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Single-cell and spatial profiling highlights 
TB-induced myofibroblasts as drivers of lung 
pathology
Ian M. Mbano1,2*�, Nuo Liu3,4,5,11*�, Marc H. Wadsworth II3,4,5�, Mark J. Chambers1,2�, Thabo Mpotje1,2�, Osaretin E. Asowata1,2�, 
Sarah K. Nyquist3,4,6,7�, Kievershen Nargan1�, Duran Ramsuran1�, Farina Karim1,2�, Travis K. Hughes4,5,8,9�, Joshua D. Bromley3,4,5,10�, 
Robert Krause1,2�, Threnesan Naidoo1,2�, Liku B. Tezera11,13�, Michaela T. Reichmann11,12�, Sharie Keanne Ganchua17�, Henrik N. Kløverpris1,2,14�, 
Kaylesh J. Dullabh2�, Rajhmun Madansein2�, Sergio Triana3,4,5�, Adrie J.C. Steyn1,2,15�, Bonnie Berger8,16�, Mohlopheni J. Marakalala1,2,13�, 
Gabriele Pollara13�, Sarah M. Fortune4,19�, JoAnne L. Flynn17,18�, Paul T. Elkington11,12**�, Alex K. Shalek3,4,5**�, and Alasdair Leslie1,2,13**�

Tuberculosis (TB) typically causes lung destruction and fibrosis, leading to ∼1.3 million deaths annually. The cellular drivers of 
human TB immunopathology remain poorly defined. We performed single-cell RNA sequencing and spatial transcriptomics on 
lung tissues from TB-infected and TB-negative individuals, identifying 30 distinct immune, parenchymal, and stromal cell 
subsets. Several were linked to TB pathology and corroborated through immunohistochemistry, flow cytometry, and 
independent human datasets. Fibroblasts were identified as major drivers in both active TB granuloma and TB-diseased lung 
tissue. In particular, the MMP1+CXCL5+ fibroblast subset, expressing a myofibroblast-like gene signature, was associated with 
severe disease and higher bacterial burden in nonhuman primate granulomas. Network analyses revealed cross talk between 
MMP1+CXCL5+ fibroblasts and SPP1+ macrophages within the granuloma cuff, which has been reported in other disease contexts, 
and may play an important role in TB immunopathology. Our findings highlight previously unappreciated cell populations and 
potential targets for novel TB therapies.

Introduction
Tuberculosis (TB), caused by infection with Mycobacterium tu
berculosis (M.tb), remains a global epidemic, with ∼10.6 million 
new cases and 1.3 million deaths annually (Carranza et al., 2020, 
World Health Organization, 2023). The development of highly 
effective anti-TB drugs and programmatic improvements led 
to global cure rates of ∼85% in drug-susceptible TB from 1995 
to 2015, as well as reduced mortality rates (World Health 
Organization, 2020). Unfortunately, however, mortality re
mains persistently high (Pai et al., 2022), highlighting the need 
for improved interventions.

M.tb infection occurs primarily in the lung, where interac
tions between host cells and the pathogen typically result in the 
formation of a granuloma—an aggregation of infected myeloid 
cells, usually surrounded by an inner ring of macrophages and 
an outer cuff of lymphoid cells. This specialized immunological 
niche is highly heterogeneous in its overall cellular makeup, 
with the composition of each lesion independently influenc
ing bacterial growth and disease progression (Davis and 
Ramakrishnan, 2009; McCaffrey et al., 2022). In progressive 
TB, extensive lung extracellular matrix (ECM) remodeling via 
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both matrix destruction and fibrosis leads to the formation of 
lung cavities that facilitate transmission (Ravimohan et al., 
2018). This ECM remodeling also increases the risk of post- 
TB lung disease (PTLD), resulting in high rates of recurrent 
TB infection and mortality—even after successful eradication 
of initial infection (Allwood et al., 2021; Romanowski et al., 
2019). Although some features of the immunopathology of TB 
infection that lead to PTLD are known, including granuloma 
formation, cytokine production, hypoxia-inducible factors, and 
production of matrix metalloproteinases (MMPs), the exact 
mechanisms remain unclear (Allwood et al., 2021). While animal 
models of TB disease—from zebrafish to nonhuman primates 
(NHPs)—have provided valuable insights into aspects of these 
processes, they do not fully recapitulate human pathology (Fonseca 
et al., 2017). Critically, these models generally reflect primary in
fection, often without the cavities and the extensive ECM remod
eling observed in human TB, and fail to capture the development of 
chronic secondary TB disease that arises in humans (Hunter, 
2018). Consequently, the key features and cellular drivers of im
munopathology in human TB remain poorly understood.

The advent of high-throughput single-cell RNA sequencing 
(scRNA-seq) has transformed our ability to analyze the cellular 
makeup of complex tissues and phenotypic changes associated 
with disease (Cui et al., 2019). For example, application of 
this technology to study idiopathic pulmonary fibrosis (IPF)—a 
lung disease characterized by dysregulated ECM turnover— 
identified aberrant basal-like cells, peribronchiolar endothelial 
cells, SPP1+ macrophages, and myofibroblasts as key drivers of 
pulmonary tissue remodeling, suggesting new strategies to 
combat the disease (Adams et al., 2020). Similar characteriza
tion of the cell types and states involved in the immunopatho
genesis of human TB and PTLD could potentially help uncover 
effective targets for host-directed therapies (HDTs) (Hawn et al., 
2013).

Here, we applied scRNA-seq and spatial transcriptomics to 
human TB-diseased lung tissues and TB-negative controls to 
examine the cellular and molecular features of TB lung disease 
and investigate mediators of immunopathology. Overall, we 
identified depletion of most macrophage subsets and an en
richment of fibroblast and neutrophil subsets in TB-diseased 
lungs, consistent with altered fibrotic and pro-inflammatory 
activity. We validated these observations with bulk RNA-seq 
data of LN TB granuloma from a well-characterized cohort 
of treatment-naı̈ve, culture-confirmed TB patients (Reichmann 
et al., 2021). To further contextualize specific disease-associated 
cell subsets, we integrated our data with those from the Human 
Lung Cell Atlas (HLCA) and NHP lung TB granulomas (Gideon 
et al., 2022; Sikkema et al., 2023). This enabled us to uncover 
a putative central role for fibroblast subsets—including a 
MMP1+CXCL5+ fibroblast cluster expressing a myofibroblast- 
like gene module—in TB immunopathology, where we further 
evidenced via flow cytometry and immunohistochemistry. 
Through cell network analyses on the single-cell data, we found 
that these cells appear to coordinate their activities with mac
rophages, including an SPP1+ subset not previously implicated in 
TB biology that was observed to be coresident in immunohisto
chemical stainings of human lung TB granuloma. Moreover, 

these two subsets were co-inducible by a standard skin challenge 
of TB patients with M.tb-derived antigen (tuberculin), and 
analyses of spatial transcriptomics data from an independent 
cohort of TB patients showed colocalization of both this myofi
broblast signature and the SPP1+ macrophage signal within lung 
TB granuloma cuffs. Overall, our data reveal key cellular subsets 
and pathways that could inform next-generation HDTs and 
provide an essential reference for the community.

Results
Cellular composition of human TB-infected lung tissue
Fresh, TB-diseased human lung tissue pieces were obtained from 
nine participants (seven HIV+ TB; two HIV− TB) enrolled in the 
African Health Research Institute lung cohort study (Fig. 1 A). All 
participants underwent TB treatment after initial diagnosis but 
had subsequent lung resection surgery to treat complications 
consistent with PTLD, including hemoptysis and bronchiectasis 
(Table S1). As a control, TB-negative lung samples were obtained 
from the healthy tissue margins of four surgically resected lung 
tumors (one HIV+ cancer control; three HIV− cancer controls). 
All participants, irrespective of TB status, received prophylactic 
anti-TB treatment prior to surgery. Tissue pieces were washed 
thoroughly and homogenized into a single-cell suspension via 
mechanical and enzymatic digestion using an optimized proto
col in BSL3 containment (Ardain et al., 2019). Lung cells were 
then processed and sequenced following the Seq-Well S3 pro
tocol as described previously to obtain our scRNA-seq dataset 
(Hughes et al., 2020). An additional 30 samples were obtained 
from different participants in the same TB lung cohort and 
profiled using the 10x Visium Spatial Gene Expression platform 
(Fig. 1 B and Data S11). As above, all participants received TB- 
drug treatment prior to surgery. Fresh tissue pieces were re
moved from resected lung tissue and preserved using standard 
formalin-fixed paraffin-embedded (FFPE) procedures, followed 
by Visium version 2 chemistry protocols with paired H&E 
staining to generate reference images (Fig. S1 A; Materials and 
methods). 21 samples (10 HIV+, 11 HIV−) were derived from 
subjects with active microbiologically confirmed TB, termed 
“current TB.” The remaining samples (five HIV+, four HIV−) 
termed “post-TB,” were obtained from individuals in whom 
bacterial load was no longer detectable from bronchoalveolar 
lavage (BAL) TB culture. This spatial dataset contains both 
samples with TB lung granulomas and samples with in
ducible bronchus-associated lymphoid tissues (iBALTs) or 
lung-draining LNs, which are considered as less severe path
ological states. For each granuloma sample, pathological grad
ing and manual annotation of the granuloma structures on the 
H&E image were performed by an expert TB pathologist to 
enable better disease contextualization (Fig. S1 B and Data S7).

After quality control of the scRNA-seq data, we retained 
19,632 high-quality single-cell profiles from the homogenized 
lung tissues. Neighborhood-based clustering revealed 16 ca
nonical cell types. Further subclustering of high abundance 
populations resulted in a total of 30 phenotypically distinct 
immune, parenchymal, and stromal subsets (Fig. 1 A; Data S1, A– 
E; Fig. S2, A–F; and Data S2, A and B; Materials and methods). 
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Figure 1. Overview of the single-cell and spatial data generated from TB-diseased and control lungs. (A) Schematic showing the experimental flow for 
the isolation of cells from human lung tissues, generation of single-cell libraries using Seq-Well S3. Four TB-negative and nine TB-positive lung samples were 
processed through scRNA-seq. Shown adjacent to the process flow is a low-dimensional embedding (UMAP) of the 19,632 cells passing quality control an
notated with high-level cell types (middle) or detailed cell subtype (right). (B) 10x Visium platform workflow for spatial transcriptomics profiling on FFPE 
samples from TB-diseased lung resections. 21 of these samples come from current TB patients with detectable M.tb; 9 came from post-TB patient, where 
bacteria are no longer detected in BAL TB culture after infection. Samples contain either granulomas, iBALTs, or lung LNs, representing different pathological 
states.
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The fractional representation of cells per participant and clinical 
characteristic varied between clusters reflecting biological het
erogeneity between patients, TB disease states, and potentially 
anatomical sampling location, though our data are limited with 
respect to the latter (Fig. 2 A and Table S1). Most cells derived 

from HIV− TB samples, and while most of the clusters contained 
cells from the majority of patients, we observed substantial 
inter-patient variability in cell numbers (Fig. 2 B and Table S2). 
Canonical cell type markers and genes differentially expressed 
between clusters were examined for manual annotation (Fig. 2 C; 

Figure 2. Overview of tissue heterogeneity and cell type abundance in the single-cell dataset. (A) Cell type proportions by disease status (left) and 
patient (right, n = 7 HIV+TB+; n = 2 TB+; n = 1 HIV+, n = 3 cancer control). (B) Low-dimensional embedding (UMAP) of all scRNA-seq data colored by patient HIV 
status (left) and TB status (right). (C) Dot plot showing expression levels of top 2 DE genes in each of the broad-level cell types. (D) Two-sided Fisher’s exact test 
for abundance of major cell types between samples from patients with previous TB diagnosis and samples from control patients. Holm’s method was applied to 
adjust P values for multiple-testing correction. Statistical annotations: P value < 0.05 (*) and P value < 0.001 (***).
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Materials and methods). Notably, we found large populations of 
neutrophils, which are captured by Seq-Well S3 but often un
derrepresented by other scRNA-seq technologies due to their 
fragility (Hughes et al., 2020). Overall, observed clusters closely 
mirrored those seen in a scRNA-seq characterization of lung 
tissue from IPF patients and healthy donors (Reyfman et al., 
2019).

Next, we looked for evidence of differential abundance by 
comparing the representation of each cell type per donor be
tween the TB-diseased and TB-negative lung groups, irre
spective of HIV status (Fig. 2 D). Given the limitation in cohort 
size, we were underpowered to detect significant cell type pro
portion differences at the sample level through a Wilcoxon test 
or z-proportion test (P > 0.05 for patient level comparisons). 
However, at the single-cell level, pronounced shifts in the fre
quency of most cell types were observed between the TB- 
diseased and TB-negative groups, including an expansion of 
neutrophils in the TB-diseased group, consistent with several 
human studies linking neutrophil recruitment with TB lung 
pathology (Leisching, 2018; Muefong and Sutherland, 2020; 
Sutherland et al., 2009). We also found an increased frequency 
of mast and plasma B cells in TB-diseased tissue, supporting 
findings from recent scRNA-seq studies of NHP models where 
both cell populations were expanded in TB granuloma with 
higher bacterial burden (Gideon et al., 2022). In addition to these 
immune cell populations, fibroblasts were enriched in TB- 
diseased lung tissue. Conversely, in TB-diseased lung samples, 
we found a decrease in the proportions of macrophages, the cell 
type targeted by and primarily responsible for killing bacilli, 
and CD8 T cells, thought to contribute to M.tb control (Queval 
et al., 2017; Winchell et al., 2023). Although we detected sig
nificant changes between the abundance of these cell subsets 
using a Fisher’s exact test, given high inter-patient variability 
and limited sample numbers, we were underpowered to de
termine significance using a Dirichlet-multinomial regression 
or a Wilcoxon test (Smillie et al., 2019).

Specific innate immune cell subclusters are associated with 
TB-diseased human lung tissue
Given the limited participant numbers that compose our scRNA- 
seq dataset, we leveraged these data to impute cell type abun
dances in both the current- and post-TB lung samples in our 
spatial transcriptomics cohort. This allowed us to better un
derstand the phenotypic shifts associated with TB disease and 
select relevant single-cell subclusters for further characteriza
tion. This strategy drove us to focus on neutrophils, macro
phages, monocytes, and fibroblasts, whose abundances also 
showed the most dramatic shifts between the TB and control 
samples in the scRNA-seq data (Fig 2 D).

Neutrophil subclusters
Neutrophils play a crucial role in the innate immune system and 
are quickly recruited as a first line of defense against bacterial 
infections. They are suggested to have immunoregulatory 
functions in TB granulomas in NHP models (Gideon et al., 2019); 
however, their role in the immunopathogenesis of human TB has 
been contentious and less well understood (Gaffney et al., 2022).

Neutrophils were highly enriched in TB-diseased lung tissue 
in our single-cell dataset (Fig. 2 D) and associated with three 
distinct subclusters (termed “pro-inflammatory neutrophils,” 
activated neutrophils,” and heat-shock [HSP] neutrophils”). 
Both activated neutrophil and pro-inflammatory neutrophil 
subclusters expressed markers genes associated with IFN-γ and 
TNF-α signaling—critical responses linked to inflammation and 
immune activation in TB disease (Chandra et al., 2022; Luster 
et al., 2005; Pagán and Ramakrishnan, 2018) (Fig. S2, A–D; and 
Data S8). Activated neutrophils were annotated by their high 
expression of neutrophil activation markers, including IL1RN, 
and IL1B and IL8, inflammatory cytokines involved in neutrophil 
recruitment (Fig. S2, B–D) (de Oliveira et al., 2013; Prince et al., 
2004). They also expressed GBP1 and GBP5, genes involved in 
a previously described blood neutrophil transcriptional signa
ture used to diagnose pulmonary TB (Zak et al., 2016). Pro- 
inflammatory neutrophils, in contrast, highly expressed high 
levels of MMP9, CST7, and LDHA (Fig. S2, B–D). MMP9 is a 
proteinase involved in the degradation of ECM that is strongly 
associated with TB granuloma (Rohlwink et al., 2019); CST7 
(cystatin F) is a neutrophil marker of acute inflammation (Huang 
et al., 2021); and, LDHA encodes lactate dehydrogenase, which 
enhances neutrophil migration and activity, and is highly ele
vated in hypoxic lung TB granuloma in animals (Chowdhury 
et al., 2022; Krishnamoorthy et al., 2020). Pro-inflammatory 
neutrophils also highly expressed FKBP5 and CEBPD, both im
plicated in an immunometabolic network predictive of TB pro
gression (Duffy et al., 2019), and VEGFA, PLAUR, TPM4, and 
CD44, which are involved in neutrophil recruitment and lym
phangiogenesis during inflammation (Adams et al., 2021; He 
et al., 2024; Tan et al., 2013; Zhou et al., 2021) (Data S8). The 
remaining small subcluster of neutrophils, marked by high ex
pression of heat-shock protein genes (HSP neutrophils), was also 
elevated in TB-diseased lungs, which is notable given that 
heat-shock protein expression by neutrophils can trigger pro- 
inflammatory response in macrophages (Kauffman et al., 2018; 
Zheng et al., 2004) (Fig. S2, A–E).

Given the small sample size and high HIV prevalence in our 
scRNA-seq dataset, we examined neutrophils in the spatial co
hort to understand the link between neutrophils and TB disease, 
running cell type deconvolution using the scRNA-seq cohort as 
reference and imputing individual cell type abundances (Mate
rials and methods). Within granuloma structures, neutrophil 
abundance was significantly higher in sample from current TB 
infections than those from post-TB infections, consistent with 
the recruitment of this cell type to the granuloma during active 
disease (Fig. S2 F). Interestingly, however, neutrophils were 
more abundant in non-granuloma tissues (e.g., iBALT and LN) 
compared with granuloma, though the difference was less pro
nounced in current TB. This may reflect the involvement of 
neutrophils in tissue remodeling and chronic inflammation as
sociated with both active TB and PTLD (Santos et al., 2025).

To further test the association between neutrophil subsets 
and TB disease, we quantified the expression of each subset’s top 
marker genes in an independent bulk RNA-seq dataset gener
ated from laser-captured human LN TB granuloma, in which 
all patients were HIV negative (Materials and methods; Data 
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availability) (Reichmann et al., 2021). Importantly, these LN 
were excised prior to TB therapy initiation and contained viable 
M.tb bacilli. We found that 7 of the top 10 unique marker genes 
associated with the activated neutrophils were significantly 
upregulated in LN granuloma compared with noninfected LN 
controls (Data S9), as well as the pro-inflammatory markers 
CEBPD and LDHA (Data S9). We note that although LNs are 
common sites of extrapulmonary TB, LN granulomas have 
functional and structural differences from those found in the 
lung, which may contribute to differences in expression levels 
of these marker genes (Ganchua et al., 2020; Mekonnen et al., 
2021).

Monocyte and macrophage subclusters
Macrophages are necessary to control TB disease but also pro
vide a niche for bacterial growth and survival (Guirado et al., 
2013). In addition, they have been implicated in pulmonary re
modeling, with reported roles in both promoting and inhibiting 
pathology (Kishore and Petrek, 2021). Tissue-infiltrating mon
ocytes, meanwhile, provide a source for macrophage differen
tiation and are key players in inflammatory response and 
bacterial persistence (Sampath et al., 2018). Hence, under
standing the functional differences in monocytes and macro
phages between the TB-diseased and TB-negative controls could 
provide insights into understanding TB immunopathology. In 
aggregate, macrophages were significantly decreased in TB- 
diseased lung tissue, and monocytes were decreased, albeit not 
significantly (Fig. 2 D).

Subclustering of 8,313 macrophages/monocytes single-cell 
transcriptomes generated 10 distinct subclusters, which we 
annotated manually based on marker genes (Fig. 3, A–C and Data 
S2 A). Alveolar macrophages (INHBA+FABP4+MARCO+) and a 
subcluster we termed “heat-shock (HSP) macrophages” were 
significantly reduced in TB-diseased lung tissue compared with 
TB-negative lungs. The former may reflect the loss of normal 
lung alveolar structure observed in TB-diseased lung tissue. 
Upregulated proteins in HSP macrophages included those en
coding for Hsp70 family proteins (e.g., HSPA1A, HSPA1B, HSPA6, 
and HSPA8), which are known to modulate NF-κB–mediated 
release of pro-inflammatory cytokines from alveolar macro
phages in pulmonary TB (Radons, 2016; Wang et al., 2017). In 
addition, when tested separately, all monocyte subsets were 
significantly reduced in TB disease, possibly due to rapid tran
sition to macrophage phenotypes in the pro-inflammatory en
vironment of the diseased lung (Desalegn and Pabst, 2019). The 
remaining three macrophage subsets (defined by ARL4C/EMP1, 
LGMN/SEPP1, and SPP1/CHI3L1) were higher in TB-diseased lung, 
but subtly so (Fig. 3 D). Therefore, to explore the potential 
skewing of macrophage subsets further, we performed cluster- 
free differential abundance testing using Milo, which models 
cellular states as overlapping neighborhoods on k-nearest 
neighbor graphs representing the similarities between single- 
cell profiles (Dann et al., 2022). This analysis highlighted the 
underrepresentation of alveolar macrophages in TB-diseased 
lung tissue, as this was the only subcluster with its pheno
typic neighborhoods depleted among TB disease samples (Data 
S2, C and D). In contrast, although present at low frequency, 

ARL4C+EMP1+, LGMN+SEPP1+, and SPP1+CHI3L1+ macrophages 
were all significantly associated with TB-diseased lung. Marker 
genes enriched in ARL4C+EMP1+ macrophages did not obviously 
associate with published functional annotations but included 
GPR138, which favors M.tb replication in macrophages (Tang 
et al., 2020). LGMN+SEPP1+ macrophages were enriched for 
lipid metabolism activities, while SPP1 encodes for osteopontin, 
a known macrophage attractant, which has been associated 
with granulomatous diseases and is upregulated in M.tb in
fection (Nau et al., 1997; Wang et al., 2020) (Data S8).

In our spatial cohort, we observed a higher abundance of both 
macrophages and monocytes in current TB compared with post-TB, 
consistent with continuous recruitment of myeloid cells during 
active disease (Fig. 3 E, left, and Fig. 3 F, left). As with neutrophils, 
macrophages were more abundant in granuloma from current TB 
samples compared with post-TB. Additionally, in current TB, 
macrophages were more abundant in granuloma compared with 
non-granuloma tissue, while the opposite was true for monocytes, 
which may be explained by maturation into macrophages within 
this environment. (Fig. 3 E, right). HIV co-infection was associated 
with increases in macrophages in current TB samples and a de
crease in monocyte abundance in both current and post-TB sam
ples, suggesting a potential effect of HIV co-infection on myeloid 
populations during both active TB and PTLD (Fig. 3 F). In active TB 
samples, HIV infection may lead to more macrophages to com
pensate for the loss of CD4+ T cells, which are important for 
adaptive immune responses against M.tb (Bromley et al., 2023, 
Preprint). The decrease in macrophages associated with HIV co- 
infection in post-TB samples, however, might reflect impaired 
monocyte differentiation or persistent depletion of macrophage 
precursors (Burdo et al., 2013; Campbell et al., 2014).

To further contextualize monocyte/macrophage subclusters 
in human TB granuloma, we similarly assessed expression of 
subcluster marker genes in the LN dataset described above. We 
found the strongest signal for the SPP1+CHI3L1+ macrophages, 
where 5/10 of the top markers of the subcluster were signifi
cantly upregulated in human LN TB, over fivefold in the case of 
SPP1 and FN1 (Data S9). Bulk gene expression deconvolution 
of this data supported a significant increase in the frequency of 
several populations in untreated TB granuloma compared with 
control LN, including the SPP1+CHI3L1+ macrophage (Fig. S3 A).

Finally, to investigate these myeloid subsets under control 
conditions, we examined the expression of subcluster defining 
genes within single-cell data from TB-granuloma isolated from 
experimentally infected NHPs (Gideon et al., 2022). In this da
taset, we identified overlapping gene signatures between most 
of the subclusters observed in our current study, including 
the SPP1+CHI3L1+ macrophage population (LILRB4, MMP9, PKM, 
MYOF, and CHI3L1) (Data S10) (Gideon et al., 2022). Collectively, 
these data identify diverse myeloid subsets in TB-diseased lung 
tissue and support a putative role for SPP1+CHI3L1+ macrophages 
in TB immunopathology in humans and NHPs.

Single-cell analysis identifies TB-associated fibroblast 
populations
Despite playing a prominent role in tissue remodeling in other 
lung diseases, there is limited understanding of how fibroblasts 
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Figure 3. Single-cell transcriptomic reveals heterogeneity within monocyte and macrophage populations with disease-specific difference. 
(A) Monocyte/macrophage (n = 8,318) subclustering reveals 10 subclusters (left), also colored by patient ID (middle) and disease condition (right). (B) Heatmap 
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contribute to granuloma formation, immunopathology, and 
protective TB immunity (Lee et al., 2019; McCaffrey et al., 2022). 
In our spatial transcriptomics samples, fibroblast abundance 
was estimated to be higher in granuloma samples than iBALT/ 
LN samples for both TB conditions, suggesting fibroblast in
volvement in long-term tissue remodeling and granuloma for
mation (Fig. S3 B). Holding granuloma status or HIV status 
constant, we observed a higher abundance of fibroblasts in post- 
TB samples relative to current TB samples, consistent with the 
role fibroblasts play in long-term tissue damage in PTLD (Fig. S3, 
B and C). Further subclustering of the 1,627 fibroblasts in the 
scRNA-seq dataset revealed five distinct subclusters (Fig. 4 A and 
Fig. S3, D and E): IL6+ CCL2+ fibroblasts, SERPINE2+COL1A1+ fi
broblasts, heat-shock (HSP) fibroblasts, COMP+CILP+ fibroblasts, 
and MMP1+CXCL5+ fibroblasts (Fig. 4 B and Fig. S4 A). We note 
that most of the fibroblasts we recovered came from TB-diseased 
patients, a trend consistent with fibrotic change due to TB 
damage in the lung (Gai et al., 2023). One of the subclusters, 
MMP1+CXCL5+ fibroblasts, almost solely consists of cells 
from HIV- TB patients, whereas the others were mostly oc
cupied by cells from HIV+ TB patients, suggesting potentially 
different phenotypes for fibroblasts in HIV/TB co-infected 
patients versus patients with TB alone (Fig. 4 A and Fig. S3 E). 
This subcluster also had the strongest phenotypic shifts 
among fibroblast populations in a Milo analysis (Data S2, C 
and D).

To better understand the phenotypic properties of these five 
subclusters, we further contextualized them against the existing 
literature by mapping them onto a trained reference model for 
lung stromal cell annotation (Travaglini et al., 2020) (Fig. 4 C). 
The majority mapped strongly to adventitial fibroblasts, which 
are associated with pulmonary vascular remodeling in response 
to stress, including hypoxia and infection (Stenmark et al., 2011). 
Although canonically associated with vascular beds, adventitial 
fibroblasts become highly migratory and invasive in response to 
activating signals, notably including osteopontin (SPP1), and 
have been shown to drive tissue remodeling by inducing a pro- 
inflammatory/profibrotic phenotype in macrophages through 
IL-6 signaling, (Anwar et al., 2012; El Kasmi et al., 2014). The 
MMP1+CXCL5+ fibroblast cluster, however, mapped primarily to 
the myofibroblast phenotype, followed by the lipofibroblast 
phenotype. Myofibroblasts are involved in wound healing after 
tissue injury and can differentiate from recruited fibroblasts 
under mechanical stress, through the influence of cytokines like 
TGF-β, and epithelial-to-mesenchymal transition (EMT) (Li 
et al., 2016; Talbott et al., 2022). In addition, lipofibroblasts can 
differentiate into myofibroblasts during fibrosis (El Agha et al., 
2017). Consistent with this, overrepresentation analysis (ORA) 
showed that the MMP1+CXCL5+ fibroblast markers were enriched 

among genes associated with EMT and myoblast differentiation 
(Data S8).

To test the association between MMP1+CXCL5+ fibroblast 
markers and TB, we again examined the LN dataset and found 
that 5/10 top unique marker genes in the MMP1+CXCL5+ fibro
blast subcluster were upregulated in the LN TB data, including 
MMP1, CA12, TDO2, POSTN, and COL12A1 (Data S9). Interestingly, 
CA12 plays a role in many biological processes, including pre
venting calcification (Zhao et al., 2020), an essential process in 
granuloma resolution (Lin et al., 2014). In addition, this gene was 
found to co-express with MMP1 and CXCL5 in a subset of cancer- 
associated fibroblasts associated with poor clinical outcome 
(Qin et al., 2023). We also observed a significant increase in the 
imputed frequency of MMP1+CXCL5+ fibroblasts in TB LN gran
uloma compared with control LNs via deconvolution of bulk 
RNA-seq profiles (Fig. S3 A). Together, these data suggest TB is 
associated with skewing of lung fibroblasts to phenotypes that 
overlap with known disease processes in the infected lung.

To confirm the presence of the MMP1+CXCL5+ phenotype via 
an orthogonal method, we stained sections of human lung from 
the same surgical cohort that contained distinct TB granuloma (5 
µm sections from two patients) for associated gene products of 
the MMP1+CXCL5+ subcluster: COL1, TDO2, MMP1, MMP3, and 
CA12, together with PI-15 and CTHRC-1, which were also sig
nificantly upregulated in this subcluster (Fig. S4 B and Data S8). 
COL1, a general fibroblast marker, was expressed across lung 
tissue; the MMPs, which are secreted to facilitate ECM break
down, had less strict localization; TDO2, CA12, PI-15, and 
CTHRC-1, meanwhile, were expressed higher in the granuloma 
compared with the surrounding tissue. These data support the 
presence of MMP1+CXCL5+ fibroblasts in TB-diseased human 
lung and their localization with TB granuloma. It is worth 
noting, however, that some differences in fibroblast pop
ulations we observe between TB conditions may be exacerbated 
by the limited number of control lung samples and difficulties 
associated with extracting stromal cells from fresh tissues 
during single-cell isolation (Guilliams et al., 2022).

Reference mapping to HLCA reveals distinct activities between 
TB-diseased and control fibroblasts
Given the limited recovery of fibroblasts from TB-negative 
controls, we next explored how the fibroblast subsets detected 
in TB-diseased lung tissue relate to lung fibroblasts in published 
datasets. For this, we used the data from the HLCA, which in
tegrates 49 datasets from the human respiratory system, en
compassing 2.4 million single cells, to generate consensus cell 
type annotations (Sikkema et al., 2023). Using the HLCA as a 
reference, we confirmed the heterogeneous immune and non
immune cell types present in our lung tissue samples (Fig. 4 D). 

of subtype top 10 DE genes in each of the monocyte/macrophage subcluster. (C) Expression of marker genes in monocyte/macrophage subclusters by disease 
conditions. (D) Two-sided Fisher’s exact test on abundance of detailed macrophage (left) and monocyte (right) subclusters between TB conditions. Holm’s 
method was applied to adjust P values for multiple-testing correction. Statistical annotations: P value < 0.05 (*), P value < 0.01 (**), P value < 0.001 (***), fold- 
change >1 (Δ), fold-change >2 (ΔΔ), and fold-change <1 (=). (E) Cell2loc imputed macrophage (left) and monocyte (right) abundance distribution on the Visium 
dataset grouped by TB and granuloma status (Materials and methods). The 5% quantile of the estimated posterior distribution of cell abundance at each Visium 
spot is displayed, representing the value of cell abundance that the model has high confidence in. Two-sided Mann–Whitney U test without correction were 
used for statistical testing. Statistical annotations: P value < 0.0001 (****). (F) Similar to E, but grouped by TB status and HIV status.
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Figure 4. Fibroblast exhibit TB-specific phenotypes. (A) Fibroblast (n = 1,627) subclustering reveals five subclusters (left), also colored by patient ID 
(middle) and disease condition (right). (B) Heatmap of subtype top 10 DE genes in each of the fibroblast subcluster. Columns (cells) are annotated by fibroblast 
subclusters and sample source disease status. (C) Comparing annotation against literature stromal annotation from Travaglini et al. (2020). Left: Original 
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Via label transfer, we independently re-annotated our fibro
blasts, observing high consistency with our original annotations 
(>95% fibroblasts were re-annotated as fibroblast/myofibro
blast; Materials and methods). Combining cells mapped to 
fibroblasts/myofibroblasts in our data and the HLCA, we 
performed differential expression (DE) analysis between all 
TB-negative cells (mostly consisting of healthy cells from the 
HLCA reference) and our TB-diseased cells (Fig. 4 E). We then 
ran gene set enrichment analysis (GSEA) on the resulting top 
differentially expressed (DE) genes using the MSigDB Hallmark 
database (Fig. 4 F). This confirmed upregulation of EMT pro
cesses, thought to directly contribute to the fibroblast/myofi
broblast pool during fibrosis, in TB-diseased fibroblasts. In 
addition, oxidative phosphorylation was highly upregulated, 
consistent with alteration of metabolic activity in fibrotic lung 
disease (Geng et al., 2021). Several enriched terms are related to 
inflammatory process, including TNF-α signaling, TGF-β sig
naling, IL2/IL6 signaling, and were also observed, suggesting an 
overall elevated inflammatory response in the TB fibroblasts.

Identification of fibroblast gene modules associated to 
bacterial burden within TB granuloma
Having compared our fibroblast subclusters against public lung 
stromal datasets, we next examined how the cell states within 
these subclusters might shift with TB disease in an experimen
tally controlled setting. Given the paucity of TB-associated gene 
signatures, we opted to pursue unbiased gene module identifi
cation on the entire fibroblast population, applying a tool for 
weighted gene co-expression network analysis (WGCNA) in 
high-dimensional single-cell transcriptomics data (hdWGCNA) 
(Morabito et al., 2023). This yielded seven gene modules with 
varying degrees of expression across the five clusters and dis
ease states (named fibroblast-M1–7; Fig. 5 A and Data S11). The 
fibroblast-M1 module was highly enriched in the MMP1+CXCL5+ 

fibroblast cluster (Fig. 5 B). Top hub genes in this module in
cluded: MMP1, CA12, CXCL5, CXCL13, TDO2, PDPN, and FAP, 
showing a high degree of overlap with cluster markers for 
MMP1+CXCL5+ fibroblast (Fig. 4 B and Fig. S4, C and D). There was 
also a clear overlap between SERPINE2+COL1A1+ fibroblasts and 
fibroblast-M2 module (Fig. 4 B and Fig. S4 D). ORA showed the 
M1 module was highly enriched for known biological processes 
associated with immune cell migration and chemotaxis (“mye
loid leukocyte migration,” and “granulocyte chemotaxis”) and 
control of ECM structure (“external encapsulating structure,” 
“collagen fibril organization,” and “ECM disassembly”), as well 
as myofibroblast-related signatures (Talbott et al., 2022) (“re
sponse to wounding,” “muscle tissue development,” “myoblast 
differentiation,” and “response to mechanical stimulus”) (Fig. 5 
C and Data S8). Hence, we refer to this M1 module, enriched in 

the MMP1+CXCL5+ fibroblast population, as the “human TB- 
myofibroblast” module.

To investigate these modules in the context of defined pul
monary TB granuloma, we evaluated the expression of each 
module in fibroblasts from a well-controlled SIV-uninfected 
NHP TB granuloma dataset by Gideon et al. mentioned above 
(Gideon et al., 2022). This study collected data on positron 
emission tomography (PET)-tracked granulomas isolated at 4 
and 10 wk after infection, with each granuloma individually 
resected, homogenized, and subjected to scRNA-seq, as well as 
quantification of total and viable M.tb. Interestingly, our human 
TB-myofibroblast module (M1) and M2 and M3 modules were 
significantly elevated in the week 4 granulomas, which con
tained higher M.tb burdens, compared with those at week 10 
(Fig. 5 D and Fig. S4 E). These data suggest that the human TB- 
myofibroblast phenotype, in addition to other diverse fibro
blasts, is likely present in untreated early TB lung granuloma, 
and that their frequency is associated with bacterial burden. 
Next, to further localize human TB-myofibroblast phenotype 
relative to granuloma, we evaluated the expression of this 
module in fibroblasts in an independent dataset of SIV- 
uninfected NHP TB lung TB dataset, which included single-cell 
data from uninvolved lung tissue (Bromley et al., 2024; Ganchua 
et al., 2024). From this dataset, lung granulomas from 4 wk p.i. 
(granuloma data published by Bromley et al.) were compared 
against uninvolved lung samples from the same experimental 
condition (Bromley et al., 2024) (uninvolved lung data unpub
lished, Fig. 5 E and Table S3; Materials and methods). Evaluating 
our hdWGCNA modules, we observed that the human TB- 
myofibroblast module was upregulated in the granuloma 
compared with uninvolved lung tissues, confirming that this 
phenotype is associated with granuloma-specific structural or 
cellular processes that reflect a local response to M.tb.

Confirmation of the myofibroblast-like phenotype in different 
TB disease contexts
Taken together, our findings suggest a previously underappre
ciated role for fibroblasts—including a myofibroblast-like 
MMP1+CXCL5+ subcluster—in TB immunopathology. How
ever, while this population was detected in 5/9 TB-diseased 
samples, the majority of cells were derived from a single donor. 
Therefore, we quantified this fibroblast subset in additional pa
tients undergoing surgery for post-TB lung complications by flow 
cytometry (Table S4). For this, we gated on non-hematopoietic cells 
(CD45−), lacking expression of CD234a (Duffy antigen), CD31 
(endothelial cells), EPCAM (epithelial cells), and CD34 (progen
itors) but expressing the fibroblast marker CD90, as well as 
PDPN and FAP, which are both canonical myofibroblast markers 
and hubs genes in our human TB-myofibroblast module 

fibroblast UMAP as seen in A colored by mapped cell types in Travaglini et al. (2020). Right: Barplot showing distributions of mapped cell type in each original 
subcluster. ASM, airway smooth muscle; VSM, vascular smooth muscle; MyoF, myofibroblast; FibM, fibromyocyte; AdvF, adventitial fibroblast; AlvF, alveolar 
fibroblast; LipF, lipofibroblast; Peri, pericyte; Meso, mesothelial. (D) Reference mapping to the HLCA. Query (all cells in this study, n = 19,632) vs. reference cells 
(n = 584,944) on integrated UMAP with transferred label from HLCA to query cells. (E) Query (all fibroblasts in this study that was mapped to fibroblast/ 
myofibroblast in label transfer, n = 1,601) and reference lung fibroblast cells (n = 17,500) from HLCA colored by annotation (either “Fibroblast” or “Myofi
broblast”) and TB conditions. (F) GSEA on DE genes between TB fibroblasts and TB-negative fibroblasts on HLCA-integrated data.
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Figure 5. Fibroblast WGCNA (hdWGCNA). (A) High-dimensional WGCNA (hdWGCNA) for gene module detection in fibroblasts of this study. UMAPs are 
colored by eigengene of each of the seven modules. (B) Evaluation of M1 module expression in fibroblast subclusters. Bonferroni-adjusted P computed from 
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(Fig. 6 A). These data confirmed the presence of PDPN+FAP+ 

fibroblasts in 5/5 TB-diseased lung samples. In addition, by 
examining tissue samples from regions of lung tissue with 
varying degree of disease pathology, as determined by oper
ating surgeon, we found that PDPN+FAP+ fibroblasts were el
evated in the most diseased lung pieces (P value = 8 × 10−4, 
Friedman test; Fig. 6 B).

To determine whether a M.tb stimulation in vivo could induce 
these TB-associated fibroblast gene signatures, we evaluated the 
expression of our TB-myofibroblast gene module in a previously 
published bulk transcriptomics dataset from a standardized tu
berculin skin test (TST) challenge (Fig. 6 C; Materials and 
methods) (Pollara et al., 2021). In this study HIV− participants 
with active pulmonary TB or “latent TB” (i.e., individuals with 
T cell memory to M.tb but no evidence of TB disease) received a 
standard TST (intradermal injection of purified M.tb proteins) 
challenge or saline control. The TST site was biopsied 48 h later 
and processed for bulk RNA-seq. Consistent with our ob
servations, the human TB-myofibroblast signature was induced 
in response to the standardized mycobacterial antigen stimula
tion in vivo compared with saline controls, where no inflam
matory response is expected. This signal was amplified in the 
context of active TB disease compared with latent TB. This im
plies that systematic inflammation from active M.tb infection 
may prime the differentiation of a pathological fibroblast cell 
state. Interestingly, genes associated with the SPP1+CHI3L1+ 

macrophage subset were similarly induced by TST, supporting 
the hypothesis that M.tb stimulation induces myofibroblast- 
like phenotype and SPP1+ macrophages in humans, especially 
in the context of active TB disease (Fig. 6 C).

Cell–cell interaction analysis reveals fibroblasts dominate 
cellular cross talk in TB-diseased lung
To identify putative intercellular interactions regulating dif
ferentially expressed genes between TB-diseased and control 
lung niches, we used MultiNichenet (Browaeys et al., 2020) 
(Fig. 7, A and B; Materials and methods). This indicated that fi
broblasts were both the dominant sender and receiver cell type 
in TB-diseased lungs (Fig. 7 C). Interestingly, a significant pro
portion of fibroblasts expressed ligand and receptor pairs con
sistent with autocrine signaling. In contrast, top interactions in 
the TB-negative condition were more diverse, with pronounced 
T cell and myeloid involvement.

We performed additional analysis with LIANA to drill down 
into the specific cellular subclusters contributing to niche cross 
talk in TB infected and control lungs (Dimitrov et al., 2022) (Data 
S3, A and B; and Data S4 A). This integrated ligand–receptor 
analysis framework leverages multiple resources and methods 
to generate aggregated inference on samples from each 

condition. Our results suggested a dominant role for COMP+

CILP+, IL6+CCL2+, MMP1+CXCL5+, and SERPINE2+COL1A1+ fibro
blasts, but not HSP fibroblasts, in TB-diseased conditions. This 
analysis also implied that AT1 cell sender signaling is upregu
lated in the TB-diseased lung, although these cells were sig
nificantly depleted in TB-diseased lungs (Fig. 2 D and Data S4 
B). AT1 cells normally serve as the interface of oxygen exchange 
in the alveoli, but we found they have high expression of col
lagen in the TB-diseased lungs, which broadly targets other cell 
types (Data S4 B). In TB-negative diseased lungs, only HSP fi
broblasts were predicted to contribute to signaling (Data S3 B). 
It is important to note, however, that the lack of fibroblasts in 
TB-negative lungs may influence this analysis.

To understand broader signaling patterns, we grouped 
sender and receiver cell types based on similarities of their 
signaling patterns (Materials and methods). Within TB- 
diseased samples, we observed more distinctive patterns 
among sender cell types than receivers, with senders 
roughly grouped by cell type (Fig. 7 D). The opposite was ob
served in TB-negative lung (Data S4 C). In TB, most of the fi
broblast sender subclusters (MMP1+CXCL5+, COMP+CILP+, and 
IL6+CCL2+) grouped together and with other nonimmune cells 
(endothelial cells, AT1, and club cells; sender group 1). Quan
tification of net cell signaling flux—defined as the product of a 
sender population’s relative abundance and its average ex
pression of a given signal—highlighted that, despite making up 
a small proportion of the entire dataset, MMP1+ CXCL5+ fibro
blasts were among the most prolific signal senders in the TB- 
diseased condition (Fig. 8 A).

Next, to quantify ligand-driven changes in cellular cross talk 
during TB infection, we calculated the difference in ligand in
teraction strengths between TB-diseased and TB-negative lung 
samples (Fig. 8 B; Materials and methods). TB sender group 1 
secreted most of the top upregulated ligands in TB-diseased lung 
(binomial test P value < 0.01, Data S5 A, left). Top senders of all 
upregulated interactions in TB-diseased lungs were COMP+CLIP+ 

fibroblasts, followed by MMP1+CXCL5+ fibroblasts (Data S5 A, 
right). In contrast, control sender group 2, which consists mostly 
of monocytes and macrophages, exhibited the greatest signaling 
flux in control lung (binomial test P value < 0.01, Data S5 B). 
Notably, MMP1+CXCL5+ fibroblasts expressed most of the top flux 
ligands (9/30) with increased overall interaction strength in TB, 
supporting a central role in TB disease (Fig. 8 B). The top five 
ligands from the MMP1+CXCL5+ fibroblasts, ranked by average 
interaction strength across receptors, were CXCL13, CXCL6, 
DSG2, GREM1, and NTN1 (Fig. 8 C). CXCL13 may act in both 
autocrine and paracrine modes, signaling to B cells via CXCR5, a 
homing marker for activated lymphocyte to lymphoid tissues, 
and on B cells in NHP lung TB granuloma, where it regulates 

two-sided Wilcoxon test is shown. (C) ORA by enricher on all assigned M1 module genes using MSigDB Gene Ontology Biological Processes (GOBP) gene set 
database. (D) Top: Bacterial burden of NHP lung granulomas by Gideon et al. (2022) grouped by the time point. Bottom: Evaluation of human TB-myofibroblast 
module expression in NHP TB fibroblasts on 4-wk and 10-wk samples. Two-sided Mann–Whitney U test without correction was used. Statistical annotations: P 
value < 0.05 (*), P value < 0.01 (**), and P value < 0.001 (***). (E) Evaluation of human TB-myofibroblast module expression in fibroblasts from granuloma vs 
uninvolved lungs in an independent NHP study with 4-wk post-infection (p.i) macaques (Bromley et al., 2024) (Materials and methods). Two-sided Mann– 
Whitney U test without correct was used. Statistical annotations: P value < 0.01 (**) and P value < 0.0001 (****).
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host–pathogen interactions (Loxton, 2019). CXCL6 appears to 
function similarly, signaling to neutrophils and self, consistent 
with known functions in inducing fibroblast matrix expres
sion, neutrophil recruitment, and activation (Bahudhanapati 
et al., 2021, Preprint; Mittal et al., 2008). DSG2 (desmoglein) 
is known to induce pro-proliferative activity in dermal 

fibroblasts (Overmiller et al., 2017) and is highly upregulated 
in zebrafish and human granuloma (Cronan et al., 2016). 
GREM1, part of the TGF-β superfamily, contributes to pul
monary fibrosis during the early stages of disease (Shi et al., 
2022). NTN1 (netrin-1), meanwhile, supports endothelial 
survival and regulates angiogenesis, an important process for 

Figure 6. Evidence of MMP1+ CXCL5+ fibroblast populations in TB-diseased human lungs. (A) Representative flow cytometry plot showing the isolation 
strategy of the PDPN+FAP+ fibroblast population from the CD45-EPCAM cell fraction. (B) Cumulative data on frequency of PDPN+FAP+CD90+ fibroblasts as a 
fraction of live lung cells from five separate lung resections. Three separate sections were taken from each TB-diseased lung, corresponding to the most 
diseased and least diseased tissues areas and an intermediate lung piece, according to the expert opinion of the operating surgeon. The Friedman test was used 
to ascertain statistical significance between proportion of PDPN+FAP+ fibroblast between severity groups. (C) Expression of human TB-myofibroblast signature 
and SPP1+CHI3L1+ marker genes in the TST challenge site in vivo model. Active TB TST (n = 48): biopsies from participants with microbiologically confirmed 
pulmonary TB disease within the first month of treatment who underwent TST; latent TB TST (n = 191): biopsies from participants lacking clinical and ra
diological evidence of active TB disease but with a positive peripheral blood IFN-γ release assay; saline (n = 34): biopsies from participants that received saline 
under the skin instead of tuberculin. Each dot corresponds to a sample; horizontal lines represent median values. Two-sided Mann–Whitney U test without 
correct was used. Statistical annotations: P value <0.001 (***), P value < 0.0001 (****).
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Figure 7. Cell–cell interaction analysis reveals key discrepancies between TB-diseased and control lung niches. (A) Top 20 ligand–receptor (L–R) pairs 
from MultiNichenet analysis highlighting putative interaction pairs with upregulated interactions in TB-negative lung compared with TB-diseased lung. (B) Top 
20 ligand–receptor (L–R) pairs from MultiNichenet analysis highlighting putative interaction pairs differentially communicating in TB-diseased lungs. 
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dissemination of the pathogen (Castets et al., 2009; Polena 
et al., 2016).

We also examined other top ligands sent by this subcluster 
in TB-diseased lungs specifically. Our analyses suggested a 
prominent role for the MMP1+CXCL5+ subcluster in coordinating 
fibrosis and inflammation through expression of collagen pro
teins, MMP1, and cytokines (Fig. 8 D). Notably, MMP1 itself acts 
as a ligand for ITGA2, a receptor expressed on epithelial cells, 
endothelial cells, and IL6+CCL2+ fibroblasts, mirroring the AT1– 
fibroblast interactions aforementioned. CXCL5 interacts with 
CXCR2 on CD16+ monocytes and neutrophils, a key axis for re
cruitment of these cells during TB infection and likely fueling 
granuloma formation (Nouailles et al., 2014; Sawant et al., 2016; 
Serbina et al., 2008). MMP1+ CXCL5+ fibroblasts also secrete 
numerous ECM-related ligands: for instance, collagen molecules 
COL1A1, COL1A2, COL6A3, COL3A1, and COL5A2 signal to epithelial 
cells and monocytes, in addition to other fibroblasts via an au
tocrine loop; ECM proteins POSTN, FBN-1, and DCN signal with 
other nonimmune cell types; and, MXRA5, a matrix remodeling 
protein like MMP1, communicates to AT1/AT2 cells via AGER. 
Notably, many of these ECM-related ligands are highly upre
gulated in LN TB granuloma (Data S5 C). Collectively, our 
analyses suggest aberrant lung remodeling may be driven by 
fibroblast and AT1 communication, leading to the fibrosis typical 
of TB—a trend not necessarily reflected from cell type abun
dance changes.

Cell–cell interaction analysis underscores the relevance of 
SPP1+ macrophages in human TB
The main receivers of fibroblast signaling were fibroblasts 
and macrophages (Fig. 7 C). Among macrophage subclusters, 
the top receivers for TB-upregulated fibroblast signals were 
the ARL4C+EMP1+ and SPP1+CHI3L1+ cells (Fig. S5 A). Con
versely, SPP1+CHI3L1+ subcluster mostly signals to fibro
blasts, followed by macrophages (Fig. S5 B), suggesting a 
potentially important role in fibroblast-macrophage cross 
talk. SPP1+ macrophages have been identified in the lungs of 
individuals with COVID-19, IPF, and lung carcinoma and in 
BAL fluids from TB and latent TB patients (Sikkema et al., 
2023; Yang et al., 2023). In tumors, SPP1+ macrophages are 
highly immunosuppressive and associated with poor out
comes, and they have been shown to orchestrate fibroblast 
activation during fibrosis, driving myofibroblast activation 
in heart and kidney injuries (Gao et al., 2022; Hoeft et al., 
2023; Matsubara et al., 2022). Comparing against other 
known markers, we noted that our SPP1+CHI3L1+ macro
phages appeared congruent with SPP1+ macrophages de
scribed in other disease contexts (Fig. S5, C and D). Cell–cell 
interaction analysis showed that fibroblasts were the major 
receiver of SPP1+CHI3L1+ macrophage signals (binomial test P 
value = 8.7 × 10−14), and nominated SPP1 and FN1 as the major 
ligand genes driving cross talk with fibroblasts (Fig. S5 E).

To further confirm the presence of SPP1+ macrophages in 
human lung TB granulomas, we performed immunohisto
chemical staining of tissues from two independent donors. We 
observed abundant total macrophages (CD68+) in both the 
granuloma and surrounding lung tissue and localization of al
veolar macrophages (CD68+CD206+) in the non-granulomatous 
lung tissue, where alveolar sacs were still visible (Fig. S5 F, left). 
In stark contrast, CD68+SPP1+ macrophages localized to the inner 
cellular periphery immediately bordering the necrotic core of 
the granuloma and were largely absent from surrounding lung 
tissue. Quantification of SPP1 expression shows a significant 
difference between the inner cellular layer and the other regions 
and to a larger degree than CD68 (Fig. S5 F, right). Notably, 
CTHRC-1, a marker for MMP1+CXCL5+ fibroblasts that was lo
calized to granuloma at the protein level, has been suggested to 
play a role in cross talk with SPP1+ macrophages (Liu et al., 2022) 
(Fig. S4 B). These lines of evidence support the direct interaction 
between SPP1+ macrophages and myofibroblast-like phenotype 
in human TB granuloma implied by the single-cell data.

Spatial transcriptomics confirms myofibroblast-like 
phenotype in independent human cohort
Finally, to confirm our observations from human TB lung and LN 
granulomas, we investigate cells within the Visium dataset for 
expression of the myofibroblast-like module (Table S5, Fig. 1 B, 
and Fig. S1 A). Consistent with our other data, the human 
TB-myofibroblast signature was detected in both current and 
post-TB lesions and was particularly highly expressed around 
granuloma structures (Fig. 9 A). In addition, we found that both 
HIV+ and HIV− samples displayed clear human TB-myofibroblast 
signature expression, suggesting it is not limited to TB mono- 
infected individuals, as potentially suggested by our single-cell 
data (Fig. 4 A). Indeed, in both current and post-TB samples, HIV 
was associated with a higher TB-myofibroblast signature ex
pression (Fig. 9 B). This may be because HIV impairs CD4+ T cells 
and macrophage-driven repair and increases TGF-β release, 
keeping myofibroblast-like cells chronically active (Joseph et al., 
2022; Meng et al., 2016; Theron et al., 2017). In HIV− samples, 
current TB was associated with elevated expression of the 
myofibroblast-like module, but the opposite was true in HIV+ 

samples, likely due to persistent systemic immune activation 
from HIV. These observations suggest that both pathogens can 
exacerbate the expression of this disease-associated module. 
Within each disease condition, we found granuloma samples had 
higher human TB-myofibroblast signature expression, with the 
exception of HIV+ post-TB group, where expression was highest 
in the iBALT sample (Data S6 A). However, only one iBALT 
sample was available for this condition, which limits our confi
dence in the observation. Nevertheless, these data confirm that 
the human TB-myofibroblast phenotype is localized to human 
TB lung granuloma in both active TB and PTLD, irrespective of 
concurrent HIV infection.

(C) Summary of top 200 interactions in TB-diseased and TB-negative/control lungs by the number of interactions between each cell pair. Cartoons on the right 
of each heatmap show the suggested major modes of interactions in each condition. (D) Circos plots of significant interaction pairs in TB-diseased lungs from 
LIANA, where sender and receiver cell types in each condition are clustered to reflect similar patterns.
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Figure 8. Global interaction analysis identifies key players in cellular communication within TB-diseased lung tissues. (A) Heatmap visualization of 
interaction flux analysis. Rows represent sender cell types; columns represent receiver cell types. Each entry represents the potential flux of interaction from 
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For each of the granuloma samples, annotations on granu
loma borders (“granuloma cuff”) were designated in paired H&E 
staining images by a trained histopathologist and used to ex
amine the spatial distribution of gene signatures (Fig. S1 B). This 
analysis confirmed that the human TB-myofibroblast signature 
was strongly expressed in the granuloma cuffs compared with 
surrounding regions, with a slightly higher presence outside the 
granuloma compared with the granuloma core (Fig. 9 C). In
terestingly, examining the other fibroblast modules revealed 
distinct spatial orientation relative to the granuloma (Data S6 B). 
Like MMP1+ CXCL5+ fibroblasts, COMP+CLIP+ and SERPINE2+

COL1A+ fibroblasts displayed a similar pattern of enrichment 
around the granuloma cuff, whereas IL6+CCL2+ fibroblasts and 
HSP fibroblasts exhibited greater enrichment outside the gran
uloma. MMP1+ CXCL5+ fibroblast, however, showed the largest 
difference for marker expression between the Visium spots on 
the granuloma cuff and those inside/outside the cuff.

SPP1+CHI3L1+ macrophage marker expression was similarly 
enriched on the granuloma cuff, supporting the colocalization of 
myofibroblast-like phenotype and SPP1+CHI3L1+ macrophages at 
this site (Fig. 9 C). To confirm this relationship, we looked at the 
correlation between all macrophage subset markers with the 
human TB-myofibroblast signature across all samples and found 
the strongest correlation with SPP1+CHI3L1+ macrophages com
pared with the other macrophage subsets (Fig. 9 D). Finally, we 
conducted a ligand–receptor analysis to identify spatially co- 
expressed ligand–receptor pairs using the same database as 
our analysis on scRNA-seq data (Materials and methods). This 
identified the same L–R pairs as the top pairs in both samples, 
including, for example, SPP1–CD44. This interaction was nomi
nated as the top L–R pair in several samples, specifically high
lighted around the granuloma cuffs and in our scRNA-seq data 
(Fig. 9 E and Fig. S5 E).

Taken together, our scRNA-seq and spatial transcriptomics 
data support the robustness and generalizability of the human 
TB-myofibroblast signature and confirm its colocalization and 
cross talk with SPP1+ macrophages in human TB lung granuloma.

Discussion
TB is a global pandemic, and transformative interventions are 
hindered by an incomplete understanding of its pathogenic 
processes, including the extensive lung remodeling in pulmo
nary TB that drives transmission, mortality, and a high burden 
of PTLD following successful treatment (Dheda et al., 2016). 
Several sequencing studies have highlighted a central role for 
ECM remodeling of the human lung in TB, but none have re
solved the contributions of individual cell types (Elkington et al., 
2022). Additionally, an emerging issue in TB research is that 

findings from the circulation—the compartment mostly fre
quently studied—often fail to reflect processes in diseased tissue 
(Ogongo et al., 2020). To address these gaps, we analyzed 
scRNA-seq data generated from lung tissue freshly resected to 
treat complication arising from TB disease and systemati
cally cross-referenced our findings with public datasets from 
M.tb-infected NHPs, the HCLA, LN TB granulomas, and TST 
challenge, as well as additional immunohistochemical, flow cy
tometric, and spatial transcriptomic data from the same cohort 
to identify TB-specific changes at the cellular level. Collectively, 
our lung datasets provide a key resource defining the cellular 
subsets present in TB-diseased lung and dissecting im
munopathogenic mechanisms. Our data demonstrate substan
tial heterogeneity among key innate immune populations, such 
as macrophages and neutrophils, in infected lung tissue. We find 
that several of these subsets correlate with a recent single-cell 
analysis of M.tb-infected NHPs (Gideon et al., 2022), a study not 
limited by tissue availability or complicated by comorbidities, 
such as HIV, further strengthening our observations. In ad
dition, our data highlight a possible central role for diverse 
fibroblast subsets with TB-diseased lung tissue and with TB 
granuloma, particularly an underappreciated MMP1+CXCL5+ 

fibroblast population that colocalizes with SPP1+ macrophages 
at the granuloma cuff. We hypothesize that the interaction 
between these cells, which express a myofibroblast-like gene 
module, and SPP1+ macrophages may play an important role 
in human TB granuloma development and PTLD, potentially 
aggravating granuloma progression and lung fibrosis. Further 
examining these putative interactions could more deeply in
form our understanding of granuloma biology and suggest 
promising targets for novel TB HDTs.

Previously, limited knowledge on matrix turnover mecha
nisms has hindered the development of clinical strategies for 
managing PTLD (van Kampen et al., 2018); here, our study 
identifies potential cell targets, including heterogeneous fibro
blast subsets such as those expressing a myofibroblast-like gene 
module. Lung myofibroblasts are thought to arise from a variety 
of routes, ranging from differentiation of tissue-resident fibro
blasts, EMT (Willis et al., 2006), endothelial-to-mesenchymal 
transition (Piera-Velazquez et al., 2011), and bone marrow– 
derived progenitors such as fibrocytes (Mori et al., 2005). The 
myofibroblast-like cells showed in this study express genes ob
served in immune fibroblasts (lineage−, CD34−, CD90+, FAP+, and 
PDPN+) (Nayar et al., 2019). These cells are critical for the for
mation of tertiary lymphoid structures, which arise in response 
to sustained inflammation (Gago da Graça et al., 2021) and are 
commonly observed in TB-infected lung tissue (Sawyer et al., 
2023). Additionally, matrix remodeling driven by skewed fi
broblast populations can profoundly impact the cellular niche. 

sender cell to receiver cell, whereas the total flux of each sender cell type is summarized on the left. Sender cell types are sorted based on descending order of 
total flux (Materials and methods). (B) Top: Bar plot showing top 30 and bottom 30 ligands by log fold-change of interaction strength between TB and control 
lungs across all sender cell types. Bottom: Log fold-change of interaction strength between TB and control lungs in each sender cell type (Materials and 
methods). (C) Dot plot of top five ligand by ligand activity in TB-diseased lungs secreted by MMP1+CXCL5+ fibroblasts and their receivers (Materials and 
methods). (D) L–R interactions with MMP1+CXCL5+ fibroblasts in the TB-diseased lungs; rows (L–R pair) and columns (target cell types) are hierarchically 
clustered by correlation distance (Materials and methods). L–R, ligand–receptor.
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Figure 9. Spatial transcriptomics analysis on post- and current TB lung resections. (A) Heatmap showing the expression of human TB-myofibroblast 
gene signature and SPP1+CHI3L1+ macrophage markers on selective tissue slides from patients who are post-TB (top) or current TB (bottom), alongside paired 
H&E staining (these H&E stains are also shown in Fig. S1 A together with those other samples used for spatial transcriptomics not shown here). (B) Distribution 
of human TB-myofibroblast signature expression on the spatial cohort. HIV statuses are shown in different shades of blue for positive or negative. Two-sided 
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Changes in ECM composition can further perpetuate fibroblast 
reprogramming and ECM remodeling, as seen in escalating 
MMP1 expression (Cole et al., 2018). These findings help guide 
interpretation of our cell–cell interaction analyses, highlighting 
significant roles for ECM-related molecules.

Postprimary human TB is often paucibacillary (Hunter and 
Actor, 2019), and it remains puzzling how profound lung de
struction is generated under such conditions. The data presented 
here may support a model in which fibroblast–ECM interactions 
exacerbate and perpetuate lung destruction in human TB and 
highlight the emerging immune regulatory role of fibroblasts 
(Davidson et al., 2021). Of note, a phase II clinical trial in patients 
with pulmonary TB found that 2 wk of doxycycline, an MMP 
inhibitor, led to significant changes in the peripheral tran
scriptome at 8 wk (Miow et al., 2021), demonstrating how a 
matrix-modulating HDT may influence the immunological tra
jectory of disease. Overall, our single-cell and spatial tran
scriptomics analyses highlight a previously overlooked role for 
myofibroblast-like phenotype as a likely key player in orches
trating the immune response and regulating immunopathology 
in TB.

Anti-inflammatory macrophages are generally enriched in 
TB-diseased tissue during chronic TB infection, potentially 
limiting immunopathology but also creating a favorable niche 
for M.tb replication (Shim et al., 2020). Here, we found that most 
macrophage populations were skewed in TB-diseased lung tis
sues compared with TB-negative tissues, with a similar trend 
between post-TB and current TB spatial samples. Of particular 
interest are SPP1+ macrophages, which were elevated in TB- 
diseased lung tissue and strongly associated with the granu
loma cuff in our spatial transcriptomics and histology data. This 
population has not been characterized in TB lung granuloma but 
is emerging as an important player in tumors, IPF-diseased lung 
tissue, and other fibrotic conditions (Morse et al., 2019; Qi et al., 
2022). The presence of SPP1+ macrophages in TB granuloma was 
further supported by granuloma RNA-seq data from human LNs 
and experimentally infected NHPs. Furthermore, the SPP1+ 

macrophage markers were upregulated following TST challenge, 
which was amplified by concurrently active TB disease, linking 
their induction to M.tb exposure. Moreover, we found evidence 
of cross talk between SPP1+ macrophages and the human TB- 
myofibroblast phenotype, a previously underappreciated but 
potentially important interaction in TB. This putative interac
tion is supported by histological and spatial transcriptomics 
data, indicating both SPP1+CHI3L1+ macrophages and MMP1+ 

CXCL5+ fibroblasts are tightly associated with the granuloma 

cuff. In IPF, SPP1+ macrophages are highly expanded in fibrotic 
lesions and cross talk with myofibroblasts to drive fibrotic 
changes (Morse et al., 2019); in colorectal cancer, there are direct 
interactions between SPP1+ macrophages and FAP+ fibroblasts 
expressing high levels of MMP1/3 (Qi et al., 2022). In addition, 
mechanistic work in murine models showed SPP1+ macrophages 
can directly activate myofibroblasts via SPP1 and FN1 (Hoeft 
et al., 2023), both of which are implicated in the SPP1+ 

macrophage-fibroblast cross talk we found in TB lung tissues. 
This interaction was also linked to an immune-suppressive, 
pro-tumorigenic microenvironment through active ECM 
deposition—resembling granuloma formation in TB (Li et al., 
2024). Thus, we hypothesize that the SPP1+ macrophages- 
myofibroblast axis likely plays an important role in TB gran
uloma biology.

While our study provides much needed information on TB- 
diseased human lungs, several limitations should be acknowl
edged. Our cohort size is modest, and substantial variability 
between patients and sampling location exists in both the pri
mary resections used in the single-cell analysis and flow cy
tometry experiments. We attempted to address these challenges 
by obtaining additional samples for spatial transcriptomics and 
by integrating our analyses with data from relevant public da
tasets. However, we are still likely to have missed some biolog
ical features underlying TB pathology. In addition, further work 
is needed to dissect the mechanistic role of the myofibroblast- 
like phenotype and the interaction of the cells that express 
it with SPP1+ macrophages in TB immunopathology. Possible 
avenues include co-culture systems, conditioned media assays, 
or recruitment assays to determine whether and how these fi
broblasts influence and are influenced by macrophage behav
iors, as well as whether chemotactic interactions exist. Ex vivo 
stimulation experiments with TB antigens on isolated fibroblasts 
or macrophages could help establish whether TB-specific cues 
directly drive differentiation toward these disease pheno
types. Genetic approaches, such as targeted knockout of key 
genes in MMP1+CXCL5+ fibroblasts or genome-wide CRISPR 
screens in fibroblasts within animal models of TB, could 
clarify causal relationships between these cells and TB 
pathogenesis and tissue remodeling. Beyond identifying 
causality, studying earlier time points in TB infection will be 
necessary to understand disease progression and the origins 
of TB complications. Ultimately, an integrated spatial, tem
poral, single-cell resolution disease map may be required to 
fully understand pulmonary reprogramming due to TB and 
guide optimal treatment strategies that maximize bacterial 

Mann–Whitney U test without correction was used for statistical testing. Statistical annotation: P value < 0.0001 (****). (C) Distribution of SPP1+CHI3L1+ 

macrophage markers and human TB-myofibroblast signature on the spatial data across all Visium spots. Left two panels: Manual segmentation of the 
granuloma structure was done to allow separation of the Visium slide into three different regions: in granuloma, on granuloma border (cuff), and outside of 
granuloma (Materials and methods). Right two panels: The same as left panels with the exception that “on border” = True means on granuloma cuff and False 
means the rest. Two-sided Mann–Whitney U test without correction was used for statistical testing. Statistical annotation: P value < 0.0001 (****). 
(D) Correlation between human TB-myofibroblast signature and all macrophage subpopulations’ markers. Each circle represents a Visium sample. Boxplot of 
the Pearson’s r distribution is shown for each macrophage subtype. Mann–Whitney U test without correction were used for statistical testing. Statistical 
annotation: P value < 0.0001 (****). (E) Spatially informed ligand–receptor (L–R) analysis using LIANA+ on Visium samples. Examples are shown where 
SPP1(L)–CD44(R) interactions are being nominated as top L–R pairs. H&E overlaid with pathology annotation for granuloma structures are shown next to 
heatmap of L–R interaction scores, which are calculated at each Visium spot using spatially weighted Cosine similarity (Materials and methods).
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clearance while minimizing or restoring post-TB lung 
damage.

In sum, our study demonstrates the power of single-cell 
profiling to help identify and spatial transcriptomics to contex
tualize potential drivers of immunopathology underlying lung 
remodeling in TB disease. Our analysis highlights specific mac
rophage and fibroblast populations, as well as ECM-related 
processes, as promising targets for novel HDTs that could com
plement or offer alternatives to standard antibiotic regimens.

Materials and methods
Human study ethics and participants
Human lung tissue was obtained from patients undergoing 
surgery due to TB sequelae, including, but not limited to, he
moptysis, cavitation, bronchiectasis, shrunken, or collapsed 
lung, at the Department of Cardiothoracic Surgery at King Di
nuzulu Hospital in Durban, KwaZulu Natal, and Inkosi Albert 
Luthuli Central Hospital in KwaZulu-Natal. All samples were 
collected with approval from the Biomedical Research Ethics 
Committee and written informed consents obtained from all 
subjects (BREC no. 019/13).

Human lung tissue preparation
scRNA-seq samples: The lung tissue was processed within 3 h of 
receipt as described (Ardain et al., 2019). Briefly, a piece of the 
lung tissue was cut for histology and placed in 4% paraformal
dehyde. The remaining piece of tissue was dissected into small 
pieces (5 × 5 × 5 mm) and infiltrated with a collagenase (Sigma- 
Aldrich) and DNase 1 (Sigma-Aldrich) in RPMI (Sigma-Aldrich) 
with 10% FBS (Hyclone) for 30 min. Mechanical digestion at 
room temperature was performed using the Gentle MACS 
(Miltenyi Biotec), followed by agitation at 37°C for 30 min. The 
mechanical digestion and agitation were repeated once more, 
followed by filtration of the resulting cellular suspension using 
the 70-mm (Corning) and 40-mm (Corning) strainer, followed 
by the lysis of red blood cells. Cells were then stained with trypan 
blue (Thermo Fisher Scientific) and enumerated using an auto
mated cell counter (Bio-Rad) or a manual counter (Kova).

Spatial transcriptomics (Visium) samples: A section of lung 
was cut and transferred to 10% buffered formalin to fix for 24 h, 
then transferred to 70% ethanol until wax embedding. The 
sample was then processed in a vacuum filtration processor 
using a xylene-free method and isopropanol as the main sub
stitute fixative. The tissues were embedded in paraffin wax. 
Tissue sections (5 µm) of specimens of good quality, as deter
mined by trained histotechnologist, were mounted on charged 
slides, air-dried for 30 min, then at 42°C for 3 h in a desiccator, 
and stored in a desiccator at room temperature until use.

NHP study ethics and research animals
The macaques used for generating the scRNA-seq data were part 
of the study published by Ganchua et al., and the same ethical 
and maintenance procedures were followed (Ganchua et al., 
2024); all experimental manipulations, protocols, and care 
of the animals were approved by the University of Pitts
burgh School of Medicine Institutional Animal Care and Use 

Committee (IACUC). The protocol assurance number for our 
IACUC is A3187-01. Our specific protocol approval numbers for 
this project are 15066174 and 18124275. The IACUC adheres to 
national guidelines established in the Animal Welfare Act (7 
U.S.C. Sections 2131–2159) and the Guide for the Care and Use of 
Laboratory Animals (eighth edition) as mandated by the US 
Public Health Service Policy.

NHP infections and disease tracking by PET-CT
Five cynomolgus macaques (Macaca fascicularis, aged between 
5.3 and 9.1 years), obtained from Valley Biosystems, were part of 
a previously published study as the “immune naı̈ve” control 
group (Bromley et al., 2024; Ganchua et al., 2024). They only 
received a low-dose infection (7 CFU) with M.tb strain Erdman 
and were necropsied 4 wk after infection. PET-CT was per
formed just prior to necropsy and results were analyzed using 
OsiriX viewer as previously described, with a detection limit of 
1 mm (White et al., 2017). The infection dose was determined by 
colony counts after plating an aliquot of the infection inoculum 
on 7H11 agar plates, which were incubating for 3 wk at 37°C/ 
5% CO2.

Necropsy protocols
Procedures carried out during necropsy have been previously 
described (Ganchua et al., 2024). Briefly, 1–3 days before ne
cropsy, PET-CT scans were taken to pinpoint the location and 
metabolic activity (FDG activity) of granulomas. These scans 
served as a guide during necropsy for precise identification and 
excision of these samples. On the day of necropsy, macaques 
were sacrificed humanely by infection of sodium pentobarbital 
and terminally bled. Individual granulomas and uninvolved lung 
tissue were all excised and homogenized separately into single- 
cell suspensions. Homogenates were aliquoted for plating on 
7H11 agar for bacterial burden, freezing for DNA extraction, and 
staining for flow cytometry analysis. Any remaining samples 
were frozen for future use.

Human lung scRNA-seq with Seq-Well S3

Seq-Well S3 was implemented as described (Hughes et al., 2020), 
the single-cell suspension was diluted to 15,000 cells in 200 μl of 
RPMI (Sigma-Aldrich) plus 10% FBS (Hyclone) and loaded onto a 
polymethylsiloxane array pre-treated with the same solution for 
15 min. The cells were allowed to settle into the microwells by 
gravity, and the array was washed with PBS (Sigma-Aldrich) and 
sealed with a plasma functionalized polycarbonate membrane 
(Sterlitech). The arrays were then sealed, followed by incubation 
at 37°C for 40 min, followed by a 20-min incubation in lysis 
buffer containing guanidium thiocyanate (Sigma-Aldrich), 
EDTA (Thermo Fisher Scientific), 1% betamercaptoethanol 
(Sigma-Aldrich), and sarkosyl (Sigma-Aldrich) at room tem
perature. The arrays were then transferred to a hybridization 
buffer containing NaCl (Thermo Fisher Scientific), MgCl2 

(Sigma-Aldrich), PBS (Thermo Fisher Scientific), and polyethy
lene glycol (Sigma-Aldrich) and were gently shaken at 60 rpm 
for 40 min. The capture beads hybridized with released mRNA 
from the lysed cells were collected from the array by a series of 
three wash steps with wash buffer containing NaCl (Thermo 
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Fisher Scientific), MgCl2(Sigma-Aldrich), Tris-HCl (Thermo 
Fisher Scientific), and Water (Inqaba Biotec), with centrifuga
tion at 2,500 g for 5 min each iteration. The beads were re
suspended in a master mix for reverse transcriptase containing 
Maxima H Minus Reverse Transcriptase, Maxima Buffer, 
dNTPs, RNAse inhibitor, a template switch oligonucleotide, and 
PEG for 30 min at room temperature and overnight with endto- 
end mixing at 52°C. This was followed by the standard exonu
clease digestion and denaturation of complementary DNA 
(cDNA) hybridized to the bead by 5-min incubation in NaOH 
(Sigma-Aldrich) and washed with a solution containing Tris- 
HCl, EDTA, and Tween-20 (Thermo Fisher Scientific). The 
beads were resuspended in a master mix containing Klenow 
Fragment (NEB), dNTPs, PEG, and the dN-SMRT oligonucleo
tide, incubating for 45 min at 38°C. PCR was performed as de
scribed in the protocol, and the product was subjected to two 
rounds of AMPure XP SPRI (Agencourt) bead cleanup at 0.6× and 
0.8× volumetric ratios sequentially. The library size was ana
lyzed using an Agilent Tape station hsD5000 kit, ensuring that 
the expected product had an average size of ∼1,000 bp and the 
absence of primer dimers especially below 200 bp. The Qubit 
High Sensitivity DNA kit was used to quantify the libraries, and 
they were prepared for Illumina sequencing using the NextEra 
XT DNA Sample Preparation kit. A total of 900 pg of the different 
libraries were added to the tagmentation reaction. The amplified 
product was purified with the AMPure XP SPRI beads, and the 
libraries were pooled for loading onto the NovaSeq 6000 using 
paired-end read structure with custom read 1 primer: read 1: 20 
bases, read 2: 50 bases, and read 1 index: 8 bases.

Spatial transcriptomics with Visium and paired H&E staining
Tissue slides were baked at 60°C for 2 h and dewaxed using two 
xylene changes and rehydrated with descending grades of al
cohol to water. They were then H&E stained and imaged as the 
reference image, and the same slide was then processed as 
per Visium version 2 chemistry protocol following the manu
facturer’s recommendations (Visium Spatial Gene Expression 
for FFPE – Deparaffinization, H&E Staining, Imaging and De
crosslinking, document CG000409 RevD, 10x Genomics, [Sept 
2023]; Visium Spatial Gene Expression for FFPE Imaging 
Guidelines, document CG000436 RevB, 10x Genomics, [Sept 
2023]; Visium Spatial Gene Expression Reagent Kits for FFPE 
User Guide, document GC000407 Rev E, 10x Genomics, [Sept 
2023]). The sequencing results were processed through the 
SpaceRanger software following manual alignment of the fidu
ciary frames using the 10x Loupe browser.

NHP sample scRNA-seq with Seq-Well S3

scRNA-seq was performed on both uninvolved lung tissues and 
granuloma tissues using the Seq-Well S3 platform as described 
by Bromley et al., where the granuloma data were previously 
published (Bromley et al., 2024).

NHP single-cell data alignment and analysis
The transcript reads were aligned as described by Bromley et al. 
(2024). Briefly, transcript reads were tagged for cell barcode and 
UMI using DropSeqTools version 1.12, then aligned to the M. 

fascicularis version 5 genome (https://useast.ensembl.org/ 
Macaca_fascicularis/Info/Index) through the Dropseq-tools 
pipeline on the Terra platform (app.terra.bio) (Macosko et al., 
2015). Aligned reads were collapsed by barcode and UMI se
quences to generate digital gene expression matrices for each 
array, covering 10,000 barcodes. For each sample, gene ex
pression matrices with ≥10,000 barcodes were processed 
through CellBender to estimate ambient RNA fraction. The 
“remove-background” function in CellBender was applied with 
default settings. Next, the matrices “corrected” by CellBender 
were analyzed with Scrublet, with default parameters to detect 
potential doublets. Any transcriptome with a doublet_score > 
0.30 was removed from downstream analyses.

After that, the gene expression matrices for each sample were 
merged and processed in Scanpy (version 1.8.2). Transcriptomes 
were filtered using the following criteria: min_genes >300, 
min_counts > 500, mitochondrial_threshold = 0.05, and genes 
expressed in at least 10 cells. Gene expression counts were 
normalized using default Scanpy parameters (i.e., log2(TP10K+1)). 
Coarse-level cell type clustering and iterative subclustering 
were used to annotate cell types and further detect low-quality 
transcriptomes (e.g., doublets). Cell types were identified using 
canonical markers, and only fibroblast cells were included in the 
analysis presented in this study.

Human lung single-cell data analysis and cell type 
identification
The raw sequencing reads from the NovaSeq run were aligned to 
the hg19 genome assembly and processed in accordance with the 
Drop-Seq Computational Protocol version 2.0 (https://github. 
com/broadinstitute/Drop-seq). The output (cell by gene ma
trix) was then loaded to the Seurat R package version 3.1.0 
(https://satijalab.org/seurat/), transformed to loge(UMI +1), and 
followed by scaling by a factor of 10,000. The overall quality 
was assessed by the distribution of reads, transcripts, and 
genes per cell (percentage of mitochondrial genes <5, nFeature_ 
RNA<2500, nFeature_RNA>200, and nCount_RNA>200). 
SCTransform by Seurat was called to perform normalization of 
the gene counts, selecting top 3,000 highly variable genes, and 
scaling normalized gene counts. Principal component analysis 
was run on the selected highly variable genes to give the top 
50 PCs. A custom elbow-based method was used to find the 
smallest number of PCs (n_pcs) where the eigengap between 
two adjacent PCs drops below 20 percentile of all eigengaps 
among top 50 PCs. Uniform Manifold Approximation and 
Projection (UMAP) was calculated using the RunUMAP function, 
and neighborhood graph was calculated by FindNeighbors, both 
using reduction = “pca” and selecting top n_pcs as input di
mensions. Unsupervised Louvain clustering using the FindClusters 
was used to identify transcriptionally similar cells with pa
rameters assay = “integrated”, dims.use = n_pcs, k.param = 
ceiling(0.5*sqrt(#cells)), and we performed a resolution scan 
for the best clustering resolution from 0.2 to 2 while optimizing 
for silhouette score. Cell type annotation were done by cross- 
referencing canonical cluster defining genes with well-curated 
lists and online databases such SaVant T (http://newpathways. 
mcdb.ucla.edu/savant-dev/) and GSEA/MsigDB (https://www. 
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gsea-msigdb.org/gsea/msigdb/index.jsp). Doublet clusters where 
multiple canonical markers were expressed are identified and 
removed, and the entire dataset are reprocessed starting from 
the SCtransform step. Final differentially expressed (DE) gene 
for each of the major clusters were found by calling FindAll
Markers from Seurat using default setting and adjusted P value 
cutoff <0.05, and top DE genes were found by ranking log fold- 
change values from high to low. Heatmap of DE genes were 
plotted using Seurat function DoHeatmap, and dotplot was 
achieved using function DotPlot.

Subclustering for major cell groups (macrophage/monocytes, 
neutrophils, epithelial cells, and fibroblasts) were performed 
similarly to the entire dataset after subsetting to the specific cell 
types. Marker genes for each subcluster was found by calling 
FindAllMarkers from Seurat using default setting, and signifi
cant genes (adjusted P value < 0.05) are visualized with custom 
volcano plots.

Comparison with human LN data was done for the top 10 
DE genes in each cellular subcluster and checked over the TB 
vs. control differential testing result from the human LN 
granuloma study.

Clustering analysis on cell subtypes
Proportion of cell subtypes in each patient was calculated, and 
Pearson’s correlations between every pair of broad level cell type 
are calculated. For each pair of cell types, we ran permutation 
test by randomly reassigning cell type labels to generate a set of 
background correlation values, and P values are calculated as the 
percentage of the permutated correlation values exceed the 
original observation. Hierarchical clustering on the cell types are 
done by feeding in the pairwise correlation into Python function 
linkage with method = “average,” metric = “correlation”; we then 
use function fcluster with a defined k to call cluster from the 
returned linkage result with criterion = “maxclust”. We grid 
searched through k from 2 to 29 (one less than the number of cell 
types) and determined the optimal cluster number by computing 
the silhouette score from each clustering result with function 
silhouette_score and a precomputed correlation distance. This 
allowed us to select k = 12, which resulted in the highest sil
houette score. For each of the 12 clusters identified through hi
erarchical clustering, we further calculated permutation test 
P values to examine average correlation values within and out
side of each cluster and annotate those that has within-group 
P value < 0.05.

Differential abundance testing
Statistical differences in the cell type abundance between TB- 
diseased and TB-negative lungs were tested by two-sided Fish
er’s exact test at the cell level and adjusted for multiple testing 
correction by Holm’s method.

Cluster-free differential abundance testing is done using 
milopy in Python. Neighborhoods are constructed over the en
tire dataset using k = ceil(0.5 ×

ffiffiffi
n
√
), where ceil rounds up to the 

nearest integer and n is the number of cells. Neighborhoods are 
made with prop = 1. Function DA_nhoods were called with 
design = ∼ HIV + TB to account for the effect of HIV status. For 
interpretation, we only kept neighborhoods with neighborhood 

annotation fraction > 0.5 and labeled them with the majority 
cells’ annotation. Due to the small sample size, we opted to use P 
value instead of the spatial false discovery rate (FDR) devised in 
milopy for significance.

Bulk RNA-seq profile deconvolution and comparison
For comparing the marker genes in each subcluster with DE 
genes in bulk RNA-seq on human LN TB granuloma samples, 
we first selected top 50 DE genes in each subcluster. Note 
that some of the DE genes in a broad cell type may overlap 
with the DE genes in another, since the differential analysis 
was done within each broad cell type. Hence, we remove the 
genes that are shared between cell types, re-ranked the re
maining DE genes by log-fold change, and took the top 10 DE 
genes to compare with the bulk differential expression 
results.

For deconvolution of the human LN TB granuloma and con
trol samples, we applied tool MuSiC (1.0.0) separately on TB and 
control samples, using annotated data in our study as single-cell 
reference. We kept all the cell types for deconvolution except 
alveolar macrophages, which should only exist in lungs. Other 
parameters are kept as default.

We applied a standard two-sided T test to compare the dif
ference between inferred cell type proportions between TB and 
control LN samples, with Bonferroni correction for multiple 
testing.

Fibroblast label transfer and gene signature finding
Travaglini et al. (2020) stromal cell type calling
Top 20 markers for each stromal cell population by Travaglini 
et al. (2020) (Table S4) were found by filtering on P value < 0.05 
and sorted by average log fold-change. AddModuleScore from 
Seurat was used to calculate module score of these markers, and 
“Travaglini.fib.subtype” was called based on which cell type 
gives the maximum module score, where “ambiguous” was as
signed if no score gives a positive value. Proportion of Trav
aglini.fib.subtype was calculated in each fibroblast cluster given 
this new cell annotation.

HLCA label transfer
HLCA label transfer onto our dataset was achieved following 
their tutorial (https://github.com/theislab/scarches/blob/hlca_ 
tutorial_improvements/notebooks/hlca_map_classify.ipynb). 
Briefly, label transfer was done using asArches on the raw 
counts of the entire dataset on the genes that are part of the 
reference model. Annotation level 3 data were used in this 
paper. Celled called as “fibroblast” or “myofibroblast” are 
considered together as fibroblast population, which are highly 
consistent with our manual annotation (>95% true positive 
rate). For better comparison, we only included HLCA fibro
blasts (and myofibroblast) with tissue source annotation “lung 
parenchyma.” Differential gene expression analysis was per
formed between all TB-negative controls (from both HLCA and 
our study) and TB-diseased lungs (only from our study) on log 
normalized counts. GSEA was run in R using gene sets from 
MSigDB (accessed using msigdbr) on DE genes passing filter for 
Benjamin–Hochberg adjusted P value < 0.05.
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Gene module finding with hdWGCNA
Single-cell version of WGCNA was run using tool hdWGCNA 
following tutorial (https://smorabit.github.io/hdWGCNA/ 
articles/basic_tutorial.html). Briefly, gene_select = “varia
ble” was used to set the variable gene selection approach 
using SetupForWGCNA. To avoid sparsity in the single-cell 
data, we first constructed metacells that aggregates the ex
pression profile based on neighborhood information. Meta
cells were constructed through MetacellsByGroup call with 
parameters k = 10, max_shared = 5, and min_cells = 20; 
group.by uses the categories for fibroblast subcluster and 
disease status (TB, HIVTB, HIV control, and cancer control), 
and ident.group is also set to be the subcluster. SetDatExpr 
was called with “SCT” assay and “data” slot for scaled ex
pression. TestSoftPowers function was called with net
workType = “signed”. The rest follows the default analysis 
workflow. Top genes in each module ranked by eigen-based 
connectivity (kME) are visualized by running PlotkMEs. 
Feature plot of module eigengenes (MEs) for each module 
was plotted by running ModuleFeaturePlot with features = 
“MEs”. ModuleCorrelogram function was used to visualize 
the correlation between each module based on their MEs, 
and VlnPlot from Seurat was used to visualize the difference 
of module MEs between subclusters.

LN granuloma laser capture microdissection RNA-seq study
FFPE clinical samples from 24 adult patients undergoing medias
tinal or neck LN biopsy were selected (seven TB, 10 sarcoidosis, 
and seven normal), and the first analysis has previously been 
reported (Reichmann et al., 2014; GEO accession code GSE174443). 
The patients were treatment näıve and had no significant co
morbidities, were HIV negative, and were nonsmokers. Sections 
of 10 μm thickness were cut, floated in RNase-free water, mounted 
on to polyethylene naphthalate membrane glass slides, and dried 
at 37°C overnight. Sections were dewaxed with xylene immersion 
followed by xylene removal with 100% EtOH. Laser capture mi
crodissection was used to isolate granulomas or similar area of 
control normal tissue. Each sample underwent total RNA extrac
tion and sequenced using Ion Torrent sequencing. Raw sequenc
ing data were aligned using Kallisto software and annotated to 
gene level by ensembldb, and sleuth programs to ensure similar 
results were found. Inter-sample normalization was performed 
using TMM normalization (edgeR).

Evaluation of differential genes in LN granuloma dataset
Genes identified from each cluster during single-cell se
quencing analysis were searched within the bulk RNA-seq 
dataset of granulomas isolated by laser capture microdis
section (GEO accession code GSE174443), where differential 
gene expression analysis was performed using limma with 
its voomWithQualityWeights function (version 3.38.3, R) 
with Benjamini–Hochberg FDR of < 0.05. Filter values were 
optimized to yield the highest number of differentially ex
pressed genes across the study cohort. GraphPad Prism 9 was 
used to plot the average gene expression of seven control and 
seven TB LNs, with box-and-whisker values generated using 
one-tailed unpaired T test.

Evaluate gene module in NHP dataset
Gene modules found from above are taken to be evaluated in 
NHP data. Top 50 hub genes are ranked by eigengene-based 
connectivity (kME) and used to score on fibroblasts from 
the NHP dataset using function score_genes from Python 
package scanpy. Two sided Mann–Whitney U test without 
correction was used to compare module usage between dif
ferent conditions.

Evaluate gene modules in human TST challenge dataset
Top 50 hub genes from the Fibroblast-M1 module from 
hdWGCNA are taken as the human TB-myofibroblast module 
as described above, along with differentially expressed 
marker genes from SPP1+CHI3L1+ macrophages (Data S8), they 
are used to score on the bulk RNA-seq data which has been 
preprocessed following methods in Pollara et al. followed by 
calculating geometric means of all the genes in set (Pollara 
et al., 2021). Two sided Mann–Whitney U test without cor
rection was used to compare module usage between different 
conditions.

Cell–cell interaction analyses
MultiNicheNet
Analysis was run using package multinichenetr following tu
torials on https://github.com/saeyslab/multinichenetr. Briefly, 
recommended ligand–receptor network and ligand-target ma
trix were downloaded from https://zenodo.org/record/7074291/ 
files, and a SingleCellExperiment object was constructed from 
the RNA assay from the Seurat object. Analysis was defined for 
senders and receivers as all broad-level cell types shown in Fig. 1. 
We performed genome-wide differential expression analysis of 
receiver and sender cell types to define DE genes between the 
conditions of interest (TB-negative and TB-diseased lungs). 
Empirical P values were calculated after differential expression 
calculation using function get_empirical_pvals. Then, we pre
dicted NicheNet ligand activities and NicheNet ligand-target 
links based on calculated differential expression results using 
function get_ligand_activities_targets_DEgenes with parame
ters logFC_threshold = 0.50, p_val_threshold = 0.05, fraction_ 
cutoff = 0.05, p_val_adj = FALSE, and top_n_target = 250. We see 
the information collected above to prioritize all sender-ligand- 
receiver-receptor pairs using function generate_prioritization_ 
tables with prioritizing weights: “de_ligand” = 1, de_receptor” = 
1, “activity_scaled” = 2, “exprs_ligand” = 2, “exprs_receptor” = 2, 
“frac_exprs_ligand_receptor” = 1, “abund_sender” = 0, “abund_ 
receiver” = 0, and fraction_cutoff = 0.05; grouping_tbl consists 
of sample ID and TB status. Circoplot visualizations of top 20 
ligand–receptor pairs in each TB status group were done on 
prioritization table outputs. Summary heatmap was done over 
top 200 interactions for enrichment of interactions between 
cell types.

Given the requirement to perform genome-wide differential 
expression analysis to identify DE genes between TB conditions, 
we could not apply the same MultiNicheNet framework to all 
subclusters, given some subclusters do not have enough power 
to detect. Hence, we switched to LIANA for an unbiased cell–cell 
communication analysis at the subcluster level.
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LIANA
LIANA analysis was first independently run on both TB-diseased 
data and healthy control data using function liana_wrap, fol
lowed by liana_aggregate from the LIANA package in R using 
default parameters on RNA assay from Seurat. We kept only 
interactions concordant between methods by filtering for in
teractions with aggregate_rank ≤0.01. Top 20 MMP1+ CXCL5+ 

fibroblast-specific signaling in TB was extracted, where inter
action specificities are extracted from natmi.edge_specificity 
values and expression magnitudes are from sca.LRscore value 
between interactions. Senders/receivers are ordered by hierar
chical clustering based on Pearson’s correlation of sca.LRscore 
values.

We summarized the sender–receiver interaction frequencies 
from the filtered interactions in each TB status group and cal
culated the difference between the two frequency matrices. 
Lastly, we normalized by the largest absolute value of differ
ences for plotting the interaction difference heatmap. To visu
alize interactions strengthened in TB-diseased group and 
TB-negative group, we defined the edge weight of interactions 
by the natmi.edge_specificity from LIANA output and edge_FC 
as the fold change between the TB group and control group with 
a pseudo edge weight of 10−6 if control group is 0. We counted 
the number of interactions between sender–receiver groups 
involved in interactions of edge_FC > 1, defined as “pos
logFC.cellcell.count” and similarly the number of interactions 
between sender–receiver groups involved in interactions of 
edge_FC < 1, defined as “neglogFC.cellcell.count.” We clustered 
sender and receiver in TB-upregulated interactions (summa
rized in “poslogFC.cellcell.count”) and TB-downregulated in
teractions (summarized in neglogFC.cellcell.count) based on 
Pearson’s correlation of interaction count similarities between 
senders and receivers, respectively. Hierarchical clustering was 
done using pheatmap followed by inspecting tree clusters and 
calling groups using cutree. For circos plots of TB-upregulated 
sender–receiver pairs and TB-downregulated sender–receiver 
pairs, we only selected for pairs with interaction counts ex
ceeding 80 percentile of all pairs in the particular condition, 
using function chordDiagram from R package circlize.

For visualizing the interactions between fibroblast and 
macrophages and SPP1+ macrophage signaling, we visualized the 
count of interactions with aggregate_rank ≤ 0.01 and edge_FC > 
1 and used chordDiagram to plot.

Ligand interaction strength calculation
Mean TB edge is defined as the mean of interaction edge weight 
in TB-diseased group for specific sender and ligand combination, 
and mean_CTR_edge is defined as the mean of interaction edge 
weight in TB-negative group. weighted_mean_TB is defined as 
mean_TB_edge weighted by the count of interaction involving 
that ligand in each sender group, and similarly for weighted_ 
mean_CTR. Finally, weighted_mean_FC (e.g., interaction strength 
change) is defined as weighted_mean_TB/weighted_mean_CTR. 
Top 30 and bottom 30 ligands by the interaction strength are 
chosen to be visualized in Fig. 5 D.

We also calculate an unweighted mean_FC = mean TB edge/ 
mean_CTR_edge for the interaction strength change in each 

sender cell type, and we consider an interaction involving a 
ligand as positive if the log10(mean_FC) is positive and negative 
if the log10(mean_FC) is negative, which reflects whether the 
interaction is stronger or weaker in TB-diseased vs. TB-negative 
group. Positive and negative interaction counts are tallied for 
each ligand, and a ligand is thought to be dominantly “positive” 
(colored red in barplot) if positive interaction count is 50% 
higher than negative interaction count and “negative” (colored 
blue) if negative interaction count is 50% higher than positive 
interaction count. Mean_FC and log10(mean_FC) between TB- 
diseased and TB-negative samples are used to indicate ligand 
activity importance in each sender cell type; sender cell types are 
grouped according to clustering for TB-diseased senders in cir
cos plot. Grouping of sender cell types in the ligand interaction 
strength analysis was the same as before. Top five ligands in 
MMP1+CXCL5+ fibroblast by mean TB edge metric was visualized 
for their proposed targets and number of possible receptor in
teractions on each cell type.

For summarizing top 10% of ligands in each TB condition, we 
calculate the mean of edge_FC for each source/ligand combina
tion. The mean edge_FC is then sorted by descending order, 
where the top 10% and bottom 10% are visualized as top ligands 
upregulated in TB (Data S4, B and C). For the barplot of number 
of interactions upregulated in each TB condition, we filter for all 
interactions with edge_FC < 1 or edge_FC > 1 and count the 
number of interactions by sender cell type. We use the same 
cluster groupings/colors for the senders as for the circus plot in 
Fig. 4 D.

Sender signaling co-occurrence analysis
We first filter out sender-ligand combinations that are upregu
lated in TB (edge_FC > 1). Then, for each cell type of interest, the 
normalized RNA count for the upregulated ligands in this cell 
type is retrieved for all the TB-diseased patients. The ligand 
expression in each cell is then weighted by log10(mean_FC), so 
ligands with larger degree of change are weighted higher for 
their expressions. Then, patient averages of all the weighted 
ligand expressions are calculated and summed to arrive at a final 
patient-sender activity score. Pearson’s correlation is computed 
across each pair of cell type’s sender activity scores in nine 
patients.

Interaction flux analysis
In this analysis, we define the flux of interaction in the direction 
from sender to receiver cell types. First, we calculate the mean of 
edge_FC between all LIANA inferred significant interactions 
(aggregate_rank ≤ 0.01) for each sender–receiver pair. Then, for 
each pair of sender–receiver, the flux of interaction is calculated 
by multiplying the sender cell count. The total flux of a given 
sender cell type is then the sum of flux to all receiver cell types.

Fluorescent immunohistochemistry staining
Sample preparation
Multiplex fluorescent immunohistochemistry staining of mac
rophage markers was performed on lung tissue sections using 
the Opal 6-Plex Manual Detection Kit 50 Slides (Akoya) 
as directed by the manufacturers. Multiplex fluorescent 
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immunohistochemistry staining of fibroblast markers was 
performed on lung tissue sections using the Opal 4-Color 
Manual IHC Kit 50 Slides (PerkinElmer) as directed by the 
manufacturers. For both, lung tissue samples fixed in 4% for
malin were paraffin embedded. Four mm sections were cut on 
X-tra adhesive precleaned micro slides (Leica), allowed to dry 
for a minimum of 24 h, and the slides were baked at 60°C 
overnight.

Deparaffinization, rehydration, and antigen retrieval
The combined process of deparaffinization, rehydration, 
and antigen retrieval of the tissue sections was done using 1× 
Envision Target Retrieval Solution, High PH (Dako) in the 
PT-Link Pre-Treatment Instrument (Dako). Thereafter, slides 
were incubated for 1 min in distilled water and equilibrated in 
EnVision FLEX Wash Buffer (Dako) at room temperature for 
10 min (2 × 5 min using fresh buffer for each period) for 
macrophage markers staining and 5 min for fibroblast markers 
staining. Then, the macrophage slides were incubated in 
EnVision FLEX Peroxidase blocking solution (Dako) for 
10 min, and fibroblast slides were incubated in Peroxidase 
blocking solution (PerkinElmer) for 10 min; both were then 
washed in wash buffer (Dako) as before immediately at room 
temperature.

Background reduction
The macrophage slides were incubated in blocking buffer (0.05 g 
BSA +10% goat serum dissolved in EnVision FLEX Wash Buffer) 
for 20 min. The fibroblast slides were incubated in Bloxall 
blocking solution (PerkinElmer) for 10 min.

Antibody staining: The macrophage slides were incubated in 
primary antibody-1 for 45 min, fibroblast slides for 30 min, at 
room temperature, then washed for 5 min in wash buffer. The 
macrophage slides were then incubated in Secondary Opal Poly
mer Horseradish Peroxidase (HRP) Mouse and Rabbit (Akoya) 
for 20 min, and fibroblast slides were incubated in Secondary 
Opal Polymer Horseradish Peroxidase (HRP) Mouse and Rabbit 
(PerkinElmer) for 30 min. Then, the slides were washed twice in 
wash buffer as before, drained, and the sections were incubated 
in Opal Polymer Fluorophore (macrophage slides: Akoya; fibro
blast slides: PerkinElmer) working solution for signal amplifi
cation at room temperature for 10 min in the dark. The slides 
were then washed for 10 min (2 × 5 min using fresh buffer for 
each time) for macrophage slides, 5 min for fibroblast slides, in 
wash buffer at room temperature.

Antibody stripping
Afterward, the antigen retrieval via microwave treatment was 
done by placing the slides in a slide jar with pre-warmed buffer 
AR6 (macrophage slides: Akoya; fibroblast slides: PerkinElmer). 
The jar was loosely covered and placed in a microwave for 2 min 
at 100% power (high setting), 10 min at 50% (medium setting) 
power, and 5 min at 20% (low setting) power. Slides were cooled 
down in the dark by placing the slide jar on ice for 20 min, and 
the slides were rinsed in distilled water, followed by incubation 
in the wash buffer for 10 (2 × 5 min) minutes for macrophage 
slides and 5 min for fibroblast slides to equilibrate slides. The 

microwave step re-exposes the antigen on the tissue and allows 
the introduction of the next primary antibody. For the detection 
of the next target (primary antibody 2), the protocol was re
started at the blocking step using blocking buffer (macrophage 
slides: 0.05 g BSA +10% goat serum dissolved in EnVision FLEX 
Wash Buffer; fibroblast slides: Bloxall blocking solution from 
PerkinElmer) for 10 min. After the third target was detected 
(primary antibody 3), a working solution of DAPI (macrophage 
slides: Akoya; fibroblast slides: PerkinElmer) was applied to the 
sections as the nuclear counterstain for 5 min in a humidity 
chamber. The slides were washed in wash buffer for 5 min, then 
in distilled water for 5 min, and drained. Then, the sections were 
coverslip with Fluorescence Mounting Medium (Agilent Tech
nologies, Inc.), and the edges of the coverslip were sealed with 
nail varnish. Slides were stored in a humidity chamber at 4°C 
until images are acquired.

Antibodies and fluorophores
For macrophage slides, the unconjugated primary antibodies 
used are Anti-CD68 (conc. clone: Ab213363; Abcam), Anti-CD206 
(clone: Abcam), and Anti-Osteopontin (clone: ab302942; Ab
cam). The primary antibodies were diluted in antibody diluent 
(PerkinElmer) as recommended by the antibody manufacturer, 
and the Opal fluorophores were diluted in amplification diluent 
(PerkinElmer). The fluorophores used for signal generation in 
this study are FITC, tetramethylrhodamine, and Cy5. For fibro
blast slides, the unconjugated primary antibodies used are Anti- 
Collagen I (clone: ab34710; Abcam), Anti- Anti-CTHRC1 (clone: 
ab85739; Abcam), Anti-TDO2 (clone: OT14G2; Thermo Fisher 
Scientific), Anti-PI15 (clone: PA5-52312; Thermo Fisher Scientific), 
and Anti-ACTA2 (clone: 1A4; LSBio). The primary antibodies 
were diluted in antibody diluent (PerkinElmer) as recom
mended by the antibody manufacturer, and the Opal fluo
rophores were diluted in amplification diluent (PerkinElmer). 
The fluorophores used for signal generation in this study are 
FITC, Texas-Red, and Cy5.

Imaging
For macrophage slides, the images were acquired on Hamamatsu 
NanoZoomer S60, and analyzed with NDP.view2 (version 
2.9.29) imaging software (TissueGnostics). For fibroblast slides, 
the images were acquired on a Zeiss Axio Observer Z1 inverted 
microscope (Olympus) and analyzed with TissueFAXS imaging 
software (TissueGnostics).

Quantification
For macrophage slides, using QuPath software (version 0.5.0- 
x64), TB granulomas were segmented into three distinct layers:

1. An outer cellular layer primarily composed of lymphocytes,
2. An inner cellular layer predominantly consisting of myeloid 

cells (mainly macrophages),
3. A necrotic core characterized by cellular debris and dead cells.

To assess the expression levels of SPP1 (green) and CD68 
(yellow), we divided the granuloma radially similar to pie- 
cutting, into 10 regions, which further divides each granuloma 
layer into 10 subregions. Each subregion is defined and analyzed 
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as a separate region of interest (ROI), where they are numbered 
clockwise from 1 to 10, so ROI1 from the necrotic core is imme
diately adjacent to ROI1 from the inner cellular layer, etc. This 
enabled a more precise evaluation of spatial differences in pro
tein expression. Expression intensity was measured at 5 µm per 
pixel to capture variability in protein distribution across the 
granuloma architecture.

Mean intensity for each ROI was used to calculate the sta
tistical significance between the groups using two-sided Mann– 
Whitney U test without correction for SPP1. The ratio of mean 
intensity between inner cellular layer and outer cellular layer 
was calculated between the ROI1 and ROI1, ROI2 and ROI2, etc. 
The same was done for the ratio of mean intensity between inner 
cellular layer and the necrotic core.

Flow cytometry
Lung pieces collected after removal from M.tb-infected patients 
were used in flow cytometry analysis after processing as from 
scRNA-seq (Table S4). Cells were counted and stained with an
tibody cocktail for 30 min at room temperature and in the dark, 
followed by 2× wash steps with PBS and resuspension of stained 
cells in FACSLyse. The surface markers used were CD45 (CD45- 
APC, cat#304012; BioLegend), CD34 (CD34-FITC, cat#324226; 
BioLegend), EpCAM (EpCAM-BV650, cat#324204; BioLegend), 
CD11b (CD11b-PeCy7, cat#557743; BD), CD31 (CD31-BV605, 
cat#303121; BioLegend), VCAM1 (VCAM-PE, cat#305805; Bio
Legend), ICAM1 (ICAM-APC-Cy7, cat#353121; BioLegend), po
doplanin (PDPN-PERCPefluor710, cat#46-9381-42; Thermo 
Fisher Scientific), and CD235a (CD235a-PECF594, cat#349119; 
BioLegend). Viability was determined using the Invitrogen 
Live/Dead Aqua Fluorescent reactive dye on the HV500 chan
nel. Samples were acquired on the BDFACS Aria Fusion flow 
cytometer. Analysis of samples was subsequently carried out 
using FlowJo (version 10, FlowJo).

The Friedman test was used to assess significant changes in 
the fibroblast subset of interest across different lung resection 
severities.

Human lung tissue spatial transcriptomics data analysis
Filtered 10x spatial data from each sample processed by Space 
Ranger was read into an anndata object using the function 
“read_visium” from Python package scanpy, along with the 
corresponding high-resolution image of the H&E stain. No fil
tering on spots or genes was done to preserve the maximum 
amount of information as the nature of these data are intrinsi
cally sparse. Data were log-normalized with standard scanpy 
workflow. Top 50 hub genes from the hdWGCNA fibroblast-M1 
module were used to score for human TB-myofibroblast signa
ture on each Visium spot using score_genes from scanpy. The 
top 20 differentially expressed markers from the macrophage 
subsets (Data S8) were used to calculate DE marker scores in a 
similar fashion. Spearman’s correlation and its significance be
tween the human TB-myofibroblast signature and macrophage 
subset markers were calculated using the function spearmanr 
from Python package scipy. A two-sided Mann–Whitney U test 
without correction was used to compare module usage between 
different conditions, and Spearman’s correlation was used to 

compare human TB-myofibroblast and different macrophage 
subsets.

Deconvolution of spatial transcriptomic data
Since Visium version 2 chemistry has spot size of diameter = 
55 μm (generally larger than one cell), we estimated the cell 
type abundance of each spot using Python package cell2lo
cation, a Bayesian model that estimates the combination and 
abundance of cell types that could give rise to the mRNA 
counts in each spatial location. We first learned reference 
signatures of each broad-level cell type from the original 
scRNA-seq cohort generated using Seq-Well S3, then de
composed the Visium multi-cell RNA counts into these ref
erence signatures, establishing a spatial mapping of cell 
types. For training the reference signatures, we used patient 
ID as categorical_covariate_keys and sequencing batch as 
batch_key, num_samples = 1,000, batch_size = 2,500, and 
batch_size = 250, with the rest set to default. For the pos
terior estimating, we created and trained the model with 
hyperparameters: N_cells_per_location = 10, detection_al
pha = 20, and max_epoches = 15,000, with the rest set to 
default. For each boxplot comparing cell type abundance, 5% 
quantile of the estimated posterior was used to represent cell 
type abundance at each Visium spot, which represents the 
value of abundance the model has high confidence in.

Annotation of granuloma structures on H&E images
Granuloma structures were manually annotated using Im
ageJ by experts in TB lung pathology. A band of ∼20-pixel 
width was then drawn outside the selection area to ap
proximate the granuloma cuff. The spots from the Visium 
data are categorized to be “in,” “on,” and “out” of the gran
uloma border based on the spot’s corresponding position 
relative to this segmentation band.

Spatial ligand–receptor analysis
Each sample was log-normalized with the scanpy package. The 
Python version of LIANA package was then used to impute 
spatial ligand–receptor interactions. First, spatial neighbor
hoods were calculated using the spatial_neighbors with band
width = 10, cutoff = 0.1, kernel = “gaussian,” and set_diag = True. 
Then bivariate scores for potential ligand–receptor pairs is cal
culated using the function bivariate using with parameters bi
variate = “consensus,” local_name = “cosine” (spatially-weighted 
cosine similarity for local score), global_name = “morans” (bi
variate Moran’s R for global score), n_perms = 100, nz_prop = 
0.05, and default settings for the rest. Top L–R pairs are selected 
by sorting for descending Moran’s R as it describes global co- 
expression.

Online supplemental material
Fig. S1 shows spatial transcriptomics on TB-infected human 
lung samples and single-cell deconvolution. Fig. S2 shows 
single-cell transcriptomic reveals heterogeneity within neu
trophil populations with disease-specific difference. Fig. S3
shows deconvolution of bulk human LN dataset and fi
broblast in spatial and single-cell dataset. Fig. S4 shows 
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fibroblast subclusters’ marker genes, WGCNA, and com
parisons against public datasets. Fig. S5 shows SPP1+ mac
rophage interaction with fibroblasts in TB. Data S1 shows cell 
type annotation and epithelial subclustering. Data S2 shows 
expression of marker genes from monocyte/macrophage 
subclusters and differential abundance testing. Data S3 
shows cell–cell interaction analysis by TB conditions. Data 
S4 shows cell–cell interaction changes between TB con
ditions and AT1 cell sender activities. Data S5 shows ex
pression of hypothesized secreted ligands by MMP1+CXCL5+ 

fibroblast in human TB LN granuloma vs. healthy LN. Data 
S6 shows spatial transcriptomics analysis on post- and cur
rent TB lung resections. Data S7 lists clinical metadata on 
Visium spatial transcriptomic samples. Data S8 lists sub
cluster DE genes, GSEA, and Enrichr results on these DE 
genes. Data S9 lists the top 10 markers of cell subclusters that 
overlap with human LN TB granuloma bulk dataset of dif
ferentially expressed genes by Reichmann et al. (2021). Data 
S10 shows overlap between macrophage/monocyte sub
cluster marker genes with NHP macrophage marker genes 
from Gideon et al. Data S11 shows fibroblast WGCNA of top 
50 hub genes in each module. Table S1 shows metadata on 
scRNA-seq patient cohort in this study; Table S2 shows 
patient-level broad cell type representation; Table S3 shows 
metadata on 4-wk postinfection NHP cohort used in Fig. 5 E. 
Table S4 shows metadata on M.tb-infected patients used for 
flow cytometry. Table S5 shows sample count for Visium 
spatial transcriptomic data.

Data availability
The raw and analyzed scRNA-seq and spatial data from this study 
have been deposited in the Broad Institute Single Cell Portal 
at https://singlecell.broadinstitute.org/single_cell/study/SCP3227/ 
single-cell-and-spatial-profiling-reveals-a-role-for-tuberculosis- 
induced-myofibroblasts-in-the-immunopathology-of-infected- 
lungs. The 4-wk postinfection NHP were previously used in 
another study by Ganchua et al. (2024) and Bromley et al. (2024). 
The other 4-wk p.i. and 10-wk p.i. NHP granuloma dataset by 
Gideon et al. can be accessed from GEO with accession number 
GSE200151. The HLCA can be accessed at https://data. 
humancellatlas.org/hca-bio-networks/lung/atlases/lung-v1-0. 
The human TB LN bulk RNA-seq data by Reichmann et al. (2021) 
can be accessed on GEO with accession number GSE174443. Any 
additional information required to reanalyze the data from this 
study is available from the lead contact upon request.
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Supplemental material

Figure S1. Spatial transcriptomics on TB-infected human lung samples and single-cell deconvolution. (A) H&E staining on all 30 lung samples from 
patients previously infected with TB. Scale bars: 800 μm. Identical images for pid_0037, pid_177, pid_0186, pid_187, pid_0192, pid_199, pid_0209, and pid_304. 
(B) Examples of manual annotation on granuloma structures on H&E staining images. Scale bars: 800 μm.
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Figure S2. Single-cell transcriptomic reveals heterogeneity within neutrophil populations with disease-specific difference. (A) Neutrophil (n = 2,963) 
subclustering reveals three subclusters (left), also colored by patient ID (middle) and disease condition (right). (B) Volcano plot of differential gene expression 
results of each neutrophil subcluster compared with the rest. Y axis shows −log10 (BH-adjusted P value); x axis shows log2 fold change between cells in 
subcluster and outside the subcluster. (C) Heatmap of subtype top 10 differentially expressed (DE) genes in each of the neutrophil subcluster. (D) Expression of 
marker genes in neutrophil subclusters by disease conditions. (E) Fisher’s exact test on abundance of detailed neutrophil subclusters between TB conditions. 
Statistical annotations: fold-change >2 (ΔΔ). (F) Cell2loc imputed neutrophil abundance distribution on the Visium dataset grouped by TB and granuloma status 
(Materials and methods). The 5% quantile of the estimated posterior distribution of cell abundance at each Visium spot is displayed, representing the value of 
cell abundance that the model has high confidence in. Two-sided Mann–Whitney U test without correction were used for statistical testing. ****: P < 0.0001.
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Figure S3. Deconvolution of bulk human LN dataset and fibroblast in spatial and single-cell dataset. (A) Dot plot showing distribution of cell type 
proportion from deconvolution results on each bulk RNA-seq human LN TB granuloma sample, separated by cell type and colored by TB conditions. Only cell 
types with significant difference between TB conditions are shown. Two-sided T test with Bonferroni correction was used to compare the means. Statistical 
annotations: P value < 0.05 (*) and P value < 0.01 (**). (B) Cell2loc imputed fibroblast abundance distribution on the Visium dataset group by TB and granuloma 
status (Materials and methods). The 5% quantile of the estimated posterior distribution of cell abundance per Visium spot is displayed, representing the value of 
cell abundance that the model has high confidence in. Two-sided Mann–Whitney U test without correction were used for statistical testing. P value < 0.0001 
(****); P value > 0.05 (ns). (C) Same as B, but grouped by HIV and TB status. (D) Bar plot of patient distribution in each fibroblast subcluster. (E) UMAP 
embedding of fibroblasts colored by HIV status of the sample.
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Figure S4. Fibroblast subclusters’ marker genes, WGCNA analysis, and comparisons against public datasets. (A) Expression of marker genes in fi
broblast subclusters by disease conditions. (B) Fluorescence immunohistochemistry images of human TB granuloma showing nuclear staining (DAPI), protein 
expression of COL1A1, and the MMP1+CXCL5+ fibroblast subcluster-specific genes MMP1, MMP3, TDO2, and PI15. Scale bars: 200 μm (left), 500 μm (middle), 
and 200 μm (right). (C) Top 25 hub genes by eigen-based connectivity (kME) in each fibroblast WGCNA module. Correlation between each module based on 
their MEs, a metric representing the expression of each module in each cell. (D) WGCNA module expression across fibroblast subclusters and HIV status in TB 
samples. (E) Evaluation of all WGCNA module expression in NHP TB granuloma fibroblasts from samples gathered at 10 wk compared with 4 wk. Two-sided 
Mann–Whitney U test without correction was used on each module. Statistical annotations: P value < 0.001 (***) and P value < 0.0001 (****).
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Figure S5. SPP1+ macrophage interaction with fibroblasts in TB. (A) Circos plot showing proportion of inferred signals upregulated in TB-diseased lungs 
from LIANA analysis with fibroblasts as sender and macrophage subclusters as receivers. (B) LIANA analysis on detailed cell level with SPP1+ macrophage as 
sender. Circos plot showing proportion of inferred signals upregulated in TB-diseased lungs sending from SPP1+ macrophage to broad cell groups, with fi
broblasts at the top. (C) Evaluation of markers gene expression for SPP1+ TAM from PDAC by Raghavan et al. (2021) on macrophage subclusters in this study. 
(D) Evaluation of marker gene expression for monocyte-derived macrophage (MDM) subsets from the HLCA on macrophage subclusters in this study. 
(E) Specific upregulated ligand–receptor pairs and involved receiver cells in the LIANA analysis with SPP1+ macrophage as sender. (F) Left: Fluorescence 
immunohistochemistry staining images of human lung granuloma with DAPI (nuclear), SPP1 (SPP1+ macrophage), CD68 (pan macrophage marker), and CD206 
(macrophage enriched in alveolar spaces). Scale bars: 1 mm. Middle: Quantified SPP1 expression from 10 ROIs (5 μm/pixel) in outer cellular layer, inner cellular 
layer, or the necrotic core of the granulomas. Right: Expression ratio of SPP1 and CD68 between inner cellular layer and outer layer and inner cellular layer and 
necrotic core. The images in F come from serial sections of the same TB granuloma depicted by Mpotje et al. (2025), Preprint. As both studies identify 
macrophages, the macrophage stain CD68 is shown in both. However, this current study colocalizes with CD206 and SPP1, while the preprint co-stains with 
ALOX5. Two-sided Mann–Whitney U test without correction was used on each module. Statistical annotations: P value < 0.001 (***); P value > 0.05 (ns).
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Provided online are Table S1, Table S2, Table S3, Table S4, Table S5, Data S1, Data S2, Data S3, Data S4, Data S5, Data S6, Data S7, 
Data S8, Data S9, Data S10, and Data S11. Table S1 shows metadata on scRNA-seq patient cohort in this study. Table S2 shows 
patient-level broad cell type representation. Table S3 shows metadata on 4-wk postinfection NHP cohort used in Fig. 5 E. Table S4 
shows metadata on M.tb-infected patients used for flow cytometry. Table S5 shows sample count for Visium spatial transcriptomic 
data. Data S1 shows cell type annotation and epithelial subclustering. Data S2 shows expression of marker genes from monocyte/ 
macrophage subclusters and differential abundance testing. Data S3 shows cell–cell interaction analysis by TB conditions. Data S4 
shows cell–cell interaction changes between TB conditions and AT1 cell sender activities. Data S5 shows expression of hypothesized 
secreted ligands by MMP1+CXCL5+ fibroblast in human TB LN granuloma vs. healthy LN. Data S6 shows spatial transcriptomics 
analysis on post- and current TB lung resections. Data S7 lists clinical metadata on Visium spatial transcriptomic samples. Data S8 
lists subcluster DE genes, GSEA, and Enrichr results on these DE genes. Data S9 lists top 10 markers of cell subclusters that overlap 
with human LN TB granuloma bulk dataset of differentially expressed genes by Reichmann et al. (2021). Data S10 shows overlap 
between macrophage/monocyte subcluster marker genes with NHP macrophage marker genes by Gideon et al. Data S11 shows 
fibroblast WGCNA of top 50 hub genes in each module.
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