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Obtaining a group velocity higher than the speed of sound in a waveguide is a challenging task in acoustic
wave engineering. Even more challenging is to achieve this velocity increase without any intervention with
the waveguide profile, such as narrowing or widening, and particularly without interfering with the passage by
flexible inclusions, either passive or active. Here, we approach this problem by invoking concepts from non-
Hermitian physics, and imposing them using active elements that are smoothly sealed within the waveguide
wall. In a real-time feedback operation, the elements induce local pressure gain and loss, as well as non-local
pressure integration couplings. We employ a dedicated balancing between the control parameters, derived from
lattice theory and adjusted to the waveguide system, to drive the dynamics into a stable parity-time-symmetric
regime. We demonstrate the accelerated propagation of a wave packet both numerically and experimentally in
an air-filled waveguide and discuss the trade-off between stabilization and the achievable velocity increase. Our
work prepares the grounds for advanced forms of wave transmission in continuous media, enabled by short and
long range active couplings, created via embedded real-time feedback control.

I. INTRODUCTION

Non-Hermitian systems, where interactions and exchange
of energy with the surrounding environment are allowed, have
been shown to exhibit unique properties in recent years1,2.
Their effective non-Hermitian Hamiltonians endow excep-
tional properties and topologies that go beyond conventional
Hermitian counterparts. A prime example is parity-time (PT)
symmetry and the emergence of exceptional points (EPs),
which has garnered great research interest3,4. The eigenstates
of these PT-symmetric systems coalesce in the parameter
space, and real eigenvalues are possible with non self-adjoint
Hamiltonians. Initially a purely mathematical model5,6, the
concept was later successfully tested in photonic systems with
balanced loss and gain potentials thanks to the equivalence
between the paraxial electromagnetic wave equation and the
Schrödinger equation7. Since then, numerous PT-symmetry
and EP-related effects have been discovered, which suggested
new functionalities and applications by tailoring the complex
energy profile of the systems under study, including single-
mode lasers8, enhanced sensitivity9, unidirectional invisible
cloaking10,11, and so on.

In the field of acoustics and elastodynamics, researchers
have studied similar concepts and revealed a plethora of in-
triguing phenomena12–18. Because of the absence of natural
gain materials, a common approach is implementing an equiv-
alent model with only lossy or lossless media, leaving part of
the parameter space untapped. Although these systems are
successful in terms of constructing complex effective Hamil-
tonians, recent studies have suggested that certain effects can
only be induced by real gain-loss modulations19–21. The use of
gain media introduces external energy and broadens the utility
of the parameter space. Several previous attempts have imple-
mented real gain media using different techniques, such as

electro-thermoacoustic coupling22,23, background airflow24,
energy injection25,26, or active control elements27,28. Never-
theless, the non-Hermitian phenomena demonstrated so far
have been focused mostly on the property of nonreciprocity,
and less on the control of wave propagation velocity. In ad-
dition, the common realizations of active couplings, in par-
ticular in acoustic waveguides, involve either alternations of
the waveguide geometry, or placement of the actuators in the
waveguide cross-section27,29,30.

In this work, we address spatially continuous media, such
as acoustic waveguides, hybridized with discretely-spanned
active elements, which are seamlessly embedded in the
waveguide wall. We program these elements to actively con-
trol the wave propagation velocity in a plain waveguide with
a uniform cross-section. This is useful for applications for
which the passage of fluid through the waveguide cannot be
blocked. Motivated by control schemes for purely discrete
PT-symmetric media, such as lattices31,32, we derive the re-
quired couplings to speed-up wave packet propagation in the
waveguide. Specifically, the active units control the onsite
loss and gain profiles, as well as the couplings between the
units, to create an effective PT-symmetric system. Utilizing
the concept of feedback-based media30,33–41, we realize these
couplings in a real-time closed loop process.

At the first stage, we design a theoretical model to describe
the controlled waveguide. Then, we suggest an analogous dis-
crete model of a mass-spring lattice, and derive the relation
between the control parameters that lead to a group velocity
increase in the lattice, and in the same time guarantee its dy-
namical stability. Mapping back to the waveguide system, we
obtain the required control parameters therein. Despite the
differences between purely discrete and hybrid continuous-
discrete systems (e.g., due to time delays or near field effects),
we show that a faster group velocity compared to the back-
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FIG. 1. The active acoustic metamaterial model and its spectral properties. (a) The waveguide schematics. (b) Analogous lattice schematics.
(c)-(f) Frequency dispersion of the periodic system. Gray and yellow - lattice real and imaginary spectrum by Eq. (6). Black, orange -
waveguide real and imaginary spectrum calculated via PWE by Eqs. (C10)-(C11). Cyan - waveguide real spectrum calculated via FE. β = 1
was set in the waveguide. (c) Nominal stable, γ̂ = γ = 0, η̂ = η = 1. (d) Unstable, γ̂ = γ = 0.32, η̂ = η = 1. (e) PT-symmetry-restored
stable, γ̂ = 0.32, γ = 0.29, η̂ = 1.5, η = 2. (f) Gapped stable, γ̂ = γ = 0, η̂ = 1.5, η = 2. (g) Sketch of the FE model setup for numerically
calculating the dispersion curves.

ground medium is possible in the waveguide system with ju-
diciously tailored feedback modulation profiles.

Owing to the central role that stability plays in actively con-
trolled wave systems42, we derive the theoretical criteria for
stable wave dynamics in the metamaterial so that the wave
amplitude is not growing during the propagation. We con-
firm our theoretical predictions of obtaining a group velocity
higher than the speed of sound in air by carrying out experi-
ments in an acoustic waveguide, and discuss the limitations of
the achievable stability in the actual system. Our results show-
case the implementation of active acoustic wave control in
combination with PT-symmetry to support stable faster-than-
sound dynamic pulse transmission. The work facilitates the
spatio-temporal modulation of signals with real-time tuning
capabilities and may find applications in acoustic communi-
cation and more.

II. THE TARGET WAVEGUIDE MODEL

We consider an acoustic waveguide that supports propaga-
tion of sound pressure waves p in a fluid of mass density ρ0
and bulk modulus b0, as illustrated in Fig. 1(a). Active ele-
ments are connected to the waveguide wall in a periodic spac-
ing a/2, positioned at xn, and facing inwards. These elements
produce acoustic control velocities vn, and are incorporated in
the field equation as

1

c2
ptt(x, t) = pxx(x, t) + ρ0β

∑
n

v̇n(t)δ(x− xn), (1)

where δ(·) is the Dirac delta function, and β is the ratio be-
tween the active element area Sd and the waveguide cross-
section Sw. The actively controlled waveguide constitutes a
hybrid continuous-discrete medium. The role of the inputs
vn is to increase the group velocity inside this medium, vg ,
beyond the background speed of sound c. Motivated by con-
trol schemes for PT-symmetric lattices31,32, we define A and
B sites alternating with the periodicity of a. Using feedback
control loops, the elements at these sites respectively induce
local gain and loss defined by the parameter γ, as well as an
additional coupling between each A-B pair, defined by the
parameter η. We set the control inputs at these sites to

vA/B
n (t) =

η − 1

ρ0a

∫ t

0

[pB/A
n (t)− pA/B

n (t)]dt± γ

z0
pA/B
n (t),

(2)
where pA/B

n (t) is a compact form of p(xA/B
n , t), and z0 = ρ0c

is the specific acoustic impedance. In closed loop, the pressure
field in the waveguide is governed by

1

c2
ptt(x, t) = pxx(x, t)

+ β
∑
n

η − 1

a
(pBn (t)− pAn (t))δ(x− xA

n )

+ β
∑
n

η − 1

a
(pAn (t)− pBn (t))δ(x− xB

n )

+ β
γ

c

∑
n

[
ṗAn (t)δ(x− xA

n )− ṗBn (t)δ(x− xB
n )

]
.

(3)

It is then required to derive a relation between γ and η so that
vg > c, but also that the system’s stability is preserved, i.e.,
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that the waves propagate with non-growing amplitudes. We
thus consider an auxiliary model – an analogous mass-spring
lattice, which is inherently discrete, Fig. 1(b), and derive the
γ − η relation for this model first. Each lattice site has a
single degree of freedom, the vertical displacement y. The
masses M0 and spring constants K0 are analogous to the bulk
modulus and mass density of the fluid as M0 = aSw/(2b0)
and K0 = 2Sw/(ρ0a), and the site velocity v = ẏ maps to
the pressure p. Defining η̂K0 as a spring constant different
to the nominal K0, and ∓iγ̂Z0 as an onsite viscous damper
(anti-damper) connected to ground, where Z0 =

√
M0K0 is

the mechanical impedance, the dynamics of the n-th A and B
sites of the dimer lattice can be formulated as

ω−2
0 ÿA/B

n = y
B/A
n∓1+η̂yB/A

n −(1+η̂)yA/B
n ±γ̂ω−1

0 ẏA/B
n , (4)

where ω0 =
√
K0/M0. The mapping between the γ and

η couplings of the waveguide, and γ̂ and η̂ couplings of the
lattice then takes the form (App. A)

γ̂ = βγ , η̂ = β 1
2 (η − 1) + 1. (5)

In order to derive the relation between γ̂ and η̂ for
the group velocity increase, we insert the solution[
yAn yBn

]T
=

[
yA yB

]T
ei(kna−ωt) in Eq. (4) , where

k is the wavenumber, and yA, yB are the respective
wave amplitudes. Defining the normalized frequency
Ω = ω/ω0, we obtain the quadratic eigenvalue problem(
Ω2I − Ωiγσz −H0 − (1 + η)I

) [
yA yB

]T
= 0, which can

be augmented to (ΩI −H) y = 0, where y is the augmented
eigenvector that includes yA, yB , and two auxiliary states.
The effective 4× 4 Hamiltonian H is given by

H =

(
0 I

H0 + (1 + η̂)I iγ̂σz

)
, H0 =

(
0 f
fo 0

)
, (6)

where f = −
[
η̂ + e−ika

]
and σz is the Pauli matrix. For

γ̂ > 0 this Hamiltonian is non-Hermitian1. The solution of
the eigenvalue problem in Eq. (6) gives the lattice dispersion
relation, and consequently the required relation between γ̂ and
η̂ for dynamical stability32. This is illustrated in Fig. 1(c)-(f).
For the nominal lattice, i.e. for γ̂ = 0 and η̂ = 1, the spec-
trum is purely real, as expected, Fig. 1(c), where the top band
is idle (due to the lattice constant folding to a/2). When in-
creasing γ̂, the spectrum becomes complex-valued around the
band crossing point, turning it into an exceptional cut4, Fig.
1(d) (e.g. for γ̂ = 0.32). The time response at the n-th node
then takes the form yn(t) ∝ eωItei(kna−ωRt), where ωR and
ωI are the real and imaginary components of the frequency,
respectively. The response thus grows unbounded, indicating
the system’s dynamical instability. In particular, for

γ̂pt =
√
2
(√

η̂ − 1
)

(7)

the lattice spectrum is restored to be purely real, as illustrated
in Fig. 1(e) for η̂ = 1.5 and γ̂ = 0.32, while preserving the
non-Hermiticity of the Hamiltonian in Eq. (6). This transition
indicates the restoration of the PT-symmetric phase5. For any

γ̂ < γ̂pt the spectrum remains real, albeit gapped, e.g. as
shown in Fig. 1(f) for η̂ = 1.5 and γ̂ = 0, thus forming the
lattice stability region in the γ̂− η̂ plane. Remarkably, the new
crossing point of the dispersion curves for γ̂ = γ̂pt, which is
an exceptional point, occurs at a higher frequency than for the
nominal case, indicating an increase in group velocity. This
increase is given by

vg = v0

√
1√
2
γ̂pt + 1, (8)

suggesting that it is possible to exceed the Hermitian group
velocity v0, and to guarantee dynamical stability (App. B).
Back to the actual waveguide, we calculate the disper-
sion of Eq. (3) using the plane wave expansion (PWE)
method43, in which a series solution of traveling harmonic
waves, p(x, t) = eiωtP (x), is assumed. Here, P (x) =∑M

m=−M e−i(k+m)b1·xd1pm, b1 = 2π
a ê1 and d1 = aê1 re-

spectively span the momentum and the real spaces, pm is the
pressure field amplitude, and M is the approximation order
(App. C). Due to the continuity of the acoustic medium there
is an infinite number of bands, where M defines how many of
these bands are plotted. The resulting spectrum is depicted on
top of the lattice spectrum in Figs. 1(c)-(f) in low frequencies
for an air -filled waveguide. The waveguide cross-sectional
area is assumed equal to that of the active elements, i.e. β = 1,
with a spacing of a = 5 cm, and M = 4.

Fig. 1(c) depicts the spectrum of the uncontrolled waveg-
uide. The crossing point of the main band with its folding,
which occurs at ka = π, directly implies the slope of 343
m/s, which, as expected, equals c, the speed of sound in air.
We then begin to increase γ while keeping η = 1. Similarly
to the lattice system, we substitute γ = 0.32 and an imag-
inary spectrum appears, as depicted in Fig. 1(d). To elim-
inate the imaginary spectrum we increase η as well. Since
for γ̂pt = 0.32 the lattice balance relation in Eq. (7) reads
η̂ = 1.5, the mapping to the waveguide in Eq. (5) implies
η = 2.

However, as the analogy between the discrete and contin-
uous systems is valid only in the long wavelength (low fre-
quency) regime, a discrepancy between the underlying spec-
tra is observed at the vicinity of the crossing point ka = π

(given by ω = 2
√
2
√√

η̂c/a in the lattice case). Therefore,
to restore the PT-symmetry in the waveguide for a given η,
the value of γ stemming from Eqs. (5) and (7) needs to be
slightly modified (the particular modification value depends
on η, App. A). For η = 2, the balance is then obtained for
γpt = 0.29, as shown in Fig. 1(e). Decreasing γ below γpt
keeps the spectrum real, albeit gapped, as in the lattice, as
illustrated in Fig. 1(f) for η = 2 and γ = 0.

To confirm the results obtained via the PWE, we calcu-
late the waveguide’s frequency dispersion using finite element
(FE) analysis. As shown in Fig. 1(g), the domain is mod-
eled as two-dimensional, representing a cross-section of the
waveguide with the main propagation axis x and the vertical
axis y. The height of the waveguide h and the actuator length
d are explicitly included in the model. The actuators are rep-
resented by velocity sources, and point probes are used at the
waveguide wall opposite to the actuators (similar to the exper-



4

(a) (b)

(c) (d) (e)

0.9

ka [rad]

3.43
3.48
3.53

3.63

 [
k
H

z
]

1 2 3 4 5

t [ms]

-10

-5

0

5

10

p
(x

m
,t

) 
[m

P
a

]

=1

=1.5

=2

=3 0
.0

0

0
.1

6

0
.3

1

0
.6

0

pt

1.00

1.02

1.04

1.07

v
g
/v

0

theory

=1

=1.5

=2

=3

(f) (g) (h) (i)

FIG. 2. Waveguide realization in a feedback control setup using current-driven electroacoustic transducers. (a) Schematic of the electrodynamic
speaker. (b) The controller structure. (c) The waveguide dispersion relation obtained from PWE for a = 5 cm and β = 0.32, featuring the
uncontrolled case γ = 0, η = 1 (black), and the controlled cases γ = 0.16, η = 1.5 (purple), γ = 0.31, η = 2 (green), and γ = 0.60, η = 3
(blue). (d) Time domain responses to a Gaussian wavepacket centered at ω = 2.5 kHz, calculated via FE. (e) The normalized group velocities
obtained from the time domain simulations (circles), and from the corresponding dispersion plots in panel (c) (ω = 2.5 kHz− black diamonds,
ω = 0 kHz− black crosses), plotted on top of the theoretical expression Eq. (8) via Eq. (5) (gray). (f)-(i) Corresponding full wave FE
simulations, showing the absolute value of the pressure in mPa for η = 1, 1.5, 2, and 3, respectively, depicting decreasing wavepacket arrival
times with the same initial time for increasing η values (both times are indicated by horizontal dashed green lines). The vertical white dashed
lines indicate the beginning and the end of the active part of the waveguide.

imental setup described in Sec. IV) to obtain the pressures pA

and pB . Using these pressure values, the control law given in
Eq. (2) is implemented to drive the velocity sources and create
the required couplings. The ends of the waveguide section of
length a, representing one unit cell, are terminated using pe-
riodic boundary conditions. All other boundaries are set to be
sound hard. The dispersion curves were calculated by com-
puting the eigenvalues of the periodic system with different
ka values. The FE results are depicted in Fig. 1(c)-(f) on top
of the PWE results, nearly coinciding with each other.

III. CONTROLLER DESIGN

We realize the control velocity sources using electroacous-
tic transducers, which replace the ideal actuators in Fig. 1(g).
The control setup of each unit cell then consists of two speak-

ers, which generate control velocities vAn and vBn , as well as
two microphones, which measure the pressure signals pAn and
pBn . Based on these measurements, the actuators create the γ
and η couplings in real time. The structure of one actuator is
detailed in Fig. 2(a). This is an electrodynamic loudspeaker
within a closed cavity, which features a diaphragm mechani-
cally driven by a voice coil, placed in a permanent magnetic
field. At low frequencies, the loudspeaker can be approxi-
mated as a mass-spring-damper system, and the diaphragm
motion at small displacements can be described in the Laplace
domain by44,45 Zmo(s)v(s) = −Sdp(s) +Bli(s) and u(s) =
Zeb(s)i(s)+Blv(s). Here, Zmo(s) = Mmss+Rms +

1
Cmss

and Zeb(s) = Les + Re are, respectively, the open circuit
mechanical and the blocked electrical impedance of the loud-
speaker, where Mms, Rms, and Cmc represent its moving
mass, mechanical damping, and the total mechanical compli-
ance. Sd is the effective area of the diaphragm, with p being
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FIG. 3. Experimental demonstration of accelerated wave packet propagation. (a) Schematic of the experimental setup. (b) Photograph of the
waveguide, comprising 8 active sites. (c) The measured waveform at microphone Mic4 relative to microphone Mic1 as a function of time for
η = 1, black, η = 1.5, purple, and η = 2, green. (d) Zoom-in of the measured waveform in (c). (e) Comparison of the calculated group
velocities with the measured results. Dashed - the theoretical values obtained from Eq. (8) via Eq. (5). Dotted - the measured values. Solid -
the measured values adjusted to the Hermitian velocity of 343 m/s.

the total sound pressure acting on it, which includes both the
incident and scattered pressure. v is the vibration velocity of
the speaker diaphragm, i is the current in the voice coil, and
u is the input voltage between the electrical terminals. Bl
is the force factor of the speaker, where B is the magnetic
field strength and l is the length of the voice coil wire in the
magnetic field. Re is the DC resistance, and Le is the self-
inductance of the voice coil. To avoid the impact of the coil
inductance Le on the system stability, we designed our loud-
speakers to be driven by current sources. We set the control
law in each unit cell to

iA/B
n (s) = (GS±sGγ)p

A/B
n (s)+Gη

[
pB/A
n (s)− pA/B

n (s)
]
,

(9)
which results in the acoustic velocity commands

vA/B
n (s) =

−Sd +Bl(GS ± sGγ)

Zmo(s)
pA/B
n (s)

+
BlGη

Zmo(s)

[
pB/A
n (s)− pA/B

n (s)
]
.

(10)

Comparing Eq. (10) with Eq. (2), and assuming Zmo(s) ≈
Mmss in our working frequency range (above the mechanical
resonance frequency of the loudspeakers), the controller gains

take the form

GS =
Sd

Bl
, Gγ =

γMms

Blz0
, Gη =

(η − 1)Mms

ρ0aBl
. (11)

The structure of the control law in Eq. (9) with Eq. (11)
is schematically illustrated in Fig. 2(b). The gain GS is re-
sponsible for the cancellation of the internal physical feed-
back of the loudspeaker, whereas Gγ and Gη create the γ and
the η couplings, respectively. We then demonstrate the perfor-
mance of our controlled waveguide using a numerical experi-
ment with β = 0.32 (to be aligned with the actual experiment,
Sec. IV). We calculate the controller gains for the cases η =
1.5, 2, 3. For these values of η, we have η̂ = 1.08, 1.16, 1.32
by Eq. (5), then γ̂ = 0.06, 0.11, 0.21 by Eq. (7), and
γ = 0.17, 0.34, 0.66 back by Eq. (5). Using final modifica-
tion, the corresponding values of γ = 0.16, 0.31, 0.60 are ob-
tained. The dispersion relations of the resulting closed loops,
calculated at low frequencies by PWE, are depicted in Fig.
2(c), on top of the uncontrolled case η = 1, γ = 0. The spec-
trum slope increases with γ, indicating an increase in group
velocity. However, due to β < 1, the achieved slope, and thus
the vg increase for the same η is less than in Fig. 1(e).

A waveguide controlled by the feedback system in Fig.
2(a)-(b) for the above combinations of γ and η was then simu-
lated in the time domain using FE. The FE model consisted of
a waveguide with four unit cells and was terminated on both



6

ends by absorbing boundary conditions. A low-pass filter was
applied to the current control signals to minimize the genera-
tion of higher-order non-plane waves in the waveguide. The
responses to a Gaussian wave packet are given in Fig. 2(d).
The group velocities calculated from these responses are de-
picted in Fig. 2(e) on top of the theoretical expression in Eq.
(8) (via the mapping in Eq. (5)), and those calculated from the
dispersion curves in Fig. 2(c), both for the central frequency
of the wavepacket, and zero (the dispersion slope is monoton-
ically decreasing with the frequency). The group velocities
obtained from the time domain simulations are closer to the
small frequency values. The corresponding full wave FE sim-
ulations, showing the absolute value of the pressure in mPa for
η = 1, 1.5, 2, and 3, are shown in Fig. 2(f)-(i), respectively,
depicting decreasing wavepacket arrival times with the same
initial time for increasing η values.

IV. EXPERIMENTAL DEMONSTRATION

To confirm the group velocity increase, an active metastruc-
ture was fabricated, as shown in the schematic of Fig. 3(a),
and the photograph of Fig. 3(b). The sound source is posi-
tioned at the left end of the waveguide, whereas the right end
contains glass wool for sound wave absorption, sealed by a
4 mm thick resin block. The waveguide has a uniform wall
thickness of 4 mm, produced via 3D printing using a resin
material with a density of 1180 kg/m3. The waveguide has
a length of 1 m and a square cross-section with dimensions
of 15 × 15 mm2, corresponding to a cutoff frequency for the
plane wave mode of 11467 Hz. The active metamaterial, 20
cm in total length, consists of four unit cells (8 active sites)
positioned in the center of the waveguide.

Each unit cell, measuring a = 5 cm, contains two identi-
cal loudspeakers on the top, and two identical microphones on
the bottom. Two additional microphones, Mic1 and Mic4, are
symmetrically positioned on the left and right sides of the ac-
tive metamaterial, spaced 60 cm apart, to monitor the velocity
of acoustic wave propagation. A controller corresponding to
Fig. 2(b) was designed to regulate the output of the control
sources A and B. This was realized using voltage-controlled
current sources (VCCS), which convert a voltage signal into a
proportional current signal with unity gain to drive the loud-
speakers, as detailed in App. D. The output voltage signals of
the controller, uA

n and uB
n , are therefore converted into current

signals as iA/B
n = Gu

A/B
n , where G = 1 A/V.

To ensure consistency between the loudspeakers and micro-
phones, careful selections and calibrations were performed.
The Thiele & Small parameters of the loudspeakers were
measured using the Klippel electroacoustic test system. The
following average parameters were obtained: the diaphragm
mass Mms = 0.0689 g, the force factor Bl = 0.606 N/A, the
effective diaphragm area Sd = 72 mm2, leading to β = 0.32,
and the resonance frequency 900 Hz. Electret condenser mi-
crophones were used as the pressure sensors. The microphone
signals were amplified to ensure a sensitivity of S0 = 400
mV/Pa. The controller was designed using analog circuitry
and fabricated using a printed circuit board, see App. D. Po-

tentiometers were used to adjust Gγ and Gη to achieve the
desired different values of γ and η according to Eq. (11), di-
vided by S0. An NI acquisition card with a sampling rate of
fs = 200 kHz was used to record the microphone signals
from Mic1 and Mic4.

The signal supplied to the sound source was a Gaussian
pulse modulated by a 2500 Hz sine wave. Three sets of mea-
surements were conducted with η = 1, 1.5, and 2, respec-
tively, and the corresponding γ was calculated from Eqs. (5)
and (7) to be 0, 0.16, and 0.31. The measurement results are
presented in Fig. 3(c), with a close-up in Fig. 3(d). These
results compare the pulse waveform over time for the Hermi-
tian case γ = 0, η = 1 with the non-Hermitian cases η = 1.5
and η = 2. For higher η we observed instability in the mea-
sured responses. Setting the peak time of the pulse recorded
by microphone Mic1 as 0, the peak arrival times at micro-
phone Mic4 are advanced by δt = 0.01 ms and δt = 0.02 ms
for η = 1.5 and η = 2, respectively. This confirms that the
acoustic wave speed was increased.

The actual group velocity vg of the sound wave in the meta-
material can be determined by the equation l

c−
l
vg

= δt, where
l = 20 cm is the total length of the active part. The baseline
speed c was obtained as 333 m/s by measurement at a room
temperature of 20oC, i.e., c = s/t0, where s = 60 cm de-
notes the distance between microphones Mic1 and Mic4, and
t0 = 1.8 ms is the time difference between the pulse arriving
at Mic4 and Mic1 in the Hermitian case. Therefore, for the
non-Hermitian cases η = 1.5 and η = 2, the sound wave ve-
locities in the active metamaterial read 339 m/s and 345 m/s,
respectively. Fig. 3(e) compares experimental and theoreti-
cal results (FE time domain of Fig. 2(d)). The discrepancy
between the theoretical and experimental results is attributed
to the measured baseline sound velocity c = 333 m/s be-
ing lower than the theoretically expected value of 343 m/s at
room temperature. This deviation primarily stems from mea-
surement uncertainties (e.g., misalignment between the acous-
tic and physical centers of microphones Mic1 and Mic4, man-
ufacturing and assembly tolerances for the waveguide, tempo-
ral resolution of the sampled pressure signals) and thermovis-
cous boundary layer effects slowing down the sound velocity
in the waveguide46. Correcting to the theoretical room tem-
perature sound speed c = 343 m/s, the experimental results
become vg = 349 m/s for η = 1.5 and vg = 355 m/s for
η = 2. The corrected values, shown as the solid line in Fig.
3(e), align closely with the theoretical results.

V. DISCUSSION AND CONCLUSION

In this work, we suggested a mechanism to enhance the
sound velocity in a waveguide by lifting up the crossing
point—and thus the slope—of the underlying dispersion re-
lation without any change to the medium properties or the
waveguide geometry. Rather, the slope increase was achieved
by inducing non-Hermiticity through active control elements
seamlessly sealed in the waveguide wall. The idea was based
on an equivalent lattice model (Fig. 1(b)), and then mapped to
the waveguide system (Fig. 1(a)).
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The balance between the control parameters – the local
gain-loss couplings γ and the non-local couplings η that we
derived for the waveguide system via the analogous lattice
system, Eqs. (5) and (7), addresses the challenge of merging a
spatially discrete coupling pattern into the continuous waveg-
uide medium. The final modification of the balance due to the
analogy being valid only in the long wavelength regime, was
minor for small η, but still required. As a result, a real spec-
trum was restored in the low frequency range and the desired
faster-than-sound dynamics was achieved, manifested by the
group velocity growth proportional to the square root of γ.
In practice, there will be a limitation to the achievable group
velocity, as one cannot generate neither an infinite γ, nor an
infinite η47.

FE and PWE simulations suggested that, theoretically, the
waveguide system was stable for the achieved group veloci-
ties. In our experiment, we managed to maintain stable prop-
agation for a velocity increase of up to 355 m/s from the
nominal 343 m/s. We anticipate that this limit can be further
pushed by optimizations of the control setup and algorithm.
Our active coupling approach is advantageous in applications
that forbid waveguide cross-section blocking, and/or require
long-range coupling between multiple active cells. Compared
to purely passive systems, the active approach enables the
modulation profile to be easily reconfigured to more com-
plex interactions, which could lead to new wave properties
and wave-guiding capabilities.
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Appendix A: Mapping between the lattice and the waveguide

Here we provide derivation details of the mapping in Eq.
(5). The lattice equation in Eq. (4) is the result of the inhomo-
geneous mass-spring system{

M0ÿ
A
n = K0

(
yBn − 2yAn + yBn−1

)
+ FA

n ,

M0ÿ
B
n = K0

(
yAn+1 − 2yBn + yAn

)
+ FB

n ,
(A1)

being controlled in closed loop by the input forces{
FA
n = K0 (η̂ − 1)

[
yBn − yAn

]
+ γ̂

√
K0M0ẏ

A
n ,

FB
n = K0 (η̂ − 1)

[
yAn − yBn

]
− γ̂

√
K0M0ẏ

B
n .

(A2)

Since M0ÿn = K0 (yn+1 − 2yn + yn−1) + Fn, a general
forced lattice equation, maps to the inhomogeneous acous-
tic waveguide equation (1), and the lattice site displacement

(a) (b)

1 2 3 4 5
0.00

0.29

0.55

0.78

1.00

discrete analogy

final modification

1 2 3 4 5
0.00

0.31

0.60

0.88

1.15

FIG. A1. The PT-symmetry γ − η balance in the waveguide. Blue -
the γ value implied by Eqs. (5) and (7). Orange - the actual γ value
obtained by final modification. (a) β = 1. (b) β = 0.32.

y maps to the integral of pressure p, the lattice control inputs
F in Eq. (A2) are mapped to the acoustic inputs as βv, i.e.

vAn =
2(η̂ − 1)

βρ0a

∫ t

0

[
pBn − pAn

]
dt+

γ̂

βz0
pAn ,

vBn =
2(η̂ − 1)

βρ0a

∫ t

0

[
pAn − pBn

]
dt− γ̂

βz0
pBn .

(A3)

Comparing Eq. (A3) with the actual acoustic inputs in Eq.
(2), the mapping of Eq. (5) is straightforwardly obtained. The
final modification of γ for a fixed η, which is required due
to the discrepancy between the continuous and the equivalent
discrete model at the crossing point, is illustrated in Fig. A1.
Both for β = 1 and β = 0.32, the actual value of γ that is
required to restore PT symmetry in the waveguide is slightly
smaller than the value that stems from Eqs. (5) and (7).

Appendix B: Group velocity control in the lattice model

The analogous lattice model in Fig. 1(b) is represented by
the augmented eigenvalue problem in Eq. (6), which reads

Ω4 −
(
2(1 + η̂)− γ̂2

)
Ω2 + (1 + η̂)2 − ffo = 0. (B1)

Its solution is given by

Ω2 = 1
2

(
2(1 + η̂)− γ̂2

)
± 1

2

√
δ, (B2)

with δ =
(
2(1 + η̂)− γ̂2

)2 − 4
(
(1 + η̂)2 − ffo

)
. The re-

quirements for real spectrum (with minimum at cos ka = −1)
give the PT symmetry condition γ̂ ≤ γ̂pt of Eq. (7) via Eq.
(5). We then obtain (1 + η̂)2 − ffo = 2η̂(1 − cos ka),
δ = 8η̂(1 + cos ka), and the dispersion relation is obtained
from Eq. (B2) as

Ω =

√√
2γ̂pt + 2 ·

√
1±

√
1
2 (1 + cos ka). (B3)

In the Hermitian case, the lattice constant is a/2. We then
use the identity cos ka = cos ka = cos2 ka

2 − sin2 ka
2 , which

implies that
√

1
2 (1 + cos ka) equals cos ka

2 with the positive
branch chosen for k ∈ [0, π

a ] and the negative branch for k ∈
(πa ,

2π
a ]. We then rewrite Ω in Eq. (B3) as a function of the

Hermitian frequency spectrum, as

Ω =
√

1√
2
γ̂ + 1ΩH , ΩH =

√
2
√

1− cos ka
2 . (B4)
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The group velocity (normalized by ω0) thus becomes

vg =
∂Ω

∂k
=

√
1√
2
γ̂ + 1

∂ΩH

∂k
=

√
1√
2
γ̂ + 1v0, (B5)

where v0 is the Hermitian group velocity, given by

v0 =
a sin ka

2

2
√
2
√
1− cos ka

2

. (B6)

Appendix C: The Plane Wave Expansion derivation

We substitute the proposed solution p(x, t) = eiωtP (x),
with P (x) =

∑M
m=−M e−i(k+m)b1·xd1pm, b1 = 2π

a ê1 and
d1 = aê1, into the nth unit cell of Eq. (3). Using a general
formulation r = xd1, k = kb1, and G = mb1, and trans-
forming ptt, pt to frequency domain as −ω2p, iωp, reads

ω2

c2

M∑
m=−M

e−i(k+G)·rpm =

M∑
m=−M

|k + G|2e−i(k+G)·rpm

− β

M∑
m=−M

[η − 1

a

(
e−i(k+G)·RB − e−i(k+G)·RA

)
− γ

c
iωe−i(k+G)·RA

]
δ(r − RA)pm

− β

M∑
m=−M

[η − 1

a

(
e−i(k+G)·RA − e−i(k+G)·RB

)
+

γ

c
iωe−i(k+G)·RB

]
δ(r − RB)pm,

(C1)

where RA = − 1
4d1 and RB = 1

4d1 are the actuators locations
measured from the center of the unit cell. Multiplying Eq.
(C1) by ei(k+Ĝ)·r, where Ĝ = m̂b1, gives

ω2

c2

M∑
m=−M

e−i(G−Ĝ)·rpm =

M∑
m=−M

|k + G|2e−i(G−Ĝ)·rpm

− β

M∑
m=−M

ei(k+Ĝ)·r
(η − 1

a

[
e−i(k+G)·RB − e−i(k+G)·RA

]
− γ

c
iωe−i(k+G)·RA

)
δ(r − RA)pm

− β

M∑
m=−M

ei(k+Ĝ)·r
(η − 1

a

[
e−i(k+G)·RA − e−i(k+G)·RB

]
+

γ

c
iωe−i(k+G)·RB

)
δ(r − RB)pm.

(C2)

Due to the orthogonality of the Fourier series, we have∫
Ac

e−i(G−Ĝ)·rdAc =

{
Ac, G = Ĝ
0, G ̸= Ĝ

. (C3)

Also we have∫
Ac

f(r)δ(r − Rα)dAc = f(Rα), (C4)

where Ac = a is the unit cell length and the lattice constant.
Integrating Eq. (C2) over a unit cell, and solving for all m̂ in
the range −M, ...,M , then gives

ω2

c2
aINp = Wap

− β

M∑
m=−M

(η − 1

a
eik·(RA−RB)eiĜ·RAe−iG·RBpm

+

[
η − 1

a
+

γ

c
iω

]
e−i(G−Ĝ)·RApm

)
− β

M∑
m=−M

(η − 1

a
eik·(RB−RA)eiĜ·RBe−iG·RApm

+

[
η − 1

a
− γ

c
iω

]
e−i(G−Ĝ)·RBpm

)
,

(C5)

where N = 2M +1 is the total number of terms in the series,

W =

 |k + Ĝ1|2
· · ·

|k + ĜN |2

 , (C6)

p is the eigenvector of length N , G · RA = −π
2m, and

G · RB = π
2m. Using matrix formulation, we define∑M

m=−M eiĜ·Rĵe−iG·Rjpm = Eĵjp, where

Eĵj = e
i
[

G1 G2 · · · GN

]′
·Rĵ ·e−iRj ·

[
G1 G2 · · · GN

]
,

(C7)
and j and ĵ take the according values of A and B. Eq. (C5)
then takes the form of the polynomial eigenvalue problem(

q2ω
2 + q1ω + q0

)
p = 0, (C8)

where

q2 =
a

c2
IN ,

q1 = −β
γ

c
i
(
EÂA − EB̂B

)
,

q0 = −aW + β
η − 1

a

(
eik·(RA−RB)EÂB + EÂA

+ eik·(RB−RA)EB̂A − EB̂B

)
.

(C9)

We then rewrite Eqs. (C8)-(C9) in a companion form to obtain
an augmented linear eigenvalue problem

ωPv = Qv, (C10)

where v is the augmented eigenvector of length 2N , and

P =

(
I 0
0 q2

)
, Q =

(
0 I

−q0 −q1

)
. (C11)

The solution of Eqs. (C10)-(C11) gives the black and orange
dispersion curves in Fig. 1(c)-(f).
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Appendix D: The controller structure

The VCCS employed in our experiment, photographed in
Fig. D1(a), were designed using an improved Howland cur-
rent pump circuit48. It integrates the high output of the oper-
ational amplifier ADA4870 with the fast response of the op-

erational amplifier ADA4898. The relation between the out-
put current io and the input voltage ui then becomes io =
R2

R1R6
ui +

R2R3−R1R4

R1R6(R3+R4)
uo, as illustrated in Fig. D1(b). Sub-

stituting the resistor values from Fig. D1(b) yields the output
current io = Gui, where G = 1 A/V. The circuit perfor-
mance was verified via Multisim simulations. The resulting
controller is photographed in Fig. D1(c).
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