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Abstract 45 

Tuberculosis (TB) remains a global health challenge, causing ~1.3 million deaths annually. Pulmonary TB 46 
often leads to lung destruction and fibrosis, yet the cellular drivers of human TB immunopathology remain 47 
poorly defined due to limited access to relevant tissues and differences from animal models. We performed 48 
single-cell RNA-sequencing and spatial transcriptomics on lung tissues from TB-infected and TB-negative 49 
individuals in a highly endemic South African region. We identified 30 distinct immune, parenchymal, and 50 
stromal cell subsets, with several linked to TB pathology and corroborated through immunohistochemistry, 51 
flow cytometry, and an independent human lymph node granuloma cohort. Among these, we found that 52 
fibroblasts were a major driver of intercellular interaction in both active TB granuloma and TB-diseased lung 53 
tissue. In particular, the MMP1⁺CXCL5⁺ fibroblast subset, which expressed elevated levels of a myofibroblast-54 
like gene signature, was associated with severe disease, as well as higher bacterial burden in non-human 55 
primate granulomas. Network analyses revealed crosstalk between MMP1⁺CXCL5⁺ fibroblasts and SPP1⁺ 56 
macrophages within the granuloma cuff, which has been reported in other disease contexts, and may play an 57 
important role in the immunopathology of TB. Overall, our findings highlight previously unappreciated cell 58 
populations and interactions that may be targetable in host-directed TB therapies. 59 
 60 
INTRODUCTION  61 

Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M.tb), remains a global epidemic, 62 
with approximately 10.6 million new cases and 1.3 million deaths annually (1, 2). The development of highly 63 
effective anti-TB drugs and programmatic improvements led to global cure rates of approximately 85% in 64 
drug-susceptible TB from 1995 to 2015, as well as reduced mortality rates (3). Unfortunately, however, 65 
mortality remains persistently high (4), highlighting the need for improved interventions.  66 
 67 
M.tb infection occurs primarily in the lung where interactions between host cells and the pathogen typically 68 
result in the formation of a granuloma – an aggregation of infected myeloid cells, usually surrounded by an 69 
inner ring of macrophages and an outer cuff of lymphoid cells. This specialized immunological niche is highly 70 
heterogeneous in its overall cellular makeup, with the composition of each lesion independently influencing 71 
bacterial growth and disease progression (5, 6). In progressive TB, extensive lung extracellular matrix (ECM) 72 
remodeling via both matrix destruction and fibrosis leads to the formation of lung cavities that facilitate 73 
transmission (7). This ECM remodeling also increases the risk of post tuberculosis lung disease (PTLD), 74 
resulting in high rates of recurrent TB infection and mortality – even after successful eradication of initial 75 
infection (8, 9). Although some features of the immunopathology of TB infection that lead to PTLD are known, 76 
including granuloma formation, cytokine production, hypoxia-inducible factors, and production of matrix 77 



 

metalloproteinases (MMPs), the exact mechanisms remains unclear (8). While animal models of TB 78 
disease—from zebrafish to non-human primates—have provided valuable insights into aspects of these 79 
processes, they do not fully recapitulate human pathology (10). Critically, these models generally reflect 80 
primary infection, often without the cavities and the extensive ECM remodeling observed in human TB, and 81 
fail to capture the development of chronic secondary TB disease that arises in humans (11). Consequently, 82 
the key features and cellular drivers of immunopathology in human TB remain poorly understood. 83 
  84 

The advent of high-throughput single-cell RNA-sequencing (scRNA-seq) has transformed our ability to 85 
analyze the cellular makeup of complex tissues and phenotypic changes associated with disease (12). For 86 
example, application of this technology to study idiopathic pulmonary fibrosis (IPF) – a lung disease 87 
characterized by dysregulated ECM turnover – identified aberrant basal-like cells, peribronchiolar endothelial 88 
cells, SPP1+ macrophages, and myofibroblasts as key drivers of pulmonary tissue remodeling, suggesting 89 
new strategies to combat the disease (13). Similar characterization of the cell types and states involved in the 90 
immunopathogenesis of human TB and PTLD could potentially help uncover effective targets for host directed 91 
therapies (HDT) (14).  92 
 93 
Here, we applied scRNA-seq and spatial transcriptomics to human TB-diseased lung tissues and TB-negative 94 
controls to examine the cellular and molecular features of TB lung disease and investigate mediators of 95 
immunopathology. Overall, we identified depletion of most macrophage subsets and an enrichment of 96 
fibroblast and neutrophil subsets in TB-diseased lungs, consistent with altered fibrotic and pro-inflammatory 97 
activity. We validated these observations with bulk RNA-sequencing data of lymph node TB granuloma from 98 
a well-characterized cohort of treatment-naïve, culture-confirmed TB patients (15). To further contextualize 99 
specific disease-associated cell subsets, we integrated our data with those from the Human Lung Cell Atlas 100 
(HLCA) and Non-Human Primate (NHP) lung TB granulomas (16, 17). This enabled us to uncover a putative 101 
central role for fibroblast subsets – including a MMP1+CXCL5+ fibroblast cluster expressing a myofibroblast-102 
like gene module – in TB immunopathology, where we further evidenced via flow cytometry and 103 
immunohistochemistry. Through cell network analyses on the single-cell data, we found that these cells 104 
appear to coordinate their activities with macrophages, including a SPP1+ subset not previously implicated in 105 
TB biology that was observed to be coresident in immunohistochemical stainings of human lung TB 106 
granuloma. Moreover, these two subsets were co-inducible by a standard skin challenge of TB patients with 107 
M.tb derived antigen (Tuberculin), and analyses of spatial transcriptomics data from an independent cohort 108 
of TB patients showed colocalization of both this myofibroblast signature and the SPP1+ macrophage signal 109 
to lung TB granuloma cuffs. Overall, our data reveal key cellular subsets and pathways that could inform next-110 
generation HDTs and provide an essential reference for the community.      111 
  112 



 

RESULTS   113 

Cellular composition of human TB-infected lung tissue   114 

Fresh, TB-diseased human lung tissue pieces were obtained from 9 participants (7 HIV+ TB; 2 HIV- TB) 115 
enrolled in the African Health Research Institute (AHRI) lung cohort study (Fig. 1A). All participants underwent 116 
TB treatment after initial diagnosis but had subsequent lung resection surgery to treat complications 117 
consistent with PTLD, including hemoptysis and bronchiectasis (Table S1). As a control, TB-negative lung 118 
samples were obtained from the healthy tissue margins of four surgically resected lung tumors (1 HIV+ cancer 119 
control; 3 HIV- cancer control). All participants, irrespective of TB status, received prophylactic anti-TB 120 
treatment prior to surgery. Tissue pieces were washed thoroughly and homogenized into a single-cell 121 
suspension via mechanical and enzymatic digestion using an optimized protocol in BSL3 containment (18). 122 
Lung cells were then processed and sequenced following the Seq-Well S3 protocol as described previously 123 
to obtain our scRNA-seq dataset (19). An additional 30 samples were obtained from different participants in 124 
the same TB lung cohort and profiled using the 10x Visium Spatial Gene Expression platform (Fig. 1B, Data 125 
File 5). As above, all participants received TB-drug treatment prior to surgery. Fresh tissue pieces were 126 
removed from resected lung tissue and preserved using standard formalin-fixed paraffin embedded (FFPE) 127 
procedures, followed by Visium v2 chemistry protocols with paired hematoxylin and eosin (H&E) staining to 128 
generate reference images (Fig. S1A; Methods) (20).  21 samples (10 HIV+, 11 HIV-) were derived from 129 
subjects with active microbiologically confirmed TB, termed “current TB”. The remaining samples (5 HIV+, 4 130 
HIV- ) termed “post-TB”, were obtained from individuals in whom bacterial load was no longer detectable from 131 
bronchoalveolar lavage (BAL) TB culture. This spatial dataset contains both samples with TB lung granulomas 132 
and samples with inducible bronchus-associated lymphoid tissues (iBALTs) or lung draining lymph nodes 133 
(LNs), which are considered as less severe pathological states. For each granuloma sample, pathological 134 
grading and manual annotation of the granuloma structures on the H&E image were performed by an expert 135 
TB pathologist to enable better disease contextualization (Fig. S1B, Data File S1).  136 
  137 

After quality control of the scRNA-seq data, we retained 19,632 high-quality single-cell profiles from the 138 
homogenized lung tissues. Neighborhood-based clustering revealed 16 canonical cell types. Further sub-139 
clustering of high abundance populations resulted in a total of 30 phenotypically distinct immune, parenchymal, 140 
and stromal subsets (Fig. 1A, Data Set 1A-E, Fig. S2A-F, Data Set 2A-B; Methods). The fractional 141 
representation of cells per participant and clinical characteristic varied between clusters reflecting biological 142 
heterogeneity between patients, TB disease states, and potentially anatomical sampling location, though our 143 
data are limited with respect to the latter (Fig. 2A, Table S1). Most cells derived from HIV- TB samples, and 144 
while most of the clusters contained cells from the majority of patients, we observed substantial inter-patient 145 
variability in cell numbers (Fig. 2B, Table S2). Canonical cell type markers and genes differentially expressed 146 
between clusters were examined for manual annotation (Fig. 2C; Methods). Notably, we found large 147 
populations of neutrophils, which are captured by Seq-Well S3  but often underrepresented by other scRNA-148 
seq technologies due to their fragility (19). Overall, observed clusters closely mirrored those seen in a scRNA-149 
seq characterization of lung tissue from idiopathic pulmonary fibrosis (IPF) patients and healthy donors (21).  150 



 

 151 
Next, we looked for evidence of differential abundance by comparing the fractional representation of each cell 152 
type per donor between the TB-diseased and TB-negative lung groups, irrespective of HIV status (Fig. 2D). 153 
There were pronounced shifts in the frequency of most cell types between the TB-diseased and TB-negative 154 
groups, including an expansion of neutrophils in the TB-diseased group, consistent with several human 155 
studies linking neutrophil recruitment with TB lung pathology (22–24). We also found an increased frequency 156 
of mast and plasma B cells in TB-diseased tissue, supporting findings from recent scRNA-seq studies of NHP 157 
models where both cell populations were expanded in TB granuloma with higher bacterial burden (16). In 158 
addition to these immune cell populations, fibroblasts were enriched in TB-diseased lung tissue. Conversely, 159 
in TB-diseased lung samples, we found a decrease in the proportions of macrophages, the cell type targeted 160 
by and primarily responsible for killing bacilli, and CD8 T cells, thought to contribute to M.tb control (25, 26). 161 
Although we detected significant changes between the abundance of these cell subsets using a Fisher’s exact 162 
test, given high inter-patient variability and limited sample numbers, we were underpowered to determine 163 
significance using a Dirichlet-multinomial regression or a Wilcoxon test (27). 164 
 165 
Specific innate immune cell subclusters are associated with TB-diseased human lung tissue. 166 
Given the limited participant numbers that compose our scRNA-seq dataset, we leveraged this data to impute 167 
cell type abundances in both the current- and post-TB lung samples in our spatial transcriptomics cohort. This 168 
allowed us to better understand the phenotypic shifts associated with TB disease, and select relevant single-169 
cell subclusters for further characterization. This strategy drove us to focus on neutrophils, macrophages, 170 
monocytes, and fibroblasts, whose abundances also showed the most dramatic shifts between the TB and 171 
control samples in the scRNA-seq data (Fig 2D).  172 
 173 
Neutrophil subclusters  174 

Neutrophils play a crucial role in the innate immune system and are quickly recruited as a first line of defense 175 
against bacterial infections. They are suggested to have immunoregulatory functions in TB granulomas in 176 
NHP models (28); however, their role in the immunopathogenesis of human TB  has been contentious and 177 
less well understood (29).   178 
 179 
Neutrophils were highly enriched in TB-diseased lung tissue in our single-cell dataset (Fig. 2D) and 180 
associated with three distinct subclusters (termed “Pro-inflammatory Neutrophils”, “Activated Neutrophils”, 181 
and “Heat-Shock (HSP) Neutrophils”). Both Activated Neutrophil and Pro-inflammatory Neutrophil subclusters 182 
expressed markers genes associated with IFN-g and TNF-a signaling – critical responses linked to 183 
inflammation and immune activation in TB disease (30–32) (Fig. S2A-D, Data File S2). Activated Neutrophils 184 
were annotated by their high expression of neutrophil activation markers, including IL1RN, and IL1B and IL8, 185 
inflammatory cytokines involved in neutrophil recruitment (Fig. S2B-D) (33, 34). They also expressed GBP1 186 
and GBP5, genes involved in a previously-described blood neutrophil transcriptional signature used to 187 
diagnose pulmonary TB (35). Pro-inflammatory Neutrophils, in contrast, highly expressed high levels of MMP9, 188 
CST7 and LDHA (Fig. S2B-D). MMP9 is a proteinase involved in the degradation of extracellular matrix that 189 



 

is strongly associated with TB granuloma (36); CST7 (Cystatin F) is a neutrophil marker of acute inflammation 190 
(37); and, LDHA encodes lactate dehydrogenase, which enhances neutrophil migration and activity, and is 191 
highly elevated in hypoxic lung TB granuloma in animals (38, 39). Pro-inflammatory Neutrophils also highly 192 
expressed, FKBP5 and CEBPD, both implicated in an immunometabolic network predictive of TB progression 193 
(40); and, VEGFA, PLAUR, TPM4, and CD44, which are involved in neutrophil recruitment and 194 
lymphangiogenesis during inflammation (41–44) (Data File S2). The remaining small subcluster of neutrophils, 195 
marked by high expression of heat-shock protein genes (“HSP Neutrophils”), was also elevated in TB 196 
diseased lungs, which is notable given that heat shock proteins expression by neutrophils can trigger 197 
proinflammatory response in macrophages (45, 46) (Fig. S2A-E). 198 
 199 
Given the small samples size and high HIV prevalence in our scRNA-seq dataset, we examined neutrophils 200 
in the spatial cohort to understand the link between neutrophils and TB disease, running cell type 201 
deconvolution using the scRNA-seq cohort as reference and imputing individual cell type abundances 202 
(Methods). Within granuloma structures, neutrophil abundance was significantly higher in sample from 203 
current-TB infections than those from post-TB infections, consistent with the recruitment of this cell type to 204 
the granuloma during active disease (Fig. S2F). Interestingly, however, neutrophils were more abundant in 205 
non-granuloma tissues (e.g. iBALT, LN) compared to granuloma, though the difference was less pronounced 206 
in current-TB. This may reflect the involvement of neutrophils in tissue remodeling and chronic inflammation 207 
associated with both active TB and post TB lung disease (49). 208 
 209 
To further test the association between neutrophil subsets and TB disease, we quantified the expression of 210 
each subset’s top markers genes in an independent bulk RNA-seq dataset generated from laser-captured 211 
human lymph node (LN) TB granuloma, in which all patients were HIV negative (Methods; Data and 212 
materials availability) (15). Importantly, these LN were excised prior to TB therapy initiation and contained 213 
viable M.tb bacilli. We found that 7 of the top 10 unique marker genes associated with the Activated 214 
Neutrophils were significantly upregulated in LN granuloma compared to non-infected LN controls (Data File 215 
S3), as well as the Pro-inflammatory markers CEBPD and LDHA (Data File S3). We note that although LNs 216 
are common sites of extrapulmonary TB, LN granulomas have functional and structural differences from those 217 
found in the lung, which may contribute to differences in expression levels of these marker genes (47, 48).  218 
 219 

Monocyte and Macrophage subclusters  220 

Macrophages are necessary to control TB disease, but also provide a niche for bacterial growth and survival 221 
(50). In addition, they have been implicated in pulmonary remodeling, with reported roles in both promoting 222 
and inhibiting pathology (51). Tissue infiltrating monocytes, meanwhile, provide a source for macrophage 223 
differentiation and are key players in inflammatory response and bacterial persistence (52). Hence, 224 
understanding the functional differences in monocytes and macrophages between the TB-diseased and TB-225 
negative controls could provide insights into understanding TB immunopathology. In aggregate, macrophages 226 
were significantly decreased in TB-diseased lung tissue, and monocytes were decreased albeit not 227 
significantly (Fig. 2D).   228 



 

 229 
Sub-clustering of 8,313 macrophages/monocytes single-cell transcriptomes generated ten distinct 230 
subclusters, which we annotated manually based on marker genes (Fig. 3A-C, Data Set 2A). Alveolar 231 
Macrophages (INHBA+FABP4+MARCO+) and a subcluster we termed “Heat-Shock (HSP) Macrophages” 232 
were significantly reduced in TB diseased lung tissue compared to TB-negative lungs. The former may reflect 233 
the loss of normal lung alveolar structure observed in TB diseased lung tissue. Upregulated proteins in HSP 234 
Macrophages included those encoding for Hsp70 family proteins (e.g., HSPA1A, HSPA1B, HSPA6, and 235 
HSPA8), which are known to modulate NF-kB mediated release of pro-inflammatory cytokines from alveolar 236 
macrophages in pulmonary TB (53, 54). In addition, when tested separately, all monocyte subsets were 237 
significantly reduced in TB disease, possibly due to rapid transition to macrophage phenotypes in the 238 
proinflammatory environment of the diseased lung (55). The remaining three macrophage subsets (defined 239 
by ARL4C/EMP1; LGMN/SEPP1; and SPP1/CHI3L1) were higher in TB diseased lung, but subtly so (Fig. 240 
3D). Therefore, to explore the potential skewing of macrophage subsets further, we performed cluster-free 241 
differential abundance testing using Milo, which models cellular states as overlapping neighborhoods on k-242 
nearest neighbor graphs representing the similarities between single-cell profiles (56). This analysis 243 
highlighted the underrepresentation of alveolar macrophages in TB diseased lung tissue, as this was the only 244 
subcluster with its phenotypic neighborhoods depleted among TB disease samples (Data set 2C-D). In 245 
contrast, although present at low frequency, ARL4C+EMP1+, LGMN+SEPP1+ and SPP1+CHI3L1+ 246 
Macrophages were all significantly associated with TB diseased lung. Marker genes enriched in 247 
ARL4C+EMP1+ Macrophages did not obviously associate with published functional annotations, but included 248 
GPR138 which favors M.tb replication in macrophages (57). LGMN+SEPP1+ Macrophages were enriched for 249 
lipid metabolism activities, while SPP1 encodes for osteopontin, a known macrophage attractant, which has 250 
been associated with granulomatous diseases and is upregulated in M.tb. infection (58, 59) (Data File S2). 251 
 252 
In our spatial cohort, we observed a higher abundance of both macrophages and monocytes in current-TB 253 
compared to post-TB, consistent with continuous recruitment of myeloid cells during active disease (Fig. 3E 254 
left, Fig. 3F left). As with neutrophils, macrophages were more abundant in granuloma from current-TB 255 
samples compared to post-TB. Additionally, in current-TB macrophages were more abundant in granuloma 256 
compared to non-granuloma tissue while the opposite was true for monocytes, which may be explained by 257 
maturation into macrophages within this environment. (Fig. 3E right). HIV co-infection was associated with 258 
increases in both macrophage and monocyte abundance in current-TB samples, and increases in monocyte 259 
abundance in post-TB samples, suggesting a potential effect of HIV co-infection on myeloid populations 260 
during both active TB and PTLD (Fig. 3F). In active TB samples, HIV infection may lead to more macrophages 261 
to compensate for the loss of CD4+ T cells, which are important for adaptive immune responses against M.tb 262 
(60). The decrease in macrophages associated with HIV-coinfection in post-TB samples, however, might 263 
reflect impaired monocyte differentiation, or persistent depletion of macrophage precursors (61, 62).  264 
 265 
To further contextualize monocyte/macrophage subclusters in human TB granuloma, we similarly assessed 266 
expression of subcluster marker genes in the LN dataset described above. We found the strongest signal for 267 



 

the SPP1+CHI3L1+ Macrophages, where 5/10 of the top markers of the subcluster were significantly 268 
upregulated in human LN TB, over 5-fold in the case of SPP1 and FN1 (Data File S3). Bulk gene expression 269 
deconvolution of this data supported significant increase in the frequency of several populations in untreated 270 
TB granuloma compared to control LN, including the SPP1+CHI3L1+ Macrophage (Fig. S3A).  271 
 272 
Finally, to investigate these myeloid subsets under control condition, we examined the expression of 273 
subcluster defining genes within single-cell data from TB-granuloma isolated from experimentally infected 274 
NHPs (16). In this dataset, we identified overlapping gene signatures between most of the subclusters 275 
observed in our current study, including the SPP1+CHI3L1+ Macrophage population (LILRB4, MMP9, PKM, 276 
MYOF, CHI3L1) (Data File S4) (16). Collectively, these data identify diverse myeloid subsets in TB diseased 277 
lung tissue and support a putative role for SPP1+CHI3L1+ Macrophages in TB immunopathology in humans 278 
and NHPs.  279 
 280 
Single-cell analysis identifies TB-associated fibroblast populations.  281 
Despite playing a prominent role in tissue remodeling in other lung diseases, there is limited understanding 282 
of how fibroblasts contribute to granuloma formation, immunopathology and protective TB immunity (5, 63). 283 
In our spatial transcriptomics samples, fibroblast abundance was estimated to be higher in granuloma 284 
samples than iBALT/LN samples for both TB conditions, suggesting fibroblast involvement in long-term tissue 285 
remodeling and granuloma formation (Fig. S3B). Holding granuloma status or HIV status constant, we 286 
observed a higher abundance of fibroblasts in post-TB samples relative to current-TB samples, consistent 287 
with the role fibroblasts play in long-term tissue damage in post-TB lung disease (Fig. S3B-C). Further sub-288 
clustering of the 1,627 fibroblasts in the scRNA-seq dataset revealed five distinct subclusters (Fig. 4A; Fig. 289 
S3D-E): IL6+ CCL2+ Fibroblasts, SERPINE2+COL1A1+ Fibroblasts, Heat-Shock (HSP) Fibroblasts, 290 
COMP+CILP+ Fibroblasts, and MMP1+CXCL5+ Fibroblasts (Fig. 4B; Fig. S4A). We note that most of the 291 
fibroblasts we recovered came from TB-diseased patients, a trend consistent with fibrotic change due to TB 292 
damage in the lung (64). One of the subclusters, MMP1+CXCL5+ Fibroblasts, almost solely consists of cells 293 
from HIV- TB patients, whereas the others were mostly occupied by cells from HIV+ TB patients, suggesting 294 
potentially different phenotypes for fibroblasts in HIV/TB coinfected patients versus patients with TB alone 295 
(Fig. 4A; Fig. S3E). This subcluster also had the strongest phenotypic shifts among fibroblast populations in 296 
a Milo analysis (Data Set 2C-D).  297 
 298 
To better understand the phenotypic properties of these five subclusters, we further contextualized them 299 
against the existing literature by mapping them onto a trained reference model for lung stromal cell annotation 300 
(65) (Fig. 4C). The majority mapped strongly to adventitial fibroblasts, which are associated with pulmonary 301 
vascular remodeling in response to stress, including hypoxia and infection (66). Although canonically 302 
associated with vascular beds, adventitial fibroblasts become highly migratory and invasive in response to 303 
activating signals, notably including Osteopontin (SPP1), and have been shown to drive tissue remodeling by 304 
inducing a proinflammatory/profibrotic phenotype in macrophages through IL-6 signaling, (67, 68). The 305 
MMP1+CXCL5+ Fibroblast cluster, however, mapped primarily to the myofibroblast phenotype, followed by 306 



 

the lipofibroblast phenotype. Myofibroblasts are involved in wound healing after tissue injury and can 307 
differentiate from recruited fibroblasts under mechanical stress, through the influence of cytokines like TGF-308 
β, and epithelial-to-mesenchymal transition (EMT) (69, 70). In addition, lipofibroblasts can differentiate into 309 
myofibroblasts during fibrosis (71). Consistent with this, overrepresentation analysis (ORA) showed that the 310 
MMP1+CXCL5+ fibroblast markers were enriched among genes associated with EMT and myoblast 311 
differentiation (Data File S2).   312 
 313 
To test the association between MMP1+CXCL5+ fibroblast markers and TB, we again examined the LN 314 
dataset and found that 5/10 top unique marker genes in the MMP1+CXCL5+ Fibroblast subcluster were 315 
upregulated in the LN TB data, including MMP1, CA12, TDO2, POSTN, and COL12A1 (Data File S3). 316 
Interestingly, CA12 plays a role in many biological processes, including preventing calcification (72), an 317 
essential process in granuloma resolution (73). In addition, this gene was found to co-express with MMP1 318 
and CXCL5 in a subset of Cancer Associated Fibroblasts associated with poor clinical outcome (74). We also 319 
observed a significant increase in the imputed frequency of MMP1+CXCL5+ Fibroblast in TB LN granuloma 320 
compared to control LNs via deconvolution of bulk RNA-seq profiles (Fig. S3A). Together these data suggest 321 
TB is associated with skewing of lung fibroblasts to phenotypes that overlap with known disease processes 322 
in the infected lung.  323 
 324 
To confirm the presence of the MMP1+CXCL5+ phenotype via an orthogonal method, we stained sections of 325 
human lung from the same surgical cohort that contained distinct TB granuloma (5µm sections from two 326 
patients) for associated gene products of the MMP1+CXCL5+ subcluster: COL1, TDO2, MMP1, MMP3 and 327 
CA12, together with PI-15 and CTHRC-1, which were also significantly upregulated in this subcluster (Fig. 328 
S4B; Data File S2). COL1, a general fibroblast marker was expressed across lung tissue; the MMPs, which 329 
are secreted to facilitate ECM breakdown, has less strict localization; TDO2, CA12, PI-15 and CTHRC-1, 330 
meanwhile, were expressed higher in the granuloma compared to the surrounding tissue. These data support 331 
the presence of MMP1+CXCL5+ fibroblasts in TB diseased human lung and their localization with TB 332 
granuloma. It is worth noting, however, that some differences in fibroblast populations we observe between 333 
TB conditions may be exacerbated by the limited number of control lung samples and difficulties associated 334 
with extracting stromal cells from fresh tissues during single-cell isolation (75). 335 
 336 

Reference mapping to Human Lung Cell Atlas reveals distinct activities between TB-diseased and 337 
control fibroblasts 338 

Given the limited recovery of fibroblasts from TB-negative controls, we next explored how the fibroblast 339 
subsets detected in TB diseased lung tissue relate to lung fibroblasts in published datasets. For this, we used 340 
the data from the Human Lung Cell Atlas (HLCA), which integrates 49 datasets from the human respiratory 341 
system, encompassing 2.4 million single cells, to generate consensus cell type annotations (17). Using the 342 
HLCA as a reference, we confirmed the heterogenous immune and non-immune cell types present in our 343 
lung tissue samples (Fig. 4D). Via label transfer, we independently re-annotated our fibroblasts, observing 344 
high consistency with our original annotations (>95% fibroblasts were re-annotated as fibroblast/myofibroblast; 345 



 

Methods). Combining cells mapped to fibroblasts/myofibroblasts in our data and the HLCA, we performed 346 
differential expression (DE) analysis between all TB-negative cells (mostly consisting of healthy cells from the 347 
HLCA reference) and our TB-diseased cells (Fig. 4E). We then ran gene set enrichment analysis (GSEA) on 348 
the resulting top DE genes using the MSigDB Hallmark database (Fig. 4F). This confirmed upregulation of 349 
EMT processes, thought to directly contribute to the fibroblast/myofibroblasts pool during fibrosis, in TB-350 
diseased fibroblasts. In addition, oxidative phosphorylation was highly upregulated, consistent with alteration 351 
of metabolic activity in fibrotic lung disease (76). Several enriched terms are related to inflammatory process, 352 
including TNF-a signaling, TGF-b signaling, IL2/IL6 signaling, were also observed, suggesting an overall 353 
elevated inflammatory response in the TB fibroblasts. 354 

 355 
Identification of fibroblast gene modules associated to bacterial burden within TB granuloma 356 
Having compared our fibroblast subclusters against public lung stromal datasets, we next examined how the 357 
cell states within these subclusters might shift with TB disease in an experimentally controlled setting.  Given 358 
a paucity of TB-associated gene signatures, we opted to pursue unbiased gene module identification on the 359 
entire fibroblast population, applying a tool for weighted gene co-expression network analysis in high-360 
dimensional single cell transcriptomics data (hdWGCNA) (77). This yielded 7 gene modules with varying 361 
degrees of expression across the 5 clusters and disease states (named Fibroblast-M1-7; Fig. 5A; Data File 362 
S5). The Fibroblast-M1 module was highly enriched in the MMP1+CXCL5+ Fibroblast cluster (Fig. 5B). Top 363 
hub genes in this module included: MMP1, CA12, CXCL5, CXCL13, TDO2, PDPN, and FAP, showing a high 364 
degree of overlap with cluster markers for MMP1+CXCL5+ Fibroblast (Fig. 4B; Fig. S4C-D). There was also 365 
a clear overlap between SERPINE2+COL1A1+ Fibroblasts and Fibroblast-M2 module (Fig. 4B, Fig. S4D). 366 
Over-representation analysis showed the M1 module was highly enriched for known biological processes 367 
associated with immune cell migration and chemotaxis (“myeloid leukocyte migration”, ”granulocyte 368 
chemotaxis”) and control of ECM structure (“external encapsulating structure”, “collagen fibril organization”, 369 
“extracellular matrix disassembly”), as well as myofibroblast-related signatures (69) (“response to wounding”, 370 
“muscle tissue development”, “myoblast differentiation”, “response to mechanical stimulus”) (Fig. 5C; Data 371 
File S2). Hence, we refer to this M1 module, enriched in the MMP1+CXCL5+ Fibroblast population, as the 372 
“human TB-myofibroblast” module. 373 
 374 
To investigate these modules in the context of defined pulmonary TB granuloma, we evaluated the expression 375 
of each module in fibroblasts from a well-controlled SIV-uninfected NHP TB granuloma dataset from Gideon 376 
et al. mentioned above (16). This study collected data on positron emission tomography (PET)-tracked 377 
granulomas isolated at 4 weeks and 10 weeks post-infection, with each granuloma individually resected, 378 
homogenized and subjected to scRNA-seq, as well as quantification of total and viable M.tb. Interestingly, 379 
our human TB-myofibroblast module (M1), M2 and M3 modules were significantly elevated in the week 4 380 
granulomas, which contained higher M.tb burdens, compared to those at week 10 (Fig. 5D, Fig. S4E). These 381 
data suggest that the human TB-myofibroblast phenotype, in addition to other diverse fibroblasts, is likely 382 
present in untreated early TB lung granuloma, and that their frequency is associated with bacterial burden. 383 
Next, to further localize human TB-myofibroblast phenotype relative to granuloma, we evaluated the 384 



 

expression of this module in fibroblasts in an independent dataset of SIV-uninfected NHP TB lung TB dataset 385 
which included single-cell data from uninvolved lung tissue (78, 79). From this dataset, lung granulomas from 386 
4 weeks p.i. (granuloma data published in Bromley et al.) were compared against uninvolved lung samples 387 
from the same experimental condition (78) (uninvolved lung data unpublished, Fig. 5E; Table S3; Methods). 388 
Evaluating our hdWGCNA modules, we observed that the human TB-myofibroblast module was upregulated 389 
in the granuloma compared to uninvolved lung tissues, confirming that this phenotype is associated with 390 
granuloma-specific structural or cellular processes that reflect a local response to M.tb. 391 
 392 

Confirmation of the myofibroblast-like phenotype in different TB disease contexts 393 
Taken together, our findings suggest a previously underappreciated role for fibroblasts – including a 394 
myofibroblast-like, MMP1+CXCL5+ subcluster – in TB immunopathology. However, whilst this population was 395 
detected in 5/9 TB diseased samples, the majority of cells derived from a single donor. Therefore, we 396 
quantified this fibroblast subset in additional patients undergoing surgery for post-TB lung complications by 397 
flow cytometry (Table S4). For this, we  gated on non-hematopoietic cells (CD45-), lacking expression of 398 
CD234a (duffy antigen), CD31 (endothelial cells), EPCAM (epithelial cells) and CD34 (progenitors), but 399 
expressing the fibroblast marker CD90, as well as PDPN and FAP, which are both canonical myofibroblast 400 
markers and hubs genes in our human TB-myofibroblast module (Fig. 6A). These data confirmed the 401 
presence of PDPN+FAP+ fibroblasts in 5/5 TB diseased lung samples. In addition, by examining tissue 402 
samples from regions of lung tissue with varying degree of disease pathology, as determined by operating 403 
surgeon, we found that PDPN+FAP+ fibroblasts were elevated in the most diseased lung pieces (p-404 
value=8*10-4, Friedman test; Fig. 6B).  405 
 406 
To determine whether a M.tb stimulation in vivo could induce these TB-associated fibroblast gene signatures, 407 
we evaluated the expression of our TB-myofibroblast gene module in a previously published bulk 408 
transcriptomics dataset from a standardized tuberculin skin test (TST) challenge (Fig. 6C; Methods) (80). In 409 
this study HIV- participants with active pulmonary TB or “latent TB” (i.e. individuals with T-cell memory to M.tb 410 
but no evidence of TB disease) received a standard TST (intradermal injection of purified M.tb proteins) 411 
challenge or saline contol. The TST site was biopsied 48 hours later and processed for bulk RNA-sequencing. 412 
Consistent with our observations, the human TB-myofibroblast signature was induced in response to the 413 
standardized mycobacterial antigen stimulation in vivo compared to saline controls, where no inflammatory 414 
response is expected. This signal was amplified in the context of active TB disease compared to “latent TB”. 415 
This implies systematic inflammation from active M.tb. infection may prime the differentiation of a pathological 416 
fibroblast cell state. Interestingly, genes associated with the SPP1+CHI3L1+ Macrophages subset were 417 
similarly induced by TST, supporting the hypothesis that M.tb stimulation induces myofibroblast-like 418 
phenotype and SPP1+ macrophages in humans, especially in the context of active TB disease (Fig. 6C). 419 
 420 

Cell-cell interaction analysis reveals fibroblasts dominate cellular crosstalk in TB-diseased lung. 421 



 

To identify putative intercellular interactions regulating differentially expressed genes between TB-diseased 422 
and control lung niches, we used MultiNichenet (81) (Fig. 7A-B; Methods). This indicated that fibroblasts 423 
were both the dominant sender and receiver cell type in TB-diseased lungs (Fig. 7C). Interestingly, a 424 
significant proportion of fibroblasts expressed ligand and receptor pairs consistent with autocrine signaling. 425 
In contrast, top interactions in the TB-negative condition were more diverse, with pronounced T cell and 426 
myeloid involvement.  427 

We performed additional analysis with LIANA to drill down into the specific cellular subclusters contributing 428 
to niche crosstalk in TB infected and control lungs (82) (Data Set 3A-B, Data Set 4A). This integrated ligand-429 
receptor analysis framework leverages multiple resources and methods to generate aggregated inference on 430 
samples from each condition. Our results suggested a dominant role for COMP+CILP+, IL6+CCL2+, 431 
MMP1+CXCL5+, and SERPINE2+COL1A1+ Fibroblasts, but not HSP Fibroblasts, in TB-diseased conditions. 432 
This analysis also implied that AT1 cell sender signaling is upregulated in the TB-diseased lung, although 433 
these cells were significantly depleted in TB-diseased lungs (Fig. 2D, Data Set 4B).  AT1 cells normally serve 434 
as the interface of oxygen exchange in the alveoli, but we found they have high expression of collagen in the 435 
TB-diseased lungs, which broadly targets other cell types (Data Set 4B). In TB-negative diseased lungs, only 436 
HSP Fibroblasts were predicted to contribute to signaling (Data Set 3B). It is important to note, however, that 437 
the lack of fibroblasts in TB-negative lungs may influence this analysis.  438 

To understand broader signaling patterns, we grouped sender and receiver cell types based on similarities of 439 
their signaling patterns (Methods). Within TB-diseased samples, we observed more distinctive patterns 440 
among sender cell types than receivers, with senders roughly grouped by cell type (Fig. 7D). The opposite 441 
was observed in TB-negative lung (Data set 4C). In TB, most of the fibroblast sender subclusters 442 
(MMP1+CXCL5+, COMP+CILP+, IL6+CCL2+) grouped together and with other non-immune cells (endothelial 443 
cells, AT1, and club cells; Sender Group 1). Quantification of net cell signaling flux – defined as the product 444 
of a sender population’s relative abundance and its average expression of a given signal – highlighted that, 445 
despite making up small proportion of the entire dataset, MMP1+ CXCL5+ Fibroblasts were among the most 446 
prolific signal senders in the TB-diseased condition (Fig. 8A).  447 

Next, to quantify ligand-driven changes in cellular crosstalk during TB infection, we calculated the difference 448 
in ligand interaction strengths between TB-diseased and TB-negative lung samples (Fig. 8B; Methods). TB 449 
sender Group 1 secreted most of the top upregulated ligands in TB-diseased lung (binomial test p-value<0.01, 450 
Data Set 5A, left). Top senders of all upregulated interactions in TB-diseased lungs were COMP+CLIP+ 451 
Fibroblasts followed by MMP1+CXCL5+ Fibroblasts (Data Set 5A, right). In contrast, control sender group 2, 452 
which consists mostly of monocytes and macrophages, exhibited the greatest signaling flux in control lung 453 
(binomial test p-value<0.01, Data Set 5B). Notably, MMP1+CXCL5+ Fibroblasts expressed most of the top 454 
flux ligands (9/30) with increased overall interaction strength in TB, supporting a central role in TB disease 455 
(Fig. 8B). The top 5 ligands from the MMP1+CXCL5+ Fibroblasts, ranked by average interaction strength 456 
across receptors, were CXCL13, CXCL6, DSG2, GREM1, and NTN1 (Fig. 8C). CXCL13 may act in both 457 
autocrine and paracrine modes, signaling to B cells via CXCR5, a homing marker for activated lymphocyte to 458 
lymphoid tissues and on B cells in NHP lung TB granuloma where it regulates host-pathogen interactions 459 



 

(83). CXCL6 appears to function similarly, signaling to neutrophils and self, consistent with known functions 460 
in inducing fibroblast matrix expression, neutrophil recruitment and activation (84, 85). DSG2 (desmoglein) is 461 
known to induce pro-proliferative activity in dermal fibroblasts (86), and is highly upregulated in zebrafish and 462 
human granuloma (87). GREM1, part of the TGF-β superfamily, contributes to pulmonary fibrosis during the 463 
early stages of disease (88). NTN1 (netrin-1), meanwhile, supports endothelial survival and regulates 464 
angiogenesis, an important process for dissemination of the pathogen (89, 90).  465 

We also examined other top ligands sent by this subcluster in TB-diseased lungs specifically. Our analyses 466 
suggested a prominent role for the MMP1+CXCL5+ subcluster in coordinating fibrosis and inflammation 467 
through expression of collagen proteins, MMP1 and cytokines (Fig. 8D). Notably, MMP1 itself acts as a ligand 468 
for ITGA2, a receptor expressed on epithelial cells, endothelial cells, and IL6+CCL2+ Fibroblasts, mirroring 469 
the AT1-fibroblast interactions aforementioned. CXCL5 interacts with CXCR2 on CD16+ monocytes and 470 
neutrophils, a key axis for recruitment these cells during TB infection and likely fueling granuloma formation 471 
(91–93). MMP1+ CXCL5+ Fibroblasts also secrete numerous ECM-related ligands: for instance, collagen 472 
molecules COL1A1, COL1A2, COL6A3, COL3A1, and COL5A2 signal to epithelial cells, monocytes, in 473 
addition to other fibroblasts via an autocrine loop; ECM proteins POSTN, FBN-1 and DCN signal with other 474 
non-immune cell types; and, MXRA5, a matrix remodeling protein like MMP1, communicates to AT1/AT2 cells 475 
via AGER. Notably, many of these ECM related ligands are highly upregulated in LN TB granuloma (Data 476 
Set 5C). Collectively, our analyses suggest aberrant lung remodeling may be driven by fibroblast and AT1 477 
communication, leading to the fibrosis typical of TB – a trend not necessarily reflected from cell type 478 
abundance changes 479 

 480 

Cell-cell interaction analysis underscores the relevance of SPP1+ macrophages in human TB  481 

The main receiver of fibroblasts signaling were fibroblasts and macrophages (Fig. 7C). Amongst macrophage 482 
subclusters, the top receivers for TB-upregulated fibroblast signals were the ARL4C+EMP1+ and 483 
SPP1+CHI3L1+ cells (Fig. S5A). Conversely, SPP1+CHI3L1+ subcluster mostly signal to fibroblasts, followed 484 
by macrophages (Fig. S5B), suggesting a potentially important role in fibroblast-macrophage crosstalk. 485 
SPP1+ macrophages have been identified in the lungs of individuals with COVID-19, IPF, and lung carcinoma, 486 
and in bronchoalveolar lavage fluids from TB and latent TB patients (17, 94). In tumors, SPP1+ macrophages 487 
are highly immunosuppressive and associated with poor outcomes, and they have been shown to orchestrate 488 
fibroblast activation during fibrosis, driving myofibroblast activation in heart and kidney injuries (95–97). 489 
Comparing against other known markers, we noted that our SPP1+CHI3L1+ Macrophages appeared 490 
congruent with SPP1+ macrophages described in other disease contexts (Fig. S5C-D). Cell-cell interaction 491 
analysis showed that fibroblasts were the major receiver of SPP1+CHI3L1+ Macrophage signals (binomial test 492 
p-value = 8.7*10-14), and nominated SPP1 and FN1 as the major ligand genes driving cross talk with 493 
fibroblasts (Fig. S5E).  494 
 495 
To further confirm the presence of SPP1+ macrophages in human lung TB granulomas, we performed 496 
immunohistochemical staining of tissues from two independent donors. We observed abundant total 497 



 

macrophages (CD68+) in both the granuloma and surrounding lung tissue, and localization of alveolar 498 
macrophages (CD68+CD206+) in the non-granulomatous lung tissue, where alveolar sacs were still visible 499 
(Fig. S5F left). In stark contrast, CD68+SPP1+ macrophages localized to the inner cellular periphery 500 
immediately bordering the necrotic core of the granuloma and were largely absent from surrounding lung 501 
tissue. Quantification of SPP1 expression shows significant difference between the inner cellular layer and 502 
the other regions and to a larger degree than CD68 (Fig. S5F, right). Notably, CTHRC-1, a marker for 503 
MMP1+CXCL5+ Fibroblasts that was localized to granuloma at the protein level, has been suggested to play 504 
a role in cross talk with SPP1+ macrophages (98) (Fig. S4B). These lines of evidence support the direct 505 
interaction between SPP1+ macrophages and myofibroblast-like phenotype in human TB granuloma implied 506 
by the single-cell data. 507 
 508 
Spatial transcriptomics confirms myofibroblast-like phenotype in independent human cohort 509 
Finally, to confirm our observations from human TB lung and LN granulomas, we investigate cells within the 510 
Visium dataset for expression of the myofibroblast-like module (Table S5, Fig. 1B, Fig. S1A). Consistent with 511 
our other data, the human TB-myofibroblast signature was detected in both current and post-TB lesions, and 512 
was particularly highly expressed around granuloma structures (Fig. 9A). In addition, we found that both HIV+ 513 
and HIV- samples displayed clear human TB-myofibroblast signature expression, suggesting it not limited to 514 
TB mono-infected individuals, as potentially suggested by our single-cell data (Fig. 4A). Indeed, in both 515 
current- and post-TB samples, HIV was associated with a higher TB-myofibroblast signature expression (Fig. 516 
9B). This may be because HIV impairs CD4+ T cells and macrophage-driven repair, and increases TGF-β 517 
release, keeping myofibroblast-like cells chronically active (99–101). In HIV- samples, current-TB was 518 
associated with elevated expression of the myofibroblast-like module, but the opposite was true in HIV+ 519 
samples, likely due to persistent systematic immune activation from HIV. These observations suggest that 520 
both pathogens can exacerbate expression of this disease associated module. Within each disease condition, 521 
we found granuloma samples had higher human TB-myofibroblast signature expression, with the exception 522 
of HIV+ post-TB group, where expression was highest in the iBALT sample (Data Set 6A). However, only one 523 
iBALT sample was available for this condition which limits our confidence in the observation. Nevertheless, 524 
these data confirm that the human TB-myofibroblast phenotype is localized to human TB lung granuloma in 525 
both active TB and post TB lung disease, irrespective of concurrent HIV infection. 526 
 527 
For each of the granuloma samples, annotations on granuloma borders (“granuloma cuff”) were designated 528 
in paired H&E staining images by a trained histopathologist and used to examine the spatial distribution of 529 
gene signatures (Fig. S1B). This analysis confirmed that the human TB-myofibroblast signature was strongly 530 
expressed in the granuloma cuffs compared to surrounding regions, with a slightly higher presence outside 531 
the granuloma compared to the granuloma core (Fig. 9C).  Interestingly, examine the other fibroblast modules 532 
revealed distinct spatial orientation relative to the granuloma (Data set 6B). Like MMP1+ CXCL5+ Fibroblasts, 533 
COMP+CLIP+ and SERPINE2+COL1A+ Fibroblast displayed a similar pattern of enrichment around the 534 
granuloma cuff, whereas IL6+CCL2+ Fibroblast and HSP Fibroblast exhibited greater enrichment outside the 535 



 

granuloma.  MMP1+ CXCL5+ Fibroblast, however,  showed the largest difference for marker expression 536 
between the Visium spots on granuloma cuff and those inside/outside the cuff.  537 
 538 
SPP1+CHI3L1+ Macrophage marker expression was similarly enriched on the granuloma cuff, supporting the 539 
co-localization of myofibroblast-like phenotype and SPP1+CHI3L1+ Macrophages at this site (Fig. 9C). To 540 
confirm this relationship, we looked at the correlation between all macrophage subset markers with the human 541 
TB-myofibroblast signature across all samples and found the strongest correlation with SPP1+CHI3L1+ 542 
Macrophages compared to the other macrophage subsets (Fig. 9D). Finally, we conducted a ligand-receptor 543 
analysis to identify spatially co-expressed ligand-receptor pairs using the same database as our analysis on 544 
scRNA-seq data (Methods). This identified the same L-R pairs as the top pairs in both samples, including, 545 
for example, SPP1-CD44.  This interaction was nominated as the top L-R pair in several samples, specifically 546 
highlighted around the granuloma cuffs and in our scRNA-seq data (Fig. 9E, Fig. S5E). 547 
 548 
Taken together, our scRNA-seq and spatial transcriptomics data support the robustness and generalizability 549 
of the human TB-myofibroblast signature, and confirm its co-localization and cross talk with SPP1+ 550 
macrophages in human TB lung granuloma.  551 
 552 
DISCUSSION  553 

TB is a global pandemic, and transformative interventions are hindered by an incomplete understanding of 554 
its pathogenic processes, including the extensive lung remodeling in pulmonary TB that drives transmission, 555 
mortality, and a high burden of PTLD following successful treatment (102). Several sequencing studies have 556 
highlighted a central role for ECM remodeling of human lung in TB, but none have resolved the contributions 557 
of individual cell-type (103). Additionally, an emerging issue in TB research is that findings from the circulation 558 
– the compartment mostly frequently studied – often fail to reflect processes in diseased tissue (104).  To 559 
address these gaps, we analyzed scRNA-seq data generated from lung tissue freshly resected to treat 560 
complication arising from TB disease, and systematically cross-referenced our findings with public datasets 561 
from M.tb-infected NHPs, the HCLA, LN TB granulomas, and TST challenge, as well as additional 562 
immunohistochemical, flow-cytometric, and spatial transcriptomic data from the same cohort to identify TB-563 
specific changes at the cellular level. Collectively, our lung datasets provides a key resource defining the 564 
cellular subsets present in TB diseased lung and dissecting immunopathogenic mechanisms. Our data 565 
demonstrate substantial heterogeneity amongst key innate immune populations, such as macrophages and 566 
neutrophils, in infected lung tissue. We find that several of these subsets correlate with a recent single-cell 567 
analysis of M.tb.-infected NHPs (16), a study not limited by tissue availability or complicated by comorbidities 568 
such as HIV, further strengthening our observations. In addition, our data highlight a possible central role for 569 
diverse fibroblast subsets with TB diseased lung tissue and with TB granuloma, particularly an 570 
underappreciated MMP1+CXCL5+ fibroblast population that colocalizes with SPP1+ macrophages at the 571 
granuloma cuff. We hypothesize that interaction between these cells, which express a myofibroblast-like gene 572 
module, and SPP1+ macrophages may play an important role in human TB granuloma development and post 573 
TB-lung disease, potentially aggravating granuloma progression and lung fibrosis. Further examining these 574 



 

putative interactions could more deeply inform our understanding of granuloma biology and suggest promising 575 
targets for novel TB host-directed therapies.  576 
 577 
Previously, limited knowledge on matrix turnover mechanisms has hindered development of clinical strategies 578 
for managing PTLD (109); here, our study identifies potential cell targets, including heterogenous fibroblast 579 
subsets such as those expressing a myofibroblast-like gene module. Lung myofibroblasts are thought to arise 580 
from a variety routes, ranging from differentiation of tissue-resident fibroblasts, epithelial to mesenchymal 581 
transition (EMT) (110), endothelial to mesenchymal transition (EndoMT) (111), and bone marrow-derived 582 
progenitors such as fibrocytes (112). The myofibroblast-like cells showed in this study express genes 583 
observed in immune fibroblasts (lineage-, CD34-, CD90+, FAP+, PDPN+) (113). These cells are critical for the 584 
formation of tertiary lymphoid structures (TLS), which arise in response to sustained inflammation (114) and 585 
are commonly observed in TB infected lung tissue (115). Additionally, matrix remodeling driven by skewed 586 
fibroblast populations can profoundly impact the cellular niche. Changes in ECM composition can further 587 
perpetuate fibroblast reprogramming and ECM remodeling, as seen in escalating MMP1 expression (116). 588 
These findings help guide interpretation of our cell-cell interaction analyses, highlighting significant roles for 589 
ECM-related molecules.  590 
 591 
Post-primary human TB is often paucibacillary (117), and it remains puzzling how profound lung destruction 592 
is generated under such conditions. The data presented here may support a model in which fibroblasts-ECM 593 
interactions exacerbate and perpetuate lung destruction in human TB, and highlight the emerging immune 594 
regulatory role of fibroblasts (118). Of note, a phase II clinical trial in patients with pulmonary TB found that 2 595 
weeks doxycycline, an MMP inhibitor, led to significant changes in the peripheral transcriptome at 8 weeks 596 
(119), demonstrating how a matrix-modulating host-directed therapy may influence the immunological 597 
trajectory of disease. Overall, our single-cell and spatial transcriptomics analyses highlight a previously 598 
overlooked role for myofibroblast-like phenotype as likely key player in orchestrating the immune response 599 
and regulating immunopathology in TB. 600 
 601 
Anti-inflammatory macrophages are generally enriched in TB-diseased tissue during chronic TB infection, 602 
potentially limiting immunopathology but also creating a favorable niche for M.tb. replication (105). Here, we 603 
found most macrophage populations were skewed in TB diseased lung tissue compared to TB-negative 604 
tissues, with a similar trend between post-TB to current-TB spatial samples. Of particular interest are SPP1+ 605 
macrophages which were elevated in TB-diseased lung tissue and strongly associated with the granuloma 606 
cuff in our spatial transcriptomics and histology data. This population has not been characterized in TB lung 607 
granuloma, but are emerging as important players in tumors, IPF-diseased lung tissue, and other fibrotic 608 
conditions (106, 107). The presence of SPP1+ macrophages in TB granuloma was further supported by 609 
granuloma RNA-seq data from human LNs and experimentally infected NHPs. Furthermore, the SPP1+ 610 
macrophage markers were upregulated following TST challenge, which was amplified by concurrently active 611 
TB disease, linking their induction to M.tb exposure. Moreover, we found evidence of cross talk between 612 
SPP1+ macrophages and the human TB-myofibroblast phenotype, a previously underappreciated but 613 



 

potentially important interaction in TB. This putative interaction is supported by histological and spatial 614 
transcriptomics data indicating both SPP1+CHI3L1+ Macrophages and MMP1+ CXCL5+ Fibroblasts are tightly 615 
associated with the granuloma cuff. In IPF, SPP1+ macrophages are highly expanded in fibrotic lesions and 616 
crosstalk with myofibroblasts to drive fibrotic changes (106); in colorectal cancer, there are direct interactions 617 
between SPP1+ macrophages and FAP+ fibroblasts expressing high levels of MMP1/3 (107). In addition, 618 
mechanistic work in murine models showed SPP1+ macrophages can directly activate myofibroblasts via 619 
SPP1 and FN1 (97), both of which are implicated in the SPP1+ macrophage-fibroblast crosstalk we found in 620 
TB lung tissues. This interaction was also linked to an immune-suppressive, pro-tumorigenic 621 
microenvironment through active ECM deposition – resembling granuloma formation in tuberculosis (108). 622 
Thus, we hypothesize the SPP1+ macrophages-myofibroblast axis likely play an important role in TB 623 
granuloma biology.  624 
 625 

While our study provides much needed information on TB-diseased human lungs, several limitations should 626 
be acknowledged. Our cohort size is modest, and substantial variability between patients and sampling 627 
location exists in both the primary resections used in the single-cell analysis and flow cytometry experiments. 628 
We attempted to address these challenges by obtaining additional samples for spatial transcriptomics and by 629 
integrating our analyses with data from relevant public datasets. However, we are still likely to have missed 630 
some biological features underlying TB pathology. In addition, further work is needed to dissect the 631 
mechanistic role of the myofibroblast-like phenotype and the interaction of the cells that express it interactions 632 
with SPP1+ macrophages in TB immunopathology. Possible avenues include co-culture systems, conditioned 633 
media assays, or recruitment assays to determine whether and how these fibroblasts influence, and are 634 
influenced by, macrophage behaviors, as well as whether chemotactic interactions exist. Ex vivo stimulation 635 
experiments with TB antigens on isolated fibroblasts or macrophages could help establish whether TB-636 
specific cues directly drive differentiation towards these disease phenotypes. Genetic approaches, such as 637 
targeted knockout of key genes in MMP1+CXCL5+ Fibroblasts or genome-wide CRISPR screens in fibroblasts 638 
within animal models of TB, could clarify causal relationships between these cells and TB pathogenesis and 639 
tissue remodeling. Beyond identifying causality, studying earlier time points in TB infection will be necessary 640 
to understand disease progression and the origins of TB complications. Ultimately, an integrated spatial, 641 
temporal, single-cell resolution disease map may be required to fully understand pulmonary reprogramming 642 
due to TB and guide optimal treatment strategies that maximizes bacterial clearance while minimizing or 643 
restoring post-TB lung damage.  644 
 645 

In sum, our study demonstrates the power of single-cell profiling to help identify, and spatial transcriptomics 646 
to contextualize, potential drivers of immunopathology underlying lung remodeling in TB disease. Our analysis 647 
highlights specific macrophage and fibroblast populations, as well as ECM related processes, as promising 648 
targets for novel host-directed therapies that could complement or offer alternatives to standard antibiotic 649 
regimens. 650 
 651 



 

MATERIALS AND METHODS  652 

 653 
Human study ethics and participants  654 

Human lung tissue was obtained from patients undergoing surgery due to TB sequelae including but not 655 
limited to haemoptysis, cavitation, bronchiectasis, shrunken or collapsed lung, at the Department of 656 
Cardiothoracic Surgery at King Dinizulu Hospital in Durban, KwaZulu Natal and Inkosi Albert Luthuli Central 657 
Hospital in KwaZulu-Natal. All samples were collected with approval from the Biomedical Research Ethics 658 
Committee and written informed consents obtained from all subjects (BREC no 019/13).  659 
  660 

Human lung tissue preparation  661 

Single-cell RNA-seq samples: The lung tissue was processed within 3 hours of receipt as described17. Briefly, 662 
a piece of the lung tissue was cut for histology and placed in 4% paraformaldehyde (PFA). The remaining 663 
piece of tissue was dissected into small pieces (5x5x5mm) and infiltrated with a collagenase (Sigma-Aldrich), 664 
DNase 1 (Sigma-Aldrich) in RPMI (Sigma-Aldrich) with 10% FBS (Hyclone) for 30 minutes. Mechanical 665 
digestion at room temperature was performed using the Gentle MACS (Miltenyi Biotec) followed by agitation 666 
at 37°C for 30 minutes. The mechanical digestion and agitation were repeated once more, followed by filtration 667 
of the resulting cellular suspension using the 70mm (Corning) and 40mm (Corning) strainer, followed by the 668 
lysis of red blood cells. Cells were then stained with trypan blue (Thermo Fischer) and enumerated using an 669 
automated cell counter (BioRad) or a manual counter (Kova).  670 
 671 
Spatial transcriptomics (Visium) samples: A section of lung was cut and transferred to 10% buffered formalin 672 
to fix for 24 hours, then transferred to 70% ethanol until wax embedding. The sample was then processed in 673 
a vacuum filtration processor using a xylene-free method and isopropanol as the main substitute fixative. The 674 
tissues were embedded in paraffin wax. Tissue sections (5 µm) of specimens of good quality, as determined 675 
by trained histotechnologist, were mounted on charged slides, air dried for 30 min then at 42 °C for 3 hours 676 
in a desiccator and stored in a desiccator at room temperature until use. 677 
 678 
Non-human primate (NHP) study ethics and research animals 679 
The macaques used for generating the scRNA-seq data were part of the study published by Ganchua et al. 680 
and the same ethical and maintenance procedures were followed (79).  681 
 682 
NHP infections and disease tracking by PET-CT 683 
Five cynomolgus macaques (Macaca fascicularis, aged between 5.3–9.1 years), obtained from Valley 684 
Biosystems (Sacramento, California) were part of a previously published study as the “immune naïve” control 685 
group (78, 79). They only received a low dose infection (7 CFU) with M. tuberculosis strain Erdman and were 686 
necropsied 4 weeks post infection.  PET-CT was performed just prior to necropsy and results were analyzed 687 
using OsiriX viewer as previously described, with a detection limit of 1 mm (120). The infection dose was 688 



 

determined by colony counts after plating an aliquot of the infection inoculum on 7H11 agar plates, which 689 
were incubating for 3 weeks at 37°C/5% CO2.   690 
 691 
Necropsy protocols 692 
Procedures carried out during necropsy have been previously described (79). Briefly, 1–3 days before 693 
necropsy, PET-CT scans were taken to pinpoint the location and metabolic activity (FDG activity) of 694 
granulomas. These scans served as a guide during necropsy for precise identification and excision of these 695 
samples. On the day of necropsy, macaques were sacrificed humanely by infection of sodium pentobarbital 696 
and terminally bled. Individual granulomas and uninvolved lung tissue were all excised and homogenized 697 
separately into single cell suspensions. Homogenates were aliquoted for plating on 7H11 agar for bacterial 698 
burden, freezing for DNA extraction, and staining for flow cytometry analysis. Any remaining samples were 699 
frozen for future use.  700 
 701 
Human lung single-cell RNA-sequencing (scRNA-seq) with Seq-Well S3 702 

Seq-Well S3 was implemented as described18. Briefly, the single-cell suspension was diluted to 15,000 cells 703 
in 200µL of RPMI (Sigma-Aldrich) plus 10% FBS (Hyclone) and loaded onto a polymethylsiloxane (PDMS) 704 
array pre-treated with the same solution for 15 minutes. The cells were allowed to settle into the microwells 705 
by gravity and the array was washed with PBS (Sigma-Aldrich) and sealed with a plasma functionalized 706 
polycarbonate membrane (Sterlitech). The arrays were then sealed followed by incubation at 37˚C for 40 707 
minutes, followed by a 20-minute incubation in lysis buffer containing guanidium thiocyanate (Sigma-Aldrich), 708 
EDTA (Thermo Fischer), 1% betamercaptoethanol (Sigma-Aldrich) and sarkosyl (Sigma-Aldrich) at room 709 
temperature. The arrays were then transferred to a hybridization buffer containing NaCl (Thermo Fischer), 710 
MgCl2 (Sigma), PBS (Thermo Fischer) and polyethylene glycol (SigmaAldrich) and were gently shaken at 711 
60rpm for 40 minutes. The capture beads hybridized with released mRNA from the lysed cells were collected 712 
from the array by a series of three wash steps with wash buffer containing NaCl (Thermo Fischer), 713 
MgCl2(Sigma), Tris-HCl (Thermo Fischer) and Water (Inqaba Biotech), with centrifugation at 2500g for 5 714 
minutes each iteration. The beads were resuspended in a master mix for reverse transcriptase containing 715 
Maxima H Minus Reverse Transcriptase, Maxima Buffer, dNTPs, RNAse inhibitor, a template switch 716 
oligonucleotide and PEG for 30 minutes at room temperature and overnight with endto-end mixing at 52˚C. 717 
This was followed by the standard exonuclease digestion and denaturation of complementary DNA (cDNA) 718 
hybridized to the bead by 5-minute incubation in NaOH (Sigma-Alrich) and washed with a solution containing 719 
Tris-HCl, EDTA and Tween-20 (Thermo Fischer). The beads were resuspended in a master mix containing 720 
Klenow Fragment (NEB), dNTPs, PEG and the dN-SMRT oligonucleotide, incubating for 45 minutes at 38˚C. 721 
PCR was performed as described in the protocol and the product was subjected to 2 rounds of AMPure XP 722 
SPRI (Agencourt) bead cleanup at 0.6x and 0.8x volumetric ratios sequentially. The library size was analyzed 723 
using an Agilent Tape station hsD5000 kit, ensuring that the expected product had an average size of 724 
~1000bp and the absence of primer dimers especially below 200bp. The Qubit High Sensitivity DNA kit was 725 
used to quantify the libraries and they were prepared for Illumina sequencing using the Nextera XT DNA 726 
Sample Preparation kit. A total of 900pg of the different libraries were added the tagmentation reaction. The 727 



 

amplified product was purified with the AMPure XP SPRI beads and the libraries were pooled for loading onto 728 
the NovaSeq 6000 using paired end read structure with custom read 1 primer: read 1:20 bases, read 2: 50 729 
bases, read 1 index: 8 bases.  730 
 731 
Spatial transcriptomics with Visium and paired H&E staining 732 
Tissue slides were baked at 60 °C for 2 hours and dewaxed using two xylene changes and rehydrated with 733 
descending grades of alcohol to water. They were then Hematoxylin and Eosin (H&E) stained and imaged as 734 
the reference image and the same slide was then processed as per Visium v2 chemistry protocol following 735 
manufacturer’s recommendations (Visium Spatial Gene Expression for FFPE – Deparaffinization, H&E 736 
Staining, Imaging & Decrosslinking, document CG000409 RevD, 10x Genomics, (Sep 2023); Visium Spatial 737 
Gene Expression for FFPE Imaging Guidelines, document CG000436 RevB, 10x Genomics, (Sept 2023); 738 
Visium Spatial Gene Expression Reagent Kits for FFPE User Guide, document GC000407 Rev E, 10x 739 
Genomics, (Sept 2023)). The sequencing results were processed through the SpaceRanger software 740 
following manual alignment of the fiduciary frames using the 10x Loupe browser. 741 
 742 
NHP sample scRNA-seq with Seq-Well S3  743 

ScRNA-seq was performed on both uninvolved lung tissues and granuloma tissues using the Seq-Well S3 744 
platform as described in Bromley et al., where and the granuloma data was previously published (78).  745 

 746 

NHP single-cell data alignment and analysis 747 

The transcript reads were aligned as described in Bromley et al.(78). Briefly, transcript reads were tagged for 748 
cell barcode and UMI using DropSeqTools v1.12, then aligned to the Macaca fascicularis v5 genome 749 
(https://useast.ensembl.org/Macaca_fascicularis/Info/Index) through the Dropseq-tools pipeline on the Terra 750 
platform (app.terra.bio) (121). Aligned reads were collapsed by barcode and UMI sequences to generate 751 
digital gene expression matrices for each array, covering 10,000 barcodes. For each sample, gene expression 752 
matrices with >=10,000 barcodes were processed through CellBender to estimate ambient RNA fraction. The 753 
"remove-background" function in CellBender was applied with default settings.  Next, the matrices "corrected" 754 
by CellBender were analyzed with Scrublet, with default parameters to detect potential doublets. Any 755 
transcriptome with a doublet_score >0.30 were removed from downstream analyses.  756 

After that, the gene expression matrices for each sample were merged and processed in Scanpy (version 757 
1.8.2). Transcriptomes were filtered using following the following criteria: min_genes > 300, min_counts>500, 758 
mitochondrial_threshold=0.05, and genes expressed in at least 10 cells. Gene expression counts were 759 
normalized using default Scanpy parameters (i.e., log2(TP10K+1)). Coarse-level cell type clustering and 760 
iterative sub-clustering were used to annotate cell types and further detect low-quality transcriptomes (e.g., 761 
doublets). Cell types were identified using canonical markers, and only fibroblast cells were included in the 762 
analysis presented in this study.  763 

 764 



 

Human lung single-cell data analysis and cell type identification  765 

The raw sequencing reads from the NovaSeq run were aligned to the hg19 genome assembly and processed 766 
in accordance with the Drop-Seq Computational Protocol v2.0 (https://github.com/broadinstitute/Drop-seq). 767 
The output (cell by gene matrix) was then loaded to the Seurat R package v3.1.0 (https://satijalab.org/seurat/), 768 
transformed to loge(UMI + 1) followed by scaling by a factor of 10000. The overall quality was assessed by 769 
the distribution of reads, transcripts and genes per cell (percentage of mitochondrial genes <5, 770 
nFeature_RNA<2500, nFeature_RNA>200, nCount_RNA>200).  SCTransform by Seurat was called to 771 
perform normalization of the gene counts, selecting top 3000 highly variable genes, and scaling normalized 772 
gene counts. Principle component analysis was run on the selected highly variable genes to give the top 50 773 
PCs. A custom elbow-based method was used to find the smallest number of PCs (n_pcs) where the eigengap 774 
between two adjacent PCs drops below 20-percentile of all eigengaps amongst top 50 PCs. Uniform Manifold 775 
Approximation and Projejection (UMAP) was calculated using the RunUMAP function and neighborhood 776 
graph was calculated by FindNeighbors, both using reduction=’pca’ and selecting top n_pcs as input 777 
dimensions. Unsupervised Louvain clustering using the FindClusters was used to identify transcriptionally 778 
similar cells with parameters assay=’integrated’, dims.use=n_pcs, k.param=ceiling(0.5*sqrt(#cells)) and we 779 
performed a resolution scan for the best clustering resolution from 0.2 to 2 while optimizing for silhouette 780 
score. Cell type annotation were done by cross-referencing canonical cluster defining genes with well curated 781 
lists, online databases such SaVant T (http://newpathways.mcdb.ucla.edu/savant-dev/) and GSEA/MsigDB 782 
(https://www.gsea-msigdb. org/gsea/msigdb/index.jsp). Doublet clusters where multiple canonical markers 783 
were expressed are identified and removed and the entire dataset are re-processed starting from the 784 
SCtransform step. Final differentially expressed (DE) gene for each of the major clusters were found by calling 785 
FindAllMarkers from Seurat using default setting and adjusted p-value cutoff < 0.05 and top DE genes were 786 
found by ranking log fold-change values from high to low. Heatmap of DE genes were plotted using Seurat 787 
function DoHeatmap and dotplot was achieved using function DotPlot. 788 
 789 
Sub-clustering for major cell groups (macrophage/monocytes, neutrophiles, epithelial cells, fibroblasts) were 790 
performed similarly to the entire dataset after subsetting to the specific cell types. Marker genes for each 791 
subcluster was found by calling FindAllMarkers from Seurat using default setting and significant genes 792 
(adjusted p-value<0.05) are visualized with custom volcano plots. 793 
 794 
Comparison with human lymph node data was done for the top 10 DE genes in each cellular subcluster and 795 
checked over the TB vs. control differential testing result from the human lymph node granuloma study. 796 

 797 

Clustering analysis on cell subtypes 798 

Proportion of cell subtypes in each patient was calculated, and Pearson’s correlations between every pair of 799 
broad level cell type is calculated. For each pair of cell types, we ran permutation test by randomly re-800 
assigning cell type labels to generate a set of background correlation values, and p values are calculated as 801 
the percentage the permutated correlation values exceeds the original observation. Hierarchical clustering on 802 



 

the cell types are done by feeding in the pairwise correlation into Python function linkage with 803 
method='average', metric='correlation', we then use function fcluster with a defined k to call cluster from the 804 
returned linkage result with criterion='maxclust'. We grid searched through k from 2 to 29 (one less than the 805 
number of cell types) and determined the optimal cluster number by computing the silhouette score from each 806 
clustering result with function silhouette_score and a precomputed correlation distance. This allowed us to 807 
select k=12 which resulted in the highest silhouette score.  For each of the 12 clusters identified through 808 
hierarchical clustering, we further calculated permutation test p values to examine average correlation values 809 
within and outside of each cluster and annotate those that has within-group p value <0.05.  810 

 811 

Differential abundance testing  812 

Statistical differences in the cell type abundance between TB diseased and TB-negative lungs were tested 813 
by two-sided Fisher’s exact text and adjusted for multiple testing correction by Holm’s method.  814 
 815 
Cluster-free differential abundance testing is done using milopy in python. Neighborhoods are constructed 816 

over the entire dataset using 𝑘 = 𝑐𝑒𝑖𝑙(0.5 × √𝑛) where 𝑐𝑒𝑖𝑙 rounds up to the nearest integer and n is the 817 
number of cells. Neighborhood are made with 𝑝𝑟𝑜𝑝 = 1. Function DA_nhoods was called with 𝑑𝑒𝑠𝑖𝑔𝑛 =818 
~𝐻𝐼𝑉 + 𝑇𝐵  to account for the effect of HIV status. For interpretation, we only kept neighborhoods with 819 
neighborhood annotation fraction > 0.5, and label them with the majority cells’ annotation. Due to the small 820 
sample size, we opted to use P-value instead of the spatial FDR devised in milopy for significance. 821 
 822 

Bulk RNA-seq profile deconvolution and comparison 823 

For comparing the marker genes in each subcluster with DE genes in bulk RNA-seq on human lymph node 824 
TB granuloma samples, we first selected top 50 DE genes in each subcluster. Note that some of the DE 825 
genes in a broad cell type may overlap with the DE genes in another, since the differential analysis was done 826 
within each broad cell type. Hence, we remove the genes that are shared between cell types, re-ranked the 827 
remaining DE genes by log-fold change, and took the top 10 DE genes to compare with the bulk DE results. 828 

For deconvolution of the human lymph node TB granuloma and control samples, we applied tool MuSiC (1.0.0) 829 
separately on TB and control samples, using annotated data in our study as single cell reference. We kept all 830 
the cell types for deconvolution except alveolar macrophages, which should only exist in lungs. Other 831 
parameters are kept as default.  832 

We applied a standard two-sided T-test to compare the difference between inferred cell type proportions 833 
between TB and control lymph node samples, with Bonferroni correction for multiple testing.  834 

 835 

Fibroblast label transfer and gene signature finding 836 

Travaglini et al. stromal cell type calling: Top 20 markers for each stromal cell population by Travaglini at 837 
el. 2020 Supplementary Table S4, and was found by filtering on P-value<0.05, and sorted by average log 838 



 

fold-change. AddModuleScore from Seurat was used to calculate module score of these markers and 839 
“Travaglini.fib.subtype” was called based on which cell type gives the maximum module score, where 840 
“ambiguous” was assigned if no score gives a positive value. Proportion of Travaglini.fib.subtype was 841 
calculated in each fibroblast cluster given this new cell annotation. 842 

 843 

HLCA label transfer: Human Lung Cell Atlas (HLCA) label transfer onto our dataset was achieved following 844 
their tutorial 845 
(https://github.com/theislab/scarches/blob/hlca_tutorial_improvements/notebooks/hlca_map_classify.ipynb). 846 
Briefly, label transfer was done using asArches on the raw counts of the entire dataset on the genes that are 847 
part of the reference model. Annotation level 3 data was used in this paper. Celled called as “fibroblast” or 848 
“myofibroblast” are considered together as fibroblast population which are highly consistent with our manual 849 
annotation (>95% true positive rate). For better comparison, we only included  HLCA fibroblasts (and 850 
myofibroblast) with tissue source annotation “lung parenchyma”. Differential gene expression analysis was 851 
performed between all TB-negative controls (from both HLCA and our study) and TB-diseased lungs (only 852 
from our study) on log normalized counts. GSEA was run in R using genesets from MSigDB (accessed using 853 
msigdbr) on DE genes passing filter for Benjamin-Hochberg adjusted P-value<0.05. 854 

 855 

Gene module finding with hdWGCNA: single cell version of WGCNA was run using tool hdWGCNA 856 
following tutorial (https://smorabit.github.io/hdWGCNA/articles/basic_tutorial.html). Briefly, gene_select = 857 
"variable" was used to set the variable gene selection approach using SetupForWGCNA . To avoid sparsity 858 
in the single-cell data, we first constructed metacells that aggregates the expression profile based on 859 
neighborhood information. Metacells were constructed through MetacellsByGroup call with parameters k = 860 
10,  max_shared = 5, min_cells = 20, group.by uses the categories for fibroblast subcluster and disease status 861 
(TB, HIVTB, HIV control and cancer control) and ident.group is also set to be the subcluster. SetDatExpr was 862 
called with “SCT” assay and “data” slot for scaled expression. TestSoftPowers function was called with 863 
networkType = “signed”. The rest follows the default analysis workflow. Top genes in each module ranked by 864 
eigen-based connectivity (kME) are visualzed by running PlotkMEs. Feature plot of module eigengenes (MEs) 865 
for each module was plotted by running ModuleFeaturePlot with features=’MEs’. ModuleCorrelogram function 866 
was used to visualize the correlation between each module based on their MEs, and VlnPlot from Seurat was 867 
used to visualize the difference of module MEs between subclusters. 868 

 869 

Lymph node granuloma laser capture microdissection RNA-seq study 870 

Formalin-fixed paraffin-embedded (FFPE) clinical samples from twenty-four adult patients undergoing 871 
mediastinal or neck lymph node biopsy were selected (seven TB, ten sarcoidosis, seven normal), and the 872 
first analysis has previously been reported (PMID24798354; 10.1136/bcr-2013-202127, GEO accession code 873 
GSE174443).  The patients were treatment naïve and had no significant comorbidities, were HIV negative 874 
and non-smokers.  Sections of 10µm thickness were cut, floated in RNase-free water, mounted on to 875 



 

polyethylene naphthalate (PEN) membrane glass slides and dried at 37°C overnight.  Sections were dewaxed 876 
with xylene immersion followed by xylene removal with 100% EtOH.  Laser capture microdissection was used 877 
to isolate granulomas or similar area of control normal tissue.  Each sample underwent total RNA extraction 878 
and sequenced using Ion Torrent sequencing.  Raw sequencing data was aligned using kallisto software and 879 
annotated to gene level by ensembldb and sleuth programs to ensure similar results were found.  Inter-sample 880 
normalization was performed using TMM normalization (edgeR).   881 

 882 

Evaluation of differential genes in lymph node granuloma dataset   883 

Genes identified from each cluster during single cell sequencing analysis were searched within the bulk 884 
RNAseq dataset of granulomas isolated by laser capture microdissection (GEO accession code GSE174443), 885 
where differential gene expression analysis was performed using limma with its voomWithQualityWeights 886 
function (version 3.38.3, R) with Benjamini-Hochberg FDR of less than 0.05. Filter values were optimized to 887 
yield the highest number of differentially expressed genes across the study cohort.  GraphPad Prism 9 was 888 
used to plot the average gene expression of 7 control and 7 TB lymph nodes, with box-and-whisker values 889 
generated using one-tailed unpaired T test.  890 
 891 

Evaluate gene module in non-human primate dataset 892 

Gene modules found from above are taken to be evaluated in NHP data. Top 50 hub genes are ranked by 893 
eigengene-based connectivity (kME) and used to score on fibroblasts from the NHP dataset using function 894 
score_genes from python package scanpy. Two sided Mann-Whitney U test without correction was used to 895 
compare module usage between different conditions.  896 
 897 

Evaluate gene modules in human TST challenge dataset  898 

Top 50 hub genes from the Fibroblast-M1 module from hdWGCNA is taken as the human TB-myofibroblast 899 
module as described above, along with differentially expressed marker genes from SPP1+CHI3L1+  900 
Macrophages (Data File S2), they are used to score on the bulk RNA-seq data which has been preprocessed 901 
following methods in Pollara et al. followed by calculating geometric means of all the genes in set (80). Two 902 
sided Mann-Whitney U test without correction was used to compare module usage between different 903 
conditions.  904 
 905 

Cell-cell interaction analyses 906 

MultiNicheNet: analysis was run using package multinichenetr following tutorials on 907 
https://github.com/saeyslab/multinichenetr. Briefly, recommended ligand-receptor network and ligand-target 908 
matrix was downloaded from https://zenodo.org/record/7074291/files and a SingleCellExperiment object was 909 
constructed from the RNA assay from the Seurat object. Analysis was defined for senders and receivers as 910 
all broad level cell types shown in Figure 1. We performed genome-wide differential expression analysis of 911 



 

receiver and sender cell types to define DE genes between the conditions of interest (TB-negative and TB-912 
diseased lungs).  Empirical P-values were calculated after DE calculation using function get_empirical_pvals. 913 
Then, we predicted NicheNet ligand activities and NicheNet ligand-target links based on calculated differential 914 
expression results using function get_ligand_activities_targets_DEgenes with parameters logFC_threshold = 915 
0.50, p_val_threshold = 0.05, fraction_cutoff = 0.05, p_val_adj = FALSE, top_n_target = 250. We sse the 916 
information collected above to prioritize all sender-ligand-receiver-receptor pairs using function 917 
generate_prioritization_tables with prioritizing weights: "de_ligand" = 1,"de_receptor" = 1, "activity_scaled" = 918 
2, "exprs_ligand" = 2,  "exprs_receptor" = 2, "frac_exprs_ligand_receptor" = 1, "abund_sender" = 0, 919 
"abund_receiver" = 0, and fraction_cutoff=0.05, grouping_tbl consists of sample ID and TB status. Circoplot 920 
visualizations of top 20 ligand-receptor pairs in each TB status group were done on prioritization table outputs. 921 
Summary heatmap was done over top 200 interactions for enrichment of interactions between cell types. 922 

Given the requirement to perform genome-wide differential expression analysis to identify DE genes between 923 
TB conditions, we couldn’t apply the same MultiNicheNet framework to all subclusters given some subclusters 924 
don’t have enough power to detect. Hence, we switched to LIANA for an unbiased cell-cell communication 925 
analysis at the subcluster level.  926 

LIANA: liana analysis was first independently run on both TB-diseased data and healthy control data using 927 
function liana_wrap followed by liana_aggregate from the liana package in R using default parameters on 928 
RNA assay from Seurat. We kept only keep interactions concordant between methods by filtering for 929 
interactions with aggregate_rank <= 0.01. Top 20 MMP1+ CXCL5+  Fibroblast specific signaling in TB was 930 
extracted, where interaction specificities are extracted from natmi.edge_specificity values and expression 931 
magnitudes are from sca.LRscore value between interactions. Senders/receivers are ordered by hierarchical 932 
clustering based on Pearson’s correlation of sca.LRscore values.  933 

We summarize the sender-receiver interaction frequencies from the filtered interactions in each TB status 934 
group and calculated the difference between the two frequency matrices. Lastly, we normalized by the largest 935 
absolute value of differences for plotting the interaction difference heatmap. To visualize interactions 936 
strengthened in TB-diseased group and TB-negative group,  we defined the edge weight of interactions by 937 
the natmi.edge_specificity from LIANA output and edge_FC as the fold change between the TB group and 938 
control group with a pseudo edge weight of 10^-6 if control group is 0. We counted the number of interactions 939 
between sender-receiver groups involved in interactions of edge_FC>1, defined as “poslogFC.cellcell.count” 940 
and similarly the number of interactions between sender-receiver groups involved in interactions of 941 
edge_FC<1, defined as “neglogFC.cellcell.count”. We clustered sender and receiver in TB-upregulated 942 
interactions (summarized in “poslogFC.cellcell.count”) and TB-downregulated inetractions (summarized in 943 
“neglogFC.cellcell.count”) based on Pearson’s correlation of interaction count similarities between senders 944 
and receivers respectively. Hierarchical clustering was done using pheatmap followed by inspecting tree 945 
clusters and calling groups using cutree.  For circos plots of TB-upregulated sender-receiver pairs and TB-946 
downregulated sender-receiver pairs, we only selected for pairs with interaction counts exceeding 80-947 
percentile of all pairs in the particular condition, using function chordDiagram from R package circlize. 948 



 

For visualizing the interactions between fibroblast and macrophages and SPP1+ macrophage signaling, we 949 
visualized the count of interactions with aggregate_rank <= 0.01 and edge_FC>1 and used chordDiagram to 950 
plot. 951 

 952 

Ligand interaction strength calculation: mean TB edge is defined as the mean of interaction edge weight 953 
in TB-diseased group for specific sender and ligand combination and mean_CTR_edge is defined as the 954 
mean of interaction edge weight in TB-negative group.  weighted_mean_TB is defined as mean_TB_edge 955 
weighted by the count of interaction involving that ligand in each sender group, and similarly for 956 
weighted_mean_CTR.  Finally, weighted_mean_FC (e.g., interaction strength change) is defined as 957 
weighted_mean_TB/weighted_mean_CTR. Top 30 and bottom 30 ligands by the interaction strength are 958 
chosen to be visualized in Fig. 5D.  959 

 960 

We also calculate an unweighted mean_FC = mean TB edge/ mean_CTR_edge for the interaction strength 961 
change in each sender cell type, and we consider an interaction involving a ligand as positive if the 962 
log10(mean_FC) is positive and negative if the log10(mean_FC) is negative, which reflect whether the 963 
interaction is stronger or weaker in TB-diseased vs. TB-negative group. Positive and negative interaction 964 
counts are tallied for each ligand and a ligand is thought to be dominantly “positive” (colored red in barplot) if 965 
positive interaction count is 50% higher than negative interaction count and “negative” (colored blue) if 966 
negative interaction count is 50% higher than positive interaction count. Mean_FC and log10(mean_FC) 967 
between TB-diseased and TB-negative samples are used to indicate ligand activity importance in each sender 968 
cell type, sender cell types are grouped according to clustering for TB-diseased senders in circo plot . 969 
Grouping of sender cell types in the ligand interaction strength analysis was the same as before. Top 5 ligands 970 
in MMP1+CXCL5+ Fibroblast by mean TB edge metric was visualized for their proposed targets and number 971 
of possible receptor interactions on each cell type. 972 

 973 

For summarizing top 10% of ligands in each TB condition, we calculate the mean of edge_FC for each 974 
source/ligand combination. The mean edge_FC is then sorted by descending order, where the top 10% and 975 
bottom 10% are visualized as top ligands upregulated in TB (Data set 4B, C). For the barplot of number of 976 
interactions upregulated in each TB condition, we filter for all interactions with edge_FC<1 or edge_FC>1 and 977 
count the number of interactions by sender cell type. We use the same cluster groupings/colors for the 978 
senders as for the circus plot in Fig. 4D. 979 

 980 

Sender signaling co-occurrence analysis: we first filter out sender-ligand combinations that are 981 
upregulated in TB (edge_FC>1). Then, for each cell type of interest, the normalized RNA count for the 982 
upregulated ligands in this cell type is retrieved for all the TB-diseased patients. The ligand expression in 983 
each cell is then weighted by log10(mean_FC) so ligands with larger degree of change are weighted higher 984 
for their expressions. Then, patient averages of all the weighted ligand expressions are calculated and 985 



 

summed to arrive at a final patient-sender activity score. Pearson’s correlation is computed across each pair 986 
of cell type’s sender activity scores in 9 patients.  987 

 988 

Interaction flux analysis: In this analysis, we define the flux of interaction in the direction from sender to 989 
receiver cell types. First, we calculate the mean of edge_FC between all LIANA inferred significant 990 
interactions (aggregate_rank <= 0.01) for each sender-receiver pair. Then, for each pair of sender-receiver, 991 
the flux of interaction is calculated by multiplying the sender cell count. The total flux of a given sender cell 992 
type is then the sum of flux to all receiver cell types.  993 

 994 

Fluorescent immunohistochemistry staining  995 

Sample preparation: Multiplex fluorescent immunohistochemistry staining of macrophage markers was 996 
performed on lung tissue sections using the Opal™ 6-Plex Manual Detection Kit 50 Slides (AKOYA, USA) as 997 
directed by the manufacturers. Multiplex fluorescent immunohistochemistry staining of fibroblast markers was 998 
performed on lung tissue sections using the Opal™ 4-Color Manual IHC Kit 50 Slides (PerkinElmer, USA) as 999 
directed by the manufacturers. For both, lung tissue samples fixed in 4% formalin were paraffin-embedded. 1000 
Four mm sections were cut on X-tra adhesive precleaned micro slides (Leica, Germany), allowed to dry for a 1001 
minimum of 24 hours and the slides were baked at 60oC overnight.  1002 
Deparaffinization, rehydration, and antigen Retrieval: The combined process of deparaffinization, rehydration 1003 
and antigen retrieval of the tissue sections was done using 1x Envision Target Retrieval Solution, High PH 1004 
(Dako, USA) in the PT-Link Pre-Treatment instrument (Dako, USA). Thereafter, slides were incubated for 1 1005 
minute in distilled water and equilibrated in EnVisionTM FLEX Wash Buffer (Dako, USA) at room temperature 1006 
for 10 minutes (2x 5 minutes using fresh buffer for each period) for macrophage markers staining and 5 1007 
minutes for fibroblast markers staining. Then, the macrophage slides were incubated in EnVisionTM FLEX 1008 
Peroxidase blocking solution (Dako, USA) for 10 minutes and fibroblast slides were incubated in Peroxidase 1009 
blocking solution (PerkinElmer) for 10 minutes, both then washed in wash buffer (Dako, USA) as before 1010 
immediately at room temperature.  1011 
Background reduction: The macrophage slides were incubated in blocking buffer (0.05g BSA + 10% goat 1012 
serum dissolved in EnVisionTM FLEX Wash Buffer) for 20 minutes. The fibroblast slides were incubated in 1013 
Bloxall blocking solution (PerkinElmer) for 10 minutes. 1014 
Antibody staining: The macrophage slides were incubated in primary antibody-1 for 45 minutes, fibroblast 1015 
slides for 30 minutes, at room temperature, then washed for 5 minutes in wash buffer. The macrophage slides 1016 
were then incubated in Secondary Opal Polymer Horseradish Peroxidase (HRP) Mouse and Rabbit (AKOYA, 1017 
USA) for 20 minutes and fibroblast slides were incubated in Secondary Opal Polymer Horseradish Peroxidase 1018 
(HRP) Mouse and Rabbit (PerkinElmer) for 30 minutes. Then, the slides were washed twice in wash buffer 1019 
as before, drained and the sections were incubated in Opal Polymer Fluorophore (macrophage slides: 1020 
AKOYA, USA; fibroblast slides: PerkinElmer) working solution for signal amplification at room temperature for 1021 
10 minutes in the dark. The slides were then washed for 10 minutes (2x 5 minutes using fresh buffer for each 1022 
time) for macrophage slides, 5 min for fibroblast slides, in wash buffer at room temperature.  1023 



 

 1024 
Antibody stripping: Afterwards, the antigen retrieval via microwave treatment was done by placing the slides 1025 
in a slide jar with pre-warmed buffer AR6 (macrophage slides: AKOYA, USA; fibroblast slides: PerkinElmer). 1026 
The jar was loosely covered and placed in a microwave for 2 minutes at 100% power (High setting), 10 1027 
minutes at 50% (Medium setting) power and 5 minutes at 20% (low setting) power. Slides were cooled down 1028 
in the dark by placing the slide jar on ice for 20 minutes and the slides were rinsed in distilled water, followed 1029 
by incubation in the wash buffer for 10 (2x 5 minutes) minutes for macrophage slides, 5 minutes for fibroblast 1030 
slides, to equilibrate slides. The microwave step re-exposes the antigen on the tissue and allows the 1031 
introduction of the next primary antibody. For the detection of the next target (primary antibody 2), the protocol 1032 
was restarted at the blocking step using blocking buffer (macrophage slides: 0.05g BSA + 10% goat serum 1033 
dissolved in EnVisionTM FLEX Wash Buffer; fibroblast slides: Bloxall blocking solution from PerkinElmer) for 1034 
10 minutes. After the third target was detected (primary antibody 3), a working solution of DAPI (macrophage 1035 
slides: AKOYA, USA; fibroblast slides: PerkinElmer) was applied to the sections as the nuclear counterstain 1036 
for 5 minutes in a humidity chamber. The slides were washed in wash buffer for 5 minutes, then in distilled 1037 
water for 5 minutes and drained. Then, the sections were coverslip with Fluorescence Mounting Medium 1038 
(Agilent Technologies, Inc.) and the edges of the coverslip were sealed with nail varnish. Slides were stored 1039 
in a humidity chamber at 4oC until images are acquired.   1040 
 1041 
Antibodies and fluorophores: For macrophage slides, the unconjugated primary antibodies used are Anti-1042 
CD68 (conc.  clone: Ab213363, Abcam), Anti-CD206 (clone: Abcam), Anti-Osteopontin (clone: ab302942, 1043 
Abcam). The primary antibodies were diluted in antibody diluent (PerkinElmer) as recommended by the 1044 
antibody manufacturer, and the Opal fluorophores diluted in amplification diluent (PerkinElmer). The 1045 
fluorophores used for signal generation in this study are FITC, Tetramethylrhodamine (TRITC), and Cy5. For 1046 
fibroblast slides, the unconjugated primary antibodies used are Anti-Collagen I (clone: ab34710, Abcam), 1047 
Anti- Anti-CTHRC1 (clone: ab85739, Abcam), Anti-TDO2 (clone: OT14G2, Thermo Fisher Scientific), Anti-1048 
PI15 (clone: PA5-52312, Thermo Fisher Scientific), Anti-ACTA2 (clone: 1A4, LSBio). The primary antibodies 1049 
were diluted in antibody diluent (PerkinElmer) as recommended by the antibody manufacturer, and the Opal 1050 
fluorophores diluted in amplification diluent (PerkinElmer). The fluorophores used for signal generation in this 1051 
study are FITC, Texas-Red and Cy5.  1052 
Imaging: For macrophage slides, the images were acquired on Hamamatsu NanoZoomer S60, (Japan) and 1053 
analysed with NDP.view2 (version 2.9.29) imaging software (TissueGnostics).  For fibroblast slides, the 1054 
images were acquired on a Zeiss Axio Observer Z1 inverted microscope (Olympus) and analysed with 1055 
TissueFAXS imaging software (TissueGnostics).   1056 
 1057 
Quantification: for macrophage slides, Using QuPath software (version 0.5.0-x64), TB granulomas were 1058 
segmented into three distinct layers: 1059 

1. An outer cellular layer primarily composed of lymphocytes,  1060 
2. An inner cellular layer predominantly consisting of myeloid cells (mainly macrophages), 1061 
3. A necrotic core characterized by cellular debris and dead cells. 1062 



 

To assess the expression levels of SPP1 (Green) and CD68 (Yellow), we divided the granuloma radially 1063 
similar to pie-cutting, into ten regions, which further divides each granuloma layer into ten sub-regions. Each 1064 
sub-region is defined and analyzed as a separate Region of Interest (ROI) where they are numbered 1065 
clockwise from 1 to 10 so ROI1 from the necrotic core is immediately adjacent to ROI1 from the inner cellular 1066 
layer, etc. This enabled a more precise evaluation of spatial differences in protein expression. Expression 1067 
intensity was measured at 5 µm per pixel to capture variability in protein distribution across the granuloma 1068 
architecture. 1069 
Mean intensity for each ROI was used to calculate the statistical significance between the groups using two-1070 
sided Mann-Whitney U test without correction for SPP1. The ratio of mean intensity between inner cellular 1071 
layer and outer cellular layer was calculated between the ROI1 and ROI1, ROI2 and ROI2, etc. The same 1072 
was done for the ratio of mean intensity between inner cellular layer and the necrotic core. 1073 
 1074 
 1075 

Flow Cytometry  1076 

Lung pieces collected after removal from M.tb infected patients were used in flow cytometry analysis after 1077 
processing as from scRNA-seq (Table S4). Cells were counted and stained with antibody cocktail for 30 1078 
minutes at RT and in the dark followed by 2x wash steps with PBS and resuspension of stained cells in 1079 
FACSLyse. The surface markers used were: CD45 (CD45-APC, BioLegend, cat#304012), CD34 (CD34-FITC, 1080 
BioLegend, cat#324226), EpCAM (EpCAM-BV650, BioLegend, cat#324204), CD11b (CD11b-PeCy7, BD, 1081 
cat#557743), CD31 (CD31-BV605, BioLegend, cat#303121), VCAM1 (VCAM-PE, BioLegend, cat#305805), 1082 
ICAM1 (ICAM-APC-Cy7, BioLegend, cat#353121), podoplanin (PDPN-PERCPefluor710, ThermoFischer, 1083 
cat#46-9381-42) and CD235a (CD235a-PECF594, BioLegend, cat#349119). Viability was determined using 1084 
the Invitrogen Live/Dead Aqua Fluorescent reactive dye on the HV500 channel. Samples were acquired on 1085 
the BDFACS Aria Fusion flow cytometer. Analysis of samples was subsequently carried out using FlowJo 1086 
(v10, FlowJo).  1087 
 1088 
The Friedman test was used to assess significant changes in the fibroblast subset of interest across different 1089 
lung resection severities. 1090 

 1091 

Human lung tissue spatial transcriptomics data analysis  1092 

Filtered 10x spatial data from each sample processed by Space Ranger was read into an anndata object 1093 
using the function “read_visium” from python package scanpy, along with the corresponding high-resolution 1094 
image of the H&E stain. No filtering on spots or genes was done to preserve the maximum amount of 1095 
information as the nature of these data are intrinsically sparse. Data was log-normalized with standard scanpy 1096 
workflow. Top 50 hub genes from the hdWGCNA Fibroblast-M1 module were used to score for human TB-1097 
myofibroblast signature on each Visium spot using score_genes from scanpy. The top 20 differentially 1098 
expressed markesr from the macrophage subsets (Data File S2) were used to calculate DE marker scores 1099 
in a similar fashion. Spearman’s correlation and its significance between the human TB-myofibroblast 1100 



 

signature and macrophage subset markers were calculated using the function spearmanr from python 1101 
package scipy. A two-sided Mann-Whitney U test without correction was used to compare module usage 1102 
between different conditions and Spearman’s correlation was used to compare human TB-myofibroblast and 1103 
different macrophage subsets. 1104 
 1105 
Deconvolution of spatial transcriptomic data 1106 
Since Visium v2 chemistry has spot size of diameter = 55µm (generally larger than one cell), we estimated 1107 
the cell type abundance of each spot using python package cell2location, a Bayesian model that estimates 1108 
the combination and abundance of cell types that could give rise to the mRNA counts in each spatial location. 1109 
We first learned reference signatures of each broad-level cell type from the original scRNA-seq cohort 1110 
generated using Seq-Well S3, then decomposed the Visium multi-cell RNA counts into these reference 1111 
signatures, establishing a spatial mapping of cell types. For training the reference signatures, we used patient 1112 
ID as categorical_covariate_keys and sequencing batch as batch_key, num_samples=1,000, 1113 
batch_size=2,500, max_epochs=250, with the rest set to default. For the posterior estimating, we created and 1114 
trained the model with hyperparameters: N_cells_per_location=10, detection_alpha=20, 1115 
max_epoches=15,000, with the rest set to default. For each boxplot comparing cell type abundance, 5% 1116 
quantile of the estimated posterior was used to represent cell type abundance at each Visium spot, which 1117 
represents the value of abundance the model has high confidence in. 1118 
 1119 
Annotation of granuloma structures on H&E images 1120 
Granuloma structures were manually annotated using ImageJ by experts in TB lung pathology. A band of 1121 
~20-pixel width was then drawn outside the selection area to approximate the granuloma cuff. The spots from 1122 
the Visium data are categorized to be “in”, “on” and “out” of the granuloma border based on the spot’s 1123 
corresponding position relative to this segmentation band.  1124 
 1125 
Spatial Ligand-Receptor Analysis 1126 
Each sample was log-normalized with the scanpy package. The python version of LIANA package was then 1127 
used to impute spatial ligand-receptor interactions. First, spatial neighborhoods were calculated using the 1128 
spatial_neighbors with bandwidth=10, cutoff=0.1, kernel='gaussian', set_diag=True. Then bivariate scores for 1129 
potential ligand-receptor pairs is calculated using the function bivariate using with parameters 1130 
resource_name='consensus', local_name='cosine' (spatially-weighted cosine similarity for local score), 1131 
global_name=’morans’ (bivariate Moran’s R for global score), n_perms=100, nz_prop=0.05, and default 1132 
settings for the rest. Top L-R pairs are selected by sorting for descending Moran’s R as it describes global 1133 
co-expression. 1134 
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Figures 1581 

Figure 1: Overview of the single-cell and spatial data generated from TB-diseased and control lungs. 1582 
(A) Schematic showing the experimental flow for the isolation of cells from human lung tissues, generation of 1583 
single-cell libraries using Seq-Well S3. 4 TB-negative and 9 TB-positive lung samples were processed through 1584 
single-cell RNA-seq. Shown adjacent to the process flow is a low-dimensional embedding (UMAP) of the 1585 
19,632 cells passing quality control annotated with high-level cell types (middle) or detailed cell subtype (right). 1586 
(B) 10x Visium platform workflow for spatial transcriptomics profiling on formalin-fixed paraffin-embedded 1587 
tissue (FFPE) samples from TB-diseased lung resections. 21 of these samples come from current-TB patients 1588 
with detectable M.tb, 9 came from post-TB patient with where bacteria are no longer detected in 1589 
bronchoalveolar lavage (BAL) TB culture after infection. Samples contain either granulomas, inducible 1590 
bronchus-associated lymphoid tissues (iBALTs), or lung lymph nodes (LNs), representing different 1591 
pathological states. 1592 

 1593 

Figure 2: Overview of tissue heterogeneity and cell type abundance in the single-cell dataset. 1594 



 

(A) Cell type proportions by disease status (left) and patient (right, n = 7 HIV+TB+; n = 2 TB+; n =1 HIV+, n = 1595 
3 Cancer Control). (B) Low dimensional embedding (UMAP) of all single-cell RNA-seq data colored by patient 1596 
HIV status (left) and TB status (right). (C) Dot plot showing expression levels of top 2 DE genes in each of 1597 
the broad level cell types. (D) Two-sided Fisher’s exact test for abundance of major cell types between 1598 
samples from patients with previous TB diagnosis and samples from control patients. Holm’s method was 1599 
applied to adjust p-values for multiple-testing correction. Statistical annotations: p-value < 0.05 (*), p-value < 1600 
0.01 (**), p-value < 0.001 (***). 1601 

 1602 

Figure 3: Single-cell transcriptomic reveals heterogeneity within monocyte and macrophage 1603 
populations with disease specific difference. (A) Monocyte/macrophage (n=8,318) sub-clustering reveals 1604 
10 subclusters (left), also colored by patient ID (middle) and disease condition (right). (B) Heatmap of subtype 1605 
top 10 DE genes in each of the monocyte/macrophage subcluster. (C) Expression of marker genes in 1606 
monocyte/macrophage subclusters by disease conditions. (D) Two-sided Fisher’s exact test on abundance 1607 
of detailed macrophage (left), monocyte (right) subclusters between TB conditions. Holm’s method was 1608 
applied to adjust p-values for multiple-testing correction. Statistical annotations: p-value < 0.05 (*), p-value < 1609 
0.01 (**),p-value < 0.001 (***), fold-change> 1 (D), fold-change >2 (DD), fold-change <1 (Ñ). (E) Cell2loc 1610 
imputed macrophage (left) and monocyte (right) abundance distribution on the Visium dataset grouped by TB 1611 
and granuloma status (Methods). The 5% quantile of the estimated posterior distribution of cell abundance 1612 
at each Visium spot is displayed, representing the value of cell abundance that the model has high confidence 1613 
in. Two-sided Mann-Whitney U test without correction were used for statistical testing. Statistical annotations: 1614 
p-value < 0.0001 (****). (F) Similar to (E) but group by TB status and HIV status. 1615 
 1616 

 1617 

Figure 4: Fibroblast exhibit TB specific phenotypes. (A) Fibroblast (n=1,627) sub-clustering reveals 5 1618 
subclusters (left), also colored by patient ID (middle) and disease condition (right). (B) Heatmap of subtype 1619 
top 10 DE genes in each of the fibroblast subcluster. Columns (cells) are annotated by fibroblast subclusters 1620 
and sample source disease status. (C) Comparing annotation against literature stromal annotation from 1621 
Travaglini et al. (65). Left: original fibroblast UMAP as seen in (A) colored by mapped cell types in Travaglini 1622 
et al. Right: barplot showing distributions of mapped cell type in each original subcluster. ASM: airway smooth 1623 
muscle; VSM: vascular smooth muscle; MyoF: myofibroblast; FibM: fibromyocyte; AdvF: adventitial fibroblast; 1624 
AlvF: alveolar fibroblast; LipF: lipofibroblast; Peri: pericyte; Meso: mesothelial. (D) Reference mapping to the 1625 
Human Lung Cell Atlas (HLCA). Query (all cells in this study, n=19,632) vs reference cells (n= 584,944) on 1626 
integrated UMAP with transferred label from HLCA to query cells. (E) Query (all fibroblasts in this study that 1627 
was mapped to fibroblast/myofibroblast in label transfer, n=1,601) and reference lung fibroblast cells 1628 
(n=17,500) from HLCA colored by annotation (either ‘Fibroblast’ or ‘Myofibroblast’) and TB conditions. (F) 1629 
Gene-set enrichment analysis (GSEA) on DE genes between TB fibroblasts and TB-negative fibroblasts on 1630 
HLCA-integrated data.   1631 

 1632 



 

Figure 5: Fibroblast weighted gene co-expression network analysis (hdWGCNA). (A) High dimensional 1633 
weighted gene co-expression network analysis (hdWGCNA) for gene module detection in fibroblasts of this 1634 
study. UMAPs are colored by eigengene of each of the 7 modules. (B) Evaluation of M1 module expression 1635 
(MEs) in fibroblast subclusters. Bonferroni adjusted P computed from two-sided Wilcoxon test are shown. (C) 1636 
Over-representation analysis (ORA) by enricher on all assigned M1 module genes using MSigDB Gene-1637 
ontology Biological Processes (GOBP) gene set database.  (D) Top: bacterial burden of NHP lung granulomas 1638 
from Gideon et al. (16) grouped by the time point. Bottom: evaluation of human TB-myofibroblast module 1639 
expression in NHP TB fibroblasts on 4-week and 10-week samples. Two-sided Mann-Whitney U test without 1640 
correction was used. Statistical annotations: p-value < 0.05 (*), p-value < 0.01 (**), p-value < 0.001 (***). (E) 1641 
Evaluation of human TB-myofibroblast module expression in fibroblasts from granuloma vs uninvolved lungs 1642 
in an independent non-human primate study with 4-week post-infection (p.i) macaques (78) (Methods). Two-1643 
sided Mann-Whitney U test without correct was used. Statistical annotations: p-value < 0.05 (*), p-value < 1644 
0.01 (**), p-value < 0.001 (***). 1645 

 1646 
Figure 6: Evidence of MMP1+ CXCL5+ Fibroblast populations in TB-diseased human lungs. (A) 1647 
Representative flow cytometry plot showing the isolation strategy of the PDPN+FAP+ fibroblast population 1648 
from the CD45-EPCAM- cell fraction. (B) Cumulative data on frequency of PDPN+FAP+CD90+ fibroblasts as 1649 
a fraction of live lung cells from 5 separate lung resections. Three separate sections were taken from each 1650 
TB-diseased lung, corresponding to the most diseased and least diseased tissues areas and an intermediate 1651 
lung piece, according to the expert opinion of the operating surgeon. Friedman test was used to ascertain 1652 
statistical significance between proportion of PDPN+FAP+ fibroblast between severity groups. (C) Expression 1653 
of human TB-myofibroblast signature and SPP1+CHI3L1+  marker genes in the tuberculin skin test (TST) 1654 
challenge site in vivo model. Active TB TST (n=48): biopsies from participants with microbiologically confirmed 1655 
pulmonary TB disease within the first month of treatment who underwent TST; latent TB TST (n=191): 1656 
biopsies from participants lacking clinical and radiological evidence of active TB disease but with a positive 1657 
peripheral blood IFN-g release assay; saline (n=34): biopsies from participants that received saline under the 1658 
skin instead of tuberculin. Each dot corresponds to a sample, horizontal lines represent median values. Two-1659 
sided Mann-Whitney U test without correct was used. Statistical annotations: p-value < 0.0001 (****). 1660 
 1661 
Figure 7: Cell-cell interaction analysis reveals key discrepancies between TB-diseased and control 1662 
lung niches. (A) Top 20 ligand-receptor (L-R) pairs from MultiNichenet analysis highlighting putative 1663 
interaction pairs with upregulated interactions in TB-negative lung compared to TB-diseased lung. (B) Top 20 1664 
ligand-receptor (L-R) pairs from MultiNichenet analysis highlighting putative interaction pairs differentially 1665 
communicating in TB-diseased lungs. (C) Summary of top 200 interactions in TB-diseased and TB-1666 
negative/control lungs, by the number of interactions between each cell pair. Cartoons on the right of each 1667 
heatmap shows the suggested major modes interactions in each condition. (D) Circos plots of significant 1668 
interaction pairs in TB-diseased lungs from LIANA where sender and receiver cell types in each condition are 1669 
clustered to reflect similar patterns.  1670 
 1671 



 

Figure 8: Global interaction analysis identifies key players in cellular communication within TB-1672 
diseased lung tissues 1673 
 (A) Heatmap visualization of interaction flux analysis. Rows represent sender cell types; columns represent 1674 
receiver cell types. Each entry represents the potential flux of interaction from sender cell to receiver cell, 1675 
whereas the total flux of each sender cell type is summarized on the left. Sender cell types are sorted based 1676 
on descending order of total flux (Methods). (B) Top: Bar plot showing top 30 and bottom 30 ligands by log 1677 
fold-change of interaction strength between TB and control lungs across all sender cell types, bottom: log 1678 
fold-change of interaction strength between TB and control lungs in each sender cell type (Methods). (C) 1679 
Dot plot of top 5 ligand by ligand activity in TB-diseased lungs secreted by MMP1+CXCL5+ Fibroblasts and 1680 
their receivers (Methods). (D) L-R interactions with MMP1+CXCL5+ Fibroblasts in the TB-diseased lungs, 1681 
rows (L-R pair) and columns (target cell types) are hierarchically clustered by correlation distance 1682 
(Methods). 1683 
 1684 
 1685 
Figure 9: Spatial transcriptomics analysis on post- and current-TB lung resections  1686 
(A) Heatmap showing the expression of human TB-myofibroblast gene signature and SPP1+CHI3L1+ 1687 
macrophage markers on selective tissue slides from patients who are post-TB (top) or current-TB (bottom), 1688 
alongside paired H&E staining. (B) Distribution of human TB-myofibroblast signature expression on the spatial 1689 
cohort. HIV statuses are shown in different shades of blue for positive or negative. Two-sided Mann-Whitney 1690 
U test without correction was used for statistical testing. Statistical annotation: p-value<0.0001 (****). (C) 1691 
Distribution of SPP1+CHI3L1+ macrophage markers and human TB-myofibroblast signature on the spatial 1692 
data across all Visium spots. Left two panels: manual segmentation of the granuloma structure was done to 1693 
allow separation of the Visium slide into three different regions: in granuloma, on granuloma border (cuff), 1694 
outside of granuloma (Methods). Right two panels: the same as left panels with the exception that “on 1695 
border”=True means on granuloma cuff and False means the rest. Two-sided Mann-Whitney U test without 1696 
correction was used for statistical testing. Statistical annotation: p-value<0.0001 (****). (D) Correlation 1697 
between human TB-myofibroblast signature and all macrophage subpopulations’ markers. Each circle 1698 
represents a Visium sample. Boxplot of the Pearson’s r distribution is shown for each macrophage subtype. 1699 
Mann-Whitney U test without correction were used for statistical testing. Statistical annotation: p-1700 
value<0.0001 (****). (E) Spatially informed ligand-receptor (L-R) analysis using LIANA+ on Visium samples. 1701 
Examples are shown where SPP1(L)-CD44(R) interactions are being nominated as top L-R pairs. H&E 1702 
overlaid with pathology annotation for granuloma structures are shown next to heatmap of L-R interaction 1703 
scores, which are calculated at each Visium spot using spatially-weighted Cosine similarity (Methods) 1704 
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