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Abstract

Real-time programmable mechanical features including shape morphing ability in metamaterials and
metasurfaces can be crucial for a range of technologically demanding space applications such as deploy-
able space structures and antennas, adaptive solar arrays, robotic arms, actuators and advanced robotic
materials. This paper proposes second-order derivatives of spatially-varying Miura-based origami ar-
chitectures like graded Arc Miura, inclined Arc Miura, and tapered Arc Miura for achieving a range
of programmable shape-changing capabilities. The rigid foldability and motion behavior of the graded
geometries are investigated thoroughly based on computational simulations and tabletop experiments
using physical prototypes, leading to the evidence of on-demand shape morphing and target curva-
ture attainment under limited actuation, and transitional deployment from 2D to 3D states. An ef-
ficient approach of kinematic mapping is developed based on idealized spherical 4R linkages involving
Denavit-Hartenberg matrix notations, resulting in piece-wise spatially-graded tessellations for achieving
programmed pre-defined symmetric and asymmetric curvatures with complex two and three-dimensional
geometrical shapes. The fundamental mechanics of the proposed origami metamaterials being mostly
scale-independent, this emerging class of deployable shape-changing architectures can be directly trans-
ferred for application in a range of milli-, micro-, and nano-metre-size space systems, essentially opening
avenues for the design of various programmable structures and machines at multiple length-scales.
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1. Introduction
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Origami, the Japanese art of folding paper into a variety of three-dimensional shapes, has inspired a
rapidly growing branch of science and engineering that specializes in the manufacture of three-dimensional
engineering structures from initially two-dimensional pre-forms through fold-like processes (i.e. 2D to 3D
state-transition). While the word “origami” comes from the Japanese origins for “folded” (ori) and “paper”
(kami), the folding concepts of origami can be extended readily to other advanced materials suited for
critical engineering applications. Origami is a technique that can be thought of as a process in which a
large flat piece of material is folded in a pre-set way to form a particular target shape that is compact,
possibly rigid, deployable and portable, or sometimes produces a target motion behavior, depending on

the intended applications.
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The general field of deployable structures include various structural systems and mechanics such as
origami and kirigami, bar-hinge mechanisms, tensegrity and inflatable structures [1-6]. Different space
mechanisms and structures can be adopted based on application specific demands, analyzing the asso-
ciated advantages and disadvantages. For example, tensegrity structures are composed of a set of dis-
continuous compression bars and continuous cables in a self-balancing space grid structure. This unique
design makes them lightweight while maintaining stiffness. Furthermore, the stiffness, shape control and
equilibrium states of tensegrity structures can be precisely controlled by altering the string parameters.
However, these structures are inherently complex due to complicated joints, where each compression bar
interacts with several other bars, requiring various degrees of freedom for proper assembly and function-
ality [7, 8|. Origami architectures on the other hand rely on the foldable crease pattern for their intrinsic
stability and functionalities [6, 9, 10]. The foldable crease patterns of origami structures offer a range
of advanced functionalities including compact storage, predictable deformation, multistability, complex
shape attainment, negative Poisson’s ratio and lightweight design. Additionally, origami structures can
fold and unfold through limited actuation requirements with better control, significantly simplifying the
automated deployment and storage mechanism. Such advantages make origami-based architectures suit-
able for space applications. Over the recent years, origami folding patterns have been widely adopted in
a range of technologically demanding applications such as mechanical metamaterials and metasurfaces
[1, 11-19], nanomaterials [20-22], soft robotics [23-26], rotorcraft [27], energy absorbing protective struc-
tures and sandwich cores [28, 29|, energy harvesters [30], antennas [31], and large-scale space structures
[32-34]. The focus of this article is to achieve programmable state-transitional shape-morphing through
folding or unfolding creases and limited local actuation in functionally identified graded origami architec-
tures. In the following paragraphs, we will briefly review the progress in origami-assisted shape-morphing
and the prospects of achieving target curvatures.

Origami spring-inspired shape morphing and its application in soft robotics is investigated by Chen
et al. [35], wherein the nonlinear stretch-twist coupling of the springs has been considered. Cui et al.
combined two approaches to produce composite sheets by embedding a stiff origami/kirigami skeleton
with creases into thermal shrinkable polymer sheets for constructing innovative three-dimensional struc-
tures with curved surfaces from flat sheets [36]. Xu et al. proposed a flexible arc-armor inspired by
origami, similar to the traditional fish-scale armor assembly form [37]. Xiang et al. investigated the
energy absorption capability of origami-inspired structures with different straight and curved profiles
[38]. Mukhopadhyay et al. proposed a waterbomb-based tubular origami for obtaining a range of convex,

concave and programmable undulated shapes [39]. Further, Zhao et al. reported computational design
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methods for cylindrical and axisymmetric waterbomb tessellations, leading to a range of target curved
surfaces [40]. Zhang et al. proposed to exploit origami-based metasurfaces for designing stealth and
radar technologies [41]. Meeussen and van Hecke developed multistable sheets with rewritable patterns
for switchable shape-morphing (42|, wherein they focus on undulating metasheets that store memories of
mechanical stimuli in patterns of self-stabilizing scars. For achieving shape morphing, a significant num-
ber of studies have proposed kirigami patterns where cuts are introduced in addition to folding [43, 44].
Asma et al. reported curved-crease origami for a new class of morphing metamaterials [45]. Wang et al.
developed inflatable metamorphic origami patterns with the advantage of being a highly simplified de-
ployable system and capable of realizing multiple sequential motion patterns with a monolithic actuation
[46]. Liu et al. developed robotic surfaces with reversible and spatiotemporal control for shape morph-
ing and object manipulation [47|. Shape morphing and folding to curved surfaces have been proposed
through generalized design methods and mechanics of Miura-based origami structures [48, 49|, including
multi-material 4D printing and embedded actuation [50, 51|. The brief literature review presented above
reveals that while various other origami base patterns have been exploited for achieving target shapes and
curvatures, adoption of Miura-ori architectures are rather limited despite their advantageous one degree
of freedom kinematics. In the following section, we focus on the recent studies concerning Miura-based
origami architectures, and subsequently, the aim and scope of this paper will be discussed.

Rigid origami is a subcategory of origami architectures that allows continuous mobility between folded
states without the facets being twisted or stretched [52]. The miura base pattern is an elegant example
of rigid origami with a single degree of freedom, which finds widespread application in the fields of
engineering [53, 54]. The Miura-ori pattern is comprised of parallelogram facets that are identical to one
another and surround the vertices of degree 4. Miura is an excellent choice for the design of foldable or
deployable structures due to the fact that it possesses a high degree of symmetry, which is demonstrated
by the fact that it has periodicity (in its conventional form), as well as four essential geometric features:
(1) it is rigidly foldable, (2) it has only one degree of freedom, which determines the shape of the entire
structure, (3) it possesses negative Poisson’s ratio and (4) it is flat foldable [55]. Conventional Miura
forms exhibit tessellation property, employing a repetitive unit cell geometry built from repeating a single
tile size [56]. Miura-based patterns have recently been utilized in a variety of applications, including
deployable folded plate shelters and curved canopy designs [57-60|, subsea pipelines [61], automobile
crash boxes [62], foldable reconfigurable reflect array antenna designs [63], and crawling robots [64].
Several different forms of rigid folding based on the Miura pattern have been reported in the literature

including multi-layer and tubular architectures [65-67]. Constrained optimization algorithms have been
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used to build rigid generalized Miura origami tessellations that can lead to curved surfaces with single
or double curvature [68, 69]. A novel design of cylindrical and axisymmetric origami structures has been
proposed based on generalized Miura-Ori cells, wherein the structure can fit between two given surfaces
[70]. The coupling of layered Miura-origami architectures and rhombic honeycombs has been investigated
to develop origami metamaterials with programmable two-stage compressive strength [71]. Further,
Miura-ori pattern has been coupled with hexagonal honeycombs to develop 3D metamaterials with multi-
directional Poisson’s ratio modulation capabilities [72]. Miura-ori tesselations have been reported to be
very effective in energy absorption, including as a core of sandwich structures |73]. Fang et al. performed
a comprehensive experimental and analytical study on the dynamics of origami folding by investigating
stacked Miura-Ori structures with intrinsic bistability, wherein both intrawell and interwell oscillations can
be observed under harmonic base excitation [74]. Gattas and You presented the concept of curved creases
in Miura-ori patterns along with their parametrization for a wide range of rigid-foldable applications
[75]. Liu et al. proposed 4D Miura-based origami structures using shape memory alloys wherein a
temperature-dependent programmable feature can be obtained [76]. The vast possibility of developing
derivatives and piece-wise geometries concerning Miura-ori patterns has been investigated by altering a
single characteristic of the Miura pattern among the identified five characteristics, crease orientation,
crease alignment, developability, flat-foldability, and rectilinearity [77]. Such first-level derivatives lead to
stiff foldable patterns with a wider variety of surface geometries, including non-zero values for both single
and double curvature [60, 77, 78]. The capabilities of first-order Miura derivatives create a strong rationale
for extending the parametrization to second-order derivatives with further expansion in the design space
concerning two and three-dimensional shape morphing. This can be achieved by altering two or more
parameters in the unit cell geometry and introducing spatial gradation in the origami structure. In the
current paper, we will concentrate on such second-order graded derivatives of Miura-ori architectures
(refer to Figure 1) based on detailed kinematic analyses and tabletop experiments.

Kinematic analysis of the Miura origami models has received significant attention given that it is a
type of rigid origami which finds widespread engineering applications. The field of kinematics focuses on
mechanisms and motion geometry, eliminating any consideration of the forces operating on the mechanism
[79, 80]. When observed from the standpoint of a mechanism, the creases of origami can be interpreted
as rotation joints, while the facets can be interpreted as links [81]. Spherical linkages are often used
for analyzing Miura-ori folding mechanics, wherein it is characterized by a pattern consisting of a single
vertex and having all creases intersect at the vertex [82]. The rigid foldability of a pattern with many

vertex creases can be assessed using kinematic approaches where the pattern is viewed as a network of
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Figure 1: Geometrical architecture of Miura origami and its derivatives. For each of the Miura bases in subfigures
(a-h), we show the tessellated architecture (first column), unit cell dimensions (second column), and partially folded state
of the unit cells (third column). (a) Conventional Miura origami and its planar deployment. The subsequent origami
unit cells are obtained by modifying the conventional Miura geometry. (b) Arc pattern with reverse crease orientation
(¢) Arc Miura origami with modified crease alignment (d) Non-developable Miura pattern with modified developability
characteristics (e) Non-flat foldable Miura pattern with modified flat-foldability characteristics (f) Tapered Miura origami
with modified rectilinearity characteristics (g) Tapered Arc Miura origami obtained by coupling of tapered Miura and Arc
Miura origami (h) Inclined Arc Miura origami obtained by inclining straight creases of Arc Miura origami (i) A typical
representation of the symmetric and asymmetric curvatures achieved through the Miura derivatives.
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spherical links [83-85]. The kinematic analysis has been widely used to study and understand the motion
behavior of origami patterns, leading to a mapping among the independent degrees of freedom and the
deformed shape of the structure at any particular instance of the deformation [86, 87].

The conventional Miura pattern leads to in-plane deformation without any three dimensional shape
morphing. We would propose derivatives of the Miura geometry by strategic modifications in the unit
cell that lead to achieving target curvatures, wherein the asymmetry can further be controlled through
geometric gradations. In the current study, we will focus on developing the kinematic relations for
a range of second-order graded derivatives of the Miura-ori architectures considering symmetric and
asymmetric geometries, leading to target curvatures through two to three-dimensional state transitions.
The outcomes of the kinematic analyses will further be validated and supported by creating physical
prototypes. Through the proposed second-order graded derivatives like Arc Miura, inclined Arc Miura,
and tapered Arc Miura, we will demonstrate real-time programmable mechanical features including shape
morphing ability in metamaterials and metasurfaces along with state-transitional deployment which can

be crucial for a range of advanced engineering applications across the length scales.

2. Kinematic mapping of the motion behavior
2.1. Miura-ori architecture and its higher order derivatives

Miura-ori origami is a rigid origami architecture that has been extensively adopted in engineering
applications due to its unprecedented properties such as negative Poisson’s ratio, single degree of freedom,
rigid foldability, flat foldability, and developability. The Miura base pattern is formed from four identical
parallelogram plates (refer to Figure 1(a)). First- or second-order derivatives are produced when one or
more of the Miura base pattern’s features are altered. First-order derivative base patterns such as Arc
pattern and Arc-Miura (Figure 1(b,c)), non-developable Miura (Figure 1(d)), non-flat foldable Miura
(Figure 1(e)), and tapered Miura (Figure 1(f)) are developed by changing features like crease orientation
and crease alignment, developability, flat-foldability, and rectilinearity, respectively. When the features
of the first-order derivatives are further modified, second-order derivatives emerge. The second-order
derivatives can also be obtained by introducing spatial gradation while assembling the unit cells of first-
order derivatives for forming the tessellations. The repetition of these first or second-order derivatives
can result in the formation of curved profiles, which is the central theme of this paper.

In the following sections, we will demonstrate that the first-order derivative leads to the formation of
unidirectional curves and S-curves. However, these first-order derivatives are not enough to achieve helical
curves of different kinds. To achieve these curves, we need to modify the first-order derivatives, resulting

in the formation of second-order derivatives such as tapered Arc Miura pattern (Figure 1(g)) and inclined
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Arc Miura pattern (Figure 1(h)). The attainment of unidirectional, S and helical (with orthogonal and
planar rims) curves are discussed in adequate detail in the following sections along with the respective
kinematic analysis framework. These curves are generally symmetric in nature when no spatial variation
in the geometric features are considered. To achieve target asymmetry in these 3D curvatures, we would
further incorporate spatial gradation in the Miura geometry. Gradation is the process of altering one or
more independent variables in order to obtain a distinct symmetric and asymmetric curvature. In the
next subsection, we will focus on the parametrization and kinematic mapping for first and second-order
derivatives of Miura-ori including spatial gradation to achieve symmetric and asymmetric curvatures
along with two to three-dimensional state transition. Our specific focus will be on the kinematics of Arc
Miura, inclined Arc Miura and tapered Arc Miura architectures for achieving the target curvatures in

three dimensions using developable origami folding.

2.2. Kinematic analysis of unit cell geometry

Kinematic analysis on the foldability and motion behavior of the tessellations that are formed from
the four-crease Arc Miura, inclined Arc Miura and tapered Arc Miura bases is presented here. The folding
of zero-thickness bases can be modeled kinematically as spherical 4R linkage. This unit linkage has one
mountain crease and three valley creases. Given a [3;;41) angle of rotation, the relationship between
different dihedral angle (¢) as a function of the § can be derived as (refer to the supplementary material

section S1 and Figures S3, S4, for detailed derivation and validation).

tan % COS —’823;512 (1a)
= a
tan % COS —’823;”812

tan % cos —ﬁ%gﬁ”

— 1b
tan % COS —523;’312 (1b)
tan % cos —523—5512

b1 B23—PB12 (1C>
tan 5 cos =5
tan % cos —523;512 (1d)
tan % cos —523J2rﬁ12

In the following paragraphs, we discuss the motion behavior of three different first and second-order
derivatives of Miura origami architectures.

Kinematic motion behavior of Arc Miura pattern. Arc Miura pattern is a first-level derivative of the
Miura origami, created by modifying the crease alignment characteristics of the Miura base pattern (refer
to Figure 1(c)). Arc Miura folded configuration consists of m straight lines and n zigzag lines where ¢’
varies from 1, 2,..., m straight lines and j’ varies from 1, 2,..., n zigzag lines. i’ denotes the number

of straight creases and j’ denotes the number of zigzag crease. Its coordinates at a vertex K, ;; can be
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found out by 3D cylindrical coordinates where (z, y, z) = (rcos@, y, rsin ) with respect to origin. The
term origin in this context refers to the initial coordinates of vertex Ky ;, which are located at (0, 0, 0).

The components (7, , y) are given as
Ry for odd j’
Ry for even j’

(

(' —1)5 for odd i’ and odd j
(j — 1)% + (G for even ¢ and odd j’

(' — 2)% +(—C(p» foroddi and even j

\ (j' —2)§ + G + Cao for even ¢ and even j’

y = (i — 1)by sin WTZ (4)

The variable r, (, (42 and (p; are given in supplementary material section S2. 3D coordinates are used to
achieve unidirectional and S curvature.

Kinematic motion behavior of inclined Arc Miura pattern. Inclined Arc Miura is a modified version of
Arc Miura that is formed by inclining all the straight creases of Arc Miura at an angle « (refer to Figure
1(c, h) for Arc Miura and inclined Arc Miura patterns). Inclined Arc Miura folded configuration consists
of m straight lines and n zigzag lines where i’ varies from 1, 2,...m straight lines and j' varies from
1, 2,...n zigzag lines. i’ denotes the number of straight creases and j' denotes the number of zigzag
crease. Location of any vertex K ; can be found out by 3D cylindrical coordinates where (z, y, 2) =
(rcosf, y, rsinf) with respect to origin. The term origin in this context refers to the initial coordinates

of vertex K, j, which are located at (0, 0, 0). The components (r, 6, y) are given as

Ry for odd j’

Ry for eveny’

. . 'l— . . . .
(4" — 1)by sin T2 +- ]Tlaz sin o + a; sin « for odd " and odd 5’

. . ‘/— . . . .
(" — 1)by sin 252 + JTlag sina + a; sin « for even ' and odd 5’

(" — 1)by sin 122 +- %’al sina + (% — 1)agsina  for odd " and even j’

. . i/ . U . . .
(" — 1)by sin 42 + Laysina + (4 — 1)aysina for even 4" and even j
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Figure 2: Programmable uni- and bi-directional shape morphing with symmetric architectures. (a) Pro-
grammable unidirectional curvature formed from Arc Miura assemblies and qualitative validation using physical prototypes.
(i - iv) Unfolded flat, partially-, and fully-foldable configurations of unidirectional curvature at a dihedral angle (6) = 180°,
150°, 100°, 0° respectively. (v - viii) Physical prototypes corresponding to the computationally obtained programmable
unidirectional curvatures. Note that the obtained curvatures are symmetric about the mid-length. (b) Programmable
bidirectional S-shaped curvature formed from Arc Miura assemblies and qualitative validation using physical prototypes.
(i - iv) Unfolded flat, partially-, and fully-foldable configurations of bidirectional curvature at a dihedral angle (8) = 180°,
150°, 1007, 0° respectively. (v - viii) Physical prototypes corresponding to the computationally obtained programmable
bidirectional curvatures. Note that the obtained curvatures are symmetric (more precisely, anti-symmetric) about the mid-
length. Note: 6 denotes the dihedral angle, i.e., the angle formed between the two panels along a crease.

;

(' = 1)5 for odd ¢ and odd j’
J=1)5+¢ for even i’ and odd j’
g JU Vit 7
(' — 2)% +(— (4, for odd i and even j’
\ (7' — 2)% + (1 + (uo  for even i’ and even j’

The variable r, ¢, (42, (p1 and nyz are given in supplementary material section S2. 3D coordinates are
used to achieve helical curvature.

Kinematic motion behavior of tapered Arc Miura pattern. The tapered Arc Miura pattern is obtained
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by coupling the tapered Miura pattern and Arc Miura pattern in order to enable both in-plane and
out-of-plane deployment features (refer to Figure 1(c, f, g) for Arc Miura, tapered Miura and tapered Arc
Miura patterns). An Arc Miura pattern can be converted into a tapered Arc Miura pattern by tilting
the straight crease lines in the Arc Miura pattern. Tapered Arc Miura folded configuration consists
of m straight lines and n zigzag lines where i’ varies from 1, 2,...m straight lines and j' varies from
1, 2,...n zigzag lines. i’ denotes the number of straight creases and j’ denotes the number of zigzag
crease. Location of any vertex K, ; can be found out by 3D cylindrical co-ordinates where (z, y, z) =
(rcos@, rsinf, z) with respect to origin. The term origin in this context refers to the initial coordinates

of vertex Ky j, which are located at (0, 0, 0). The components (r, 6, z) are given as

Re  for odd ¢

Rpr for even ¢/

0=(—-1)¢ (9)

(

;! 1 .
%al cos 24CA  for odd j

z = (10)

_— »
%al cos A for even j’

\

The variable r, (, and ny;ca are given in supplementary material section S2. 3D coordinates are used to

achieve tapered Arc Miura piecewise geometries.

2.3. Kinematics of tessellated architectures

In the following section, we demonstrate a programmable attainment of curvature which can be
achieved by varying the dihedral angle. In general, dihedral angles are formed by the adjacent faces
of an origami fold and are preferred in origami research to directly represent the folding process. The
piecewise assembling of the Arc Miura sequences (with or without gradations) results in variable rigid
foldable symmetric and asymmetric curves. In the piecewise assembly algorithm, the parameters of the
initial Miura units are provided, and the subsequent Miura unit is attached to the initial Miura unit on
common edge vertices, therefore limiting the number of independent parameters. The initial Miura unit
is known as the main pattern (m), and the followed Arc Miura unit is known as the slave pattern (s).
By ensuring the continuity of the subsequent units in a tessellation (uniform or graded), symmetric and

asymmetric continuous curvatures are obtained, as discussed in the following section.
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3. Results and discussion

In this section, we will systematically demonstrate the attainment of programmable curvatures based
on the kinematic motion behavior and experiments using physical prototypes. It can be noted in this
context that a single Miura origami architecture is capable of assuming different degrees of curvature
depending on the actuation provided by a single degree of freedom, leading to the notion of active and

on-demand programmability.

3.1. Programmable asymmetry in unidirectional curvatures

Programmable symmetric and asymmetric unidirectional curvatures are realized here through uniform
and graded Arc Miura architectures, respectively. In unidirectional Arc Miura tessellation redundant

parameters are b" = bj, o' = ¢f, m™

= m® and folding variable 07, = 6%,, where, b; is the side
length, m is the number of straight lines, ¢; is the sector angle and #,;7 is the longitudinal dihedral
angle at M-vertices (refer to Figure 1(c)). The configurations shown in Figure 2(a) are formed using the
following parameters: n (number of zigzag lines) = 30, m (number of straight lines) = 3, a; = 30 mm,
by = 30 mm, L (total length of unit cell) = 90 mm, sector angles ¢; = 60° and ¢» = 40° and 6 varied
from 180° to 0°. The unidirectional curve assumes a completely unfolded configuration resembling a flat
sheet at a dihedral angle () = 180° (refer to Figure 2(a(i))). With the decrease of dihedral angle (6) =
150°, as depicted in Figure 2(a(ii)), the assembly achieves a partially-folded configuration resembling a
parabola. With a further decrease in the dihedral angle (6) = 100°, as depicted in Figure 2(af(iii)), the
parabolic configuration becomes more compact. When the dihedral angle (6) reaches 0°, the configuration
is fully folded and takes on a circular shape due to the full folding of creases (refer to Figure 2(a(iv))).
The curvature programming from unfolded to fully folded configuration is validated using a physical
prototype shown in Figure 2(a(v)-a(viii)), wherein an excellent agreement is observed with the motion
simulation results.

A programmable unidirectional curvature, as shown in the Figure 2(a), provides symmetric curvature,
while spatially varying and asymmetric curvature can be achieved through designed parametric gradation.
Gradation involves the process of altering independent geometric variables to obtain distinct (i.e. target)
symmetric and asymmetric curvatures. In the current investigation, to introduce gradation we have varied
the sector angle ¢ (following predefined gradation rules and geometric parametrizations) at each unit cell
geometry while keeping all other independent variables constant. Figure 3 demonstrates the attainable
symmetric and asymmetric curvatures of the unidirectional curves through gradation. The unidirectional
curvature variation shown in the Figure 3(a) can be obtained by varying the sector angle ¢, according

to ¢ = ¢ + S0 geometric parametrization, where ¢ is the initial sector angle, s is number of unit

11
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Figure 3: Programmable asymmetric unidirectional curvatures obtained through graded Miura derivatives.
For achieving a target asymmetry in the unidirectional curvatures, we introduce geometric gradation by varying the sector
angle (¢2) at every unit cell while keeping the other independent variables constant. (a) Gradation is provided using
P2 = ¢g + s0¢o where ¢o = 30°, s is the number of unit cell and d¢p = 2° (i - iv) Origami configurations at dihedral angle
() = 180°, 150°, 100° and 0° respectively. (b) Gradation is provided using ¢o = ¢2 — sd¢3 where ¢o = 50°, s is the number
of unit cell and d¢o = 2° (i - iv) Origami configurations at dihedral angle () = 180°, 150°, 100° and 0° respectively. (c)
Gradation is provided for i = 0 to 3 using qﬁgﬂ) = ¢;Z) + sd¢o and for i = (1) d)(l
is number of zigzag crease line, ¢él) = 40°, s is the number of unit cell and d¢po = 2° (i - iv) Origami configurations at
dihedral angle (0) — 180°, 150°, 100° and 0° respectively. (d) Gradation is provided for i = 0 to % using q&éﬂ_l) = g) — 806
and for i = % to n using gzﬁgﬂ) = cbg) + sd¢o where n is number of zigzag crease line, qﬁg) = 40°, s is the number of unit
cell and 6o = 2.5° (i - iv) Origami configurations at dihedral angle () = 180°, 150°, 100° and 0° respectively. (e)
Variation of unidirectional curvature while keeping the total length of the origami tessellation the same and increasing the
number of unit cells. The asymmetric curvatures are presented considering the gradation schemes of Figures (a - d). (f)
(i - iv) Three-dimensional programmable metasurfaces of different shapes obtained using multiple symmetric origami ribs
(v) Schematic representation of the deployment of a three-dimensional metasurface with programmable curvature. Note: 6
denotes the dihedral angle, i.e., the angle formed between the two panels along a crease; ¢, denotes the initial sector angle;
s is the number of unit cell of the Arc Miura pattern; d¢- is the step size to change the ¢o value; and n denotes the number
of zigzag crease lines.

5 to n using ¢, — sd¢o where n

geometry and d¢y is the step size to change the ¢y value. With the increase of the sector angle (¢) from
one end of the curve to the other, the unidirectional curve (Figure 3(a)) corresponding to ¢o = 30° and

0o = 2° initially experiences an increase in curvature variation, followed by a diminishing curvature.
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The unfolded, partially-folded and fully-folded configurations of this unidirectional curve are obtained at
dihedral angles (#) = 180°, 150°, 100° and 0° respectively shown in Figure 3(a(i)-a(iv)). When the sector
angle (¢9) is varied according to ¢y = ¢ — $0¢2 geometric parametrization, where ¢y = 50° and J¢y = 2°
in order to obtain the unidirectional curve (Figure 3(b)), it is noticed that the unidirectional curve leads
to a spiral curvature as the sector angle (¢,) decreases from one end to the other. The variation of

dihedral angle (#) from 180° to 0° results in inward folding of the unidirectional curve as shown in Figure

3(b(i)-b(iv)).

When the sector angle (¢,) is varied according to ;Hl) = gbg) + sd¢y geometric parametrization,
then unidirectional curvatures with different degrees are obtained as shown in Figure 3(c). Note that we
introduce the superscript ¢ in this geometric parametrization representing the number of zigzag creases.

When ¢ is varied from 0 to Z, gradation is provided according to ¢o = ¢o + sd¢po and when i varied

29
from § to n, gradation is provided according to ¢ = ¢ — sd¢y. The unidirectional curve shown in
Figure 3(c) is obtained corresponding to ¢o = 40°, d¢s = 2° and n = 20. The unidirectional curve
initially forms more compact creases when the sector angle (¢;) increases from i = 0 to § (with gradually
diminishing compactness towards the middle) and shows increasing compactness as sector angle (¢s)
decreases from i = § to n. As the dihedral angle (¢) decreases from 180° to 0°, the unidirectional curvature
transitions from a flat sheet (unfolded configuration) to a more accentuated symmetric curvature (fully-
folded configuration), as depicted in Figure 3(c(i)-c(iv)).

When sector angle( ¢) is varied according to gﬂ) = g) F sd¢o geometric parametrization, then the
unidirectional curvature is obtained as shown in Figure 3(d). In this geometric parametrization, when i
is varied from 0 to 7, the gradation is provided according to ¢o = ¢» — s0¢,, and when i is varied from
5 to n, gradation is provided according to ¢ = ¢3 + sd¢». The unidirectional curvature shown in Figure
3(d) is obtained corresponding to ¢o = 40°, d¢o = 2.5° and n = 20. Here the unidirectional curve initially
experiences less folding when the sector angle (¢;) decreases from i = 0 to § and shows less compactness
as sector angle (¢2) increases from ¢ = % to n. As the dihedral angle (0) decreases from 180° to 0°,
the unidirectional curvature changes from a flat sheet (unfolded configuration) to a symmetric curvature
(fully-folded configuration), as depicted in Figure 3(d(i)-d(iv)). Interestingly, the degree of unidirectional
curvature in this geometric parametrization is observed to be inverted when compared with the curvature
of Figure 3(c).

We have further investigated the influence of varying the number of unit geometries on the curvature

of a unidirectional metastructure (refer to Figure 3(e)) while keeping the total length of the configuration

constant at 90 mm. The number of units we have considered are 6, 9, 12, 15, and 18 with the earlier
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discussed geometric gradation parametrization (refer to the corresponding figure legends). It can be
observed in Figure 3(e(i)) that for a greater number of units, the curves take a more accentuated form of
asymmetric parabolic configuration. Figure 3(e(ii)) shows that when the number of units increases, the
configuration of curves becomes more compact and forms a spiral shape. The configuration of the curve in
Figure 3(e(iii)) becomes more accentuated and takes the shape of a close loop with the increases in number
of units. Figure 3(e(iv)) depicts that as the number of units increases to 6 and 18, the configuration of
the curve becomes more condensed as compared with Figure 3(e(iii)) and acquires the shape of a closed
loop having a lesser diameter. In general, it can be noticed that with an increasing number of units, the
curvature of the developable origami metastructure increases and the curve transitions from a wide, and

less sharp to a narrow and sharper configuration with a target symmetric or asymmetric geometry.
3.2. Programmable bi-directional S curvatures with target asymmetry

A programmable modulation of the rigid foldable S-curve curvature is accomplished by varying the
dihedral angles of Arc Miura architectures as demonstrated in Figure 2(b). The bi-directional curvature
is achieved by combining the Arc Miura unit sequences in one half with the reverse crease alignment of
Arc Miura unit sequences in the other half. In the Arc Miura base unit, the sector angle for M-vertices
and V-vertices (i.e. mountain and valley vertices) are taken as ¢; and ¢, respectively, while in the reverse
Arc Miura base unit, the sector angle for M-vertices and V-vertices are taken as ¢, and ¢; respectively.
In the piecewise assembly, the parameters of the initial Arc Miura unit are provided, and the subsequent
Arc Miura unit is attached to the initial Arc Miura unit on common edge vertices, therefore limiting the
number of independent parameters. The initial Arc Miura unit is known as the main pattern (m), and
the followed Arc Miura unit is known as the slave pattern (s). The redundant parameters are bj* = b3,

"= ¢7, m"™ = m® and folding variable 07%;, = 03,,.

The configuration of S-curve shown in Figure 2(b) is formed using the following parameters: n (number
of zigzag lines) = 30, m (number of straight lines) = 3, a; = 30 mm, b; = 30 mm, L (total length of unit
cell) = 90 mm, sector angles ¢; = 60° and ¢ = 40°, and # in the range of 180° to 0°. The S curvature
takes an unfolded configuration resembling the flat-folded sheet at a dihedral angle (6) = 180° (refer to
Figure 2(b(i))). When the dihedral angle (#) is reduced to 150°, the curve achieves a partially-folded
configuration showing bidirectional curvature, as depicted in Figure 2(b(ii)). With further decrease in
the dihedral angle (0) to 100°, the curve shows a contracted bidirectional curvature resembling S shape
(Figure 2(b(iii))). When the dihedral angle (#) becomes 0°, the curve achieves a fully-folded configuration
resembling two near-zero thickness circles formed due to the complete folding of the creases (Figure

2(b(iv))). Physical demonstration of the programmable S curvature with different degrees from a flat
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Figure 4: Programmable asymmetric S shape curvatures obtained through graded Miura derivatives. For
achieving a target asymmetry in the unidirectional curvatures, we introduce geometric gradation by varying the sector
angle (¢2) at every unit cell while keeping the other independent variables constant. (a) Gradation is provided using
P2 = ¢2 + sd¢po where ¢po = 30°, s is the number of unit cell and d¢o = 2° (i - iv) Origami configurations at dihedral
angle () = 180°, 150°, 100°, 0° respectively. (b) Gradation is provided using ¢o = ¢ — sd¢2 where ¢ = 50°, s is the
number of unit cell and d¢po = 1° (i - iv) Origami configurations at dihedral angle (9) = 1807, 150°, 1007, 0° respectively.
)+ $6¢y and for i = ()
n is number of zigzag crease line, d)Q = 400, s is the number of unit cell and 5¢2 = 2° (i - iv) Origami configurations at
dihedral angle () = 180°, 150, 100°, 0° respectively. (d) Gradation is provided for i = 0 to % using gbg“) = ¢ — 50
and for i = § to n using qﬁgﬂ) = ;Z) + sd¢o where n is number of zigzag crease line, qﬁg) = 40°, s is the number of unit
cell and d¢o = 2° (i - iv) Origami configurations at dihedral angle () = 180°, 150°, 100°, 0° respectively. (e) Variation
of bidirectional curvature while keeping the total length of the origami tessellation the same and increasing the number of
unit cells. The asymmetric curvatures are presented considering the gradation schemes of Figures (a - d). (f) (i - iii)
Three-dimensional programmable metasurfaces of different shapes with bi-directional curvature obtained using multiple
bi-directional S-shaped origami ribs (iv) Schematic representation of a generic metasurface that can be obtained using
optimally graded origami ribs using inverse design. Note: 6 denotes the dihedral angle, i.e., the angle formed between the

two panels along a crease; ¢o denotes the initial sector angle; s is the number of unit cells of the Arc Miura pattern; d¢s is
the step size to change the ¢ value; and n denotes the number of zigzag crease lines.

’I’L

(c) Gradation is provided for i = 0 to 2 using ¢(Z+1) 5 to n using ¢§H1) = — s0¢o where

sheet to a completely compacted stage under the variation of dihedral angle from 180° to 0 is depicted
in Figure 2(b(v)-b(viii))).
The symmetrical bi-directional S curvatures can be transformed into asymmetrical S curvatures

through the incorporation of geometric gradation. The gradation is introduced by altering the sector
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angle (¢9) following different parametrization schemes at each unit geometry while keeping the other
independent variables constant. The programmable S-curve depicted in Figure 4(a) is achieved by mod-
ifying the sector angle (¢2) according to ¢y = ¢ + s0¢y geometric gradation parametrization, where ¢,
is the initial sector angle, s is number of unit geometry and d¢, is the step size to change the ¢, value.
The S-curve obtained here is generated considering ¢, = 30° and d¢po = 2°. It can be observed that
with the variation of sector angle (¢2) from one end to the other end through the above parametrization
scheme, asymmetric curvature can be achieved with narrower curvature on the left and wider curve on the
right end (refer to Figure 4(a)). The unfolded, partially-folded and fully-folded configurations at dihedral
angles (6) = 180°, 150°, 100° and 0° respectively are shown in Figure 4(a(i)-a(iv)), demonstrating the
curvature programmability of a single origami architecture from a flat state to two and three-dimensional
state transitions.

The programmable S curvature shown in Figure 4(b) is obtained based on the alteration of sector
angle (¢9) through ¢o = ¢ — sd¢y geometric gradation parametrization with ¢o = 50° and d¢py = 1°.
It can be noticed that with the variation of sector angle (¢;) from one end to the other end through
the above parametrization, the nature of asymmetry becomes reverse to the configuration presented in
Figure 4(a). As the dihedral angle (f) decreases from 180° to 0°, the S-curve goes from a flat sheet
(unfolded configuration) to an asymmetric S curvature (fully-folded configuration) as depicted in Figure
4(b(i)-b(iv)).

The programmable S curvatures demonstrated in Figure 4(c) is achieved by tailoring the sector angle
(¢2) according to the ¢§”” = ¢§i) +50¢y geometric gradation parametrization with ¢, = 40° and d¢g = 2°
and n = 30. In this geometric parametrization, gradation is provided according to ¢o = @9 + sd¢s for i
ranging from 0 to § and according to ¢ = ¢ — sd¢, for ¢ ranging from § to n, where n is the number of
zigzag creases. In the partially folded form, it forms a circular shape on both the left and right sides, with
different radii, resembling the shape of a seahorse. The folding behavior of the asymmetric S curvature
with the variation of dihedral angle () from 180° to 0° can be observed in Figure 4(c(i)-c(iv)).

The programmable S curvatures depicted in Figure 4(d) is obtained by grading the sector angle (¢2)

(bgﬂ) = ¢§“ F sd¢o geometric gradation parametrization with ¢o = 40°, ¢ = 2° and

according to this
n = 30. In this gradation architecture, the variation of sector angle (¢2) is considered as follows: for i
from 0 to 5 through ¢o = ¢ — s0¢, and for i from 7 to n through ¢ = ¢ + s0¢. It can be observed
from the configurations that depending on the value of the dihedral angle (f) the asymmetry in the S
curvature can be programmed with different degrees (refer to Figure 4(d(iii)-d(iv))).

We have further investigated the influence of varying the number of unit geometries on the S curvature

16

G202 ‘70 JequenoN uo uoldweyinos o AlsieAlun e Biosousios:[ds//:sdny wouy papeojumoq



of a bidirectional metastructure (refer to Figure 4(e)) while keeping the total length of the configuration
constant at 90 mm. The number of units we have considered are 14, 16, 18, 20 and 22 with the earlier
discussed geometric gradation parametrization (refer to the corresponding figure legends). It can be
observed in Figure 4(e) that for a greater number of units, the curves take a more accentuated form of
asymmetric or anti-symmetric S configuration depending on the gradation architecture. In general, with
an increasing number of units, the curvature of the developable origami metastructure increases and the
curve transitions from a wide, and less sharp to a narrow and sharper configuration with a target curved
geometry, wherein a two to three-dimensional shape transition can be realized.

The two-dimensional curvatures depicted in Figures 3(a-d) and 4(a-d) can further be extended to
3D metasurfaces with target curvatures as shown in Figures 3(f) and 4(f). Multiple two-dimensional
origami architectures can be attached to each other as ribs, wherein the ribs are interconnected by thin
and flexible materials of functional interest. Interestingly, the three dimensional surfaces can be tailored
to have unidirectional or bi-directional curvatures and different peripheral shapes with symmetric and
asymmetric geometries depending on the rib origami architectures, their number and orientations. On-
demand programmability in the surface curvatures can be achieved through controlling the dihedral angles
of the ribs through limited actuation as depicted in Figure 3(f(v)). In principle, through appropriate
spatial gradation of the rib origami architectures, the bi-directional curvatures can further be extended

to have multi-directional surface curvatures as shown in Figure 4(f(iv)).

3.3. Programmable helical curvatures with orthogonal rims

A programmable variation of the rigid foldable helical curvature is accomplished through piece-wise
assembly of the inclined Arc Miura architecture, as demonstrated in Figure 5. As shown in Figures 5 and
6, it can be noticed that the class of helical architectures discussed in this subsection possesses the rims
orthogonal to the plane on which the helix rests, i.e. the elevation direction is parallel to the plane of
rims. In the piecewise assembling of these helical curves, the parameters of initial inclined Arc Miura unit
are provided and the unit is attached to the subsequent inclined Arc Miura unit through common edge
vertices, therefore limiting the number of independent parameters. The initial unit is known here as main
pattern (m) and the subsequent inclined Arc Miura unit is known as slave pattern (s). The redundant
parameters are b" = bj, ¢" = ¢7, m™ = m® and folding variable 07;, = 03,,. The configurations of
helical curve shown in Figure 5 is achieved according to the following parameters: n (number of zigzag
lines) = 40, m (number of straight lines) = 5, a; = 30 mm, b; = 30 mm, L (total length of unit cell) =
90 mm, sector angles ¢; = 60° and ¢ = 40°, @ = 12° and 6 is varied from 180° to 0°.

The helical curvature assumes a two-dimensional flat sheet shape (unfolded configuration) at a dihedral
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Figure 5: Programmable helical curvatures with elevation-wise uniform geometry and orthogonal rims. (a)
Programmable helical curvature formed using inclined Arc Miura assemblies. (i - iv) Unfolded flat-, partially-, and fully-
folded configurations of helical curvature at a dihedral angle (6) = 180°, 150°, 100°, 0° respectively (b) Physical prototype
of helical curvature corresponding to the configurations shown in Figure (a) (¢) Configuration of helical curvatures achieved
by considering n = 50 with different values of o (d) Configuration of helical curvatures achieved by considering n = 70
with different values of a (e) Configuration of helical curvatures achieved by considering n = 90 with different values of
a (f) Configuration of helical curvatures achieved by considering n = 110 with different values of a. Note: 6 denotes the
dihedral angle, i.e., the angle formed between the two panels along a crease; o denotes the inclination angle, i.e., the angle
made by the straight edge of the inclined Arc Miura pattern with horizontal axes; n denotes the number of zigzag crease
lines; and "pitch" denotes distance between successive turns of the helix.

angle () = 180° (refer to Figure 5(a(i))). As the dihedral angle () is reduced to 150° the helical curve
demonstrates an elevation and starts folding in a helical form (Figure 5(a(ii))). With further decrease in
the dihedral angle () to 100°, the elevation further increases, as depicted in Figure 5(a(iii)). When the
dihedral angle (6) reaches 0°, the helical curve shows a fully compact folded helical shape as shown in
Figure 5(a(iv)). The folding behaviour of the helical curve is validated through physical prototypes as
illustrated in Figure 5(b(i)-b(iv)), wherein a perfect agreement can be observed with the computational
motion analysis.

We have investigated the behaviour of the helical curvature with the variation in inclination angle
(a) and number of zigzag lines (n) while maintaining the dihedral angle constant at § = 120°. Here
inclination angle is defined as the angle made by the straight edge of the inclined Arc Miura pattern with

the horizontal axes (refer to supplementary material section S2.2). For the variation of zigzag line (n)
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as 50, 70, 90 and 100, the inclination angle («) is taken as 12°, 22°, 45° and 58°. When the number of
zigzag line (n) is 50, the helical curve shows only one turn (Figure 5(c)). As the number of zigzag line (n)
increases to 70, the helical curve shows two turns (Figure 5(d)). Further increasing the number of zigzag
lines (n) to 110 results in the helical curve showing three turns (Figure 5(f)). It can be concluded that
as the number of zigzag line (n) increases, the number of turns shown by the helical curve also increases.
Additionally, the folding of the helical curve increases with the increase in inclination angle («).

The programmable architecture of helical curves shown in Figure 5 will always result in symmetric
uniform helical curvature. In order to achieve symmetric as well as asymmetric helical curvatures with
elevation-wise varying diameter, we have further incorporated geometric gradation similar to the earlier
subsections through the modification of sector angle (¢3). The helical curvatures depicted in Figure
6(a) is achieved through the modification of sector angle (¢y) according to ¢o = ¢ + s0¢y geometric
parametrization with ¢ = 30° and d¢o = 2°. The helical curve shows single turn, and the pitch of the
helical curve increases with a decrease in the dihedral angle (6). Moreover, the top end of the helical
curve shows more contraction of inclined Arc Miura units due to the increasing value of sector angle (¢,)
as depicted in Figure 6(a(iii)-a(iv)).

The programmable helical curvatures in Figure 6(b) are obtained by the modification of sector angle
(¢2) according to this ¢o = @9 — sdps geometric parametrization with ¢, = 50° and d¢pp = 1°. It can
be noted that the helical curve displays two turns here depending on the assumed geometric parameters.
Additionally, the diameter of the helical turns decreases as the curve starts taking the elevation. In Figure
6(b(iii)), it can be noticed that the pitch of the helical curve is nearly negligible at a dihedral angle (9)
of 100°, but as the dihedral angle () reduces to 0° due to fully folding of the creases, the helical curve
shows a significant pitch (Figure 6(b(iv))).

The curvatures in Figure 6(c) is achieved by the alteration of sector angle (¢2) according to the
¢§+1’ = gi) + s0¢o geometric gradation parametrization with ¢y = 40°, d¢po = 2° and n = 40. The

variation of 7 from 0 to § provides the sector angle (¢2) according to ¢, = ¢, + sd¢, gradation scheme,

while for the variation of 7 from % to n provides the sector angle (¢2) according to ¢y = ¢ — i
gradation scheme. The helical curve shows two turns, and the diameter of helical turns increases with an
increase in the elevation as seen at dihedral angle (6)= 0° (Figure 6(c(iv))).

The programmable helical curve curvatures in Figure 6(d) is obtained by the tailoring of sector angle
(¢2) according to ¢g+1) = g) F sd¢o geometric parametrization with ¢o = 40°, d¢po = 2° and n = 40.
The variation of ¢ from 0 to § provides the sector angle (¢2) according to ¢ = ¢ — sd¢ gradation

scheme, while for the variation 7 from % to n, provides the sector angle (¢2) according to ¢ = ¢3 + 56y
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Figure 6: Programmable helical curvatures with elevation-wise varying geometric features and orthogonal
rims. Geometric gradation is introduced by varying the sector angle (¢3) at every unit cell and keeping the other inde-
pendent parameters constant. (a) Gradation is provided using ¢o = ¢ + s0¢o where ¢o = 30°, s is the number of unit cell
and d¢o = 2° (i - iv) Origami configurations at dihedral angle (6) = 180°, 150°, 100°, 0° respectively. (b) Gradation is
provided using ¢3 = ¢ — sd¢p3 where ¢o = 50°, s is the number of unit cell and d¢po = 1°. (i - iv) Origami configurations

at dihedral angle (6) = 180°, 150°, 100°, 0° respectively. (¢) Gradation is provided for i = 0 to 5 using qb(zﬂ gi) + 8¢
and for ¢ = § to n using gbgﬂ = (bé) s$0¢po where n is number of zigzag crease line, ¢2 = 40°, s is the number of unit

cell and d¢2 = 2°. (i - iv) Origami configurations at dihedral angle () = 180°, 150°, 100°, 0° respectively. (d) Gradation

(i+1)

n — 80¢2 and for i = F to n using ¢,

is provided for i = 0 to 5 using d)é”’l) = qﬁéi) = qjgi) + sd¢o where n is number of

zigzag crease line, (bél) = 40°, s is the number of unit cell and d¢o = 2°. (i - iv) Origami configurations at dihedral angle
(9) = 1807, 150°, 100°, and 0° respectively. (e) Variation of helical curvature and asymmetry with increasing the number
of unit cells while keeping the total length of the origami structure the same. The same gradation scheme as Figures (a -
d) is utilized for this investigation. Note: 6 denotes the dihedral angle, i.e., the angle formed between the two panels along
a crease; ¢o denotes the initial sector angle; s is the number of unit cells of the inclined Arc Miura pattern; §¢, is the step
size to change the ¢o value; n denotes the number of zigzag crease lines; and "pitch" denotes distance between successive
turns of the helix.

gradation scheme. The helical curve shows a single turn, and the crease at the top end of the helical
curve is more contracted due to the increased sector angle (¢2) (Figure 6(d(iv))). Furthermore, the helical
curve completes full turns after fully folding the crease, which is only possible when the dihedral angle
(0) decreases from 180° to 0°.

We have further investigated the effect of changing the number of unit geometries on the curvature
of a helical shape (Figure 6(e)) while keeping the total length of the configuration constant at 90 mm.
The number of units we have considered are 17, 18, 19, 20 and 21, with the earlier discussed geometric

gradation parametrization schemes. As depicted in Figure 6(e), the curvature of the helical architecture
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gets more accentuated with symmetric or asymmetric variation along the curved profile as the number of
units increases depending on the adopted gradation scheme. In general, the numerical results indicate that
by adjusting the dihedral angle and incorporating gradation, it is possible to modify the pitch, diameter,
and number of turns of a helical curve. Moreover, changing the number of geometric units along with
gradation can also alter the orientation of the curve as per programmable demands. While the uniform
architectures shown in Figure 5 result in uniform diameter along the elevation, the graded architectures
presented in Figure 6 can lead to elevation-wise control in the diameter. The gradation schemes of Figure
6(a, b) show elevation-wise continuously decreasing or increasing diameter, and the gradation schemes of
Figure 6(c, d) can achieve symmetric elevation-wise increasing or decreasing diameters about the mid-
profile length. In this context, it may further be noted that the trend of elevation-wise diameter variation
can be programmed in a more generic way to achieve target profiles by introducing appropriate gradation

schemes following the proposed framework.

3.4. Programmable helical curvatures with planar rims

As discussed in the preceding subsection, it can be noticed that the helical architectures possess rims
orthogonal to the plane on which the helix rests, i.e. the elevation direction is parallel to the plane of
rims (refer to Figures 5 and 6). In this subsection, we propose a new class of second-order Miura origami
resulting in circular and helical curvatures with planar rims (refer to Figure 7). It is worth further noting
that all the unidirectional, bidirectional and helical curvatures investigated so far do not have in-plane
rims (i.e. the plane of curvature and the plane of origami tessellation are not in the same plane), unlike
the configurations we investigate here.

The helical curvatures with planar rims are obtained through piecewise assembling of tapered Arc
Miura patterns with or without gradation, wherein the programmability is achieved by altering the
dihedral angle, as depicted in Figure 7. In the piecewise assembly, the initial tapered Arc Miura unit
(known as main pattern (m)) is attached to the subsequent similar tapered Arc Miura unit (known
as slave pattern (s)). The parameters of main pattern is provided initially, and the attachment at the
common vertex with the main pattern limits the number of independent parameters for the slave pattern.
These redundant parameters are bij" = bij,, o' = @7, (¢1 —p)" = (¢1 —p)°, m™ = m® and folding
variable 67}, = 03,,. The configurations of helical curves depicted in Figure 7 are generated using the
following parameters: n (number of zigzag lines) = 5, m (number of straight lines) = 27, a; = 40 mm,
by = 20 mm, L (total length of unit cell) = 90 mm, sector angles ¢; = 60° and ¢ = 50°, p = 18° and 0
varied from 180° to 90°.

An unfolded configuration of the tapered Arc Miura assembly (flat sheet) at a dihedral angle (6) = 180°
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Figure 7: Programmable helical curvatures with elevation-wise varying geometric features and planar rims.
(a) Programmable helical curvature formed from tapered Arc Miura assemblies. (i - iv) Unfolded flat-, partially- and
fully-foldable configurations of helical curvatures at a dihedral angle () = 180°, 150°, 120°, 90°. (v - viii) A special case
of circular deployment when both ¢; = ¢2, and p = 0 conditions are satisfied (b - e) Origami configurations at dihedral
angle () = 180°, 150°, 120°, 90° respectively considering different gradation schemes. (b) Gradation using p = p + sdp
where p = 18° and dp = 1°. (c) Gradation using p = p — sdp where p = 28° and dp = 1°. (d) Gradation is provided for
i = 0 to 2 using ptY) = p() + s6p and for i = 2 to m using pi* = p(!) — s6p where p(¥) = 25° and 5p = 1.5%. (e)
Gradation is provided for i = 0 to 3 using plt) = p) —55p and for i = 5 to m using pUtD) = p() 1 55p where p() = 28°
and §p = 1.5°. Note: 6 denotes the dihedral angle, i.e., the angle formed between the two panels along a crease; p denotes
the angle between the straight crease lines; ¢ and ¢2 denote the sector angles for adjacent zigzag creases with the straight
crease; s is the number of unit cells of the tapered Arc Miura pattern; dp is the step size to change the p value; m denotes
the number of straight crease lines; and "pitch" denotes distance between successive turns of the helix.
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is shown in Figure 7(a(i)). As the dihedral angle () decreases to 1507, the flat sheet takes a helical profile
(Figure 7(a(ii))). With further decrease in dihedral angle (6) to 120°, the origami profile gets contracted
due to the folding of creases (Figure 7(a(iii))). At a dihedral angle () of 90°, the configuration assumes
the fully-folded helical profile as depicted in Figure 7(a(iv)). As a special case, when both ¢; = ¢o,
and p = 0 conditions are satisfied, the proposed architecture shows in-plane circular curvature with
active programmability, as shown in Figure 7(a(v)-a(viii))). Similar in-plane circular curvatures have
been presented in literature |77|, which essentially improves the confidence in the current computational
framework through qualitative validation.

Notably, the curvatures presented in Figure 7(a) do not have any spatial variation along the profile of
the origami architecture. Symmetric and asymmetric curvatures can be achieved through the introduction
of spatial geometric gradation, as demonstrated in Figure 7(b-e). The gradation is accomplished here by
altering the angle p at each unit geometry (refer to supplementary material section S2.3 and Figure S7 for
further details) while keeping the values of the other independent variables constant. The programmable
helical curvature depicted in Figure 7(b) is achieved by modifying the angle p according to p = p + sdp
geometric gradation parametrization with p = 18°, dp = 1° and m = 27, where p is the initial angle, s is
the number of unit geometry and dp is the step size to change the p value. With the decrease in dihedral
angle (), elevation of the metastructure increases as depicted in Figure 7(b(ii)-b(iv)), while following an
asymmetric curvature along the longitudinal profile. The geometric parametrization scheme p = p — sdp
leads to a reverse nature of asymmetry with programmable helical curvature (as a function of dihedral
angle, ) as depicted in Figure 7(c) considering p = 28°, jp = 1° and m = 25.

Symmetrically varying curvature about the midsection of the origami profile can be achieved following
D = p) £ s§p geometric gradation scheme, as depicted in Figure 7(d) with ¢, = 25°, §p = 1.5° and
m = 20. The variation of 7 from 0 to % is provided following the gradation scheme of p = p + sdp, while
for 7 from % to m, the gradation is provided according to p = p — sdp, where m is the number of straight
creases. The helical curve shows higher pitch for ¢ varied from 0 to % and lower pitch for ¢ varied from
% to m. The out-of-plane curvature and elevation increase due to the folding of creases with a decrease
in the dihedral angle (6) from 150° to 90° (Figure 7(d(ii)-d(iv)).

The programmable helical curvature depicted in Figure 7(e) is achieved by modifying the angle p
according to pY = pl®) F s6p gradation scheme with ¢y — 28°, dp = 1.5° and n = 20. The variation of

i from 0 to % is provided following the gradation scheme of p = p — sdp, while for ¢ from % to m, the

gradation is provided according to p = p + sdp, where m is the number of straight creases. The helical

m

curve shows lower pitch for ¢ varied from 0 to 3 and higher pitch for i varied from % to m. The out-of-
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plane curvature and elevation increase due to the folding of creases with a decrease in the dihedral angle
(0) from 150° to 90° (Figure 7(e(ii)-d(iv)). In general, it is noticed that the incorporation of geometric
gradation can modify pitch, as well as the in and out-plane curvature of the helical architecture.

In summary, we have demonstrated that a range of symmetric and asymmetric curvatures can be
achieved with unidirectional, bidirectional, and helical shapes through graded piecewise assembly of
second-order Miura-ori derivatives. It is shown that planar and orthogonal rims in the helical origami
architectures can be obtained from a flat 2D configuration by exploiting the folding mechanics and geom-
etry of functionally architected creases. Further, the curvature, degree of asymmetry, elevation, diameter,
and pitch can be actively programmed as a function of the dihedral angle by limited actuation exploiting
the one-degree-of-freedom characteristics of the proposed origami architectures. All the proposed archi-
tectures conform to the developability criteria, demonstrating two to three dimensional shape transition

characteristics.
4. Conclusions and perspective

In this paper, we have proposed second-order graded derivatives of Miura origami, leading to pro-
grammable uni and bi-directional curvatures with symmetric or asymmetric geometries. It is demon-
strated that a flat sheet of material can be converted to parabolic, S shape, circular and helical curva-
tures with planar or orthogonal rims through minimal actuation by altering the dihedral angle of a unit
cell. The curvature, degree of asymmetry, elevation, diameter and pitch can be actively programmed
as a function of the folding angle of optimally selected creases exploiting the single-degree-of-freedom
characteristics of the proposed origami architectures.

The conventional Miura pattern leads to in-plane deformation without any three dimensional shape
morphing. We propose derivatives of the Miura geometry by strategic modifications in the unit cell that
lead to achieving target curvatures, wherein the asymmetry can further be controlled through geometric
gradations. The Arc Miura unit cells result in unidirectional parabolic or bi-directional S shapes, while
the helical curvatures with planar and orthogonal rims are obtained by inclined Arc Miura and tapered
Arc Miura unit cells respectively. It can be noted that the two-dimensional uni-directional parabolic
and S-shape curvatures can further be extended to 3D metasurfaces with target curvatures, wherein
a programmable control can be achieved through minimal actuation of the constituting origami rib
architectures.

The rigid foldability and motion behavior of the graded geometries are investigated thoroughly based
on computational simulations and tabletop experiments using physical prototypes, leading to the evidence

of on-demand shape morphing under limited actuation and transitional deployment from 2D to 3D states.
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An efficient approach of kinematic mapping is developed based on idealized spherical 4R linkages involving
Denavit-Hartenberg matrix notations, resulting in piecewise spatially-graded tessellations for achieving
programmed pre-defined symmetric and asymmetric curvatures with complex two and three-dimensional
geometrical shapes. The proposed framework of graded Miura origami derivatives is generic in nature, and
it can be extended to achieve any pre-defined curves and metasurfaces with multiple curvatures having
different degrees through incorporating appropriate gradation schemes, wherein inverse optimization can
be readily exploited.

Real-time programmable mechanical features including shape morphing ability in metamaterials and
metasurfaces can be crucial for a range of advanced space applications such as adaptive solar arrays,
deployable space structures and antennas, robotic arms, actuators and advanced robotic materials. For
example, precise control over the curvature and geometric parameters of the origami structure can enable
a wide range of frequencies, flexible variation of radiation properties, and the ability to switch polar-
isation states, making these designs highly adaptable for advanced space communication systems and
re-configurable antenna designs. The fundamental mechanics of the proposed origami metamaterials be-
ing mostly scale-independent, this rapidly emerging class of deployable shape-changing architectures can
be directly transferred for application in a range of milli-, micro-, and nanometre-size space systems,
essentially opening avenues for the design of various programmable mechanical and aerospace structures

at multiple length-scales.

5. Methods

5.1. Computational methods

Kinematic and geometric analyses of Arc Miura, inclined Arc Miura and tapered Arc Miura are carried
out to obtain programmed uniform and graded tessellations of symmetric and asymmetric curvatures
such as unidirectional curvature, S curvature and helical curvature with planar and orthogonal rims. The

detailed computational formulation is provided in the supplementary material.
5.2. Physical experiments

Besides extensive computational analyses, we have prepared physical prototypes of selected config-
urations to demonstrate the programmable on-demand shape morphing characteristics of a range of
symmetric and asymmetric curvatures such as unidirectional, bidirectional S and helical geometries. For
the physical experiments, the material used is 300 GSM thickness origami flat sheets with dimensions
12 x 18 inches that can be easily cut into desired shapes. The creases are created using CAD packages

and automated scoring machines before folding according to the valley and mountain patterns. The
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qualitative motion behaviour of the origami architectures is captured using a high-quality camera based

on tabletop experiments.

Supplementary materials

Supplementary sections:
S1: Kinematic analysis of unit geometry
S2: Geometric analysis of uniform and graded tessellations

Supplementary figures: Figures S1 to S7
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