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Abstract

Real-time programmable mechanical features including shape morphing ability in metamaterials and
metasurfaces can be crucial for a range of technologically demanding space applications such as deploy-
able space structures and antennas, adaptive solar arrays, robotic arms, actuators and advanced robotic
materials. This paper proposes second-order derivatives of spatially-varying Miura-based origami ar-
chitectures like graded Arc Miura, inclined Arc Miura, and tapered Arc Miura for achieving a range
of programmable shape-changing capabilities. The rigid foldability and motion behavior of the graded
geometries are investigated thoroughly based on computational simulations and tabletop experiments
using physical prototypes, leading to the evidence of on-demand shape morphing and target curva-
ture attainment under limited actuation, and transitional deployment from 2D to 3D states. An ef-
�cient approach of kinematic mapping is developed based on idealized spherical 4R linkages involving
Denavit-Hartenberg matrix notations, resulting in piece-wise spatially-graded tessellations for achieving
programmed pre-de�ned symmetric and asymmetric curvatures with complex two and three-dimensional
geometrical shapes. The fundamental mechanics of the proposed origami metamaterials being mostly
scale-independent, this emerging class of deployable shape-changing architectures can be directly trans-
ferred for application in a range of milli-, micro-, and nano-metre-size space systems, essentially opening
avenues for the design of various programmable structures and machines at multiple length-scales.

Keywords: Shape morphing and deployment; Origami derivatives; Programmable metamaterials and

metasurfaces; Spatially-graded origami architectures; Helical origami

1. Introduction

Origami, the Japanese art of folding paper into a variety of three-dimensional shapes, has inspired a

rapidly growing branch of science and engineering that specializes in the manufacture of three-dimensional

engineering structures from initially two-dimensional pre-forms through fold-like processes (i.e. 2D to 3D

state-transition). While the word �origami� comes from the Japanese origins for �folded� (ori) and �paper�

(kami), the folding concepts of origami can be extended readily to other advanced materials suited for

critical engineering applications. Origami is a technique that can be thought of as a process in which a

large �at piece of material is folded in a pre-set way to form a particular target shape that is compact,

possibly rigid, deployable and portable, or sometimes produces a target motion behavior, depending on

the intended applications.
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The general �eld of deployable structures include various structural systems and mechanics such as

origami and kirigami, bar-hinge mechanisms, tensegrity and in�atable structures [1�6]. Di�erent space

mechanisms and structures can be adopted based on application speci�c demands, analyzing the asso-

ciated advantages and disadvantages. For example, tensegrity structures are composed of a set of dis-

continuous compression bars and continuous cables in a self-balancing space grid structure. This unique

design makes them lightweight while maintaining sti�ness. Furthermore, the sti�ness, shape control and

equilibrium states of tensegrity structures can be precisely controlled by altering the string parameters.

However, these structures are inherently complex due to complicated joints, where each compression bar

interacts with several other bars, requiring various degrees of freedom for proper assembly and function-

ality [7, 8]. Origami architectures on the other hand rely on the foldable crease pattern for their intrinsic

stability and functionalities [6, 9, 10]. The foldable crease patterns of origami structures o�er a range

of advanced functionalities including compact storage, predictable deformation, multistability, complex

shape attainment, negative Poisson's ratio and lightweight design. Additionally, origami structures can

fold and unfold through limited actuation requirements with better control, signi�cantly simplifying the

automated deployment and storage mechanism. Such advantages make origami-based architectures suit-

able for space applications. Over the recent years, origami folding patterns have been widely adopted in

a range of technologically demanding applications such as mechanical metamaterials and metasurfaces

[1, 11�19], nanomaterials [20�22], soft robotics [23�26], rotorcraft [27], energy absorbing protective struc-

tures and sandwich cores [28, 29], energy harvesters [30], antennas [31], and large-scale space structures

[32�34]. The focus of this article is to achieve programmable state-transitional shape-morphing through

folding or unfolding creases and limited local actuation in functionally identi�ed graded origami architec-

tures. In the following paragraphs, we will brie�y review the progress in origami-assisted shape-morphing

and the prospects of achieving target curvatures.

Origami spring-inspired shape morphing and its application in soft robotics is investigated by Chen

et al. [35], wherein the nonlinear stretch-twist coupling of the springs has been considered. Cui et al.

combined two approaches to produce composite sheets by embedding a sti� origami/kirigami skeleton

with creases into thermal shrinkable polymer sheets for constructing innovative three-dimensional struc-

tures with curved surfaces from �at sheets [36]. Xu et al. proposed a �exible arc-armor inspired by

origami, similar to the traditional �sh-scale armor assembly form [37]. Xiang et al. investigated the

energy absorption capability of origami-inspired structures with di�erent straight and curved pro�les

[38]. Mukhopadhyay et al. proposed a waterbomb-based tubular origami for obtaining a range of convex,

concave and programmable undulated shapes [39]. Further, Zhao et al. reported computational design
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methods for cylindrical and axisymmetric waterbomb tessellations, leading to a range of target curved

surfaces [40]. Zhang et al. proposed to exploit origami-based metasurfaces for designing stealth and

radar technologies [41]. Meeussen and van Hecke developed multistable sheets with rewritable patterns

for switchable shape-morphing [42], wherein they focus on undulating metasheets that store memories of

mechanical stimuli in patterns of self-stabilizing scars. For achieving shape morphing, a signi�cant num-

ber of studies have proposed kirigami patterns where cuts are introduced in addition to folding [43, 44].

Asma et al. reported curved-crease origami for a new class of morphing metamaterials [45]. Wang et al.

developed in�atable metamorphic origami patterns with the advantage of being a highly simpli�ed de-

ployable system and capable of realizing multiple sequential motion patterns with a monolithic actuation

[46]. Liu et al. developed robotic surfaces with reversible and spatiotemporal control for shape morph-

ing and object manipulation [47]. Shape morphing and folding to curved surfaces have been proposed

through generalized design methods and mechanics of Miura-based origami structures [48, 49], including

multi-material 4D printing and embedded actuation [50, 51]. The brief literature review presented above

reveals that while various other origami base patterns have been exploited for achieving target shapes and

curvatures, adoption of Miura-ori architectures are rather limited despite their advantageous one degree

of freedom kinematics. In the following section, we focus on the recent studies concerning Miura-based

origami architectures, and subsequently, the aim and scope of this paper will be discussed.

Rigid origami is a subcategory of origami architectures that allows continuous mobility between folded

states without the facets being twisted or stretched [52]. The miura base pattern is an elegant example

of rigid origami with a single degree of freedom, which �nds widespread application in the �elds of

engineering [53, 54]. The Miura-ori pattern is comprised of parallelogram facets that are identical to one

another and surround the vertices of degree 4. Miura is an excellent choice for the design of foldable or

deployable structures due to the fact that it possesses a high degree of symmetry, which is demonstrated

by the fact that it has periodicity (in its conventional form), as well as four essential geometric features:

(1) it is rigidly foldable, (2) it has only one degree of freedom, which determines the shape of the entire

structure, (3) it possesses negative Poisson's ratio and (4) it is �at foldable [55]. Conventional Miura

forms exhibit tessellation property, employing a repetitive unit cell geometry built from repeating a single

tile size [56]. Miura-based patterns have recently been utilized in a variety of applications, including

deployable folded plate shelters and curved canopy designs [57�60], subsea pipelines [61], automobile

crash boxes [62], foldable recon�gurable re�ect array antenna designs [63], and crawling robots [64].

Several di�erent forms of rigid folding based on the Miura pattern have been reported in the literature

including multi-layer and tubular architectures [65�67]. Constrained optimization algorithms have been
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used to build rigid generalized Miura origami tessellations that can lead to curved surfaces with single

or double curvature [68, 69]. A novel design of cylindrical and axisymmetric origami structures has been

proposed based on generalized Miura-Ori cells, wherein the structure can �t between two given surfaces

[70]. The coupling of layered Miura-origami architectures and rhombic honeycombs has been investigated

to develop origami metamaterials with programmable two-stage compressive strength [71]. Further,

Miura-ori pattern has been coupled with hexagonal honeycombs to develop 3D metamaterials with multi-

directional Poisson's ratio modulation capabilities [72]. Miura-ori tesselations have been reported to be

very e�ective in energy absorption, including as a core of sandwich structures [73]. Fang et al. performed

a comprehensive experimental and analytical study on the dynamics of origami folding by investigating

stacked Miura-Ori structures with intrinsic bistability, wherein both intrawell and interwell oscillations can

be observed under harmonic base excitation [74]. Gattas and You presented the concept of curved creases

in Miura-ori patterns along with their parametrization for a wide range of rigid-foldable applications

[75]. Liu et al. proposed 4D Miura-based origami structures using shape memory alloys wherein a

temperature-dependent programmable feature can be obtained [76]. The vast possibility of developing

derivatives and piece-wise geometries concerning Miura-ori patterns has been investigated by altering a

single characteristic of the Miura pattern among the identi�ed �ve characteristics, crease orientation,

crease alignment, developability, �at-foldability, and rectilinearity [77]. Such �rst-level derivatives lead to

sti� foldable patterns with a wider variety of surface geometries, including non-zero values for both single

and double curvature [60, 77, 78]. The capabilities of �rst-order Miura derivatives create a strong rationale

for extending the parametrization to second-order derivatives with further expansion in the design space

concerning two and three-dimensional shape morphing. This can be achieved by altering two or more

parameters in the unit cell geometry and introducing spatial gradation in the origami structure. In the

current paper, we will concentrate on such second-order graded derivatives of Miura-ori architectures

(refer to Figure 1) based on detailed kinematic analyses and tabletop experiments.

Kinematic analysis of the Miura origami models has received signi�cant attention given that it is a

type of rigid origami which �nds widespread engineering applications. The �eld of kinematics focuses on

mechanisms and motion geometry, eliminating any consideration of the forces operating on the mechanism

[79, 80]. When observed from the standpoint of a mechanism, the creases of origami can be interpreted

as rotation joints, while the facets can be interpreted as links [81]. Spherical linkages are often used

for analyzing Miura-ori folding mechanics, wherein it is characterized by a pattern consisting of a single

vertex and having all creases intersect at the vertex [82]. The rigid foldability of a pattern with many

vertex creases can be assessed using kinematic approaches where the pattern is viewed as a network of
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Figure 1: Geometrical architecture of Miura origami and its derivatives. For each of the Miura bases in sub�gures
(a-h), we show the tessellated architecture (�rst column), unit cell dimensions (second column), and partially folded state
of the unit cells (third column). (a) Conventional Miura origami and its planar deployment. The subsequent origami
unit cells are obtained by modifying the conventional Miura geometry. (b) Arc pattern with reverse crease orientation
(c) Arc Miura origami with modi�ed crease alignment (d) Non-developable Miura pattern with modi�ed developability
characteristics (e) Non-�at foldable Miura pattern with modi�ed �at-foldability characteristics (f) Tapered Miura origami
with modi�ed rectilinearity characteristics (g) Tapered Arc Miura origami obtained by coupling of tapered Miura and Arc
Miura origami (h) Inclined Arc Miura origami obtained by inclining straight creases of Arc Miura origami (i) A typical
representation of the symmetric and asymmetric curvatures achieved through the Miura derivatives.
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spherical links [83�85]. The kinematic analysis has been widely used to study and understand the motion

behavior of origami patterns, leading to a mapping among the independent degrees of freedom and the

deformed shape of the structure at any particular instance of the deformation [86, 87].

The conventional Miura pattern leads to in-plane deformation without any three dimensional shape

morphing. We would propose derivatives of the Miura geometry by strategic modi�cations in the unit

cell that lead to achieving target curvatures, wherein the asymmetry can further be controlled through

geometric gradations. In the current study, we will focus on developing the kinematic relations for

a range of second-order graded derivatives of the Miura-ori architectures considering symmetric and

asymmetric geometries, leading to target curvatures through two to three-dimensional state transitions.

The outcomes of the kinematic analyses will further be validated and supported by creating physical

prototypes. Through the proposed second-order graded derivatives like Arc Miura, inclined Arc Miura,

and tapered Arc Miura, we will demonstrate real-time programmable mechanical features including shape

morphing ability in metamaterials and metasurfaces along with state-transitional deployment which can

be crucial for a range of advanced engineering applications across the length scales.

2. Kinematic mapping of the motion behavior

2.1. Miura-ori architecture and its higher order derivatives

Miura-ori origami is a rigid origami architecture that has been extensively adopted in engineering

applications due to its unprecedented properties such as negative Poisson's ratio, single degree of freedom,

rigid foldability, �at foldability, and developability. The Miura base pattern is formed from four identical

parallelogram plates (refer to Figure 1(a)). First- or second-order derivatives are produced when one or

more of the Miura base pattern's features are altered. First-order derivative base patterns such as Arc

pattern and Arc-Miura (Figure 1(b,c)), non-developable Miura (Figure 1(d)), non-�at foldable Miura

(Figure 1(e)), and tapered Miura (Figure 1(f)) are developed by changing features like crease orientation

and crease alignment, developability, �at-foldability, and rectilinearity, respectively. When the features

of the �rst-order derivatives are further modi�ed, second-order derivatives emerge. The second-order

derivatives can also be obtained by introducing spatial gradation while assembling the unit cells of �rst-

order derivatives for forming the tessellations. The repetition of these �rst or second-order derivatives

can result in the formation of curved pro�les, which is the central theme of this paper.

In the following sections, we will demonstrate that the �rst-order derivative leads to the formation of

unidirectional curves and S-curves. However, these �rst-order derivatives are not enough to achieve helical

curves of di�erent kinds. To achieve these curves, we need to modify the �rst-order derivatives, resulting

in the formation of second-order derivatives such as tapered Arc Miura pattern (Figure 1(g)) and inclined
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Arc Miura pattern (Figure 1(h)). The attainment of unidirectional, S and helical (with orthogonal and

planar rims) curves are discussed in adequate detail in the following sections along with the respective

kinematic analysis framework. These curves are generally symmetric in nature when no spatial variation

in the geometric features are considered. To achieve target asymmetry in these 3D curvatures, we would

further incorporate spatial gradation in the Miura geometry. Gradation is the process of altering one or

more independent variables in order to obtain a distinct symmetric and asymmetric curvature. In the

next subsection, we will focus on the parametrization and kinematic mapping for �rst and second-order

derivatives of Miura-ori including spatial gradation to achieve symmetric and asymmetric curvatures

along with two to three-dimensional state transition. Our speci�c focus will be on the kinematics of Arc

Miura, inclined Arc Miura and tapered Arc Miura architectures for achieving the target curvatures in

three dimensions using developable origami folding.

2.2. Kinematic analysis of unit cell geometry

Kinematic analysis on the foldability and motion behavior of the tessellations that are formed from

the four-crease Arc Miura, inclined Arc Miura and tapered Arc Miura bases is presented here. The folding

of zero-thickness bases can be modeled kinematically as spherical 4R linkage. This unit linkage has one

mountain crease and three valley creases. Given a βi(i+1) angle of rotation, the relationship between

di�erent dihedral angle (ϕ) as a function of the β can be derived as (refer to the supplementary material

section S1 and Figures S3, S4, for detailed derivation and validation).

tan ϕ1

2
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2

=
cos β23+β12

2

cos β23−β12

2
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2
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In the following paragraphs, we discuss the motion behavior of three di�erent �rst and second-order

derivatives of Miura origami architectures.

Kinematic motion behavior of Arc Miura pattern. Arc Miura pattern is a �rst-level derivative of the

Miura origami, created by modifying the crease alignment characteristics of the Miura base pattern (refer

to Figure 1(c)). Arc Miura folded con�guration consists of m straight lines and n zigzag lines where i′

varies from 1, 2, . . . , m straight lines and j′ varies from 1, 2, . . . , n zigzag lines. i′ denotes the number

of straight creases and j′ denotes the number of zigzag crease. Its coordinates at a vertex Ki′, j′ can be
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found out by 3D cylindrical coordinates where (x, y, z) = (r cos θ, y, r sin θ) with respect to origin. The

term origin in this context refers to the initial coordinates of vertex Ki′, j′ , which are located at (0, 0, 0).

The components (r, θ, y) are given as

r =

R1 for odd j′

R2 for even j′
(2)

θ =



(j′ − 1) ζ
2

for odd i′ and odd j′

(j′ − 1) ζ
2
+ ζb1 for even i′ and odd j′

(j′ − 2) ζ
2
+ ζ − ζa2 for odd i′ and even j′

(j′ − 2) ζ
2
+ ζb1 + ζa2 for even i′ and even j′

(3)

y = (i′ − 1)b1 sin
ηMZ

2
(4)

The variable r, ζ, ζa2 and ζb1 are given in supplementary material section S2. 3D coordinates are used to

achieve unidirectional and S curvature.

Kinematic motion behavior of inclined Arc Miura pattern. Inclined Arc Miura is a modi�ed version of

Arc Miura that is formed by inclining all the straight creases of Arc Miura at an angle α (refer to Figure

1(c, h) for Arc Miura and inclined Arc Miura patterns). Inclined Arc Miura folded con�guration consists

of m straight lines and n zigzag lines where i′ varies from 1, 2, . . .m straight lines and j′ varies from

1, 2, . . . n zigzag lines. i′ denotes the number of straight creases and j′ denotes the number of zigzag

crease. Location of any vertex Ki′, j′ can be found out by 3D cylindrical coordinates where (x, y, z) =

(r cos θ, y, r sin θ) with respect to origin. The term origin in this context refers to the initial coordinates

of vertex Ki′, j′ , which are located at (0, 0, 0). The components (r, θ, y) are given as

r =

R1 for odd j′

R2 for evenj′
(5)

y =



(i′ − 1)b1 sin
ηMZ

2
+ j′−1

2
a2 sinα + a1 sinα for odd i′ and odd j′

(i′ − 1)b1 sin
ηMZ

2
+ j′−1

2
a2 sinα + a1 sinα for even i′ and odd j′

(i′ − 1)b1 sin
ηMZ

2
+ j′

2
a1 sinα + ( j

′

2
− 1)a2 sinα for odd i′ and even j′

(i′ − 1)b1 sin
ηMZ

2
+ j′

2
a2 sinα + ( j

′

2
− 1)a1 sinα for even i′ and even j′

(6)
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Figure 2: Programmable uni- and bi-directional shape morphing with symmetric architectures. (a) Pro-
grammable unidirectional curvature formed from Arc Miura assemblies and qualitative validation using physical prototypes.
(i - iv) Unfolded �at, partially-, and fully-foldable con�gurations of unidirectional curvature at a dihedral angle (θ) = 180o,
150o, 100o, 0o respectively. (v - viii) Physical prototypes corresponding to the computationally obtained programmable
unidirectional curvatures. Note that the obtained curvatures are symmetric about the mid-length. (b) Programmable
bidirectional S-shaped curvature formed from Arc Miura assemblies and qualitative validation using physical prototypes.
(i - iv) Unfolded �at, partially-, and fully-foldable con�gurations of bidirectional curvature at a dihedral angle (θ) = 180o,
150o, 100o, 0o respectively. (v - viii) Physical prototypes corresponding to the computationally obtained programmable
bidirectional curvatures. Note that the obtained curvatures are symmetric (more precisely, anti-symmetric) about the mid-
length. Note: θ denotes the dihedral angle, i.e., the angle formed between the two panels along a crease.

θ =



(j′ − 1) ζ
2

for odd i′ and odd j′

(j′ − 1) ζ
2
+ ζb1 for even i′ and odd j′

(j′ − 2) ζ
2
+ ζ − ζa2 for odd i′ and even j′

(j′ − 2) ζ
2
+ ζb1 + ζa2 for even i′ and even j′

(7)

The variable r, ζ, ζa2, ζb1 and ηMZ are given in supplementary material section S2. 3D coordinates are

used to achieve helical curvature.

Kinematic motion behavior of tapered Arc Miura pattern. The tapered Arc Miura pattern is obtained
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by coupling the tapered Miura pattern and Arc Miura pattern in order to enable both in-plane and

out-of-plane deployment features (refer to Figure 1(c, f, g) for Arc Miura, tapered Miura and tapered Arc

Miura patterns). An Arc Miura pattern can be converted into a tapered Arc Miura pattern by tilting

the straight crease lines in the Arc Miura pattern. Tapered Arc Miura folded con�guration consists

of m straight lines and n zigzag lines where i′ varies from 1, 2, . . .m straight lines and j′ varies from

1, 2, . . . n zigzag lines. i′ denotes the number of straight creases and j′ denotes the number of zigzag

crease. Location of any vertex Ki′, j′ can be found out by 3D cylindrical co-ordinates where (x, y, z) =

(r cos θ, r sin θ, z) with respect to origin. The term origin in this context refers to the initial coordinates

of vertex Ki′, j′ , which are located at (0, 0, 0). The components (r, θ, z) are given as

r =

RC for odd i′

RF for even i′
(8)

θ = (i′ − 1) ζ (9)

z =


(i′+1)

2
a1 cos

ηMCA

2
for odd j′

(i′−2)
2

a1 cos
ηMCA

2
for even j′

(10)

The variable r, ζ, and ηMCA are given in supplementary material section S2. 3D coordinates are used to

achieve tapered Arc Miura piecewise geometries.

2.3. Kinematics of tessellated architectures

In the following section, we demonstrate a programmable attainment of curvature which can be

achieved by varying the dihedral angle. In general, dihedral angles are formed by the adjacent faces

of an origami fold and are preferred in origami research to directly represent the folding process. The

piecewise assembling of the Arc Miura sequences (with or without gradations) results in variable rigid

foldable symmetric and asymmetric curves. In the piecewise assembly algorithm, the parameters of the

initial Miura units are provided, and the subsequent Miura unit is attached to the initial Miura unit on

common edge vertices, therefore limiting the number of independent parameters. The initial Miura unit

is known as the main pattern (m), and the followed Arc Miura unit is known as the slave pattern (s).

By ensuring the continuity of the subsequent units in a tessellation (uniform or graded), symmetric and

asymmetric continuous curvatures are obtained, as discussed in the following section.
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3. Results and discussion

In this section, we will systematically demonstrate the attainment of programmable curvatures based

on the kinematic motion behavior and experiments using physical prototypes. It can be noted in this

context that a single Miura origami architecture is capable of assuming di�erent degrees of curvature

depending on the actuation provided by a single degree of freedom, leading to the notion of active and

on-demand programmability.

3.1. Programmable asymmetry in unidirectional curvatures

Programmable symmetric and asymmetric unidirectional curvatures are realized here through uniform

and graded Arc Miura architectures, respectively. In unidirectional Arc Miura tessellation redundant

parameters are bm1 = bs1, ϕ
m
1 = ϕs

1, m
m = ms and folding variable θmMZ = θsMZ where, b1 is the side

length, m is the number of straight lines, ϕ1 is the sector angle and θMZ is the longitudinal dihedral

angle at M-vertices (refer to Figure 1(c)). The con�gurations shown in Figure 2(a) are formed using the

following parameters: n (number of zigzag lines) = 30, m (number of straight lines) = 3, a1 = 30 mm,

b1 = 30 mm, L (total length of unit cell) = 90 mm, sector angles ϕ1 = 60o and ϕ2 = 40o and θ varied

from 180o to 0o. The unidirectional curve assumes a completely unfolded con�guration resembling a �at

sheet at a dihedral angle (θ) = 180o (refer to Figure 2(a(i))). With the decrease of dihedral angle (θ) =

150o, as depicted in Figure 2(a(ii)), the assembly achieves a partially-folded con�guration resembling a

parabola. With a further decrease in the dihedral angle (θ) = 100o, as depicted in Figure 2(a(iii)), the

parabolic con�guration becomes more compact. When the dihedral angle (θ) reaches 0o, the con�guration

is fully folded and takes on a circular shape due to the full folding of creases (refer to Figure 2(a(iv))).

The curvature programming from unfolded to fully folded con�guration is validated using a physical

prototype shown in Figure 2(a(v)-a(viii)), wherein an excellent agreement is observed with the motion

simulation results.

A programmable unidirectional curvature, as shown in the Figure 2(a), provides symmetric curvature,

while spatially varying and asymmetric curvature can be achieved through designed parametric gradation.

Gradation involves the process of altering independent geometric variables to obtain distinct (i.e. target)

symmetric and asymmetric curvatures. In the current investigation, to introduce gradation we have varied

the sector angle ϕ2 (following prede�ned gradation rules and geometric parametrizations) at each unit cell

geometry while keeping all other independent variables constant. Figure 3 demonstrates the attainable

symmetric and asymmetric curvatures of the unidirectional curves through gradation. The unidirectional

curvature variation shown in the Figure 3(a) can be obtained by varying the sector angle ϕ2 according

to ϕ2 = ϕ2 + sδϕ2 geometric parametrization, where ϕ2 is the initial sector angle, s is number of unit

11



Figure 3: Programmable asymmetric unidirectional curvatures obtained through graded Miura derivatives.
For achieving a target asymmetry in the unidirectional curvatures, we introduce geometric gradation by varying the sector
angle (ϕ2) at every unit cell while keeping the other independent variables constant. (a) Gradation is provided using
ϕ2 = ϕ2 + sδϕ2 where ϕ2 = 30o, s is the number of unit cell and δϕ2 = 2o (i - iv) Origami con�gurations at dihedral angle
(θ) = 180o, 150o, 100o and 0o respectively. (b) Gradation is provided using ϕ2 = ϕ2−sδϕ2 where ϕ2 = 50o, s is the number
of unit cell and δϕ2 = 2o (i - iv) Origami con�gurations at dihedral angle (θ) = 180o, 150o, 100o and 0o respectively. (c)

Gradation is provided for i = 0 to n
2 using ϕ

(i+1)
2 = ϕ

(i)
2 + sδϕ2 and for i = n

2 to n using ϕ
(i+1)
2 = ϕ

(i)
2 − sδϕ2 where n

is number of zigzag crease line, ϕ
(i)
2 = 40o, s is the number of unit cell and δϕ2 = 2o (i - iv) Origami con�gurations at

dihedral angle (θ) = 180o, 150o, 100o and 0o respectively. (d) Gradation is provided for i = 0 to n
2 using ϕ

(i+1)
2 = ϕ

(i)
2 −sδϕ2

and for i = n
2 to n using ϕ

(i+1)
2 = ϕ

(i)
2 + sδϕ2 where n is number of zigzag crease line, ϕ

(i)
2 = 40o, s is the number of unit

cell and δϕ2 = 2.5o (i - iv) Origami con�gurations at dihedral angle (θ) = 180o, 150o, 100o and 0o respectively. (e)
Variation of unidirectional curvature while keeping the total length of the origami tessellation the same and increasing the
number of unit cells. The asymmetric curvatures are presented considering the gradation schemes of Figures (a - d). (f)
(i - iv) Three-dimensional programmable metasurfaces of di�erent shapes obtained using multiple symmetric origami ribs
(v) Schematic representation of the deployment of a three-dimensional metasurface with programmable curvature. Note: θ
denotes the dihedral angle, i.e., the angle formed between the two panels along a crease; ϕ2 denotes the initial sector angle;
s is the number of unit cell of the Arc Miura pattern; δϕ2 is the step size to change the ϕ2 value; and n denotes the number
of zigzag crease lines.

geometry and δϕ2 is the step size to change the ϕ2 value. With the increase of the sector angle (ϕ2) from

one end of the curve to the other, the unidirectional curve (Figure 3(a)) corresponding to ϕ2 = 30o and

δϕ2 = 2o initially experiences an increase in curvature variation, followed by a diminishing curvature.
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The unfolded, partially-folded and fully-folded con�gurations of this unidirectional curve are obtained at

dihedral angles (θ) = 180o, 150o, 100o and 0o respectively shown in Figure 3(a(i)-a(iv)). When the sector

angle (ϕ2) is varied according to ϕ2 = ϕ2− sδϕ2 geometric parametrization, where ϕ2 = 50o and δϕ2 = 2o

in order to obtain the unidirectional curve (Figure 3(b)), it is noticed that the unidirectional curve leads

to a spiral curvature as the sector angle (ϕ2) decreases from one end to the other. The variation of

dihedral angle (θ) from 180o to 0o results in inward folding of the unidirectional curve as shown in Figure

3(b(i)-b(iv)).

When the sector angle (ϕ2) is varied according to ϕ
(i+1)
2 = ϕ

(i)
2 ± sδϕ2 geometric parametrization,

then unidirectional curvatures with di�erent degrees are obtained as shown in Figure 3(c). Note that we

introduce the superscript i in this geometric parametrization representing the number of zigzag creases.

When i is varied from 0 to n
2
, gradation is provided according to ϕ2 = ϕ2 + sδϕ2 and when i varied

from n
2
to n, gradation is provided according to ϕ2 = ϕ2 − sδϕ2. The unidirectional curve shown in

Figure 3(c) is obtained corresponding to ϕ2 = 40o, δϕ2 = 2o and n = 20. The unidirectional curve

initially forms more compact creases when the sector angle (ϕ2) increases from i = 0 to n
2
(with gradually

diminishing compactness towards the middle) and shows increasing compactness as sector angle (ϕ2)

decreases from i = n
2
to n. As the dihedral angle (θ) decreases from 180o to 0o, the unidirectional curvature

transitions from a �at sheet (unfolded con�guration) to a more accentuated symmetric curvature (fully-

folded con�guration), as depicted in Figure 3(c(i)-c(iv)).

When sector angle( ϕ2) is varied according to ϕ
(i+1)
2 = ϕ

(i)
2 ∓sδϕ2 geometric parametrization, then the

unidirectional curvature is obtained as shown in Figure 3(d). In this geometric parametrization, when i

is varied from 0 to n
2
, the gradation is provided according to ϕ2 = ϕ2 − sδϕ2, and when i is varied from

n
2
to n, gradation is provided according to ϕ2 = ϕ2 + sδϕ2. The unidirectional curvature shown in Figure

3(d) is obtained corresponding to ϕ2 = 40o, δϕ2 = 2.5o and n = 20. Here the unidirectional curve initially

experiences less folding when the sector angle (ϕ2) decreases from i = 0 to n
2
and shows less compactness

as sector angle (ϕ2) increases from i = n
2
to n. As the dihedral angle (θ) decreases from 180o to 0o,

the unidirectional curvature changes from a �at sheet (unfolded con�guration) to a symmetric curvature

(fully-folded con�guration), as depicted in Figure 3(d(i)-d(iv)). Interestingly, the degree of unidirectional

curvature in this geometric parametrization is observed to be inverted when compared with the curvature

of Figure 3(c).

We have further investigated the in�uence of varying the number of unit geometries on the curvature

of a unidirectional metastructure (refer to Figure 3(e)) while keeping the total length of the con�guration

constant at 90 mm. The number of units we have considered are 6, 9, 12, 15, and 18 with the earlier
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discussed geometric gradation parametrization (refer to the corresponding �gure legends). It can be

observed in Figure 3(e(i)) that for a greater number of units, the curves take a more accentuated form of

asymmetric parabolic con�guration. Figure 3(e(ii)) shows that when the number of units increases, the

con�guration of curves becomes more compact and forms a spiral shape. The con�guration of the curve in

Figure 3(e(iii)) becomes more accentuated and takes the shape of a close loop with the increases in number

of units. Figure 3(e(iv)) depicts that as the number of units increases to 6 and 18, the con�guration of

the curve becomes more condensed as compared with Figure 3(e(iii)) and acquires the shape of a closed

loop having a lesser diameter. In general, it can be noticed that with an increasing number of units, the

curvature of the developable origami metastructure increases and the curve transitions from a wide, and

less sharp to a narrow and sharper con�guration with a target symmetric or asymmetric geometry.

3.2. Programmable bi-directional S curvatures with target asymmetry

A programmable modulation of the rigid foldable S-curve curvature is accomplished by varying the

dihedral angles of Arc Miura architectures as demonstrated in Figure 2(b). The bi-directional curvature

is achieved by combining the Arc Miura unit sequences in one half with the reverse crease alignment of

Arc Miura unit sequences in the other half. In the Arc Miura base unit, the sector angle for M-vertices

and V-vertices (i.e. mountain and valley vertices) are taken as ϕ1 and ϕ2 respectively, while in the reverse

Arc Miura base unit, the sector angle for M-vertices and V-vertices are taken as ϕ2 and ϕ1 respectively.

In the piecewise assembly, the parameters of the initial Arc Miura unit are provided, and the subsequent

Arc Miura unit is attached to the initial Arc Miura unit on common edge vertices, therefore limiting the

number of independent parameters. The initial Arc Miura unit is known as the main pattern (m), and

the followed Arc Miura unit is known as the slave pattern (s). The redundant parameters are bm1 = bs1,

ϕm
1 = ϕs

1, m
m = ms and folding variable θmMZ = θsMZ .

The con�guration of S-curve shown in Figure 2(b) is formed using the following parameters: n (number

of zigzag lines) = 30, m (number of straight lines) = 3, a1 = 30 mm, b1 = 30 mm, L (total length of unit

cell) = 90 mm, sector angles ϕ1 = 60o and ϕ2 = 40o, and θ in the range of 180o to 0o. The S curvature

takes an unfolded con�guration resembling the �at-folded sheet at a dihedral angle (θ) = 180o (refer to

Figure 2(b(i))). When the dihedral angle (θ) is reduced to 150o, the curve achieves a partially-folded

con�guration showing bidirectional curvature, as depicted in Figure 2(b(ii)). With further decrease in

the dihedral angle (θ) to 100o, the curve shows a contracted bidirectional curvature resembling S shape

(Figure 2(b(iii))). When the dihedral angle (θ) becomes 0o, the curve achieves a fully-folded con�guration

resembling two near-zero thickness circles formed due to the complete folding of the creases (Figure

2(b(iv))). Physical demonstration of the programmable S curvature with di�erent degrees from a �at
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Figure 4: Programmable asymmetric S shape curvatures obtained through graded Miura derivatives. For
achieving a target asymmetry in the unidirectional curvatures, we introduce geometric gradation by varying the sector
angle (ϕ2) at every unit cell while keeping the other independent variables constant. (a) Gradation is provided using
ϕ2 = ϕ2 + sδϕ2 where ϕ2 = 30o, s is the number of unit cell and δϕ2 = 2o (i - iv) Origami con�gurations at dihedral
angle (θ) = 180o, 150o, 100o, 0o respectively. (b) Gradation is provided using ϕ2 = ϕ2 − sδϕ2 where ϕ2 = 50o, s is the
number of unit cell and δϕ2 = 1o (i - iv) Origami con�gurations at dihedral angle (θ) = 180o, 150o, 100o, 0o respectively.

(c) Gradation is provided for i = 0 to n
2 using ϕ

(i+1)
2 = ϕ

(i)
2 + sδϕ2 and for i = n

2 to n using ϕ
(i+1)
2 = ϕ

(i)
2 − sδϕ2 where

n is number of zigzag crease line, ϕ
(i)
2 = 40o, s is the number of unit cell and δϕ2 = 2o (i - iv) Origami con�gurations at

dihedral angle (θ) = 180o, 150o, 100o, 0o respectively. (d) Gradation is provided for i = 0 to n
2 using ϕ

(i+1)
2 = ϕ

(i)
2 − sδϕ2

and for i = n
2 to n using ϕ

(i+1)
2 = ϕ

(i)
2 + sδϕ2 where n is number of zigzag crease line, ϕ

(i)
2 = 40o, s is the number of unit

cell and δϕ2 = 2o (i - iv) Origami con�gurations at dihedral angle (θ) = 180o, 150o, 100o, 0o respectively. (e) Variation
of bidirectional curvature while keeping the total length of the origami tessellation the same and increasing the number of
unit cells. The asymmetric curvatures are presented considering the gradation schemes of Figures (a - d). (f) (i - iii)
Three-dimensional programmable metasurfaces of di�erent shapes with bi-directional curvature obtained using multiple
bi-directional S-shaped origami ribs (iv) Schematic representation of a generic metasurface that can be obtained using
optimally graded origami ribs using inverse design. Note: θ denotes the dihedral angle, i.e., the angle formed between the
two panels along a crease; ϕ2 denotes the initial sector angle; s is the number of unit cells of the Arc Miura pattern; δϕ2 is
the step size to change the ϕ2 value; and n denotes the number of zigzag crease lines.

sheet to a completely compacted stage under the variation of dihedral angle from 180o to 0o is depicted

in Figure 2(b(v)-b(viii))).

The symmetrical bi-directional S curvatures can be transformed into asymmetrical S curvatures

through the incorporation of geometric gradation. The gradation is introduced by altering the sector
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angle (ϕ2) following di�erent parametrization schemes at each unit geometry while keeping the other

independent variables constant. The programmable S-curve depicted in Figure 4(a) is achieved by mod-

ifying the sector angle (ϕ2) according to ϕ2 = ϕ2 + sδϕ2 geometric gradation parametrization, where ϕ2

is the initial sector angle, s is number of unit geometry and δϕ2 is the step size to change the ϕ2 value.

The S-curve obtained here is generated considering ϕ2 = 30o and δϕ2 = 2o. It can be observed that

with the variation of sector angle (ϕ2) from one end to the other end through the above parametrization

scheme, asymmetric curvature can be achieved with narrower curvature on the left and wider curve on the

right end (refer to Figure 4(a)). The unfolded, partially-folded and fully-folded con�gurations at dihedral

angles (θ) = 180o, 150o, 100o and 0o respectively are shown in Figure 4(a(i)-a(iv)), demonstrating the

curvature programmability of a single origami architecture from a �at state to two and three-dimensional

state transitions.

The programmable S curvature shown in Figure 4(b) is obtained based on the alteration of sector

angle (ϕ2) through ϕ2 = ϕ2 − sδϕ2 geometric gradation parametrization with ϕ2 = 50o and δϕ2 = 1o.

It can be noticed that with the variation of sector angle (ϕ2) from one end to the other end through

the above parametrization, the nature of asymmetry becomes reverse to the con�guration presented in

Figure 4(a). As the dihedral angle (θ) decreases from 180o to 0o, the S-curve goes from a �at sheet

(unfolded con�guration) to an asymmetric S curvature (fully-folded con�guration) as depicted in Figure

4(b(i)-b(iv)).

The programmable S curvatures demonstrated in Figure 4(c) is achieved by tailoring the sector angle

(ϕ2) according to the ϕ
(i+1)
2 = ϕ

(i)
2 ±sδϕ2 geometric gradation parametrization with ϕ2 = 40o and δϕ2 = 2o

and n = 30. In this geometric parametrization, gradation is provided according to ϕ2 = ϕ2 + sδϕ2 for i

ranging from 0 to n
2
and according to ϕ2 = ϕ2 − sδϕ2 for i ranging from

n
2
to n, where n is the number of

zigzag creases. In the partially folded form, it forms a circular shape on both the left and right sides, with

di�erent radii, resembling the shape of a seahorse. The folding behavior of the asymmetric S curvature

with the variation of dihedral angle (θ) from 180o to 0o can be observed in Figure 4(c(i)-c(iv)).

The programmable S curvatures depicted in Figure 4(d) is obtained by grading the sector angle (ϕ2)

according to this ϕ
(i+1)
2 = ϕ

(i)
2 ∓ sδϕ2 geometric gradation parametrization with ϕ2 = 40o, δϕ2 = 2o and

n = 30. In this gradation architecture, the variation of sector angle (ϕ2) is considered as follows: for i

from 0 to n
2
through ϕ2 = ϕ2 − sδϕ2 and for i from n

2
to n through ϕ2 = ϕ2 + sδϕ2. It can be observed

from the con�gurations that depending on the value of the dihedral angle (θ) the asymmetry in the S

curvature can be programmed with di�erent degrees (refer to Figure 4(d(iii)-d(iv))).

We have further investigated the in�uence of varying the number of unit geometries on the S curvature
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of a bidirectional metastructure (refer to Figure 4(e)) while keeping the total length of the con�guration

constant at 90 mm. The number of units we have considered are 14, 16, 18, 20 and 22 with the earlier

discussed geometric gradation parametrization (refer to the corresponding �gure legends). It can be

observed in Figure 4(e) that for a greater number of units, the curves take a more accentuated form of

asymmetric or anti-symmetric S con�guration depending on the gradation architecture. In general, with

an increasing number of units, the curvature of the developable origami metastructure increases and the

curve transitions from a wide, and less sharp to a narrow and sharper con�guration with a target curved

geometry, wherein a two to three-dimensional shape transition can be realized.

The two-dimensional curvatures depicted in Figures 3(a-d) and 4(a-d) can further be extended to

3D metasurfaces with target curvatures as shown in Figures 3(f) and 4(f). Multiple two-dimensional

origami architectures can be attached to each other as ribs, wherein the ribs are interconnected by thin

and �exible materials of functional interest. Interestingly, the three dimensional surfaces can be tailored

to have unidirectional or bi-directional curvatures and di�erent peripheral shapes with symmetric and

asymmetric geometries depending on the rib origami architectures, their number and orientations. On-

demand programmability in the surface curvatures can be achieved through controlling the dihedral angles

of the ribs through limited actuation as depicted in Figure 3(f(v)). In principle, through appropriate

spatial gradation of the rib origami architectures, the bi-directional curvatures can further be extended

to have multi-directional surface curvatures as shown in Figure 4(f(iv)).

3.3. Programmable helical curvatures with orthogonal rims

A programmable variation of the rigid foldable helical curvature is accomplished through piece-wise

assembly of the inclined Arc Miura architecture, as demonstrated in Figure 5. As shown in Figures 5 and

6, it can be noticed that the class of helical architectures discussed in this subsection possesses the rims

orthogonal to the plane on which the helix rests, i.e. the elevation direction is parallel to the plane of

rims. In the piecewise assembling of these helical curves, the parameters of initial inclined Arc Miura unit

are provided and the unit is attached to the subsequent inclined Arc Miura unit through common edge

vertices, therefore limiting the number of independent parameters. The initial unit is known here as main

pattern (m) and the subsequent inclined Arc Miura unit is known as slave pattern (s). The redundant

parameters are bm1 = bs1, ϕ
m
1 = ϕs

1, m
m = ms and folding variable θmMZ = θsMZ . The con�gurations of

helical curve shown in Figure 5 is achieved according to the following parameters: n (number of zigzag

lines) = 40, m (number of straight lines) = 5, a1 = 30 mm, b1 = 30 mm, L (total length of unit cell) =

90 mm, sector angles ϕ1 = 60o and ϕ2 = 40o, α = 12o and θ is varied from 180o to 0o.

The helical curvature assumes a two-dimensional �at sheet shape (unfolded con�guration) at a dihedral
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Figure 5: Programmable helical curvatures with elevation-wise uniform geometry and orthogonal rims. (a)
Programmable helical curvature formed using inclined Arc Miura assemblies. (i - iv) Unfolded �at-, partially-, and fully-
folded con�gurations of helical curvature at a dihedral angle (θ) = 180o, 150o, 100o, 0o respectively (b) Physical prototype
of helical curvature corresponding to the con�gurations shown in Figure (a) (c) Con�guration of helical curvatures achieved
by considering n = 50 with di�erent values of α (d) Con�guration of helical curvatures achieved by considering n = 70
with di�erent values of α (e) Con�guration of helical curvatures achieved by considering n = 90 with di�erent values of
α (f) Con�guration of helical curvatures achieved by considering n = 110 with di�erent values of α. Note: θ denotes the
dihedral angle, i.e., the angle formed between the two panels along a crease; α denotes the inclination angle, i.e., the angle
made by the straight edge of the inclined Arc Miura pattern with horizontal axes; n denotes the number of zigzag crease
lines; and "pitch" denotes distance between successive turns of the helix.

angle (θ) = 180o (refer to Figure 5(a(i))). As the dihedral angle (θ) is reduced to 150o the helical curve

demonstrates an elevation and starts folding in a helical form (Figure 5(a(ii))). With further decrease in

the dihedral angle (θ) to 100o, the elevation further increases, as depicted in Figure 5(a(iii)). When the

dihedral angle (θ) reaches 0o, the helical curve shows a fully compact folded helical shape as shown in

Figure 5(a(iv)). The folding behaviour of the helical curve is validated through physical prototypes as

illustrated in Figure 5(b(i)-b(iv)), wherein a perfect agreement can be observed with the computational

motion analysis.

We have investigated the behaviour of the helical curvature with the variation in inclination angle

(α) and number of zigzag lines (n) while maintaining the dihedral angle constant at θ = 120o. Here

inclination angle is de�ned as the angle made by the straight edge of the inclined Arc Miura pattern with

the horizontal axes (refer to supplementary material section S2.2). For the variation of zigzag line (n)
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as 50, 70, 90 and 100, the inclination angle (α) is taken as 12o, 22o, 45o and 58o. When the number of

zigzag line (n) is 50, the helical curve shows only one turn (Figure 5(c)). As the number of zigzag line (n)

increases to 70, the helical curve shows two turns (Figure 5(d)). Further increasing the number of zigzag

lines (n) to 110 results in the helical curve showing three turns (Figure 5(f)). It can be concluded that

as the number of zigzag line (n) increases, the number of turns shown by the helical curve also increases.

Additionally, the folding of the helical curve increases with the increase in inclination angle (α).

The programmable architecture of helical curves shown in Figure 5 will always result in symmetric

uniform helical curvature. In order to achieve symmetric as well as asymmetric helical curvatures with

elevation-wise varying diameter, we have further incorporated geometric gradation similar to the earlier

subsections through the modi�cation of sector angle (ϕ2). The helical curvatures depicted in Figure

6(a) is achieved through the modi�cation of sector angle (ϕ2) according to ϕ2 = ϕ2 + sδϕ2 geometric

parametrization with ϕ2 = 30o and δϕ2 = 2o. The helical curve shows single turn, and the pitch of the

helical curve increases with a decrease in the dihedral angle (θ). Moreover, the top end of the helical

curve shows more contraction of inclined Arc Miura units due to the increasing value of sector angle (ϕ2)

as depicted in Figure 6(a(iii)-a(iv)).

The programmable helical curvatures in Figure 6(b) are obtained by the modi�cation of sector angle

(ϕ2) according to this ϕ2 = ϕ2 − sδϕ2 geometric parametrization with ϕ2 = 50o and δϕ2 = 1o. It can

be noted that the helical curve displays two turns here depending on the assumed geometric parameters.

Additionally, the diameter of the helical turns decreases as the curve starts taking the elevation. In Figure

6(b(iii)), it can be noticed that the pitch of the helical curve is nearly negligible at a dihedral angle (θ)

of 100o, but as the dihedral angle (θ) reduces to 0o due to fully folding of the creases, the helical curve

shows a signi�cant pitch (Figure 6(b(iv))).

The curvatures in Figure 6(c) is achieved by the alteration of sector angle (ϕ2) according to the

ϕ
(i+1)
2 = ϕ

(i)
2 ± sδϕ2 geometric gradation parametrization with ϕ2 = 40o, δϕ2 = 2o and n = 40. The

variation of i from 0 to n
2
provides the sector angle (ϕ2) according to ϕ2 = ϕ2 + sδϕ2 gradation scheme,

while for the variation of i from n
2
to n provides the sector angle (ϕ2) according to ϕ2 = ϕ2 − sδϕ2

gradation scheme. The helical curve shows two turns, and the diameter of helical turns increases with an

increase in the elevation as seen at dihedral angle (θ)= 0o (Figure 6(c(iv))).

The programmable helical curve curvatures in Figure 6(d) is obtained by the tailoring of sector angle

(ϕ2) according to ϕ
(i+1)
2 = ϕ

(i)
2 ∓ sδϕ2 geometric parametrization with ϕ2 = 40o, δϕ2 = 2o and n = 40.

The variation of i from 0 to n
2
provides the sector angle (ϕ2) according to ϕ2 = ϕ2 − sδϕ2 gradation

scheme, while for the variation i from n
2
to n, provides the sector angle (ϕ2) according to ϕ2 = ϕ2 + sδϕ2
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Figure 6: Programmable helical curvatures with elevation-wise varying geometric features and orthogonal
rims. Geometric gradation is introduced by varying the sector angle (ϕ2) at every unit cell and keeping the other inde-
pendent parameters constant. (a) Gradation is provided using ϕ2 = ϕ2 + sδϕ2 where ϕ2 = 30o, s is the number of unit cell
and δϕ2 = 2o (i - iv) Origami con�gurations at dihedral angle (θ) = 180o, 150o, 100o, 0o respectively. (b) Gradation is
provided using ϕ2 = ϕ2 − sδϕ2 where ϕ2 = 50o, s is the number of unit cell and δϕ2 = 1o. (i - iv) Origami con�gurations

at dihedral angle (θ) = 180o, 150o, 100o, 0o respectively. (c) Gradation is provided for i = 0 to n
2 using ϕ

(i+1)
2 = ϕ

(i)
2 +sδϕ2

and for i = n
2 to n using ϕ

(i+1)
2 = ϕ

(i)
2 − sδϕ2 where n is number of zigzag crease line, ϕ

(i)
2 = 40o, s is the number of unit

cell and δϕ2 = 2o. (i - iv) Origami con�gurations at dihedral angle (θ) = 180o, 150o, 100o, 0o respectively. (d) Gradation

is provided for i = 0 to n
2 using ϕ

(i+1)
2 = ϕ

(i)
2 − sδϕ2 and for i = n

2 to n using ϕ
(i+1)
2 = ϕ

(i)
2 + sδϕ2 where n is number of

zigzag crease line, ϕ
(i)
2 = 40o, s is the number of unit cell and δϕ2 = 2o. (i - iv) Origami con�gurations at dihedral angle

(θ) = 180o, 150o, 100o, and 0o respectively. (e) Variation of helical curvature and asymmetry with increasing the number
of unit cells while keeping the total length of the origami structure the same. The same gradation scheme as Figures (a -
d) is utilized for this investigation. Note: θ denotes the dihedral angle, i.e., the angle formed between the two panels along
a crease; ϕ2 denotes the initial sector angle; s is the number of unit cells of the inclined Arc Miura pattern; δϕ2 is the step
size to change the ϕ2 value; n denotes the number of zigzag crease lines; and "pitch" denotes distance between successive
turns of the helix.

gradation scheme. The helical curve shows a single turn, and the crease at the top end of the helical

curve is more contracted due to the increased sector angle (ϕ2) (Figure 6(d(iv))). Furthermore, the helical

curve completes full turns after fully folding the crease, which is only possible when the dihedral angle

(θ) decreases from 180o to 0o.

We have further investigated the e�ect of changing the number of unit geometries on the curvature

of a helical shape (Figure 6(e)) while keeping the total length of the con�guration constant at 90 mm.

The number of units we have considered are 17, 18, 19, 20 and 21, with the earlier discussed geometric

gradation parametrization schemes. As depicted in Figure 6(e), the curvature of the helical architecture
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gets more accentuated with symmetric or asymmetric variation along the curved pro�le as the number of

units increases depending on the adopted gradation scheme. In general, the numerical results indicate that

by adjusting the dihedral angle and incorporating gradation, it is possible to modify the pitch, diameter,

and number of turns of a helical curve. Moreover, changing the number of geometric units along with

gradation can also alter the orientation of the curve as per programmable demands. While the uniform

architectures shown in Figure 5 result in uniform diameter along the elevation, the graded architectures

presented in Figure 6 can lead to elevation-wise control in the diameter. The gradation schemes of Figure

6(a, b) show elevation-wise continuously decreasing or increasing diameter, and the gradation schemes of

Figure 6(c, d) can achieve symmetric elevation-wise increasing or decreasing diameters about the mid-

pro�le length. In this context, it may further be noted that the trend of elevation-wise diameter variation

can be programmed in a more generic way to achieve target pro�les by introducing appropriate gradation

schemes following the proposed framework.

3.4. Programmable helical curvatures with planar rims

As discussed in the preceding subsection, it can be noticed that the helical architectures possess rims

orthogonal to the plane on which the helix rests, i.e. the elevation direction is parallel to the plane of

rims (refer to Figures 5 and 6). In this subsection, we propose a new class of second-order Miura origami

resulting in circular and helical curvatures with planar rims (refer to Figure 7). It is worth further noting

that all the unidirectional, bidirectional and helical curvatures investigated so far do not have in-plane

rims (i.e. the plane of curvature and the plane of origami tessellation are not in the same plane), unlike

the con�gurations we investigate here.

The helical curvatures with planar rims are obtained through piecewise assembling of tapered Arc

Miura patterns with or without gradation, wherein the programmability is achieved by altering the

dihedral angle, as depicted in Figure 7. In the piecewise assembly, the initial tapered Arc Miura unit

(known as main pattern (m)) is attached to the subsequent similar tapered Arc Miura unit (known

as slave pattern (s)). The parameters of main pattern is provided initially, and the attachment at the

common vertex with the main pattern limits the number of independent parameters for the slave pattern.

These redundant parameters are b1
m
j = b1

s
j+1, ϕ

m
1 = ϕs

1, (ϕ1 − ρ)m = (ϕ1 − ρ)s, mm = ms and folding

variable θmMZ = θsMZ . The con�gurations of helical curves depicted in Figure 7 are generated using the

following parameters: n (number of zigzag lines) = 5, m (number of straight lines) = 27, a1 = 40 mm,

b1 = 20 mm, L (total length of unit cell) = 90 mm, sector angles ϕ1 = 60o and ϕ2 = 50o, ρ = 18o and θ

varied from 180o to 90o.

An unfolded con�guration of the tapered Arc Miura assembly (�at sheet) at a dihedral angle (θ) = 180o
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Figure 7: Programmable helical curvatures with elevation-wise varying geometric features and planar rims.
(a) Programmable helical curvature formed from tapered Arc Miura assemblies. (i - iv) Unfolded �at-, partially- and
fully-foldable con�gurations of helical curvatures at a dihedral angle (θ) = 180o, 150o, 120o, 90o. (v - viii) A special case
of circular deployment when both ϕ1 = ϕ2, and ρ = 0 conditions are satis�ed (b - e) Origami con�gurations at dihedral
angle (θ) = 180o, 150o, 120o, 90o respectively considering di�erent gradation schemes. (b) Gradation using ρ = ρ + sδρ
where ρ = 18o and δρ = 1o. (c) Gradation using ρ = ρ − sδρ where ρ = 28o and δρ = 1o. (d) Gradation is provided for
i = 0 to m

2 using ρ(i+1) = ρ(i) + sδρ and for i = m
2 to m using ρ(i+1) = ρ(i) − sδρ where ρ(i) = 25o and δρ = 1.5o. (e)

Gradation is provided for i = 0 to m
2 using ρ(i+1) = ρ(i)− sδρ and for i = m

2 to m using ρ(i+1) = ρ(i)+ sδρ where ρ(i) = 28o

and δρ = 1.5o. Note: θ denotes the dihedral angle, i.e., the angle formed between the two panels along a crease; ρ denotes
the angle between the straight crease lines; ϕ1 and ϕ2 denote the sector angles for adjacent zigzag creases with the straight
crease; s is the number of unit cells of the tapered Arc Miura pattern; δρ is the step size to change the ρ value; m denotes
the number of straight crease lines; and "pitch" denotes distance between successive turns of the helix.
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is shown in Figure 7(a(i)). As the dihedral angle (θ) decreases to 150o, the �at sheet takes a helical pro�le

(Figure 7(a(ii))). With further decrease in dihedral angle (θ) to 120o, the origami pro�le gets contracted

due to the folding of creases (Figure 7(a(iii))). At a dihedral angle (θ) of 90o, the con�guration assumes

the fully-folded helical pro�le as depicted in Figure 7(a(iv)). As a special case, when both ϕ1 = ϕ2,

and ρ = 0 conditions are satis�ed, the proposed architecture shows in-plane circular curvature with

active programmability, as shown in Figure 7(a(v)-a(viii))). Similar in-plane circular curvatures have

been presented in literature [77], which essentially improves the con�dence in the current computational

framework through qualitative validation.

Notably, the curvatures presented in Figure 7(a) do not have any spatial variation along the pro�le of

the origami architecture. Symmetric and asymmetric curvatures can be achieved through the introduction

of spatial geometric gradation, as demonstrated in Figure 7(b-e). The gradation is accomplished here by

altering the angle ρ at each unit geometry (refer to supplementary material section S2.3 and Figure S7 for

further details) while keeping the values of the other independent variables constant. The programmable

helical curvature depicted in Figure 7(b) is achieved by modifying the angle ρ according to ρ = ρ + sδρ

geometric gradation parametrization with ρ = 18o, δρ = 1o and m = 27, where ρ is the initial angle, s is

the number of unit geometry and δρ is the step size to change the ρ value. With the decrease in dihedral

angle (θ), elevation of the metastructure increases as depicted in Figure 7(b(ii)-b(iv)), while following an

asymmetric curvature along the longitudinal pro�le. The geometric parametrization scheme ρ = ρ− sδρ

leads to a reverse nature of asymmetry with programmable helical curvature (as a function of dihedral

angle, θ) as depicted in Figure 7(c) considering ρ = 28o, δρ = 1o and m = 25.

Symmetrically varying curvature about the midsection of the origami pro�le can be achieved following

ρ(i+1) = ρ(i) ± sδρ geometric gradation scheme, as depicted in Figure 7(d) with ϕ2 = 25o, δρ = 1.5o and

m = 20. The variation of i from 0 to m
2
is provided following the gradation scheme of ρ = ρ+ sδρ, while

for i from m
2
to m, the gradation is provided according to ρ = ρ− sδρ, where m is the number of straight

creases. The helical curve shows higher pitch for i varied from 0 to m
2
and lower pitch for i varied from

m
2
to m. The out-of-plane curvature and elevation increase due to the folding of creases with a decrease

in the dihedral angle (θ) from 150o to 90o (Figure 7(d(ii)-d(iv)).

The programmable helical curvature depicted in Figure 7(e) is achieved by modifying the angle ρ

according to ρ(i+1) = ρ(i) ∓ sδρ gradation scheme with ϕ2 = 28o, δρ = 1.5o and n = 20. The variation of

i from 0 to m
2
is provided following the gradation scheme of ρ = ρ − sδρ, while for i from m

2
to m, the

gradation is provided according to ρ = ρ + sδρ, where m is the number of straight creases. The helical

curve shows lower pitch for i varied from 0 to m
2
and higher pitch for i varied from m

2
to m. The out-of-
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plane curvature and elevation increase due to the folding of creases with a decrease in the dihedral angle

(θ) from 150o to 90o (Figure 7(e(ii)-d(iv)). In general, it is noticed that the incorporation of geometric

gradation can modify pitch, as well as the in and out-plane curvature of the helical architecture.

In summary, we have demonstrated that a range of symmetric and asymmetric curvatures can be

achieved with unidirectional, bidirectional, and helical shapes through graded piecewise assembly of

second-order Miura-ori derivatives. It is shown that planar and orthogonal rims in the helical origami

architectures can be obtained from a �at 2D con�guration by exploiting the folding mechanics and geom-

etry of functionally architected creases. Further, the curvature, degree of asymmetry, elevation, diameter,

and pitch can be actively programmed as a function of the dihedral angle by limited actuation exploiting

the one-degree-of-freedom characteristics of the proposed origami architectures. All the proposed archi-

tectures conform to the developability criteria, demonstrating two to three dimensional shape transition

characteristics.

4. Conclusions and perspective

In this paper, we have proposed second-order graded derivatives of Miura origami, leading to pro-

grammable uni and bi-directional curvatures with symmetric or asymmetric geometries. It is demon-

strated that a �at sheet of material can be converted to parabolic, S shape, circular and helical curva-

tures with planar or orthogonal rims through minimal actuation by altering the dihedral angle of a unit

cell. The curvature, degree of asymmetry, elevation, diameter and pitch can be actively programmed

as a function of the folding angle of optimally selected creases exploiting the single-degree-of-freedom

characteristics of the proposed origami architectures.

The conventional Miura pattern leads to in-plane deformation without any three dimensional shape

morphing. We propose derivatives of the Miura geometry by strategic modi�cations in the unit cell that

lead to achieving target curvatures, wherein the asymmetry can further be controlled through geometric

gradations. The Arc Miura unit cells result in unidirectional parabolic or bi-directional S shapes, while

the helical curvatures with planar and orthogonal rims are obtained by inclined Arc Miura and tapered

Arc Miura unit cells respectively. It can be noted that the two-dimensional uni-directional parabolic

and S-shape curvatures can further be extended to 3D metasurfaces with target curvatures, wherein

a programmable control can be achieved through minimal actuation of the constituting origami rib

architectures.

The rigid foldability and motion behavior of the graded geometries are investigated thoroughly based

on computational simulations and tabletop experiments using physical prototypes, leading to the evidence

of on-demand shape morphing under limited actuation and transitional deployment from 2D to 3D states.
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An e�cient approach of kinematic mapping is developed based on idealized spherical 4R linkages involving

Denavit-Hartenberg matrix notations, resulting in piecewise spatially-graded tessellations for achieving

programmed pre-de�ned symmetric and asymmetric curvatures with complex two and three-dimensional

geometrical shapes. The proposed framework of graded Miura origami derivatives is generic in nature, and

it can be extended to achieve any pre-de�ned curves and metasurfaces with multiple curvatures having

di�erent degrees through incorporating appropriate gradation schemes, wherein inverse optimization can

be readily exploited.

Real-time programmable mechanical features including shape morphing ability in metamaterials and

metasurfaces can be crucial for a range of advanced space applications such as adaptive solar arrays,

deployable space structures and antennas, robotic arms, actuators and advanced robotic materials. For

example, precise control over the curvature and geometric parameters of the origami structure can enable

a wide range of frequencies, �exible variation of radiation properties, and the ability to switch polar-

isation states, making these designs highly adaptable for advanced space communication systems and

re-con�gurable antenna designs. The fundamental mechanics of the proposed origami metamaterials be-

ing mostly scale-independent, this rapidly emerging class of deployable shape-changing architectures can

be directly transferred for application in a range of milli-, micro-, and nanometre-size space systems,

essentially opening avenues for the design of various programmable mechanical and aerospace structures

at multiple length-scales.

5. Methods

5.1. Computational methods

Kinematic and geometric analyses of Arc Miura, inclined Arc Miura and tapered Arc Miura are carried

out to obtain programmed uniform and graded tessellations of symmetric and asymmetric curvatures

such as unidirectional curvature, S curvature and helical curvature with planar and orthogonal rims. The

detailed computational formulation is provided in the supplementary material.

5.2. Physical experiments

Besides extensive computational analyses, we have prepared physical prototypes of selected con�g-

urations to demonstrate the programmable on-demand shape morphing characteristics of a range of

symmetric and asymmetric curvatures such as unidirectional, bidirectional S and helical geometries. For

the physical experiments, the material used is 300 GSM thickness origami �at sheets with dimensions

12 × 18 inches that can be easily cut into desired shapes. The creases are created using CAD packages

and automated scoring machines before folding according to the valley and mountain patterns. The
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qualitative motion behaviour of the origami architectures is captured using a high-quality camera based

on tabletop experiments.

Supplementary materials

Supplementary sections:

S1: Kinematic analysis of unit geometry

S2: Geometric analysis of uniform and graded tessellations

Supplementary �gures: Figures S1 to S7
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