstalk—factor H in the spotlight. Immunobiology 2023;228:152707.
- Ueda Y, Mohammed I, Song D, Gullipalli D, Zhou L, Sato S, et al. Murine systemic thrombophilia and hemolytic uremic syndrome from a factor H point mutation. Blood 2017;129:1184-96.
- Song D, Ueda Y, Bhuyan R, Mohammed I, Miwa T, Gullipali D, et al. Complement factor H mutation W1206R causes retinal thrombosis and ischemic retinopathy in mice. Am J Pathol 2019;189:826-38.
- Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med 2009; 361:1676-87.
- Brouwer MC, de Gans J, Heckenberg SG, Zwinderman AH, van der Poll T, van de Beek D. Host genetic susceptibility to pneumococcal and meningococcal disease: a systematic review and meta-analysis. Lancet Infect Dis 2009;9:31-44.

- Emonts M, Hazelzet JA, de Groot R, Hermans PW. Host genetic determinants of Neisseria meningitidis infections. Lancet Infect Dis 2003;3:565-77.
- 11. Bobde S, Sohn WY, Bekkat-Berkani R, Banzhoff A, Cavounidis A, Dinleyici EC, et al. The diverse spectrum of invasive meningococcal disease in pediatric and adolescent patients: narrative review of cases and case series. Infect Dis Ther 2024;13:251-71
- Thompson MJ, Ninis N, Perera R, Mayon-White R, Phillips C, Bailey L, et al. Clinical recognition of meningococcal disease in children and adolescents. Lancet 2006;367:397-403.
- Davila S, Wright VJ, Khor CC, Sim KS, Binder A, Breunis WB, et al. Genomewide association study identifies variants in the CFH region associated with host susceptibility to meningococcal disease. Nat Genet 2010;42:772-6.
- Martinon-Torres F, Salas A, Rivero-Calle I, Cebey-Lopez M, Pardo-Seco J, Herberg JA, et al. Life-threatening infections in children in Europe (the EUCLIDS Project): a prospective cohort study. Lancet Child Adolesc Health 2018;2:404-14.
- Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 2019;47:D886-94.
- 16. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24.
- Hodeib S, Herberg JA, Levin M, Sancho-Shimizu V. Human genetics of meningococcal infections. Hum Genet 2020;139:961-80.
- Gonzalez-Sanchez L, Agudo AM, Van Den Rym A, Begiristain MI, Saizar A, Perez de Diego R, et al. Properdin deficiency associated with systemic meningococcal disease due to a novel p.Cys337Arg pathogenic variant. Genes Dis 2024;11:101134.
- Pedersen DV, Lorentzen J, Andersen GR. Structural studies offer a framework for understanding the role of properdin in the alternative pathway and beyond. Immunol Rev 2023;313:46-59.
- Fijen CA, Bredius RG, Kuijper EJ, Out TA, De Haas M, De Wit AP, et al. The role
  of Fcgamma receptor polymorphisms and C3 in the immune defence against Neisseria meningitidis in complement-deficient individuals. Clin Exp Immunol 2000;
  120:338-45.
- Hermans PW, Hibberd ML, Booy R, Daramola O, Hazelzet JA, de Groot R, et al. 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene and outcome of meningococcal disease. Meningococcal Research Group. Lancet 1999; 354:556-60.
- Bellos E, Kumar V, Lin C, Maggi J, Phua ZY, Cheng CY, et al. cnvCapSeq: detecting copy number variation in long-range targeted resequencing data. Nucleic Acids Res 2014;42:e158.
- Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL, an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 2016;99:877-85.
- Grantham R. Amino acid difference formula to help explain protein evolution. Science 1974;185:862-4.
- Wiel L, Baakman C, Gilissen D, Veltman JA, Vriend G, Gilissen C. MetaDome: Pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum Mutat 2019;40:1030-8.
- Seidizadeh O, Cairo A, Baronciani L, Valenti L, Peyvandi F. Population-based prevalence and mutational landscape of von Willebrand disease using large-scale genetic databases. NPI Genom Med 2023;8:31.
- Quelin F, Francois D, d'Oiron R, Guillet B, de Raucourt E, de Mazancourt P. Factor XI deficiency: identification of six novel missense mutations (P23L, P69T, C92G, E243D, W497C and E547K). Haematologica 2005;90:1149-50.
- Harris VA, Lin W, Perkins SJ. Analysis of 272 genetic variants in the upgraded interactive FXI web database reveals new insights into FXI deficiency. TH Open 2021;5:e543-56.
- Harper PL, Luddington RJ, Daly M, Bruce D, Williamson D, Edgar PF, et al. The incidence of dysfunctional antithrombin variants: four cases in 210 patients with thromboembolic disease. Br J Haematol 1991;77:360-4.
- van Boven HH, Vandenbroucke JP, Briet E, Rosendaal FR. Gene-gene and geneenvironment interactions determine risk of thrombosis in families with inherited antithrombin deficiency. Blood 1999;94:2590-4.
- Garcia de Frutos P, Fuentes-Prior P, Hurtado B, Sala N. Molecular basis of protein S deficiency. Thromb Haemost 2007;98:543-56.
- Smith N, Warren BB, Smith J, Jacobson L, Armstrong J, Kim J, et al. Antithrombin deficiency: a pediatric disorder. Thromb Res 2021;202:45-51.
- 33. Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016;388:3027-35.
- Nuttens C, Findlow J, Balmer P, Swerdlow DL, Tin Tin Htar M. Evolution of invasive meningococcal disease epidemiology in Europe, 2008 to 2017. Euro Surveill 2022;27:2002075.

- Pardo de Santayana C, Tin Tin Htar M, Findlow J, Balmer P. Epidemiology of invasive meningococcal disease worldwide from 2010-2019: a literature review. Epidemiol Infect 2023;151:e57.
- Esparza-Gordillo J, Jorge EG, Garrido CA, Carreras L, Lopez-Trascasa M, Sanchez-Corral P, et al. Insights into hemolytic uremic syndrome: segregation of three independent predisposition factors in a large, multiple affected pedigree. Mol Immunol 2006;43:1769-75.
- Lewis LA, Ram S. Meningococcal disease and the complement system. Virulence 2014;5:98-126.
- Lehner PJ, Davies KA, Walport MJ, Cope AP, Wurzner R, Orren A, et al. Meningococcal septicaemia in a C6-deficient patient and effects of plasma transfusion on lipopolysaccharide release. Lancet 1992;340:1379-81.
- Fremeaux-Bacchi V, Miller EC, Liszewski MK, Strain L, Blouin J, Brown AL, et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood 2008:112:4948-52.
- Schramm EC, Roumenina LT, Rybkine T, Chauvet S, Vieira-Martins P, Hue C, et al. Mapping interactions between complement C3 and regulators using mutations in atypical hemolytic uremic syndrome. Blood 2015;125:2359-69.
- Noris M, Remuzzi G. Atypical hemolytic uremic syndrome associated with a factor B genetic variant and fluid-phase complement activation: an exception to the rule? Kidney Int 2020;98:1084-7.
- Maga TK, Nishimura CJ, Weaver AE, Frees KL, Smith RJ. Mutations in alternative pathway complement proteins in American patients with atypical hemolytic uremic syndrome. Hum Mutat 2010;31:E1445-60.

- Korzycka J, Pawlowicz-Szlarska E, Masajtis-Zagajewska A, Nowicki M. Novel complement factor B gene mutation identified in a kidney transplant recipient with a Shiga toxin-triggered episode of thrombotic microangiopathy. Am J Case Rep 2022;23:e936565.
- 44. Gerogianni A, Baas LM, Sjostrom DJ, van de Kar N, Pullen M, van de Peppel SJ, et al. Functional evaluation of complement factor I variants by immunoassays and SDS-PAGE. Front Immunol 2023;14:1279612.
- Mastellos DC, Hajishengallis G, Lambris JD. A guide to complement biology, pathology and therapeutic opportunity. Nat Rev Immunol 2024;24:118-41.
- Grover SP, Mackman N. Intrinsic pathway of coagulation and thrombosis. Arterioscler Thromb Vasc Biol 2019;39:331-8.
- Gavriilaki E, Brodsky RA. Complementopathies and precision medicine. J Clin Invest 2020;130:2152-63.
- Schmidt CQ, Schrezenmeier H, Kavanagh D. Complement and the prothrombotic state. Blood 2022;139:1954-72.
- Scully M, Antun A, Cataland SR, Coppo P, Dossier C, Biebuyck N, et al. Recombinant ADAMTS13 in congenital thrombotic thrombocytopenic purpura. N Engl J Med 2024;390:1584-96.
- Bousfiha A, Moundir A, Tangye SG, Picard C, Jeddane L, Al-Herz W, et al. The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J Clin Immunol 2022;42:1508-20.
- 51. Bongers TN, Emonts M, de Maat MP, de Groot R, Lisman T, Hazelzet JA, et al. Reduced ADAMTS13 in children with severe meningococcal sepsis is associated with severity and outcome. Thromb Haemost 2010;103:1181-7.

# METHODS EUCLIDS Consortium

The EUCLIDS Consortium recruited patients in 194 hospitals in Europe (9 countries) and 1 hospital in Africa (The Gambia). A causative microorganism was isolated in 1359 (47.8%) of 2844 patients recruited as part of the study. The most prevalent causative bacteria was *N meningitidis* (259 [9.1%] patients), followed by *S aureus* (222 [7.8%]), *S pneumoniae* (219 [7.7%]), and *S pyogenes* (162 [5.7%]).

### Whole-exome sequencing

Briefly, before WES, DNA was quantified and quality-checked (Novogene Ltd, Cambridge, United Kingdom). Exonic targets were captured using the Agilent SureSelect Human All Exon v4 kit. The captured libraries were subsequently sequenced on an Illumina HiSeq 2000 platform, generating paired-end reads of 100-bp length. The mean on-target coverage achieved was approximately  $44\times$ , with 85% of bases covered at a minimum depth of  $10\times$ .

Raw sequencing reads were aligned to the GRCh37 reference genome using BWA-MEM<sup>E1</sup> and duplicate reads were identified using Picard. The samples were then jointly genotyped with the Genome Analysis Toolkit according to best practices. <sup>E2</sup> Genotype quality control and genetic ancestry inference was performed using Peddy. <sup>E3</sup> The resulting variant calls were annotated using Ensembl's Variant Effect Predictor <sup>E4</sup> supplemented by detailed AF information from gnomAD. <sup>E5,E6</sup>

## Coagulation-complement gene NGS panel

A custom-made Ampliseq coagulation-complement panel (Thermo Fisher Scientific) was developed, including the following 44 genes: ADAMTS13, C3, C5, C6, C7, C8A, C8B, C8G, C9, CD46, CD55, CD59, CFB, CFD, CFH, CFHR1, CFHR2, CFHR3, CFHR4, CFHR5, CFI, CFP, DGKE, F11, F12, F13A1, F13B, F3, F5, F7, F8, F9, GGCX, MMACHC, PLG, PROC, PROCR, PROS1, SERPINC1, SERPINF2, SERP-ING1, TFPI, THBD, and VWF. Amplicons generated measures up to 375 bp. DNA library preparation and sequencing was performed according to the manufacturer's protocols using the Ion Chef and Ion S5 systems (Thermo Fisher Scientific). In total, 189 individuals had sufficient high-quality DNA available and could be tested with our targeted NGS panel. Of those samples, 95% reached a 100× coverage for 90% of the panel, and 90% reached even more than  $500 \times$  for 80% of the panel. Coverage data were analyzed using the CoverageAnalysis plugin (v5.8) on S5 Torrent Suite (Thermo Fisher Scientific). CNVs were determined by comparing the amplicon read count to the total number of reads per sample. Sequence data were analyzed using Ion Reporter software workflow 5.0 (Thermo Fisher Scientific).

#### Gene panel variant interpretation

Interpretation of the gene variants was based on the gnomAD database E5,E6 according to AFs among the European population.

For the adjudication on the functional significance of variants, we applied available algorithms including CADD<sup>E7</sup> and REVEL<sup>E8</sup> and protein prediction tools such as Grantham<sup>E9</sup> and Metadome<sup>E10</sup> for the impact at amino acid level and tolerability at protein level. The literature was reviewed for case series and single patient cases linked to identified gene variants. Additionally, variants were considered in the final scoring if they were present in the Human Gene Mutation Database<sup>E11</sup> and satisfied the criteria set by the American College of Medical Genetics and Genomics.<sup>E12</sup> Variants were scored as VUS or as damaging. The term "damaging" instead of (likely) pathogenic was used, because although variants may influence protein structure, they may not result in disease in a fully penetrant, Mendelian way.

#### **REFERENCES**

- E1. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754-60.
- E2. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 2013;43 (1110):11.10.1-11.10.33.
- E3. Pedersen BS, Quinlan AR. Who's who? Detecting and resolving sample anomalies in human DNA sequencing studies with Peddy. Am J Hum Genet 2017;100: 406-13.
- E4. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biol 2016;17:122.
- E5. Gudmundsson S, Singer-Berk M, Watts NA, Phu W, Goodrich JK, Solomonson M, et al. Variant interpretation using population databases: Lessons from gno-mAD. Hum Mutat 2022;43:1012-30.
- E6. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020;581:434-43.
- E7. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 2019;47:D886-94.
- E8. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 2016;99:877-85.
- E9. Grantham R. Amino acid difference formula to help explain protein evolution. Science 1974:185:862-4.
- E10. Wiel L, Baakman C, Gilissen D, Veltman JA, Vriend G, Gilissen C. MetaDome: Pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum Mutat 2019;40:1030-8.
- E11. Stenson PD, Mort M, Ball EV, Chapman M, Evans K, Azevedo L, et al. The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or research setting. Hum Genet 2020;139:1197-207.
- E12. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24.
- E13. Schmidt CQ, Schrezenmeier H, Kavanagh D. Complement and the prothrombotic state. Blood 2022;139:1954-72.
- E14. Noris M, Galbusera M. The complement alternative pathway and hemostasis. Immunol Rev 2023;313:139-61.
- E15. Heurich M, McCluskey G. Complement and coagulation crosstalk Factor H in the spotlight. Immunobiology 2023;228:152707.
- E16. Bekassy Z, Lopatko Fagerström I, Bader M, Karpman D. Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2022;22:411-28.

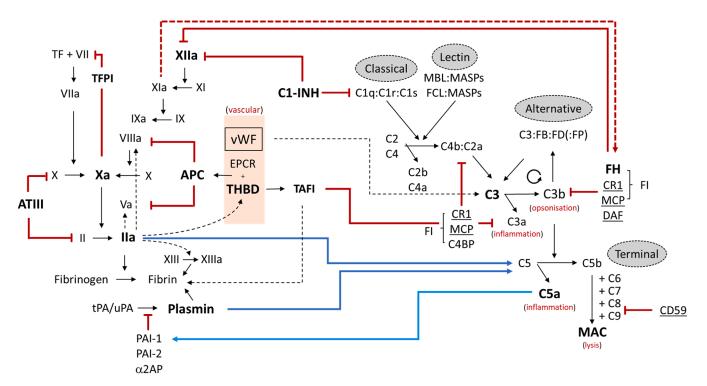
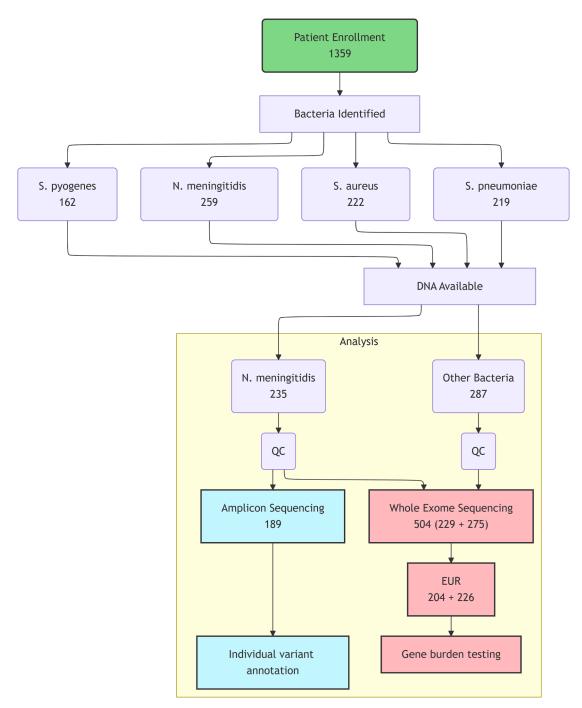




FIG E1. Interactions between the complement and coagulation pathways occur at multiple levels. As indicated, the inhibitory proteins of one cascade may have a role in the other proteolytic cascade as well (with the major components in *boldface*). The activation by thrombin (IIa) as well as plasmin on C5 activation has been reported, as well as the impact of the anaphylatoxin C5a on the release of PAI-1/2 resulting in the inhibition of fibrinolysis. The complement FH is produced in the liver as one of the major plasmatic components regulating the C3 convertase complex, which may also reduce the intrinsic pathway of contact-activated coagulation at the level of Hageman factor (XIIa). C1-inhibitor (C1-INH) acts in the same manner by blocking XIIa. Hageman factor is a member of the serine protease family that initiates the coagulation cascade by the intrinsic pathway and also participates in the kinin activation system (not indicated here). Thrombin-activatable fibrinolysis inhibitor (TAFI), also known as carboxypeptidase B2 (CPB2), is synthesized by the liver and circulates in plasma as a plasminogen-bound zymogen. Once activated by the thrombin/thrombomodulin (IIa/THBD) complex on the surface of endothelial cells, TAFI is able to potently attenuate fibrinolysis by removing the fibrin C-terminal residues, but also inactivates the anaphylatoxin C3a fragment once formed by active C3 convertase activity. For some excellent reviews on the subject, see<sup>E13-E16</sup> (PMID 34415298, 36271870, 37633063, and 34759348).



**FIG E2.** Schematic of the patient enrollment process, the cohorts that were generated, and the analyses performed. \*Eight of 189 are unique to the amplicon sequencing cohort, and 166 are of EUR ancestry. *EUR*, European.

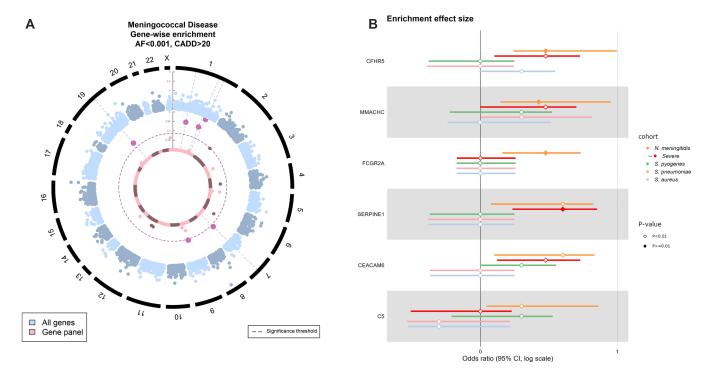



FIG E3. Gene burden analysis of the WES data set for ultrarare variants. **A**, Manhattan plot of gene-wise rare variant burden in MD. Only variants with an AF less than 0.1% in the population and a CADD score greater than 20 contributed to this analysis. Each dot represents the P value of a gene as generated by burdenMC. The outer ring depicts the exome-wide results, and the inner ring depicts the results in the gene panel. Genes achieving nominal significance in the inner ring are highlighted in magenta (P < .05). **B**, Forest plot depicting the effect sizes of the panel genes identified as enriched in the burden analysis. In addition to MD and severe MD, the effects of the genes on the other bacterial groups are depicted for comparison.