Single-cell and spatial profiling highlights
TB-induced myofibroblasts as drivers of lung
pathology
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Tuberculosis (TB) typically causes lung destruction and fibrosis, leading to ~1.3 million deaths annually. The cellular drivers of
human TB immunopathology remain poorly defined. We performed single-cell RNA sequencing and spatial transcriptomics on
lung tissues from TB-infected and TB-negative individuals, identifying 30 distinct immune, parenchymal, and stromal cell
subsets. Several were linked to TB pathology and corroborated through immunohistochemistry, flow cytometry, and
independent human datasets. Fibroblasts were identified as major drivers in both active TB granuloma and TB-diseased lung
tissue. In particular, the MMP1*CXCL5" fibroblast subset, expressing a myofibroblast-like gene signature, was associated with
severe disease and higher bacterial burden in nonhuman primate granulomas. Network analyses revealed cross talk between
MMPI*CXCL5" fibroblasts and SPPI* macrophages within the granuloma cuff, which has been reported in other disease contexts,
and may play an important role in TB immunopathology. Our findings highlight previously unappreciated cell populations and
potential targets for novel TB therapies.

Introduction

Tuberculosis (TB), caused by infection with Mycobacterium tu-
berculosis (M.tb), remains a global epidemic, with ~10.6 million
new cases and 1.3 million deaths annually (Carranza et al., 2020,
World Health Organization, 2023). The development of highly
effective anti-TB drugs and programmatic improvements led
to global cure rates of ~85% in drug-susceptible TB from 1995
to 2015, as well as reduced mortality rates (World Health
Organization, 2020). Unfortunately, however, mortality re-
mains persistently high (Pai et al., 2022), highlighting the need
for improved interventions.

M.tb infection occurs primarily in the lung, where interac-
tions between host cells and the pathogen typically result in the
formation of a granuloma—an aggregation of infected myeloid
cells, usually surrounded by an inner ring of macrophages and
an outer cuff of lymphoid cells. This specialized immunological
niche is highly heterogeneous in its overall cellular makeup,
with the composition of each lesion independently influenc-
ing bacterial growth and disease progression (Davis and
Ramakrishnan, 2009; McCaffrey et al., 2022). In progressive
TB, extensive lung extracellular matrix (ECM) remodeling via
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both matrix destruction and fibrosis leads to the formation of
lung cavities that facilitate transmission (Ravimohan et al.,
2018). This ECM remodeling also increases the risk of post-
TB lung disease (PTLD), resulting in high rates of recurrent
TB infection and mortality—even after successful eradication
of initial infection (Allwood et al., 2021; Romanowski et al.,
2019). Although some features of the immunopathology of TB
infection that lead to PTLD are known, including granuloma
formation, cytokine production, hypoxia-inducible factors, and
production of matrix metalloproteinases (MMPs), the exact
mechanisms remain unclear (Allwood et al., 2021). While animal
models of TB disease—from zebrafish to nonhuman primates
(NHPs)—have provided valuable insights into aspects of these
processes, they do not fully recapitulate human pathology (Fonseca
et al,, 2017). Critically, these models generally reflect primary in-
fection, often without the cavities and the extensive ECM remod-
eling observed in human TB, and fail to capture the development of
chronic secondary TB disease that arises in humans (Hunter,
2018). Consequently, the key features and cellular drivers of im-
munopathology in human TB remain poorly understood.

The advent of high-throughput single-cell RNA sequencing
(scRNA-seq) has transformed our ability to analyze the cellular
makeup of complex tissues and phenotypic changes associated
with disease (Cui et al., 2019). For example, application of
this technology to study idiopathic pulmonary fibrosis (IPF)—a
lung disease characterized by dysregulated ECM turnover—
identified aberrant basal-like cells, peribronchiolar endothelial
cells, SPPI* macrophages, and myofibroblasts as key drivers of
pulmonary tissue remodeling, suggesting new strategies to
combat the disease (Adams et al., 2020). Similar characteriza-
tion of the cell types and states involved in the immunopatho-
genesis of human TB and PTLD could potentially help uncover
effective targets for host-directed therapies (HDTs) (Hawn et al.,
2013).

Here, we applied scRNA-seq and spatial transcriptomics to
human TB-diseased lung tissues and TB-negative controls to
examine the cellular and molecular features of TB lung disease
and investigate mediators of immunopathology. Overall, we
identified depletion of most macrophage subsets and an en-
richment of fibroblast and neutrophil subsets in TB-diseased
lungs, consistent with altered fibrotic and pro-inflammatory
activity. We validated these observations with bulk RNA-seq
data of LN TB granuloma from a well-characterized cohort
of treatment-naive, culture-confirmed TB patients (Reichmann
et al., 2021). To further contextualize specific disease-associated
cell subsets, we integrated our data with those from the Human
Lung Cell Atlas (HLCA) and NHP lung TB granulomas (Gideon
et al.,, 2022; Sikkema et al., 2023). This enabled us to uncover
a putative central role for fibroblast subsets—including a
MMPI1*CXCL5* fibroblast cluster expressing a myofibroblast-
like gene module—in TB immunopathology, where we further
evidenced via flow cytometry and immunohistochemistry.
Through cell network analyses on the single-cell data, we found
that these cells appear to coordinate their activities with mac-
rophages, including an SPPI* subset not previously implicated in
TB biology that was observed to be coresident in immunohisto-
chemical stainings of human lung TB granuloma. Moreover,
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these two subsets were co-inducible by a standard skin challenge
of TB patients with M.tb-derived antigen (tuberculin), and
analyses of spatial transcriptomics data from an independent
cohort of TB patients showed colocalization of both this myofi-
broblast signature and the SPPI* macrophage signal within lung
TB granuloma cuffs. Overall, our data reveal key cellular subsets
and pathways that could inform next-generation HDTs and
provide an essential reference for the community.

Results
Cellular composition of human TB-infected lung tissue
Fresh, TB-diseased human lung tissue pieces were obtained from
nine participants (seven HIV* TB; two HIV~ TB) enrolled in the
African Health Research Institute lung cohort study (Fig. 1 A). All
participants underwent TB treatment after initial diagnosis but
had subsequent lung resection surgery to treat complications
consistent with PTLD, including hemoptysis and bronchiectasis
(Table S1). As a control, TB-negative lung samples were obtained
from the healthy tissue margins of four surgically resected lung
tumors (one HIV* cancer control; three HIV- cancer controls).
All participants, irrespective of TB status, received prophylactic
anti-TB treatment prior to surgery. Tissue pieces were washed
thoroughly and homogenized into a single-cell suspension via
mechanical and enzymatic digestion using an optimized proto-
col in BSL3 containment (Ardain et al., 2019). Lung cells were
then processed and sequenced following the Seq-Well S3 pro-
tocol as described previously to obtain our scRNA-seq dataset
(Hughes et al., 2020). An additional 30 samples were obtained
from different participants in the same TB lung cohort and
profiled using the 10x Visium Spatial Gene Expression platform
(Fig. 1 B and Data S11). As above, all participants received TB-
drug treatment prior to surgery. Fresh tissue pieces were re-
moved from resected lung tissue and preserved using standard
formalin-fixed paraffin-embedded (FFPE) procedures, followed
by Visium version 2 chemistry protocols with paired H&E
staining to generate reference images (Fig. S1 A; Materials and
methods). 21 samples (10 HIV*, 11 HIV-) were derived from
subjects with active microbiologically confirmed TB, termed
“current TB.” The remaining samples (five HIV*, four HIV")
termed “post-TB,” were obtained from individuals in whom
bacterial load was no longer detectable from bronchoalveolar
lavage (BAL) TB culture. This spatial dataset contains both
samples with TB lung granulomas and samples with in-
ducible bronchus-associated lymphoid tissues (iBALTs) or
lung-draining LNs, which are considered as less severe path-
ological states. For each granuloma sample, pathological grad-
ing and manual annotation of the granuloma structures on the
H&E image were performed by an expert TB pathologist to
enable better disease contextualization (Fig. S1 B and Data S7).
After quality control of the scRNA-seq data, we retained
19,632 high-quality single-cell profiles from the homogenized
lung tissues. Neighborhood-based clustering revealed 16 ca-
nonical cell types. Further subclustering of high abundance
populations resulted in a total of 30 phenotypically distinct
immune, parenchymal, and stromal subsets (Fig. 1 A; Data S1, A-
E; Fig. S2, A-F; and Data S2, A and B; Materials and methods).
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Figure 1.

Overview of the single-cell and spatial data generated from TB-diseased and control lungs. (A) Schematic showing the experimental flow for

the isolation of cells from human lung tissues, generation of single-cell libraries using Seq-Well S3. Four TB-negative and nine TB-positive lung samples were

processed through scRNA-seq. Shown adjacent to the process flow is a low-dimensional embedding (UMAP)

of the 19,632 cells passing quality control an-

notated with high-level cell types (middle) or detailed cell subtype (right). (B) 10x Visium platform workflow for spatial transcriptomics profiling on FFPE

samples from TB-diseased lung resections. 21 of these samples come from current TB patients with detecta

ble M.tb; 9 came from post-TB patient, where

bacteria are no longer detected in BAL TB culture after infection. Samples contain either granulomas, iBALTS, or lung LNs, representing different pathological

states.
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Figure 2. Overview of tissue heterogeneity and cell type abundance in the single-cell dataset. (A) Cell type proportions by disease status (left) and
patient (right, n = 7 HIV*TB*; n = 2 TB*; n = 1 HIV*, n = 3 cancer control). (B) Low-dimensional embedding (UMAP) of all scRNA-seq data colored by patient HIV
status (left) and TB status (right). (C) Dot plot showing expression levels of top 2 DE genes in each of the broad-level cell types. (D) Two-sided Fisher’s exact test
for abundance of major cell types between samples from patients with previous TB diagnosis and samples from control patients. Holm’s method was applied to
adjust P values for multiple-testing correction. Statistical annotations: P value < 0.05 (*) and P value < 0.001 (***).

The fractional representation of cells per participant and clinical
characteristic varied between clusters reflecting biological het-
erogeneity between patients, TB disease states, and potentially
anatomical sampling location, though our data are limited with
respect to the latter (Fig. 2 A and Table S1). Most cells derived
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from HIV- TB samples, and while most of the clusters contained
cells from the majority of patients, we observed substantial
inter-patient variability in cell numbers (Fig. 2 B and Table S2).
Canonical cell type markers and genes differentially expressed
between clusters were examined for manual annotation (Fig. 2 C;
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Materials and methods). Notably, we found large populations of
neutrophils, which are captured by Seq-Well S® but often un-
derrepresented by other scRNA-seq technologies due to their
fragility (Hughes et al., 2020). Overall, observed clusters closely
mirrored those seen in a scRNA-seq characterization of lung
tissue from IPF patients and healthy donors (Reyfman et al.,
2019).

Next, we looked for evidence of differential abundance by
comparing the representation of each cell type per donor be-
tween the TB-diseased and TB-negative lung groups, irre-
spective of HIV status (Fig. 2 D). Given the limitation in cohort
size, we were underpowered to detect significant cell type pro-
portion differences at the sample level through a Wilcoxon test
or z-proportion test (P > 0.05 for patient level comparisons).
However, at the single-cell level, pronounced shifts in the fre-
quency of most cell types were observed between the TB-
diseased and TB-negative groups, including an expansion of
neutrophils in the TB-diseased group, consistent with several
human studies linking neutrophil recruitment with TB lung
pathology (Leisching, 2018; Muefong and Sutherland, 2020;
Sutherland et al., 2009). We also found an increased frequency
of mast and plasma B cells in TB-diseased tissue, supporting
findings from recent scRNA-seq studies of NHP models where
both cell populations were expanded in TB granuloma with
higher bacterial burden (Gideon et al., 2022). In addition to these
immune cell populations, fibroblasts were enriched in TB-
diseased lung tissue. Conversely, in TB-diseased lung samples,
we found a decrease in the proportions of macrophages, the cell
type targeted by and primarily responsible for killing bacilli,
and CD8 T cells, thought to contribute to M.tb control (Queval
et al., 2017; Winchell et al., 2023). Although we detected sig-
nificant changes between the abundance of these cell subsets
using a Fisher’s exact test, given high inter-patient variability
and limited sample numbers, we were underpowered to de-
termine significance using a Dirichlet-multinomial regression
or a Wilcoxon test (Smillie et al., 2019).

Specific innate immune cell subclusters are associated with
TB-diseased human lung tissue

Given the limited participant numbers that compose our scRNA-
seq dataset, we leveraged these data to impute cell type abun-
dances in both the current- and post-TB lung samples in our
spatial transcriptomics cohort. This allowed us to better un-
derstand the phenotypic shifts associated with TB disease and
select relevant single-cell subclusters for further characteriza-
tion. This strategy drove us to focus on neutrophils, macro-
phages, monocytes, and fibroblasts, whose abundances also
showed the most dramatic shifts between the TB and control
samples in the scRNA-seq data (Fig 2 D).

Neutrophil subclusters

Neutrophils play a crucial role in the innate immune system and
are quickly recruited as a first line of defense against bacterial
infections. They are suggested to have immunoregulatory
functions in TB granulomas in NHP models (Gideon et al., 2019);
however, their role in the immunopathogenesis of human TB has
been contentious and less well understood (Gaffney et al., 2022).
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Neutrophils were highly enriched in TB-diseased lung tissue
in our single-cell dataset (Fig. 2 D) and associated with three
distinct subclusters (termed “pro-inflammatory neutrophils,”
activated neutrophils,” and heat-shock [HSP] neutrophils”).
Both activated neutrophil and pro-inflammatory neutrophil
subclusters expressed markers genes associated with IFN-y and
TNF-a signaling—critical responses linked to inflammation and
immune activation in TB disease (Chandra et al., 2022; Luster
et al., 2005; Pagan and Ramakrishnan, 2018) (Fig. S2, A-D; and
Data S8). Activated neutrophils were annotated by their high
expression of neutrophil activation markers, including ILIRN,
and ILIB and IL8, inflammatory cytokines involved in neutrophil
recruitment (Fig. S2, B-D) (de Oliveira et al., 2013; Prince et al.,
2004). They also expressed GBP1 and GBP5, genes involved in
a previously described blood neutrophil transcriptional signa-
ture used to diagnose pulmonary TB (Zak et al., 2016). Pro-
inflammatory neutrophils, in contrast, highly expressed high
levels of MMP9, CST7, and LDHA (Fig. S2, B-D). MMP9 is a
proteinase involved in the degradation of ECM that is strongly
associated with TB granuloma (Rohlwink et al., 2019); CST7
(cystatin F) is a neutrophil marker of acute inflammation (Huang
et al,, 2021); and, LDHA encodes lactate dehydrogenase, which
enhances neutrophil migration and activity, and is highly ele-
vated in hypoxic lung TB granuloma in animals (Chowdhury
et al.,, 2022; Krishnamoorthy et al., 2020). Pro-inflammatory
neutrophils also highly expressed FKBP5 and CEBPD, both im-
plicated in an immunometabolic network predictive of TB pro-
gression (Duffy et al., 2019), and VEGFA, PLAUR, TPM4, and
CD44, which are involved in neutrophil recruitment and lym-
phangiogenesis during inflammation (Adams et al., 2021; He
et al., 2024; Tan et al., 2013; Zhou et al., 2021) (Data S8). The
remaining small subcluster of neutrophils, marked by high ex-
pression of heat-shock protein genes (HSP neutrophils), was also
elevated in TB-diseased lungs, which is notable given that
heat-shock protein expression by neutrophils can trigger pro-
inflammatory response in macrophages (Kauffman et al., 2018;
Zheng et al., 2004) (Fig. S2, A-E).

Given the small sample size and high HIV prevalence in our
scRNA-seq dataset, we examined neutrophils in the spatial co-
hort to understand the link between neutrophils and TB disease,
running cell type deconvolution using the scRNA-seq cohort as
reference and imputing individual cell type abundances (Mate-
rials and methods). Within granuloma structures, neutrophil
abundance was significantly higher in sample from current TB
infections than those from post-TB infections, consistent with
the recruitment of this cell type to the granuloma during active
disease (Fig. S2 F). Interestingly, however, neutrophils were
more abundant in non-granuloma tissues (e.g., iBALT and LN)
compared with granuloma, though the difference was less pro-
nounced in current TB. This may reflect the involvement of
neutrophils in tissue remodeling and chronic inflammation as-
sociated with both active TB and PTLD (Santos et al., 2025).

To further test the association between neutrophil subsets
and TB disease, we quantified the expression of each subset’s top
marker genes in an independent bulk RNA-seq dataset gener-
ated from laser-captured human LN TB granuloma, in which
all patients were HIV negative (Materials and methods; Data
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availability) (Reichmann et al., 2021). Importantly, these LN
were excised prior to TB therapy initiation and contained viable
M.tb bacilli. We found that 7 of the top 10 unique marker genes
associated with the activated neutrophils were significantly
upregulated in LN granuloma compared with noninfected LN
controls (Data S9), as well as the pro-inflammatory markers
CEBPD and LDHA (Data S9). We note that although LNs are
common sites of extrapulmonary TB, LN granulomas have
functional and structural differences from those found in the
lung, which may contribute to differences in expression levels
of these marker genes (Ganchua et al., 2020; Mekonnen et al.,
2021).

Monocyte and macrophage subclusters

Macrophages are necessary to control TB disease but also pro-
vide a niche for bacterial growth and survival (Guirado et al.,
2013). In addition, they have been implicated in pulmonary re-
modeling, with reported roles in both promoting and inhibiting
pathology (Kishore and Petrek, 2021). Tissue-infiltrating mon-
ocytes, meanwhile, provide a source for macrophage differen-
tiation and are key players in inflammatory response and
bacterial persistence (Sampath et al., 2018). Hence, under-
standing the functional differences in monocytes and macro-
phages between the TB-diseased and TB-negative controls could
provide insights into understanding TB immunopathology. In
aggregate, macrophages were significantly decreased in TB-
diseased lung tissue, and monocytes were decreased, albeit not
significantly (Fig. 2 D).

Subclustering of 8,313 macrophages/monocytes single-cell
transcriptomes generated 10 distinct subclusters, which we
annotated manually based on marker genes (Fig. 3, A-C and Data
S2 A). Alveolar macrophages (INHBA*FABP4*MARCO*) and a
subcluster we termed “heat-shock (HSP) macrophages” were
significantly reduced in TB-diseased lung tissue compared with
TB-negative lungs. The former may reflect the loss of normal
lung alveolar structure observed in TB-diseased lung tissue.
Upregulated proteins in HSP macrophages included those en-
coding for Hsp70 family proteins (e.g., HSPAIA, HSPAIB, HSPAS,
and HSPAS), which are known to modulate NF-kB-mediated
release of pro-inflammatory cytokines from alveolar macro-
phages in pulmonary TB (Radons, 2016; Wang et al., 2017). In
addition, when tested separately, all monocyte subsets were
significantly reduced in TB disease, possibly due to rapid tran-
sition to macrophage phenotypes in the pro-inflammatory en-
vironment of the diseased lung (Desalegn and Pabst, 2019). The
remaining three macrophage subsets (defined by ARL4C/EMPI,
LGMN/SEPPI, and SPP1/CHI3LI) were higher in TB-diseased lung,
but subtly so (Fig. 3 D). Therefore, to explore the potential
skewing of macrophage subsets further, we performed cluster-
free differential abundance testing using Milo, which models
cellular states as overlapping neighborhoods on k-nearest
neighbor graphs representing the similarities between single-
cell profiles (Dann et al., 2022). This analysis highlighted the
underrepresentation of alveolar macrophages in TB-diseased
lung tissue, as this was the only subcluster with its pheno-
typic neighborhoods depleted among TB disease samples (Data
S2, C and D). In contrast, although present at low frequency,
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ARL4C*EMPI*, LGMN*SEPPI*, and SPPI*CHI3LI* macrophages
were all significantly associated with TB-diseased lung. Marker
genes enriched in ARL4C*EMPI* macrophages did not obviously
associate with published functional annotations but included
GPRI138, which favors M.tb replication in macrophages (Tang
et al.,, 2020). LGMN*SEPPI* macrophages were enriched for
lipid metabolism activities, while SPP1 encodes for osteopontin,
a known macrophage attractant, which has been associated
with granulomatous diseases and is upregulated in M.tb in-
fection (Nau et al., 1997; Wang et al., 2020) (Data S8).

In our spatial cohort, we observed a higher abundance of both
macrophages and monocytes in current TB compared with post-TB,
consistent with continuous recruitment of myeloid cells during
active disease (Fig. 3 E, left, and Fig. 3 F, left). As with neutrophils,
macrophages were more abundant in granuloma from current TB
samples compared with post-TB. Additionally, in current TB,
macrophages were more abundant in granuloma compared with
non-granuloma tissue, while the opposite was true for monocytes,
which may be explained by maturation into macrophages within
this environment. (Fig. 3 E, right). HIV co-infection was associated
with increases in macrophages in current TB samples and a de-
crease in monocyte abundance in both current and post-TB sam-
ples, suggesting a potential effect of HIV co-infection on myeloid
populations during both active TB and PTLD (Fig. 3 F). In active TB
samples, HIV infection may lead to more macrophages to com-
pensate for the loss of CD4* T cells, which are important for
adaptive immune responses against M.tb (Bromley et al., 2023,
Preprint). The decrease in macrophages associated with HIV co-
infection in post-TB samples, however, might reflect impaired
monocyte differentiation or persistent depletion of macrophage
precursors (Burdo et al., 2013; Campbell et al., 2014).

To further contextualize monocyte/macrophage subclusters
in human TB granuloma, we similarly assessed expression of
subcluster marker genes in the LN dataset described above. We
found the strongest signal for the SPPI*CHI3LI* macrophages,
where 5/10 of the top markers of the subcluster were signifi-
cantly upregulated in human LN TB, over fivefold in the case of
SPPI and FNI1 (Data S9). Bulk gene expression deconvolution
of this data supported a significant increase in the frequency of
several populations in untreated TB granuloma compared with
control LN, including the SPPI*CHI3LI* macrophage (Fig. S3 A).

Finally, to investigate these myeloid subsets under control
conditions, we examined the expression of subcluster defining
genes within single-cell data from TB-granuloma isolated from
experimentally infected NHPs (Gideon et al., 2022). In this da-
taset, we identified overlapping gene signatures between most
of the subclusters observed in our current study, including
the SPPI*CHI3LI* macrophage population (LILRB4, MMP9, PKM,
MYOF, and CHI3LI) (Data S10) (Gideon et al., 2022). Collectively,
these data identify diverse myeloid subsets in TB-diseased lung
tissue and support a putative role for SPPI*CHI3LI* macrophages
in TB immunopathology in humans and NHPs.

Single-cell analysis identifies TB-associated fibroblast
populations

Despite playing a prominent role in tissue remodeling in other
lung diseases, there is limited understanding of how fibroblasts
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Figure 3. Single-cell transcriptomic reveals heterogeneity within monocyte and macrophage populations with disease-specific difference.
(A) Monocyte/macrophage (n = 8,318) subclustering reveals 10 subclusters (left), also colored by patient ID (middle) and disease condition (right). (B) Heatmap
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of subtype top 10 DE genes in each of the monocyte/macrophage subcluster. (C) Expression of marker genes in monocyte/macrophage subclusters by disease
conditions. (D) Two-sided Fisher’s exact test on abundance of detailed macrophage (left) and monocyte (right) subclusters between TB conditions. Holm'’s
method was applied to adjust P values for multiple-testing correction. Statistical annotations: P value < 0.05 (*), P value < 0.01 (**), P value < 0.001 (***), fold-
change >1(A), fold-change >2 (AA), and fold-change <1 (V). (E) Cell2loc imputed macrophage (left) and monocyte (right) abundance distribution on the Visium
dataset grouped by TB and granuloma status (Materials and methods). The 5% quantile of the estimated posterior distribution of cell abundance at each Visium
spot is displayed, representing the value of cell abundance that the model has high confidence in. Two-sided Mann-Whitney U test without correction were
used for statistical testing. Statistical annotations: P value < 0.0001 (****). (F) Similar to E, but grouped by TB status and HIV status.

contribute to granuloma formation, immunopathology, and
protective TB immunity (Lee et al., 2019; McCaffrey et al., 2022).
In our spatial transcriptomics samples, fibroblast abundance
was estimated to be higher in granuloma samples than iBALT/
LN samples for both TB conditions, suggesting fibroblast in-
volvement in long-term tissue remodeling and granuloma for-
mation (Fig. S3 B). Holding granuloma status or HIV status
constant, we observed a higher abundance of fibroblasts in post-
TB samples relative to current TB samples, consistent with the
role fibroblasts play in long-term tissue damage in PTLD (Fig. S3,
B and C). Further subclustering of the 1,627 fibroblasts in the
scRNA-seq dataset revealed five distinct subclusters (Fig. 4 A and
Fig. S3, D and E): IL6* CCL2* fibroblasts, SERPINE2*COLIAI* fi-
broblasts, heat-shock (HSP) fibroblasts, COMP*CILP* fibroblasts,
and MMPI*CXCL5* fibroblasts (Fig. 4 B and Fig. S4 A). We note
that most of the fibroblasts we recovered came from TB-diseased
patients, a trend consistent with fibrotic change due to TB
damage in the lung (Gai et al., 2023). One of the subclusters,
MMP1*CXCL5* fibroblasts, almost solely consists of cells
from HIV- TB patients, whereas the others were mostly oc-
cupied by cells from HIV* TB patients, suggesting potentially
different phenotypes for fibroblasts in HIV/TB co-infected
patients versus patients with TB alone (Fig. 4 A and Fig. S3 E).
This subcluster also had the strongest phenotypic shifts
among fibroblast populations in a Milo analysis (Data S2, C
and D).

To better understand the phenotypic properties of these five
subclusters, we further contextualized them against the existing
literature by mapping them onto a trained reference model for
lung stromal cell annotation (Travaglini et al., 2020) (Fig. 4 C).
The majority mapped strongly to adventitial fibroblasts, which
are associated with pulmonary vascular remodeling in response
to stress, including hypoxia and infection (Stenmark et al., 2011).
Although canonically associated with vascular beds, adventitial
fibroblasts become highly migratory and invasive in response to
activating signals, notably including osteopontin (SPP1), and
have been shown to drive tissue remodeling by inducing a pro-
inflammatory/profibrotic phenotype in macrophages through
IL-6 signaling, (Anwar et al., 2012; El Kasmi et al., 2014). The
MMP1*CXCL5* fibroblast cluster, however, mapped primarily to
the myofibroblast phenotype, followed by the lipofibroblast
phenotype. Myofibroblasts are involved in wound healing after
tissue injury and can differentiate from recruited fibroblasts
under mechanical stress, through the influence of cytokines like
TGF-B, and epithelial-to-mesenchymal transition (EMT) (Li
et al., 2016; Talbott et al., 2022). In addition, lipofibroblasts can
differentiate into myofibroblasts during fibrosis (El Agha et al.,
2017). Consistent with this, overrepresentation analysis (ORA)
showed that the MMPI*CXCL5* fibroblast markers were enriched
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among genes associated with EMT and myoblast differentiation
(Data S8).

To test the association between MMPI*CXCL5* fibroblast
markers and TB, we again examined the LN dataset and found
that 5/10 top unique marker genes in the MMPI*CXCL5* fibro-
blast subcluster were upregulated in the LN TB data, including
MMP], CAI2, TDO2, POSTN, and COLI2AI (Data S9). Interestingly,
CAI2 plays a role in many biological processes, including pre-
venting calcification (Zhao et al., 2020), an essential process in
granuloma resolution (Lin et al., 2014). In addition, this gene was
found to co-express with MMP1 and CXCL5 in a subset of cancer-
associated fibroblasts associated with poor clinical outcome
(Qin et al., 2023). We also observed a significant increase in the
imputed frequency of MMPI*CXCL5* fibroblasts in TB LN gran-
uloma compared with control LNs via deconvolution of bulk
RNA-seq profiles (Fig. S3 A). Together, these data suggest TB is
associated with skewing of lung fibroblasts to phenotypes that
overlap with known disease processes in the infected lung.

To confirm the presence of the MMPI*CXCL5* phenotype via
an orthogonal method, we stained sections of human lung from
the same surgical cohort that contained distinct TB granuloma (5
pm sections from two patients) for associated gene products of
the MMPI*CXCL5* subcluster: COL1, TDO2, MMP1, MMP3, and
CA12, together with PI-15 and CTHRC-1, which were also sig-
nificantly upregulated in this subcluster (Fig. S4 B and Data S8).
COLl, a general fibroblast marker, was expressed across lung
tissue; the MMPs, which are secreted to facilitate ECM break-
down, had less strict localization; TDO2, CA12, PI-15, and
CTHRC-1, meanwhile, were expressed higher in the granuloma
compared with the surrounding tissue. These data support the
presence of MMPI*CXCL5* fibroblasts in TB-diseased human
lung and their localization with TB granuloma. It is worth
noting, however, that some differences in fibroblast pop-
ulations we observe between TB conditions may be exacerbated
by the limited number of control lung samples and difficulties
associated with extracting stromal cells from fresh tissues
during single-cell isolation (Guilliams et al., 2022).

Reference mapping to HLCA reveals distinct activities between
TB-diseased and control fibroblasts

Given the limited recovery of fibroblasts from TB-negative
controls, we next explored how the fibroblast subsets detected
in TB-diseased lung tissue relate to lung fibroblasts in published
datasets. For this, we used the data from the HLCA, which in-
tegrates 49 datasets from the human respiratory system, en-
compassing 2.4 million single cells, to generate consensus cell
type annotations (Sikkema et al., 2023). Using the HLCA as a
reference, we confirmed the heterogeneous immune and non-
immune cell types present in our lung tissue samples (Fig. 4 D).
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Figure 4. Fibroblast exhibit TB-specific phenotypes. (A) Fibroblast (n = 1,627) subclustering reveals five subclusters (left), also colored by patient ID
(middle) and disease condition (right). (B) Heatmap of subtype top 10 DE genes in each of the fibroblast subcluster. Columns (cells) are annotated by fibroblast
subclusters and sample source disease status. (C) Comparing annotation against literature stromal annotation from Travaglini et al. (2020). Left: Original
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fibroblast UMAP as seen in A colored by mapped cell types in Travaglini et al. (2020). Right: Barplot showing distributions of mapped cell type in each original
subcluster. ASM, airway smooth muscle; VSM, vascular smooth muscle; MyoF, myofibroblast; FibM, fibromyocyte; AdvF, adventitial fibroblast; AlvF, alveolar
fibroblast; LipF, lipofibroblast; Peri, pericyte; Meso, mesothelial. (D) Reference mapping to the HLCA. Query (all cells in this study, n = 19,632) vs. reference cells
(n = 584,944) on integrated UMAP with transferred label from HLCA to query cells. (E) Query (all fibroblasts in this study that was mapped to fibroblast/
myofibroblast in label transfer, n = 1,601) and reference lung fibroblast cells (n = 17,500) from HLCA colored by annotation (either “Fibroblast” or “Myofi-
broblast”) and TB conditions. (F) GSEA on DE genes between TB fibroblasts and TB-negative fibroblasts on HLCA-integrated data.

Via label transfer, we independently re-annotated our fibro-
blasts, observing high consistency with our original annotations
(>95% fibroblasts were re-annotated as fibroblast/myofibro-
blast; Materials and methods). Combining cells mapped to
fibroblasts/myofibroblasts in our data and the HLCA, we
performed differential expression (DE) analysis between all
TB-negative cells (mostly consisting of healthy cells from the
HLCA reference) and our TB-diseased cells (Fig. 4 E). We then
ran gene set enrichment analysis (GSEA) on the resulting top
differentially expressed (DE) genes using the MSigDB Hallmark
database (Fig. 4 F). This confirmed upregulation of EMT pro-
cesses, thought to directly contribute to the fibroblast/myofi-
broblast pool during fibrosis, in TB-diseased fibroblasts. In
addition, oxidative phosphorylation was highly upregulated,
consistent with alteration of metabolic activity in fibrotic lung
disease (Geng et al., 2021). Several enriched terms are related to
inflammatory process, including TNF-a signaling, TGF-B sig-
naling, IL2/IL6 signaling, and were also observed, suggesting an
overall elevated inflammatory response in the TB fibroblasts.

Identification of fibroblast gene modules associated to
bacterial burden within TB granuloma

Having compared our fibroblast subclusters against public lung
stromal datasets, we next examined how the cell states within
these subclusters might shift with TB disease in an experimen-
tally controlled setting. Given the paucity of TB-associated gene
signatures, we opted to pursue unbiased gene module identifi-
cation on the entire fibroblast population, applying a tool for
weighted gene co-expression network analysis (WGCNA) in
high-dimensional single-cell transcriptomics data (hdWGCNA)
(Morabito et al., 2023). This yielded seven gene modules with
varying degrees of expression across the five clusters and dis-
ease states (named fibroblast-M1-7; Fig. 5 A and Data S11). The
fibroblast-M1 module was highly enriched in the MMPI*CXCL5*
fibroblast cluster (Fig. 5 B). Top hub genes in this module in-
cluded: MMPI], CA12, CXCL5, CXCLI3, TDO2, PDPN, and FAP,
showing a high degree of overlap with cluster markers for
MMPI*CXCL5* fibroblast (Fig. 4 Band Fig. S4, Cand D). There was
also a clear overlap between SERPINE2*COLIAI* fibroblasts and
fibroblast-M2 module (Fig. 4 B and Fig. S4 D). ORA showed the
M1 module was highly enriched for known biological processes
associated with immune cell migration and chemotaxis (“mye-
loid leukocyte migration,” and “granulocyte chemotaxis”) and
control of ECM structure (“external encapsulating structure,”
“collagen fibril organization,” and “ECM disassembly”), as well
as myofibroblast-related signatures (Talbott et al., 2022) (“re-
sponse to wounding,” “muscle tissue development,” “myoblast
differentiation,” and “response to mechanical stimulus”) (Fig. 5
C and Data S8). Hence, we refer to this M1 module, enriched in

» «
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the MMPI*CXCL5* fibroblast population, as the “human TB-
myofibroblast” module.

To investigate these modules in the context of defined pul-
monary TB granuloma, we evaluated the expression of each
module in fibroblasts from a well-controlled SIV-uninfected
NHP TB granuloma dataset by Gideon et al. mentioned above
(Gideon et al., 2022). This study collected data on positron
emission tomography (PET)-tracked granulomas isolated at 4
and 10 wk after infection, with each granuloma individually
resected, homogenized, and subjected to scRNA-seq, as well as
quantification of total and viable M.tb. Interestingly, our human
TB-myofibroblast module (M1) and M2 and M3 modules were
significantly elevated in the week 4 granulomas, which con-
tained higher M.tb burdens, compared with those at week 10
(Fig. 5 D and Fig. S4 E). These data suggest that the human TB-
myofibroblast phenotype, in addition to other diverse fibro-
blasts, is likely present in untreated early TB lung granuloma,
and that their frequency is associated with bacterial burden.
Next, to further localize human TB-myofibroblast phenotype
relative to granuloma, we evaluated the expression of this
module in fibroblasts in an independent dataset of SIV-
uninfected NHP TB lung TB dataset, which included single-cell
data from uninvolved lung tissue (Bromley et al., 2024; Ganchua
et al., 2024). From this dataset, lung granulomas from 4 wk p.i.
(granuloma data published by Bromley et al.) were compared
against uninvolved lung samples from the same experimental
condition (Bromley et al., 2024) (uninvolved lung data unpub-
lished, Fig. 5 E and Table S3; Materials and methods). Evaluating
our hdWGCNA modules, we observed that the human TB-
myofibroblast module was upregulated in the granuloma
compared with uninvolved lung tissues, confirming that this
phenotype is associated with granuloma-specific structural or
cellular processes that reflect a local response to M.tb.

Confirmation of the myofibroblast-like phenotype in different
TB disease contexts

Taken together, our findings suggest a previously underappre-
ciated role for fibroblasts—including a myofibroblast-like
MMPI*CXCL5* subcluster—in TB immunopathology. How-
ever, while this population was detected in 5/9 TB-diseased
samples, the majority of cells were derived from a single donor.
Therefore, we quantified this fibroblast subset in additional pa-
tients undergoing surgery for post-TB lung complications by flow
cytometry (Table S4). For this, we gated on non-hematopoietic cells
(CD457), lacking expression of CD234a (Duffy antigen), CD31
(endothelial cells), EPCAM (epithelial cells), and CD34 (progen-
itors) but expressing the fibroblast marker CD90, as well as
PDPN and FAP, which are both canonical myofibroblast markers
and hubs genes in our human TB-myofibroblast module
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two-sided Wilcoxon test is shown. (C) ORA by enricher on all assigned M1 module genes using MSigDB Gene Ontology Biological Processes (GOBP) gene set
database. (D) Top: Bacterial burden of NHP lung granulomas by Gideon et al. (2022) grouped by the time point. Bottom: Evaluation of human TB-myofibroblast
module expression in NHP TB fibroblasts on 4-wk and 10-wk samples. Two-sided Mann-Whitney U test without correction was used. Statistical annotations: P
value < 0.05 (*), P value < 0.01 (**), and P value < 0.001 (***). (E) Evaluation of human TB-myofibroblast module expression in fibroblasts from granuloma vs
uninvolved lungs in an independent NHP study with 4-wk post-infection (p.i) macaques (Bromley et al., 2024) (Materials and methods). Two-sided Mann-
Whitney U test without correct was used. Statistical annotations: P value < 0.01 (**) and P value < 0.0001 (****).

(Fig. 6 A). These data confirmed the presence of PDPN*FAP*
fibroblasts in 5/5 TB-diseased lung samples. In addition, by
examining tissue samples from regions of lung tissue with
varying degree of disease pathology, as determined by oper-
ating surgeon, we found that PDPN*FAP* fibroblasts were el-
evated in the most diseased lung pieces (P value = 8 x 1074,
Friedman test; Fig. 6 B).

To determine whether a M.tb stimulation in vivo could induce
these TB-associated fibroblast gene signatures, we evaluated the
expression of our TB-myofibroblast gene module in a previously
published bulk transcriptomics dataset from a standardized tu-
berculin skin test (TST) challenge (Fig. 6 C; Materials and
methods) (Pollara et al., 2021). In this study HIV- participants
with active pulmonary TB or “latent TB” (i.e., individuals with
T cell memory to M.tb but no evidence of TB disease) received a
standard TST (intradermal injection of purified M.tb proteins)
challenge or saline control. The TST site was biopsied 48 h later
and processed for bulk RNA-seq. Consistent with our ob-
servations, the human TB-myofibroblast signature was induced
in response to the standardized mycobacterial antigen stimula-
tion in vivo compared with saline controls, where no inflam-
matory response is expected. This signal was amplified in the
context of active TB disease compared with latent TB. This im-
plies that systematic inflammation from active M.tb infection
may prime the differentiation of a pathological fibroblast cell
state. Interestingly, genes associated with the SPP1*CHI3LI*
macrophage subset were similarly induced by TST, supporting
the hypothesis that M.tb stimulation induces myofibroblast-
like phenotype and SPPI* macrophages in humans, especially
in the context of active TB disease (Fig. 6 C).

Cell-cell interaction analysis reveals fibroblasts dominate
cellular cross talk in TB-diseased lung

To identify putative intercellular interactions regulating dif-
ferentially expressed genes between TB-diseased and control
lung niches, we used MultiNichenet (Browaeys et al., 2020)
(Fig. 7, A and B; Materials and methods). This indicated that fi-
broblasts were both the dominant sender and receiver cell type
in TB-diseased lungs (Fig. 7 C). Interestingly, a significant pro-
portion of fibroblasts expressed ligand and receptor pairs con-
sistent with autocrine signaling. In contrast, top interactions in
the TB-negative condition were more diverse, with pronounced
T cell and myeloid involvement.

We performed additional analysis with LIANA to drill down
into the specific cellular subclusters contributing to niche cross
talk in TB infected and control lungs (Dimitrov et al., 2022) (Data
S3, A and B; and Data S4 A). This integrated ligand-receptor
analysis framework leverages multiple resources and methods
to generate aggregated inference on samples from each

Mbano et al.

Fibroblast-macrophage axis in TB immunopathology

condition. Our results suggested a dominant role for COMP*
CILP*, IL6*CCL2*, MMPI*CXCL5*, and SERPINE2*COLIAI" fibro-
blasts, but not HSP fibroblasts, in TB-diseased conditions. This
analysis also implied that AT1 cell sender signaling is upregu-
lated in the TB-diseased lung, although these cells were sig-
nificantly depleted in TB-diseased lungs (Fig. 2 D and Data S4
B). AT1 cells normally serve as the interface of oxygen exchange
in the alveoli, but we found they have high expression of col-
lagen in the TB-diseased lungs, which broadly targets other cell
types (Data S4 B). In TB-negative diseased lungs, only HSP fi-
broblasts were predicted to contribute to signaling (Data S3 B).
It is important to note, however, that the lack of fibroblasts in
TB-negative lungs may influence this analysis.

To understand broader signaling patterns, we grouped
sender and receiver cell types based on similarities of their
signaling patterns (Materials and methods). Within TB-
diseased samples, we observed more distinctive patterns
among sender cell types than receivers, with senders
roughly grouped by cell type (Fig. 7 D). The opposite was ob-
served in TB-negative lung (Data S4 C). In TB, most of the fi-
broblast sender subclusters (MMPI*CXCL5*, COMP*CILP*, and
IL6*CCL2*) grouped together and with other nonimmune cells
(endothelial cells, AT1, and club cells; sender group 1). Quan-
tification of net cell signaling flux—defined as the product of a
sender population’s relative abundance and its average ex-
pression of a given signal—highlighted that, despite making up
a small proportion of the entire dataset, MMPI* CXCL5* fibro-
blasts were among the most prolific signal senders in the TB-
diseased condition (Fig. 8 A).

Next, to quantify ligand-driven changes in cellular cross talk
during TB infection, we calculated the difference in ligand in-
teraction strengths between TB-diseased and TB-negative lung
samples (Fig. 8 B; Materials and methods). TB sender group 1
secreted most of the top upregulated ligands in TB-diseased lung
(binomial test P value < 0.01, Data S5 A, left). Top senders of all
upregulated interactions in TB-diseased lungs were COMP*CLIP*
fibroblasts, followed by MMPI*CXCL5* fibroblasts (Data S5 A,
right). In contrast, control sender group 2, which consists mostly
of monocytes and macrophages, exhibited the greatest signaling
flux in control lung (binomial test P value < 0.01, Data S5 B).
Notably, MMPI*CXCL5* fibroblasts expressed most of the top flux
ligands (9/30) with increased overall interaction strength in TB,
supporting a central role in TB disease (Fig. 8 B). The top five
ligands from the MMPI*CXCL5* fibroblasts, ranked by average
interaction strength across receptors, were CXCL13, CXCL6,
DSG2, GREMI, and NTNI (Fig. 8 C). CXCL13 may act in both
autocrine and paracrine modes, signaling to B cells via CXCR5, a
homing marker for activated lymphocyte to lymphoid tissues,
and on B cells in NHP lung TB granuloma, where it regulates
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Figure 6. Evidence of MMP1* CXCL5" fibroblast populations in TB-diseased human lungs. (A) Representative flow cytometry plot showing the isolation
strategy of the PDPN*FAP* fibroblast population from the CD45-EPCAM cell fraction. (B) Cumulative data on frequency of PDPN*FAP*CD90* fibroblasts as a
fraction of live lung cells from five separate lung resections. Three separate sections were taken from each TB-diseased lung, corresponding to the most
diseased and least diseased tissues areas and an intermediate lung piece, according to the expert opinion of the operating surgeon. The Friedman test was used
to ascertain statistical significance between proportion of PDPN*FAP* fibroblast between severity groups. (C) Expression of human TB-myofibroblast signature
and SPP1*CHI3L1* marker genes in the TST challenge site in vivo model. Active TB TST (n = 48): biopsies from participants with microbiologically confirmed
pulmonary TB disease within the first month of treatment who underwent TST; latent TB TST (n = 191): biopsies from participants lacking clinical and ra-
diological evidence of active TB disease but with a positive peripheral blood IFN-y release assay; saline (n = 34): biopsies from participants that received saline
under the skin instead of tuberculin. Each dot corresponds to a sample; horizontal lines represent median values. Two-sided Mann-Whitney U test without
correct was used. Statistical annotations: P value <0.001 (***), P value < 0.0001 (****).

host-pathogen interactions (Loxton, 2019). CXCL6 appears to
function similarly, signaling to neutrophils and self, consistent
with known functions in inducing fibroblast matrix expres-
sion, neutrophil recruitment, and activation (Bahudhanapati
et al.,, 2021, Preprint; Mittal et al., 2008). DSG2 (desmoglein)
is known to induce pro-proliferative activity in dermal

Mbano et al.
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fibroblasts (Overmiller et al., 2017) and is highly upregulated
in zebrafish and human granuloma (Cronan et al., 2016).
GREM1, part of the TGF-B superfamily, contributes to pul-
monary fibrosis during the early stages of disease (Shi et al.,
2022). NTN1 (netrin-1), meanwhile, supports endothelial
survival and regulates angiogenesis, an important process for
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(C) Summary of top 200 interactions in TB-diseased and TB-negative/control lungs by the number of interactions between each cell pair. Cartoons on the right
of each heatmap show the suggested major modes of interactions in each condition. (D) Circos plots of significant interaction pairs in TB-diseased lungs from
LIANA, where sender and receiver cell types in each condition are clustered to reflect similar patterns.

dissemination of the pathogen (Castets et al., 2009; Polena
et al., 2016).

We also examined other top ligands sent by this subcluster
in TB-diseased lungs specifically. Our analyses suggested a
prominent role for the MMPI*CXCL5* subcluster in coordinating
fibrosis and inflammation through expression of collagen pro-
teins, MMPI, and cytokines (Fig. 8 D). Notably, MMPI itself acts
as a ligand for ITGA2, a receptor expressed on epithelial cells,
endothelial cells, and IL6*CCL2* fibroblasts, mirroring the AT1-
fibroblast interactions aforementioned. CXCL5 interacts with
CXCR2 on CDI16* monocytes and neutrophils, a key axis for re-
cruitment of these cells during TB infection and likely fueling
granuloma formation (Nouailles et al., 2014; Sawant et al., 2016;
Serbina et al., 2008). MMP1* CXCL5* fibroblasts also secrete
numerous ECM-related ligands: for instance, collagen molecules
COLIAI, COLIA2, COL6A3, COL3Al, and COL5A2 signal to epithelial
cells and monocytes, in addition to other fibroblasts via an au-
tocrine loop; ECM proteins POSTN, FBN-1, and DCN signal with
other nonimmune cell types; and, MXRA5, a matrix remodeling
protein like MMPI, communicates to AT1/AT2 cells via AGER.
Notably, many of these ECM-related ligands are highly upre-
gulated in LN TB granuloma (Data S5 C). Collectively, our
analyses suggest aberrant lung remodeling may be driven by
fibroblast and AT1 communication, leading to the fibrosis typical
of TB—a trend not necessarily reflected from cell type abun-
dance changes.

Cell-cell interaction analysis underscores the relevance of
SPP1* macrophages in human TB

The main receivers of fibroblast signaling were fibroblasts
and macrophages (Fig. 7 C). Among macrophage subclusters,
the top receivers for TB-upregulated fibroblast signals were
the ARL4C*EMPI* and SPPI*CHI3LI* cells (Fig. S5 A). Con-
versely, SPPI*CHI3LI* subcluster mostly signals to fibro-
blasts, followed by macrophages (Fig. S5 B), suggesting a
potentially important role in fibroblast-macrophage cross
talk. SPPI* macrophages have been identified in the lungs of
individuals with COVID-19, IPF, and lung carcinoma and in
BAL fluids from TB and latent TB patients (Sikkema et al.,
2023; Yang et al., 2023). In tumors, SPP1* macrophages are
highly immunosuppressive and associated with poor out-
comes, and they have been shown to orchestrate fibroblast
activation during fibrosis, driving myofibroblast activation
in heart and kidney injuries (Gao et al., 2022; Hoeft et al.,
2023; Matsubara et al.,, 2022). Comparing against other
known markers, we noted that our SPPI*CHI3LI* macro-
phages appeared congruent with SPPI* macrophages de-
scribed in other disease contexts (Fig. S5, C and D). Cell-cell
interaction analysis showed that fibroblasts were the major
receiver of SPP1*CHI3LI* macrophage signals (binomial test P
value = 8.7 x 10714), and nominated SPP1 and FNI as the major
ligand genes driving cross talk with fibroblasts (Fig. S5 E).

Mbano et al.

Fibroblast-macrophage axis in TB immunopathology

To further confirm the presence of SPPI* macrophages in
human lung TB granulomas, we performed immunohisto-
chemical staining of tissues from two independent donors. We
observed abundant total macrophages (CD68*) in both the
granuloma and surrounding lung tissue and localization of al-
veolar macrophages (CD68*CD206") in the non-granulomatous
lung tissue, where alveolar sacs were still visible (Fig. S5 F, left).
In stark contrast, CD68*SPP1* macrophages localized to the inner
cellular periphery immediately bordering the necrotic core of
the granuloma and were largely absent from surrounding lung
tissue. Quantification of SPP1 expression shows a significant
difference between the inner cellular layer and the other regions
and to a larger degree than CD68 (Fig. S5 F, right). Notably,
CTHRC-1, a marker for MMPI*CXCL5* fibroblasts that was lo-
calized to granuloma at the protein level, has been suggested to
play a role in cross talk with SPPI* macrophages (Liu et al., 2022)
(Fig. S4 B). These lines of evidence support the direct interaction
between SPPI* macrophages and myofibroblast-like phenotype
in human TB granuloma implied by the single-cell data.

Spatial transcriptomics confirms myofibroblast-like

phenotype in independent human cohort

Finally, to confirm our observations from human TB lung and LN
granulomas, we investigate cells within the Visium dataset for
expression of the myofibroblast-like module (Table S5, Fig. 1 B,
and Fig. S1 A). Consistent with our other data, the human
TB-myofibroblast signature was detected in both current and
post-TB lesions and was particularly highly expressed around
granuloma structures (Fig. 9 A). In addition, we found that both
HIV*and HIV- samples displayed clear human TB-myofibroblast
signature expression, suggesting it is not limited to TB mono-
infected individuals, as potentially suggested by our single-cell
data (Fig. 4 A). Indeed, in both current and post-TB samples, HIV
was associated with a higher TB-myofibroblast signature ex-
pression (Fig. 9 B). This may be because HIV impairs CD4* T cells
and macrophage-driven repair and increases TGF-f release,
keeping myofibroblast-like cells chronically active (Joseph et al.,
2022; Meng et al., 2016; Theron et al., 2017). In HIV- samples,
current TB was associated with elevated expression of the
myofibroblast-like module, but the opposite was true in HIV*
samples, likely due to persistent systemic immune activation
from HIV. These observations suggest that both pathogens can
exacerbate the expression of this disease-associated module.
Within each disease condition, we found granuloma samples had
higher human TB-myofibroblast signature expression, with the
exception of HIV* post-TB group, where expression was highest
in the iBALT sample (Data S6 A). However, only one iBALT
sample was available for this condition, which limits our confi-
dence in the observation. Nevertheless, these data confirm that
the human TB-myofibroblast phenotype is localized to human
TB lung granuloma in both active TB and PTLD, irrespective of
concurrent HIV infection.
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Figure 8. Global interaction analysis identifies key players in cellular communication within TB-diseased lung tissues. (A) Heatmap visualization of
interaction flux analysis. Rows represent sender cell types; columns represent receiver cell types. Each entry represents the potential flux of interaction from
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sender cell to receiver cell, whereas the total flux of each sender cell type is summarized on the left. Sender cell types are sorted based on descending order of
total flux (Materials and methods). (B) Top: Bar plot showing top 30 and bottom 30 ligands by log fold-change of interaction strength between TB and control
lungs across all sender cell types. Bottom: Log fold-change of interaction strength between TB and control lungs in each sender cell type (Materials and
methods). (C) Dot plot of top five ligand by ligand activity in TB-diseased lungs secreted by MMP1*CXCL5* fibroblasts and their receivers (Materials and
methods). (D) L-R interactions with MMP1*CXCL5" fibroblasts in the TB-diseased lungs; rows (L-R pair) and columns (target cell types) are hierarchically
clustered by correlation distance (Materials and methods). L-R, ligand-receptor.

For each of the granuloma samples, annotations on granu-
loma borders (“granuloma cuff”) were designated in paired H&E
staining images by a trained histopathologist and used to ex-
amine the spatial distribution of gene signatures (Fig. S1 B). This
analysis confirmed that the human TB-myofibroblast signature
was strongly expressed in the granuloma cuffs compared with
surrounding regions, with a slightly higher presence outside the
granuloma compared with the granuloma core (Fig. 9 C). In-
terestingly, examining the other fibroblast modules revealed
distinct spatial orientation relative to the granuloma (Data S6 B).
Like MMPI* CXCL5* fibroblasts, COMP*CLIP* and SERPINE2*
COLIA* fibroblasts displayed a similar pattern of enrichment
around the granuloma cuff, whereas IL6*CCL2* fibroblasts and
HSP fibroblasts exhibited greater enrichment outside the gran-
uloma. MMPI* CXCL5* fibroblast, however, showed the largest
difference for marker expression between the Visium spots on
the granuloma cuff and those inside/outside the cuff.

SPPI*CHI3LI* macrophage marker expression was similarly
enriched on the granuloma cuff, supporting the colocalization of
myofibroblast-like phenotype and SPPI*CHI3LI* macrophages at
this site (Fig. 9 C). To confirm this relationship, we looked at the
correlation between all macrophage subset markers with the
human TB-myofibroblast signature across all samples and found
the strongest correlation with SPPI*CHI3LI* macrophages com-
pared with the other macrophage subsets (Fig. 9 D). Finally, we
conducted a ligand-receptor analysis to identify spatially co-
expressed ligand-receptor pairs using the same database as
our analysis on scRNA-seq data (Materials and methods). This
identified the same L-R pairs as the top pairs in both samples,
including, for example, SPP1-CD44. This interaction was nomi-
nated as the top L-R pair in several samples, specifically high-
lighted around the granuloma cuffs and in our scRNA-seq data
(Fig. 9 E and Fig. S5 E).

Taken together, our scRNA-seq and spatial transcriptomics
data support the robustness and generalizability of the human
TB-myofibroblast signature and confirm its colocalization and
cross talk with SPPI* macrophages in human TB lung granuloma.

Discussion

TB is a global pandemic, and transformative interventions are
hindered by an incomplete understanding of its pathogenic
processes, including the extensive lung remodeling in pulmo-
nary TB that drives transmission, mortality, and a high burden
of PTLD following successful treatment (Dheda et al., 2016).
Several sequencing studies have highlighted a central role for
ECM remodeling of the human lung in TB, but none have re-
solved the contributions of individual cell types (Elkington etal.,
2022). Additionally, an emerging issue in TB research is that
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findings from the circulation—the compartment mostly fre-
quently studied—often fail to reflect processes in diseased tissue
(Ogongo et al., 2020). To address these gaps, we analyzed
scRNA-seq data generated from lung tissue freshly resected to
treat complication arising from TB disease and systemati-
cally cross-referenced our findings with public datasets from
M.tb-infected NHPs, the HCLA, LN TB granulomas, and TST
challenge, as well as additional immunohistochemical, flow cy-
tometric, and spatial transcriptomic data from the same cohort
to identify TB-specific changes at the cellular level. Collectively,
our lung datasets provide a key resource defining the cellular
subsets present in TB-diseased lung and dissecting im-
munopathogenic mechanisms. Our data demonstrate substan-
tial heterogeneity among key innate immune populations, such
as macrophages and neutrophils, in infected lung tissue. We find
that several of these subsets correlate with a recent single-cell
analysis of M.tb-infected NHPs (Gideon et al., 2022), a study not
limited by tissue availability or complicated by comorbidities,
such as HIV, further strengthening our observations. In ad-
dition, our data highlight a possible central role for diverse
fibroblast subsets with TB-diseased lung tissue and with TB
granuloma, particularly an underappreciated MMPI*CXCL5*
fibroblast population that colocalizes with SPP1* macrophages
at the granuloma cuff. We hypothesize that the interaction
between these cells, which express a myofibroblast-like gene
module, and SPPI* macrophages may play an important role
in human TB granuloma development and PTLD, potentially
aggravating granuloma progression and lung fibrosis. Further
examining these putative interactions could more deeply in-
form our understanding of granuloma biology and suggest
promising targets for novel TB HDTs.

Previously, limited knowledge on matrix turnover mecha-
nisms has hindered the development of clinical strategies for
managing PTLD (van Kampen et al., 2018); here, our study
identifies potential cell targets, including heterogeneous fibro-
blast subsets such as those expressing a myofibroblast-like gene
module. Lung myofibroblasts are thought to arise from a variety
of routes, ranging from differentiation of tissue-resident fibro-
blasts, EMT (Willis et al., 2006), endothelial-to-mesenchymal
transition (Piera-Velazquez et al., 2011), and bone marrow-
derived progenitors such as fibrocytes (Mori et al., 2005). The
myofibroblast-like cells showed in this study express genes ob-
served in immune fibroblasts (lineage-, CD34-, CD90*, FAP*, and
PDPN") (Nayar et al., 2019). These cells are critical for the for-
mation of tertiary lymphoid structures, which arise in response
to sustained inflammation (Gago da Graca et al., 2021) and are
commonly observed in TB-infected lung tissue (Sawyer et al.,
2023). Additionally, matrix remodeling driven by skewed fi-
broblast populations can profoundly impact the cellular niche.
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Figure 9. Spatial transcriptomics analysis on post- and current TB lung resections. (A) Heatmap showing the expression of human TB-myofibroblast
gene signature and SPP1*CHI3L1* macrophage markers on selective tissue slides from patients who are post-TB (top) or current TB (bottom), alongside paired
H&E staining (these H&E stains are also shown in Fig. S1 A together with those other samples used for spatial transcriptomics not shown here). (B) Distribution
of human TB-myofibroblast signature expression on the spatial cohort. HIV statuses are shown in different shades of blue for positive or negative. Two-sided
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Mann-Whitney U test without correction was used for statistical testing. Statistical annotation: P value < 0.0001 (****). (C) Distribution of SPPI*CHI3L1*
macrophage markers and human TB-myofibroblast signature on the spatial data across all Visium spots. Left two panels: Manual segmentation of the
granuloma structure was done to allow separation of the Visium slide into three different regions: in granuloma, on granuloma border (cuff), and outside of
granuloma (Materials and methods). Right two panels: The same as left panels with the exception that “on border” = True means on granuloma cuff and False
means the rest. Two-sided Mann-Whitney U test without correction was used for statistical testing. Statistical annotation: P value < 0.0001 (****).
(D) Correlation between human TB-myofibroblast signature and all macrophage subpopulations’ markers. Each circle represents a Visium sample. Boxplot of
the Pearson’s r distribution is shown for each macrophage subtype. Mann-Whitney U test without correction were used for statistical testing. Statistical
annotation: P value < 0.0001 (****). (E) Spatially informed ligand-receptor (L-R) analysis using LIANA+ on Visium samples. Examples are shown where
SPP1(L)-CD44(R) interactions are being nominated as top L-R pairs. H&E overlaid with pathology annotation for granuloma structures are shown next to

heatmap of L-R interaction scores, which are calculated at each Visium spot using spatially weighted Cosine similarity (Materials and methods).

Changes in ECM composition can further perpetuate fibroblast
reprogramming and ECM remodeling, as seen in escalating
MMPI expression (Cole et al., 2018). These findings help guide
interpretation of our cell-cell interaction analyses, highlighting
significant roles for ECM-related molecules.

Postprimary human TB is often paucibacillary (Hunter and
Actor, 2019), and it remains puzzling how profound lung de-
struction is generated under such conditions. The data presented
here may support a model in which fibroblast-ECM interactions
exacerbate and perpetuate lung destruction in human TB and
highlight the emerging immune regulatory role of fibroblasts
(Davidson et al., 2021). Of note, a phase II clinical trial in patients
with pulmonary TB found that 2 wk of doxycycline, an MMP
inhibitor, led to significant changes in the peripheral tran-
scriptome at 8 wk (Miow et al., 2021), demonstrating how a
matrix-modulating HDT may influence the immunological tra-
jectory of disease. Overall, our single-cell and spatial tran-
scriptomics analyses highlight a previously overlooked role for
myofibroblast-like phenotype as a likely key player in orches-
trating the immune response and regulating immunopathology
in TB.

Anti-inflammatory macrophages are generally enriched in
TB-diseased tissue during chronic TB infection, potentially
limiting immunopathology but also creating a favorable niche
for M.tb replication (Shim et al., 2020). Here, we found that most
macrophage populations were skewed in TB-diseased lung tis-
sues compared with TB-negative tissues, with a similar trend
between post-TB and current TB spatial samples. Of particular
interest are SPPI* macrophages, which were elevated in TB-
diseased lung tissue and strongly associated with the granu-
loma cuff in our spatial transcriptomics and histology data. This
population has not been characterized in TB lung granuloma but
is emerging as an important player in tumors, IPF-diseased lung
tissue, and other fibrotic conditions (Morse et al., 2019; Qi et al.,
2022). The presence of SPP1* macrophages in TB granuloma was
further supported by granuloma RNA-seq data from human LNs
and experimentally infected NHPs. Furthermore, the SPPI*
macrophage markers were upregulated following TST challenge,
which was amplified by concurrently active TB disease, linking
their induction to M.tb exposure. Moreover, we found evidence
of cross talk between SPPI* macrophages and the human TB-
myofibroblast phenotype, a previously underappreciated but
potentially important interaction in TB. This putative interac-
tion is supported by histological and spatial transcriptomics
data, indicating both SPPI*CHI3LI* macrophages and MMPI*
CXCL5* fibroblasts are tightly associated with the granuloma
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cuff. In IPF, SPPI* macrophages are highly expanded in fibrotic
lesions and cross talk with myofibroblasts to drive fibrotic
changes (Morse et al., 2019); in colorectal cancer, there are direct
interactions between SPPI* macrophages and FAP* fibroblasts
expressing high levels of MMPI1/3 (Qi et al., 2022). In addition,
mechanistic work in murine models showed SPPI* macrophages
can directly activate myofibroblasts via SPP1 and FN1 (Hoeft
et al., 2023), both of which are implicated in the SPPI*
macrophage-fibroblast cross talk we found in TB lung tissues.
This interaction was also linked to an immune-suppressive,
pro-tumorigenic microenvironment through active ECM
deposition—resembling granuloma formation in TB (Li et al.,
2024). Thus, we hypothesize that the SPPI* macrophages-
myofibroblast axis likely plays an important role in TB gran-
uloma biology.

While our study provides much needed information on TB-
diseased human lungs, several limitations should be acknowl-
edged. Our cohort size is modest, and substantial variability
between patients and sampling location exists in both the pri-
mary resections used in the single-cell analysis and flow cy-
tometry experiments. We attempted to address these challenges
by obtaining additional samples for spatial transcriptomics and
by integrating our analyses with data from relevant public da-
tasets. However, we are still likely to have missed some biolog-
ical features underlying TB pathology. In addition, further work
is needed to dissect the mechanistic role of the myofibroblast-
like phenotype and the interaction of the cells that express
it with SPPI* macrophages in TB immunopathology. Possible
avenues include co-culture systems, conditioned media assays,
or recruitment assays to determine whether and how these fi-
broblasts influence and are influenced by macrophage behav-
iors, as well as whether chemotactic interactions exist. Ex vivo
stimulation experiments with TB antigens on isolated fibroblasts
or macrophages could help establish whether TB-specific cues
directly drive differentiation toward these disease pheno-
types. Genetic approaches, such as targeted knockout of key
genes in MMPI*CXCL5* fibroblasts or genome-wide CRISPR
screens in fibroblasts within animal models of TB, could
clarify causal relationships between these cells and TB
pathogenesis and tissue remodeling. Beyond identifying
causality, studying earlier time points in TB infection will be
necessary to understand disease progression and the origins
of TB complications. Ultimately, an integrated spatial, tem-
poral, single-cell resolution disease map may be required to
fully understand pulmonary reprogramming due to TB and
guide optimal treatment strategies that maximize bacterial
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clearance while minimizing or restoring post-TB lung
damage.

In sum, our study demonstrates the power of single-cell
profiling to help identify and spatial transcriptomics to contex-
tualize potential drivers of immunopathology underlying lung
remodeling in TB disease. Our analysis highlights specific mac-
rophage and fibroblast populations, as well as ECM-related
processes, as promising targets for novel HDTs that could com-
plement or offer alternatives to standard antibiotic regimens.

Materials and methods

Human study ethics and participants

Human lung tissue was obtained from patients undergoing
surgery due to TB sequelae, including, but not limited to, he-
moptysis, cavitation, bronchiectasis, shrunken, or collapsed
lung, at the Department of Cardiothoracic Surgery at King Di-
nuzulu Hospital in Durban, KwaZulu Natal, and Inkosi Albert
Luthuli Central Hospital in KwaZulu-Natal. All samples were
collected with approval from the Biomedical Research Ethics
Committee and written informed consents obtained from all
subjects (BREC no. 019/13).

Human lung tissue preparation
scRNA-seq samples: The lung tissue was processed within 3 h of
receipt as described (Ardain et al., 2019). Briefly, a piece of the
lung tissue was cut for histology and placed in 4% paraformal-
dehyde. The remaining piece of tissue was dissected into small
pieces (5 x 5 x 5 mm) and infiltrated with a collagenase (Sigma-
Aldrich) and DNase 1 (Sigma-Aldrich) in RPMI (Sigma-Aldrich)
with 10% FBS (Hyclone) for 30 min. Mechanical digestion at
room temperature was performed using the Gentle MACS
(Miltenyi Biotec), followed by agitation at 37°C for 30 min. The
mechanical digestion and agitation were repeated once more,
followed by filtration of the resulting cellular suspension using
the 70-mm (Corning) and 40-mm (Corning) strainer, followed
by the lysis of red blood cells. Cells were then stained with trypan
blue (Thermo Fisher Scientific) and enumerated using an auto-
mated cell counter (Bio-Rad) or a manual counter (Kova).
Spatial transcriptomics (Visium) samples: A section of lung
was cut and transferred to 10% buffered formalin to fix for 24 h,
then transferred to 70% ethanol until wax embedding. The
sample was then processed in a vacuum filtration processor
using a xylene-free method and isopropanol as the main sub-
stitute fixative. The tissues were embedded in paraffin wax.
Tissue sections (5 um) of specimens of good quality, as deter-
mined by trained histotechnologist, were mounted on charged
slides, air-dried for 30 min, then at 42°C for 3 h in a desiccator,
and stored in a desiccator at room temperature until use.

NHP study ethics and research animals

The macaques used for generating the scRNA-seq data were part
of the study published by Ganchua et al., and the same ethical
and maintenance procedures were followed (Ganchua et al.,
2024); all experimental manipulations, protocols, and care
of the animals were approved by the University of Pitts-
burgh School of Medicine Institutional Animal Care and Use
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Committee (IACUC). The protocol assurance number for our
IACUC is A3187-01. Our specific protocol approval numbers for
this project are 15066174 and 18124275. The IACUC adheres to
national guidelines established in the Animal Welfare Act (7
U.S.C. Sections 2131-2159) and the Guide for the Care and Use of
Laboratory Animals (eighth edition) as mandated by the US
Public Health Service Policy.

NHP infections and disease tracking by PET-CT

Five cynomolgus macaques (Macaca fascicularis, aged between
5.3 and 9.1 years), obtained from Valley Biosystems, were part of
a previously published study as the “immune naive” control
group (Bromley et al., 2024; Ganchua et al., 2024). They only
received a low-dose infection (7 CFU) with M.tb strain Erdman
and were necropsied 4 wk after infection. PET-CT was per-
formed just prior to necropsy and results were analyzed using
OsiriX viewer as previously described, with a detection limit of
1 mm (White et al., 2017). The infection dose was determined by
colony counts after plating an aliquot of the infection inoculum
on 7HI11 agar plates, which were incubating for 3 wk at 37°C/
5% CO,.

Necropsy protocols

Procedures carried out during necropsy have been previously
described (Ganchua et al., 2024). Briefly, 1-3 days before ne-
cropsy, PET-CT scans were taken to pinpoint the location and
metabolic activity (FDG activity) of granulomas. These scans
served as a guide during necropsy for precise identification and
excision of these samples. On the day of necropsy, macaques
were sacrificed humanely by infection of sodium pentobarbital
and terminally bled. Individual granulomas and uninvolved lung
tissue were all excised and homogenized separately into single-
cell suspensions. Homogenates were aliquoted for plating on
7H11 agar for bacterial burden, freezing for DNA extraction, and
staining for flow cytometry analysis. Any remaining samples
were frozen for future use.

Human lung scRNA-seq with Seq-Well S3

Seq-Well S was implemented as described (Hughes et al., 2020),
the single-cell suspension was diluted to 15,000 cells in 200 pl of
RPMI (Sigma-Aldrich) plus 10% FBS (Hyclone) and loaded onto a
polymethylsiloxane array pre-treated with the same solution for
15 min. The cells were allowed to settle into the microwells by
gravity, and the array was washed with PBS (Sigma-Aldrich) and
sealed with a plasma functionalized polycarbonate membrane
(Sterlitech). The arrays were then sealed, followed by incubation
at 37°C for 40 min, followed by a 20-min incubation in lysis
buffer containing guanidium thiocyanate (Sigma-Aldrich),
EDTA (Thermo Fisher Scientific), 1% betamercaptoethanol
(Sigma-Aldrich), and sarkosyl (Sigma-Aldrich) at room tem-
perature. The arrays were then transferred to a hybridization
buffer containing NaCl (Thermo Fisher Scientific), MgCl,
(Sigma-Aldrich), PBS (Thermo Fisher Scientific), and polyethy-
lene glycol (Sigma-Aldrich) and were gently shaken at 60 rpm
for 40 min. The capture beads hybridized with released mRNA
from the lysed cells were collected from the array by a series of
three wash steps with wash buffer containing NaCl (Thermo
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Fisher Scientific), MgCl,(Sigma-Aldrich), Tris-HCl (Thermo
Fisher Scientific), and Water (Ingaba Biotec), with centrifuga-
tion at 2,500 g for 5 min each iteration. The beads were re-
suspended in a master mix for reverse transcriptase containing
Maxima H Minus Reverse Transcriptase, Maxima Buffer,
dNTPs, RNAse inhibitor, a template switch oligonucleotide, and
PEG for 30 min at room temperature and overnight with endto-
end mixing at 52°C. This was followed by the standard exonu-
clease digestion and denaturation of complementary DNA
(cDNA) hybridized to the bead by 5-min incubation in NaOH
(Sigma-Aldrich) and washed with a solution containing Tris-
HCI, EDTA, and Tween-20 (Thermo Fisher Scientific). The
beads were resuspended in a master mix containing Klenow
Fragment (NEB), dNTPs, PEG, and the dN-SMRT oligonucleo-
tide, incubating for 45 min at 38°C. PCR was performed as de-
scribed in the protocol, and the product was subjected to two
rounds of AMPure XP SPRI (Agencourt) bead cleanup at 0.6x and
0.8x volumetric ratios sequentially. The library size was ana-
lyzed using an Agilent Tape station hsD5000 kit, ensuring that
the expected product had an average size of ~1,000 bp and the
absence of primer dimers especially below 200 bp. The Qubit
High Sensitivity DNA kit was used to quantify the libraries, and
they were prepared for Illumina sequencing using the NextEra
XT DNA Sample Preparation kit. A total of 900 pg of the different
libraries were added to the tagmentation reaction. The amplified
product was purified with the AMPure XP SPRI beads, and the
libraries were pooled for loading onto the NovaSeq 6000 using
paired-end read structure with custom read 1 primer: read 1: 20
bases, read 2: 50 bases, and read 1 index: 8 bases.

Spatial transcriptomics with Visium and paired H&E staining
Tissue slides were baked at 60°C for 2 h and dewaxed using two
xylene changes and rehydrated with descending grades of al-
cohol to water. They were then H&E stained and imaged as the
reference image, and the same slide was then processed as
per Visium version 2 chemistry protocol following the manu-
facturer’s recommendations (Visium Spatial Gene Expression
for FFPE - Deparaffinization, H&E Staining, Imaging and De-
crosslinking, document CG000409 RevD, 10x Genomics, [Sept
2023]; Visium Spatial Gene Expression for FFPE Imaging
Guidelines, document CG000436 RevB, 10x Genomics, [Sept
2023]; Visium Spatial Gene Expression Reagent Kits for FFPE
User Guide, document GC000407 Rev E, 10x Genomics, [Sept
2023]). The sequencing results were processed through the
SpaceRanger software following manual alignment of the fidu-
ciary frames using the 10x Loupe browser.

NHP sample scRNA-seq with Seq-Well S3

scRNA-seq was performed on both uninvolved lung tissues and
granuloma tissues using the Seq-Well S® platform as described
by Bromley et al., where the granuloma data were previously
published (Bromley et al., 2024).

NHP single-cell data alignment and analysis

The transcript reads were aligned as described by Bromley et al.
(2024). Briefly, transcript reads were tagged for cell barcode and
UMI using DropSeqTools version 1.12, then aligned to the M.
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fascicularis version 5 genome (https://useast.ensembl.org/
Macaca_fascicularis/Info/Index) through the Dropseq-tools
pipeline on the Terra platform (app.terra.bio) (Macosko et al.,
2015). Aligned reads were collapsed by barcode and UMI se-
quences to generate digital gene expression matrices for each
array, covering 10,000 barcodes. For each sample, gene ex-
pression matrices with 210,000 barcodes were processed
through CellBender to estimate ambient RNA fraction. The
“remove-background” function in CellBender was applied with
default settings. Next, the matrices “corrected” by CellBender
were analyzed with Scrublet, with default parameters to detect
potential doublets. Any transcriptome with a doublet_score >
0.30 was removed from downstream analyses.

After that, the gene expression matrices for each sample were
merged and processed in Scanpy (version 1.8.2). Transcriptomes
were filtered using the following criteria: min_genes >300,
min_counts > 500, mitochondrial_threshold = 0.05, and genes
expressed in at least 10 cells. Gene expression counts were
normalized using default Scanpy parameters (i.e., log2(TP10K+1)).
Coarse-level cell type clustering and iterative subclustering
were used to annotate cell types and further detect low-quality
transcriptomes (e.g., doublets). Cell types were identified using
canonical markers, and only fibroblast cells were included in the
analysis presented in this study.

Human lung single-cell data analysis and cell type
identification

The raw sequencing reads from the NovaSeq run were aligned to
the hgl9 genome assembly and processed in accordance with the
Drop-Seq Computational Protocol version 2.0 (https://github.
com/broadinstitute/Drop-seq). The output (cell by gene ma-
trix) was then loaded to the Seurat R package version 3.1.0
(https://satijalab.org/seurat/), transformed to log.(UMI +1), and
followed by scaling by a factor of 10,000. The overall quality
was assessed by the distribution of reads, transcripts, and
genes per cell (percentage of mitochondrial genes <5, nFeature_
RNA<2500, nFeature_RNA>200, and nCount_RNA>200).
SCTransform by Seurat was called to perform normalization of
the gene counts, selecting top 3,000 highly variable genes, and
scaling normalized gene counts. Principal component analysis
was run on the selected highly variable genes to give the top
50 PCs. A custom elbow-based method was used to find the
smallest number of PCs (n_pcs) where the eigengap between
two adjacent PCs drops below 20 percentile of all eigengaps
among top 50 PCs. Uniform Manifold Approximation and
Projection (UMAP) was calculated using the RunUMAP function,
and neighborhood graph was calculated by FindNeighbors, both
using reduction = “pca” and selecting top n_pcs as input di-
mensions. Unsupervised Louvain clustering using the FindClusters
was used to identify transcriptionally similar cells with pa-
rameters assay = “integrated”, dims.use = n_pcs, k.param =
ceiling(0.5*sqrt(#cells)), and we performed a resolution scan
for the best clustering resolution from 0.2 to 2 while optimizing
for silhouette score. Cell type annotation were done by cross-
referencing canonical cluster defining genes with well-curated
lists and online databases such SaVant T (http://newpathways.
medb.ucla.edu/savant-dev/) and GSEA/MsigDB (https://www.
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gsea-msigdb.org/gsea/msigdb/index.jsp). Doublet clusters where
multiple canonical markers were expressed are identified and
removed, and the entire dataset are reprocessed starting from
the SCtransform step. Final differentially expressed (DE) gene
for each of the major clusters were found by calling FindAll-
Markers from Seurat using default setting and adjusted P value
cutoff <0.05, and top DE genes were found by ranking log fold-
change values from high to low. Heatmap of DE genes were
plotted using Seurat function DoHeatmap, and dotplot was
achieved using function DotPlot.

Subclustering for major cell groups (macrophage/monocytes,
neutrophils, epithelial cells, and fibroblasts) were performed
similarly to the entire dataset after subsetting to the specific cell
types. Marker genes for each subcluster was found by calling
FindAllMarkers from Seurat using default setting, and signifi-
cant genes (adjusted P value < 0.05) are visualized with custom
volcano plots.

Comparison with human LN data was done for the top 10
DE genes in each cellular subcluster and checked over the TB
vs. control differential testing result from the human LN
granuloma study.

Clustering analysis on cell subtypes

Proportion of cell subtypes in each patient was calculated, and
Pearson’s correlations between every pair of broad level cell type
are calculated. For each pair of cell types, we ran permutation
test by randomly reassigning cell type labels to generate a set of
background correlation values, and P values are calculated as the
percentage of the permutated correlation values exceed the
original observation. Hierarchical clustering on the cell types are
done by feeding in the pairwise correlation into Python function
linkage with method = “average,” metric = “correlation”; we then
use function fcluster with a defined k to call cluster from the
returned linkage result with criterion = “maxclust”. We grid
searched through k from 2 to 29 (one less than the number of cell
types) and determined the optimal cluster number by computing
the silhouette score from each clustering result with function
silhouette_score and a precomputed correlation distance. This
allowed us to select k = 12, which resulted in the highest sil-
houette score. For each of the 12 clusters identified through hi-
erarchical clustering, we further calculated permutation test
P values to examine average correlation values within and out-
side of each cluster and annotate those that has within-group
P value < 0.05.

Differential abundance testing

Statistical differences in the cell type abundance between TB-
diseased and TB-negative lungs were tested by two-sided Fish-
er’s exact test at the cell level and adjusted for multiple testing
correction by Holm’s method.

Cluster-free differential abundance testing is done using
milopy in Python. Neighborhoods are constructed over the en-
tire dataset using k = ceil(0.5 x +/n ), where ceil rounds up to the
nearest integer and n is the number of cells. Neighborhoods are
made with prop = 1. Function DA_nhoods were called with
design = ~HIV + TB to account for the effect of HIV status. For
interpretation, we only kept neighborhoods with neighborhood
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annotation fraction > 0.5 and labeled them with the majority
cells’ annotation. Due to the small sample size, we opted to use P
value instead of the spatial false discovery rate (FDR) devised in
milopy for significance.

Bulk RNA-seq profile deconvolution and comparison

For comparing the marker genes in each subcluster with DE
genes in bulk RNA-seq on human LN TB granuloma samples,
we first selected top 50 DE genes in each subcluster. Note
that some of the DE genes in a broad cell type may overlap
with the DE genes in another, since the differential analysis
was done within each broad cell type. Hence, we remove the
genes that are shared between cell types, re-ranked the re-
maining DE genes by log-fold change, and took the top 10 DE
genes to compare with the bulk differential expression
results.

For deconvolution of the human LN TB granuloma and con-
trol samples, we applied tool MuSiC (1.0.0) separately on TB and
control samples, using annotated data in our study as single-cell
reference. We kept all the cell types for deconvolution except
alveolar macrophages, which should only exist in lungs. Other
parameters are kept as default.

We applied a standard two-sided T test to compare the dif-
ference between inferred cell type proportions between TB and
control LN samples, with Bonferroni correction for multiple
testing.

Fibroblast label transfer and gene signature finding

Travaglini et al. (2020) stromal cell type calling

Top 20 markers for each stromal cell population by Travaglini
etal. (2020) (Table S4) were found by filtering on P value < 0.05
and sorted by average log fold-change. AddModuleScore from
Seurat was used to calculate module score of these markers, and
“Travaglini.fib.subtype” was called based on which cell type
gives the maximum module score, where “ambiguous” was as-
signed if no score gives a positive value. Proportion of Trav-
aglini.fib.subtype was calculated in each fibroblast cluster given
this new cell annotation.

HLCA label transfer

HLCA label transfer onto our dataset was achieved following
their tutorial (https://github.com/theislab/scarches/blob/hlca_
tutorial_improvements/notebooks/hlca_map_classify.ipynb).
Briefly, label transfer was done using asArches on the raw
counts of the entire dataset on the genes that are part of the
reference model. Annotation level 3 data were used in this
paper. Celled called as “fibroblast” or “myofibroblast” are
considered together as fibroblast population, which are highly
consistent with our manual annotation (>95% true positive
rate). For better comparison, we only included HLCA fibro-
blasts (and myofibroblast) with tissue source annotation “lung
parenchyma.” Differential gene expression analysis was per-
formed between all TB-negative controls (from both HLCA and
our study) and TB-diseased lungs (only from our study) on log
normalized counts. GSEA was run in R using gene sets from
MSigDB (accessed using msigdbr) on DE genes passing filter for
Benjamin-Hochberg adjusted P value < 0.05.
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Gene module finding with hdWGCNA

Single-cell version of WGCNA was run using tool hdWGCNA
following tutorial (https://smorabit.github.io/hdWGCNA/
articles/basic_tutorial.html). Briefly, gene_select = “varia-
ble” was used to set the variable gene selection approach
using SetupForWGCNA. To avoid sparsity in the single-cell
data, we first constructed metacells that aggregates the ex-
pression profile based on neighborhood information. Meta-
cells were constructed through MetacellsByGroup call with
parameters k = 10, max_shared = 5, and min_cells = 20;
group.by uses the categories for fibroblast subcluster and
disease status (TB, HIVTB, HIV control, and cancer control),
and ident.group is also set to be the subcluster. SetDatExpr
was called with “SCT” assay and “data” slot for scaled ex-
pression. TestSoftPowers function was called with net-
workType = “signed”. The rest follows the default analysis
workflow. Top genes in each module ranked by eigen-based
connectivity (kME) are visualized by running PlotkMEs.
Feature plot of module eigengenes (MEs) for each module
was plotted by running ModuleFeaturePlot with features =
“MEs”. ModuleCorrelogram function was used to visualize
the correlation between each module based on their MEs,
and VInPlot from Seurat was used to visualize the difference
of module MEs between subclusters.

LN granuloma laser capture microdissection RNA-seq study
FFPE clinical samples from 24 adult patients undergoing medias-
tinal or neck LN biopsy were selected (seven TB, 10 sarcoidosis,
and seven normal), and the first analysis has previously been
reported (Reichmann et al., 2014; GEO accession code GSE174443).
The patients were treatment naive and had no significant co-
morbidities, were HIV negative, and were nonsmokers. Sections
0f10 pm thickness were cut, floated in RNase-free water, mounted
on to polyethylene naphthalate membrane glass slides, and dried
at 37°C overnight. Sections were dewaxed with xylene immersion
followed by xylene removal with 100% EtOH. Laser capture mi-
crodissection was used to isolate granulomas or similar area of
control normal tissue. Each sample underwent total RNA extrac-
tion and sequenced using Ion Torrent sequencing. Raw sequenc-
ing data were aligned using Kallisto software and annotated to
gene level by ensembldb, and sleuth programs to ensure similar
results were found. Inter-sample normalization was performed
using TMM normalization (edgeR).

Evaluation of differential genes in LN granuloma dataset
Genes identified from each cluster during single-cell se-
quencing analysis were searched within the bulk RNA-seq
dataset of granulomas isolated by laser capture microdis-
section (GEO accession code GSE174443), where differential
gene expression analysis was performed using limma with
its voomWithQualityWeights function (version 3.38.3, R)
with Benjamini-Hochberg FDR of < 0.05. Filter values were
optimized to yield the highest number of differentially ex-
pressed genes across the study cohort. GraphPad Prism 9 was
used to plot the average gene expression of seven control and
seven TB LNs, with box-and-whisker values generated using
one-tailed unpaired T test.
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Evaluate gene module in NHP dataset

Gene modules found from above are taken to be evaluated in
NHP data. Top 50 hub genes are ranked by eigengene-based
connectivity (kME) and used to score on fibroblasts from
the NHP dataset using function score_genes from Python
package scanpy. Two sided Mann-Whitney U test without
correction was used to compare module usage between dif-
ferent conditions.

Evaluate gene modules in human TST challenge dataset

Top 50 hub genes from the Fibroblast-M1 module from
hdWGCNA are taken as the human TB-myofibroblast module
as described above, along with differentially expressed
marker genes from SPPI*CHI3LI* macrophages (Data S8), they
are used to score on the bulk RNA-seq data which has been
preprocessed following methods in Pollara et al. followed by
calculating geometric means of all the genes in set (Pollara
et al., 2021). Two sided Mann-Whitney U test without cor-
rection was used to compare module usage between different
conditions.

Cell-cell interaction analyses

MultiNicheNet

Analysis was run using package multinichenetr following tu-
torials on https://github.com/saeyslab/multinichenetr. Briefly,
recommended ligand-receptor network and ligand-target ma-
trix were downloaded from https://zenodo.org/record/7074291/
files, and a SingleCellExperiment object was constructed from
the RNA assay from the Seurat object. Analysis was defined for
senders and receivers as all broad-level cell types shown in Fig. 1.
We performed genome-wide differential expression analysis of
receiver and sender cell types to define DE genes between the
conditions of interest (TB-negative and TB-diseased lungs).
Empirical P values were calculated after differential expression
calculation using function get_empirical_pvals. Then, we pre-
dicted NicheNet ligand activities and NicheNet ligand-target
links based on calculated differential expression results using
function get ligand_activities_targets_DEgenes with parame-
ters logFC_threshold = 0.50, p_val_threshold = 0.05, fraction_
cutoff = 0.05, p_val_adj = FALSE, and top_n_target = 250. We see
the information collected above to prioritize all sender-ligand-
receiver-receptor pairs using function generate_prioritization_
tables with prioritizing weights: “de_ligand” = 1, de_receptor” =
1, “activity_scaled” = 2, “exprs_ligand” = 2, “exprs_receptor” = 2,
“frac_exprs_ligand_receptor” = 1, “abund_sender” = 0, “abund_
receiver” = 0, and fraction_cutoff = 0.05; grouping_tbl consists
of sample ID and TB status. Circoplot visualizations of top 20
ligand-receptor pairs in each TB status group were done on
prioritization table outputs. Summary heatmap was done over
top 200 interactions for enrichment of interactions between
cell types.

Given the requirement to perform genome-wide differential
expression analysis to identify DE genes between TB conditions,
we could not apply the same MultiNicheNet framework to all
subclusters, given some subclusters do not have enough power
to detect. Hence, we switched to LIANA for an unbiased cell-cell
communication analysis at the subcluster level.
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LIANA

LIANA analysis was first independently run on both TB-diseased
data and healthy control data using function liana_wrap, fol-
lowed by liana_aggregate from the LIANA package in R using
default parameters on RNA assay from Seurat. We kept only
interactions concordant between methods by filtering for in-
teractions with aggregate_rank <0.01. Top 20 MMP1* CXCL5*
fibroblast-specific signaling in TB was extracted, where inter-
action specificities are extracted from natmi.edge_specificity
values and expression magnitudes are from sca.LRscore value
between interactions. Senders/receivers are ordered by hierar-
chical clustering based on Pearson’s correlation of sca.LRscore
values.

We summarized the sender-receiver interaction frequencies
from the filtered interactions in each TB status group and cal-
culated the difference between the two frequency matrices.
Lastly, we normalized by the largest absolute value of differ-
ences for plotting the interaction difference heatmap. To visu-
alize interactions strengthened in TB-diseased group and
TB-negative group, we defined the edge weight of interactions
by the natmi.edge_specificity from LIANA output and edge_FC
as the fold change between the TB group and control group with
a pseudo edge weight of 107¢ if control group is 0. We counted
the number of interactions between sender-receiver groups
involved in interactions of edge_FC > 1, defined as “pos-
logFC.cellcell.count” and similarly the number of interactions
between sender-receiver groups involved in interactions of
edge_FC < 1, defined as “neglogFC.cellcell.count.” We clustered
sender and receiver in TB-upregulated interactions (summa-
rized in “poslogFC.cellcell.count”) and TB-downregulated in-
teractions (summarized in neglogFC.cellcell.count) based on
Pearson’s correlation of interaction count similarities between
senders and receivers, respectively. Hierarchical clustering was
done using pheatmap followed by inspecting tree clusters and
calling groups using cutree. For circos plots of TB-upregulated
sender-receiver pairs and TB-downregulated sender-receiver
pairs, we only selected for pairs with interaction counts ex-
ceeding 80 percentile of all pairs in the particular condition,
using function chordDiagram from R package circlize.

For visualizing the interactions between fibroblast and
macrophages and SPPI* macrophage signaling, we visualized the
count of interactions with aggregate_rank < 0.01 and edge_FC >
1 and used chordDiagram to plot.

Ligand interaction strength calculation
Mean TB edge is defined as the mean of interaction edge weight
in TB-diseased group for specific sender and ligand combination,
and mean_CTR_edge is defined as the mean of interaction edge
weight in TB-negative group. weighted_mean_TB is defined as
mean_TB_edge weighted by the count of interaction involving
that ligand in each sender group, and similarly for weighted_
mean_CTR. Finally, weighted_mean_FC (e.g., interaction strength
change) is defined as weighted_mean_TB/weighted_mean_CTR.
Top 30 and bottom 30 ligands by the interaction strength are
chosen to be visualized in Fig. 5 D.

We also calculate an unweighted mean_FC = mean TB edge/
mean_CTR_edge for the interaction strength change in each
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sender cell type, and we consider an interaction involving a
ligand as positive if the logl0(mean_FC) is positive and negative
if the loglO(mean_FC) is negative, which reflects whether the
interaction is stronger or weaker in TB-diseased vs. TB-negative
group. Positive and negative interaction counts are tallied for
each ligand, and a ligand is thought to be dominantly “positive”
(colored red in barplot) if positive interaction count is 50%
higher than negative interaction count and “negative” (colored
blue) if negative interaction count is 50% higher than positive
interaction count. Mean_FC and loglO(mean_FC) between TB-
diseased and TB-negative samples are used to indicate ligand
activity importance in each sender cell type; sender cell types are
grouped according to clustering for TB-diseased senders in cir-
cos plot. Grouping of sender cell types in the ligand interaction
strength analysis was the same as before. Top five ligands in
MMPI*CXCL5* fibroblast by mean TB edge metric was visualized
for their proposed targets and number of possible receptor in-
teractions on each cell type.

For summarizing top 10% of ligands in each TB condition, we
calculate the mean of edge_FC for each source/ligand combina-
tion. The mean edge_FC is then sorted by descending order,
where the top 10% and bottom 10% are visualized as top ligands
upregulated in TB (Data S4, B and C). For the barplot of number
of interactions upregulated in each TB condition, we filter for all
interactions with edge FC < 1 or edge_FC > 1 and count the
number of interactions by sender cell type. We use the same
cluster groupings/colors for the senders as for the circus plot in
Fig. 4 D.

Sender signaling co-occurrence analysis

We first filter out sender-ligand combinations that are upregu-
lated in TB (edge_FC > 1). Then, for each cell type of interest, the
normalized RNA count for the upregulated ligands in this cell
type is retrieved for all the TB-diseased patients. The ligand
expression in each cell is then weighted by logl0(mean_FC), so
ligands with larger degree of change are weighted higher for
their expressions. Then, patient averages of all the weighted
ligand expressions are calculated and summed to arrive at a final
patient-sender activity score. Pearson’s correlation is computed
across each pair of cell type’s sender activity scores in nine
patients.

Interaction flux analysis

In this analysis, we define the flux of interaction in the direction
from sender to receiver cell types. First, we calculate the mean of
edge_FC between all LIANA inferred significant interactions
(aggregate_rank < 0.01) for each sender-receiver pair. Then, for
each pair of sender-receiver, the flux of interaction is calculated
by multiplying the sender cell count. The total flux of a given
sender cell type is then the sum of flux to all receiver cell types.

Fluorescent immunohistochemistry staining

Sample preparation

Multiplex fluorescent immunohistochemistry staining of mac-
rophage markers was performed on lung tissue sections using
the Opal 6-Plex Manual Detection Kit 50 Slides (Akoya)
as directed by the manufacturers. Multiplex fluorescent
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immunohistochemistry staining of fibroblast markers was
performed on lung tissue sections using the Opal 4-Color
Manual IHC Kit 50 Slides (PerkinElmer) as directed by the
manufacturers. For both, lung tissue samples fixed in 4% for-
malin were paraffin embedded. Four mm sections were cut on
X-tra adhesive precleaned micro slides (Leica), allowed to dry
for a minimum of 24 h, and the slides were baked at 60°C
overnight.

Deparaffinization, rehydration, and antigen retrieval

The combined process of deparaffinization, rehydration,
and antigen retrieval of the tissue sections was done using 1x
Envision Target Retrieval Solution, High PH (Dako) in the
PT-Link Pre-Treatment Instrument (Dako). Thereafter, slides
were incubated for 1 min in distilled water and equilibrated in
EnVision FLEX Wash Buffer (Dako) at room temperature for
10 min (2 x 5 min using fresh buffer for each period) for
macrophage markers staining and 5 min for fibroblast markers
staining. Then, the macrophage slides were incubated in
EnVision FLEX Peroxidase blocking solution (Dako) for
10 min, and fibroblast slides were incubated in Peroxidase
blocking solution (PerkinElmer) for 10 min; both were then
washed in wash buffer (Dako) as before immediately at room
temperature.

Background reduction

The macrophage slides were incubated in blocking buffer (0.05 g
BSA +10% goat serum dissolved in EnVision FLEX Wash Buffer)
for 20 min. The fibroblast slides were incubated in Bloxall
blocking solution (PerkinElmer) for 10 min.

Antibody staining: The macrophage slides were incubated in
primary antibody-1 for 45 min, fibroblast slides for 30 min, at
room temperature, then washed for 5 min in wash buffer. The
macrophage slides were then incubated in Secondary Opal Poly-
mer Horseradish Peroxidase (HRP) Mouse and Rabbit (Akoya)
for 20 min, and fibroblast slides were incubated in Secondary
Opal Polymer Horseradish Peroxidase (HRP) Mouse and Rabbit
(PerkinElmer) for 30 min. Then, the slides were washed twice in
wash buffer as before, drained, and the sections were incubated
in Opal Polymer Fluorophore (macrophage slides: Akoya; fibro-
blast slides: PerkinElmer) working solution for signal amplifi-
cation at room temperature for 10 min in the dark. The slides
were then washed for 10 min (2 x 5 min using fresh buffer for
each time) for macrophage slides, 5 min for fibroblast slides, in
wash buffer at room temperature.

Antibody stripping

Afterward, the antigen retrieval via microwave treatment was
done by placing the slides in a slide jar with pre-warmed buffer
AR6 (macrophage slides: Akoya; fibroblast slides: PerkinElmer).
The jar was loosely covered and placed in a microwave for 2 min
at 100% power (high setting), 10 min at 50% (medium setting)
power, and 5 min at 20% (low setting) power. Slides were cooled
down in the dark by placing the slide jar on ice for 20 min, and
the slides were rinsed in distilled water, followed by incubation
in the wash buffer for 10 (2 x 5 min) minutes for macrophage
slides and 5 min for fibroblast slides to equilibrate slides. The
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microwave step re-exposes the antigen on the tissue and allows
the introduction of the next primary antibody. For the detection
of the next target (primary antibody 2), the protocol was re-
started at the blocking step using blocking buffer (macrophage
slides: 0.05 g BSA +10% goat serum dissolved in EnVision FLEX
Wash Buffer; fibroblast slides: Bloxall blocking solution from
PerkinElmer) for 10 min. After the third target was detected
(primary antibody 3), a working solution of DAPI (macrophage
slides: Akoya; fibroblast slides: PerkinElmer) was applied to the
sections as the nuclear counterstain for 5 min in a humidity
chamber. The slides were washed in wash buffer for 5 min, then
in distilled water for 5 min, and drained. Then, the sections were
coverslip with Fluorescence Mounting Medium (Agilent Tech-
nologies, Inc.), and the edges of the coverslip were sealed with
nail varnish. Slides were stored in a humidity chamber at 4°C
until images are acquired.

Antibodies and fluorophores

For macrophage slides, the unconjugated primary antibodies
used are Anti-CD68 (conc. clone: Ab213363; Abcam), Anti-CD206
(clone: Abcam), and Anti-Osteopontin (clone: ab302942; Ab-
cam). The primary antibodies were diluted in antibody diluent
(PerkinElmer) as recommended by the antibody manufacturer,
and the Opal fluorophores were diluted in amplification diluent
(PerkinElmer). The fluorophores used for signal generation in
this study are FITC, tetramethylrhodamine, and Cy5. For fibro-
blast slides, the unconjugated primary antibodies used are Anti-
Collagen I (clone: ab34710; Abcam), Anti- Anti-CTHRC1 (clone:
ab85739; Abcam), Anti-TDO2 (clone: OT14G2; Thermo Fisher
Scientific), Anti-PI15 (clone: PA5-52312; Thermo Fisher Scientific),
and Anti-ACTA2 (clone: 1A4; LSBio). The primary antibodies
were diluted in antibody diluent (PerkinElmer) as recom-
mended by the antibody manufacturer, and the Opal fluo-
rophores were diluted in amplification diluent (PerkinElmer).
The fluorophores used for signal generation in this study are
FITC, Texas-Red, and Cy5.

Imaging

For macrophage slides, the images were acquired on Hamamatsu
NanoZoomer S60, and analyzed with NDP.view2 (version
2.9.29) imaging software (TissueGnostics). For fibroblast slides,
the images were acquired on a Zeiss Axio Observer Z1 inverted
microscope (Olympus) and analyzed with TissueFAXS imaging
software (TissueGnostics).

Quantification
For macrophage slides, using QuPath software (version 0.5.0-
x64), TB granulomas were segmented into three distinct layers:

1. An outer cellular layer primarily composed of lymphocytes,

2. An inner cellular layer predominantly consisting of myeloid
cells (mainly macrophages),

3. A necrotic core characterized by cellular debris and dead cells.

To assess the expression levels of SPP1 (green) and CD68
(vellow), we divided the granuloma radially similar to pie-
cutting, into 10 regions, which further divides each granuloma
layer into 10 subregions. Each subregion is defined and analyzed
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as a separate region of interest (ROI), where they are numbered
clockwise from 1 to 10, so ROI1 from the necrotic core is imme-
diately adjacent to ROII from the inner cellular layer, etc. This
enabled a more precise evaluation of spatial differences in pro-
tein expression. Expression intensity was measured at 5 pm per
pixel to capture variability in protein distribution across the
granuloma architecture.

Mean intensity for each ROI was used to calculate the sta-
tistical significance between the groups using two-sided Mann-
Whitney U test without correction for SPP1. The ratio of mean
intensity between inner cellular layer and outer cellular layer
was calculated between the ROI1 and ROI1, ROI2 and ROI2, etc.
The same was done for the ratio of mean intensity between inner
cellular layer and the necrotic core.

Flow cytometry
Lung pieces collected after removal from M.tb-infected patients
were used in flow cytometry analysis after processing as from
scRNA-seq (Table S4). Cells were counted and stained with an-
tibody cocktail for 30 min at room temperature and in the dark,
followed by 2x wash steps with PBS and resuspension of stained
cells in FACSLyse. The surface markers used were CD45 (CD45-
APC, cat#304012; BioLegend), CD34 (CD34-FITC, cat#324226;
BioLegend), EpCAM (EpCAM-BV650, cat#324204; BioLegend),
CD11b (CD11b-PeCy7, cat#557743; BD), CD31 (CD31-BV605,
cat#303121; BioLegend), VCAM1 (VCAM-PE, cat#305805; Bio-
Legend), ICAM1 (ICAM-APC-Cy7, cat#353121; BioLegend), po-
doplanin (PDPN-PERCPefluor710, cat#46-9381-42; Thermo
Fisher Scientific), and CD235a (CD235a-PECF594, cat#349119;
BioLegend). Viability was determined using the Invitrogen
Live/Dead Aqua Fluorescent reactive dye on the HV500 chan-
nel. Samples were acquired on the BDFACS Aria Fusion flow
cytometer. Analysis of samples was subsequently carried out
using Flow]Jo (version 10, Flow]Jo).

The Friedman test was used to assess significant changes in
the fibroblast subset of interest across different lung resection
severities.

Human lung tissue spatial transcriptomics data analysis

Filtered 10x spatial data from each sample processed by Space
Ranger was read into an anndata object using the function
“read_visium” from Python package scanpy, along with the
corresponding high-resolution image of the H&E stain. No fil-
tering on spots or genes was done to preserve the maximum
amount of information as the nature of these data are intrinsi-
cally sparse. Data were log-normalized with standard scanpy
workflow. Top 50 hub genes from the hdWGCNA fibroblast-M1
module were used to score for human TB-myofibroblast signa-
ture on each Visium spot using score_genes from scanpy. The
top 20 differentially expressed markers from the macrophage
subsets (Data S8) were used to calculate DE marker scores in a
similar fashion. Spearman’s correlation and its significance be-
tween the human TB-myofibroblast signature and macrophage
subset markers were calculated using the function spearmanr
from Python package scipy. A two-sided Mann-Whitney U test
without correction was used to compare module usage between
different conditions, and Spearman’s correlation was used to
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compare human TB-myofibroblast and different macrophage
subsets.

Deconvolution of spatial transcriptomic data

Since Visium version 2 chemistry has spot size of diameter =
55 um (generally larger than one cell), we estimated the cell
type abundance of each spot using Python package cell2lo-
cation, a Bayesian model that estimates the combination and
abundance of cell types that could give rise to the mRNA
counts in each spatial location. We first learned reference
signatures of each broad-level cell type from the original
scRNA-seq cohort generated using Seq-Well S3, then de-
composed the Visium multi-cell RNA counts into these ref-
erence signatures, establishing a spatial mapping of cell
types. For training the reference signatures, we used patient
ID as categorical_covariate_keys and sequencing batch as
batch_key, num_samples = 1,000, batch_size = 2,500, and
batch_size = 250, with the rest set to default. For the pos-
terior estimating, we created and trained the model with
hyperparameters: N_cells_per_location = 10, detection_al-
pha = 20, and max_epoches = 15,000, with the rest set to
default. For each boxplot comparing cell type abundance, 5%
quantile of the estimated posterior was used to represent cell
type abundance at each Visium spot, which represents the
value of abundance the model has high confidence in.

Annotation of granuloma structures on H&E images
Granuloma structures were manually annotated using Im-
age] by experts in TB lung pathology. A band of ~20-pixel
width was then drawn outside the selection area to ap-
proximate the granuloma cuff. The spots from the Visium
data are categorized to be “in,” “on,” and “out” of the gran-
uloma border based on the spot’s corresponding position
relative to this segmentation band.

Spatial ligand-receptor analysis

Each sample was log-normalized with the scanpy package. The
Python version of LIANA package was then used to impute
spatial ligand-receptor interactions. First, spatial neighbor-
hoods were calculated using the spatial neighbors with band-
width = 10, cutoff = 0.1, kernel = “gaussian,” and set_diag = True.
Then bivariate scores for potential ligand-receptor pairs is cal-
culated using the function bivariate using with parameters bi-
variate = “consensus,” local_name = “cosine” (spatially-weighted
cosine similarity for local score), global_name = “morans” (bi-
variate Moran’s R for global score), n_perms = 100, nz_prop =
0.05, and default settings for the rest. Top L-R pairs are selected
by sorting for descending Moran’s R as it describes global co-
expression.

Online supplemental material

Fig. S1 shows spatial transcriptomics on TB-infected human
lung samples and single-cell deconvolution. Fig. S2 shows
single-cell transcriptomic reveals heterogeneity within neu-
trophil populations with disease-specific difference. Fig. S3
shows deconvolution of bulk human LN dataset and fi-
broblast in spatial and single-cell dataset. Fig. S4 shows
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fibroblast subclusters’ marker genes, WGCNA, and com-
parisons against public datasets. Fig. S5 shows SPP1* mac-
rophage interaction with fibroblasts in TB. Data S1 shows cell
type annotation and epithelial subclustering. Data S2 shows
expression of marker genes from monocyte/macrophage
subclusters and differential abundance testing. Data S3
shows cell-cell interaction analysis by TB conditions. Data
S4 shows cell-cell interaction changes between TB con-
ditions and AT1 cell sender activities. Data S5 shows ex-
pression of hypothesized secreted ligands by MMP1*CXCL5*
fibroblast in human TB LN granuloma vs. healthy LN. Data
S6 shows spatial transcriptomics analysis on post- and cur-
rent TB lung resections. Data S7 lists clinical metadata on
Visium spatial transcriptomic samples. Data S8 lists sub-
cluster DE genes, GSEA, and Enrichr results on these DE
genes. Data S9 lists the top 10 markers of cell subclusters that
overlap with human LN TB granuloma bulk dataset of dif-
ferentially expressed genes by Reichmann et al. (2021). Data
S10 shows overlap between macrophage/monocyte sub-
cluster marker genes with NHP macrophage marker genes
from Gideon et al. Data S11 shows fibroblast WGCNA of top
50 hub genes in each module. Table S1 shows metadata on
scRNA-seq patient cohort in this study; Table S2 shows
patient-level broad cell type representation; Table S3 shows
metadata on 4-wk postinfection NHP cohort used in Fig. 5 E.
Table S4 shows metadata on M.tb-infected patients used for
flow cytometry. Table S5 shows sample count for Visium
spatial transcriptomic data.

Data availability

The raw and analyzed scRNA-seq and spatial data from this study
have been deposited in the Broad Institute Single Cell Portal
at https://singlecell.broadinstitute.org/single_cell/study/SCP3227/
single-cell-and-spatial-profiling-reveals-a-role-for-tuberculosis-
induced-myofibroblasts-in-the-immunopathology-of-infected-
lungs. The 4-wk postinfection NHP were previously used in
another study by Ganchua et al. (2024) and Bromley et al. (2024).
The other 4-wk p.i. and 10-wk p.i. NHP granuloma dataset by
Gideon et al. can be accessed from GEO with accession number
GSE200151. The HLCA can be accessed at https://data.
humancellatlas.org/hca-bio-networks/lung/atlases/lung-v1-0.
The human TB LN bulk RNA-seq data by Reichmann et al. (2021)
can be accessed on GEO with accession number GSE174443. Any
additional information required to reanalyze the data from this
study is available from the lead contact upon request.
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Figure S1. Spatial transcriptomics on TB-infected human lung samples and single-cell deconvolution. (A) H&E staining on all 30 lung samples from
patients previously infected with TB. Scale bars: 800 um. Identical images for pid_0037, pid_177, pid_0186, pid_187, pid_0192, pid_199, pid_0209, and pid_304.
(B) Examples of manual annotation on granuloma structures on H&E staining images. Scale bars: 800 um.
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Figure S2. Single-cell transcriptomic reveals heterogeneity within neutrophil populations with disease-specific difference. (A) Neutrophil (n = 2,963)
subclustering reveals three subclusters (left), also colored by patient ID (middle) and disease condition (right). (B) Volcano plot of differential gene expression
results of each neutrophil subcluster compared with the rest. Y axis shows -logl0 (BH-adjusted P value); x axis shows log2 fold change between cells in
subcluster and outside the subcluster. (C) Heatmap of subtype top 10 differentially expressed (DE) genes in each of the neutrophil subcluster. (D) Expression of
marker genes in neutrophil subclusters by disease conditions. (E) Fisher’s exact test on abundance of detailed neutrophil subclusters between TB conditions.
Statistical annotations: fold-change >2 (AA). (F) Cell2loc imputed neutrophil abundance distribution on the Visium dataset grouped by TB and granuloma status
(Materials and methods). The 5% quantile of the estimated posterior distribution of cell abundance at each Visium spot is displayed, representing the value of
cell abundance that the model has high confidence in. Two-sided Mann-Whitney U test without correction were used for statistical testing. ****: P < 0.0001.
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Figure S3. Deconvolution of bulk human LN dataset and fibroblast in spatial and single-cell dataset. (A) Dot plot showing distribution of cell type
proportion from deconvolution results on each bulk RNA-seq human LN TB granuloma sample, separated by cell type and colored by TB conditions. Only cell
types with significant difference between TB conditions are shown. Two-sided T test with Bonferroni correction was used to compare the means. Statistical
annotations: P value < 0.05 (*) and P value < 0.01 (**). (B) Cell2loc imputed fibroblast abundance distribution on the Visium dataset group by T8 and granuloma
status (Materials and methods). The 5% quantile of the estimated posterior distribution of cell abundance per Visium spot is displayed, representing the value of
cell abundance that the model has high confidence in. Two-sided Mann-Whitney U test without correction were used for statistical testing. P value < 0.0001
(****); P value > 0.05 (ns). (C) Same as B, but grouped by HIV and TB status. (D) Bar plot of patient distribution in each fibroblast subcluster. (E) UMAP
embedding of fibroblasts colored by HIV status of the sample.
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Figure S4. Fibroblast subclusters’ marker genes, WGCNA analysis, and comparisons against public datasets. (A) Expression of marker genes in fi-
broblast subclusters by disease conditions. (B) Fluorescence immunohistochemistry images of human TB granuloma showing nuclear staining (DAPI), protein
expression of COL1AL, and the MMPI*CXCL5* fibroblast subcluster-specific genes MMP1, MMP3, TDO2, and PI15. Scale bars: 200 um (left), 500 um (middle),
and 200 um (right). (C) Top 25 hub genes by eigen-based connectivity (kME) in each fibroblast WGCNA module. Correlation between each module based on
their MEs, a metric representing the expression of each module in each cell. (D) WGCNA module expression across fibroblast subclusters and HIV status in TB
samples. (E) Evaluation of all WGCNA module expression in NHP TB granuloma fibroblasts from samples gathered at 10 wk compared with 4 wk. Two-sided
Mann-Whitney U test without correction was used on each module. Statistical annotations: P value < 0.001 (***) and P value < 0.0001 (****).
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Figure S5. SPP1* macrophage interaction with fibroblasts in TB. (A) Circos plot showing proportion of inferred signals upregulated in TB-diseased lungs
from LIANA analysis with fibroblasts as sender and macrophage subclusters as receivers. (B) LIANA analysis on detailed cell level with SPP1* macrophage as
sender. Circos plot showing proportion of inferred signals upregulated in TB-diseased lungs sending from SPPI* macrophage to broad cell groups, with fi-
broblasts at the top. (C) Evaluation of markers gene expression for SPP1* TAM from PDAC by Raghavan et al. (2021) on macrophage subclusters in this study.
(D) Evaluation of marker gene expression for monocyte-derived macrophage (MDM) subsets from the HLCA on macrophage subclusters in this study.
(E) Specific upregulated ligand-receptor pairs and involved receiver cells in the LIANA analysis with SPP1* macrophage as sender. (F) Left: Fluorescence
immunohistochemistry staining images of human lung granuloma with DAPI (nuclear), SPP1 (SPP1* macrophage), CD68 (pan macrophage marker), and CD206
(macrophage enriched in alveolar spaces). Scale bars: 1 mm. Middle: Quantified SPP1 expression from 10 ROIs (5 um/pixel) in outer cellular layer, inner cellular
layer, or the necrotic core of the granulomas. Right: Expression ratio of SPP1 and CD68 between inner cellular layer and outer layer and inner cellular layer and
necrotic core. The images in F come from serial sections of the same TB granuloma depicted by Mpotje et al. (2025), Preprint. As both studies identify
macrophages, the macrophage stain CD68 is shown in both. However, this current study colocalizes with CD206 and SPP1, while the preprint co-stains with
ALOXS5. Two-sided Mann-Whitney U test without correction was used on each module. Statistical annotations: P value < 0.001 (***); P value > 0.05 (ns).
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Provided online are Table S1, Table S2, Table S3, Table S4, Table S5, Data S1, Data S2, Data S3, Data S4, Data S5, Data S6, Data S7,
Data S8, Data S9, Data S10, and Data S11. Table S1 shows metadata on scRNA-seq patient cohort in this study. Table S2 shows
patient-level broad cell type representation. Table S3 shows metadata on 4-wk postinfection NHP cohort used in Fig. 5 E. Table S4
shows metadata on M.tb-infected patients used for flow cytometry. Table S5 shows sample count for Visium spatial transcriptomic
data. Data S1 shows cell type annotation and epithelial subclustering. Data S2 shows expression of marker genes from monocyte/
macrophage subclusters and differential abundance testing. Data S3 shows cell-cell interaction analysis by TB conditions. Data S4
shows cell-cell interaction changes between TB conditions and AT1 cell sender activities. Data S5 shows expression of hypothesized
secreted ligands by MMP1*CXCL5* fibroblast in human TB LN granuloma vs. healthy LN. Data S6 shows spatial transcriptomics
analysis on post- and current TB lung resections. Data S7 lists clinical metadata on Visium spatial transcriptomic samples. Data S8
lists subcluster DE genes, GSEA, and Enrichr results on these DE genes. Data S9 lists top 10 markers of cell subclusters that overlap
with human LN TB granuloma bulk dataset of differentially expressed genes by Reichmann et al. (2021). Data S10 shows overlap
between macrophage/monocyte subcluster marker genes with NHP macrophage marker genes by Gideon et al. Data S11 shows
fibroblast WGCNA of top 50 hub genes in each module.
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