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Abstract

Tuberculosis (TB) remains a global health challenge, causing ~1.3 million deaths annually. Pulmonary TB
often leads to lung destruction and fibrosis, yet the cellular drivers of human TB immunopathology remain
poorly defined due to limited access to relevant tissues and differences from animal models. We performed
single-cell RNA-sequencing and spatial transcriptomics on lung tissues from TB-infected and TB-negative
individuals in a highly endemic South African region. We identified 30 distinct immune, parenchymal, and
stromal cell subsets, with several linked to TB pathology and corroborated through immunohistochemistry,
flow cytometry, and an independent human lymph node granuloma cohort. Among these, we found that
fibroblasts were a major driver of intercellular interaction in both active TB granuloma and TB-diseased lung
tissue. In particular, the MMP1*CXCL5" fibroblast subset, which expressed elevated levels of a myofibroblast-
like gene signature, was associated with severe disease, as well as higher bacterial burden in non-human
primate granulomas. Network analyses revealed crosstalk between MMP1*CXCL5" fibroblasts and SPP1*
macrophages within the granuloma cuff, which has been reported in other disease contexts, and may play an
important role in the immunopathology of TB. Overall, our findings highlight previously unappreciated cell

populations and interactions that may be targetable in host-directed TB therapies.

INTRODUCTION

Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M.tb), remains a global epidemic,
with approximately 10.6 million new cases and 1.3 million deaths annually (71, 2). The development of highly
effective anti-TB drugs and programmatic improvements led to global cure rates of approximately 85% in
drug-susceptible TB from 1995 to 2015, as well as reduced mortality rates (3). Unfortunately, however,

mortality remains persistently high (4), highlighting the need for improved interventions.

M.tb infection occurs primarily in the lung where interactions between host cells and the pathogen typically
result in the formation of a granuloma — an aggregation of infected myeloid cells, usually surrounded by an
inner ring of macrophages and an outer cuff of lymphoid cells. This specialized immunological niche is highly
heterogeneous in its overall cellular makeup, with the composition of each lesion independently influencing
bacterial growth and disease progression (5, 6). In progressive TB, extensive lung extracellular matrix (ECM)
remodeling via both matrix destruction and fibrosis leads to the formation of lung cavities that facilitate
transmission (7). This ECM remodeling also increases the risk of post tuberculosis lung disease (PTLD),
resulting in high rates of recurrent TB infection and mortality — even after successful eradication of initial
infection (8, 9). Although some features of the immunopathology of TB infection that lead to PTLD are known,

including granuloma formation, cytokine production, hypoxia-inducible factors, and production of matrix



metalloproteinases (MMPs), the exact mechanisms remains unclear (8). While animal models of TB
disease—from zebrafish to non-human primates—have provided valuable insights into aspects of these
processes, they do not fully recapitulate human pathology (70). Critically, these models generally reflect
primary infection, often without the cavities and the extensive ECM remodeling observed in human TB, and
fail to capture the development of chronic secondary TB disease that arises in humans (77). Consequently,

the key features and cellular drivers of immunopathology in human TB remain poorly understood.

The advent of high-throughput single-cell RNA-sequencing (scRNA-seq) has transformed our ability to
analyze the cellular makeup of complex tissues and phenotypic changes associated with disease (12). For
example, application of this technology to study idiopathic pulmonary fibrosis (IPF) — a lung disease
characterized by dysregulated ECM turnover — identified aberrant basal-like cells, peribronchiolar endothelial
cells, SPP1" macrophages, and myofibroblasts as key drivers of pulmonary tissue remodeling, suggesting
new strategies to combat the disease (713). Similar characterization of the cell types and states involved in the
immunopathogenesis of human TB and PTLD could potentially help uncover effective targets for host directed
therapies (HDT) (14).

Here, we applied scRNA-seq and spatial transcriptomics to human TB-diseased lung tissues and TB-negative
controls to examine the cellular and molecular features of TB lung disease and investigate mediators of
immunopathology. Overall, we identified depletion of most macrophage subsets and an enrichment of
fibroblast and neutrophil subsets in TB-diseased lungs, consistent with altered fibrotic and pro-inflammatory
activity. We validated these observations with bulk RNA-sequencing data of lymph node TB granuloma from
a well-characterized cohort of treatment-naive, culture-confirmed TB patients (75). To further contextualize
specific disease-associated cell subsets, we integrated our data with those from the Human Lung Cell Atlas
(HLCA) and Non-Human Primate (NHP) lung TB granulomas (16, 17). This enabled us to uncover a putative
central role for fibroblast subsets — including a MMP1*CXCL5" fibroblast cluster expressing a myofibroblast-
like gene module — in TB immunopathology, where we further evidenced via flow cytometry and
immunohistochemistry. Through cell network analyses on the single-cell data, we found that these cells
appear to coordinate their activities with macrophages, including a SPP1* subset not previously implicated in
TB biology that was observed to be coresident in immunohistochemical stainings of human lung TB
granuloma. Moreover, these two subsets were co-inducible by a standard skin challenge of TB patients with
M.tb derived antigen (Tuberculin), and analyses of spatial transcriptomics data from an independent cohort
of TB patients showed colocalization of both this myofibroblast signature and the SPP71* macrophage signal
to lung TB granuloma cuffs. Overall, our data reveal key cellular subsets and pathways that could inform next-

generation HDTs and provide an essential reference for the community.



RESULTS
Cellular composition of human TB-infected lung tissue

Fresh, TB-diseased human lung tissue pieces were obtained from 9 participants (7 HIV® TB; 2 HIV- TB)
enrolled in the African Health Research Institute (AHRI) lung cohort study (Fig. 1A). All participants underwent
TB treatment after initial diagnosis but had subsequent lung resection surgery to treat complications
consistent with PTLD, including hemoptysis and bronchiectasis (Table S1). As a control, TB-negative lung
samples were obtained from the healthy tissue margins of four surgically resected lung tumors (1 HIV* cancer
control; 3 HIV" cancer control). All participants, irrespective of TB status, received prophylactic anti-TB
treatment prior to surgery. Tissue pieces were washed thoroughly and homogenized into a single-cell
suspension via mechanical and enzymatic digestion using an optimized protocol in BSL3 containment (18).
Lung cells were then processed and sequenced following the Seg-Well S* protocol as described previously
to obtain our scRNA-seq dataset (719). An additional 30 samples were obtained from different participants in
the same TB lung cohort and profiled using the 10x Visium Spatial Gene Expression platform (Fig. 1B, Data
File 5). As above, all participants received TB-drug treatment prior to surgery. Fresh tissue pieces were
removed from resected lung tissue and preserved using standard formalin-fixed paraffin embedded (FFPE)
procedures, followed by Visium v2 chemistry protocols with paired hematoxylin and eosin (H&E) staining to
generate reference images (Fig. S1A; Methods) (20). 21 samples (10 HIV*, 11 HIV') were derived from
subjects with active microbiologically confirmed TB, termed “current TB”. The remaining samples (5 HIV*, 4
HIV" ) termed “post-TB”, were obtained from individuals in whom bacterial load was no longer detectable from
bronchoalveolar lavage (BAL) TB culture. This spatial dataset contains both samples with TB lung granulomas
and samples with inducible bronchus-associated lymphoid tissues (iBALTs) or lung draining lymph nodes
(LNs), which are considered as less severe pathological states. For each granuloma sample, pathological
grading and manual annotation of the granuloma structures on the H&E image were performed by an expert

TB pathologist to enable better disease contextualization (Fig. S1B, Data File S1).

After quality control of the scRNA-seq data, we retained 19,632 high-quality single-cell profiles from the
homogenized lung tissues. Neighborhood-based clustering revealed 16 canonical cell types. Further sub-
clustering of high abundance populations resulted in a total of 30 phenotypically distinct immune, parenchymal,
and stromal subsets (Fig. 1A, Data Set 1A-E, Fig. S2A-F, Data Set 2A-B; Methods). The fractional
representation of cells per participant and clinical characteristic varied between clusters reflecting biological
heterogeneity between patients, TB disease states, and potentially anatomical sampling location, though our
data are limited with respect to the latter (Fig. 2A, Table S1). Most cells derived from HIV"- TB samples, and
while most of the clusters contained cells from the majority of patients, we observed substantial inter-patient
variability in cell numbers (Fig. 2B, Table S2). Canonical cell type markers and genes differentially expressed
between clusters were examined for manual annotation (Fig. 2C; Methods). Notably, we found large
populations of neutrophils, which are captured by Seg-Well S* but often underrepresented by other scRNA-
seq technologies due to their fragility (19). Overall, observed clusters closely mirrored those seen in a scCRNA-

seq characterization of lung tissue from idiopathic pulmonary fibrosis (IPF) patients and healthy donors (21).



Next, we looked for evidence of differential abundance by comparing the fractional representation of each cell
type per donor between the TB-diseased and TB-negative lung groups, irrespective of HIV status (Fig. 2D).
There were pronounced shifts in the frequency of most cell types between the TB-diseased and TB-negative
groups, including an expansion of neutrophils in the TB-diseased group, consistent with several human
studies linking neutrophil recruitment with TB lung pathology (22-24). We also found an increased frequency
of mast and plasma B cells in TB-diseased tissue, supporting findings from recent scRNA-seq studies of NHP
models where both cell populations were expanded in TB granuloma with higher bacterial burden (76). In
addition to these immune cell populations, fibroblasts were enriched in TB-diseased lung tissue. Conversely,
in TB-diseased lung samples, we found a decrease in the proportions of macrophages, the cell type targeted
by and primarily responsible for killing bacilli, and CD8 T cells, thought to contribute to M.tb control (25, 26).
Although we detected significant changes between the abundance of these cell subsets using a Fisher’s exact
test, given high inter-patient variability and limited sample numbers, we were underpowered to determine

significance using a Dirichlet-multinomial regression or a Wilcoxon test (27).

Specific innate immune cell subclusters are associated with TB-diseased human lung tissue.

Given the limited participant numbers that compose our scRNA-seq dataset, we leveraged this data to impute
cell type abundances in both the current- and post-TB lung samples in our spatial transcriptomics cohort. This
allowed us to better understand the phenotypic shifts associated with TB disease, and select relevant single-
cell subclusters for further characterization. This strategy drove us to focus on neutrophils, macrophages,
monocytes, and fibroblasts, whose abundances also showed the most dramatic shifts between the TB and

control samples in the scRNA-seq data (Fig 2D).

Neutrophil subclusters

Neutrophils play a crucial role in the innate immune system and are quickly recruited as a first line of defense
against bacterial infections. They are suggested to have immunoregulatory functions in TB granulomas in
NHP models (28); however, their role in the immunopathogenesis of human TB has been contentious and

less well understood (29).

Neutrophils were highly enriched in TB-diseased lung tissue in our single-cell dataset (Fig. 2D) and
associated with three distinct subclusters (termed “Pro-inflammatory Neutrophils”, “Activated Neutrophils”,
and “Heat-Shock (HSP) Neutrophils”). Both Activated Neutrophil and Pro-inflammatory Neutrophil subclusters
expressed markers genes associated with IFN-y and TNF-a signaling — critical responses linked to
inflammation and immune activation in TB disease (30-32) (Fig. S2A-D, Data File S2). Activated Neutrophils
were annotated by their high expression of neutrophil activation markers, including ILTRN, and IL1B and ILS,
inflammatory cytokines involved in neutrophil recruitment (Fig. S2B-D) (33, 34). They also expressed GBP1
and GBPS5, genes involved in a previously-described blood neutrophil transcriptional signature used to
diagnose pulmonary TB (35). Pro-inflammatory Neutrophils, in contrast, highly expressed high levels of MMP9,

CST7 and LDHA (Fig. S2B-D). MMP9 is a proteinase involved in the degradation of extracellular matrix that



is strongly associated with TB granuloma (36); CST7 (Cystatin F) is a neutrophil marker of acute inflammation
(37); and, LDHA encodes lactate dehydrogenase, which enhances neutrophil migration and activity, and is
highly elevated in hypoxic lung TB granuloma in animals (38, 39). Pro-inflammatory Neutrophils also highly
expressed, FKBP5 and CEBPD, both implicated in an immunometabolic network predictive of TB progression
(40); and, VEGFA, PLAUR, TPM4, and CD44, which are involved in neutrophil recruitment and
lymphangiogenesis during inflammation (47-44) (Data File S2). The remaining small subcluster of neutrophils,
marked by high expression of heat-shock protein genes (“HSP Neutrophils”), was also elevated in TB
diseased lungs, which is notable given that heat shock proteins expression by neutrophils can trigger

proinflammatory response in macrophages (45, 46) (Fig. S2A-E).

Given the small samples size and high HIV prevalence in our scRNA-seq dataset, we examined neutrophils
in the spatial cohort to understand the link between neutrophils and TB disease, running cell type
deconvolution using the scRNA-seq cohort as reference and imputing individual cell type abundances
(Methods). Within granuloma structures, neutrophil abundance was significantly higher in sample from
current-TB infections than those from post-TB infections, consistent with the recruitment of this cell type to
the granuloma during active disease (Fig. S2F). Interestingly, however, neutrophils were more abundant in
non-granuloma tissues (e.g. iBALT, LN) compared to granuloma, though the difference was less pronounced
in current-TB. This may reflect the involvement of neutrophils in tissue remodeling and chronic inflammation

associated with both active TB and post TB lung disease (49).

To further test the association between neutrophil subsets and TB disease, we quantified the expression of
each subset’s top markers genes in an independent bulk RNA-seq dataset generated from laser-captured
human lymph node (LN) TB granuloma, in which all patients were HIV negative (Methods; Data and
materials availability) (75). Importantly, these LN were excised prior to TB therapy initiation and contained
viable M.tb bacilli. We found that 7 of the top 10 unique marker genes associated with the Activated
Neutrophils were significantly upregulated in LN granuloma compared to non-infected LN controls (Data File
S3), as well as the Pro-inflammatory markers CEBPD and LDHA (Data File S3). We note that although LNs
are common sites of extrapulmonary TB, LN granulomas have functional and structural differences from those

found in the lung, which may contribute to differences in expression levels of these marker genes (47, 48).

Monocyte and Macrophage subclusters

Macrophages are necessary to control TB disease, but also provide a niche for bacterial growth and survival
(50). In addition, they have been implicated in pulmonary remodeling, with reported roles in both promoting
and inhibiting pathology (67). Tissue infiltrating monocytes, meanwhile, provide a source for macrophage
differentiation and are key players in inflammatory response and bacterial persistence (562). Hence,
understanding the functional differences in monocytes and macrophages between the TB-diseased and TB-
negative controls could provide insights into understanding TB immunopathology. In aggregate, macrophages
were significantly decreased in TB-diseased lung tissue, and monocytes were decreased albeit not

significantly (Fig. 2D).



Sub-clustering of 8,313 macrophages/monocytes single-cell transcriptomes generated ten distinct
subclusters, which we annotated manually based on marker genes (Fig. 3A-C, Data Set 2A). Alveolar
Macrophages (INHBA*FABP4*MARCOQO") and a subcluster we termed “Heat-Shock (HSP) Macrophages”
were significantly reduced in TB diseased lung tissue compared to TB-negative lungs. The former may reflect
the loss of normal lung alveolar structure observed in TB diseased lung tissue. Upregulated proteins in HSP
Macrophages included those encoding for Hsp70 family proteins (e.g., HSPA1A, HSPA1B, HSPA6, and
HSPAS8), which are known to modulate NF-xB mediated release of pro-inflammatory cytokines from alveolar
macrophages in pulmonary TB (63, 54). In addition, when tested separately, all monocyte subsets were
significantly reduced in TB disease, possibly due to rapid transition to macrophage phenotypes in the
proinflammatory environment of the diseased lung (65). The remaining three macrophage subsets (defined
by ARL4C/EMP1; LGMN/SEPP1; and SPP1/CHI3L1) were higher in TB diseased lung, but subtly so (Fig.
3D). Therefore, to explore the potential skewing of macrophage subsets further, we performed cluster-free
differential abundance testing using Milo, which models cellular states as overlapping neighborhoods on k-
nearest neighbor graphs representing the similarities between single-cell profiles (56). This analysis
highlighted the underrepresentation of alveolar macrophages in TB diseased lung tissue, as this was the only
subcluster with its phenotypic neighborhoods depleted among TB disease samples (Data set 2C-D). In
contrast, although present at low frequency, ARL4C'EMP1*, LGMN'SEPP1* and SPP1'CHI3L1"
Macrophages were all significantly associated with TB diseased lung. Marker genes enriched in
ARL4C*EMP1* Macrophages did not obviously associate with published functional annotations, but included
GPR138 which favors M.tb replication in macrophages (57). LGMN*SEPP1* Macrophages were enriched for
lipid metabolism activities, while SPP1 encodes for osteopontin, a known macrophage attractant, which has

been associated with granulomatous diseases and is upregulated in M.tb. infection (68, 59) (Data File S2).

In our spatial cohort, we observed a higher abundance of both macrophages and monocytes in current-TB
compared to post-TB, consistent with continuous recruitment of myeloid cells during active disease (Fig. 3E
left, Fig. 3F left). As with neutrophils, macrophages were more abundant in granuloma from current-TB
samples compared to post-TB. Additionally, in current-TB macrophages were more abundant in granuloma
compared to non-granuloma tissue while the opposite was true for monocytes, which may be explained by
maturation into macrophages within this environment. (Fig. 3E right). HIV co-infection was associated with
increases in both macrophage and monocyte abundance in current-TB samples, and increases in monocyte
abundance in post-TB samples, suggesting a potential effect of HIV co-infection on myeloid populations
during both active TB and PTLD (Fig. 3F). In active TB samples, HIV infection may lead to more macrophages
to compensate for the loss of CD4" T cells, which are important for adaptive immune responses against M.tb
(60). The decrease in macrophages associated with HIV-coinfection in post-TB samples, however, might

reflect impaired monocyte differentiation, or persistent depletion of macrophage precursors (61, 62).

To further contextualize monocyte/macrophage subclusters in human TB granuloma, we similarly assessed

expression of subcluster marker genes in the LN dataset described above. We found the strongest signal for



the SPP1*CHI3L1" Macrophages, where 5/10 of the top markers of the subcluster were significantly
upregulated in human LN TB, over 5-fold in the case of SPP7 and FN71 (Data File S3). Bulk gene expression
deconvolution of this data supported significant increase in the frequency of several populations in untreated
TB granuloma compared to control LN, including the SPP1*CHI3L1" Macrophage (Fig. S3A).

Finally, to investigate these myeloid subsets under control condition, we examined the expression of
subcluster defining genes within single-cell data from TB-granuloma isolated from experimentally infected
NHPs (16). In this dataset, we identified overlapping gene signatures between most of the subclusters
observed in our current study, including the SPP1*CHI3L1* Macrophage population (LILRB4, MMP9, PKM,
MYOF, CHI3L1) (Data File S4) (16). Collectively, these data identify diverse myeloid subsets in TB diseased
lung tissue and support a putative role for SPP1*CHI3L1" Macrophages in TB immunopathology in humans
and NHPs.

Single-cell analysis identifies TB-associated fibroblast populations.

Despite playing a prominent role in tissue remodeling in other lung diseases, there is limited understanding
of how fibroblasts contribute to granuloma formation, immunopathology and protective TB immunity (5, 63).
In our spatial transcriptomics samples, fibroblast abundance was estimated to be higher in granuloma
samples than iBALT/LN samples for both TB conditions, suggesting fibroblast involvement in long-term tissue
remodeling and granuloma formation (Fig. S3B). Holding granuloma status or HIV status constant, we
observed a higher abundance of fibroblasts in post-TB samples relative to current-TB samples, consistent
with the role fibroblasts play in long-term tissue damage in post-TB lung disease (Fig. S3B-C). Further sub-
clustering of the 1,627 fibroblasts in the scRNA-seq dataset revealed five distinct subclusters (Fig. 4A; Fig.
S3D-E): IL6" CCL2" Fibroblasts, SERPINE2'COL1A1* Fibroblasts, Heat-Shock (HSP) Fibroblasts,
COMP*CILP* Fibroblasts, and MMP1*CXCL5" Fibroblasts (Fig. 4B; Fig. S4A). We note that most of the
fibroblasts we recovered came from TB-diseased patients, a trend consistent with fibrotic change due to TB
damage in the lung (64). One of the subclusters, MMP1*CXCL5" Fibroblasts, almost solely consists of cells
from HIV- TB patients, whereas the others were mostly occupied by cells from HIV* TB patients, suggesting
potentially different phenotypes for fibroblasts in HIV/TB coinfected patients versus patients with TB alone
(Fig. 4A; Fig. S3E). This subcluster also had the strongest phenotypic shifts among fibroblast populations in
a Milo analysis (Data Set 2C-D).

To better understand the phenotypic properties of these five subclusters, we further contextualized them
against the existing literature by mapping them onto a trained reference model for lung stromal cell annotation
(65) (Fig. 4C). The majority mapped strongly to adventitial fibroblasts, which are associated with pulmonary
vascular remodeling in response to stress, including hypoxia and infection (66). Although canonically
associated with vascular beds, adventitial fibroblasts become highly migratory and invasive in response to
activating signals, notably including Osteopontin (SPP1), and have been shown to drive tissue remodeling by
inducing a proinflammatory/profibrotic phenotype in macrophages through IL-6 signaling, (67, 68). The
MMP1*CXCL5" Fibroblast cluster, however, mapped primarily to the myofibroblast phenotype, followed by



the lipofibroblast phenotype. Myofibroblasts are involved in wound healing after tissue injury and can
differentiate from recruited fibroblasts under mechanical stress, through the influence of cytokines like TGF-
B, and epithelial-to-mesenchymal transition (EMT) (69, 70). In addition, lipofibroblasts can differentiate into
myofibroblasts during fibrosis (71). Consistent with this, overrepresentation analysis (ORA) showed that the
MMP1*CXCL5" fibroblast markers were enriched among genes associated with EMT and myoblast
differentiation (Data File S2).

To test the association between MMP1*CXCL5" fibroblast markers and TB, we again examined the LN
dataset and found that 5/10 top unique marker genes in the MMP1*CXCL5" Fibroblast subcluster were
upregulated in the LN TB data, including MMP1, CA12, TDO2, POSTN, and COL12A1 (Data File S3).
Interestingly, CA712 plays a role in many biological processes, including preventing calcification (72), an
essential process in granuloma resolution (73). In addition, this gene was found to co-express with MMP1
and CXCL5 in a subset of Cancer Associated Fibroblasts associated with poor clinical outcome (74). We also
observed a significant increase in the imputed frequency of MMP1*CXCL5" Fibroblast in TB LN granuloma
compared to control LNs via deconvolution of bulk RNA-seq profiles (Fig. S3A). Together these data suggest
TB is associated with skewing of lung fibroblasts to phenotypes that overlap with known disease processes

in the infected lung.

To confirm the presence of the MMP1*CXCL5" phenotype via an orthogonal method, we stained sections of
human lung from the same surgical cohort that contained distinct TB granuloma (5um sections from two
patients) for associated gene products of the MMP1*CXCL5" subcluster: COL1, TDO2, MMP1, MMP3 and
CA12, together with PI-15 and CTHRC-1, which were also significantly upregulated in this subcluster (Fig.
S4B; Data File S2). COL1, a general fibroblast marker was expressed across lung tissue; the MMPs, which
are secreted to facilitate ECM breakdown, has less strict localization; TDO2, CA12, PI-15 and CTHRC-1,
meanwhile, were expressed higher in the granuloma compared to the surrounding tissue. These data support
the presence of MMP1*CXCL5" fibroblasts in TB diseased human lung and their localization with TB
granuloma. It is worth noting, however, that some differences in fibroblast populations we observe between
TB conditions may be exacerbated by the limited number of control lung samples and difficulties associated

with extracting stromal cells from fresh tissues during single-cell isolation (75).

Reference mapping to Human Lung Cell Atlas reveals distinct activities between TB-diseased and

control fibroblasts

Given the limited recovery of fibroblasts from TB-negative controls, we next explored how the fibroblast
subsets detected in TB diseased lung tissue relate to lung fibroblasts in published datasets. For this, we used
the data from the Human Lung Cell Atlas (HLCA), which integrates 49 datasets from the human respiratory
system, encompassing 2.4 million single cells, to generate consensus cell type annotations (77). Using the
HLCA as a reference, we confirmed the heterogenous immune and non-immune cell types present in our
lung tissue samples (Fig. 4D). Via label transfer, we independently re-annotated our fibroblasts, observing

high consistency with our original annotations (>95% fibroblasts were re-annotated as fibroblast/myofibroblast;



Methods). Combining cells mapped to fibroblasts/myofibroblasts in our data and the HLCA, we performed
differential expression (DE) analysis between all TB-negative cells (mostly consisting of healthy cells from the
HLCA reference) and our TB-diseased cells (Fig. 4E). We then ran gene set enrichment analysis (GSEA) on
the resulting top DE genes using the MSigDB Hallmark database (Fig. 4F). This confirmed upregulation of
EMT processes, thought to directly contribute to the fibroblast/myofibroblasts pool during fibrosis, in TB-
diseased fibroblasts. In addition, oxidative phosphorylation was highly upregulated, consistent with alteration
of metabolic activity in fibrotic lung disease (76). Several enriched terms are related to inflammatory process,
including TNF-a signaling, TGF-B signaling, IL2/IL6 signaling, were also observed, suggesting an overall

elevated inflammatory response in the TB fibroblasts.

Identification of fibroblast gene modules associated to bacterial burden within TB granuloma

Having compared our fibroblast subclusters against public lung stromal datasets, we next examined how the
cell states within these subclusters might shift with TB disease in an experimentally controlled setting. Given
a paucity of TB-associated gene signatures, we opted to pursue unbiased gene module identification on the
entire fibroblast population, applying a tool for weighted gene co-expression network analysis in high-
dimensional single cell transcriptomics data (hdWGCNA) (77). This yielded 7 gene modules with varying
degrees of expression across the 5 clusters and disease states (named Fibroblast-M1-7; Fig. 5A; Data File
S5). The Fibroblast-M1 module was highly enriched in the MMP1*CXCL5" Fibroblast cluster (Fig. 5B). Top
hub genes in this module included: MMP1, CA12, CXCL5, CXCL13, TDOZ2, PDPN, and FAP, showing a high
degree of overlap with cluster markers for MMP1*CXCL5" Fibroblast (Fig. 4B; Fig. S4C-D). There was also
a clear overlap between SERPINE2*COL1A1" Fibroblasts and Fibroblast-M2 module (Fig. 4B, Fig. S4D).
Over-representation analysis showed the M1 module was highly enriched for known biological processes
associated with immune cell migration and chemotaxis (“myeloid leukocyte migration”, "granulocyte
chemotaxis”) and control of ECM structure (“external encapsulating structure”, “collagen fibril organization”,
“extracellular matrix disassembly”), as well as myofibroblast-related signatures (69) (“response to wounding”,
“‘muscle tissue development”, “myoblast differentiation”, “response to mechanical stimulus”) (Fig. 5C; Data
File S2). Hence, we refer to this M1 module, enriched in the MMP1*CXCL5" Fibroblast population, as the

‘human TB-myofibroblast” module.

To investigate these modules in the context of defined pulmonary TB granuloma, we evaluated the expression
of each module in fibroblasts from a well-controlled SIV-uninfected NHP TB granuloma dataset from Gideon
et al. mentioned above (16). This study collected data on positron emission tomography (PET)-tracked
granulomas isolated at 4 weeks and 10 weeks post-infection, with each granuloma individually resected,
homogenized and subjected to scRNA-seq, as well as quantification of total and viable M.tb. Interestingly,
our human TB-myofibroblast module (M1), M2 and M3 modules were significantly elevated in the week 4
granulomas, which contained higher M.tb burdens, compared to those at week 10 (Fig. 5D, Fig. S4E). These
data suggest that the human TB-myofibroblast phenotype, in addition to other diverse fibroblasts, is likely
present in untreated early TB lung granuloma, and that their frequency is associated with bacterial burden.

Next, to further localize human TB-myofibroblast phenotype relative to granuloma, we evaluated the



expression of this module in fibroblasts in an independent dataset of SIV-uninfected NHP TB lung TB dataset
which included single-cell data from uninvolved lung tissue (78, 79). From this dataset, lung granulomas from
4 weeks p.i. (granuloma data published in Bromley et al.) were compared against uninvolved lung samples
from the same experimental condition (78) (uninvolved lung data unpublished, Fig. 5E; Table S3; Methods).
Evaluating our hdWGCNA modules, we observed that the human TB-myofibroblast module was upregulated
in the granuloma compared to uninvolved lung tissues, confirming that this phenotype is associated with

granuloma-specific structural or cellular processes that reflect a local response to M.tb.

Confirmation of the myofibroblast-like phenotype in different TB disease contexts

Taken together, our findings suggest a previously underappreciated role for fibroblasts — including a
myofibroblast-like, MMP1*CXCL5" subcluster — in TB immunopathology. However, whilst this population was
detected in 5/9 TB diseased samples, the majority of cells derived from a single donor. Therefore, we
quantified this fibroblast subset in additional patients undergoing surgery for post-TB lung complications by
flow cytometry (Table S4). For this, we gated on non-hematopoietic cells (CD45"), lacking expression of
CD234a (duffy antigen), CD31 (endothelial cells), EPCAM (epithelial cells) and CD34 (progenitors), but
expressing the fibroblast marker CD90, as well as PDPN and FAP, which are both canonical myofibroblast
markers and hubs genes in our human TB-myofibroblast module (Fig. 6A). These data confirmed the
presence of PDPN*FAP” fibroblasts in 5/5 TB diseased lung samples. In addition, by examining tissue
samples from regions of lung tissue with varying degree of disease pathology, as determined by operating
surgeon, we found that PDPN*FAP* fibroblasts were elevated in the most diseased lung pieces (p-
value=8*10", Friedman test; Fig. 6B).

To determine whether a M.tb stimulation in vivo could induce these TB-associated fibroblast gene signatures,
we evaluated the expression of our TB-myofibroblast gene module in a previously published bulk
transcriptomics dataset from a standardized tuberculin skin test (TST) challenge (Fig. 6C; Methods) (80). In
this study HIV" participants with active pulmonary TB or “latent TB” (i.e. individuals with T-cell memory to M.tb
but no evidence of TB disease) received a standard TST (intradermal injection of purified M.tb proteins)
challenge or saline contol. The TST site was biopsied 48 hours later and processed for bulk RNA-sequencing.
Consistent with our observations, the human TB-myofibroblast signature was induced in response to the
standardized mycobacterial antigen stimulation in vivo compared to saline controls, where no inflammatory
response is expected. This signal was amplified in the context of active TB disease compared to “latent TB”.
This implies systematic inflammation from active M.tb. infection may prime the differentiation of a pathological
fibroblast cell state. Interestingly, genes associated with the SPP1*CHI3L1* Macrophages subset were
similarly induced by TST, supporting the hypothesis that M.tb stimulation induces myofibroblast-like

phenotype and SPP1* macrophages in humans, especially in the context of active TB disease (Fig. 6C).

Cell-cell interaction analysis reveals fibroblasts dominate cellular crosstalk in TB-diseased lung.



To identify putative intercellular interactions regulating differentially expressed genes between TB-diseased
and control lung niches, we used MultiNichenet (87) (Fig. 7A-B; Methods). This indicated that fibroblasts
were both the dominant sender and receiver cell type in TB-diseased lungs (Fig. 7C). Interestingly, a
significant proportion of fibroblasts expressed ligand and receptor pairs consistent with autocrine signaling.
In contrast, top interactions in the TB-negative condition were more diverse, with pronounced T cell and

myeloid involvement.

We performed additional analysis with LIANA to drill down into the specific cellular subclusters contributing
to niche crosstalk in TB infected and control lungs (82) (Data Set 3A-B, Data Set 4A). This integrated ligand-
receptor analysis framework leverages multiple resources and methods to generate aggregated inference on
samples from each condition. Our results suggested a dominant role for COMP*CILP*, IL6°CCLZ2",
MMP1*CXCL5", and SERPINE2*COL1A1" Fibroblasts, but not HSP Fibroblasts, in TB-diseased conditions.
This analysis also implied that AT1 cell sender signaling is upregulated in the TB-diseased lung, although
these cells were significantly depleted in TB-diseased lungs (Fig. 2D, Data Set 4B). AT1 cells normally serve
as the interface of oxygen exchange in the alveoli, but we found they have high expression of collagen in the
TB-diseased lungs, which broadly targets other cell types (Data Set 4B). In TB-negative diseased lungs, only
HSP Fibroblasts were predicted to contribute to signaling (Data Set 3B). It is important to note, however, that

the lack of fibroblasts in TB-negative lungs may influence this analysis.

To understand broader signaling patterns, we grouped sender and receiver cell types based on similarities of
their signaling patterns (Methods). Within TB-diseased samples, we observed more distinctive patterns
among sender cell types than receivers, with senders roughly grouped by cell type (Fig. 7D). The opposite
was observed in TB-negative lung (Data set 4C). In TB, most of the fibroblast sender subclusters
(MMP1*CXCL5", COMP*CILP*, IL6"CCLZ2") grouped together and with other non-immune cells (endothelial
cells, AT1, and club cells; Sender Group 1). Quantification of net cell signaling flux — defined as the product
of a sender population’s relative abundance and its average expression of a given signal — highlighted that,
despite making up small proportion of the entire dataset, MMP1* CXCL5" Fibroblasts were among the most

prolific signal senders in the TB-diseased condition (Fig. 8A).

Next, to quantify ligand-driven changes in cellular crosstalk during TB infection, we calculated the difference
in ligand interaction strengths between TB-diseased and TB-negative lung samples (Fig. 8B; Methods). TB
sender Group 1 secreted most of the top upregulated ligands in TB-diseased lung (binomial test p-value<0.01,
Data Set 5A, left). Top senders of all upregulated interactions in TB-diseased lungs were COMP*CLIP*
Fibroblasts followed by MMP1*CXCL5" Fibroblasts (Data Set 5A, right). In contrast, control sender group 2,
which consists mostly of monocytes and macrophages, exhibited the greatest signaling flux in control lung
(binomial test p-value<0.01, Data Set 5B). Notably, MMP1*CXCL5" Fibroblasts expressed most of the top
flux ligands (9/30) with increased overall interaction strength in TB, supporting a central role in TB disease
(Fig. 8B). The top 5 ligands from the MMP1*CXCL5" Fibroblasts, ranked by average interaction strength
across receptors, were CXCL13, CXCL6, DSG2, GREM1, and NTN1 (Fig. 8C). CXCL13 may act in both
autocrine and paracrine modes, signaling to B cells via CXCRS, a homing marker for activated lymphocyte to

lymphoid tissues and on B cells in NHP lung TB granuloma where it regulates host-pathogen interactions



(83). CXCL6 appears to function similarly, signaling to neutrophils and self, consistent with known functions
in inducing fibroblast matrix expression, neutrophil recruitment and activation (84, 85). DSG2 (desmoglein) is
known to induce pro-proliferative activity in dermal fibroblasts (86), and is highly upregulated in zebrafish and
human granuloma (87). GREM1, part of the TGF-$ superfamily, contributes to pulmonary fibrosis during the
early stages of disease (88). NTN1 (netrin-1), meanwhile, supports endothelial survival and regulates

angiogenesis, an important process for dissemination of the pathogen (89, 90).

We also examined other top ligands sent by this subcluster in TB-diseased lungs specifically. Our analyses
suggested a prominent role for the MMP1*CXCL5" subcluster in coordinating fibrosis and inflammation
through expression of collagen proteins, MMP1 and cytokines (Fig. 8D). Notably, MMP1 itself acts as a ligand
for ITGA2, a receptor expressed on epithelial cells, endothelial cells, and IL6"CCL2" Fibroblasts, mirroring
the AT1-fibroblast interactions aforementioned. CXCL5 interacts with CXCR2 on CD76" monocytes and
neutrophils, a key axis for recruitment these cells during TB infection and likely fueling granuloma formation
(91-93). MMP1* CXCL5" Fibroblasts also secrete numerous ECM-related ligands: for instance, collagen
molecules COL1A1, COL1A2, COL6A3, COL3A1, and COLbSA2 signal to epithelial cells, monocytes, in
addition to other fibroblasts via an autocrine loop; ECM proteins POSTN, FBN-1 and DCN signal with other
non-immune cell types; and, MXRAS, a matrix remodeling protein like MMP1, communicates to AT1/AT2 cells
via AGER. Notably, many of these ECM related ligands are highly upregulated in LN TB granuloma (Data
Set 5C). Collectively, our analyses suggest aberrant lung remodeling may be driven by fibroblast and AT1
communication, leading to the fibrosis typical of TB — a trend not necessarily reflected from cell type

abundance changes

Cell-cell interaction analysis underscores the relevance of SPP1* macrophages in human TB

The main receiver of fibroblasts signaling were fibroblasts and macrophages (Fig. 7C). Amongst macrophage
subclusters, the top receivers for TB-upregulated fibroblast signals were the ARL4C'EMP1* and
SPP1*CHI3L1" cells (Fig. S5A). Conversely, SPP1*CHI3L1" subcluster mostly signal to fibroblasts, followed
by macrophages (Fig. S5B), suggesting a potentially important role in fibroblast-macrophage crosstalk.
SPP1*" macrophages have been identified in the lungs of individuals with COVID-19, IPF, and lung carcinoma,
and in bronchoalveolar lavage fluids from TB and latent TB patients (77, 94). In tumors, SPP1" macrophages
are highly immunosuppressive and associated with poor outcomes, and they have been shown to orchestrate
fibroblast activation during fibrosis, driving myofibroblast activation in heart and kidney injuries (95-97).
Comparing against other known markers, we noted that our SPP1*CHI3L1* Macrophages appeared
congruent with SPP1* macrophages described in other disease contexts (Fig. S5C-D). Cell-cell interaction
analysis showed that fibroblasts were the major receiver of SPP1*CHI3L 1" Macrophage signals (binomial test
p-value = 8.7*10™), and nominated SPP1 and FN1 as the major ligand genes driving cross talk with
fibroblasts (Fig. SSE).

To further confirm the presence of SPP1" macrophages in human lung TB granulomas, we performed

immunohistochemical staining of tissues from two independent donors. We observed abundant total



macrophages (CD68") in both the granuloma and surrounding lung tissue, and localization of alveolar
macrophages (CD68*CD206") in the non-granulomatous lung tissue, where alveolar sacs were still visible
(Fig. S5F left). In stark contrast, CD68*SPP1* macrophages localized to the inner cellular periphery
immediately bordering the necrotic core of the granuloma and were largely absent from surrounding lung
tissue. Quantification of SPP1 expression shows significant difference between the inner cellular layer and
the other regions and to a larger degree than CD68 (Fig. S5F, right). Notably, CTHRC-1, a marker for
MMP1*CXCL5" Fibroblasts that was localized to granuloma at the protein level, has been suggested to play
a role in cross talk with SPP1" macrophages (98) (Fig. S4B). These lines of evidence support the direct
interaction between SPP1* macrophages and myofibroblast-like phenotype in human TB granuloma implied

by the single-cell data.

Spatial transcriptomics confirms myofibroblast-like phenotype in independent human cohort

Finally, to confirm our observations from human TB lung and LN granulomas, we investigate cells within the
Visium dataset for expression of the myofibroblast-like module (Table S5, Fig. 1B, Fig. S1A). Consistent with
our other data, the human TB-myofibroblast signature was detected in both current and post-TB lesions, and
was particularly highly expressed around granuloma structures (Fig. 9A). In addition, we found that both HIV*
and HIV" samples displayed clear human TB-myofibroblast signature expression, suggesting it not limited to
TB mono-infected individuals, as potentially suggested by our single-cell data (Fig. 4A). Indeed, in both
current- and post-TB samples, HIV was associated with a higher TB-myofibroblast signature expression (Fig.
9B). This may be because HIV impairs CD4+ T cells and macrophage-driven repair, and increases TGF-f3
release, keeping myofibroblast-like cells chronically active (99—-707). In HIV" samples, current-TB was
associated with elevated expression of the myofibroblast-like module, but the opposite was true in HIV*
samples, likely due to persistent systematic immune activation from HIV. These observations suggest that
both pathogens can exacerbate expression of this disease associated module. Within each disease condition,
we found granuloma samples had higher human TB-myofibroblast signature expression, with the exception
of HIV* post-TB group, where expression was highest in the iBALT sample (Data Set 6A). However, only one
iBALT sample was available for this condition which limits our confidence in the observation. Nevertheless,
these data confirm that the human TB-myofibroblast phenotype is localized to human TB lung granuloma in

both active TB and post TB lung disease, irrespective of concurrent HIV infection.

For each of the granuloma samples, annotations on granuloma borders (“granuloma cuff’) were designated
in paired H&E staining images by a trained histopathologist and used to examine the spatial distribution of
gene signatures (Fig. S1B). This analysis confirmed that the human TB-myofibroblast signature was strongly
expressed in the granuloma cuffs compared to surrounding regions, with a slightly higher presence outside
the granuloma compared to the granuloma core (Fig. 9C). Interestingly, examine the other fibroblast modules
revealed distinct spatial orientation relative to the granuloma (Data set 6B). Like MMP1* CXCL5" Fibroblasts,
COMP*CLIP* and SERPINE2"COL1A" Fibroblast displayed a similar pattern of enrichment around the

granuloma cuff, whereas IL6"CCL2" Fibroblast and HSP Fibroblast exhibited greater enrichment outside the



granuloma. MMP1* CXCL5" Fibroblast, however, showed the largest difference for marker expression

between the Visium spots on granuloma cuff and those inside/outside the cuff.

SPP1*CHI3L1" Macrophage marker expression was similarly enriched on the granuloma cuff, supporting the
co-localization of myofibroblast-like phenotype and SPP1*CHI3L1* Macrophages at this site (Fig. 9C). To
confirm this relationship, we looked at the correlation between all macrophage subset markers with the human
TB-myofibroblast signature across all samples and found the strongest correlation with SPP1*CHI3L1*
Macrophages compared to the other macrophage subsets (Fig. 9D). Finally, we conducted a ligand-receptor
analysis to identify spatially co-expressed ligand-receptor pairs using the same database as our analysis on
scRNA-seq data (Methods). This identified the same L-R pairs as the top pairs in both samples, including,
for example, SPP1-CD44. This interaction was nominated as the top L-R pair in several samples, specifically

highlighted around the granuloma cuffs and in our scRNA-seq data (Fig. 9E, Fig. S5E).

Taken together, our scRNA-seq and spatial transcriptomics data support the robustness and generalizability
of the human TB-myofibroblast signature, and confirm its co-localization and cross talk with SPP71*

macrophages in human TB lung granuloma.

DISCUSSION

TB is a global pandemic, and transformative interventions are hindered by an incomplete understanding of
its pathogenic processes, including the extensive lung remodeling in pulmonary TB that drives transmission,
mortality, and a high burden of PTLD following successful treatment (7102). Several sequencing studies have
highlighted a central role for ECM remodeling of human lung in TB, but none have resolved the contributions
of individual cell-type (703). Additionally, an emerging issue in TB research is that findings from the circulation
— the compartment mostly frequently studied — often fail to reflect processes in diseased tissue (704). To
address these gaps, we analyzed scRNA-seq data generated from lung tissue freshly resected to treat
complication arising from TB disease, and systematically cross-referenced our findings with public datasets
from M.tb-infected NHPs, the HCLA, LN TB granulomas, and TST challenge, as well as additional
immunohistochemical, flow-cytometric, and spatial transcriptomic data from the same cohort to identify TB-
specific changes at the cellular level. Collectively, our lung datasets provides a key resource defining the
cellular subsets present in TB diseased lung and dissecting immunopathogenic mechanisms. Our data
demonstrate substantial heterogeneity amongst key innate immune populations, such as macrophages and
neutrophils, in infected lung tissue. We find that several of these subsets correlate with a recent single-cell
analysis of M.tb.-infected NHPs (76), a study not limited by tissue availability or complicated by comorbidities
such as HIV, further strengthening our observations. In addition, our data highlight a possible central role for
diverse fibroblast subsets with TB diseased lung tissue and with TB granuloma, particularly an
underappreciated MMP1*CXCL5" fibroblast population that colocalizes with SPP1* macrophages at the
granuloma cuff. We hypothesize that interaction between these cells, which express a myofibroblast-like gene
module, and SPP1" macrophages may play an important role in human TB granuloma development and post

TB-lung disease, potentially aggravating granuloma progression and lung fibrosis. Further examining these



putative interactions could more deeply inform our understanding of granuloma biology and suggest promising

targets for novel TB host-directed therapies.

Previously, limited knowledge on matrix turnover mechanisms has hindered development of clinical strategies
for managing PTLD (709); here, our study identifies potential cell targets, including heterogenous fibroblast
subsets such as those expressing a myofibroblast-like gene module. Lung myofibroblasts are thought to arise
from a variety routes, ranging from differentiation of tissue-resident fibroblasts, epithelial to mesenchymal
transition (EMT) (770), endothelial to mesenchymal transition (EndoMT) (771), and bone marrow-derived
progenitors such as fibrocytes (772). The myofibroblast-like cells showed in this study express genes
observed in immune fibroblasts (lineage’, CD34", CD90*, FAP*, PDPN") (113). These cells are critical for the
formation of tertiary lymphoid structures (TLS), which arise in response to sustained inflammation (7174) and
are commonly observed in TB infected lung tissue (775). Additionally, matrix remodeling driven by skewed
fibroblast populations can profoundly impact the cellular niche. Changes in ECM composition can further
perpetuate fibroblast reprogramming and ECM remodeling, as seen in escalating MMP1 expression (176).
These findings help guide interpretation of our cell-cell interaction analyses, highlighting significant roles for

ECM-related molecules.

Post-primary human TB is often paucibacillary (7177), and it remains puzzling how profound lung destruction
is generated under such conditions. The data presented here may support a model in which fibroblasts-ECM
interactions exacerbate and perpetuate lung destruction in human TB, and highlight the emerging immune
regulatory role of fibroblasts (778). Of note, a phase Il clinical trial in patients with pulmonary TB found that 2
weeks doxycycline, an MMP inhibitor, led to significant changes in the peripheral transcriptome at 8 weeks
(119), demonstrating how a matrix-modulating host-directed therapy may influence the immunological
trajectory of disease. Overall, our single-cell and spatial transcriptomics analyses highlight a previously
overlooked role for myofibroblast-like phenotype as likely key player in orchestrating the immune response

and regulating immunopathology in TB.

Anti-inflammatory macrophages are generally enriched in TB-diseased tissue during chronic TB infection,
potentially limiting immunopathology but also creating a favorable niche for M.tb. replication (105). Here, we
found most macrophage populations were skewed in TB diseased lung tissue compared to TB-negative
tissues, with a similar trend between post-TB to current-TB spatial samples. Of particular interest are SPP1*
macrophages which were elevated in TB-diseased lung tissue and strongly associated with the granuloma
cuff in our spatial transcriptomics and histology data. This population has not been characterized in TB lung
granuloma, but are emerging as important players in tumors, IPF-diseased lung tissue, and other fibrotic
conditions (706, 107). The presence of SPP1" macrophages in TB granuloma was further supported by
granuloma RNA-seq data from human LNs and experimentally infected NHPs. Furthermore, the SPP1*
macrophage markers were upregulated following TST challenge, which was amplified by concurrently active
TB disease, linking their induction to M.tb exposure. Moreover, we found evidence of cross talk between

SPP1* macrophages and the human TB-myofibroblast phenotype, a previously underappreciated but



potentially important interaction in TB. This putative interaction is supported by histological and spatial
transcriptomics data indicating both SPP1*CHI3L1* Macrophages and MMP1* CXCL5" Fibroblasts are tightly
associated with the granuloma cuff. In IPF, SPP1" macrophages are highly expanded in fibrotic lesions and
crosstalk with myofibroblasts to drive fibrotic changes (706); in colorectal cancer, there are direct interactions
between SPP1" macrophages and FAP" fibroblasts expressing high levels of MMP1/3 (107). In addition,
mechanistic work in murine models showed SPP71" macrophages can directly activate myofibroblasts via
SPP1 and FN1 (97), both of which are implicated in the SPP7+ macrophage-fibroblast crosstalk we found in
TB lung tissues. This interaction was also linked to an immune-suppressive, pro-tumorigenic
microenvironment through active ECM deposition — resembling granuloma formation in tuberculosis (7108).
Thus, we hypothesize the SPP1* macrophages-myofibroblast axis likely play an important role in TB

granuloma biology.

While our study provides much needed information on TB-diseased human lungs, several limitations should
be acknowledged. Our cohort size is modest, and substantial variability between patients and sampling
location exists in both the primary resections used in the single-cell analysis and flow cytometry experiments.
We attempted to address these challenges by obtaining additional samples for spatial transcriptomics and by
integrating our analyses with data from relevant public datasets. However, we are still likely to have missed
some biological features underlying TB pathology. In addition, further work is needed to dissect the
mechanistic role of the myofibroblast-like phenotype and the interaction of the cells that express it interactions
with SPP1" macrophages in TB immunopathology. Possible avenues include co-culture systems, conditioned
media assays, or recruitment assays to determine whether and how these fibroblasts influence, and are
influenced by, macrophage behaviors, as well as whether chemotactic interactions exist. Ex vivo stimulation
experiments with TB antigens on isolated fibroblasts or macrophages could help establish whether TB-
specific cues directly drive differentiation towards these disease phenotypes. Genetic approaches, such as
targeted knockout of key genes in MMP1*CXCL5" Fibroblasts or genome-wide CRISPR screens in fibroblasts
within animal models of TB, could clarify causal relationships between these cells and TB pathogenesis and
tissue remodeling. Beyond identifying causality, studying earlier time points in TB infection will be necessary
to understand disease progression and the origins of TB complications. Ultimately, an integrated spatial,
temporal, single-cell resolution disease map may be required to fully understand pulmonary reprogramming
due to TB and guide optimal treatment strategies that maximizes bacterial clearance while minimizing or

restoring post-TB lung damage.

In sum, our study demonstrates the power of single-cell profiling to help identify, and spatial transcriptomics
to contextualize, potential drivers of immunopathology underlying lung remodeling in TB disease. Our analysis
highlights specific macrophage and fibroblast populations, as well as ECM related processes, as promising
targets for novel host-directed therapies that could complement or offer alternatives to standard antibiotic

regimens.



MATERIALS AND METHODS

Human study ethics and participants

Human lung tissue was obtained from patients undergoing surgery due to TB sequelae including but not
limited to haemoptysis, cavitation, bronchiectasis, shrunken or collapsed lung, at the Department of
Cardiothoracic Surgery at King Dinizulu Hospital in Durban, KwaZulu Natal and Inkosi Albert Luthuli Central
Hospital in KwaZulu-Natal. All samples were collected with approval from the Biomedical Research Ethics

Committee and written informed consents obtained from all subjects (BREC no 019/13).

Human lung tissue preparation

Single-cell RNA-seq samples: The lung tissue was processed within 3 hours of receipt as described'”. Briefly,
a piece of the lung tissue was cut for histology and placed in 4% paraformaldehyde (PFA). The remaining
piece of tissue was dissected into small pieces (5x5x5mm) and infiltrated with a collagenase (Sigma-Aldrich),
DNase 1 (Sigma-Aldrich) in RPMI (Sigma-Aldrich) with 10% FBS (Hyclone) for 30 minutes. Mechanical
digestion at room temperature was performed using the Gentle MACS (Miltenyi Biotec) followed by agitation
at 37°C for 30 minutes. The mechanical digestion and agitation were repeated once more, followed by filtration
of the resulting cellular suspension using the 70mm (Corning) and 40mm (Corning) strainer, followed by the
lysis of red blood cells. Cells were then stained with trypan blue (Thermo Fischer) and enumerated using an

automated cell counter (BioRad) or a manual counter (Kova).

Spatial transcriptomics (Visium) samples: A section of lung was cut and transferred to 10% buffered formalin
to fix for 24 hours, then transferred to 70% ethanol until wax embedding. The sample was then processed in
a vacuum filtration processor using a xylene-free method and isopropanol as the main substitute fixative. The
tissues were embedded in paraffin wax. Tissue sections (5 uym) of specimens of good quality, as determined
by trained histotechnologist, were mounted on charged slides, air dried for 30 min then at 42 °C for 3 hours

in a desiccator and stored in a desiccator at room temperature until use.

Non-human primate (NHP) study ethics and research animals
The macaques used for generating the scRNA-seq data were part of the study published by Ganchua et al.

and the same ethical and maintenance procedures were followed (79).

NHP infections and disease tracking by PET-CT

Five cynomolgus macaques (Macaca fascicularis, aged between 5.3-9.1 years), obtained from Valley
Biosystems (Sacramento, California) were part of a previously published study as the “immune naive” control
group (78, 79). They only received a low dose infection (7 CFU) with M. tuberculosis strain Erdman and were
necropsied 4 weeks post infection. PET-CT was performed just prior to necropsy and results were analyzed

using OsiriX viewer as previously described, with a detection limit of 1 mm (720). The infection dose was



determined by colony counts after plating an aliquot of the infection inoculum on 7H11 agar plates, which
were incubating for 3 weeks at 37°C/5% CO2.

Necropsy protocols

Procedures carried out during necropsy have been previously described (79). Briefly, 1-3 days before
necropsy, PET-CT scans were taken to pinpoint the location and metabolic activity (FDG activity) of
granulomas. These scans served as a guide during necropsy for precise identification and excision of these
samples. On the day of necropsy, macaques were sacrificed humanely by infection of sodium pentobarbital
and terminally bled. Individual granulomas and uninvolved lung tissue were all excised and homogenized
separately into single cell suspensions. Homogenates were aliquoted for plating on 7H11 agar for bacterial
burden, freezing for DNA extraction, and staining for flow cytometry analysis. Any remaining samples were

frozen for future use.

Human lung single-cell RNA-sequencing (scRNA-seq) with Seq-Well S3

Seqg-Well S* was implemented as described'®. Briefly, the single-cell suspension was diluted to 15,000 cells
in 200uL of RPMI (Sigma-Aldrich) plus 10% FBS (Hyclone) and loaded onto a polymethylsiloxane (PDMS)
array pre-treated with the same solution for 15 minutes. The cells were allowed to settle into the microwells
by gravity and the array was washed with PBS (Sigma-Aldrich) and sealed with a plasma functionalized
polycarbonate membrane (Sterlitech). The arrays were then sealed followed by incubation at 37°C for 40
minutes, followed by a 20-minute incubation in lysis buffer containing guanidium thiocyanate (Sigma-Aldrich),
EDTA (Thermo Fischer), 1% betamercaptoethanol (Sigma-Aldrich) and sarkosyl (Sigma-Aldrich) at room
temperature. The arrays were then transferred to a hybridization buffer containing NaCl (Thermo Fischer),
MgCl. (Sigma), PBS (Thermo Fischer) and polyethylene glycol (SigmaAldrich) and were gently shaken at
60rpm for 40 minutes. The capture beads hybridized with released mRNA from the lysed cells were collected
from the array by a series of three wash steps with wash buffer containing NaCl (Thermo Fischer),
MgClx(Sigma), Tris-HCI (Thermo Fischer) and Water (Ingaba Biotech), with centrifugation at 2500g for 5
minutes each iteration. The beads were resuspended in a master mix for reverse transcriptase containing
Maxima H Minus Reverse Transcriptase, Maxima Buffer, dNTPs, RNAse inhibitor, a template switch
oligonucleotide and PEG for 30 minutes at room temperature and overnight with endto-end mixing at 52°C.
This was followed by the standard exonuclease digestion and denaturation of complementary DNA (cDNA)
hybridized to the bead by 5-minute incubation in NaOH (Sigma-Alrich) and washed with a solution containing
Tris-HCI, EDTA and Tween-20 (Thermo Fischer). The beads were resuspended in a master mix containing
Klenow Fragment (NEB), dNTPs, PEG and the dN-SMRT oligonucleotide, incubating for 45 minutes at 38°C.
PCR was performed as described in the protocol and the product was subjected to 2 rounds of AMPure XP
SPRI (Agencourt) bead cleanup at 0.6x and 0.8x volumetric ratios sequentially. The library size was analyzed
using an Agilent Tape station hsD5000 kit, ensuring that the expected product had an average size of
~1000bp and the absence of primer dimers especially below 200bp. The Qubit High Sensitivity DNA kit was
used to quantify the libraries and they were prepared for lllumina sequencing using the Nextera XT DNA

Sample Preparation kit. A total of 900pg of the different libraries were added the tagmentation reaction. The



amplified product was purified with the AMPure XP SPRI beads and the libraries were pooled for loading onto
the NovaSeq 6000 using paired end read structure with custom read 1 primer: read 1:20 bases, read 2: 50

bases, read 1 index: 8 bases.

Spatial transcriptomics with Visium and paired H&E staining

Tissue slides were baked at 60 °C for 2 hours and dewaxed using two xylene changes and rehydrated with
descending grades of alcohol to water. They were then Hematoxylin and Eosin (H&E) stained and imaged as
the reference image and the same slide was then processed as per Visium v2 chemistry protocol following
manufacturer's recommendations (Visium Spatial Gene Expression for FFPE — Deparaffinization, H&E
Staining, Imaging & Decrosslinking, document CG000409 RevD, 10x Genomics, (Sep 2023); Visium Spatial
Gene Expression for FFPE Imaging Guidelines, document CG000436 RevB, 10x Genomics, (Sept 2023);
Visium Spatial Gene Expression Reagent Kits for FFPE User Guide, document GC000407 Rev E, 10x
Genomics, (Sept 2023)). The sequencing results were processed through the SpaceRanger software

following manual alignment of the fiduciary frames using the 10x Loupe browser.

NHP sample scRNA-seq with Seq-Well S*

ScRNA-seq was performed on both uninvolved lung tissues and granuloma tissues using the Seg-Well S*

platform as described in Bromley et al., where and the granuloma data was previously published (78).

NHP single-cell data alignment and analysis

The transcript reads were aligned as described in Bromley et al.(78). Briefly, transcript reads were tagged for
cell barcode and UMI using DropSeqTools v1.12, then aligned to the Macaca fascicularis v6 genome
(https://luseast.ensembl.org/Macaca_fascicularis/Info/Index) through the Dropseq-tools pipeline on the Terra
platform (app.terra.bio) (721). Aligned reads were collapsed by barcode and UMI sequences to generate
digital gene expression matrices for each array, covering 10,000 barcodes. For each sample, gene expression
matrices with >=10,000 barcodes were processed through CellBender to estimate ambient RNA fraction. The
"remove-background" function in CellBender was applied with default settings. Next, the matrices "corrected"
by CellBender were analyzed with Scrublet, with default parameters to detect potential doublets. Any

transcriptome with a doublet_score >0.30 were removed from downstream analyses.

After that, the gene expression matrices for each sample were merged and processed in Scanpy (version
1.8.2). Transcriptomes were filtered using following the following criteria: min_genes > 300, min_counts>500,
mitochondrial_threshold=0.05, and genes expressed in at least 10 cells. Gene expression counts were
normalized using default Scanpy parameters (i.e., log2(TP10K+1)). Coarse-level cell type clustering and
iterative sub-clustering were used to annotate cell types and further detect low-quality transcriptomes (e.g.,
doublets). Cell types were identified using canonical markers, and only fibroblast cells were included in the

analysis presented in this study.



Human lung single-cell data analysis and cell type identification

The raw sequencing reads from the NovaSeq run were aligned to the hg19 genome assembly and processed

in accordance with the Drop-Seq Computational Protocol v2.0 (https://github.com/broadinstitute/Drop-seq).

The output (cell by gene matrix) was then loaded to the Seurat R package v3.1.0 (https://satijalab.org/seurat/),

transformed to loge(UMI + 1) followed by scaling by a factor of 10000. The overall quality was assessed by
the distribution of reads, transcripts and genes per cell (percentage of mitochondrial genes <5,
nFeature_RNA<2500, nFeature_RNA>200, nCount_RNA>200). SCTransform by Seurat was called to
perform normalization of the gene counts, selecting top 3000 highly variable genes, and scaling normalized
gene counts. Principle component analysis was run on the selected highly variable genes to give the top 50
PCs. A custom elbow-based method was used to find the smallest number of PCs (n_pcs) where the eigengap
between two adjacent PCs drops below 20-percentile of all eigengaps amongst top 50 PCs. Uniform Manifold
Approximation and Projejection (UMAP) was calculated using the RunUMAP function and neighborhood
graph was calculated by FindNeighbors, both using reduction="pca’ and selecting top n_pcs as input
dimensions. Unsupervised Louvain clustering using the FindClusters was used to identify transcriptionally
similar cells with parameters assay='integrated’, dims.use=n_pcs, k.param=ceiling(0.5*sqrt(#cells)) and we
performed a resolution scan for the best clustering resolution from 0.2 to 2 while optimizing for silhouette
score. Cell type annotation were done by cross-referencing canonical cluster defining genes with well curated

lists, online databases such SaVant T (http:/newpathways.mcdb.ucla.edu/savant-dev/) and GSEA/MsigDB

(https://www.gsea-msigdb. org/gsea/msigdb/index.jsp). Doublet clusters where multiple canonical markers
were expressed are identified and removed and the entire dataset are re-processed starting from the
SCtransform step. Final differentially expressed (DE) gene for each of the major clusters were found by calling
FindAlIMarkers from Seurat using default setting and adjusted p-value cutoff < 0.05 and top DE genes were
found by ranking log fold-change values from high to low. Heatmap of DE genes were plotted using Seurat

function DoHeatmap and dotplot was achieved using function DotPlot.

Sub-clustering for major cell groups (macrophage/monocytes, neutrophiles, epithelial cells, fibroblasts) were
performed similarly to the entire dataset after subsetting to the specific cell types. Marker genes for each
subcluster was found by calling FindAlIMarkers from Seurat using default setting and significant genes

(adjusted p-value<0.05) are visualized with custom volcano plots.

Comparison with human lymph node data was done for the top 10 DE genes in each cellular subcluster and

checked over the TB vs. control differential testing result from the human lymph node granuloma study.

Clustering analysis on cell subtypes

Proportion of cell subtypes in each patient was calculated, and Pearson’s correlations between every pair of
broad level cell type is calculated. For each pair of cell types, we ran permutation test by randomly re-
assigning cell type labels to generate a set of background correlation values, and p values are calculated as

the percentage the permutated correlation values exceeds the original observation. Hierarchical clustering on



the cell types are done by feeding in the pairwise correlation into Python function linkage with
method="average', metric="correlation', we then use function fcluster with a defined k to call cluster from the
returned linkage result with criterion="maxclust’. We grid searched through k from 2 to 29 (one less than the
number of cell types) and determined the optimal cluster number by computing the silhouette score from each
clustering result with function silhouette_score and a precomputed correlation distance. This allowed us to
select k=12 which resulted in the highest silhouette score. For each of the 12 clusters identified through
hierarchical clustering, we further calculated permutation test p values to examine average correlation values

within and outside of each cluster and annotate those that has within-group p value <0.05.

Differential abundance testing

Statistical differences in the cell type abundance between TB diseased and TB-negative lungs were tested

by two-sided Fisher’s exact text and adjusted for multiple testing correction by Holm’s method.

Cluster-free differential abundance testing is done using milopy in python. Neighborhoods are constructed
over the entire dataset using k = ceil (0.5 x v/n) where ceil rounds up to the nearest integer and n is the
number of cells. Neighborhood are made with prop = 1. Function DA_nhoods was called with design =
~HIV + TB to account for the effect of HIV status. For interpretation, we only kept neighborhoods with
neighborhood annotation fraction > 0.5, and label them with the majority cells’ annotation. Due to the small

sample size, we opted to use P-value instead of the spatial FDR devised in milopy for significance.

Bulk RNA-seq profile deconvolution and comparison

For comparing the marker genes in each subcluster with DE genes in bulk RNA-seq on human lymph node
TB granuloma samples, we first selected top 50 DE genes in each subcluster. Note that some of the DE
genes in a broad cell type may overlap with the DE genes in another, since the differential analysis was done
within each broad cell type. Hence, we remove the genes that are shared between cell types, re-ranked the

remaining DE genes by log-fold change, and took the top 10 DE genes to compare with the bulk DE results.

For deconvolution of the human lymph node TB granuloma and control samples, we applied tool MuSiC (1.0.0)
separately on TB and control samples, using annotated data in our study as single cell reference. We kept all
the cell types for deconvolution except alveolar macrophages, which should only exist in lungs. Other

parameters are kept as default.

We applied a standard two-sided T-test to compare the difference between inferred cell type proportions

between TB and control lymph node samples, with Bonferroni correction for multiple testing.

Fibroblast label transfer and gene signature finding

Travaglini ef al. stromal cell type calling: Top 20 markers for each stromal cell population by Travaglini at

el. 2020 Supplementary Table S4, and was found by filtering on P-value<0.05, and sorted by average log



fold-change. AddModuleScore from Seurat was used to calculate module score of these markers and
“Travaglini.fib.subtype” was called based on which cell type gives the maximum module score, where
“ambiguous” was assigned if no score gives a positive value. Proportion of Travaglini.fib.subtype was

calculated in each fibroblast cluster given this new cell annotation.

HLCA label transfer: Human Lung Cell Atlas (HLCA) label transfer onto our dataset was achieved following
their tutorial

(https://github.com/theislab/scarches/blob/hlca tutorial improvements/notebooks/hlca _map classify.ipynb).

Briefly, label transfer was done using asArches on the raw counts of the entire dataset on the genes that are
part of the reference model. Annotation level 3 data was used in this paper. Celled called as “fibroblast” or
“myofibroblast” are considered together as fibroblast population which are highly consistent with our manual
annotation (>95% true positive rate). For better comparison, we only included HLCA fibroblasts (and
myofibroblast) with tissue source annotation “lung parenchyma”. Differential gene expression analysis was
performed between all TB-negative controls (from both HLCA and our study) and TB-diseased lungs (only
from our study) on log normalized counts. GSEA was run in R using genesets from MSigDB (accessed using

msigdbr) on DE genes passing filter for Benjamin-Hochberg adjusted P-value<0.05.

Gene module finding with hdWGCNA: single cell version of WGCNA was run using tool hdWGCNA
following tutorial (https://smorabit.github.io/hdWGCNA/articles/basic_tutorial.html). Briefly, gene_select =

"variable" was used to set the variable gene selection approach using SetupForWGCNA . To avoid sparsity
in the single-cell data, we first constructed metacells that aggregates the expression profile based on
neighborhood information. Metacells were constructed through MetacellsByGroup call with parameters k =
10, max_shared = 5, min_cells = 20, group.by uses the categories for fibroblast subcluster and disease status
(TB, HIVTB, HIV control and cancer control) and ident.group is also set to be the subcluster. SetDatExpr was
called with “SCT” assay and “data” slot for scaled expression. TestSoftPowers function was called with
networkType = “signed”. The rest follows the default analysis workflow. Top genes in each module ranked by
eigen-based connectivity (kME) are visualzed by running PlotkMEs. Feature plot of module eigengenes (MEs)
for each module was plotted by running ModuleFeaturePlot with features="MEs’. ModuleCorrelogram function
was used to visualize the correlation between each module based on their MEs, and VInPlot from Seurat was

used to visualize the difference of module MEs between subclusters.

Lymph node granuloma laser capture microdissection RNA-seq study

Formalin-fixed paraffin-embedded (FFPE) clinical samples from twenty-four adult patients undergoing
mediastinal or neck lymph node biopsy were selected (seven TB, ten sarcoidosis, seven normal), and the
first analysis has previously been reported (PMID24798354; 10.1136/bcr-2013-202127, GEO accession code
GSE174443). The patients were treatment naive and had no significant comorbidities, were HIV negative

and non-smokers. Sections of 10um thickness were cut, floated in RNase-free water, mounted on to



polyethylene naphthalate (PEN) membrane glass slides and dried at 37°C overnight. Sections were dewaxed
with xylene immersion followed by xylene removal with 100% EtOH. Laser capture microdissection was used
to isolate granulomas or similar area of control normal tissue. Each sample underwent total RNA extraction
and sequenced using lon Torrent sequencing. Raw sequencing data was aligned using kallisto software and
annotated to gene level by ensembldb and sleuth programs to ensure similar results were found. Inter-sample

normalization was performed using TMM normalization (edgeR).

Evaluation of differential genes in lymph node granuloma dataset

Genes identified from each cluster during single cell sequencing analysis were searched within the bulk
RNAseq dataset of granulomas isolated by laser capture microdissection (GEO accession code GSE174443),
where differential gene expression analysis was performed using limma with its voomWithQualityWeights
function (version 3.38.3, R) with Benjamini-Hochberg FDR of less than 0.05. Filter values were optimized to
yield the highest number of differentially expressed genes across the study cohort. GraphPad Prism 9 was
used to plot the average gene expression of 7 control and 7 TB lymph nodes, with box-and-whisker values

generated using one-tailed unpaired T test.

Evaluate gene module in non-human primate dataset

Gene modules found from above are taken to be evaluated in NHP data. Top 50 hub genes are ranked by
eigengene-based connectivity (KME) and used to score on fibroblasts from the NHP dataset using function
score_genes from python package scanpy. Two sided Mann-Whitney U test without correction was used to

compare module usage between different conditions.

Evaluate gene modules in human TST challenge dataset

Top 50 hub genes from the Fibroblast-M1 module from hdWGCNA is taken as the human TB-myofibroblast
module as described above, along with differentially expressed marker genes from SPP1°CHI3L1*
Macrophages (Data File S2), they are used to score on the bulk RNA-seq data which has been preprocessed
following methods in Pollara et al. followed by calculating geometric means of all the genes in set (80). Two
sided Mann-Whitney U test without correction was used to compare module usage between different

conditions.

Cell-cell interaction analyses

MultiNicheNet: analysis was run using package multinichenetr following tutorials on

https://github.com/saeyslab/multinichenetr. Briefly, recommended ligand-receptor network and ligand-target

matrix was downloaded from https://zenodo.org/record/7074291/files and a SingleCellExperiment object was

constructed from the RNA assay from the Seurat object. Analysis was defined for senders and receivers as

all broad level cell types shown in Figure 1. We performed genome-wide differential expression analysis of



receiver and sender cell types to define DE genes between the conditions of interest (TB-negative and TB-
diseased lungs). Empirical P-values were calculated after DE calculation using function get_empirical_pvals.
Then, we predicted NicheNet ligand activities and NicheNet ligand-target links based on calculated differential
expression results using function get_ligand_activities_targets_DEgenes with parameters logFC_threshold =
0.50, p_val_threshold = 0.05, fraction_cutoff = 0.05, p_val_adj = FALSE, top_n_target = 250. We sse the
information collected above to prioritize all sender-ligand-receiver-receptor pairs using function
generate_prioritization_tables with prioritizing weights: "de_ligand" = 1,"de_receptor" = 1, "activity_scaled" =
2, "exprs_ligand" = 2, ‘"exprs_receptor" = 2, "frac_exprs_ligand_receptor" = 1, "abund_sender" = 0,
"abund_receiver" = 0, and fraction_cutoff=0.05, grouping_tbl consists of sample ID and TB status. Circoplot
visualizations of top 20 ligand-receptor pairs in each TB status group were done on prioritization table outputs.

Summary heatmap was done over top 200 interactions for enrichment of interactions between cell types.

Given the requirement to perform genome-wide differential expression analysis to identify DE genes between
TB conditions, we couldn’t apply the same MultiNicheNet framework to all subclusters given some subclusters
don’t have enough power to detect. Hence, we switched to LIANA for an unbiased cell-cell communication

analysis at the subcluster level.

LIANA: liana analysis was first independently run on both TB-diseased data and healthy control data using
function liana_wrap followed by liana_aggregate from the liana package in R using default parameters on
RNA assay from Seurat. We kept only keep interactions concordant between methods by filtering for
interactions with aggregate_rank <= 0.01. Top 20 MMP1* CXCL5" Fibroblast specific signaling in TB was
extracted, where interaction specificities are extracted from natmi.edge_specificity values and expression
magnitudes are from sca.LRscore value between interactions. Senders/receivers are ordered by hierarchical

clustering based on Pearson’s correlation of sca.LRscore values.

We summarize the sender-receiver interaction frequencies from the filtered interactions in each TB status
group and calculated the difference between the two frequency matrices. Lastly, we normalized by the largest
absolute value of differences for plotting the interaction difference heatmap. To visualize interactions
strengthened in TB-diseased group and TB-negative group, we defined the edge weight of interactions by
the natmi.edge_specificity from LIANA output and edge_FC as the fold change between the TB group and
control group with a pseudo edge weight of 10%-6 if control group is 0. We counted the number of interactions
between sender-receiver groups involved in interactions of edge_FC>1, defined as “poslogFC.cellcell.count”
and similarly the number of interactions between sender-receiver groups involved in interactions of
edge_FC<1, defined as “neglogFC.cellcell.count”. We clustered sender and receiver in TB-upregulated
interactions (summarized in “poslogFC.cellcell.count”) and TB-downregulated inetractions (summarized in
“neglogFC.cellcell.count”) based on Pearson’s correlation of interaction count similarities between senders
and receivers respectively. Hierarchical clustering was done using pheatmap followed by inspecting tree
clusters and calling groups using cutree. For circos plots of TB-upregulated sender-receiver pairs and TB-
downregulated sender-receiver pairs, we only selected for pairs with interaction counts exceeding 80-

percentile of all pairs in the particular condition, using function chordDiagram from R package circlize.



For visualizing the interactions between fibroblast and macrophages and SPP1* macrophage signaling, we
visualized the count of interactions with aggregate_rank <= 0.01 and edge_FC>1 and used chordDiagram to

plot.

Ligand interaction strength calculation: mean TB edge is defined as the mean of interaction edge weight
in TB-diseased group for specific sender and ligand combination and mean_CTR_edge is defined as the
mean of interaction edge weight in TB-negative group. weighted_mean_TB is defined as mean_TB_edge
weighted by the count of interaction involving that ligand in each sender group, and similarly for
weighted_mean_CTR. Finally, weighted_mean_FC (e.g., interaction strength change) is defined as
weighted_mean_TB/weighted_mean_CTR. Top 30 and bottom 30 ligands by the interaction strength are

chosen to be visualized in Fig. 5D.

We also calculate an unweighted mean_FC = mean TB edge/ mean_CTR_edge for the interaction strength
change in each sender cell type, and we consider an interaction involving a ligand as positive if the
log10(mean_FC) is positive and negative if the log10(mean_FC) is negative, which reflect whether the
interaction is stronger or weaker in TB-diseased vs. TB-negative group. Positive and negative interaction
counts are tallied for each ligand and a ligand is thought to be dominantly “positive” (colored red in barplot) if
positive interaction count is 50% higher than negative interaction count and “negative” (colored blue) if
negative interaction count is 50% higher than positive interaction count. Mean_FC and log10(mean_FC)
between TB-diseased and TB-negative samples are used to indicate ligand activity importance in each sender
cell type, sender cell types are grouped according to clustering for TB-diseased senders in circo plot .
Grouping of sender cell types in the ligand interaction strength analysis was the same as before. Top 5 ligands
in MMP1*CXCL5" Fibroblast by mean TB edge metric was visualized for their proposed targets and number

of possible receptor interactions on each cell type.

For summarizing top 10% of ligands in each TB condition, we calculate the mean of edge_FC for each
source/ligand combination. The mean edge_FC is then sorted by descending order, where the top 10% and
bottom 10% are visualized as top ligands upregulated in TB (Data set 4B, C). For the barplot of number of
interactions upregulated in each TB condition, we filter for all interactions with edge_FC<1 or edge_FC>1 and
count the number of interactions by sender cell type. We use the same cluster groupings/colors for the

senders as for the circus plot in Fig. 4D.

Sender signaling co-occurrence analysis: we first filter out sender-ligand combinations that are
upregulated in TB (edge_FC>1). Then, for each cell type of interest, the normalized RNA count for the
upregulated ligands in this cell type is retrieved for all the TB-diseased patients. The ligand expression in
each cell is then weighted by log10(mean_FC) so ligands with larger degree of change are weighted higher

for their expressions. Then, patient averages of all the weighted ligand expressions are calculated and



summed to arrive at a final patient-sender activity score. Pearson’s correlation is computed across each pair

of cell type’s sender activity scores in 9 patients.

Interaction flux analysis: In this analysis, we define the flux of interaction in the direction from sender to
receiver cell types. First, we calculate the mean of edge_FC between all LIANA inferred significant
interactions (aggregate_rank <= 0.01) for each sender-receiver pair. Then, for each pair of sender-receiver,
the flux of interaction is calculated by multiplying the sender cell count. The total flux of a given sender cell

type is then the sum of flux to all receiver cell types.

Fluorescent immunohistochemistry staining

Sample preparation: Multiplex fluorescent immunohistochemistry staining of macrophage markers was
performed on lung tissue sections using the Opal™ 6-Plex Manual Detection Kit 50 Slides (AKOYA, USA) as
directed by the manufacturers. Multiplex fluorescent immunohistochemistry staining of fibroblast markers was
performed on lung tissue sections using the Opal™ 4-Color Manual IHC Kit 50 Slides (PerkinElmer, USA) as
directed by the manufacturers. For both, lung tissue samples fixed in 4% formalin were paraffin-embedded.
Four mm sections were cut on X-tra adhesive precleaned micro slides (Leica, Germany), allowed to dry for a
minimum of 24 hours and the slides were baked at 60°C overnight.

Deparaffinization, rehydration, and antigen Retrieval: The combined process of deparaffinization, rehydration
and antigen retrieval of the tissue sections was done using 1x Envision Target Retrieval Solution, High PH
(Dako, USA) in the PT-Link Pre-Treatment instrument (Dako, USA). Thereafter, slides were incubated for 1
minute in distilled water and equilibrated in EnVision™ FLEX Wash Buffer (Dako, USA) at room temperature
for 10 minutes (2x 5 minutes using fresh buffer for each period) for macrophage markers staining and 5
minutes for fibroblast markers staining. Then, the macrophage slides were incubated in EnVision™ FLEX
Peroxidase blocking solution (Dako, USA) for 10 minutes and fibroblast slides were incubated in Peroxidase
blocking solution (PerkinElmer) for 10 minutes, both then washed in wash buffer (Dako, USA) as before
immediately at room temperature.

Background reduction: The macrophage slides were incubated in blocking buffer (0.05g BSA + 10% goat
serum dissolved in EnVision™ FLEX Wash Buffer) for 20 minutes. The fibroblast slides were incubated in
Bloxall blocking solution (PerkinElmer) for 10 minutes.

Antibody staining: The macrophage slides were incubated in primary antibody-1 for 45 minutes, fibroblast
slides for 30 minutes, at room temperature, then washed for 5 minutes in wash buffer. The macrophage slides
were then incubated in Secondary Opal Polymer Horseradish Peroxidase (HRP) Mouse and Rabbit (AKOYA,
USA) for 20 minutes and fibroblast slides were incubated in Secondary Opal Polymer Horseradish Peroxidase
(HRP) Mouse and Rabbit (PerkinElmer) for 30 minutes. Then, the slides were washed twice in wash buffer
as before, drained and the sections were incubated in Opal Polymer Fluorophore (macrophage slides:
AKOYA, USA,; fibroblast slides: PerkinElmer) working solution for signal amplification at room temperature for
10 minutes in the dark. The slides were then washed for 10 minutes (2x 5 minutes using fresh buffer for each

time) for macrophage slides, 5 min for fibroblast slides, in wash buffer at room temperature.



Antibody stripping: Afterwards, the antigen retrieval via microwave treatment was done by placing the slides
in a slide jar with pre-warmed buffer AR6 (macrophage slides: AKOYA, USA,; fibroblast slides: PerkinElmer).
The jar was loosely covered and placed in a microwave for 2 minutes at 100% power (High setting), 10
minutes at 50% (Medium setting) power and 5 minutes at 20% (low setting) power. Slides were cooled down
in the dark by placing the slide jar on ice for 20 minutes and the slides were rinsed in distilled water, followed
by incubation in the wash buffer for 10 (2x 5 minutes) minutes for macrophage slides, 5 minutes for fibroblast
slides, to equilibrate slides. The microwave step re-exposes the antigen on the tissue and allows the
introduction of the next primary antibody. For the detection of the next target (primary antibody 2), the protocol
was restarted at the blocking step using blocking buffer (macrophage slides: 0.05g BSA + 10% goat serum
dissolved in EnVision™ FLEX Wash Buffer; fibroblast slides: Bloxall blocking solution from PerkinElmer) for
10 minutes. After the third target was detected (primary antibody 3), a working solution of DAPI (macrophage
slides: AKOYA, USA,; fibroblast slides: PerkinElmer) was applied to the sections as the nuclear counterstain
for 5 minutes in a humidity chamber. The slides were washed in wash buffer for 5 minutes, then in distilled
water for 5 minutes and drained. Then, the sections were coverslip with Fluorescence Mounting Medium
(Agilent Technologies, Inc.) and the edges of the coverslip were sealed with nail varnish. Slides were stored

in a humidity chamber at 4°C until images are acquired.

Antibodies and fluorophores: For macrophage slides, the unconjugated primary antibodies used are Anti-
CD68 (conc. clone: Ab213363, Abcam), Anti-CD206 (clone: Abcam), Anti-Osteopontin (clone: ab302942,
Abcam). The primary antibodies were diluted in antibody diluent (PerkinElmer) as recommended by the
antibody manufacturer, and the Opal fluorophores diluted in amplification diluent (PerkinElmer). The
fluorophores used for signal generation in this study are FITC, Tetramethylrhodamine (TRITC), and Cy5. For
fibroblast slides, the unconjugated primary antibodies used are Anti-Collagen | (clone: ab34710, Abcam),
Anti- Anti-CTHRC1 (clone: ab85739, Abcam), Anti-TDO2 (clone: OT14G2, Thermo Fisher Scientific), Anti-
PI15 (clone: PA5-52312, Thermo Fisher Scientific), Anti-ACTAZ2 (clone: 1A4, LSBio). The primary antibodies
were diluted in antibody diluent (PerkinElmer) as recommended by the antibody manufacturer, and the Opal
fluorophores diluted in amplification diluent (PerkinElmer). The fluorophores used for signal generation in this
study are FITC, Texas-Red and Cy5.

Imaging: For macrophage slides, the images were acquired on Hamamatsu NanoZoomer S60, (Japan) and
analysed with NDP.view2 (version 2.9.29) imaging software (TissueGnostics). For fibroblast slides, the
images were acquired on a Zeiss Axio Observer Z1 inverted microscope (Olympus) and analysed with

TissueFAXS imaging software (TissueGnostics).

Quantification: for macrophage slides, Using QuPath software (version 0.5.0-x64), TB granulomas were
segmented into three distinct layers:

1. An outer cellular layer primarily composed of lymphocytes,

2. Aninner cellular layer predominantly consisting of myeloid cells (mainly macrophages),

3. A necrotic core characterized by cellular debris and dead cells.



To assess the expression levels of SPP1 (Green) and CD68 (Yellow), we divided the granuloma radially
similar to pie-cutting, into ten regions, which further divides each granuloma layer into ten sub-regions. Each
sub-region is defined and analyzed as a separate Region of Interest (ROl) where they are numbered
clockwise from 1 to 10 so ROI1 from the necrotic core is immediately adjacent to ROI1 from the inner cellular
layer, etc. This enabled a more precise evaluation of spatial differences in protein expression. Expression
intensity was measured at 5 uym per pixel to capture variability in protein distribution across the granuloma
architecture.

Mean intensity for each ROI was used to calculate the statistical significance between the groups using two-
sided Mann-Whitney U test without correction for SPP1. The ratio of mean intensity between inner cellular
layer and outer cellular layer was calculated between the ROI1 and ROI1, ROI2 and ROI2, etc. The same

was done for the ratio of mean intensity between inner cellular layer and the necrotic core.

Flow Cytometry

Lung pieces collected after removal from M.tb infected patients were used in flow cytometry analysis after
processing as from scRNA-seq (Table S4). Cells were counted and stained with antibody cocktail for 30
minutes at RT and in the dark followed by 2x wash steps with PBS and resuspension of stained cells in
FACSLyse. The surface markers used were: CD45 (CD45-APC, BioLegend, cat#304012), CD34 (CD34-FITC,
BioLegend, cat#324226), EpCAM (EpCAM-BV650, BioLegend, cat#324204), CD11b (CD11b-PeCy7, BD,
cat#557743), CD31 (CD31-BV605, BioLegend, cat#303121), VCAM1 (VCAM-PE, BioLegend, cat#305805),
ICAM1 (ICAM-APC-Cy7, BioLegend, cat#353121), podoplanin (PDPN-PERCPefluor710, ThermoFischer,
cat#46-9381-42) and CD235a (CD235a-PECF594, BioLegend, cat#349119). Viability was determined using
the Invitrogen Live/Dead Aqua Fluorescent reactive dye on the HV500 channel. Samples were acquired on
the BDFACS Aria Fusion flow cytometer. Analysis of samples was subsequently carried out using FlowJo
(v10, FlowJo).

The Friedman test was used to assess significant changes in the fibroblast subset of interest across different

lung resection severities.

Human lung tissue spatial transcriptomics data analysis

Filtered 10x spatial data from each sample processed by Space Ranger was read into an anndata object
using the function “read_visium” from python package scanpy, along with the corresponding high-resolution
image of the H&E stain. No filtering on spots or genes was done to preserve the maximum amount of
information as the nature of these data are intrinsically sparse. Data was log-normalized with standard scanpy
workflow. Top 50 hub genes from the hdWGCNA Fibroblast-M1 module were used to score for human TB-
myofibroblast signature on each Visium spot using score_genes from scanpy. The top 20 differentially
expressed markesr from the macrophage subsets (Data File S2) were used to calculate DE marker scores

in a similar fashion. Spearman’s correlation and its significance between the human TB-myofibroblast



signature and macrophage subset markers were calculated using the function spearmanr from python
package scipy. A two-sided Mann-Whitney U test without correction was used to compare module usage
between different conditions and Spearman’s correlation was used to compare human TB-myofibroblast and

different macrophage subsets.

Deconvolution of spatial transcriptomic data

Since Visium v2 chemistry has spot size of diameter = 55um (generally larger than one cell), we estimated
the cell type abundance of each spot using python package cell2location, a Bayesian model that estimates
the combination and abundance of cell types that could give rise to the mRNA counts in each spatial location.
We first learned reference signatures of each broad-level cell type from the original scRNA-seq cohort
generated using Seq-Well S, then decomposed the Visium multi-cell RNA counts into these reference
signatures, establishing a spatial mapping of cell types. For training the reference signatures, we used patient
ID as categorical_covariate_keys and sequencing batch as batch_key, num_samples=1,000,
batch_size=2,500, max_epochs=250, with the rest set to default. For the posterior estimating, we created and
trained the model with hyperparameters: N _cells_per_location=10, detection_alpha=20,
max_epoches=15,000, with the rest set to default. For each boxplot comparing cell type abundance, 5%
quantile of the estimated posterior was used to represent cell type abundance at each Visium spot, which

represents the value of abundance the model has high confidence in.

Annotation of granuloma structures on H&E images
Granuloma structures were manually annotated using ImagedJ by experts in TB lung pathology. A band of
~20-pixel width was then drawn outside the selection area to approximate the granuloma cuff. The spots from

the Visium data are categorized to be “in”, “on” and “out” of the granuloma border based on the spot’s

corresponding position relative to this segmentation band.

Spatial Ligand-Receptor Analysis

Each sample was log-normalized with the scanpy package. The python version of LIANA package was then
used to impute spatial ligand-receptor interactions. First, spatial neighborhoods were calculated using the
spatial_neighbors with bandwidth=10, cutoff=0.1, kernel='gaussian’, set_diag=True. Then bivariate scores for
potential ligand-receptor pairs is calculated using the function bivariate using with parameters
resource_name='consensus’, local_name='cosine' (spatially-weighted cosine similarity for local score),
global_name="morans’ (bivariate Moran’s R for global score), n_perms=100, nz_prop=0.05, and default
settings for the rest. Top L-R pairs are selected by sorting for descending Moran’s R as it describes global

co-expression.
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Figures

Figure 1: Overview of the single-cell and spatial data generated from TB-diseased and control lungs.
(A) Schematic showing the experimental flow for the isolation of cells from human lung tissues, generation of
single-cell libraries using Seq-Well S®. 4 TB-negative and 9 TB-positive lung samples were processed through
single-cell RNA-seq. Shown adjacent to the process flow is a low-dimensional embedding (UMAP) of the
19,632 cells passing quality control annotated with high-level cell types (middle) or detailed cell subtype (right).
(B) 10x Visium platform workflow for spatial transcriptomics profiling on formalin-fixed paraffin-embedded
tissue (FFPE) samples from TB-diseased lung resections. 21 of these samples come from current-TB patients
with detectable M.tb, 9 came from post-TB patient with where bacteria are no longer detected in
bronchoalveolar lavage (BAL) TB culture after infection. Samples contain either granulomas, inducible
bronchus-associated lymphoid tissues (iBALTs), or lung lymph nodes (LNs), representing different

pathological states.

Figure 2: Overview of tissue heterogeneity and cell type abundance in the single-cell dataset.



(A) Cell type proportions by disease status (left) and patient (right, n =7 HIV'TB*; n =2 TB*; n =1 HIV*, n =
3 Cancer Control). (B) Low dimensional embedding (UMAP) of all single-cell RNA-seq data colored by patient
HIV status (left) and TB status (right). (C) Dot plot showing expression levels of top 2 DE genes in each of
the broad level cell types. (D) Two-sided Fisher's exact test for abundance of major cell types between
samples from patients with previous TB diagnosis and samples from control patients. Holm’s method was
applied to adjust p-values for multiple-testing correction. Statistical annotations: p-value < 0.05 (*), p-value <
0.01 (**), p-value < 0.001 (***).

Figure 3: Single-cell transcriptomic reveals heterogeneity within monocyte and macrophage
populations with disease specific difference. (A) Monocyte/macrophage (n=8,318) sub-clustering reveals
10 subclusters (left), also colored by patient ID (middle) and disease condition (right). (B) Heatmap of subtype
top 10 DE genes in each of the monocyte/macrophage subcluster. (C) Expression of marker genes in
monocyte/macrophage subclusters by disease conditions. (D) Two-sided Fisher’s exact test on abundance
of detailed macrophage (left), monocyte (right) subclusters between TB conditions. Holm’s method was
applied to adjust p-values for multiple-testing correction. Statistical annotations: p-value < 0.05 (*), p-value <
0.01 (**),p-value < 0.001 (***), fold-change> 1 (A), fold-change >2 (AA), fold-change <1 (V). (E) Cell2loc
imputed macrophage (left) and monocyte (right) abundance distribution on the Visium dataset grouped by TB
and granuloma status (Methods). The 5% quantile of the estimated posterior distribution of cell abundance
at each Visium spot is displayed, representing the value of cell abundance that the model has high confidence
in. Two-sided Mann-Whitney U test without correction were used for statistical testing. Statistical annotations:
p-value < 0.0001 (****). (F) Similar to (E) but group by TB status and HIV status.

Figure 4: Fibroblast exhibit TB specific phenotypes. (A) Fibroblast (n=1,627) sub-clustering reveals 5
subclusters (left), also colored by patient ID (middle) and disease condition (right). (B) Heatmap of subtype
top 10 DE genes in each of the fibroblast subcluster. Columns (cells) are annotated by fibroblast subclusters
and sample source disease status. (C) Comparing annotation against literature stromal annotation from
Travaglini et al. (65). Left: original fibroblast UMAP as seen in (A) colored by mapped cell types in Travaglini
et al. Right: barplot showing distributions of mapped cell type in each original subcluster. ASM: airway smooth
muscle; VSM: vascular smooth muscle; MyoF: myofibroblast; FibM: fibromyocyte; AdvF: adventitial fibroblast;
AlvF: alveolar fibroblast; LipF: lipofibroblast; Peri: pericyte; Meso: mesothelial. (D) Reference mapping to the
Human Lung Cell Atlas (HLCA). Query (all cells in this study, n=19,632) vs reference cells (n= 584,944) on
integrated UMAP with transferred label from HLCA to query cells. (E) Query (all fibroblasts in this study that
was mapped to fibroblast/myofibroblast in label transfer, n=1,601) and reference lung fibroblast cells
(n=17,500) from HLCA colored by annotation (either ‘Fibroblast’ or ‘Myofibroblast’) and TB conditions. (F)
Gene-set enrichment analysis (GSEA) on DE genes between TB fibroblasts and TB-negative fibroblasts on
HLCA-integrated data.



Figure 5: Fibroblast weighted gene co-expression network analysis (hdWGCNA). (A) High dimensional
weighted gene co-expression network analysis (hdWGCNA) for gene module detection in fibroblasts of this
study. UMAPSs are colored by eigengene of each of the 7 modules. (B) Evaluation of M1 module expression
(MEs) in fibroblast subclusters. Bonferroni adjusted P computed from two-sided Wilcoxon test are shown. (C)
Over-representation analysis (ORA) by enricher on all assigned M1 module genes using MSigDB Gene-
ontology Biological Processes (GOBP) gene set database. (D) Top: bacterial burden of NHP lung granulomas
from Gideon et al. (16) grouped by the time point. Bottom: evaluation of human TB-myofibroblast module
expression in NHP TB fibroblasts on 4-week and 10-week samples. Two-sided Mann-Whitney U test without
correction was used. Statistical annotations: p-value < 0.05 (*), p-value < 0.01 (**), p-value < 0.001 (***). (E)
Evaluation of human TB-myofibroblast module expression in fibroblasts from granuloma vs uninvolved lungs
in an independent non-human primate study with 4-week post-infection (p.i) macaques (78) (Methods). Two-
sided Mann-Whitney U test without correct was used. Statistical annotations: p-value < 0.05 (*), p-value <
0.01 (**), p-value < 0.001 (***).

Figure 6: Evidence of MMP1* CXCL5" Fibroblast populations in TB-diseased human lungs. (A)
Representative flow cytometry plot showing the isolation strategy of the PDPN*FAP* fibroblast population
from the CD45-EPCAM- cell fraction. (B) Cumulative data on frequency of PDPN*FAP*CD90" fibroblasts as
a fraction of live lung cells from 5 separate lung resections. Three separate sections were taken from each
TB-diseased lung, corresponding to the most diseased and least diseased tissues areas and an intermediate
lung piece, according to the expert opinion of the operating surgeon. Friedman test was used to ascertain
statistical significance between proportion of PDPN*FAP” fibroblast between severity groups. (C) Expression
of human TB-myofibroblast signature and SPP1*CHI3L1" marker genes in the tuberculin skin test (TST)
challenge site in vivo model. Active TB TST (n=48): biopsies from participants with microbiologically confirmed
pulmonary TB disease within the first month of treatment who underwent TST; latent TB TST (n=191):
biopsies from participants lacking clinical and radiological evidence of active TB disease but with a positive
peripheral blood IFN-y release assay; saline (n=34): biopsies from participants that received saline under the
skin instead of tuberculin. Each dot corresponds to a sample, horizontal lines represent median values. Two-

sided Mann-Whitney U test without correct was used. Statistical annotations: p-value < 0.0001 (****).

Figure 7: Cell-cell interaction analysis reveals key discrepancies between TB-diseased and control
lung niches. (A) Top 20 ligand-receptor (L-R) pairs from MultiNichenet analysis highlighting putative
interaction pairs with upregulated interactions in TB-negative lung compared to TB-diseased lung. (B) Top 20
ligand-receptor (L-R) pairs from MultiNichenet analysis highlighting putative interaction pairs differentially
communicating in TB-diseased lungs. (C) Summary of top 200 interactions in TB-diseased and TB-
negative/control lungs, by the number of interactions between each cell pair. Cartoons on the right of each
heatmap shows the suggested major modes interactions in each condition. (D) Circos plots of significant
interaction pairs in TB-diseased lungs from LIANA where sender and receiver cell types in each condition are

clustered to reflect similar patterns.



Figure 8: Global interaction analysis identifies key players in cellular communication within TB-
diseased lung tissues

(A) Heatmap visualization of interaction flux analysis. Rows represent sender cell types; columns represent
receiver cell types. Each entry represents the potential flux of interaction from sender cell to receiver cell,
whereas the total flux of each sender cell type is summarized on the left. Sender cell types are sorted based
on descending order of total flux (Methods). (B) Top: Bar plot showing top 30 and bottom 30 ligands by log
fold-change of interaction strength between TB and control lungs across all sender cell types, bottom: log
fold-change of interaction strength between TB and control lungs in each sender cell type (Methods). (C)
Dot plot of top 5 ligand by ligand activity in TB-diseased lungs secreted by MMP1*CXCL5" Fibroblasts and
their receivers (Methods). (D) L-R interactions with MMP1*CXCL5" Fibroblasts in the TB-diseased lungs,
rows (L-R pair) and columns (target cell types) are hierarchically clustered by correlation distance
(Methods).

Figure 9: Spatial transcriptomics analysis on post- and current-TB lung resections

(A) Heatmap showing the expression of human TB-myofibroblast gene signature and SPP1*CHI3L1+
macrophage markers on selective tissue slides from patients who are post-TB (top) or current-TB (bottom),
alongside paired H&E staining. (B) Distribution of human TB-myofibroblast signature expression on the spatial
cohort. HIV statuses are shown in different shades of blue for positive or negative. Two-sided Mann-Whitney
U test without correction was used for statistical testing. Statistical annotation: p-value<0.0001 (****). (C)
Distribution of SPP1*CHI3L1" macrophage markers and human TB-myofibroblast signature on the spatial
data across all Visium spots. Left two panels: manual segmentation of the granuloma structure was done to
allow separation of the Visium slide into three different regions: in granuloma, on granuloma border (cuff),
outside of granuloma (Methods). Right two panels: the same as left panels with the exception that “on
border’=True means on granuloma cuff and False means the rest. Two-sided Mann-Whitney U test without
correction was used for statistical testing. Statistical annotation: p-value<0.0001 (****). (D) Correlation
between human TB-myofibroblast signature and all macrophage subpopulations’ markers. Each circle
represents a Visium sample. Boxplot of the Pearson’s r distribution is shown for each macrophage subtype.
Mann-Whitney U test without correction were used for statistical testing. Statistical annotation: p-
value<0.0001 (***). (E) Spatially informed ligand-receptor (L-R) analysis using LIANA+ on Visium samples.
Examples are shown where SPP1(L)-CD44(R) interactions are being nominated as top L-R pairs. H&E
overlaid with pathology annotation for granuloma structures are shown next to heatmap of L-R interaction

scores, which are calculated at each Visium spot using spatially-weighted Cosine similarity (Methods)
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Macrophage subsets
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A Neutrophil subclusters (n=2,963)
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Imputed fibroblast abundance
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Fibroblast signals strengthened in TB disease lungs B SPP1* macrophage signals strengthened in TB disease lungs
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