ORIGINAL

Check for

Meropenem and piperacillin/tazobactam optimised dosing regimens for critically ill patients receiving renal replacement therapy

Jason A. Roberts^{1,2,3,4,5*}, Marta Ulldemolins¹, Xin Liu¹, João P. Baptista⁶, Irma Bilgrami⁷, Clement Boidin^{1,8,9}, Alexander Brinkmann¹⁰, Pedro Castro^{11,12}, Gordon Choi¹³, Louise Cole^{14,15}, Jan J. De Waele^{16,17}, Renae Deans¹, Sine Donnellan¹⁸, Glenn M. Eastwood¹⁹, Otto R. Frey²⁰, Sylvain Goutelle^{8,9}, Rebecca Gresham¹⁵, Janattul Ain Jamal²¹, Gavin M. Joynt¹³, Salmaan Kanji^{22,23}, Stefan Kluge²⁴, Christina König^{24,25}, Vasilios P. Koulouras²⁶, Melissa Lassig-Smith⁴, Pierre-Francois Laterre²⁷, Anna Lee¹³, Jean-Yves Lefrant⁵, Katie Lei²⁸, Patricia Leung¹³, Mireia Llaurado-Serra²⁹, Ignacio Martin-Loeches^{30,31}, Mohd Basri Mat Nor³², Yugan Mudaliar³³, Marlies Ostermann²⁸, Sanjoy K. Paul³⁴, Sandra L. Peake^{35,36,37}, Jordi Rello^{5,38,39}, Darren M. Roberts^{40,41}, Michael S. Roberts^{42,43,44}, Brent Richards⁴⁵, Alejandro Rodríguez^{39,46,47,48}, Anka C. Roehr²⁰, Claire Roger⁵, Leonardo Seoane^{49,50,51}, Mahipal Sinnollareddy^{42,43}, Eduardo Sousa⁶, Dolors Soy^{12,52,53}, Anna Spring⁵⁴, Therese Starr⁴, Dianne Stephens^{7,55,56}, Fabio Silvio Taccone⁵⁷, Jane Thomas⁷, John Turnidge⁵⁸, Miia Valkonen⁵⁹, Julie M. Varghese¹, Steven C. Wallis¹, Robert J. Walker^{18,60}, Tricia Williams^{35,36,37}, Luke C. Wilson⁶⁰, Xavier Wittebole²⁷, Daniel F. B. Wright^{61,62,63}, Xanthi T. Zikou⁶⁴, Rinaldo Bellomo^{19,65,66,67,68} and Jeffrey Lipman^{1,4,5,69} on behalf of SMARRT Study Collaborators

© 2025 The Author(s)

Abstract

Purpose: Optimal dosing of meropenem and piperacillin/tazobactam in critically ill patients receiving renal replacement therapy (RRT) is uncertain due to variable pharmacokinetics. We aimed to develop generalisable optimised dosing recommendations for these antibiotics.

Methods: Prospective, multinational pharmacokinetic study including patients requiring various forms of RRT. Independent population PK models were developed, externally validated and applied to perform Monte Carlo dosing simulations using Monolix and Simulx. We calculated the probability that these dosing regimens achieved standard and high therapeutic unbound antibiotic concentrations over 100% of the dosing interval for the treatment of Enterobacterales and *Pseudomonas aeruginosa*.

Jason A. Roberts and Marta Ulldemolins are equal contributors and share first authorship.

The members of the group for the SMARRT Study Collaborators are listed in Acknowledgements.

^{*}Correspondence: j.roberts@uq.edu.au

¹ University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Herston, Brisbane, Australia Full author information is available at the end of the article

Results: We enrolled 300 patients from 22 intensive care units across 12 countries receiving continuous veno-venous haemodialysis (13.0%), haemofiltration (23.3%), haemodiafiltration (48.4%) or sustained low-efficiency dialysis (15.3%). Models were developed using data from 234 patients (8322 samples) and validated with 66 additional patients (560 samples). Predictive performance was high, with mean prediction errors of -5.2% for meropenem and -16.9% for piperacillin. Dosing simulations showed that meropenem and piperacillin/tazobactam dosing requirements were dependent on urine output and RRT intensity and duration (p < 0.05). In all scenarios, extended/continuous infusions led to a better achievement of effective concentrations with lower daily doses compared to short infusion. Dosing nomograms were developed to inform dosing for different RRT settings, urine outputs, and target concentrations.

Conclusion: RRT intensity and duration and urine output determine meropenem and piperacillin/tazobactam dosing requirements in critically ill patients receiving RRT. Extended/continuous infusions facilitate the attainment of effective concentrations.

Keywords: Critically ill patients, Meropenem, Piperacillin/tazobactam, Renal replacement therapy, Pharmacokinetics, Dosing nomograms

Introduction

Infection-associated severe acute kidney injury (AKI) requiring renal replacement therapy (RRT) is a serious complication of sepsis and septic shock [1–3], with associated mortality rates up to 50% higher than those observed in non-septic patients with AKI [1, 2]. In this context, early and appropriate antibiotic therapy is crucial [4]. However, compelling evidence indicates that optimal antibiotic concentrations are not achieved during treatment in approximately 25–40% of cases due to difficult-to-predict pharmacokinetics (PK) [5–7]. Due to such variable PK, universal dosing recommendations for antibiotics during RRT have not been defined, making these patients one of the most challenging groups for antibiotic therapy optimisation.

Meropenem and piperacillin/tazobactam are amongst the most prescribed antibiotics in the intensive care unit (ICU) [8]. As beta-lactams, their efficacy is related to the percentage of time over a dosing interval that the unbound (free) concentration is maintained above the minimum inhibitory concentration (MIC) of the infecting bacteria (% fT $_{\rm >MIC}$) [9]. For the treatment of severe infections in critically ill patients, a 100% fT $_{\rm >MIC}$ is generally recommended for efficacy [10]. Moreover, emerging pre-clinical data suggest that maintaining even higher concentrations (e.g., 4×MIC) may suppress the emergence of bacterial resistance and may be necessary for treating certain infections [11] albeit with an increased risk of toxicity. Nonetheless, associated dosing regimens are undefined.

We aimed to describe the PK of meropenem and piper-acillin/tazobactam and their sources of variability in critically ill patients with AKI receiving RRT. With this information, we sought to develop generalisable optimised dosing nomograms that also minimise the likelihood of drug-associated toxicity.

Take-home message

The results of this large international pharmacokinetic study show that meropenem and piperacillin/tazobactam dosing in critically ill patients receiving RRT is dependent on the target concentration chosen and on the main pharmacokinetic determinants in this population, namely RRT intensity, 24 h urine output, and RRT duration in the case of SLED. In most clinical scenarios, extended/continuous infusions facilitate the achievement of effective antibiotic concentrations.

Methods

The Sampling Antibiotics in Renal Replacement Therapy (SMARRT) study was an international, prospective, observational PK study that originally included critically ill patients with AKI requiring renal replacement therapy (RRT) from 29 ICUs across 14 countries over the period December 2011–March 2017 [Australian and New Zealand Clinical Trial Registry (ACTRN12613000241730)]. The study was approved at the lead site by the Royal Brisbane and Woman's Hospital Human Ethics Research Committee (HREC/13/QRBW/1), and all participating sites obtained individual ethics approval. The detailed protocol and the clinical results describing variability of RRT practise and observed antibiotic concentrations have been published elsewhere [5, 7].

Adult critically ill patients receiving meropenem or piperacillin/tazobactam and with severe AKI [12] requiring RRT with continuous veno-venous haemofiltration (CVVHF), haemodialysis (CVVHD) or haemodiafiltration (CVVHDF), or intermittent sustained low-efficiency dialysis (SLED) for an expected duration of at least 4 days were included in the study [7]. All patients or their authorised representative gave written informed consent. Due to slow recruitment, additional patient data were included from contemporary PK studies at participating sites with similar entry criteria and data collection methods [13–20].

Antibiotic dosing, data collection, plasma sampling, and bioanalysis

Antibiotic dosing and RRT settings were at the discretion of the clinical team. Demographic and clinical data were collected at inclusion and on the days of sampling, that was performed over one or two dosing occasions accounting for the initial and maintenance phases of therapy. Plasma from pre- and post-filter RRT ports and effluent fluid samples were obtained following a rich sampling strategy. Meropenem, piperacillin, and tazobactam total and unbound concentrations were measured using a validated ultra-high performance liquid chromatography with tandem mass spectrometry method [21]. A detailed description of sample collection and bioanalysis is provided in the electronic supplementary material.

Pharmacokinetic analyses

Population PK analyses and validation were performed using the non-linear mixed effects modelling software Monolix 2024R1 (Lixoft SAS, Antony, France) [22]. Briefly, a population PK model was developed for each drug to integrate pre- and post-filter plasma and effluent concentrations as described by Broeker et al. [23]. In the models, drug clearance (CL) was defined as the sum of non-RRT-mediated CL (CL_{body}) and RRT-mediated CL (CL_{RRT}). During the statistical analysis, the covariates that clinically and significantly explained the variability in CL and volume of distribution (V) were included. Internal validation of the models was based on goodnessof-fit (GOF) plots, a prediction-corrected visual predictive check (pc-VPC), and non-parametric bootstrapping (n=1000) [24, 25]. The predictive performance of the PK models was assessed using additional data from patients receiving the four RRT modalities, that came primarily from non-SMARRT-funded studies allowing as well for evaluation of the model's performance on slightly different patients, centres, and study designs. Bias and precision of the population predicted pre-filter concentrations were assessed by the mean prediction error (MPE) and mean absolute prediction error (MAPE), respectively [26]. Values < 30% were considered acceptable, and those <20% were considered optimal [27]. Modified Bland-Altman plots were also built [28]. A detailed data analysis description is provided in the electronic supplementary material.

Monte Carlo simulations and probability of target attainment for efficacy and toxicity

Monte Carlo initial and steady-state dosing simulations were performed with the final covariate models using the Simulx 204R1 (Lixoft SAS) simulation software. For meropenem and piperacillin, the pharmacokinetic/

pharmacodynamic (PK/PD) target was set taking into account (1) a standard efficacy target against Gramnegative bacilli (i.e., global 100% fT $_{>MIC}$ and $4 \times MIC$ for Enterobacterales) [5, 10, 11, 29]; and a higher efficacy target (4×MIC for global empirical treatment and for directed treatment of P. aeruginosa) and (2) toxicity thresholds described in the literature [30, 31], i.e., unbound trough concentrations or in the case of continuous infusion, unbound average steady-state concentrations of ≥ 45 mg/L and ≥ 160 mg/L for meropenem and piperacillin, respectively. Therefore, for each dosing regimen, we calculated the probability of target attainment for a range of unbound trough/average steady-state concentrations considering that the European Committee on Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints and epidemiological cut-off values (ECOFF) for Pseudomonas aeruginosa are 2 mg/L for meropenem and 16 mg/L for piperacillin in combination with tazobactam [32]. For tazobactam, the efficacy PK/PD target was defined as maintaining unbound concentrations above a concentration threshold for a percentage of time during the dosing interval, that has been described to be $\geq 85\%$ fT_{>2mg/L} in combination with piperacillin in in vitro models with Gramnegative bacteria producers of extended-spectrum beta-lactamases [33]. A toxic concentration threshold has not been described for tazobactam; instead, we chose the most conservative toxicity concentration for piperacillin that has been reported with the two drugs in co-administration [31]. The minimum desired probability of target attainment was defined as \geq 90%.

From these results, a dosing nomogram was developed for each drug, considering (1) a standard trough/average steady-state concentration target of ≥ 2 mg/L for meropenem and ≥ 16 mg/L for piperacillin/tazobactam (global 100% fT $_{\rm >MIC}$ and 4×MIC for Enterobacterales) and (2) a higher target of $\geq 4-8$ mg/L for meropenem and $\geq 32-64$ mg/L for piperacillin/tazobactam (empirical treatment and 4×MIC for *P. aeruginosa*). The recommended dosing regimens provided the highest likelihood of achieving effective and non-toxic concentrations during the first 24 h and at steady state.

Results

Across 22 ICU from 12 countries, 300 patients treated with meropenem or piperacillin/tazobactam were enrolled. From these patients, 179 patients were enrolled in the SMARRT study and 121 belonged to similar PK studies [13–20]. Most of the patients were male, with a mean age of 61.1 years, had respiratory or intra-abdominal infections, and were intubated (79.3%) and receiving vasopressors (70%) on the days of the study. Overall, the most prescribed RRT modality was

CVVHDF (48.3%). The median antibiotic daily dose was 3 g for meropenem and 12/1.5 g for piperacillin/tazobactam; in 67% of the cases, these drugs were prescribed as short infusions (<1 h) and in 33% as extended/continuous infusions. Trough concentrations were below the clinical breakpoints for meropenem and piperacillin (2 and 16 mg/L, respectively) in 1.3% of the cases for meropenem and in 4% of the cases for piperacillin. Conversely, 18.5% of the patients receiving meropenem had concentrations above 20 mg/L ($10 \times \text{clinical breakpoint}$) and 1.5% above 45 mg/L (specified toxicity threshold). For piperacillin, 11% of the patients had concentrations >160 mg/L ($10 \times \text{clinical breakpoint}$) and specified toxicity breakpoint). Clinical and demographic characteristics are detailed in Table 1 and electronic supplementary Tables A–C.

Population PK modelling

Overall, the models were built with 1551 unbound plasma pre-filter, 1231 unbound plasma post-filter and 557 effluent concentrations from the patients receiving meropenem, 1266 total plasma pre-filter (101 unbound), 884 total plasma post-filter (100 unbound) and 371 effluent concentrations from the patients receiving piperacillin and, of those, 883 total plasma pre-filter (88 unbound), 836 total plasma post-filter (85 unbound), and 369 effluent tazobactam concentrations. In total, 8322 samples were collected.

For the three drugs, the structural model that best described pre-filter plasma concentrations over time was a two-compartment model with linear elimination from the central compartment. The final models included RRT intensity (calculated as dialysate+replacement fluid flow rates) and urine output as covariates that significantly incremented $\mathrm{CL_{RRT}}$ and $\mathrm{CL_{body}}$, respectively, and explained their variability (p<0.05 for all covariates). In addition, the use of SLED modality also explained variability in $\mathrm{CL_{RRT}}$ for meropenem. The final models are summarised in the electronic supplementary Tables D–F.

The models were internally valid (electronic supplementary Tables D–F and electronic supplementary Figures A–F) demonstrating stability. External validation was performed with additional 177 plasma pre-filter and 40 plasma post-filter concentrations from 36 individuals [13, 20] for meropenem and 210 plasma pre-filter and 133 plasma post-filter concentrations from 30 individuals [15, 18, 20] for piperacillin (additional 560 concentrations). For both drugs, patients receiving continuous RRT had higher illness severity scores, were more frequently on vasopressors and mechanical ventilation, and, in the case of meropenem, received lower RRT intensities. Conversely, patients receiving SLED were outpatients with end-stage chronic kidney disease and intermittent dialysis requirement, and the total intensity used was

significantly higher (Table 1) [20]. In spite of these important clinical differences between development and validation datasets, the results of the external validation were the following: MPE was -5.2% (95% CI -6.8 to -3.6) and MAPE was 25.8% (22.1% to 29.6%) for meropenem and MPE was -16.9% (-22.0% to -11.7%) and MAPE was 29.1% (22.5% to 35.7%) for piperacillin. These data support the models' predictive power, with MPE < 20% for both drugs. The modified Bland–Altman plots are consistent with these results (electronic supplementary Figures G and H).

Dosing simulations

Monte Carlo first 24-h- and steady-state-dosing simulations were performed for dosing different short, extended, and continuous infusion regimens that reflected usual practise in the ICU [5]. An initial full loading dose administered in a 30-min short infusion was always simulated for the first 24 h of therapy, as recommended by the Surviving Sepsis campaign guidelines [34]. Different RRT intensities, durations (for SLED) and urine outputs (oligoanuria or urine output \geq 500 mL/24 h for meropenem, and anuria or urine output \geq 100 mL/24 h for piperacillin and tazobactam as the thresholds identified during model development) were tested in the simulations. The probabilities of target attainment for each dosing regimen at steady state are detailed in the electronic supplementary Tables G–Q.

Our simulations consistently show that meropenem and piperacillin/tazobactam dosing requirements are strongly dependent on RRT intensity, urine output, and, in the case of SLED, RRT duration. For all the scenarios, extended/continuous infusions (after a full initial loading dose if therapy with meropenem or piperacillin/tazobactam is being initiated) are more likely to achieve effective unbound concentrations for empirically treating Enterobacterales and P. aeruginosa compared to equivalents dose given as a short 30-min infusion. This is especially important for patients with higher CL, i.e., those receiving RRT with higher intensities, longer SLED sessions, and/or with urine outputs ≥100-500 mL/24 h. Where higher unbound concentrations are targeted (4×MIC), continuous infusion provides the highest likelihood of effective and safe dosing. Conversely, for treating bacteria with lower MICs, short 30-min infusions had similar target attainment to extended/continuous infusions.

Tables 2 and 3 provide the dosing nomograms for meropenem and piperacillin/tazobactam for standard and high targets stratified by modality, intensity, and urine output. The recommended doses are the ones that optimise effective concentrations and minimise the risk

Table 1 Demographical and clinical characteristics of the patients receiving meropenem and piperacillin/tazobactam included in the model development and model validation datasets

Variable	Meropenem		Piperacillin/tazobactam		
	Model development dataset (n = 128)	Model validation dataset (n = 36)	Model development dataset (n = 106)	Model validation dataset (n = 30)	
Sex (females (%))	38 (29.9%)	18 (50.0%)	37 (34.9%)	18 (60.0%)	
Age (years)	60.1 (SD = 14.4)	65.8 (SD = 12.1)	62.3 (SD = 15.3)	55.4 (SD = 16.4)	
Height (cm)	170.2 (SD = 11.0)	167.2 (9.7)	169.2 (SD = 12.9)	162.9 (SD = 10.7)	
Weight (kg)	85.0 (SD = 25.3)	79.5 (SD = 17.5)	83.2 (SD = 26.9)	78.8 (SD = 15.5)	
Body mass index (kg/m²)	30.1 (SD = 12.7)	28.5 (SD = 6.8)	29.7 (SD = 13.6)	29.7 (SD = 3.8)	
APACHE II score at admission	25.1 (SD=7.1)	26.5 (SD = 9.5)	25.3 (SD = 8.9)	32.5 (29–35.3)	
Primary source of infection (number of episodes) ^a				Not available	
Respiratory	55	7	56	Not available	
Abdominal	42	13	39	Not available	
Urinary tract	25	2	14	Not available	
Skin and soft tissue	20	0	9	Not available	
Central venous catheter- related	5	2	2	Not available	
Central nervous system	0	2	1	Not available	
Bone and joint	1	0	3	Not available	
Cardiac	2	0	0	Not available	
Others/Unknown	10	4	8	Not available	
With concomitant blood- stream infection	33	10	31	Not available	
Clinical and analytical variables (on the day of sampling occ	casion 1)			
SOFA score	8.5 (SD=4.0)	$11.7 (SD = 4.0)^d$	8.9 (SD = 4.5)	14.5 (11.5-16) ^d	
Use of vasopressors	102 (79.7%)	28 (93.3%) ^d	80 (75.5%)	Not available	
Mechanical ventilation	96 (75.6%)	30 (100%) ^d	88 (83.0%)	24 (100%) ^d	
Urine output (mL/24 h) ^b	50 (5–500)	212 (0–325)	68 (14–204)	Not available	
Urine output 100–499 mL/24 h (%)	10 (7.8%)	9 (25%)	26 (24.5%)	Not available	
Urine output ≥ 500 mL/24 h (%) ^b	39 (30.5%)	5 (13.9%)	7 (6.6%)	Not available	
Serum creatinine (µmol/L)	211.5 (144.0–355.0)	267.0 (210.4–433.3)	227.0 (148.0-321.0)	289.5 (171.5-395.5) ^d	
Serum bilirubin (µmol/L)	34.2 (14.0-66.0)	Not available	40.5 (18.0–78.7)	29.9 (15.1–58.8) ^d	
Serum albumin (g/L)	24 (21–28)	22 (18–25) ^d	25 (20–29)	26 (23-33) ^d	
Haematocrit (%)	26.1 (SD = 3.0)	Not available	27.7 (SD = 5.1)	28.0 (27.0 29.8)	
Days of study antibiotic previous to first sampling	1 (0-2)	2 (1-2) ^d	1 (1–2)	3 (2.8–4.3) ^d	
Antibiotic daily dosing on the day of the study (g)	3 (3–3)	2.5 (2–3) ^d	12 (12–16) piperacillin 1.5 (1.5–2) tazobactam	9 (9–12) ^d piperacillin 11 (1.1–1.5) ^d tazobactam	
Antibiotic pre-filter trough/ steady-state concentration on the day of the study (mg/L)	10.9 (7.4–16.6)	13.2 (8.9–20.0)	78.5 (50.3–115.1) piperacillin 11.1 (7.3–14.3) tazobactam	71.4 (36.2–93.9) piperacillin	
RRT parameters					
RRT modality					
CVVHF	27 (21.1%)	4 (11.1%)	23 (21.7%)	16 (53.3%)	
CVVHD	22 (17.2%)	1 (2.8%)	16 (15.1%)	0 (0%)	
CVVHDF	54 (42.2%)	25 (69.4%)	58 (54.7%)	8 (26.7%)	
SLED	25 (19.5%)	6 (16.7%)	9 (8.5%)	6 (20.0%)	

Table 1 (continued)

Variable	Meropenem		Piperacillin/tazobactam		
	Model development dataset (n = 128)	Model validation dataset (n = 36)	Model development dataset $(n = 106)$	Model validation dataset (n = 30)	
Filter membrane type					
Acrylonitrile and sodium methallyl sulfonate	42 (32.8%)	29 (80.6%)	56 (52.8%)	8 (26.7%)	
Polyethersulfone	46 (35.9%)	0 (0%)	28 (26.5%)	16 (53.3%)	
Polysulfone	35 (27.3%)	6 (16.6%)	21 (19.8%)	6 (20.0%)	
Blend of polyarylethersul- fone, polyvinylpyrrolidone, polyamide	0 (0%)	1 (2.8%)	0 (0%)	0 (0%)	
Polyarylethysulfone	2 (1.7%)	0 (0%)	1 (0.9%)	0 (0%)	
Other	3 (2.3%)	0 (0%)	0 (0%)	0 (0%)	
Filter surface					
0.6m^2	0 (0%)	0 (0%)	1 (0.94%)	0 (0%)	
0.9 m ²	19 (15.2%)	20 (55.6%)	27 (25.5%)	0 (0%)	
1 m^2	9 (7.2%)	0 (0%)	12 (11.3%)	8 (26.7%)	
1.2 m ²	0 (0%)	0 (0%)	2 (1.9%)	16 (53.3%)	
1.3 m ²	4 (3.2%)	0 (0%)	1 (0.94%)	0 (0%)	
1.4 m ²	39 (31.2%)	6 (16.6%)	26 (24.5%)	6 (20.0%)	
1.5 m ²	14 (11.2%)	9 (25.0%)	17 (16.0%)	0 (0%)	
1.8 m ²	30 (24.0%)	0 (0%)	17 (16.0%)	0 (0%)	
1.9 m ²	10 (8.0%)	1 (2.8%)	3 (2.8%)	0 (0%)	
Unknown	3	0 (0%)	0 (0%)	0 (0%)	
Blood flow rate for SLED (mL/min)	228 (182–263)	250 (220–250)	200 (200–200)	250 (220–250)	
Dialysate flow rate for SLED (mL/h)	14,600 (12,000–16,200)	18,000 (18,000–18,000)	12,000 (12,000–12,000)	18,000 (18,000–18,000)	
Blood flow rate for CRRT (mL/min)	180 (145–200)	200 (180–245)	180 (150–200)	200 (200–200)	
Dialysate flow rate for CVVHD and CVVHDF (mL/h)	1500 (1000–2000)	900 (800–1200)	1500 (1000–2000)	No available	
Replacement fluid rate for CVVHF and CVVHDF (mL/h)	2350 (2000–3000)	1800 (1050–1900)	1900 (1200–2080)	No available	
RRT intensity for CRRT (mL/h) ^c	3500 (3000–4000)	2350 (1875–2650)	2300 (2000–3000)	2000 (2000–3022.5)	
Duration for SLED (min)	314 (301–369)	240 (240–240)	360 (360–390)	240 (240–240)	
ICU mortality	44 (34.4%)	14 (46.7%) ^d	49 (46.3%)	Not available	
28-days mortality	50 (39.1%)	Not available	53 (50.0%)	Not available	

Continuous variables are summarised as mean [standard deviation (SD)] or as median [quartile 1 (Q1)-quartile 3 (Q3)] as appropriated. Discrete variables are described as absolute count [n, percentage (%)]

APACHE II score acute physiology and chronic health evaluation II score, SOFA score sepsis-related organ failure assessment score, RRT renal replacement therapy, CRRT continuous renal replacement therapy, CWHF continuous veno-venous haemodialysis, CWHDF continuous veno-venous haemodialitration, SLED sustained low-efficiency dialysis; N/A non-applicable

^a The count of source of infection is higher than the number of patients included, because some patients had > 1 infectious episodes during their ICU stay treated with meropenem

^b When these data were not available as a continuous covariate, it was interpolated as a binary covariate from a punctuation < 3 for the urine subsection of the SOFA score on the day of sampling

 $^{^{\}rm c}\,$ RRT intensity calculated as dialysate flow rate + replacement fluid flow rate

 $^{^{\}rm d}$ These statistics only consider critically ill patients, i.e., excluding the patients from reference [20]

of toxic concentrations. Figure 1 schematises the dosing decision-making algorithm.

Discussion

We present the results of the largest prospective multicentre study of meropenem and piperacillin/tazobactam PK in critically ill patients with AKI receiving the most prescribed RRT modalities in the ICU [2, 8, 35]. Our main findings are that meropenem, piperacillin, and tazobactam PK are highly variable and dependent on RRT intensity, urine output, and, in the case of SLED, duration of therapy, with the same factors determining dosing requirements for optimised concentrations. In most clinical scenarios, extended/continuous infusions provided a better attainment of optimal antibiotic trough/ average steady-state unbound concentrations (100% fT_{SMIC}) compared to the equivalent doses administered as a short 30-min infusion; continuous infusion appeared particularly advantageous when higher concentrations are required (4×MIC for P. aeruginosa or for empirical treatment), especially for those patients with clinical characteristics associated with higher drug CL. Our dosing nomograms provide dosing recommendations that maximise the attainment of effective meropenem and piperacillin/tazobactam concentrations (either standard or higher target as required) and also minimise the risk of toxic concentrations.

Optimising beta-lactam dosing in critically ill patients receiving RRT is a major challenge in daily practise. The

diversity in RRT modalities, techniques, and settings may have a major effect on the PK of water-soluble drugs like beta-lactams [5, 6], leading to different antibiotic requirements depending on each infection, patient, and RRT treatment [12]. However, existing dosing recommendations are still generic and not robust. Multiple well-designed PK studies have tried to address this clinical question for meropenem and piperacillin/tazobactam, but patient heterogeneity and small sample sizes in single-centre settings have provided insufficient data to generate optimised dosing recommendations [13-16, 18, 36-44]. In this context, the large sample size of our multi-centre study has identified RRT intensity and duration and urine output as the primary factors influencing drug CL, allowing our dosing nomogram to be highly accurate across a wide range of scenarios.

Regarding the influence of RRT settings and modality on CL_{RRT} , higher CL has been associated with diffusive or mixed modalities and higher intensities [17, 39, 41, 42, 45], but their effect on CL_{RRT} had not been sufficiently characterised to develop stratified dosing recommendations. In our patients, who received a broad range of RRT modalities and settings, RRT intensity explained the majority of CL_{RRT} variability for meropenem, piperacillin, and tazobactam. As expected, prescription of longer SLED sessions resulted in higher CL_{RRT} . On the other hand, urine output significantly influenced CL_{body} [13, 19], which is congruent with its role as a clinical predictor of renal function recovery in patients with AKI receiving RRT [12, 46].

Table 2 Meropenem dosing nomogram for a standard steady-state concentration target of \geq 2 mg/L (global 100% fT_{>MIC} and 4×MIC for Enterobacterales) and higher target of \geq 4–8 mg/L (empirical treatment and 4×MIC for *P. aeruginosa*), considering a toxicity threshold of 45 mg/L [30] and stratified by RRT modality, intensity and urine output

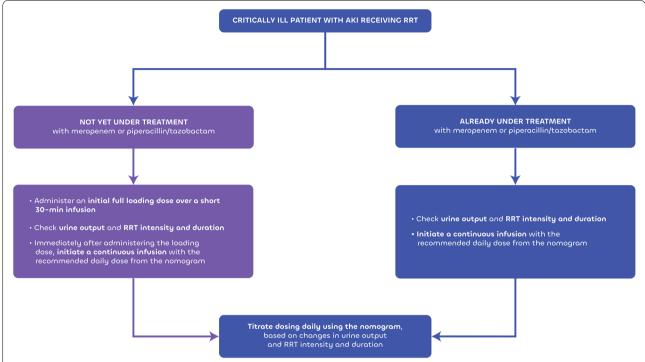
RRT modality	RRT intensity	Oligoanuria		Urine output ≥ 500 mL/24 h		
		Standard target (steady-state concentration ≥ 2 mg/L)	Higher target (steady- state concentration ≥ 4–8 mg/L)	Standard target (steady-state concentration ≥ 2 mg/L)	Higher target (steady- state concentration ≥ 4–8 mg/L)	
For all types of modality, time and settings: If starting treatment, administer a 1 g loading dose over a 30-min short infusion and immediately after initiate the continuous infusion at the recommended daily dose						
Continuous RRT	1.5 L/h 2.5 L/h 3.5 Lh	1 g−1.5 g per day Cl	1.5–2 g per day Cl 2 g per day Cl	1 g–1.5 g per day Cl	3 g per day CI	
Short SLED (~6 h)	9 L/h 12 L/h 15 L/h	1 g−1.5 g per day Cl	2 g per day Cl 3 g per day Cl	1 g–1.5 g per day Cl	3 g per day Cl	
Intermediate SLED (~ 8 h)	9 L/h 12 L/h 15 L/h	1 g–1.5 g per day Cl	2 g per day Cl 3 g per day Cl	1 g–1.5 g per day Cl	3 g per day Cl	
Long SLED (~ 12 h)	9 L/h 12 L/h 15 L/h	1 g-1.5 g per day CI	3 g per day Cl	1 g-1.5 g per day Cl	3 g per day Cl 3–4 g per day Cl	

RRT: renal replacement therapy, SLED: sustained low-efficiency dialysis, CI: continuous infusion

Table 3 Piperacillin/tazobactam dosing nomogram for a unbound average concentration target of \geq 16mg/L (global 100% fT_{>MIC} and 4×MIC for Enterobacterales) and a higher target of \geq 32–64 mg/L (empirical treatment and 4×MIC for *P. aeruginosa*), considering a toxicity threshold of 160 mg/L [31] and stratified by RRT modality, intensity, and urine output

	RRT modality	RRT intensity	Anuria		Urine output ≥ 100 mL/24 h	
		Standard target (steady-state concentration ≥ 16 mg/L)	Higher target (steady- state concentration ≥ 32–64 mg/L)	Standard target (steady-state concentration ≥ 16 mg/L)	Higher target (steady- state concentra- tion ≥ 32–64 mg/L)	

For all types of modality, time and settings: If starting treatment, administer a 4 g/0.5 g loading dose over a 30-min short infusion and immediately after initiate the continuous infusion at the recommended daily dose


Continuous RRT 1	1.5 L/h	6 g/0.725 g–8 g/1 g per day Cl	6 g/0.725 g–8 g/1 g per day Cl ^a	6 g/0.725 g–8 g/1 g per day Cl	10 g/1.25 g–12 g/1.5 g daily in Cl ^a
2	2.5 L/h		8 g/1 g-10 g/1.25 g per		
3	3.5 L/h		day Cl ^a		12 g/1.5 g–16 g/2 g per day Cl ^a
Short SLED (~6 h) 9	9 L/h	6 g/0.725 g–8 g/1 g per day Cl	8 g/1 g–10 g/1.25 g per day Cl ^a	6 g/0.725 g–8 g/1 g per day Cl	12 g/1.5 g–16 g/2 g per day Cl ^a
1	12 L/h		10 g/1.25 g-12 g/1.5 g		
1	15 L/h		per day Cl ^a		
Intermediate SLED (~8 h) 9	9 L/h	6 g/0.725 g–8 g/1 g per day Cl	10 g/1.25 g–12 g/1.5 g per day Cl ^a	6 g/0.725 g–8 g/1 g per day Cl	12 g/1.5 g–16 g/2 g per day Cl ^a
1	12 L/h				
1	15 L/h		12 g/1.5 g–16 g/2 per day Cl ^a		
Long SLED (~ 12h) 9	9 L/h	6 g/0.725 g–8 g/1 g per day Cl	10 g/1.25 g–12 g/1.5 g per day Cl ^a	6 g/0.725 g–8 g/1 g per day Cl	12 g/1.5 g–16 g/2 g per day Cl ^a
1	12 L/h		12 g/1.5 g-16 g/2 g per		
1	15 L/h		day Cl ^a		16 g/2 g per day Cl

RRT renal replacement therapy, SLED sustained low-efficiency dialysis, CI continuous infusion

In such difficult-to-predict RRT scenarios, dosing simulations have shown that extended/continuous infusions increased the likelihood of achieving effective concentrations even when an intermittent RRT modality like SLED is used, resulting in lower daily doses and a reduced risk of potentially toxic concentrations compared to the higher doses required for achieving effective concentrations when the drug is administered as a short 30-min infusion. For the most likely patient—anuric on CRRT, prescribed an intensity of 20-25 mL/kg/h (1.5-2 L/h for an 80 kg patient [12])—a daily dose of 2 g meropenem and 8 g/1 g-10 g/1.25 g of piperacillin/tazobactam in continuous infusion would provide optimal concentrations even for the higher targets. However, our patients received notably higher daily doses and, consequently, median trough concentrations were above the higher efficacy targets for the three drugs (Table 1). Considering the results of the present PK analysis, a key message from the SMARRT project is that a significant proportion of patients receiving RRT are at risk of excessive daily dosing. Dosing simulations using these daily doses administered over different infusion times show that they can lead to unnecessarily high concentrations that may even be above the toxicity threshold in up to 10–35% of the cases, especially for piperacillin/tazobactam. However, caution is warranted when considering toxicity risk, as most available evidence that identified a threshold for beta-lactam toxicity is derived from retrospective data that are subject to multiple sources of bias. Consequently, the clinical significance of the proposed toxicity thresholds remains uncertain.

The strengths of this research are its multi-centre design and the rich PK sampling that has led to the development and validation of robust population PK models for each drug. Furthermore, dosing recommendations consider standard versus high concentration targets for efficacy as well as toxicity and are based on clinical variables that are easily identifiable at the bedside. Finally, our recommendations align with the current treatment guidelines for septic patients, particularly the Surviving Sepsis Campaign initiative which endorses the use of extended/continuous beta-lactam infusions over short infusions [34]. They are also consistent with the results of the BLING III randomised clinical trial (n=7000 septic patients) and the associated systematic review and meta-analysis that showed better survival and clinical

a Based on simulations data, the higher recommended dose will increase the likelihood of attaining the steady-state concentration of ≥ 64 mg/L but can also increment the risk of surpassing the toxicity threshold chosen for piperacillin (> 160 mg/L)

Fig. 1 Schematic algorithm illustrating the dose decision-making process based on the primary determinants of meropenem and piperacillin/tazo-bactam dosing requirements, using the dosing nomograms

cure rates with extended/continuous beta-lactam infusions, even though only a small proportion of patients received RRT during the study [47, 48]. The study limitations include the fact that the population PK models were developed with data from critically ill patients receiving continuous RRT or SLED, for which dosing recommendations should be extrapolated with caution to patients undergoing other RRT modalities or settings, including those concurrently receiving extracorporeal therapies such as extracorporeal membrane oxygenation. Further, there were limited numbers of patients who were morbidly obese or cachectic critically ill patients, and caution is also advised in these scenarios. Further, our results are based on plasma concentrations, that may not represent infection site PK, especially in the context of haemodynamic instability in patients with septic shock. However, current evidence on organ and tissue distribution suggests that maintaining high trough/average steady-state concentrations in plasma enhances distribution to organs and peripheral tissues [49, 50], for which dosing strategies that optimise plasma exposure may also improve antibiotic distribution at the infection site. Finally, due to the observational nature of our data, the clinical effect of these optimised dosing recommendations is uncertain and should be evaluated in a randomised clinical trial.

In conclusion, this study provides optimised dosing regimens for meropenem and piperacillin/tazobactam in critically ill patients receiving diverse RRT prescriptions. Daily dosing is dependent on the target concentration and the main PK determinants in this population, namely RRT intensity, 24-h urine output, and RRT duration in the case of SLED. As described in the dosing nomogram, extended/continuous infusions facilitate the achievement of optimised antibiotic concentrations in most clinical scenarios, resulting in lower daily doses and a reduced risk of exposure-related toxicity.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s00134-025-08067-w.

Author details

¹ University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Herston, Brisbane, Australia. ² Herston Infectious Diseases Institute (HelDI), Metro North Health, Brisbane, Australia. ³ Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia. ⁴ Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia. ⁵ Division of Anesthesia Critical Care, Pain and Emergency Medicine, Nîmes University Hospital, UR-UM103 IMAGINE, Universite Montpellier, Montpellier, France. ⁶ Intensive Care Medicine Department, Hospitais da Universidade de Coimbra (HUC), ULS Coimbra, Coimbra, Portugal. ⁷ Intensive Care Unit, Royal Darwin Hospital, Tiwi, NT, Australia. ⁸ Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, UMR CNRS 5558, Lyon, France. ⁹ Service de Pharmacie, GH Nord, Hospices Civils de Lyon, Lyon, France.

 $^{\rm 10}$ Department of Anesthesia and Critical Care Medicine, General Hospital of Heidenheim, Heidenheim, Germany. 11 Medical Intensive Care Unit, Institut Clínic de Medicina I Dermatologia, Hospital Clínic de Barcelona, Barcelona, Spain. 12 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain. 13 Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong. ¹⁴ School of Medicine, University of Sydney, Sydney, Australia. ¹⁵ Intensive Care Unit, Nepean Hospital, Sydney, Australia. 16 Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium. 17 Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium. ¹⁸ Department of Nephrology, Dunedin Public Hospital, Dunedin, New Zealand. 19 Department of Intensive Care, Austin Hospital, Heidelberg, Australia. 20 Department of Pharmacy, General Hospital of Heidenheim, Heidenheim, Germany. 21 Department of Clinical Pharmacy, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Malaysia. ²² Department of Pharmacy, The Ottawa Hospital, Ottawa, Canada. ²³ The Ottawa Hospital Research Institute, Ottawa, Canada. ²⁴ Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 25 Hospital Pharmacy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany. ²⁶ Intensive Care Unit Department, University Hospital of Ioannina, Ioannina, Greece. 27 Intensive Care Unit, Clinique Universitaire St Luc, UCLouvain, Brussels, Belgium. ²⁸ Guy's and St Thomas Hospital, London, UK. ²⁹ Department of Fundamental and Clinical Care Nursing, Faculty of Nursing, Bellvitge Campus, University of Barcelona, Barcelona, Spain. 30 Multidisciplinary Intensive Care Research Organization (MICRO), St James Hospital, Dublin, Ireland. 31 School of Medicine, Trinity College Dublin, Dublin, Ireland. ³² Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan Campus, Kuantan, Pahang, Malaysia. 33 Critical Care Intensive Care Unit Services, Westmead Public/Private Hospitals, Sydney, Australia. ³⁴ College of Life Sciences, University of Leicester, Leicester, UK. ³⁵ Department of Intensive Care Medicine, The Queen Elizabeth Hospital, Woodville, Australia. ³⁶ Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia. 37 School of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia. 38 Clinical Research in Pneumonia and Sepsis, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain. 39 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain. ⁴⁰ New South Wales Poisons Information Centre, Sydney Children's Hospitals Network, Westmead, Australia. 41 Edith Collins Centre, Drug Health Services, Royal Prince Alfred Hospital, Camperdown, Australia. 42 Therapeutics Research Centre, UQCCR and Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia. ⁴³ UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia. ⁴⁴ Therapeutics Research Centre, Basil Hetzel Institute for Translational Medical Research, The Queen Elizabeth Hospital, Adelaide, Australia. $^{\rm 45}$ Intensive Care Unit, Gold Coast University Hospital, Gold Coast, Australia. 46 Critical Care Department, Hospital Universitari Joan XXIII, Tarragona, Spain. 47 Faculty of Medicine, Universitat Rovira i Virgili, Tarragona, Spain. ⁴⁸ Pere Virgili Health Research Institute, Tarragona, Spain. ⁴⁹ Faculty of Medicine, The University of Queensland, New Orleans, USA. 50 Intensive Care Unit, Ochsner Health System, New Orleans, USA. 51 University of Queensland Ochsner Clinical School, New Orleans, USA. 52 Pharmacy Department, Division of Medicines, Hospital Clínic de Barcelona, Barcelona, Spain. 53 Department of Pharmacology, Toxicology and Therapeutic Chemistry-School of Pharmacy, University of Barcelona, Barcelona, Spain. 54 Intensive Care Unit, Naval and Veterans Hospital of Athens, Athens, Greece. 55 CDU Menzies School of Medicine, Charles Darwin University, Casuarina, Australia. ⁵⁶ National Critical Care and Trauma Response Centre, Darwin, Australia. 57 Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium. 58 School of Biological Sciences, University of Adelaide, Adelaide, Australia. 59 Intensive Care Medicine, Department of Perioperative, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. ⁶⁰ Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand. 61 Sydney Pharmacy School, University of Sydney, Sydney, Australia. 62 Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital Sydney, Darlinghurst, Australia. 63 St Vincent's Clinical Campus, UNSW Medicine, Sydney, Australia. 64 Intensive Care Unit Department, Army Share Fund Hospital Athens, Athens, Greece. 65 Department of Critical Care, Melbourne Medical School, University of Melbourne, Parkville, Australia. ⁶⁶ Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Australia. ⁶⁷ Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash

University, Melbourne, Australia. ⁶⁸ Data Analytics Research and Evaluation Centre, Austin Hospital, Melbourne, Australia. ⁶⁹ Jamieson Trauma Institute, Royal Brisbane and Women's Hospital, Brisbane, Australia.

Acknowledgements

The authors acknowledge the patients and their families for their participation in the study. The authors thank the following investigators for their contribution to protocol development and logistics of the study: Stéphane Allouche, Laboratory of Biochemistry, Centre Hospitalo Universitaire Caen, France; Hendrik Bracht, Intensive Care Unit, University Hospital Ulm, Ulm, Germany; Loubna Elotmani, Intensive Care Unit, Nîmes University Hospital (Centre Hospitalo Universitaire Nimes), France; Thomas Fuchs, Department of Anesthesia and Critical Care Medicine, General Hospital of Heidenheim, Heidenheim, Germany; Julia Garcia-Diaz, Ochsner Clinical School, The University of Queensland, New Orleans, Louisiana, USA, and Intensive Care Unit, Ochsner Health System. New Orleans, Louisiana, USA; Jing Kong, Intensive Care Unit, Westmead Hospital, Sydney, Australia; Christina Z. Kydona, Hippokration Hospital of Thessa-Ioniki, Thessaloniki, Greece; Sophie Lloret, Intensive Care Unit, Nîmes University Hospital (Centre Hospitalo Universitaire Nimes), Nimes, France; Claude D. Martin, Intensive Care Unit and Trauma Centre, Nord University Hospital, Marseille, France, and Aix Marseille University, Marseille, France; Désiré Samba, Surgical Intensive Care Unit, Centre Hospitalo Universitaire Caen, France; John Smith, Guy's & St Thomas Hospital, London, United Kingdom. The results of this research have been presented in part in the Congress of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID Global), 11-15th April 2025, Vienna, Austria.

SMARRT STUDY COLLABORATORS Max Andresen, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Sónia F. Baltazar, Intensive Care Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Saber Barbar, Intensive Care Unit, Nîmes University Hospital (Centre Hospitalaire Universitaire Nimes), Nimes, France; Eulália Costa, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Dominique Durand, Department of Intensive Care, Erasme Hospital, Brussels, Belgium; Leslie Escobar (Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile); Ricardo Freitas, Intensive Care Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Yarmarly Guerra Valero, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia; Margaret Haughton, Clinical Trials & Biostatistics Unit; QIMR Berghofer Medical Research Institute, Herston, Australia; Andreas Koeberer, Department of Anesthesia and Critical Care Medicine, General Hospital of Heidenheim, Heidenheim, Germany; Marin Kollef, Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St Louis, Missouri, USA; Kerenaftali Klein, Clinical Trials & Biostatistics Unit, QIMR Berghofer Medical Research Institute, Herston Australia; Ravindra Mehta, Department of Medicine, San Diego, Medical Center, University of California, San Diego, California, USA; Cathy McKenzie, Guy's & St Thomas Hospital, London, United Kingdom; Laurent Muller, Intensive Care Unit, Nîmes University Hospital (Centre Hospitalaire Universitaire Nimes), Nimes, France; Priya Nair, Intensive Care Unit, St Vincents Hospital, Darlinghurst, Australia; Vineet Nayyar, Intensive Care Unit, Westmead Hospital, Sydney, Australia, and Medical School, University of Sydney, Sydney, Australia; Jenny L. Ordóñez Mejia, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia; Georgia-Laura Panagou, Intensive Care Unit, Naval and Veterans Hospital of Athens, Athens, Greece; Jody Paxton, Intensive Care Unit, Gold Coast University Hospital, Gold Coast, Australia; Leah Peck, Austin Hospital, Heidelberg, Australia; Mayukh Samanta, Clinical Trials & Biostatistics Unit, QIMR Berghofer Medical Research Institute, Herston, Australia; Jean-Louise Vincent, Department of Intensive Care, Erasme Hospital, Brussels, Belgium; Ruth Wan, Guy's & St Thomas Hospital, London, United Kingdom; Helen Young, Austin Hospital, Heidelberg, Australia.

Author contributions

Conceptualization: Jason Roberts, Gordon Choi, Gavin Joynt, Sanjoy Paul, Renae Deans, Sandra Peake, Louise Cole, Dianne Stephens, Rinaldo Bellomo, John Turnidge, Steven Wallis, Michael Roberts, Darren Roberts, Melissa Lassig-Smith, Therese Starr, and Jeffrey Lipman. Methodology: all authors contributed to patient enrolment and data acquisition. Formal analysis and investigation: Jason Roberts, Marta Ulldemolins, Xin Liu, Steven Wallis, Clement Boidin, Sylvain Goutelle, and Anna Lee. Writing—original draft preparation: Jason Roberts, Marta Ulldemolins, Xin Liu, Clement Boidin, Sylvain Goutelle, Gavin Joynt, Sanjoy Paul, Fabio Silvio Taccone, Sandra Peake, Miia Valkonen, Salmaan

Kanji, Rinaldo Bellomo, and Jeffrey Lipman. Writing—review and editing: all authors. Funding acquisition: Jason Roberts, Jeffrey Lipman, Michael Roberts, and Sanjoy Paul.

Funding

Open Access funding enabled and organized by CAUL and its Member Institutions. This work was supported by funding from the Australian National Health and Medical Research Council (NHMRC; project grant APP1044941). JAR would like to acknowledge funding from an NHMRC Investigator Grant (APP2009736) as well as an Advancing Queensland Clinical Fellowship. MU acknowledges post-doctoral support from the Fundacion Alfonso Martin Escudero. JDW is supported by a Sr Clinical Research Grant from the Research Foundation Flanders (FWO, Ref. 1881020 N). Partial support was provided by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CUHK 14106614). Support was also provided by the Australian Government's National Collaborative Research Infrastructure Strategy (NCRIS) initiative through Therapeutic Innovation Australia (to SKP).

Data sharing

Data availability requests should be made to the corresponding author. Each request requires a research proposal with a clear research question and proposed analysis plan. Requests will be considered on an individual basis and will be reviewed by the SMARRT steering committee, as well as relevant human research ethics committees.

Declarations

Conflicts of interest

JAR acknowledges consultancies, grant or speaking fees from Sandoz, Qpex, Gilead, Advanz Pharma, Pfizer, MSD, and Biomerieux. CK reports honoraria for speaking/advisory boards from Shionogi and Gilead. SK received research support from CytoSorbents and Daiichi Sankyo. SK also received lecture fees from ADVITOS, Biotest, Daiichi Sankyo, Fresenius Medical Care, Gilead, Mitsubishi Tanabe Pharma, MSD, Pfizer, Shionogi, and ZOLL. SK received consultant fees from Fresenius Medical Care, Gilead, MSD, and Pfizer. MO received research funding from Biomerieux and Baxter (paid to institution). CR received speaker fees from MSD, Pfizer, Shionogi, AOP Orphan, bioMérieux, and Advanz Pharma. CR received fees as Advisory Board member from Advanz Pharma, bioMérieux, and Viatris. JDW has consulted for Biomerieux, Menarini, MSD, Pfizer, Roche Diagnostics, ThermoFisher, and Viatris (fees and honoraria paid to institution).

Ethics approval

The study was designed and conducted following the declaration of Helsinki guidelines and received ethics approval from the Royal Brisbane and Women's Hospital Human Research Ethics Committee (HREC/13/QRBW/1) as the lead site. All other participating sites also obtained individual HREC approval.

In memoriam

The authors would like to acknowledge and honour the extraordinary contribution of Professor Rinaldo Bellomo not only to this project but to the broader field of medical research dedicated to the care of the critically ill patient. His exceptional career in clinical practise, research, and mentorship has resulted in major advancements in intensive care medicine and has profoundly impacted the careers and lives of many healthcare professionals around the globe. With the present work, we would like to pay tribute to his unique individual.

Open Access

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 14 May 2025 Accepted: 25 July 2025 Published online: 13 August 2025

References

- Bagshaw SM, Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Oudemans-van Straaten HM, Ronco C, Kellum JA, Beginning, Ending Supportive Therapy for the Kidney Investigators (2007) Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol 2:431–439
- Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C, Beginning, Ending Supportive Therapy for the Kidney Investigators (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818
- Zarbock A, Nadim MK, Pickkers P, Gomez H, Bell S, Joannidis M, Kashani K, Koyner JL, Pannu N, Meersch M, Reis T, Rimmele T, Bagshaw SM, Bellomo R, Cantaluppi V, Deep A, De Rosa S, Perez-Fernandez X, Husain-Syed F, Kane-Gill SL, Kelly Y, Mehta RL, Murray PT, Ostermann M, Prowle J, Ricci Z, See EJ, Schneider A, Soranno DE, Tolwani A, Villa G, Ronco C, Forni LG (2023) Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat Rev Nephrol 19:401–417
- Bagshaw SM, Lapinsky S, Dial S, Arabi Y, Dodek P, Wood G, Ellis P, Guzman J, Marshall J, Parrillo JE, Skrobik Y, Kumar A, Cooperative Antimicrobial Therapy of Septic Shock Database Research G (2009) Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med 35:871–881
- 5. Roberts JA, Joynt GM, Lee A, Choi G, Bellomo R, Kanji S, Mudaliar MY, Peake SL, Stephens D, Taccone FS, Ulldemolins M, Valkonen MM, Agbeve J, Baptista JP, Bekos V, Boidin C, Brinkmann A, Buizen L, Castro P, Cole CL, Creteur J, De Waele JJ, Deans R, Eastwood GM, Escobar L, Gomersall C, Gresham R, Jamal JA, Kluge S, Konig C, Koulouras VP, Lassig-Smith M, Laterre PF, Lei K, Leung P, Lefrant JY, Llaurado-Serra M, Martin-Loeches I, Mat Nor MB, Ostermann M, Parker SL, Rello J, Roberts DM, Roberts MS, Richards B, Rodriguez A, Roehr AC, Roger C, Seoane L, Sinnollareddy M, Sousa E, Soy D, Spring A, Starr T, Thomas J, Turnidge J, Wallis SC, Williams T, Wittebole X, Zikou XT, Paul SK, Lipman J, Collaborators SS, the ACTG (2021) The effect of renal replacement therapy and antibiotic dose on antibiotic concentrations in critically ill patients: data from the multinational sampling antibiotics in renal replacement therapy study. Clin Infect Dis 72:1369–1378
- Roberts DM, Roberts JA, Roberts MS, Liu X, Nair P, Cole L, Lipman J, Bellomo R, Investigators RRTS (2012) Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: a multicentre pharmacokinetic study. Crit Care Med 40:1523–1528
- Roberts JA, Choi GY, Joynt GM, Paul SK, Deans R, Peake S, Cole L, Stephens D, Bellomo R, Turnidge J, Wallis SC, Roberts MS, Roberts DM, Lassig-Smith M, Starr T, Lipman J (2016) SaMpling Antibiotics in Renal Replacement Therapy (SMARRT): an observational pharmacokinetic study in critically ill patients. BMC Infect Dis 16:103
- Hanberger H, Antonelli M, Holmbom M, Lipman J, Pickkers P, Leone M, Rello J, Sakr Y, Walther SM, Vanhems P, Vincent JL, Epic II Group of Investigators (2014) Infections, antibiotic treatment and mortality in patients admitted to ICUs in countries considered to have high levels of antibiotic resistance compared to those with low levels. BMC Infect Dis 14:513
- Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–10
- Abdul-Aziz MH, Alffenaar JC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, Neely MN, Paiva JA, Pea F, Sjovall F, Timsit JF, Udy AA, Wicha SG, Zeitlinger M, De Waele JJ, Roberts JA (2020) Antimicrobial therapeutic

- drug monitoring in critically ill adult patients: a Position Paper. Intensive Care Med 46:1127–1153
- Sumi CD, Heffernan AJ, Lipman J, Roberts JA, Sime FB (2019) What antibiotic exposures are required to suppress the emergence of resistance for gram-negative bacteria? A systematic review. Clin Pharmacokinet 58:1407–1443
- KidneyDisease. Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138
- 13. Ulldemolins M, Soy D, Llaurado-Serra M, Vaquer S, Castro P, Rodriguez AH, Pontes C, Calvo G, Torres A, Martin-Loeches I (2015) Meropenem population pharmacokinetics in critically ill patients with septic shock and continuous renal replacement therapy: influence of residual diuresis on dose requirements. Antimicrob Agents Chemother 59:5520–5528
- 14. Ulldemolins M, Martin-Loeches I, Llaurado-Serra M, Fernandez J, Vaquer S, Rodriguez A, Pontes C, Calvo G, Torres A, Soy D (2016) Piperacillin population pharmacokinetics in critically ill patients with multiple organ dysfunction syndrome receiving continuous venovenous haemodiafiltration: effect of type of dialysis membrane on dosing requirements. J Antimicrob Chemother 71:1651–1659
- Jamal JA, Roberts DM, Udy AA, Mat-Nor MB, Mohamad-Nor FS, Wallis SC, Lipman J, Roberts JA (2015) Pharmacokinetics of piperacillin in critically ill patients receiving continuous venovenous haemofiltration: a randomised controlled trial of continuous infusion versus intermittent bolus administration. Int J Antimicrob Agents 46:39–44
- Jamal JA, Mat-Nor MB, Mohamad-Nor FS, Udy AA, Wallis SC, Lipman J, Roberts JA (2015) Pharmacokinetics of meropenem in critically ill patients receiving continuous venovenous haemofiltration: a randomised controlled trial of continuous infusion versus intermittent bolus administration. Int J Antimicrob Agents 45:41–45
- Bilgrami I, Roberts JA, Wallis SC, Thomas J, Davis J, Fowler S, Goldrick PB, Lipman J (2010) Meropenem dosing in critically ill patients with sepsis receiving high-volume continuous venovenous haemofiltration. Antimicrob Agents Chemother 54:2974–2978
- Varghese JM, Jarrett P, Boots RJ, Kirkpatrick CM, Lipman J, Roberts JA (2014) Pharmacokinetics of piperacillin and tazobactam in plasma and subcutaneous interstitial fluid in critically ill patients receiving continuous venovenous haemodiafiltration. Int J Antimicrob Agents 43:343–348
- Braune S, Konig C, Roberts JA, Nierhaus A, Steinmetz O, Baehr M, Kluge S, Langebrake C (2018) Pharmacokinetics of meropenem in septic patients on sustained low-efficiency dialysis: a population pharmacokinetic study. Crit Care 22:25
- Donnellan S, Wright DFB, Roberts JA, Duffull SB, Schollum JBW, Putt TL, Wallis SC, Walker RJ (2020) The pharmacokinetics of meropenem and piperacillin-tazobactam during sustained low efficiency haemodiafiltration (SLED-HDF). Eur J Clin Pharmacol 76:239–247
- Naicker S, Guerra Valero YC, Ordenez Meija JL, Lipman J, Roberts JA, Wallis SC, Parker SL (2018) A UHPLC-MS/MS method for the simultaneous determination of piperacillin and tazobactam in plasma (total and unbound), urine and renal replacement therapy effluent. J Pharm Biomed Anal 148:324–333
- Savic RM, Mentre F, Lavielle M (2011) Implementation and evaluation of the SAEM algorithm for longitudinal ordered categorical data with an illustration in pharmacokinetics-pharmacodynamics. AAPS J 13:44–53
- Broeker A, Vossen MG, Thalhammer F, Wallis SC, Lipman J, Roberts JA, Wicha SG (2020) An integrated dialysis pharmacometric (IDP) model to evaluate the pharmacokinetics in patients undergoing renal replacement therapy. Pharm Res 37:96
- Mentre F, Escolano S (2006) Prediction discrepancies for the evaluation of nonlinear mixed-effects models. J Pharmacokinet Pharmacodyn 33:345–367
- Bergstrand M, Hooker AC, Wallin JE, Karlsson MO (2011) Predictioncorrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J 13:143–151
- Sheiner LB, Beal SL (1981) Some suggestions for measuring predictive performance. J Pharmacokinet Biopharm 9:503–512
- 27. Cheng Y, Wang CY, Li ZR, Pan Y, Liu MB, Jiao Z (2021) Can population pharmacokinetics of antibiotics be extrapolated? Implications of external evaluations. Clin Pharmacokinet 60:53–68
- 28. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

- McKinnon PS, Paladino JA, Schentag JJ (2008) Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents 31:345–351
- Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I (2017) Too much of a good thing: a retrospective study of beta-lactam concentration-toxicity relationships. J Antimicrob Chemother 72:2891–2897
- 31. Quinton MC, Bodeau S, Kontar L, Zerbib Y, Maizel J, Slama M, Masmoudi K, Lemaire-Hurtel AS, Bennis Y (2017) Neurotoxic concentration of piperacillin during continuous infusion in critically ill patients. Antimicrob Agents Chemother 61:e00654-e1617
- European Committee on Antimicrobial Susceptibility Testing (EUCAST), MIC and zone diameter distributions and ECOFFs. Accessible from http://www.eucast.org. Accessed 15 Jan 2025
- Nicasio AM, VanScoy BD, Mendes RE, Castanheira M, Bulik CC, Okusanya OO, Bhavnani SM, Forrest A, Jones RN, Friedrich LV, Steenbergen JN, Ambrose PG (2016) Pharmacokinetics-pharmacodynamics of tazobactam in combination with piperacillin in an in vitro infection model. Antimicrob Agents Chemother 60:2075–2080
- 34. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, McIntyre L, Ostermann M, Prescott HC, Schorr C, Simpson S, Wiersinga WJ, Alshamsi F, Angus DC, Arabi Y, Azevedo L, Beale R, Beilman G, Belley-Cote E, Burry L, Cecconi M, Centofanti J, Coz Yataco A, De Waele J, Dellinger RP, Doi K, Du B, Estenssoro E, Ferrer R, Gomersall C, Hodgson C, Hylander Moller M, Iwashyna T, Jacob S, Kleinpell R, Klompas M, Koh Y, Kumar A, Kwizera A, Lobo S, Masur H, McGloughlin S, Mehta S, Mehta Y, Mer M, Nunnally M, Oczkowski S, Osborn T, Papathanassoglou E, Perner A, Puskarich M, Roberts J, Schweickert W, Seckel M, Sevransky J, Sprung CL, Welte T, Zimmerman J, Levy M (2021) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med 49:e1063–e1143
- 35. Monard C, Marel A, Joannidis M, Ostermann M, Peng Z, Doi K, De Rosa S, Bobek I, Sokolov D, Wu VC, Premuzic V, Mehta R, Bellomo R, Garcia X, Pizarro C, Zarbock A, Milet I, Reis T, Romain M, Mc Nicholas B, Schneider A, Rimmele T, Section EA (2025) Renal replacement therapy modalities and techniques in intensive care units: an international survey. J Crit Care 88:155076
- Onichimowski D, Bedzkowska A, Ziolkowski H, Jaroszewski J, Borys M, Czuczwar M, Wiczling P (2020) Population pharmacokinetics of standard-dose meropenem in critically ill patients on continuous renal replacement therapy: a prospective observational trial. Pharmacol Rep 72:719–729
- Isla A, Rodriguez-Gascon A, Troconiz IF, Bueno L, Solinis MA, Maynar J, Sanchez-Izquierdo JA, Pedraz JL (2008) Population pharmacokinetics of meropenem in critically ill patients undergoing continuous renal replacement therapy. Clin Pharmacokinet 47:173–180
- Varghese JM, Jarrett P, Wallis SC, Boots RJ, Kirkpatrick CM, Lipman J, Roberts JA (2015) Are interstitial fluid concentrations of meropenem equivalent to plasma concentrations in critically ill patients receiving continuous renal replacement therapy? J Antimicrob Chemother 70:528–533
- Burger R, Guidi M, Calpini V, Lamoth F, Decosterd L, Robatel C, Buclin T, Csajka C, Marchetti O (2018) Effect of renal clearance and continuous renal replacement therapy on appropriateness of recommended meropenem dosing regimens in critically ill patients with susceptible life-threatening infections. J Antimicrob Chemother 73:3413–3422
- O'Jeanson A, Larcher R, Le Souder C, Djebli N, Khier S (2021) Population pharmacokinetics and pharmacodynamics of meropenem in critically ill patients: how to achieve best dosage regimen according to the clinical situation. Eur J Drug Metab Pharmacokinet 46:695–705
- Valtonen M, Tiula E, Backman JT, Neuvonen PJ (2000) Elimination of meropenem during continuous veno-venous haemofiltration and haemodiafiltration in patients with acute renal failure. J Antimicrob Chemother 45:701–704
- Giles LJ, Jennings AC, Thomson AH, Creed G, Beale RJ, McLuckie A (2000) Pharmacokinetics of meropenem in intensive care unit patients receiving continuous veno-venous haemofiltration or haemodiafiltration. Crit Care Med 28:632–637
- Bue M, Sou T, Okkels ASL, Hanberg P, Thorsted A, Friberg LE, Andersson TL, Obrink-Hansen K, Christensen S (2020) Population pharmacokinetics of piperacillin in plasma and subcutaneous tissue in patients on continuous renal replacement therapy. Int J Infect Dis 92:133–140

- Asin-Prieto E, Rodriguez-Gascon A, Troconiz IF, Soraluce A, Maynar J, Sanchez-Izquierdo JA, Isla A (2014) Population pharmacokinetics of piperacillin and tazobactam in critically ill patients undergoing continuous renal replacement therapy: application to pharmacokinetic/pharmacodynamic analysis. J Antimicrob Chemother 69:180–189
- 45. Jamal JA, Udy AA, Lipman J, Roberts JA (2014) The impact of variation in renal replacement therapy settings on piperacillin, meropenem, and vancomycin drug clearance in the critically ill: an analysis of published literature and dosing regimens. Crit Care Med 42:1640–1650
- Katulka RJ, Al Saadon A, Sebastianski M, Featherstone R, Vandermeer B, Silver SA, Gibney RTN, Bagshaw SM, Rewa OG (2020) Determining the optimal time for liberation from renal replacement therapy in critically ill patients: a systematic review and meta-analysis (DOnE RRT). Crit Care 24:50
- 47. Dulhunty JM, Brett SJ, De Waele JJ, Rajbhandari D, Billot L, Cotta MO, Davis JS, Finfer S, Hammond NE, Knowles S, Liu X, McGuinness S, Mysore J, Paterson DL, Peake S, Rhodes A, Roberts JA, Roger C, Shirwadkar C, Starr

- T, Taylor C, Myburgh JA, Lipman J, Investigators BIS (2024) Continuous vs intermittent beta-lactam antibiotic infusions in critically ill patients with sepsis: the BLING Ill randomized clinical trial. JAMA 332:629–637
- 48. Abdul-Aziz MH, Hammond NE, Brett SJ, Cotta MO, De Waele JJ, Devaux A, Di Tanna GL, Dulhunty JM, Elkady H, Eriksson L, Hasan MS, Khan AB, Lipman J, Liu X, Monti G, Myburgh J, Novy E, Omar S, Rajbhandari D, Roger C, Sjovall F, Zaghi I, Zangrillo A, Delaney A, Roberts JA (2024) Prolonged vs intermittent infusions of beta-lactam antibiotics in adults with sepsis or septic shock: a systematic review and meta-analysis. JAMA 332:638–648
- Roberts JA, Roberts MS, Robertson TA, Dalley AJ, Lipman J (2009) Piperacillin penetration into tissue of critically ill patients with sepsis-bolus versus continuous administration? Crit Care Med 37:926–933
- Kumta N, Heffernan AJ, Cotta MO, Wallis SC, Livermore A, Starr T, Wong WT, Joynt GM, Lipman J, Roberts JA (2022) Plasma and cerebrospinal fluid population pharmacokinetics of meropenem in neurocritical care patients: a prospective two-center study. Antimicrob Agents Chemother 66:e0014222