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Abstract

This paper presents a superconvergent meshless numerical approach based on generalised differ-
ential quadrature method to analyze the dynamic behavior of bidirectional functionally graded
aluminum-Terfenol-D beams with twisted geometry. The power-law exponent model is exploited
to modify the material properties, such as Young’s modulus and mass density, over the whole
thickness and longitudinal direction of the bidirectional functionally graded aluminum-Terfenol-D
beams. The influences of Terfenol-D’s bidirectional gradation, porosity volume fraction index,
twisted angle, and viscoelastic boundary conditions are investigated on the dynamic character-
istics with the notion of developing a design-oriented mapping of the input parameter space.
Subsequently, the study delves into the effectiveness of Terfenol-D in vibration control for com-
plex twisted structural systems. Computational investigations are conducted to demonstrate the
impact of gain control, and the characteristics and optimal arrangement of Terfenol-D patches on
the dynamic response of active sandwich beams under transverse impulsive loads. The findings
show that the implementation of active vibration control exploiting Terfenol-D’s magnetostrictive
qualities can have a significant impact on reducing the oscillations of bidirectional functionally
graded beams. The control studies reveal that placing five Terfenol-D patches at L /5 provides the
most effective damping, compared to placement at L/3 or using a full Terfenol-D layer. The find-
ings highlight the potential of strategically graded and patch-configured magnetostrictive layers
for tailoring vibration behavior in complex structural systems.

Keywords: Bidirectional functionally graded beams, Viscoelastic supports, Differential
quadrature method, Gradation of Terfenol-D, Dynamics and control of Terfenol-D beams

1. Introduction

Throughout the last few decades, dynamics and free vibration analysis of twisted beams have
piqued researchers’ curiosity. Pre-twisted beams are one of the most crucial structural components
and are widely employed in several contemporary industrial sectors, including nuclear, automo-
tive, aerospace and renewable energy. One of the main causes of vibration is the dynamic forces
imparted by the spinning cantilever beams. These structures must be operated safely and effec-
tively, which requires vibration analysis and suppression. Recent years have seen a lot of study
on Terfenol-D and piezoelectric materials for vibration suppression. We provide a concise re-
view concerning dynamics and vibration control exploiting such smart materials in the following
paragraphs.

The aspect of vibration reduction using macrofiber composite actuators and sensors was inves-
tigated with the use of piezoelectric materials [IH4]. A significant volume of research can be traced
in the area of smart magneto-electro-active control of vibration in composite and laminated struc-
tures [BHI2]. Electro and magneto-active Smart materials and structures have been widely used
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in basic structural forms like beams, plates and shells along with their derivative compound struc-
tures like metamaterials for active control, modulation and sensing [13H19]. A significant amount
of research can be found in literature concerning dynamic analysis of composites and functionally
graded structures including their optimization, sensitivity analysis and uncertainty quantification
[20H32]. While thickness-wise functional gradation is traditionally investigated in the literature,
length-wise and bi-directional gradation has received significant attention lately [33-37]. In a
thermal environment, the effects of hub radius, rotating speed, material properties, geometric
imperfections, and elastic root rigidity on the natural frequencies, critical buckling loads, and in-
stability regions of rotating pre-twisted functionally graded carbon nanotube reinforced composite
imperfect beams were analyzed by Lin et al. [38]. On a rotating variable-thickness pre-twisted
blade with elastic restrictions, a complete parametric evaluation of the impacts of thickness-taper
ratio, pre-twist angle, rotational speed, and connection stiffness on blade modal properties was
carried out by Li and Cheng [39]. Rotational uncertainty of composite shells was quantified by
Dey et al. based on a machine learning assisted finite element approach [40]. On the free vibration
characteristics of the rotating blade-shaft assembly, the effects of rotating speed, GPL distribu-
tion pattern, GPL weight fraction, length-to-thickness ratio, length-to-width ratio of GPLs, inner
and outer radius of the disc, and pre-twist angle per unit length, setting angle, and length of
the blade have been discussed by Zhao et al. [4I]. They have talked about how slight changes
in the pre-twist angle and blade setting angle lead to larger first travelling wave frequencies and
lower third travelling wave frequencies. The coupled vibration model of a rotating FGGPLRC
pretwisted bladeshaft assembly was reported by Zhao et al. [42], where the spinning shaft and
blade are modelled using the Euler-Bernoulli beam theory and Rayleigh beam theory, respectively.
Comprehensive research has been reported by Cheng et al. [43] on the effects of CNT arrangement,
pre-twist angle, rotation speed, and stagger angle on the blade vibration. It has been discovered
that adding carbon nanotubes significantly affects raising blade frequency. The large-amplitude
vibrational behaviour of rotating pre-twisted multilayer GPLRC blades in a thermal environment
was studied by Guo et al. [44] using a thermo-elastic dynamic model based on the first order
shear deformation theory and an improved version of the Novozhilov nonlinear shell theory. The
stiffening/softening impact was modelled using nonlinear variables in the static analysis by Lotfan
and Bediz [45]. In light of this, it is becoming abundantly evident that there is a strong alternative
to the finite element approach and the dynamic stiffness method, in which the derivative terms
from the governing differential equation in the strong form are approximated on each grid point.
The differential quadrature method uses weighting coefficients to estimate any-order derivatives at
each grid point [46H4g]. The approach outperforms the standard finite element method, especially
when higher precision of findings are required with minimal computational cost. In this paper,
we would focus on developing a super-convergent meshless approach for the dynamic analysis of
functionally graded Terfenol-D beams.

In order to solve the problem of free vibration in pre-twisted, functionally graded carbon
nanotube-reinforced composite beams in a thermal environment, Chebyshev polynomials and the
Ritz technique have been used as potential solutions [49]. The free vibration of pretwisted beams
was analyzed by Adair and Jaeger [50] using an eigenvalue formulation based on the adomian mod-
ified decomposition method under clamped-free boundary conditions and rotating speeds. Wang
and Yuan [51] used three-dimensional sub-parametric quadrature element approach to study beams
with rectangular, circular, elliptical, and airfoil cross-sections, variable curvature and pre-twist
rates, and various boundary conditions. The approach maps the irregular solid into a regular
cube, extending the already-existing quadrature element method with regular forms. The free
vibration of a rotating, pre-twisted beam with bending-bending-torsion coupling that is axially
loaded by a tendon was studied by Ondra and Titurus [52]. Free vibration, buckling, and dynamic
stability of rotating pre-twisted functionally graded carbon nanotube reinforced composite imper-
fect beams in thermal environment was investigated by Lin et al. [38]. The Euler, Coriolis, and
centrifugal force fields are primarily responsible for the different vibrational properties of spinning
structures compared to stationary ones, as it will be evident in the following paragraph.
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Figure 1: Dynamics of bidirectional functionally graded aluminum-Terfenol-D twisted beams. (A)
Schematic illustration of bidirectional functionally graded aluminium-Terfenol-D twisted beam. (B) Rotation of
point at a distance of = from the origin of BFG Al-Terfenol-D twisted beam. (C) Schematics of layerwise structure
of aluminum-Terfenol-D beam. (D) Layerwise volume distribution of aluminum-aluminum oxide distribution. (E)
Detailed flowchart for dynamic analysis of bidirectional functionally graded aluminium-Terfenol-D twisted beams.

Considering the prospective application cases for the dynamic analysis of twisted smart beams
under consideration in this study, we further provide a brief literature review on such structures
under rotating and aerodynamic conditions. A spinning pre-twisted beam with bending-bending
torsion coupling axially loaded by a guided tendon so that the rotorcraft can function under a
variety of operating situations was investigated by Wu and Titurus [53]. With the help of general
Galerkin approach, the parametric instability of a pre-twisted beam with a top spring attachment
and viscoelastic springs serving as end supports was examined by Nayak et al. [54]. The finite
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element technique was used to provide a numerical solution for analyzing the free vibrations of a
spinning pre-twisted cylindrical shell made of composite materials reinforced with graphene [55].
An investigation was conducted on a theoretical model that simulates the thermoelastic vibration
analysis of functionally graded thermal barrier coated (FGTBC) blades [56]. This model takes
into account the non-uniformity of FGTBC materials, as well as rotational motions, including
the Coriolis effect, prestress stiffening, and rotational softening. A study [57] was conducted to
simulate and analyze the behavior of a pre-twisted blade with tenon joints and under-platform
dampers in a thermal environment and subjected to nonlinear loads. A novel model [5§ was
introduced to analyze the vibrations and bifurcations of a pretwisted composite rotating blade
that is strengthened by functionally graded graphene platelets (FGGP). This model considered
the effects of the leakage flow at the tip clearance, aerodynamic force, and high rotating speed.
The dynamic model of axial excitation produced by the aerodynamic force in the tip clearance,
which includes two trigonometric functions with different frequencies, was investigated for func-
tionally graded graphene platelet (FGGP)-reinforced rotating pretwisted composite blades under
blade-casing rubbing and aerodynamic force [59]. The first-order shear deformation theory was
used to create a pre-twisted blade model based on Ti-SiC fiber reinforced composite and NACA
4-digit airfoil utilizing Rayleigh-Ritz technique [60]. The free vibration behavior of pre-twisted
tapered rotating microbeams [61] composed of bidirectional functionally graded material (BFGM)
was studied using an improved mathematical model, wherein the first-order shear deformation
theory was used to build the mathematical formulation in a global non-inertial frame with suit-
able transformations between the global and local frames. Shada et al. [62] examined smart
damping on bi-directionally tapered functionally graded sandwich plates. Kuriakose and Sreehari
[63] examined how temperature conditions affect the passive control of vibration and flutter in
damaged composite plates with piezoelectric patches.

A careful review of the literature reveals that recent studies have explored the vibration char-
acteristics and control of functionally graded beams, curved beams, fluid conveying pipes, incorpo-
rating magnetostrictive materials like Terfenol-D with different parametric studies such as free and
forced vibration, partial foundation and different boundary conditions [46, [64-69]. Researchers
have further examined [70] the linear and non-linear vibration of Terfenol-D FGM beams with
porosities, employing advanced numerical and semi-analytical methods. It is found that Terfenol-
D outperforms in damping performance. While existing literature provides insights into the free
vibration of twisted beams, research on vibration control of twisted beams incorporating smart
actuators like Terfenol-D, coupled with the effects of material gradation and porosity, is scarce to
find in literature. Moreover, the impact of non-classical boundary conditions, highly relevant in
practical applications, has not been adequately explored in the context of twisted beam geometries.
Thus, a significant gap exists in the understanding of free vibration and control of functionally
graded twisted beams integrated with smart actuators, considering the combined influence of
material gradation, porosity, and non-classical boundary conditions.

As a consequence, we aim to investigate the dynamics and active control of twisted smart beams
with bi-directional Terfenol-D gradation (refer to Figure [I{A - D)) in this paper. As an integral
part of this study, the influence of manufacturing and geometric irregularities such as porosity
[7T], [72] will be examined on the dynamic behavior. In this context, a super-convergent meshless
computational approach based on the differential quadrature method would be developed. Figure
[[E) represents the flowchart for the current work, the mathematical formulation and numerical
results concerning which are presented in the following sections.

2. Mathematical formulation for the dynamics of smart twisted beams

The bidirectionally functionally graded aluminum-Terfenol-D twisted beam is investigated in
this study along with its geometric flaws, such as the porosity effect. Figure (A - D) depicts
the geometric representation of the beam. Length, breadth, and thickness of the beam are corre-
spondingly represented by the parameters L, B, and H. The beam maintains the same angular
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twist from its foundation to the tip. To further characterise the system, a Cartesian coordinate
system is set up with the origin at the geometric centre of the leftmost part of the beam, the x-axis
parallel to the undeformed beam’s centroidal axis, and the y- and z-axes parallel to the direction
of the beam’s breadth and thickness. For clarity and conciseness, the key modeling assumptions
adopted in the present formulation are summarized in Table These assumptions concerning
the theoretical framework, material modeling choices, boundary condition treatments, and control
strategies are also discussed later in more detail, as and if necessary.

Table 1: Summary of key modeling assumptions used in the present formulation

Aspect

Assumption/Justification

Beam theory

Material gradation
Magnetostrictive layer
Deformation in

plane
Porosity

Yy—=z

Boundary conditions

First-order shear deformation theory (FSDT) adopted; higher-order
terms (TSDT) found negligible for present thickness ratios.
Bidirectional functional grading in thickness and longitudinal direc-
tions, modeled via power-law distribution.

Terfenol-D layer modeled with linear magneto-mechanical coupling;
effect of bias magnetic field included in constitutive matrix.
Neglected, as the beam is slender and primary deformation occurs in
the x—z bending plane.

Uneven porosity considered through a porosity index (eg); assumed
to reduce stiffness but not mass density, uniformly.

Implemented through translational and rotational spring stiffness

values; clamped, simply supported, and elastic supports obtained
as limiting cases.

Velocity feedback included via equivalent viscous damping terms;
viscoelastic supports modeled with dashpots.

Active vibration suppression modeled via velocity feedback from
Terfenol-D patches; placement aligned with strain antinodes.

Damping

Control strategy

2.1. Bidirectional material properties

In this work, the material composition is considered to vary along the axis, along the thickness,
and also simultaneously along the thickness and the axis. The volume fraction of the ceramic
according to the power law is defined as:

1 =z " 1 =z "

where, m and n are non-negative variables which define the power law indices in transverse and
axial directions respectively. Two types of porosity are investigated in this study considering even
and uneven porosity distributions. The material properties of the bidirectional functionally graded
even porosity can be defined as:

P(x,z) = Pn + (Pc—Pm) (%+%)m<%+%>n—%(a+1§m>

where, z denotes the distance from the neutral axis of beams and « is the porosity volume fraction.
The material properties for the uneven porosity distribution can be expressed as:

P(z,z) = Py + (Pc—Pm) <%+%>m<%+%)n—%(ﬂ+lﬂm) (1-%)

(1)

(2)

(3)



2.2. Displacement components

The displacement field is represented as

u(z,y, z,t) = ug(x,t) — 20(x,t)

4Cy 4 5’w0(x,t)_
+ 37,27 [9(95,15) —

ox
4C Ovg(x t): (o)

—ygﬁ(l’, t) + 37213/3 [¢(l‘, t) - Oaxj
v(z,y, 2,t) = vo(x, t) (4b)
w(z,y, z,t) = wo(zx,t) (4c)

where u(z,t), v(z,t) and w(x,t) are the displacement components of the point (x, y) at the mid-
plane of the beam cross section. The parameters, 6(x,t) and ¢(z,t) are the bending rotation of
the beam cross section about y-axis and z-axis, respectively. One can express the displacement
relations as first order shear deformation theory (FSDT: C; = 0) and Reddy’s third-order shear
deformation theory (TSDT: C;=1). Though we will not focus on obtaining any comparative
numerical results concerning these theories, the flexibility of the presented formulation will enable
interested researchers to investigate the influence of shear deformation on the dynamic behavior
of the twisted beam and compare the predictions of these two widely used theories. The nonzero
strain-displacement relations are given as
Q=y (9 - %>

o 8¢ 90 40,
fwf—%‘y<%+Q@>—Z(a—x—Q¢>+W a2

(- ) oo 3+ 2 (- 2)

1 2C ov
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The constitutive relations for the bidirectional functionally graded aluminum-Terfenol-D beam
are given as:

where, Q:% and oz:%.

2.8. Constitutive relations

(k) (k) (k)
Oz = W11 €xa) Ozy = Wsy €y, Ozz = Wy €z (6>

where, QY?, él;) and QEJZ) are the transformed stiffnesses of Terfenol-D layered functionally graded
twisted beam. The calculation of these transformed stiffness can be found in literature [73]. The
constitutive relation for Terfenol-D material is given as:

where, H, d™ are the magnetic field intensity and magneto-mechanical coupling coefficient of
Terfenol-D layer.



2.4. Velocity feedback control

In order to control the free vibration of bidirectional functionally graded aluminium-Terfenol-D
twisted beams, we have considered the velocity proportional closed loop feedback control approach.
The magnetic field intensity H is expressed as:

H(z,t) = k.I(x,t) (8)

where, k. and I(x,t) are the coil constant meant to produce the required magnetic field intensity
and current supplied to coils. The expression for the k. and I(x,t) can be written as:

Ne ow

2.5. Equation of motion

The strain energy of the bidirectional functionally graded aluminium-Terfenol-D beam can be

written as:
1 (L 15 3
U = 5/ /h /b O'xxexx+20;gy€xy+20'$z€$z ddedI (10)
0 J—3J-3

In the context of the above equation, it may be noted that the current study primarily focuses on
the transverse response of the twisted beam. To capture the dominant deformation modes relevant
to this focus, the strain energy expression incorporates three key terms: Bending in the x-z plane:
This term accounts for the primary bending deformation of the beam in the plane perpendicular to
the twist axis, which is crucial for understanding transverse vibrations. Axial deformation: This
term considers the axial elongation or compression of the beam fibers, which can significantly
influence the overall dynamic behavior. Shear deformation: This term accounts for the transverse
shear deformation of the beam, which becomes important for thicker beams or when higher-
order effects are considered. Justification for neglecting y-z plane Deformation: The effect of
deformation in the y-z plane is not explicitly considered in this model. This simplification is based
on the following assumption of dominant deformation modes to achieve working simplification. The
primary focus of this study is on the transverse vibrations of the beam, which are predominantly
driven by bending in the x-z plane. Deformation in the y-z plane is expected to have a secondary or
negligible influence on the overall dynamic response within the scope of this investigation. Though
it will be more accurate, including deformation in the y-z plane would significantly increase the
complexity of the governing equations and the subsequent analysis. This simplification allows
to carry out a more focused and computationally efficient analysis of the dominant deformation
modes. However, we note that the additional terms may be incorporated in future studies following
the current computational framework, if necessary. The shear correction factor (ks) accounts
for the nonuniform distribution of transverse shear stresses across the thickness. In this study,
ks = 5/6 is adopted.
The kinetic energy of the Terfenol-D layered functionally graded beam can be written as:

KE = %/OT/OLAP<<%>2+ (%)24r (%—f)g)dfldxdt (11)

Now, one can expand the strain energy in the following form:
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The two stiffness coefficients presented in the above terms are given as:
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One can write the kinetic energy of the Terfenol-D layered functionally graded twisted beam as:
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where, inertia coefficients in the above equation are defined as:
pq / / pzpyqdzdy p7q = 07 17273747576 (51>
nJ) b

The governing equation of bidirectional functionally graded aluminium-Terfenol-D twisted
beams can be obtained by means of the Hamilton’s principle as:

5/ )+ We(t) ] dt = 0 (52)

By performing the variational operations, integrating the appropriate terms by parts and collecting
the coefficients of du, d¢, 00, dv and dwy, the variationally consistent equation of motion for first
order shear deformation theory (FSDT) in terms of stress resultant can be written as:

Su=0:= aaNf + Too gi“ 2710 ‘Z;e 21012125 =0 (53a)
6v=0:= aé\;”y + Ioog—?; =0 (53b)

Sw=0:= aév; + 100%2—;” =0 (53c)
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Expanding and substituting the stress resultants in the governing equations based on FSDT, we
get:
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The coefficients B;j, Doy and I;; are structural parameters, B;; collect the elastic (extensional-
bending-torsion-shear) stiffness’s arising from the bidirectional functional gradation; Dgg is the
shear /warping stiffness (scaled by the shear-correction factor ks); and I;; are the consistent inertia
terms, including cross-inertias that couple axial, bending, and torsional accelerations. The symbols
Quwiss and B carry the actuation/control and twist couplings: Qwiss 18 the geometry-induced
coupling coefficient produced by the beam’s twist (it projects local bending/torsion into the global
axial /warping directions and vice versa), and [ scales the magnetostrictive control (velocity-like)
feedback injected by the Terfenol-D layer(s). With this in view:

1. The first equation (axial field u) shows extensional stiffness By, with twist-mediated cou-
plings Q (00/0x, 0¢/0x) and curvature couplings 920 /922, 0?¢/0x?, while Iy, 110, [o1 reveal
how axial inertia is cross-coupled to bending and torsional accelerations, an effect influenced
by gradation and twist.

2. The second equation (interpreting 9%v/0x?) links in-plane lateral motion v to torsion via
0¢/0x; Dy provides the shear/warping resistance and Iy the lateral inertia.

3. The third equation (transverse motion w) couples out-of-plane displacement to the bending
rotation € through the shear channel Dk, again with Iyg providing inertia.

4. The fourth equation (bending rotation ) gathers bending and torsion curvatures (Bi1, Bag, Bo2)
and their twist-weighted projections through Quuist; the terms —Qiyist3 0w/ (0t Ox) and
—Dgoks Ow/0z + Dgoks 0 show how magnetostrictive control and shear flexibility inject (or
dissipate) rotational power, while Iy, [19, [11 set the effective rotational inertia.

5. The fifth equation (torsional rotation ¢) mirrors this structure for twist: torsional/bending
curvatures and their Qqyisi-weighted couplings appear with Bag, By, Boe; — 8 03w/ (02 Ot)
is the magnetostrictive torque-like control channel; and the +Q? ., terms (e.g., — Bp2Q?, .0,
+B11Q%,..0) quantify second-order twist amplifications that redistribute stiffness between
bending and torsion.

Collectively, these equations show that: (i) structural gradation tunes the baseline stiffness
and inertia maps, (ii) twist (Qyist) Creates strong geometry-based projections that entangle axial,
bending, shear, and torsion, and (iii) magnetostriction () supplies an active pathway to inject
damping/control work, most directly into bending and torsional channels via w—6—¢ couplings,
enabling targeted suppression and tuning of the global dynamic response.

2.6. Addition of extra term due to rotation

The governing equation requires additional components to account for the centrifugal stiffness
of the beam and the rotational speed €2 due to the angular rotation of the beam. The centrifugal
stiffening is given by

P(z) = /lz pAQ* (r + 2)dz (55)

This term can be added to the overall stiffness of the twisted beam. Here, r is the offset length
between Terfenol-D beam and rotating hub, [ is the length of twisted beam, and p represents the
density of beam material.
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3. Meshless differential quadrature based numerical solution scheme

In order to solve the governing equation of free vibration for imperfect bidirectional functionally
graded aluminum-Terfenol-D twisted beams, differential quadrature method is implemented here.
To analyse the natural frequency, the following expressions are assumed.

u(z,y,z,t) = Ulz,y, z) exp™” (56a)
v(x,y, 2,t) = V(x,y, z) exp™” (56b)
0(x,y,z,t) = O(z,y, z) exp™” (56d)
o(z,y, 2,t) = O(z,y, 2) exp™’ (56e)

where, U(z,vy, 2), V(z,y,2), W(zx,y,2), O(z,y, z) and ®(z,y, z) represent the mode shapes. Gov-
erning equations can be written in the analog differential quadrature form as:

BOO Z AS?)UJ - BOthwist Z AZ(JI)@J — BOl Z A’EJZ)(I)] — Bl(] Z AEJQ)@]
=t 7=1 j=1 j=1

" (57)
+ B1oQtwist Z AS-)(I’j + IooUiA? = 21100; X% — 211 $;\° = 0
j=1
Doo Y ADV; — Dog Y AF®; + IngVid? = 0 (58)
j=1 j=1
Dooks 3" ADW; — Dooks Y A0, + IngWid? = 0 (59)
j=1 j=1

—Qiwist B1o Z A%)Uj + B11Qtwist ©5 + B11Qwist Z AE})% + Qtwist Bao Z Agjl')@j — BoQtwist P

J=1 Jj=1 Jj=1

~QuisB Y AJWiA = Bu Y ADU; + BuQuin Y A0, + B Y A9,
=t =1 j=1 j=1

+B11 Y APO; — BiiQuwise Y AYD; — Dooks Y AW, + Dooks©; + IngO:\2
j=1 j=1 j=1

—2110UN* + 2111 9,02 = 0

(60)
~Bip Y ADU; + BiiQuise > AYe; + By > ALD; + By S AP,
_BQOQtWiSt Z A’Ejl)q)] N 5 Z AEJZ)I/VJ)\ + BOthWist Z AS)UJ - BOQQ%wist@j
Jj=1 j=1 =1 (61)
—BoQuwist Y AYD; — BiQuuist Y A0, + B11Q2:0; — Doo Y APV,

+D00(Dj + [OQ(I)i)\z - 2[01Ui)\2 + 2111@i)\2 = O
The above equations are written as

{— (M} {d} + {[2] A} {d} + [S] {4} =0 (62)
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where,

(2] = [Cas] = [Ca] [Sw] ™ [Swa] (63)

[5] = [Sad] — [Sw] [Sw] ™ [Swa] (64)

Eq. is a non-standard eigenvalue equation. For a given frequency, it can be transformed
equivalently into a standard form of eigenvalue equation as:

{ [2 Q ) [é Aof] A} {fd} =0 (65)

where I is an identity matrix. [S], [Z] and [M] denote the structural stiffness, damping and
mass matrix, respectively. [M] is the matrix which contains the inertia terms from the governing
differential equation. Reorganizing the matrices in Eq., one can get five sets of eigenvalues. The
fundamental eigenvalue is thought to be the lowest one. The fundamental eigenpair corresponds to
the lowest damped natural frequency. For a linear damped mode, the eigenvalues can be written
as A = —a =+ iwy, where a [s71] is the modal decay rate and wy [rads™!] is the damped natural

frequency.
wg = w2 — a2, wy, =/ a? +w? (66)

The mode shapes can be plotted using the eigenvector.

The current study focuses on active vibration control of bidirectional functionally graded beams
having twisted geometry along with viscoelastic boundary conditions, porosity variation, and the
effect of designed Terfenol-D patch location. However, the limitations of the current approach
in handling highly nonlinear scenarios may be noted. The future scope of further developments
include potential extensions of the proposed computational approach to incorporate nonlinear
effects, such as incorporating higher-order terms in the governing equations or employing more
sophisticated numerical techniques, as well as magnetostrictive material nonlinearity and geometric
nonlinearity.

4. Results and discussion

This section presents numerical results concerning the free vibration and control of bidirectional
functionally graded aluminium-Terfenol-D twisted beams. The proposed computational framework
will be validated first with existing literature, followed by a comprehensive investigation on the
dynamic behavior.

4.1. Validation of the computational framework

The current formulation and solution procedure is reduced to an isotropic beam with twist, and
the numerical results are compared with literature as per availability [50, [74]. It may be noted
that there hasn’t been any prior research on the free vibration of a bidirectional functionally
graded aluminum-Terfenol-D twisted beams. The convergence and validation of the differential
quadrature method with first five mode frequencies are presented in Table |3 (for this the material
properties of are considered along with the geometrical parameters as: L = 10 m, h =
10 mm). It is observed that the natural frequencies obtained for twisted beam using differential
quadrature method closely agree with the literature. Having adequate confidence on the developed
computational framework, we further investigate the effect of a range of influencing parameters
on the dynamic behavior.

Table |3 shows relatively higher percentage errors in vibration modes 2, 4, and 5, which can
be attributed to the following reasons: (1) Theoretical framework differences: The reference by
Banerjee [74] employs the dynamic stiffness method, which is exact in the frequency domain
and highly accurate for higher modes, while Adair and Jaeger [50] use the modified Adomian
decomposition method applied to a pre-twisted Euler—Bernoulli beam formulation. In contrast,
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our present approach is based on the generalized differential quadrature method (GDQM), which
discretizes derivatives into weighted sums. Such methodological differences particularly influence
higher modes where the sensitivity to formulation assumptions is greater. (2) Boundary condi-
tion implementation: Banerjee’s dynamic stiffness framework [74] enforces boundary conditions
analytically, whereas in our GDQ-based scheme the clamped and simply supported conditions
are approximated through weighting matrices. Small variations in constraint enforcement can
significantly affect higher-order modes, which involve sharper curvature and higher strain energy
concentrations near supports. (3) Numerical convergence sensitivity: Although convergence is
demonstrated in Table 3, higher-order modes require denser grids and more refined shape func-
tions to achieve the same accuracy as fundamental modes. The dynamic stiffness method [74],
being exact in nature, is less sensitive to discretization errors, whereas the GDQ approach shows
a modest error accumulation for higher frequencies. Despite these discrepancies, the agreement is
within 6-8% for the most affected modes, which remains acceptable for engineering applications.
More importantly, the fundamental and third modes show very close agreement (<2% error) with
Banerjee’s results [74], where the modes are more bending dominated. As the presence of other
modes (such as twist) increase, the difference also increases.

Table 2: Material Properties for the beam under consideration [75].

Parameters Aluminium Aluminium Oxide Terfenol-D
Young’s Modulus ( N/m?) 69 x 10° 349.55 x 10° 26.5 x 10”
Poisson’s Ratio 0.2892 0.260 0.30
Shear Modulus (N/m?) 27 x 10° 88 x 10? 13.25 x 10°
Density (kg/m?) 2900 3970 9250

Table 3: Convergence study for different grid points and validation of frequencies for twisted beams with literature
considering 5 = 0. Note that 5 represents the magneto-mechanical coupling coefficient of the Terfenol-D actuator.
This coefficient quantifies the strength of interaction between the magnetic field applied to Terfenol-D and the
resulting mechanical strain, which directly influences the damping performance of the vibration control system.
Here mg represents the grid points, presenting a study on mesh convergence.

Modes mg=11 mg=27 mg=77 mg=100 Ref.[74] Ref. [50] % Error with

Ref.[74]
Mode 1 3.432 3.423 3.422 3.422 3.471 3.475 1.418
Mode 2 12.294 12.274 12.273 12.273 13.346 13.463 8.036
Mode 3 25.112 24.755 24.713 24.710 25.170 25.336 1.828
Mode 4  61.312 60.482 60.442 60.442 56.371 56.401 7.221
Mode 5 99.089 97.514 97.133 97.111 103.263  103.452 5.957

4.2. Effect of rotational spring supports at the boundaries
Tables show the effect of variation in rotational spring supports on the first four mode of fre-
quencies for bidirectional Al-Terfenol-D functionally graded twisted beams. The stiffness value of

Table 4: Imaginary component for varying vertical translational stiffness considering Ky=100000 N/m,
Krr=Kpr=0 N/m and C,.=Cr=Crr =Cgr =0 N-s/m, m =n = 0.1 and o = 0.1.

Knr =400 $=30" =200 =100 $=00
100000 118.3831  109.3057  87.7536  52.3032  42.4379
10000  118.3438  109.2723  87.7264  52.2813  42.4182

1000 117.9660  108.9482  86.4596  51.0652  41.2232

100 114.2574  105.4623 82.2643 49.1618 38.4103
10 100.6390 91.1956 71.2343 38.0319 26.0487
0 71.4636 62.2544 46.9092 22.5798 18.5324
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Figure 2: Twist-angle dependent dynamic behaviour of bidirectional functionally graded aluminum-
Terfenol-D beams. (A) Variation of fundamental mode frequency with twist angle decay from clamped-clamped
to simply supported boundary condition. (B) Effect of twist angle on the fundamental mode shape of clamped-free
bidirectional functionally graded Terfenol-D uneven porous beam. (C) Effect of porosity index on fundamental
mode frequencies of clamped-clamped bidirectional functionally graded Terfenol-D uneven porous beam. (D) Effect
of twist angle on clamped-clamped fundamental mode of bidirectional functionally graded Terfenol-D uneven porous
beam. (E) Rotational speed versus twisted beam frequency. The artistic visualization is provided for bringing
context to the analysis, such as engineering application like turbines.

the rotational and translational spring is varied from 100000 to zero. The damping coefficient value
is considered as zero, while the twisting angle is changed from ¢=40° to ¢=0°. The transverse and
axial power indices for Aluminium and Terfenol-D are taken as 0.1. The porosity index with uneven
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porosity distribution is considered as 0.1. For the stiffness value K=K rr=K;=Kr=100000, the
clamped-clamped boundary condition is obtained. The simply supported boundary condition is
obtained with the stiffness value of K r=Kgrr=0 and K;=Kr=100000. These tables highlight the
sensitivity of modal characteristics to changes in boundary rotational stiffness, providing a com-
prehensive quantitative understanding. Overall, the tabulated results clearly demonstrate that
a reduction in rotational stiffness progressively lowers the imaginary component across all four
modes, indicating a softening of the system response. This effect becomes more pronounced as
the twist angle ¢ decreases from 30° to 0°, with the lowest values observed under free-rotational
conditions (Kpr = Krr = 0). These results corroborate with the following discussions, empha-
sizing the coupled influence of boundary flexibility and skew angle on the vibrational behavior of
the system.

The variation in fundamental mode of frequency with different twist angle for different stiff-
ness value of K;p=Kgy is shown in Figure 2JA. The results show an intricate interplay of support
stiffness values and the twist-induced variation, leading to a quantifiable variation trend of the
fundamental frequency. As the twist angle progresses from 0° to 40°, the fundamental bending
mode frequency experiences a modest decline across all stiffness levels, suggesting that the geomet-
ric coupling induced by the twist slightly softens the bending mode (i.e., varying the twist angle
modifies the beam’s bending natural frequency). On the other hand, increasing the equal spring
stiffness (Kzr = Krr) from 10% to 10° (log scale) significantly raises the bending frequency for any
specified twist angle, indicating a shift from near-free to effectively clamped boundary conditions.
The increase in frequency with stiffness diminishes at the highest K values, indicating a tendency
to asymptotically approach the fully constrained (clamped) frequency. It is evident that at each
stiffness level, the twisted beam exhibits a lower bending frequency compared to the untwisted
scenario—indicative of a distinct structural interaction between twist and bending dynamics. The
twist geometry fundamentally modifies the response of the bending mode to variations in boundary
stiffness, as it incorporates bending—torsional coupling. From a control standpoint, these trends
suggest that actively adjusting the support stiffness can effectively modulate the bending vibration
frequency; the stiffer the adjustable support, the higher the natural frequency. Nonetheless, the
twist angle of the beam fundamentally affects the effectiveness of this control. Greater twist angles
require meticulous attention to bending—torsional coupling in the control design, as twisting not
only lowers the baseline frequency but also subtly alters the sensitivity of that frequency to vari-
ations in stiffness. Therefore, an active control strategy, such as employing adaptive end springs
or magnetostrictive actuation, is needed to consider the interaction between twist and stiffness to
attain accurate vibration suppression and frequency tuning.

4.83. Effect of twisting angle

The distortion that a structural component would experience when vibrating at its natural
frequency is characterised by the mode shape. Natural frequencies and mode shapes therefore
depict how the structure responds in a vibrating environment. For a qualitative evaluation of the
structural component’s dynamics, the mode shape characteristic is useful. In this regard, Figure
shows the effect of twist angle on the fundamental mode shape in z — x plane for a cantilever
bidirectionally functionally graded twisted beam. In the current investigation, we have limited our
analysis to 40° for presenting numerical results based on practical considerations in engineering
structures.

Figure shows the effect of porosity index and twisting angle on the fundamental frequency
of the bidirectional functionally graded aluminium-Terfernol-D beams. The fundamental mode
frequency of Al-Terfenol-D twisted beams is observed to drop when the porosity index rises.
This is due to porosity being one of the structural imperfections that decreases the stiffness of
the beam. Figure shows the effect of porosity on the dynamic response of a twisted beam,
wherein it becomes evident that the amplitude reduces with increased porosity. Figure shows
the variation of clamped-clamped natural frequencies of different modes with increasing twist
angles. The effect of rotational speed on the lowest natural frequencies is shown in Figure 2E
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Table 5: Imaginary component for varying rotational stiffness (transition from CC-SS state) considering

K1 =Kgr=100000 N/m and C;,=Cr=Crr =Cgrr =0 N-s/m, $=40°, m =n = 0.1 and a = 0.1.

K7 = Kgy Mode 1 Mode 2 Mode 3 Mode 4
100000 137.2069 332.8384 571.4630 846.5506
10000 137.1703 332.7501 571.3113 846.3236

1000 136.8129 331.8881 569.8337 844.1165
100 133.8436 324.8296 557.9223 826.6218
10 119.6991 295.0957 513.5008 768.5754

0 90.5637 258.0876 474.4704 729.0701

Table 6: Imaginary component for varying rotational stiffness (transition from CC-SS

K1=Kpr=100000 N/m and C;=Cr=Crr =Crr =0 N-s/m, $=30°, m =n = 0.1 and a = 0.1.

state) considering

K7 = Kpr Mode 1 Mode 2 Mode 3 Mode 4
100000 117.7658 286.2028 493.3021 736.9825
10000 117.7338 286.1257  493.1678 736.7770

1000 117.4197 285.3694 491.8538 734.7703
100 114.7333 279.0018 480.9796 718.4782
10 101.5958 251.5156 439.5849 663.5371

0 74.3177 217.8268 403.9177 626.8009

Table 7: Imaginary component for varying rotational stiffness (transition from CC-SS state) considering
Kp=Kp = 100000 N/m and C,=Cr=Crr =Cprr =0 N-s/m, ¢$=20°, m =n = 0.1 and o = 0.1.

Kir = Kgyp Mode 1 Mode 2 Mode 3 Mode 4
100000 95.9283 234.9167  411.8930  629.6410
10000 95.9014 234.8507  411.7735  629.4512

1000 95.6362 234.2014  410.6008  627.5922
100 93.2945 228.5710  400.6396  612.1500
10 81.3579 203.4192 361.7430  559.0947

0 56.9586 173.5742 329.1600  524.2964

Table 8: Imaginary component for varying rotational stiffness (transition from CC-SS state) considering K =
KR = 100000 N/Hl and CL:CR:CLT :CRT =0 N—s/m, ¢:100, m=n=0.1 and o« = 0.1.

K7 = Kgr Mode 1 Mode 2 Mode 3 Mode 4
100000 71.2215 183.4249 339.6938 543.3170
10000 71.1996 183.3669 339.5824 543.1340

1000 70.9821 182.7946 338.4852 541.3371
100 68.9994 177.6981 328.9591 526.1389
10 58.2471 153.9848 290.7520 472.9520

0 37.8286 125.4816 259.5880 438.4634

Table 9: Imaginary component for varying rotational stiffness (tramsition from CC-SS
Kr=Kp = 100000 N/m and C;,=Cr=Cr7 =Cgrr =0 N-s/m, $=0°, m=n=0.1 and o = 0.1.

state) considering

Ki7=Kpgr Mode 1 Mode 2 Mode 3 Mode 4
100000 54.8245 157.1259 283.2981 508.7361
10000 54.8042 157.0696 283.1960 508.5540

1000 54.6020 156.5127 282.1832 506.7631
100 52.7253 151.4906 272.7667  491.5052
10 42.0277 127.5163 258.5605 437.6247

0 23.8351 101.1516 227.1102 402.7156
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for the bidirectional functionally graded twisted beam. With the addition of centrifugal stiffening
given by Eq. to the governing equation, the rotational effect is obtained for different twist
angles. It is observed that, as the rotational speed () increases, the lowest natural frequency for
the bidirectional functionally graded Al-Terfenol-D beam also increases. Figure shows the
effect of twist angle along with transverse and axial power indices on the natural frequencies of
bidirectional functionally graded aluminium-Terfenol-D twisted beams. It is observed that the
fundamental mode of frequency increases with an increase in twist angle as the transverse and
axial power indices rise from 0 to 3.5.

The effect of twisting angle on the dynamic behavior of the Terfenol-D integrated twisted
beams, as illustrated in Figures 2(B-D) and [B(A-B), shows that increasing the twist angle re-
distributes the strain energy between bending and torsional modes, thereby altering the effec-
tive bending stiffness of the structure. This redistribution leads to strain energy localization at
antinodes, which explains the frequency enhancement observed with higher twist angles. Simul-
taneously, the presence of porosity reduces the effective stiffness of the beam, counteracting the
twist-induced stiffening and resulting in lower natural frequencies. The role of material gradation
indices is also evident, as higher ceramic-rich gradation increases stiffness and frequency, whereas
metal-rich gradation promotes compliance and frequency reduction. Furthermore, the evolution
of mode shapes with twisting (Figure ) can be physically interpreted as the reorientation of the
principal stiffness axes: as the beam twists, bending and torsional responses couple more strongly,
shifting the nodal patterns and amplifying stiffening effects in certain modes. Overall, these results
highlight the interplay between twist-induced stiffening, porosity-driven softening, and gradation
effects, offering a comprehensive explanation of the observed frequency trends.

4.4. Damping effect obtained based on dashpots and Terfenol-D

It’s critical to investigate the damping effect contribution from the viscoelastic supports and
Terfenol-D material. For a functionally graded beam made of bidirectionally varied aluminium
and Terfenol-D concentrations, we explore and analyze the individual damping effect of dashpots
and Terfenol-D. First, the combined damping effect derived from modifications to the damping
coefficients of viscoelastic supports and Terfenol-D material for uneven porous beams is shown in
Figure [BC. The shift in the fundamental frequency of the twisted beam is observed to be mini-
mal when the damping coefficients of viscoelastic end supports are increased from zero to 13 N
s/m. However, when they surpass 13 N s/m, the frequency falls as the damping coefficient of
the viscoelastic end supports increases for the different twist angles. The dampening effect for
a bidirectional functionally graded aluminium-Terfenol-D twisted beam is shown in the Figure
with dashpots of viscoelastic support and Terfenol-D material actuation. Under the circum-
stances of free vibration, the beam’s vibration is suppressed in 0.4 seconds, as shown by the red
line, which is designed to illustrate the damping achieved with the magnetostrictive effect. Addi-
tionally, dampening achieved using dashpots of viscoelastic supports is illustrated using the black
line. The dash-pot effect of viscoelastic supports has been shown to be less prominent than the
magnetostrictive effect in terms of damping.

The viscoelastic dashpot dissipates energy primarily through passive viscous resistance, which
is frequency- and temperature-dependent, leading to limited damping efficiency at higher vibration
frequencies. In contrast, the magnetostrictive layer provides active magneto-mechanical coupling,
where strain in Terfenol-D induces an opposing magnetic field—controlled stress that can be tuned
almost instantaneously. This mechanism offers two advantages: (i) Speed of response: Mag-
netostrictive actuation is governed by domain rotation in the material under applied bias field,
enabling a near-instantaneous response to vibration cycles, unlike the slower relaxation times of vis-
coelastic media. (ii) Magnitude and adaptivity of damping force: The induced magneto-mechanical
stress adds to the structural stiffness and dissipative effect, resulting in stronger suppression of
vibration amplitude. Moreover, it can be actively tuned by adjusting the bias magnetic field, un-
like the fixed damping coefficient of dashpots. Thus, the superior damping with magnetostrictive
integration (as shown in Fig. ) is attributed to faster dynamic response and higher controllable
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Figure 3: Effect of porosity, damping and gradation indices on the dynamic behaviour. (A) Effect
of porosity index on dynamic response of simply supported bidirectional functionally graded Terfenol-D uneven
porous beams. (B) Effect of transverse and axial power indices on fundamental mode frequencies of clamped-
clamped bidirectional functionally graded Terfenol-D uneven porous beams. (C) Effect of damping dashpots on
fundamental mode frequencies of bidirectional functionally graded Terfenol-D uneven porous beams (Parameters:
Ky = Krr=10000, m =n = a=0.1). (D) Comparison of damping obtained with dashpots of viscoelastic support
and with actuation of Terfenol-D on fundamental mode frequencies of bidirectional functionally graded Terfenol-D
uneven porous beams (Parameters: Kpr = Kgppr=10000, m =n = a =0.1).

energy dissipation capacity compared to viscoelastic supports.

4.5. Control of twisted smart beams

Figure (A—C) shows the control aspects of bidirectional functionally graded twisted beams.
The schematic for the active vibration control strategy of the beams using negative velocity feed-
back control is shown in figure fA. The investigation focuses on evaluating the effectiveness of
different pairs of patches placed in distinct configurations (refer to ), along with complete
Terfenol-D layers, as shown in the Figure (B, C) under the effect of transverse impulsive load.
The application of impulsive loading first results in a rise and subsequent drop in the value of
dynamic response. It is revealed through numerical experiments that the five Terfenol-D patches,
positioned at a distance of %, is the most effective configuration for damping.

Parametric investigations are conducted here to demonstrate the impact of gain control and the
characteristics and arrangement of Terfenol-D patches on the dynamic response of active sandwich
beams under transverse impulsive loads. In general, the findings show that the implementation
of active vibration control through exploiting the magnetostrictive qualities of Terfenol-D has a
significant impact on reducing the oscillations of bidirectional functionally graded beams. Further,
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Figure 4: Vibration control of bidirectional functionally graded aluminum-Terfenol-D twisted beams.
(A) Control path with negative velocity feedback of viscoelastically supported twisted beams. (B) Effect of differ-
ent arrangement of three patches and full layer of Terfenol-D on the dynamics of twisted beams under transverse
impulsive load. (C) Effect of two Terfenol-D patches at different locations on twisted beam under transverse impul-
sive load. (D) Representation of different configuration of bidirectional functionally graded aluminum-Terfenol-D
twisted beams for dynamic control. (I) Schematic illustration of two Terfenol-D patches on twisted beams, noted
as “(02 Nos.) — Position 1.” (IT) Schematic illustration of two Terfenol-D patches on twisted beams, noted as “(02
Nos.) - Position 2”. (IIT) Schematic illustration of two Terfenol-D patches on twisted beams, noted as “(02 Nos.)
- Position 3”. (IV). Schematic illustration of three Terfenol-D patches on twisted beams, noted as “(03 Nos.) -
Position 1”7. The configurations with Terfenol-D patches (05 Nos) containing five pairs of patches at L/5 distance
apart and Terfenol-D full layer are not shown here as there are quite straightforward to visualize.

tailoring the material’s responsiveness to external magnetic fields, as investigated in Figure [4]
improves magnetostrictive control.

In this context, the evolving trends of architected matter and metastructures may be noted
where placement of active elements and optimal material distribution play a key role [76H79]. The
improved damping performance of the 5-patch configuration here is primarily due to enhanced
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spatial coverage of high-strain regions along the beam. Magnetostrictive patches are most effective
when located near the strain antinodes of the fundamental bending mode, where curvature (and
thus induced magneto-mechanical stress) is maximum. With fewer patches (e.g., 2 or 3), some
high-strain regions remain underutilized, leading to less efficient energy extraction and control. By
increasing to 5 patches, the coverage extends over multiple antinodes, ensuring that the induced
counteracting stresses are more uniformly distributed and better synchronized with the modal
deformation. Thus, the superiority of the 5-patch layout arises from (i) optimal alignment with
modal strain distributions, (ii) increased effective control authority through distributed actuation,
and (iii) reduction of localized untreated regions that can sustain vibration energy. This mechanism
explains the trends in Figs. [A}B-JLC and underscores the importance of patch placement relative
to mode shapes.

5. Concluding Remarks

In this study, free vibration analysis of bidirectional functionally graded aluminium-Terfenol-
D beams with manufacturing flaws and twisted geometry is carried out under the influence of
viscoelastic boundary conditions. Based on a first order shear deformation formulation, the gov-
erning differential equations of motion for the twisted beam are derived for free vibration. The
computationally efficient differential quadrature technique is subsequently implemented to solve
the resulting equations. The convergence and comparative assessments demonstrate that the de-
veloped computational model is accurate with respect to available literature. The differential
quadrature approach is more precise and uses less computational resources than dynamic stiffness
and finite element method for investigating how structures evolve over time, particularly those
with intricate forms or boundary conditions.

Pre-twisted beams are one of the most crucial structural components and are widely employed
in several contemporary industrial sectors, including nuclear, automotive, aerospace and renew-
able energy. One of the main causes of vibration is the dynamic forces imparted by the spinning
cantilever beams. These structures must be operated safely and effectively, which requires vibra-
tion analysis and suppression. This paper has brought forth novel insights on the free vibration
and smart control of complex structural geometries with twist.

Based on the developed computational model, the influences of twist angle, viscoelastic bound-
ary condition, and the variation of transverse and axial power indices are investigated on the
natural frequencies and mode shapes with the notion of developing a design-oriented mapping of
the input parameter space. Two different types of porosity distribution patterns considering even
and uneven porosity are analyzed to simulate the effect of manufacturing flaws. The fundamental
mode frequency of the graded Al-Terfenol-D twisted beams is observed to drop when the porosity
index rises. Additionally, the fundamental frequency changes as the twist angle increases. The
shift in the fundamental frequency of the twisted beam is reported to be minimal when the damp-
ing coefficient of viscoelastic end supports is increased from 0 to 13 N s/m. As the rotational
speed increases, the lowest natural frequency for the bidirectional functionally graded Al-Terfenol-
D beam also increases. Further, computational investigations are conducted to demonstrate the
impact of gain control, and the characteristics and arrangement of Terfenol-D patches on the dy-
namic response of active sandwich beams under transverse impulsive loads. The findings show that
the implementation of active vibration control technique through exploiting the magnetostrictive
qualities of Terfenol-D can have a significant impact on reducing the oscillations of bidirectional
functionally graded beams. In addition, tailoring the material’s responsiveness to external mag-
netic fields through optimal placement of the Terfenol-D patches can improve magnetostrictive
actuation, control and sensing further. On the basis of this paper’s results and insights, future
study can be undertaken on non-linear vibration and dynamics of composite laminated blades
with high rotation velocity.
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