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CAUSTICS IN GRAVITATIONAL THEORIES
by Damon John Ridgley Swatton

The gravitational collapse of a spherically symmetric, pressure-free dust is an inter-
esting problem in General Relativity for it can lead, under certain initial conditions,
to the situation where infinitesimally neighbouring shells approach and cross each
other. The curve generated by these points of crossing generate a particular case of a
caustic. In the situation where we have matter associated with each shell the density
becomes unbounded on the caustic and, in a General Relativistic framework, we have

a singularity.

The interest in these types of singularity is two-fold: they present a possible mecha-
nism for galaxy formation and they represent a counter example to both the strong
and weak versions of the cosmic censorship hypothesis. In fact, Yodzis and collabora-
tors prove that an event horizon is generated to the future of the initial singularity, so
that these types of singularity are naked. If, however, a solution to the field equations
describing a spacetime with a caustic represent points that are internal (rather than
being excluded as is generally the case for singularities), then this would stop these
solutions as being counter examples to the simplest form of the cosmic censorship
hypothesis. In addition, this would reinforce the idea that only strong singularities

are censored.

The characteristic feature of shell crossing singularities is that at some point the world
lines of shells coincide, meaning that the fluid flow vector becomes non-unique. If|
however, we lift the geodesics that our shells follow onto the tangent bundle, then the
vector tangent to these curves is unique. This indicates that we might be able to use
the methods of Rendall and collaborators as a way to obtain existence to a solution of
the field equations but, unfortunately, the unbounded nature of the density functions

which arises in our formulation precludes this. We are forced, instead, to take the
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direct approach and consider solving the equations that model several superimposed
dusts.

The critical factor in any existence proof is to determine the shape of the caustic
close to the point of cusp formation. In Newtonian theory or General Relativity this
becomes the question of whether or not gravity alters the shape that is predicted
by the simple cubic which is well known from catastrophe theory. We shall refer to
this as the zero gravity solution. In this thesis we present a rigorous investigation
of the limiting behaviour of both the Newtonian and General Relativistic pictures,
showing in both cases that it can be represented by a similarity solution. We also
relate the Newtonian to the Relativistic case. To further our understanding we also
investigate the dynamics of the situation by constructing a computer model based
on the Relativistic formulation. This numerical solution corroborates the results

previously obtained.

In the Newtonian analysis we show that the similarity solution (based on simple
scaling transformations) obtained in the limit as we approach the cusp describes
unbounded densities on the axis of symmetry. To correct this we suppose that the
Newtonian constant (G must also be scaled. We find that the solution now obtained
in the limit is one where G = 0 which describes the zero gravity case. Moreover,
if the initial conditions are described by a cubic, then we find that the asymptotic
shape of the caustic does not differ from that of the generic caustic. We check for
any other, more general transformation group that leaves the Newtonian differential
equations invariant whilst reducing to the gravity free equations in this asymptotic
limit. The conclusion is that, subject to an arbitrary Galilean transformation, the

scaling transformations are the only transformations that fit this description.

A similar analysis is performed with the General Relativistic equations. In this case,
to enable asymptotic solutions to exist, we find that ¢ must also be scaled. The result
is that the geodesic and conservation of matter equations reduce again to the gravity
free case. Thus even in the General Relativistic formulation of caustic formation we

have gravity playing no part.

In the latter parts of this thesis, work is presented that goes some way towards an

existence proof for the Newtonian problem. We formulate the differential equations
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using a Lagrangian coordinate system and then discuss the set-up of a contraction
mapping proof of existence of the solution to these equations. In the set-up of the
existence proof, we prove that the solution must be C%2. We assume that any solution
corresponding to G # 0 cannot deviate from the zero gravity solution by more than a
certain parameter which we are able to chose. By considering a small neighbourhood
containing the cusp, we write the solution as a double iterated integral in time away
from ¢ = 0. We find that the integrand is not integrable through the cocaustic
thus excluding any proof of existence of an initial value problem using a contraction
mapping type of argument. It did, however, prove possible to show existence for
a family of solutions parameterised by two arbitrary functions based on using the

Arzela-Ascoli theorem. This approach which has been published in collaboration
with C.J.S. Clarke.
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CHAPTER 1. THESIS OVERVIEW.

§1.1. Introduction.

The gravitational collapse of a spherically symmetric dust (pressure-free perfect
fluid) is an interesting problem in any gravitational theory for it leads to the formation
of two types of singularity known as shell focusing and shell crossing singularities.
Shell focusing singularities occur when the dust geodesics focus to a point and are
essential in the sense that these singularities cannot be eliminated via an extension of
the metric. Shell crossing singularities or caustics on the other hand, are non-central

and are formed by the piling up of dust trajectories at some finite radius.

The unbounded behaviour of the density in the second example is of particular
interest in both cosmology and General Relativity since it provides a model for galaxy
formation and points to the existence of naked singularities respectively. Yodzis et
al. [YMS] describe what happens in the region external to the caustic but conclude
that no analytical continuation can be made through the singularity. The reason for
this is that the solution exhibits unphysical behaviour in the sense that pressures
become negative, forcing us to consider the proper caustic described by multi-dust
spacetimes, [CO] and [C] (ref. §1.3 and chapter 4). Now, although Clarke and
O’Donnel have succeeded in showing that an extension through the singularity can
be made self consistent, as yet no exact solution exists in either the Relativistic or the
simpler, Newtonian case. This thesis presents a rigorous analysis of the equations that
describe caustic formation in both theories with the aim being to try to understand the
essential physics of caustic formation. We finish by presenting in the final two chapters
the beginnings of an existence proof for the Newtonian case. This is completed in a

joint paper, [SC].

§1.2. Caustics, cocaustics and tangent bundle surfaces.

As mentioned, caustics represent those regions of unbounded density caused by
the crossing of shells. Fig. 1 illustrates what this means. The plane of the paper
represents a single spacial coordinate along the horizontal axis and time along the

vertical and therefore it can illustrate the General Relativistic description of either a
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two dimensional spacetime or a four dimensional spacetime with symmetry conditions,
or the Newtonian description of one dimensional motion parameterised by time. The
lines represent the trajectories of particles and at points where adjacent lines cross,
the density becomes unbounded and a singularity forms. By way of notation, we shall
call these types of singularities caustics and the point at which the left and the right

caustics meet, we shall call the cusp.

Fig. 1. Newtonian caustic.

For realistic reasons, we shall only concern ourselves with higher dimensional
spacetimes simplified by assuming certain symmetry conditions: spherical symmetry
for General Relativity and planar symmetry for Newtonian theory. To take the first
case and relate this to fig. 1 as an example, we impose two dimensional motion in a
four dimensional spacetime by assuming that there is no 8 or ¢ dependence in any of
our dust variables, v, representing the fluid’s flow vector and p, its density, and that
v has only radial and temporal components. With this picture of ‘two dimensional
gravity’ in mind, we realise that the converging lines in fig. 1 represent geodesics
followed by shells rather than particles. In addition, since each trajectory is straight,
we conclude that the spacetime is Euclidean and that in actual fact, the diagram

represents the motion of massless particles.

The fact that Fig. 1 illustrates caustics being formed by particles of zero mass
does not preclude it from our discussion. In fact, since exact solutions exist for this

situation (catastrophe theory, [A]), a lot of the work we shall present concerning
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gravity will at least involve the same initial conditions but also, in general, will be
based on the assumption that any solution for the gravitational case can be thought of
as a perturbation on the solution obtained for G (the gravitational constant) equal to
zero. This is important to realise for it becomes an underlying assumption throughout
most of this work. Indeed for the final two chapters where we present ideas towards
an existence proof, this underlying theme is brought out and made a fundamental
assumption upon which the whole theorem will hinge. In other words, we will look
for the existence of a solution to the differential equations describing caustic formation

that are near to that generated when G = 0.

In the following chapter we spend time introducing a mathematical description
that encompasses caustic formation within the two formulations of gravity as well as
any Euclidean spacetime. Without going into much detail, we construct manifolds, M
and N, and a map, f: N — TM, such that 7o f(N) = M where 7 is the projection
of TM onto M. We suppose that (f,z) and (t,v) represent local coordinates to M
and N respectively, and relate the z and v by 7o f(t,v) = (¢,z(t,v)). So far the
t’s, ’s and v’s have no meaning, however, as soon as we place a dust in M, we can
begin to interpret these quantities. For M, t and z adopt the labels time and position
respectively and if z;(t) represents a geodesic in M then for N, v(t, z) is defined by
v = vi(t) = dz;/dt(t) whenever z = z;(t), and represents the velocity.

The problem we have is that if we allow particle trajectories in M to cross, then we
must be prepared to accept the fact that v(¢,z) must be multi-valued (corresponding
to different geodesics, 1, 2 etc. being coincident at (¢, z)). It is this behaviour of v
that one way or another, encompasses all of the technical problems that are associated

with trying to understand caustic formation.

To continue, f(N) represents an embedded surface in the tangent bundle associ-
ated with M. We shall construct this surface in such a way so that f(N) is ruled by
curves that project down onto geodesics in M. Now, the multi-valued nature of v(t, z)
and the continuity of the geodesics in M imply that f(NN) looks like a sheet of paper
that has been folded twice to make an ‘S’ shape. The projection of this surface onto
M acts in such a way so as to squash these folds into creases, which correspond to
the caustic set in M. In terms of our mathematical construction, we have the caustic
set corresponding to the image, 7 o f(¢,vc), of those points, (t,v;) € N, where 7 o f

becomes singular. We will show, in terms of our local coordinates for M and N, that
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this condition translates into the following statement: the caustic in M corresponds
to z(t,vc) where vc(t) is the solution to dz/dv(t,v) = 0. We shall call v = v(t) the
equation of the caustic in TM and its image under 7, namely ¢ = z(t,vc(t)), the

equation of the caustic in M.

To complete this section we introduce the idea of another curve in f(N), which
we call the cocaustic. Again, since v(t, ) is multi-valued, it is clear that there will
exist points, (¢, vee, (¢, vec)) in f(IV), such that vee # ve but with z(t, vec) = z(t, ve).
In other words, given v(t) we define v to be the solution of z(t,v) = z(¢, vc(t)) and
call v = wvec(t) the equation of the cocaustic. It follows from its definition that the
images of the caustic and cocaustic coincide in M and so it is unnecessary to define

a cocaustic in M and redundant if we specify the cocaustic to be a curve in T'M.

Finally, since the above definitions of the caustic and cocaustic are possibly a
little abstract, we illustrate their significance in terms of particles moving on M. We
recall that f(V) can be constructed by lifting geodesics on M into the tangent bundle.
It follows, therefore, that as particles move along trajectories in M a corresponding
point moves along a curve in f(N), which must at some stage cross the caustic and
cocaustic. Now refer to fig. 1. As we follow a particular trajectory from the initial
time slice, through the external region and into the region to the future of the caustic
set, we can say that the lift of this geodesic crosses the cocaustic when the particle
on M first crosses the caustic set, and crosses the caustic in TM when the particle
‘touches’ the caustic in M for the second time. Note that it is only when this particle
‘touches’ the caustic for the second time does it cross neighbouring geodesics, and
so only at these points does the density associated with this particular trajectory

become unbounded.

§1.3. Multi-dust regions.

The other thing that we wish to mention before we launch into a description of
each chapter is the concept of a multi-dust spacetime. In order to at least attempt to
obtain an exact solution for the region in M to the future of the caustic, we have to
work with a unique fluid flow vector and for reasons that we have already stated, this
is certainly not the case. To solve this problem we are forced to introduce the added

complication of a multi-dust region [CO] where we expect shells to cross. In M, this
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corresponds to a region, bounded by the caustic, where we have several superimposed
dusts, each with a unique flow vector whose z-component is given by v;(¢,z). This
system can be seen to represent a special case of the Einstein-Vlasov equations for a
collisionless gas, however, the singular nature of the problem precludes the use of the

existence results obtained by Rendall [R].

The equations that illustrate what we mean by this are, for the Newtonian case,

OF k
N, 41.1
8.‘1,' 1=Zl ph [ ]

dv;  Ov;
v,'—c,;; + ?3—[ =F [412]

and
Opi | Ovi  Opi _

e T Oc + ot 0 [4.13]

With k& = 1, equations [4.1.2] and [4.1.3] represent the standard conservation equa-
tions for a single dust whereas equation [4.1.1] expresses the Newtonian law of gravity.
For k > 1 we notice two things, firstly that only variables describing the ¢th dust ap-
pear in the corresponding conservation equations, and secondly, that from the force
equation, the gravitational field is dependent on the total density at a point and is
constructed by the sum of the three p;. This illustrates what we mean by super-
imposed dusts, i.e. we model our fluids in such a way so that they are essentially

invisible to each other except via their gravitational interaction.

In TM the situation is somewhat different. Because of the now distinct wv;,
f(N) can be considered as the union of three parts corresponding to those points,
(t,vi, z(t,vi)), satisfying, vi < —ve, —ve < v2 < ve and v, < v3. Thus in TM, the
multi-dust region corresponds to the union of three disjoint surfaces characterised
by those points satisfying, —vee < v1 < —v¢, —0e < V2 < v and ve < V3 < Vee. In
addition to this, we often find that working in the tangent bundle makes the situation
that we are trying to understand a lot clearer. We can express this if we reformulate
the above equations in terms of {v coordinates. Equations [4.1.2] and [4.1.3] simply
transform into their tv space equivalents and we shall not restate them. The force

equation, however, becomes

OF - 9 . oz \ ™
a_vi — (_1)1+10_i + b_g: Z(_l).H-l (0-]. (51;> o (;S]) , [453]
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with arguments, (¢,v;). The function, ¢;, defined by

¢i(t,vi) = {(t,v5) | vj # vi, z(t,vi) = z(t,v5)},

illustrates what we have been trying to say all along: namely that in order for us to
determine the force at any point, (¢,v;) we have to be aware of contributions from
(t,v;) (z # j) that correspond to points elsewhere on f(N). Understanding v;(t,v;)
summarises all the problems associated with caustic formation in any gravitational

theory

§1.4. Thesis overview.

This thesis is structured in three parts. The first considers the problem of under-
standing caustics within the Newtonian framework. This constitutes chapters 2-5.
The next part (chapters 6 and 7) considers the application of the techniques developed
so far to the General Relativistic case. Finally, chapters 8 and 9 present the ground

work for an existence proof for the solutions to the Newtonian differential equations.

Chapter 2 formulates the idea of caustic formation in terms of surfaces in the
tangent bundle. The argument is of a general nature for it describes the generation of
caustics as the projection of this surface onto M in terms of arbitrary m-dimensional
manifolds. Gravity is not a requirement, however, we specify how both the Newtonian

and General Relativistic pictures sit within this formulation.

Chapter 3 applies the above ideas to the case where caustics are formed in Eu-
clidean spacetimes. This chapter forms an important part in constructing the foun-
dations upon which we build ideas that are used to discuss the more general picture.
It first of all describes the conditions that the flow vector must satisfy in order for the
cusp of a caustic to be formed. It then proceeds to discover the solution, z = ¢(t,v),
that can be obtained for the case when G = 0. This process is equivalent to defining
the surface, Sy, in the tangent bundle. Then, by actually projecting Sy onto M, we
proceed to determine the shape of the caustic set. It also introduces the reader to

the idea of the cocaustic.

Chapter 4 tries to understand the Newtonian formulation of caustics on a space-

time with local coordinates (t,z). That is to say, we investigate the solution of the
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equations that describe 1-D Newtonian gravity within the context of a multi-dust
spacetime exhibiting planar symmetry ([4.1.1]-[4.1.3]). The procedure that we adopt
is to look for similarity solutions for the general case and then check our results by
setting G' = 0 and solving for the gravity free scenario. We then repeat this procedure

for the Newtonian equations written in terms of (¢,v) coordinates.

Chapter 5 takes this analysis further. One of the problems we obtained from using
simple similarity solutions is that unbounded densities are predicted on the axis of
symmetry. This is clearly unrealistic and to try to solve this, we consider asymptotic
solutions of the tz space equations. These type of solutions are based on a ‘stretching’

or scaling transformation of the form,
9(est, z, Fyvi, pi) = (e¥t, "z, e F ebvvy, e py).

The idea is to consider a new coordinate system, (Z,%) say, whose length and time
scales increase, as ¢ — 00, relative to that of the original and fixed coordinate
system, (t,z). During this magnification process, the dependant variables are also
scaled by an amount determined by the similarity degrees which were obtained in the
previous chapter. The result of this analysis is that a fixed region in our £ coordinate
system which contains the cusp, increases in size exponentially so that points relative
to the original coordinate system approach the cusp asymptotically. Moreover, the
differential equations based on this coordinate system are transformed so that only
those terms that are significant during cusp formation remain. We find that in order
for us to obtain asymptotic solutions that are bounded on the symmetry axis, the
Newtonian constant must also be scaled and we do so in such a way so as to ensure
that G asymptotically approaces zero. The implication of this is profound for, as our
differential equations transform, we can answer the question, ‘does gravity play a role

in cusp formation?’

Chapter 6 changes tack for we now begin to consider the General Relativistic
formulation of caustics. We start by defining the concept of a multi-dust spacetime
within this theory. This follows ideas presented by Clarke and O’Donnel [CO] and
essentially replaces each Newtonian equation by its Relativistic analogue. In other

words we solve,

.- . k .. k - .
GV = —kT" = -k ) TV = —& > “(P)vzp)va)’ [6.1.1]
p=1 r=1
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VsVl = 0 [6.1.2]
and
T )5 = 0. [6.1.3]

We consider these equations within Synge’s formulation of spherically symmetric
spacetimes [S] and look for a numerical solution. This involves time evolving a finite
set of points that are initially spaced at regular intervals throughout the spacetime
using the Euler numerical scheme. These points should be considered as reference
points within our dust that move along geodesics. The key problem with this approach
concerns the definition of the density function. It turns out that the conservation of
matter equation ([6.1.3]) allows us to define ;) in terms of conserved masses that
can be associated with each reference point. The numerical intricacies are primar-
ily concerned with tracking each geodesic and ensuring that these conserved masses

are treated correctly, particularly when trajectories cross. These problems will be

described.

Chapter 7 continues our discussion on General Relativistic caustics by looking
at firstly the Newtonian limit and secondly at the asymptotic limit of [6.1.1]-[6.1.3].
There are three reasons for doing this work. The first is to check that the Newtonian
limit corresponds to a Newtonian formulation using ¢r coordinates so as to ensure that
the two models are consistent. The second reason concerns the asymptotic analysis;
we hope to determine, within the context of General Relativity, whether or not gravity
plays a role in cusp formation. Again we seek correlation between this and the result
obtained in the Newtonian case. The other and final reason is that we expect the
processes, take the Newtonian limit and take the asymptotic limit, to commute. The
results concerning this particular aspect are surprising for we obtain an unexpected
link between the planar symmeric Newtonian problem and the spherically symmetric

Relativistic case.

Chapter 8 returns to the Newtonian discussion of caustic formation and begins the
construction of an existence proof. We first of all reformulate the Newtonian equations
in terms of a comoving or Lagrangian coordinate system, (¢, X). The reason for doing
this 1s because a remarkable simplicfication takes place: the equations describing the
motion of our dust particles get completely decoupled from those that determine how
the density functions change with time and a solution for the latter readily presents

itself. The next stage is to formulate the solution for z(¢, X) in terms of an integral
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equation, which we write as z(¢, X) = J[z](¢, X). The idea behind the existence proof
is to then show that J is a contraction mapping on some suitable space of functions.

We then appeal to the fixed point theorems of such maps to conclude uniqueness.

To proceed with this proof we need to complete the specification of J. In other
words we need to define the metric space upon which it acts. This consists of two
parts. The first concentrates on determining the exact differentiability of z, the second
part involves defining the class of functions in which we look to prove existence. This
is where the underlying theme of the general solution being approximately equal to
x = ¢(t, X) is brought out and made the main assumption. In fact, it becomes the
main driver behind the specification of the particular metric space that we aim to

use.

The final chapter takes these ideas further. The final stage in our contraction map-
ping proof involves showing that J, our candidate, is in fact a contraction. To do this
we need to estimate the size of J[f] with respect to the norm that we have previously
defined. The only difficulty arises from the second X-derivative and so we concentrate
on this aspect of the work. The problem manifests itself as the occurrence of terms
that look like [f'(t,Y (¢, X))} within the integrand of §?z/0X? = 8%/0X?%J[z].
Since these become unbounded as Y (¢, X) tends towards the caustic, estimating these
quantities then becomes the last stumbling block for our theorem. In this chapter,

therefore, we perform this calculation considering all X within the multi-dust region.



CHAPTER 2. CAUSTICS IN GRAVITATIONAL THEORIES.

§2.1. Introduction.

To facilitate the understanding of caustics and how they are generated it is use-
ful to lift the discussion from the spacetime, M, to its tangent bundle. The main
reason for this is that the congruence of geodesics that are particular to the type
of caustic being formed, generates a surface, S C TM. This surface gives a clearer

understanding of how the dust particles self-interact when gravitational effects are

considered.

Fig. 2. Illustration of the surface, Sq € T M, generated by geodesics satisfying

z = ¢(t,v). The + represents the axis of symmetry of the caustic.

dust 3

dust 2

dust 1

The means by which this surface provides this picture can be illustrated by first
of all considering the simple example of converging dust particles in zero gravity. Fig.
1 shows the formation of a caustic under these conditions. It represents a spacetime
of only two dimensions; position z and time ¢. It can also be used to represent a
spacetime of four dimensions. In this example the y and z directions are suppressed by
the assumption that all motion occurs in the z direction and that there is no variation
with respect to y or z (planar symmetry). In either case, the spacetime is Euclidean
so that all geodesics are straight lines with an associated velocity, v = dz/dt. Now,

at any point on this diagram there is either one or three geodesics passing through
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implying a relationship between z, v and ¢t. For the simple caustic (ref. chap. 3),
which has slightly different initial conditions to that illustrated in fig. 1 but is still
a zero gravity solution, we obtain z = ¢(t,v): = vt — v3. This equation is defining a
surface in the tangent bundle and in order to distinguish this from the general S, we
shall denote this by S,.

Fig. 2 shows this surface, S;, for some fixed ¢ > 0. It illustrates how z varies with
velocity on this time slice. Now as is the case for ordinary differential equations, the
shape of the caustic must be dependent on the initial conditions. For any zero gravity
solution, however, no matter what its initial conditions are, provided a small enough
region enclosing the point of caustic formation is considered, a section through its
tangent bundle surface will always look like that illustrated by fig. 2 (ref. §3.2).
This last statement can be carried over into the case where gravitational effects are
included. In fact, for the general case it becomes of fundamental importance as it gives

a handle by which an existence theorem for Newtonian caustics can be constructed.

Suppose now a different spacetime is considered with converging dust particles
which are allowed to interact via the gravitational force. The effect that this may have
on the surface can be thought of in either of two ways. Firstly, that starting from
the same initial conditions as those for the simple caustic, the gravitational forces
generate a surface that can be thought of as a perturbed form of S;. Obviously the
perturbation becomes greater as t increases so this picture is only valid for early times.
Alternatively, that with different initial conditions, a section through the surface is
identical to a section through Sy at that time. In either case S; can be thought of as

a representation of S at t.

The surface for the general case can now be visualised showing how S clarifies
the way in which gravity acts. Consider a point, (¢,z), in a spacetime that contains
a caustic set. Then knowing S, the velocities, v; (¢ = 1,2,3), which represent the
trajectories of all particles that are coincident at that point, can be determined. For
gravitational theories where a degree of symmetry is involved such as spherically
symmetric or planar spacetimes, we can think of the region in M containing dust
particles to be composed of a series of shells that move along geodesics. In addition
to this we can show that the acceleration of any shell is governed by the integrated
mass between the origin and its position at that time. This is where the surface

in TM becomes of use for we can now see that the integrated mass between (¢, z)
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and the symmetry axis is also a function of the velocities v;. If the velocity at some
arbitrary time can be used to parameterise the geodesics in M, then this acceleration
is determined by three disjoint regions in T M centred on the trajectories labelled
by v;. It is this concept of different, isolated regions influencing the motion of each

particle that determines the complexity of the gravitational interaction.

§2.2. The E-formulation of the tangent bundle surface, S.

To understand further the importance of S, how it is generated and how it relates
to caustic formation within a spacetime, we suppose the existence of a manifold, N,
of dimension m = dim(M) and a map, f, such that f: N — TM with f(N) = S.
This simple statement gives the overall picture for the general case where a surface
is embedded in 7M. However, if N and f are constructed in a particular way then a

structure to S is given that makes caustic formation a lot clearer.

In order to make this construction, let us suppose that a nowhere zero vector
field, Z, on TM and a smoothly embedded surface, ¥, in TM of dimension m — 1
and transverse to Z, i.e. Z ¢ T(’;’ XP)E’ is given. Then the family of integral curves
of Z, C;:IR — TM, such that C,;(0) = z € X, defines an immersion, f:IR x ¥ D
N 3 (t,z) — C,(t) € TM, the image of which we call S. A consequence of this
particular construction is that the union of all integral curves that pass through ¥,
ie. Useo{C.(t) | t € R}, is equal to S. This is the picture that we are trying to
emphasise and we shall describe this by saying that the surface is ruled by the curves
C;. In a moment we shall discuss particular cases of this construction whereby making
refinements to the definition of Z, each C, projects onto a curve in the spacetime which
has specific properties. In the meantime, however, we shall complete the definition
of f by stating that the converse to the above also holds. That is to say, given Z,
a surface, S, of dimension m everywhere tangent to Z and an m — 1 dimensional

subsurface, ¥, transverse to Z, then the integral curves as defined above remain in S.

The general situation specialises to the particular case we wish to consider where
dust particles are allowed to move along geodesics in M. This specialisation can be
summarised in two steps. The first is the case where for (p, X,) € f(N) C TM,
(7+Z)x(p,x,) = Xp and the integral curves of Z project down onto curves in M that

are solutions to 2nd order differential equations. The second specialises further to
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when these integral cures project onto geodesics in M. This refinement requires,
in addition to the above, that the vertical part of Z in natural coordinates is a

homogeneous polynomial of degree 2.

To explain these comments, let us take an arbitrary vector field evaluated at
a point p € M, ie. X, say. Now p and X, define a point (p,X,) € TM which
we can suppose lies on a curve. We let this curve be C, as defined above so that
C.(t) = (p,Xp) and Z = C,,d/dt has components, (dC}/dt(t)...dC2™/dt(t)). Now
let us consider the restriction on Z that forms the first specialisation mentioned above,
namely (74 Z)r(p, x,) = Xp. Since local coordinates to M and T M can be (z1,...,2™)
and (z',...,z™,yl,.. .,y™) respectively, this means that the components of both
sides of this equation can be equated to give

- 0 0 E

3 Zip, Xp) PP (zFom)+ > 27 ™(p, X,) 5 (zF o) = X*(p)
=1 (p.Xp) J=1 y (p,Xp)

where k = 1,...,m. This simplifies to

$ 9% 0yt = x¥CH0), .. 070
k
= djtz (t) = X¥(CL(t),...,CI(2)).

The above equation tells us that there exists a one-to-one relationship between the
first . components of Z(p,X,) and those of X,. Moreover, we have, by the definition of
C,, CI*t™(t) = XI(CL1),...,C(t)) (j = 1,...,m) and thus CJt™ = dC}/dt, mean-
ing that (p, Xp) has local coordinates, (C1(¢),...,C(¢),dCL/dt(t),...,dCT[di(t)),
and that the vertical part of Z, x ) (i.e. the components Z3tm(p, X,)) is given by
(d2CY/dt*(t),...,d*C™/dt*(t)). These components are unrestricted and we could
choose many different vector fields that satisfy the above conditions. To express this
we introduce arbitrary functions, f7(t), so that one choice for Z might be such that
d?C1/dt(t) = fI(t). Tt follows therefore, that since 7(C;(t)) has local coordinates
(CL(t),...,C™(t)), we have C, projecting onto a curve in M, which is a solution to

a 2nd order differential equation.

This argument can be continued to include the second step where the projected

curves are geodesics. In this case the requirement that the vertical part of Z in
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natural coordinates is a homogeneous polynomial of degree 2 means that f7(t) =
—I},dCE /dt(t)dC} /dt(t). The coefficients, I‘il, are as yet unfietermined functions of
t. Within this definition it follows that d2C%/dt?(t) = —T'%,(t)dCk/dt(t)dCl/d¢(t),

which is precisely the geodesic equation.

§2.3. Caustic formation in gravitational theories.

Given the above construction for the surface in the tangent bundle, it is now
possible to see how caustics in M are generated by the knowledge of f (or more
precisely, the knowledge of C,). Since f is essentially taking N, folding it twice
and embedding the result in T'M, it follows that when projecting this surface onto
the spacetime we obtain points in N where the map describing this process (7 o f)
becomes singular!. It is the image of these points that form the caustic set. The
reason as to why this occurs can be clearly seen if we again use the zero gravity
situation as an example. In this case we are basically taking a folded two dimensional
surface and mapping this from a three to a two dimensional manifold (we shall see
in the next chapter that all points on S have local coordinates (t,z,1,v)). The
corresponding reduction in dimension means that the folds get pressed into creases,
implying a reduction in the degree of differentiability of (7o f)~! and hence that o f

is singular.

1 In this context a function is singular if there exists a point where at least one of

its derivatives is non-invertible.
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CHAPTER 3. CAUSTICS IN EUCLIDEAN SPACETIMES.

§3.1. Introduction.

In the previous chapter the surface in the tangent bundle was constructed for the
most general case and it was shown how this specialises to when the curves which rule
S project onto geodesics in M. These ideas are also applicable to spacetimes where

the geometry is Euclidean corresponding to zero gravitational force.

To put this within the context of the previous chapter’s definition of S, we need
to stipulate a further refinement on Z. This requirement is, quite simply, that Z
must satisty (7+2)z; x,) = Xp and Z9™(p,X;) =0 (i = 1,...,m). If C, rep-
resents some integral curve of Z as defined in the previous chapter, then the first
constraint implies that points along this curve have local coordinates which look like
(CL®),...,CM™(t),dCL/dt(t),...,dC™/dt(t)). The second states that d>C?/dt%(t) =
0. Since 7oC, is a curve in M with local coordinates, (C1(t),...,C*(t)), this is equiv-
alent to saying that the connection on M is flat or that the geodesics are straight

lines, implying a Euclidean geometry.

In order for these straight lines to produce caustics the initial conditions need to
be determined. Of course this amounts to defining the surface in T M. Now there are
an infinite number of different caustic types that can be generated depending on how
we define the initial conditions. An example that is of particular importance, because
of its relevance in the discussion of Newtonian caustics encountered later on, is that
where the surface, S; C T M, defined by « = ¢(t,v) generates caustics on a manifold
that has planar symmetry with respect to the plane described by z = 0. For this
reason, we will concentrate this chapter on discussing .S¢ in some detail and finish by

using it as an example to show how, in general, the surface in T'M generates caustics

m M.

To begin this discussion S; must be derived and the next two sections will be
dedicated to doing this. The aim here will be to provide an indication that this
simple surface generates caustics rather than a formal proof. In the first section we
will start with the flow and obtain the surface. That is to say, an approximation to

Sg will be obtained based on certain assumptions regarding the geodesic congruence
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in M. The second section will start with the surface and obtain the flow. This means
that given Sy, we can prescribe a vector field, Z, on T M which is everywhere tangent
to this surface so that a subset of its integral curves lie in Sg. It will then be shown
how Z can be related to straight lines in M using the ideas discussed in the early

parts of this introduction.

In the final section of this chapter we will demonstrate how caustics in M are
generated by the knowledge of f. This will be illustrated by using the caustics
produced by S, as an example. Since in this case both ¥ (which we shall identify
with IR via the v coordinate) and the immersion, f;:IR x ¥ C N — T'M, can be
defined, the function 7 o f; is known. Hence it becomes a relatively simple matter
to determine the set N. C N and its image, 7 o f;(N¢), such that 7 o f; is singular.
In terms of local coordinates this process is defining two relationships; one between
t and v known as the equation of the caustic in M, and the other between t and z
which we call the equation of the caustic in M. By way of providing the reader with
an indication as to the shape of these curves for the general case, and also because we
shall refer to this in the latter part of this thesis, we shall perform these calculations

and determine the aforementioned equations.

Within the tangent bundle, the caustic set becomes of greater significance for it
defines a set of points N, C N such that N, N N, = § known as the cocaustic. By
definition, each point n¢. in this new set corresponds to a single point n, € N, via
the relation 7 o f(ne.) = 7 o f(ne). Thus, working locally in T'M it is possible to
obtain a different relation between ¢ and v for the case when geodesics in M generate
Sg- We shall call this relation the equation of the cocaustic. Since this plays a role
in the latter part of this thesis where an existence proof for the Newtonian equations

of motion is considered, this will also be done.

§3.2. Starting with the flow and getting the surface.

In this section an approximation to the equation defining S; based on certain
assumptions regarding the geodesic flow will be given. These assumptions allow us to
determine which straight lines produce caustics in a Euclidean spacetime. It will be
supposed, in the first instance, that geodesics in M are parameterized by time. Hence,

the relationship that determines which points lie on a particular line is quite simply
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z = vt + zo. On any time slice the position of points which lie on these lines varies
as a function of v. Thus instead we can consider = vt + zo(v) which corresponds
to a continuum of curves rather than a single one characterised by v and xo. At this
stage xo(v) can be an arbitrary function, however, if zo(v) is smooth then a surface is
generated in T'M according to the previous equation. It follows that the problem of
finding an equation which defines S; becomes one of finding which initial conditions
generate caustics in M. The next restriction imposed on the geodesic congruence

allows this to be done.

We suppose that there exists a point p € M such that the velocity field satisfies
[0z # 0, 0%v/dz? = 0 and 33v/0x® # 0. These constraints are the criteria for
cusp formation and are applicable in the general case where gravitational effects are
considered. To understand what these equations are saying let us consider, as an
example, fig. 1 which is an illustration of caustic formation in the zero gravity case.
Now the most obvious thing is that in a region surrounding the cusp all trajectories
have either crossed or are travelling towards the axis of symmetry. The rate of
this convergence is determined by the velocity of each particle. However, a single
particle cannot produce caustics on its own meaning that it is not the velocity that
determines caustic formation. Instead, we need to consider how v varies with respect
to neighbouring trajectories. Specifically, we are interested in how this rate of change
of convergence varies as we hop from one line to its neighbour on some chosen time

slice.

The rate of change of v with respect to x represents this important quantity and
having identified this as such, it is now possible to discuss certain attributes we must
assign it for caustic formation to occur. Let us consider the time slice that intersects
the caustic at its cusp and denote this point of intersection to be p. We can see from
fig. 1 that neighbouring geodesics at the cusp must converge. If this is not the case
then a cusp will not be formed and the caustic set will constitute two intersecting
curves in M which are symmetric about the time axis. This implies that dv/dz # 0
at p. Secondly, dv/0z must increase as z increases or decreases away from the spatial
origin if it is required that three adjacent trajectories are to cross near a common

point. This implies that 6v/8z must have a minimum at p and so §%v/dz% = 0.

These are the two conditions required for a caustic to be formed and as has been

explained there is a clear physical meaning to each of the above statements. There is
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a third condition that the velocity field must satisfy and that is 83v/dz3 # 0. This
ensures that any perturbation on v(z) also satisfies the above conditions allowing for
the fact that the position of p may change slightly. To explain, suppose the converse
is true and that v(z) satisfies the first two of the conditions with 83v/dz3 = 0. This
implies a turning point with respect to z in dv/dz at p. If v’ is a perturbation on
v then even though dv'/dz # 0 and 9%v'/0z? = 0 at p' close to p, it is possible that
d3v' /0 is non-zero at p'. This means that dv'/dz has a maximum or minimum at p’
rather than a turning point and the graphs of these two functions, v and v, will then
be very different. Mathematically speaking, the non-vanishing of the third derivative
is necessary for all functions, v’ say, sufficiently close to v in any C? topology to

satisfy the above conditions on its first and second derivatives if they hold for v itself.

To begin the derivation of S, let us consider the point p such that dv/dz # 0,
0%*v/0z® = 0 and 03v/8z® # 0. Now by a simple change of coordinates this point
can be made to occur at = ¢t = 0. In addition, a Galilean transformation allows
us to consider a co-ordinate system that is stationary with respect to the cusp. This
means that at the origin, v = 0. Now let us consider the time slice ¢ = 0. Clearly
the velocity of those particles on this time slice varies as a function of z¢ and so close
to the cusp, v(zo) = azo + Az + O(z3). The inverse function can also be written
as a Taylor approximation and this is given by zo(v) = a + bv + cv? + dv3 + O(v?).

Combining these two relationships gives,

(aa + Ba®) + (b + 38a%b — v + (ac+ 3Ba%c + 3ﬁabz)v2
+ (ad + 38a%d + 6Babc + Bb*)v® + O(v?t) = 0.

and since this is true for all v, we can suppose that the coefficients of v vanish. Taking
the first term, aa + Ba® = 0 implies that @ = 0 or a = y/—a/B. The condition that
v is zero at the origin means that the second solution must be discarded. Thus with

a = 0 the above equation becomes
(ab — 1)v + acv® + (ad + Ab*)v® + O(v*) = 0,

which implies that b = 1/a, ¢ = 0 and d = —8/a*. The initial conditions are then
zo = v/a+ fvd/at + O(v?) so that z = vt — v/a — Bv3/a* + O(v?). Finally we
may change coordinates in order to simplify this equation. If ¢ — B/a*t — 1/a
and £ — B/a*z then dropping all terms of order higher than 3 finally results in

z = vt — v3.
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§3.3. Starting with the surface and obtaining the flow.

In this section one will show that S is ruled by curves which produce Newtonian
geodesics in the spacetime under the projection map, n. The argument to be adopted
is quite concise for it uses ideas that were discussed in the introduction concerning
the X-formulation of S. Firstly S; will be defined in terms of local coordinates. Then,
a vector field, Z, will be prescribed on TM and we will show that Z is everywhere
tangent to this surface. This simple calculation demonstrates that a subset of its many
integral curves rule S;. The next part will show that for some point (p, Xp) € Sq,
Z satisfies (m4Z)x(p,x,) = Xp. This result coupled with the fact that the vertical
components of Z are zero, implies that those curves through (p, X,) project onto

straight lines in M.

The previous section derived Sy given assumptions on the geodesic congruence
in M. With this result we can write Sy as the set of points in 7'M having local
coordinates (¢,vt — v®,1,v) for all ¢, € IR. The fact that all points in S, have
local coordinates of the form (¢, z,1,v) is a direct consequence of the assumption that
geodesics in M are parameterized by the time coordinate. We say that S, lies in a
reduction of the tangent bundle to T'M = {(p, X, )|p € M, X, € TpM, and X!(p) =
1}. To see this we suppose that C: IR — M is a curve with local coordinates (¢, z(t)).
Then for each t, C(t) defines a tangent vector,

d
Yo =Cu 5 t
TR

so that points (C(t), Y¢(y)) € T M have local coordinates (¢, z(t),1, dz/dt(t)) implying
that they also lie in T1 M.

An alternative formulation is to suppose that
Sg={(p, Xp) | (p, Xp) € T'M and 9(p, Xp) = 0}

where g: TM — IR is defined by ¢(¢,z,1,v) = z — ¢(¢,v). This is a far more useful
definition for it allows us to proceed quite easily with defining Z and proving that it

is tangent to S;. We do this by first of all noting that the one-form, dg(p, X;), is in
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the nullifier of the tangent space to the surface in TM: its components are exactly
those of Vg in normal coordinate geometry. Next we choose Z to be the vector field
0/0t + vd/0z. With dg and Z defined we perform the contraction dg(Z) and show

that this equals zero, viz.,

dg(Z) = Zg
= Oy(z — vt + v®) + v (z — vt + v°)
=—-v+v

= 0.

This calculation shows that Z € T, x,)S* and that therefore a subset of all its integral

curves rule this surface.

Let us now complete this section and show how Z is related to straight lines in M.
This will essentially explain in mathematical terms why Yg(y) and Zcq),v, ) have
the same components if C' is a straight line in M with coordinates (¢, vt + zo) say. We
shall prove that if (p, X,) € T'M then (7« Z) x(p,x,) = Xp so that with the fact that
the vertical part of Z is zero, we can conclude that integral curves of Z project onto
straight lines in M. The calculation goes as follows; if p and (p, X;) have coordinates

(t,z) and (t,z,1,v) respectively then locally,

+ v0g(t,z,1,v) —Q—

d
(e Z)x(p,xp) = Ot 7, 1,0) 52

P Y4
(9tp (9:cp
:Xp

as required.

§3.4. The caustics produced by S5;.

In this section we shall demonstrate how the surface in the tangent bundle gener-
ates caustics in M for the general case by considering S, as an example. Since in the
case of zero gravity those curves in T'M which project onto this kind of singularity
in M are known, both ¥ and f; can be determined. This means that the function
7 o fq can be written down explicitly allowing us to find its singular points in terms

of local coordinates to either M or N. The result is two equations, one in terms of
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local coordinates to N and the other in terms of local coordinates to M. Both of
these represent the equation of the caustic, and since these will be used extensively

throughout this thesis, we shall take the time to derive them.

In N, the set of singular points define a different set known as the cocaustic. This
was defined in the introduction and by way of an illustratio}l as to what this set looks
like in the case where gravitational effects are considered, this set will be determined
for S,;. Since 7 o f; is known and an equation for the caustic has been determined,
a relation between ¢ and v, local coordinates to N, representing the equation of the

cocaustic can be determined and this will also be done.

In order to begin we must first define 7 o f;. Now from results presented in the
previous section it follows that an arbitrary point z € £ C T'M has local coordinates
(0,—v%,1,v). Thus ¥ corresponds to the ¢t = 0 time slice through S;. This is a
one-dimensional surface in TM parameterized by v and so it follows that locally,
feIRxE D N> (t,v) — (t,vt —v3,1,v) € TM. This implies that 7o fy(¢,v) =
(t,vt — v3).

To find the singular points of 7 o f, we follow standard practice and construct its

Jacobian matrix. This is given by

1 v
0 t—30v% )"

Clearly this matrix has rank less than 2 whenever
t = 3’ [3.4.1]

(or more generally, dz/0v = 0), which implies that points in N with local coordinates
that satisfy this equation correspond to points where 7 o f; is singular. Furthermore,
since Sy is a two dimensional surface parameterized by ¢ and v, this relation tells us
which points on this surface project onto caustics in M. For this reason we shall call

this the equation of the caustic in T'M.

To find the points in M which lie on the caustic we can simply find the image under

7 o fg of those points in N which satisfy ¢ = 3v%. So, inserting v = £,/t/3 into the
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above expression for 7 o f; results in an equation relating ¢ and = by = = q(t, £4/t/3).

We find that
i\ 1/2 £\ 3/2
=#(3) *(3)
-+ (G7)
_ 5)‘3272‘t3/2’ [3.4.2]
which we shall call the equation of the caustic in M. *

Finally, to complete this section we shall determine the equation relating points
on the cocaustic in T'M. Again, working in N we see that 7o f; is not one-one. That
is to say there are points on N other than those that satisfy ¢ = 3v? which map onto
the caustic set in M. To find these points we need to solve m o fy(nee) = mo fo(nc) in
order to find n.. given that n. has local coordinates which satisfy the equation of the
caustic in 7M. This amounts to solving q(t, k;1(t)) = q(t,k;;}(t)) where t = k.(v)
and t = k..(v) are the equations of the caustic and cocaustic respectively. Inserting
our relation, k7 1(t) = %(¢/3)!/? into the left hand side of this equation we obtain a
cubic, vt —v3 F 2(t/3)3/2 = 0, where now, with an abuse of notation, v represents the
velocity of the geodesic that intersects the cocaustic at time ¢, i.e. v = k;}(t). We

can solve this equation using the following known algebraic recipe.

Suppose that z3 4 a12? 4 a2z + a3 = 0 and define Q = (3a2 — a?)/9, R =

(9araz — 27a3 — 2a3)/54, S = R++/Q3+ R? and T = R —1/Q3 + R?. Then the

solutions to this general cubic equation are:

1
x1:S+T—§al,

1 1 1.
9 = —E(S + T) — gal + —2'2\/§(S - T)

and

1 1 1.
3= —5(S+T) - 301 — 52\/§(S —T).

Applying this formula to our equation we obtain Q = —t/3, R = —z/2, § = F(t/3)/2
and T = F(¢/3)'/2 so that v; = F2(t/3)"/? and vy = v3 = +(¢/3)'/2 are the solutions

we are looking for. The relations containing vz and v3 can be identified as describing
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points that lie on the caustic. The fact that two solutions correspond to the caustic
is to be expected for the curve z = +2(¢/3)%/? must be tangent to S, at ¢ because
O0v/dz is unbounded for points on the caustic in 7M. The solution corresponding to
v1 therefore corresponds to points in N (or equivalently 7'M) which we know as the

cocaustic. Thus ¢ = 3/4v? and we shall call this the equation of the cocaustic in M.
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CHAPTER 4. NEWTONIAN CAUSTICS.

§4.1. Introduction.

In order to fully understand caustics within the framework of General Relativity, it
is helpful to consider the simpler case of converging dust particles in Newtonian theory.
The idea is that by considering caustic formation in the low velocity limit of General
Relativity we might be able to gain an insight into how the gravitational interaction
behaves in a more general system. To begin we must formulate the problem that we
wish to solve. We shall consider a spacetime that has planar symmetry with respect
to the plane z = 0, and place in it a dust which can move according to the acceleration
prescribed by Newton’s law. This means that particles within our four dimensional
spacetime move in groups known as shells. In general these shells can be thought of
as volumes with an infinitesimally small thickness and whose shape is determined by
the symmetry of our manifold, M. In the case we are considering and in the zero
gravity case described in the previous chapter, these shells are planes described by

z = z(t) and having thickness dz, moving towards or away from the plane z = 0.

Asin fig. 1, if we choose our initial conditions carefully, caustics are formed which
act as boundaries between two regions. Clearly, to the past of the caustic set there
is a region where all geodesics are non-intersecting. This means that the velocity
field as a function of ¢t and « is well defined and we can therefore model this region
in terms of a single dust. The region to the future of the caustic, however, is far
more complicated because particle trajectories are now allowed to cross. If we were
to model this situation using a single dust then clearly the velocity field would be
multi-valued at any point in this region. To resolve this problem we will adopt the
approach taken by Clarke and O’Donnell [CO]. This means that we shall split the
dust into several parts and consider a region that contains a number of superimposed
dusts. This insures that v; (¢ = 1,...,k), which represents the velocity field for the
ith dust, is now unique at any point to the future of the caustic. We shall call this

part of our spacetime the multi-dust region.
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In the case of a multi-dust spacetime the equations governing the motion of the

previously mentioned shells are

oF

= = _ : 4.1.1
5z Xi:p., [4.1.1]
ov;  Ov;
— 4 —=F 4.1.2
e + ot [ ]
and
Jv; 0p; Jdpi
Pl ST S 4.1.3
e i Oz ot’ [ ]
where 2 = 1,...,k. These equations are simply the Newtonian law of gravity, the

conservation of momentum equation and the conservation of mass equation respec-
tively. Their solution, which we look for, defines time parameterised geodesics in
M. Here F represents the gravitational force per unit mass, v; represents the three
velocity fields associated with each dust such that v; < —v, < vy < v, < v3 and p;
is the density associated with that velocity. The quantity v, represents the velocity
of the particle whose trajectory is tangent to the caustic at time ¢. These equations,
along with boundary conditions for each dependant variable, can be thought of as
defining the concept of a multi-dust spacetime. To explain what we mean by this
we notice two things: firstly that only v; and p; appear in the equations defining the
flow of the 7th dust and secondly that F' depends on the sum of all densities. This
means that the dusts interact only via gravity and in this sense can be thought of as
being superimposed. The last thing to mention is the choice of k. Following on from
our hypothesis that S looks like Sq, we assume that 7: f(NV) — M is a simple fold
catastrophe (as is 7(f4(N))). This implies that k& = 3.

Of course we must now concern ourselves with joining conditions which describe
how regions with different values of k join. This, in general, can be quite intricate
because of two reasons. The first reason is that any point, p say, on the caustic
in M represents the end point of two geodesics as well as the initial point of two
different geodesics. Specifically, for the left caustic in M, any point such as p is the
end point to a geodesic with velocity v say, which originates in the 1-dust region,
and an initial point of a geodesic with velocity v3 say, which proceeds into the 3-dust
region. These trajectories must be joined in the correct manner for they represent a
particle being transferred from one dust to another. In addition to this we have the

other case where p also represents the end point of a 3-dust geodesic with velocity
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v1 say, and the initial point of a different 3-dust geodesic with velocity vy say. Again
these represent particle trajectories and must be joined in the right way. We achieve

this by prescribing boundary conditions for these velocities at the caustic.

The second reason concerns the boundary conditions for the p;. At any point on
the caustic we have the situation where neighbouring geodesics converge and even-
tually cross. This means that the density becomes infinite and the mass flux is not
defined at the caustic in M. We can solve this particular problem if we can find
a quantity that tends towards zero as we approach the caustic. If we can do this
then the mass flux can be defined as the limit of the product of the density with this
quantity. The velocity component transverse to the caustic set tends to zero as any
particle approaches the caustic. This quantity therefore represents a possible candi-
date with which we can define the mass flux. Alternatively, we can lift the problem
to T'M where the mass flux is well defined. We shall discuss how to do this in the

relevant section (ref. §4.5.).

In the next section we shall define, in general terms, the concept of a similarity
solution. The tools developed will be used to transform equations [4.1.1]-[4.1.3] into
ordinary differential equations. The hope is that with this simplification the problem
might be soluble. Having done this we then consider the case where the gravitational
force is switched off in order to try to recover the solution & = ¢(t,v), described in the
previous chapter. It will, however, take the discussion further for we shall consider
how the density functions vary across M. Following this we shall discuss reformulating
the problem in terms of (¢,vi) coordinates rather than the (¢,z) coordinates of M.
This is equivalent to working in the tangent bundle. Finally, we finish by seeing how
the criteria for cusp formation (ref. §3.2.) allows the solution = = ¢(¢,v) to emerge
naturally from the more general solution that we obtain describing the zero gravity

case.

§4.2. Similarity solutions.

When modelling physical systems analytically it is often the case that we must
choose a simplified version of the reality that we are interested in. In most cases
we look for possible symmetries that we can impose on our system. This means that

under certain transformations the differential equations that govern the system we are

26



interested in remain unchanged in form. In other words the equations are identical in
either xf or %f coordinates where, given an ¢ € IR, (X,(X)) = g(e; x, £(x)). We say
that the differential equations are invariant under such a g. The above transformation
actually represents a set of transformations and to clarify, we shall list them. We have,

for n coordinates, z;, and m dependant variables, fj,

Zi=gr(55%x) and  fi(%X) = gy, (&%, £(x)).

To describe what we mean by invariance, we notice that the Newtonian equations
of motion given in [4.1.1]-[4.1.3] are invariant under Galilean transformations. In the
following analysis we shall not exploit this symmetry, however, since it is a simple
example, we shall use this as an illustration. Suppose that O and O are the origins
of two coordinate systems such that a point relative to O has coordinates (¢, z) and
relative to O has coordinates (f,z). I O moves with a velocity ¢ in the negative
z direction with respect to O then we have the relations, f = ¢ and & = = + et.
Furthermore, due to the relative motion, we have ¥; = v; + €. Since there is no
relative acceleration F = F and because the density is simply a scalar field, g; = p;.

Our transformation function, g, can then be represented by

t=g(ex) =1, & =gy(ex)=ai+et,

~

F(x) = gr(e;x, F(x),vi(x), pi(x)) = F(x),
Bi(X) = gu; (&5 %, F(x)0i(x), pi(x)) = vi(x) + ¢,

ﬁt(i) = gp;(G;X, F(X),'Di(X),pi(X)) = pi(X)

and these define Galilean transformations. Under g, [4.1.1] becomes

OF 07 .
X

oF N
= o5 =&
equation [4.1.2] becomes,

0 oz 0 or 0 . ot

(0; — 5)%(11,' — 5)$ + 55(1),' — 6)55- + (—,ﬁ(vi — s)a =F
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61), 661 avl

=>(v,—5)a~+—a—£e+at F
== v,gvt + 8;; I:“
and finally, [4.1.3] becomes
T SR
== p,aavf +v gpf = —%-

By comparison with [4.1.1]-[4.1.3], the above differential equations clearly have the
same form. This is what we mean by the invariance of a differential equation un-
der a given set of transformations. It can be described mathematically if we define
F(:I:,',fj,p;l,. .,p;I ’"‘) = 0, where pj-‘"'im = 0™ f;/0z;, ...0x;,,, as a representation

of our mth order partial differential equation. Then, by invariance we mean that

F(&i, [, 5, B ™) = A(e)F(wi, £, pit, ..., p™) [4.2.1]

where the arguments on the left hand side are as defined by ¢ and A is an arbitrary

function.

Let us now continue our construction of the transformations denoted collectively
by ¢g. We shall again consider an arbitrary transformation function so as to keep the
discussion general, however, in the next section the ideas that we shall develop here
will be applied directly to equations [4.1.1]-[4.1.3] together with a new symmetry
transformation. Now, the fact that ¢ € IR implies that we have, in actuality, a 1-
parameter family of transformations. This set can be given a group structure under
the composition of maps, i.e. g(e1; g(e2;%,f(x))) = g(e1€2; x,f(x)), with the identity
corresponding to € = 1, i.e. (x,f(x)) = ¢(1;x,f(x)). We can now ask how this affects
our prototype solution, f. If the form of our differential equations remains the same
under g then this implies that our solution must also be unchanged in form under g.

In mathematical terms, this means that

f(X) = ge(e5 %, £(x)) 4.2.2)
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(or equivalently, f(X) = f'(fc)) In this equation, the right hand side represents the
transformed solution in %f space; the left hand side is simply our original solution
with the independent variables renamed. The equals sign is therefore telling us that
f and f are of the same form. We shall call solutions which satisfy [4.2.2] for a given

group of transformations, similarity solutions.

The group structure that we have defined provides us with a way of finding all
possible candidates for a similarity solution. In summary, we will show that given
a set of transformations, g, f can be written as a function of a single z; and n — 1
other quantities which are constant under g. We shall first of all prove this statement
for the general case. In the next section, however, these ideas will be illustrated by
considering a particular set of transformations that act upon F', v;, and p; in equations
[4.1.1)-[4.1.3]. Now, considering only one component of the vector equation, [4.2.2],

we have,
flgx(e;x)) = g5(e5 %, f(x)). [4.2.3]

By differentiating this equation with respect to € and evaluating the result at € = 1

we obtain,

0 dg..
oL (x) s (x)

= B, 1)) [4.2.4]

e=1 e=1
This is a linear partial differential equation and we can solve this using the method

of characteristics. The characteristic system is

dei  df
B9s:/0l.=y  Dgy/Oe]

e=1

Integrating the first pair of equations gives
s9 = hg(z1,z2) = const,
whereas the rest, bar one, give
si = hi(z1,z;) = const (1=3,...,n).
This leaves

dzy _ df
agrl/aele=1 agf/aeL

=1
29



Letting x; = X;(z1,si), where ¢ = 2,...,n enables us to integrate (in theory) this

last equation to give
h(z1, si, f) = const.

Consequently, the general solution to [4.2.4] is given by F(s;, h(z1,si, f)) = 0 from

which we can obtain f(x) and thus candidates for similarity solutions.

§4.3. Similarity solutions for Newtonian equations.

We shall illustrate the construction of g, the group of transformations, and f, the
set of all possible similarity solutions, of the previous section by considering [4.1.1}-
[4.1.3] in conjunction with a new symmetry. We suppose that in the case of caustic
formation with planar symmetry, equations [4.1.1]-[4.1.3] are also invariant under a
simple scaling transformation. Consider a region surrounding the cusp, an example
might be the set U = [0,T] x [~X, X]. We might wish to magnify this region by
multiplying the ¢ coordinate by o > 1 and the & coordinate by o so that we now
have Uy = [0,aT] x [-o?X,o# X]. Suppose now that f is some function defined
on Uy as might be F, v; or p;. Then by invariance under the above transformation
we really mean that there exists an ay such that for (t,z) € U C Uy, we have an
(at,afz) € Uy and f(t,z) = aff(at,aﬂ:c).

We now write our scaling transformations in the following concise form,
. R Y — B kFF ko, ... kp- .
glast,z, Fvi, pi) = (at, o’ z,a"F F, o viv;, o p;), [4.3.1]

where a € IR and § and ky are fixed constants. The fact that g(1;¢,z, F,v;, p;)

corresponds to the identity transformation and that

: : B oF ki o oFei
glaa; gaz;t,z, Fyvi, pi)) = glan; ast, gz, o F, ay t v, 007 pi))
ke k kv; kv, ko, ko,
= (g azt,afagx,alpazFF, a; fay v, a1 e, pi)

= g(a]CYQ; t7 z, F, Vi, pl)

implies that g, for all a € IR, has a group structure. Similarity solutions are deter-
mined by the solution of equation [4.2.4], which for our case has the characteristic

system,

dt dzr df

t Bz kff
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[4.3.2]



The first pair can be integrated to give

x
£ =he(t,z) = 7= const,

whereas the second pair gives
h(t, f) = ﬁc]_‘f_ = const.

The general solution to [4.3.2] can then be written as

f
Plad) o

Consequently, one possible candidate for a similarity solution is then,

ft,z) =" F(6). [4.3.3]

Equation [4.3.3] illustrates nicely the invariance of f for under such transforma-
tions discussed above, £ is clearly constant and so the shape of f is preserved under g.
Looking for solutions of this kind simplifies the mathematics because the number of
independent variables in [4.1.1}-[4.1.3] is reduced from two to one. From a physical
point of view this particular type of similarity solution suggests a kind of magnifi-
cation invariance; if points on the caustic are related by ¢ = " where r € IR, then
for the correct choice of r, the caustic structure is preserved under x — oz and

t — af.

Substituting [4.3.3] into [4.1.1]-[4.1.3] the 3 equations transform to

- Z tkp' Pi,

d’U, thF

dv; 1. _
(tku,t—)') (tkv,’_,@i) +kvitkv1 l Btkv’ 15 6 ’

d¢
and

dp; _adv; 4 _
(tk"iz’),-) (tkﬂi—ﬂg'%.) + (tkl’iﬁi) (tkv; ﬂ_B_) kmt i 1 ﬁtkp lf

d§ f'
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These equations simplify further; as a result we obtain,

dF o
it S Lyt
dv; dv; _
v b7 + — Bt~ €d§ =1 :
and
dp, dv; _ _
vigg ThgE = ke B—kei=1 5y gyP—ky; 1,97 6

For the above set of equations to be invariant under our scaling transformations, the
coeflicients of each term must be time independent. We are thus required to set all

powers of ¢ to be zero, i.e.
kp; +B8—krp=0, B—ky—-1=0, B+kr—2k,=0.
This implies for the similarity degrees,
kyy,=8—-1, kr=p-2, k,=-2,

and equations [4.1.1]-[4.1.3] become

F'= - "pi, [4.3.4]
i + (8 — 1)o; — Béo; = F, [4.3.5]
vip; + piv; — BEP; = 2pi, [4.3.6]

where ' denotes differentiation with respect to £.

We now specialise by stipulating boundary conditions. Rather than setting up
conditions on some t = 0 time slice for example, we define the equation of the caustic

in M. We require that the three dust region is bounded by
=+l [4.3.7]

for B > 1. This forms part of our joining conditions that was mentioned earlier for it

tells us where in the ¢tz plane this occurs. To complete these instructions we define
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how particles are transferred from one dust to another. That is to say, we require
that at £ = %1, the trajectories with velocity v and v3, or respectively, with velocity
v1 and vg, to be tangent to the caustic. This defines a limit for v; as it approaches
the caustic. At £ =1 we have z = t# and hence dz/dt = Bt8~1. Thus

v =t Py, = tl—ﬂ(ﬂtﬂ-l) =p 1=2,3.
Similarly at £ = —1,
oy =t Fviy; = tl—ﬂ(—ﬂtﬂ_l) =—-3 1=1,2.

This also defines the domains for the functions o; and p;. For vy, p1; U2, p2 and 3,
p3, we have the sets (—1,00), (—1,1) and (—o0, 1) respectively. Boundary conditions
for the p; are needed for a complete specification but we shall consider this in the

next section.

The important feature of equations [4.3.4]-[4.3.6] is that having specified bound-
ary conditions for each v;, we find that the latter two become singular on the caustic.
In other words the coefficient of the highest derivative vanishes. To highlight this
behaviour in v;, we transform the equations using w; = v; — B¢. In this case the

boundary conditions become
wl(—l) = 'wg(—l) = wz(l) = wg(l) = 0, [4.3.8]

and if we include the symmetry about the plane z = 0, we have

F(0)=0
and
wi(§) = —w3(—€), wa2(§) = —wz(=¢), wa(0) =0. [4.3.9]
Transforming [4.3.5] and [4.3.6] using the above substitution gives
wiw; + (28 — Dw; + (B —1)¢ = F [4.3.10]
and
w;ph + piw; — (2 — B)pi = 0. [4.3.11]

With the original equations rewritten in this final form, we can clearly see that [4.3.5]

and [4.3.6] become singular when the boundary conditions are imposed.
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§4.4. Zero gravity case.

Having obtained the differential equations involving the variables w;, p; and F,

we specialise further by considering the case when F = 0. Integrating [4.3.11] gives

for the density
_ 1 ¢ (2 - -
pi = exp {/a ( w-ﬂ) d.f} , [4.4.1]

Iwi] i 1

where a; € IR represents the constants of integration. For the transformed velocity,
dividing equation [4.3.10] by w; gives a homogeneous differential equation which when

solved yields,
wi + BE = Ci(w; + (B — 1)e)¥=1/P [4.4.2]

where { # 0 and C; € € are constants. We should say at this point that [4.4.2] is in
fact four solutions. We obviously have the cases where ¢ = 1 and ¢ = 3 but also we
have the cases where 1 = 2, £ < 0 and ¢ = 2, £ > 0. The reason why for i = 2 we
have two solutions is because [4.3.10] is singular at the origin and thus is essentially
two differential equations defined on the domains (—1,0) and (0, 1) respectively. This
gives the two solutions that we mention above. To determine wy we simply ‘glue’ the

solutions together at the origin.

We now impose the boundary conditions given above in order to verify that
solutions [4.4.2] are in fact consistent with this analytic model of a caustic. To apply
the four conditions of [4.3.8], we take limits of both sides of equation [4.4.2], noting

that z" is continuous for all r > 0 in IR. We obtain,
(B-1)/8
Iimw,'—ﬂzci(glimlw,-—(ﬂ—l)) t=1land =2 with { <0

—=—1

=>Ci:_(1_ﬁ)ﬂ(ﬂ—1)/ﬂ 1=1and =2 with £ <0.

Similarly,

(B-1)/8
) t=2with{>0and:=3

%gl}wi+ﬂ20i (gl_rgwi-k(ﬂ—l)

B
(8 —1)B-1)/8
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The fact that wo has two different constants of integration is an artifact of what we

discussed above: the different C; arise from the two solutions for ws.

Having set the constants C;, we must now check that the final three constraints
of [4.3.9] (recall that F' = 0) agree with this choice. To verify that limg_o w2(£) = 0
let us define two new variables, p; = w; + (8 — 1)€ and ¢; = w; + B¢. We then obtain
from [{4.4.2],

gi = Cip#—DIP [4.4.3]
whereas from the definitions of p; and ¢;,
£ =qi—pi, [4.4.4]

and

w; = Bp; — (B —1)g. [4.4.5]

Fig. 3. Plot of p = w; + B¢ against ¢ = w; + (f + 1)y for ¢ > 0, B =3/2
and v = 22/3 /3. Here the lines a, b, ..., f represent § =1, £ =0, £ = —1,
w; =0, w; = 1/2 and w; = 1 respectively.

d e af ..b




On a pq graph, lines of constant £ and w; can be plotted using equations [4.4.4],
[4.4.5] and assumed values for . This is shown in fig. 3. Equation [4.4.3] is also
plotted. Since this is a representation of the solution given by [4.4.2] it is possible,
using this information, to sketch w;(¢;) and this is given in fig. 4. Note that these
graphs must be interpreted with care for they do not consider how the i-value might
change as different points, (p, q) or £, are chosen. In the latter case it is easy for the
changes from w; to wy and from ws, to w3 occur when ¢ equals —1 and 1 respectively
(recall the boundary conditions of [4.3.8]). For the former we need to find the set
of points in IR? such that ¢ —p = —1 and ¢ — p = 1. These lines then identify
where points corresponding to £ = £1 lie on our pq graph and thus where the i-value

changes.

Fig. 4. Plot of w; against ¢
for £ >0 and F = 0.

(0, Ci)

0,00 ——— /(1,0
£

Now one can see from fig. 3 that for any 8 > 1 there will be two values for
limg_,q p2 and limg_,9 g2 and thus possibly four values for limg_,qw2(€) by [4.4.5).
Hence, to prove that limg_,ow2(£) = 0, we specify the direction along the curve
g = C,-pﬁﬂ ~D/B with which we approach £ = 0. This is done by removing the
second limit point and we do this in the following manner. We have from our pq
graph that the line corresponding to { = 0 has equation ¢ = p. Define p to be the
point where ¢ = kp (k € IR) intersects [4.4.3]. In other words p is the solution to
kp = C’,-1 /B pB=1)/B  Then if we start from the origin and move along the curve given
by [4.4.3], we reach the point (p, kp) before the curve crosses { = 0 again provided
q = kp has steeper gradient than ¢ = p. In other words, provided the constant k

36



is greater than one. This means that by restricting ourselves to 0 < ps < p we
have defined a domain where only a single limit point exists. Thus we have for all
0 < p2 < p that kps < ¢z and

E=q—p22(k=1)p2 >0
= %I_I{(I]Pz =0
= %1_1{(1) g2=0
by equation [4.4.4]
== lim wy(§) =0
by equation [4.4.5].

The final check to be made is that w;(£) satisfies the boundary condition, w;(¢) =
—~wj(—¢), where the ¢ and j take the appropriate values determined by [4.3.9]. Now
suppose £ € (—o0,1) and —¢ € (1,00). Then the solutions to [4.3.10] in these
regions with F' = 0 are w3(¢) and wy(—¢). By [4.4.4], £ = g3(€) — p3(§) and —¢ =
01(—£) — pr(=E). Thus,

33(&) + q1(—=¢€) = p3(&) + p1(=¢)

= C3(ps(&)) PP 1+ C1(pr (~€))P~VF = p3 (&) + pr(—¢)

B B

— B-1)F-V/p (pa (€)= (B— 1)(;;_1)//;(—pl(—E))(ﬂ‘”/ﬂ = p3(&)+p1(—¢).

Since this equation must hold for all 8 and hence for all C3 we can equate coefficients.

This gives
p3(§) = —p1(=¢)

= w3(§) + (B —1)§ = —(wi(=¢) — (B -1)¢)

= w3(¢) = ~wi1(~¢)

as required. To show that wy is an odd function we repeat the above analysis for
—-l1<é<1.
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Now that we have an expression for the solution to w; that satisfies all the nec-
essary constraints (equations [4.3.8] and [4.3.9]), let us check that this reduces to the
cubic equation of §3.2. Referring back to equations [3.4.2] and [4.3.7], the appropriate
choice for § in order to match the exponents of the two equations would be g = 3/2.
This value of # is in fact justified in a more rigorous manner in section 4.7 of this

chapter. However, with these values [4.4.2] becomes for ¢ = z/t# € (—o0, 1),

_3/2 _ x \1/3
B =/ (v3 N t_ﬁ)

27
==>v§’=z—(vgt—:t).

So if we transform z and ¢ such that £ — 27z/4 and t — 27t/4 we obtain z =
q(t,v3) as required. This same procedure can be repeated for the regions (—1,1) and

(—1,00) giving = = ¢(t,v2) and = = ¢(t,v1) respectively.

Having discussed the analytic solution to [4.3.10] for F = 0, let us reconsider
the solution for the density given in equation [4.4.1]. Now as of yet, no boundary
conditions have been specified for the p;. In fact we shall not bother to define any
conditions except to say that the density should be finite everywhere apart form
points on the caustic. We will show that with the solution of the form given by [4.4.1]

this simple requirement is not satisfied.

Let us investigate the limit of p; as £ tends towards zero. To do this, we need to

calculate two quantities, namely limg_q ¢/w2 and limg_owy. From [4.4.2] we have

for £ # 0,
_ (8-1)/8
wo (1 + E) = C2wgﬂ_l)/ﬂ (1 + —'———('B 1)6)

woy w2

e\ B-1/8
= wy!? (1 + Eé) =Cy (1 pE1E wzl)é)
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= 0= lim (1 +
£—0 w2

(,B _ 1)5)('3—1)/'3

= lim £ B [4.4.6]

&—0 wy (1 - ﬂ)

and hence from [4.3.10],

lim = B(1 = §) iy £ — (26— 1)

= limwh = (1- ). [4.4.7]

Now provided the constant a; in [4.4.1] is small, we can use [4.4.7] to make the

approximation, wy = (1 — 3)¢, so that

/j<2_ﬂ)d§_:/j (2 -5) dE

i W2 i (1=8)¢
_2__ﬁ1 3
11— ai

Thus, using I’Hopital’s rule,

1 (¢ (2-8)/(1-p)
lim p2 = lim ¢ — (——)
£—0 £—0 { lwa| \ a;
_ (2-8)/(1-p)-1
th{i_g.z__@_(s) i}
£-0 wy 1 — a; a;

1/(1-8)
£—0 (1 — ﬁ) a; a;

and since # > 1 we conclude that the limit cannot exist, i.e. pg — o0 as £ — 0.

This is unfortunate as it predicts unbounded behaviour for the density on the axis
of symmetry, contradicting our requirement that p; must be finite everywhere other

than at points on the caustic.

We finish this section by raising two important points. The first is an observation
on the above solution for p;. If we refer back to where values for the similarity degrees
were derived, we can see that k,; is fixed only by the force equation, [4.3.4]. In other

words, by fixing F' = 0, [4.3.4] can effectively be discarded so that we are able to freely
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choose kp;. If this is the case, then by following the above method and replacing the
constant (2 — B) by (—k,, — ), we find that the limit of p; as £ tends to zero exists
if k,; = —1. The second point is that had we removed all force terms at the onset,
we surely would have obtained a realistic solution. In other words, it seems that the
presence of F' is supplying information that is corrupted when we “turn off the force”.
Clearly these two points are intrinsically linked and we shall expand on these in the

next chapter.

§4.5. Similarity solutions in tv space.

Having given a detailed discussion on similarity solutions to equations [4.1.1]-
[4.1.3] in tz space, this section digresses from the natural flow to analyse the same
equations but in tv space. This is equivalent to working in the tangent bundle. The
benefit of this approach is that, as eluded to in the introduction of this chapter, the

mass flux is well defined even at the caustic where the density becomes infinite.

Now to formulate the problem we need to transform equations [4.1.1]-[4.1.3] and
the boundary conditions we wish to consider. Appendix 1 provides us with the equa-
tions which help us to do this. Care must be taken, however, when defining the mass
flux in T'M since although it overcomes the problems that we have if we formulate
the problem in tz space, it does have an extra subtlety. This extra complication
arises from the fact that the projection of the tangent bundle surface onto M is not
orientation preserving. Before we discuss how the mass flux shall be defined, let us

explain exactly why this is so.

The formation of S can be visualised by folding a piece of paper. We begin with
a flat sheet which represents N (see chapter 2). An orientation can be considered
as a chosen direction for any vector that traverses the paper. Thus we have two
possible orientations for N. Suppose that we make a fold, without creasing, in the
sheet of paper and then another so that the two folds are parallel. The paper is now
in an ‘S-shape if looked at edge on. This action represents the map f: N — TM
of §2.2. Note that the orientation is preserved for we can still define a unique way of
traversing S = f(N). It does not matter that a vector, n say, normal to the original
flat sheet of paper, would first enter, then exit and then re-enter S if we pushed it

through the folded region. We now ask ourselves what happens if we collapse our
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surface onto itself so that the folds in our sheet become creases. In this case our
surface, again looked at edge on, becomes like a concertina. This action is equivalent
to the map m: TM — M and the result represents 7(S). We immediately see that
our orientation is no longer preserved for where we have three layers that coincide,
there is not a well defined direction with which we can cross 5. In other words, n can
simultaneously enter and exit S if placed at a point on 7(.S) that was formed by the

superposition of three separate parts of S.

How does this affect our definition of the mass flux in TM? To answer this, let us
suppose that P and () are orientable manifolds and that there exists g: Q — P which
is orientation preserving. Furthermore, let there be some matter, a fluid for example,
which moves on both manifolds. The simplest case is where the fluids are identifiable
and that P and @ are simply different coordinate systems. In this example, if U C @
is some region then the masses in U and ¢(U) are the same. We can write this

mathematically by supposing that

M) = [ a0=[ " [4.5.1]

where p, by assumption, is a closed gy-form (g = dim(g(U))) on P representing the
mass flux at some arbitrary point in g(U). The assumption that p is closed illustrates
the fact that it is conserved. We could show that equation [4.1.3] implies this state-
ment, however, in order to avoid a complicated aside, this will be demonstrated in

chapter 6 where the calculation becomes essential to the argument.

Such a definition is fine except when g is not orientation preserving. If this is the
case then the integral over g(U) is not defined because the integration of forms over
the whole of this region requires a continuous orientation. Since this is the situation
we expect when we project S onto M for Newtonian caustics, we are forced to modify
our definition of mass flux. Instead, we define the mass in U as in [4.5.1] except that
we insist that p be regarded as a pseudo-gy-form. This is because pseudo-forms can
be integrated over non orientable manifolds and they transform between coordinate

systems in a very similar manner to forms, i.e. for ¢ € U and p, a pseudo-gy-form on

p

b

) o1 Oz'u Oz
(" P)iriay (@) = TR [det (@)} Pi...igy (9(q))

where the z* and y’ are local coordinates to P and @ respectively.
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We can easily calculate the components of the corresponding p for the case that
we are considering. Thus, () becomes TM, P becomes M, g becomes 7 and U is a
region in T'M such that #(U) is a one dimensional surface in M. The reason why
we choose 7(U) to be one dimensional is because ultimately, we wish to define the
mass as the integral over a t = const region. Now, since we have a region in M in
which there are three superimposed dusts, we consider a pseudo-1-form for each, i.e.
we now have p(x) for k£ =1,2,3. We also introduce O (k), which is defined on T'M, to
be the pullback of p(;). Suppose now that H(k) is a scalar field on M representing the
density of the kth dust at any point. Then the mass in 7(U) say, of the kth dust is

also given by

My (U) =/7r F (k) (k) 4.5.2]

(V)
where o) is a psuedo-1-form and can be thought of as the volume form on a 1-
dimensional surface in M (The equivalence of [4.5.1] and [4.5.2] will be shown in
chapter 6.). If v(x) represents the kth dust’s flow vector and X a vector such that
(v(k), X) constitutes a basis for M, then if we choose 7(U) to be orthogonal to v
then o) can be defined as (—l)k"’liv(k)aM where ajs is the volume form on M.
This quantity represents the restriction of aps to a surface in M corresponding to
those points which contain particles of dust k. The factor of (—1)¥*! is important
for it takes into account the fact that = is not orientation preserving. If we recall the
Euclidean tangent bundle surface, Sy, and project this onto M, we obtain a ‘squashed
Z’-shaped hypersurface. The horizontal parts of this ‘Z’ would represent dusts 1 and
3, whereas the diagonal part would represent dust 2. Thus, because a normal to the
line formulating our ‘Z’ flips in direction as it moves form the dust 1 (or dust 3)
region into the dust 2 region, it follows that iv(z)a M has the opposite orientation with
respect to iv(l)OIM or iv(a)aM. The (——1)’“"'1 factor accounts for this and therefore
insures that the ar) all have the same orientation with respect to apr. Now, since in
our case the spacetime is flat,

1 : :
ay = —2~!6,‘jd$z A dz’

and
. 1
togyam (X) = i&;’jd.’l A dz? (v, X)
1 ; . ; )
= i (de? (v(gy)da? (X) — da* (X)da? (vggy) )
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1 L ,- :
= 5y¢ii (vfk)ﬁcdax](X) —dz (X)vfk)ﬂ)
1

= oy oM = TR (vfk)da:j — vgk)dxi)

= 6,‘jv2k)dxj.
Thus finally we have py = (—1)k+1y(k)e,~jvzk)dmj = (—1)k+1u(k) (da: — v(k)dt) if our
fluid follows time parameterised geodesics in M. Note that v(;) corresponds to v; of

the previous section when k = i. Note also that if we restrict this to a ¢ = const time

slice then p;) = (—l)k'*'lu(k)dm.

This quantity pulls back onto the tangent bundle. We have, for any basis vector

for TM,
0 . d
W\ 5,7 ) = (%" p(r)) a7
= sgn [det (Q—'E)] (T(‘ ——a )
ay )| P8\ by,
= det 8_1: oz’ _a_
= sgn jae ay ay]. p(k) 6.’1:i .

Thus for the Newtonian case, which we are considering, we have (z!,z?) = (¢,z) and

(y1, 9%, y3,9y*) = (t,z,u,v) so that upon restricting (k) to a surface in TM defined
by (¢, z,u,v) = (t,z(t,v),1,v) we have

8\ _ [ (02\] % (&
U(k) 8v(k) = sen © ay 6v(k) P(k) (9:::
J Oz Oz 0 0
o(k) a = sgn det —a—?; -a—tp(k) 8_:12 + P(k) a .

If we restrict this further to a ¢ = const time slice in 7'M then

0 Oz Ox
O(k) = O(k) (61}@)) dv = sgn [det (a—y-)] av(k)(_l)k+lu(k)dv.

and

We define oy and p;, as the components of o(;y and p(;y respectively. Here the
quantity p; represents the density function of §4.1-84.4. It is the occurrence of the
sgn [det (0z/0y)] term in the definition of o} that constitutes the complexity spoken
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of at the beginning of this section. We can remove this if we know the sign of 9z /0vg

for different values of & since

oz
det (ay) =

If we refer to fig. 2, §2.1, where the surface S; C T M is sketched, then we see that
this quantity is positive for £k = 2 and negative for £k = 1,3. In other words we write
o)y = —Hk)0z/dvidv or o} = (—=1)¥pr0z/Ovg. Finally, now that both px) and
o(x) are defined, we can see how the mass flux in TM remains bounded even at the

caustic, clarifying the statement to this effect towards the end of $4.1. The reason

Oz /0t
Oz /Ovg 0 31)1:

is simply that dz/v(;) tends to zero (ref. §3.4) as we approach the caustic allowing
the product, p(x)0z/dv(), to remain finite.

We are now in a position to convert [4.1.1]-[4.1.3] into equivalent equations with

t and v as the independent variables. Now equation [4.1.1] is correctly written as,
8F
Z Py

So that if one assumes F' = F(¢,v;(t,z)) and defines o; as above, then using equation

[A1.1.3] this becomes
oF 0v; _ .
(5), (), -2

oF Oz
= (E):>t —ij <8v,)t
z+1a _ . _61:-
- ( 1) 4 ng (avi>t
i (92/0v;), (9a/0v)
= ( 1) 1 j;éip] (ax/avj)t
oF _ (_1)iF B J+1 Ov;
— (6vi)t (=1 e +]Z¢i( (81):)

upon using [A1.1.1] and again [A1.1.3]. For [4.1.2] we have,

0v; Oovi\
«(3),+ (5), =
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() (2) _ (o=
= vit |5 L \dvi), \dvi/,

oz ox
==>U‘— <5t—)vi —.F(ga)t’

using [A1.1.1} and [A1.1.2). Finally for [4.1.3] we have,




= (%), (3).G). (%)),
= (3),(7).~= (&%),
= (%), (%) (%)~ (7).
= (%) + () =

where use has been made of equations [A1.1.1}-{A1.1.4]. To summarise, equations
[4.1.1]-[4.1.3] transform to

8F Qv
z+1 ]+1 it}
o = oi+ > (- Fr [4.5.3]
I#t
oz ox
L2 4.5.
Uy at 8'01 b [ 5 4]
oo; F  Oo;
—_ = 4.5.5
0v; ot 0, [ J

which represent our equations of motion in tv space.

We now analyse these equations using the same techniques discussed in the pre-
vious two sections. That is to say we shall look for similarity solutions which are
invariant under simple scaling transformations in the ¢ and v coordinates. We sup-

pose that if f(¢,v;) is any dependent variable then
k N — B,
a*t f(t,vi) = f(at,a’v;), [4.5.6]
or equivalently,

f(t,0i) = t* f(&). [4.5.7]

We note that the ks and § represent different constants to those seen in the tz space
analysis. If we insert [4.5.7] into equations [4.5.3]-[4.5.5] then

oF - - _gdv;
kp— _ i+l ko, — . 1\ (ke = ky;, - %Y
thF ﬂa—& = (—].) 2 o, +§( 1)] (t JO']) (t 7 d€i> s
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_ dz
1tﬂ k th—l— kx—l kF kz—ﬂ
&i + Bt g,d& = (t*r F) (t &)

_pdo; _ dF de;
tkai &% th k"i — kp—-g¢%Y ) kg'—l— ka -1 L
( d&)( F) + () (t d&)m,t T

These equations simplify to,

i? — (_I)H"ltko,—ki"*‘ﬂ— + E )]+1tka +ky.; —kF_j d’U]
& J#i déi’
_dz
R k tkr—l ,3 + tk:t—l ,B _— th+kx-2ﬂF___,
‘ o Z;
do; dF do;
thP=BHIp 8 | ykp—ft15. 20 P =
df, + df; + ka;a'z 561 df,

Again, if we require these equations to be invariant under our scaling transformation
then each ¢ exponent must be zero. If this was not the case then for each value of
t, the coefficients of the differential equations would change resulting in a different
differential equation and thus different solution. It follows that the similarity degrees

must satisfy,
k-’l?:ﬁ_*'la kF:/B_—lv kO'iZ_]-a kvi:ﬂa

and equations [4.5.3]-[4.5.5] become the following set of linear differential equations:

dF i+ 1)+, dv;
& =Y ’+f2 T dg;
dz
(86— F) 2, —(B+ 1)z + 6 =0 [4.5.8]
and
do; dF
(& - F) d‘; + (1 d&> 5i = 0. [4.5.9]

To obtain the boundary conditions for this problem, we again specialise by re-
quiring that caustics bound the 3 dust region at & = +1 for § > 0 (Note that the
condition on (3 has now changed since, with an abuse of notation, 3 represents a
different scaling parameter to that in §4.3.). Such a choice is really motivated by the

equation for the caustic derived in §3.4 for the zero gravity case, i.e. equation [3.4.1].
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We now have the domains for each ¢;; they are —co < ¢ < -1, =1 < € <1 and
1 £ 3 < o0o. Since this effectively defines the boundaries between each dust, we need
to specify how dust particles are transferred. Now, for ¢ = +1, v; = +1P for 1 = 2,3

and ¢ = 1,2 respectively. Hence,

dzx
dt prC

z(t, +t7) = :t/ P dr.
c

t, %) = +1°

If we impose the obvious symmetry requirements, i.e. if v; = —v; then z(t,v;) =

—z(t,v;), where = 2,3 if ¢ = 2,1 respectively, then ¢ = 0 and

z(t, £tP) = / P dr

s tB+1
z(t, £t7) = iﬁ-}-l
~ 1B+1-ks
Z(£l) = i(ﬂ—i—l)
_ +1
z(£l) = G11)
Hence the boundary conditions on Z are,

z(&) = —z(&) V&= ¢, z(0) =0, [4.5.10]
F(1) = — [4.5.11]
Ty >
i(—1) = ~! [4.5.12

IR CENY o1

where again j = 2,3 if ¢ = 2,1. Boundary conditions for each &; are needed if we
wish to complete the specification of our problem. However, we shall see that this
analysis suffers from the same problem of infinite density on the axis of symmetry as
that of the tz space solution. For this reason we shall go no further than to stipulate

d; to be finite everywhere (Note the more stringent restriction that the mass flux be

bounded for all ¢ and v, ref. §4.1.).
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§4.6. Zero gravity case revisited.

For the case F = 0, equation [4.5.8] becomes

dz _
ﬂf‘?z‘g} —(B+Dz+& =0, [4.6.1]
and this has solution
(&) = & + AigPIIP | [4.6.2]

where the A; € € are constants of integration. We can immediately see the advan-
tages of working in tv space for equation [4.6.1] is only singular when £ = 0. This
should be compared with [4.3.10] which is singular in three regions and is essentially
the equivalent equation in tz space. The resulting solutions ([4.6.2]) are therefore
differentiable at the caustic. Furthermore, Z(£) can be constructed by ‘gluing’ to-
gether the two solutions which are valid on (~00,0) and (0,00). Again, this is an
improvement on the equivalent solution in tr space, namely [4.4.2], where w;(£) is a

function composed of four parts.

The constants, A; € €, are fixed by [4.5.11] and [4.5.12] so that

B B(—1)P/(B+1)

511 t=1and : = 2 with £ <0,

t

and

A,-:H_—fl i =2, with £ >0 and i = 3.

This specifies a solution subject to the boundary conditions given by [4.5.11] and
[4.5.12]. However, we need to check that this is consistent with [4.5.10]. Suppose that
& > 0fori=2,3 and ¢ < 0 for j = 1,2 such that {; = —¢;. Then

3(6) = & - g e

PSR RPN XSV
==& =5 e

L, (=D)WHDIBR sy1)8
= —{ — T(ﬁj) +
= —z(¢;)

as required.
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Having shown that the solution for z(¢;) satisfies all the constraints imposed
by the boundary conditions, we can again demonstrate how this contains the cubic
solution of §3.2 under an appropriate choice of . Now the boundary condition,
§ = £1, is effectively the equation of the caustic in TM and so is equivalent to
[3.4.1]. If we again match the exponents of ¢ and v in these equations then 8 = 1/2.

Inserting this into our solution gives for & = v;/t# and i = 2,3,

B V4 1 v?
L= —— — — ¢ —
t1/2 3 3/2°
z v 1 v?
= B2 " {42 T3 B
1 4
= =il — gvi

Then, if we suppose that ¢ — ¢/3 and £ — z/3, our solution reduces to z =
q(t,v) as required. The case for {; = —v;/ t? gives the same result by the symmetry

argument, Z(§;) = —7(¢;) where j = 1,2 if ¢ = 3,2 respectively.

Let us now consider the differential equation for ;, the transformed density, in

the case when F' = 0. Solving [4.5.9] gives
5i= B’ 40 [4.6.3]

where the B; € € are constants. Now although we do not have any boundary con-
ditions for this quantity, we are still able to analyse our solution and quite quickly
see that it is giving us spurious results. In §4.1 we stated that the mass flux is finite
everywhere in TM. Clearly, from equation [4.6.3], we have that as the velocity tends
towards zero, oy becomes unbounded contradicting our assertion. This means that
our tv space solution suffers from the same problems that our tz space solution had.

In terms of the density function we see that [4.6.3] implies, for & > 0,

i 9t _ Bi,p
; 0 d _ B; _

— (1 (e (9119) ) = S
~ B; _

= (-1)'pi (t (1 - f}lﬂ)) =& v,
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using [4.6.2] and assuming ¢ > 0,

(=1)'B;
t(1-77) e/

and so again we have that p» — oo as £, — 0 (Recall that the axis of symmetry

:}pi:

in tz space corresponds the v = 0 geodesic in the Newtonian case.).

This unwanted infinity is obviously produced by the ¢; VB term in [4.6.3]. How-
ever, for the F' = 0 case, k,, is effectively free to be chosen by a similar argument for
k,; before. This means that by choosing k,, = 0, [4.5.9] transforms to

do;

T

which in turn forces the mass flux, o3, to be non-singular on & = 0. We conclude
this section therefore, by noting two things. The first is that although the similarity
solutions obtained in t{v space are perhaps more elegant than those obtained in tz
space, the problems of the latter are still evident. The second point is that in the cases
where F' = 0, the similarity degrees for the mass fluxes could be arbitrarily chosen
so that their corresponding solution was no longer singular on the axis of symmetry.
These points are clearly analogous to those made in the concluding paragraph of
§4.4. It seems that ‘turning off the force’, is the incorrect way of reducing our general
Newtonian equations of motion to those of the gravity free case. We shall use this by

way of a lead into our next chapter.

§4.7. A note on the generic condition for gravity free caustics.

During the discussion on the cubic surface in §3.2, it was mentioned that the
existence of caustics depended on the existence of a point in M such that 9%z /0v? =
0. It was also explained that the satisfaction of this condition was stable against
small perturbations provided 8%z/dv® # 0 and finite at this point. We can use this
information to prove that g in the tv space formalism for the zero gravity problem is
equal to 1/2. The procedure is to simply differentiate the solution for z(t,v;) given
by [4.6.2]. We have,

B = £+ AgPTVIB
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. (B+1)/8
X _ 21‘ .'I)i
= =g T AT
=z = vt + A,'v,(ﬂ-H)/ﬂ

0z (B+1)1 (1-pyp
BECE A

Pz, (B+1)(A=B) (1-20)/8
A
and thus the second derivative is zero and the third derivative non-zero and finite at

ve = 0 if and only if # = 1/2. Finally since,

=

T

a1 = (&),

is an invariant under the transformations described in equation [4.5.6], it follows that
the value of 8 = 1/2 corresponds to a value of 8 = 1/2+41 = 3/2 if we are considering

similarity solutions in ¢z space. This value of 3 is consistent with the smooth case

A].
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CHAPTER 5. NEWTONIAN CAUSTICS IL

§5.1. Introduction.

In the previous chapter a model describing the physics of caustic formation was
set up and analysed. The resulting differential equations were assumed to be invari-
ant under a given set of scaling transformations and using this symmetry, similarity
solutions were found for the case of zero gravity. This was done in both the tz and
tv space formalism however, although the latter was more elegant, they both suffered
from a single and fundamental flaw. That is to say, they both predicted unbounded
densities on the axis of symmetry. We concluded the analysis in each case by notic-
ing that it was the force equation which determined the similarity degrees of p; and
o; prior to setting F' = 0. We also concluded that had we been allowed to freely
choose k,; or ks;, then a term in the corresponding differential equation could be
made to vanish so that when we integrate, the unwanted infinity does not appear.
This last statement suggests a way forward for us obtaining sensible solutions for
the density function. Indeed, this chapter concentrates on formulating a new process
that ‘switches off’ the gravitational interaction whilst allowing bounded densities on
the axis of symmetry. This results in a greater understanding of how the gravity-free

scenario fits within the more general picture.

This problem of infinite density can be split into two parts. The first is to find
the correct description of how our general Newtonian equations reduce down to the
zero gravity case. The second is how do we change the symmetry that we impose on
our system so that the problem on the axis is resolved. We find that the first part
arises quite naturally if we look at the asymptotics of our equations. This involves
the introduction of what we call asymptotic solutions. These will be defined in the
next section but their concept is strongly based on similarity solutions which were
developed in §4.4. The idea is to transform our general Newtonian differential equa-
tions using the transformation group, g, developed in the previous chapter, in such a
way so that as € increases a point in the three-dust region moves along predetermined
curves towards the origin. In the limit as € tends to infinity, this point coincides with
the cusp. The resulting differential equations describe the physics in a neighbourhood
containing the origin. This can be put more boldly by saying that they describe the

physics of cusp formation. This of course, is extremely important. From the point of
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view of understanding this particular type of singularity, it may tell us the extent of

the role that gravity plays in determining whether or not a cusp (and then caustic)

is formed.

If we return now to this problem of infinite densities on the axis, we see that the
zero gravity differential equations can be obtained quite easily. Since in the limit we
have our aforementioned reference point lying on the symmetry axis, we must require
the force term to asymptotically tend towards zero. In other words, the ‘switching
off’ of the force becomes a continuous process. If we assume that g represents the
scaling transformations of §4.3 (as we shall), then this process is governed by the

similarity degree, kr, via the condition that kr < 0.

At this point it is apparent why this asymptotic process does not solve the problem
on the axis; we find that the asymptotic equations are identical to those of [4.1.2] and
[4.1.3) with F' = 0. We are therefore forced to reconstruct our transformation group
and this is the second part mentioned above. We shall re-introduce the gravitational
constant and assume that this can scale in much the same way as F' or v; for example.
The aforementioned technique of retrieving the zero gravity case is then transferred
from a restriction on kr to a restriction on kg. This procedure solves the problem
on the axis. The way it does this, as we shall see, is to provide an extra degree of
freedom which manifests itself in providing us with four similarity degrees rather than
three. Since we have only three equations governing kp, kg, ky; and k,; (if we work
in tz space), we find that in order to specify all the similarity degrees we are forced to
choose either k,, or kg. By choosing wisely, the term in the mass flux equation that
when integrated produces the infinity can be removed. This work will be covered in
the third section.

At this stage we can confidently say that the zero gravity case has been fully
understood and that the solutions obtained are compatible with the full Newtonian
picture if we consider asymptotic solutions. But, if we look again at the general
equations of motion ([4.1.1]-[4.1.3]), we have to admit that no real progress has been
made by way of finding a solution. This of course does not go for our understanding
of the problem for we now realise the complexity and highly non-linear behaviour
that we are dealing with. As a last ditch attempt at obtaining a full analytical
solution, a more general approach to asymptotic/similarity solutions was considered.

This involves generating the most general transformation group, g, that equations
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[4.1.1}-[4.1.3] admit. The hope is that it might be possible to choose a particular
transformation that is compatible with our boundary conditions and which provides
us with a way of removing some of the non-linearities. Specifically, we would hope that
the contributions from p; and p; to the acceleration at a point where a particle with
velocity vg (¢ # 7, 1 # k and j # k) exists, can be removed or simplified or perhaps
represented by some symmetry transformation. This seems unlikely however, we will

most definitely learn from this process and so this work is presented in §5.4.

To complete this chapter, we shall briefly discuss the asymptotic behaviour of the
Newtonian equations of motion in a tr space formalism. The idea is to show that
these differential equations have the same asymptotics as their equivalent partners
in tz space. More importantly, however, this section, although small, will act as
a prologue to the next two chapters where we consider caustics in the context of
General Relativity. The significance being that we shall try to use the techniques of

asymptotic solutions that we are about to develop to analyse the most general case.

§5.2. Asymptotic solutions.

The main conclusion from the previous chapter is that similarity solutions, in the
context that we have used them, are incompatible with the process of discontinuously
‘switching off’ the force. This is not to say that similarity solutions cannot be used
to obtain sensible results. Indeed, had we considered the zero gravity equations of
motion in the first place, then there is no doubt that these techniques could be used
successfully. The point, however, is that the procedure: look for similarity solutions,
set F' = 0, cannot be used because it passes an incomplete set of information con-
cerning the gravitational picture through to the zero gravity picture via the similarity

degrees.

We conclude that it is necessary to do two things to correct this. The first is to
alter the method by which we obtain the zero gravity equations of motion from the
full Newtonian picture. The second, which we leave to the next section, is to ensure
that the right information is passed between the two cases. In fact ideas concerning
the first point come as a result of answering the different question, does gravity play a
significant role in the physics of cusp formation? Of course the answer to this has huge

implications for the general case and therefore is an important question in its own
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right. It could be, for example, that gravity plays a key role and that given any initial
situation, caustics will always be formed. Alternatively, it may have no significance
whatsoever meaning that it is purely the boundary conditions that determine whether

or not a cusp can form.

To answer these questions, we consider asymptotic solutions. These constructs
are functions defined in the following manner. Let (¢,z) and (f,%) represent two
coordinate systems whose origins, O and O, coincide at the cusp. We assume that
our tz coordinate system is fixed and ‘pinned’ onto our spacetime, the {# coordinate
system on the other hand is free to be defined. Next we define a transformation,
g, that relates our two coordinate systems so that points, x and X, are related by
%X = g(e;x). It follows by the definition of ¢ that our two coordinate systems are
identical when € = 1. We now define curves along which points can move towards the
cusp in the following way. We consider x and X to be to be points that are fixed relative
to O and O respectively. Next we define g so that relative to tx space, the length and
time scales of our {Z coordinate system increases as ¢ increases. This implies that the
locus of points such as x describe curves in our £ coordinate system as we ‘sweep’ this
spacetime over them. Since in the limit as € tends to infinity the length and time scales
of our % spacetime become infinitely large, it follows that the distance between x and
O becomes infinitely small implying that x moves along curves in £ space towards the
origin. All of this is defining a magnification type of process: we are essentially taking
a small and fixed region containing the origin and enlarging this according to the rules
specified by g. As this process occurs, the Newtonian differential equations written
in terms of (¢,z) coordinates must change since x approaches O. This implies that
the solution to these transformed differential equations must also change as certain
terms become less significant. We call these limiting solutions asymptotic solutions.
Since we have defined g so that small regions containing the cusp are magnified, these
solutions must be describing how our dependent variables behave in an infinitesimally
small region containing the cusp at the instant of cusp formation. Their behaviour

gives us the physics that determine this process.

The above ideas can be formulated in terms of a mathematical definition: we
define the asymptotic solution, fa, of any variable to be f,(x) = lim. . gf(&; X, f(i))
The existence of these functions, or equivalently the fact that the differential equations
have a limiting form, is an assumption that we have to make. Now the above definition

implies that asymptotic solutions are also similarity solutions. This is an artifact of
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the group structure of the transformation, g, which appears in both definitions. To
prove that this is so, we need to show that f,(gx(a;x)) = gs(a;x, fa(x)) which is
equation [4.2.3]. We begin by rewriting the definition of our asymptotic solutions so

that as functions, f, and its definition have the same arguments, i.e.,

fa(x) = lim g¢(; 92 (7 15 %), f(ga(e715%))). [5.2.1]

E—00

Note that the tilde has been removed from f since this is purely a label. Then,

95 (@5, fa (x)) = g5 (a;x,eliglogf (659x (£75x), f (9« (e‘l;x))))
= lim g7 (o5%,97 (659 (e75%) , f (9% (675%))))
= Jlim g7 (aci9x (e75%) , £ (ox (¢7'%)))
= i oy (8o (4571) 1 o (0575%))
= Jim g (B59x (87" 9x (@5 %)) , f (9x (B "5 9 (a5%))) )
= fa(gx(e;x))

as required.

We are now in a position to analyse equations [4.1.2] and {4.1.3] using these new
techniques. To do this we introduce an intermediate, dependant variable, f., such
that

fa(x) = lim fe(x) = lim g; (5§gz (6"1;X),f(gz (S'I;X)))- [5.2.2]

E—0Q

This simply allows us to separate the two operations: assume similarity solutions
and take the limit. The symmetry group we shall use is that of equation [4.3.1] and
we shall begin by assuming that all dependant variables are invariant under these

transformations. From [5.2.2] we have,

g7 (7%, fe (%)) = g7 (Lox (e75%) . f (9x (£75%))) = £ (9% (775 %))
= g5 (e7%59x (&%), fe (9x (65%))) = f(x)

= % fo(9x(;%)) = f(x),

and this is the basis by which we transform our equations from xf space into x.f

space (Note that in the above calculation the coordinates, x. have been written as
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gx (€;%).). Of course we need to consider how the derivatives of f transform. Thus,

if our coordinates are (t,z) then using [4.3.1] we find that for any function,

t (t,z) = {gf( 9% (5%) fe (9x (5 %)) } (£, )
= g{s"kffs (e a:)} (t,z)

af
Pk 2le
9z, (te, ze)-
Similarly, we obtain
af l kf afE
at ( 1") ate (t€’ (I)e)

by simply replacing the similarity degree for z by that for ¢, i.e. by changing 3 for 1.
We should note that since it is clear that we are now working in X, f. space (note the
subscript on the f.), the subscript ¢ will be dropped from the coordinate variables.
Using these results, equations [4.1.2] and [4.1.3] become,

dvie k ﬂ+1avis 2ky, —B—kp
viT —_ = vi—PTRF B
O +¢€ ot 3 €

Vie

and
~ Ov;, Opic _ __ko;—p+19pic

Pie g, T VieTg, ot

We need not concern ourselves with the force equation ([4.1.1]) for this becomes

irrelevant in the limit.

Again we require that these equations are invariant; the functions f. are, by
definition, similarity solutions. This means that the similarity degrees must satisfy
— B +1=0and 2k,; — f— kr = 0. We now take the limit as ¢ — oo. This
is a continuous process and it replaces the discontinuous operation of ‘switching off’
the force. The quantity that governs this limiting process is the similarity degree,
kr. We must have, in order for any force terms to tend towards zero, kp < 0. Thus

F, = limeoo Fr = lim—o0 €*F F = 0 and we therefore finally obtain

iy | Ovig _
and
Ovig Opig Opia
Pia—gt+ Via—p” = [5.2.4]



Again we draw the attention of the reader to the fact that x now represents the

coordinate system, X., in the limit as € — oo.

On the face of it, this looks like an extremely important result. It seems we have
shown that by considering asymptotic solutions of the form [5.2.1], the equations of
motion for the general Newtonian picture reduce to those of the gravity free case.
We could therefore conclude that gravity does not contribute to cusp formation. The
problem with this however, is that v;, and p;, satisfy the same equations as v; and p; of
§4.4 with the same similarity degrees. In other words the solutions are identical! The
above conclusion concerning the role that gravity plays must therefore be treated with
scepticism since clearly it is based on a result that predicts unbounded densities on
the axis. The only achievement that this asymptotic approach has above the original
similarity solution approach is to formulate the turning off of the gravitational force

in a mathematically elegant manner.

§5.3. Asymptotic solutions with a scaled Newtonian constant.

The above section describes a new procedure by which we can obtain the zero
gravity equations of motion from the general case. The problem of unbounded den-
sities on the axis however, has not been solved and we now propose to do this. As
mentioned in both the introduction and in the title of this section, we will achieve

this by scaling the gravitational constant.

We shall consider the following equations:

oF
6—x - "'GZ': Pi,
dv;  Ov;
Vige Tar = L
and .
Ov; Opi Opi

Pige Vi = "o

alongside the transformation given by,

g(e;t, z, F,vi, pi,G) = (e¥tt, ¥z, cFF F, ek”ivi,ek”ipi,ekGG). [5.3.1]
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We again look for asymptotic solutions but instead of having the limiting process
governed by F' or rather by kp, we insure that the force tends to zero by imposing
the boundary conditions, kg < 0 and F(t,0) = 0. The combination of all these ideas

allow us to obtain sensible results for the density as we shall now demonstrate.

We introduce four intermediate dependant functions, Fy, v;., pi. and G.. They
are defined by equation [5.2.2]. Remember that they are similarity solutions which

means that we now have

am - _G€ ; piE’
dvi.  Ov;,
) ot Fe

and
Ovie | Opi. Ipic
e TV T ot
where the similarity degrees, k; = Bki, krp = (8—2)ki, ko, = (B—1)kt, kp; = —(2+47) ke

and kg = k¢, have been chosen for invariance of the above equations.

The force equation must be included this time because at the moment we do not
specifically have F, = 0. To achieve this we need to consider our boundary conditions.
The first boundary condition is that kg < 0 meaning that G, = lime—noo Ge =
lim;—o0 €¥¢ G = 0. If we apply this result to the force equation then it follows that
in the limit we have,

oF,
ox

0.

This gives F, independent of z. The boundary condition F(t,0) = 0 implies that
F, = 0. We therefore obtain

. % + avia =0
Via oz ot
and
Ovia | Opia _ _Opia
Pz TVeTe. T T ot

as expected.
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Now comes the new bit. As mentioned in §5.2, asymptotic solutions are similarity
solutions where for any variable, f,, the ky are as defined above. If we transform these

equations using the notation that f,(¢,z) = &*/ f(¢) then we obtain

dv, . dv;
x T (B—1); — ﬂfg{ =0 [5.3.2]
and
dp, dv,
i i 5.3.3
€+ pT; =(2+7)pi +ﬂ€ 5 5.3.3]

The difference of this approach compared to that of §4.4 can now be seen Although
the velocity equation ([5.3.2]) is identical in both cases, the density equation is not.
We notice that the coeflicient of the p; term has changed from 2 to 2 4 v. We will

see the relevance of this in a moment.

The boundary conditions have not yet been mentioned. For the velocity equation,
we choose the same boundary conditions as in §4.4 and obtain [4.4.2] as a solution.
For the density we shall simply show that it now becomes bounded on the axis. To
fully specify this function we need to prescribe the density function along some curve
€ = const. We shall not bother to do this as this corresponds to an arbitrary choice.
The most appealing candidate however, is the curve corresponding to the caustic.
This amounts to prescribing the density of dusts 1 and 3 as their particles traverse
this curve and prescribing the density of dust 2 as it receives particles from the other

two dusts at the caustic.

So, in order to check that the density function can now be made finite everywhere,
we write the velocity in the same manner as before to illustrate the singular nature of

our differential equations, i.e., 9; = w; + B¢. The solution to equation [5.3.3] is then

1 £(2+7—5)
pi= |wil exp{/ai Wi ‘E}

where a; € IR again represents the constants of integration. Since w; has the same

solution as before, the values of {/w; and w) as ¢ tends to zero are the same. By

following the analysis as in §4.4 we have that
(1+7)/(1-5)
2 — 1
lim g = lim :i:(—ﬂ-—éQ (i) — 7.
£—0 £—0 (1-25) a; a;
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Thus p3 is finite and non-zero at £ = 0 if v = —1.

We are now in a position to make several conclusions. Firstly, we have shown that
by considering asymptotic solutions together with the new symmetry group given by
[6.3.1], the equations of motion for the general picture again reduce to the gravity
free case. Secondly, we have shown that the corresponding asymptotic solution for
the density now predicts finite behaviour on the symmetry axis. These two results
are extremely important for it means that the physics governing cusp formation is
relatively simple. In other words, we can finally conclude that gravity does not
contribute except to shape the caustic to the future of the cusp. Also, by using the
idea that G should scale and determine the asymptotics of our system rather than
F', we have understood how information is passed from the full gravitational picture
to the zero gravity picture in our reduction process. This is important for we shall
again use these ideas when we consider the asymptotics of the General Relativistic

equations of motion.

§5.4. The general symmetry group.

Although the gravity free case has been analysed and how it can be realised
as a limit of the full Newtonian equations of motion understood, no real headway
into solving the general case has been made. Therefore, in this section, we shall try
to determine the most general symmetry group that equations [4.1.1]-[4.1.3] admit.
The idea is that possibly, by choosing carefully the symmetry group, g, we may find
similarity solutions which greatly reduce the degree of non-linearity that this problem
possesses. An excellent account of how to find these general transformations for a
system of first order partial differential equations is given in [L]. Hence we shall simply

give an overview of the techniques used and state the results.

Before we launch into the mathematics, it might be instructive to briefly describe
the process that we will use to determine our symmetry transformations. This tech-
nique hinges on the fact that we assume our one-parameter group of transformations,
g, to be analytic functions of €. This means that for ¢ close to the identity, we
can construct an approximation to g by writing each transformation as a first order
Taylor series. These infinitesimal transformations define quantities which we call the

generators of g. We shall denote this set of functions by (X, U), the dimensions of
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these vectors being m (the number of independent variables) and n (the number of
dependant variables) respectively. Now g does not tell us any information about how
the derivatives of our functions transform. Since we are dealing with first order partial
differential equations, this is important and we need to know this. We shall therefore
extend g to include transformations of all possible derivatives. This new group we
shall call gg. If we suppose that gg is also analytic, then by a similar argument we

obtain m + n 4+ m x n generators which we denote by (X, U, P).

The generators turn out to be important quantities because we can develop a
technique that presents the most general symmetry transformation as the solution
to a set of simultaneous equations in X, U and P. However, since we are only
interested in obtaining similarity solutions for u, we need only determine g, and we
can therefore simplify things if we write each component of P in terms of the other
m -+ n generators. This process gives us a set of linear equations in p{ , the coeflicients
of which are functions of X, U and their derivatives. Since each pf are independent,
we can equate coeflicients to give (usually) a huge set of simultaneous, differential
equations. Their solution gives us X and U. We shall show that these generators
are related to gx and gy by a simple differential equation. The problem with this,
however, is that it is not always soluble. In fact the same problem occurs when finding
the most general similarity solution, for any candidate satisfies a similar differential

equation.

We begin by introducing a new quantity that parameterises our transformation
group, ¢. In fact if ¢ is the parameter of §4.2, then we suppose that € — e® so that
now € € (—o00,00). This simply changes the identity from 1 to 0, i.e. g(0;x, f(x)) =
(x, f(x)). Let ug also define u = (ul,...,um) = (fi(x),..., fm(x)). Then the

transformation, g, can be written as
it = g9,i(e;x), 1=1,2,
if we index our coordinates by a superscript rather than a subscript, and

@ =g,(e;x,u), j=1,...,m.
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We now assume that g is analytic. In other words, for ¢ € (—¢g,€q) close to the

identity,

%05 (0:) +ofc)

=z’ + X' (%) + o(e).

F =g (0;x)+¢

Similarly,
W = + el (x,u) + ofe).

The quantities X* and U7 given by

X' (x) = ag;i (0;x) and U?(x,u) = a—gg(ﬂ;x, u)
are called the generators of the transformation group and are uniquely determined
by g. Conversely, the generators, X* and U7, determine g itself. To see this, let us
suppose that (x,u) represents a point fixed in IR™*2. Then g(e; x, u) corresponds to
a curve, parameterized by ¢, that passes through (x,u) when ¢ = 0, with tangent
vector, dg/0¢(0;x,u) = (Xl(x, u), X2(x,u),Ul(x,u),...,U™(x, u)) Of course we
can repeat this argument for any point such as (X,1) = g(é;x,u) for example. This
implies that the generators form a vector field on IR™*2 which has integral curves
given by g. It follows then that to determine the group from the generators we simply

solve

; - dg,; o
dg; (0;%) = X' (%) and “(0:%,0) = U7 (%, @). [5.4.1]

Uniqueness is given by the boundary conditions, X = x and t =u at ¢ = 0.

Let us now introduce a further set of dependant variables given by p = (p{ ) =
(auj / 8:1:‘). These quantities can be used to extend g so that it now includes trans-
formations for each derivative. We shall denote this extension by gg. Infinitesimally,

this new group has the form,

i =1’ 4+ eX' (x) + ofe),

i = ul + el (x,u) + o(e)

and

Bl = pl +eP! (x,u,p) + of¢),
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where Pij are the generators of the derivative transformations in gg. Now it is pos-
sible, although too lengthy to be given here in this document, to write the function
that transforms each pf in terms of the functions g,: (¢;x) and g,; (¢;x,u) (a simple
account for the case when m = 2 and n = 1 is given in [L]). Hence it follows that the
generators, Pij , can be written down in terms X* and U?. We shall simply quote the

result here,

.o = oUd 2 0X*F
Pl = E Zpb -y Sl [5.4.2]
Bzt Ouk = o«

The above ideas are the building blocks with which we develop the theory to
determine the most general group of transformations (g in other words) that a system
of first order partial differential equations admit. To do this, we need to modify our

definition of invariance ([4.2.1]) to include a system of partial differential equations.

Definition. Suppose that

FO (x,u,p) =0 [5.4.3]

represents a system of R first order partial differential equations. Then [5.4.3] is said

to be constantly conformally invariant under gg if, and only if,
F) (%,0,p) = ZA,S )FG) (x,u,p), [5.4.4]
where Arg(0) = bys.

Unfortunately, although this is useful if one is considering stretching transfor-
mations as in §5.3, for example, this definition is not of the form where it can be
effectively applied to the general case. We therefore reformulate this using the fol-

lowing

Proposition. The system of R partial differential equations, F(") (x,u,p) =0, is

constant conformally invariant under the group g if, and only if|

R
9 g (%0,p)| = ksF® (x,u,p). [5.4.5]
86 e=0 s=1
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Proof. Suppose the R differential equations are constant conformally invariant as in

the above definition. Then if we differentiate equation [5.4.4] we have,

—F(%,a,p)| = F®) (x,u,p)
66 e=0 3z=:1 86 e=0
= . krsF(s) (x,u,p)
s=1

Running the proof in reverse proves the converse.

Corollary. The system of partial differential equations, F(") (x,u,p) = 0 is invariant

under gg if, and only if,

R
DF™ = 3k, F®), [5.4.6)
s=1
where,
0 0 0 0 7] 0
D=XxX'— 2 4. " ... "
X8x1+X 8z2+U8u1+ +U 8u"+P13p}+ A P}
8 Py [5.4.7]
+FP—+...+ P —.
2 ap% 2 apg

Proof. One simply expands the left hand side of [5.4.5].

This gives us a way of determining the generators of our symmetry group. We can
see that equation [5.4.6] is simply a set of R simultaneous equations in the components
of (X, U, P). If, however, we are looking for similarity solutions, then we are not really
interested in determining each P,-j . Indeed, with the equations in their current form,
we do not have enough information to solve them. The usual thing therefore, is to
substitute each Pij by the sum of derivatives of X and U as given by equation [5.4.2].
This yields a first order, homogeneous polynomial in p. Since the components of p
can be considered as independent variables, we set the coefficients of each pf to be
zero. The result is a rather large set of simultaneous differential equations in the
components of X and U. In theory this set of equations can be solved to obtain
X* and U7. Equation [5.4.1] then gives us g. This last step, however, is usually the
deciding factor for whether or not we can obtain g depends on the complexity of X

and U.
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To illustrate this process, we shall now apply these techniques to our general
Newtonian equations of motion. We first of all rewrite equations [4.1.1]-[4.1.3] so
that they fit the formalism of [5.4.3]. We therefore have R =3, =2 and j = 4. If

x = (z!,2?) = (t,z) and u = (u!,u?, v, u?) = (F,v,p,G) then we have
F) (x,u,p) = p] + udut,

FO (x,u,p) = u’p} + p2 — u!

and
F® (x,u,p) = u®p? + u?p} + p}.

The Newtonian constant is special in the sense that we do not require it to be a func-
tion of t or x; we would expect a spacetime that contains matter which is uniformly
distributed, to have the same strength gravitational field throughout. The upshot of
this statement is that -

Lot 2 axt

4
P* = —n; — —D1.. 4.
P kz:l ouk P; kzjl oz Pk [5 8]

We also, for simplicity, consider a single dust and so drop the subscript ¢. Since we are
really only duplicating equations by having the extra variables, we do not expect any
new symmetries. We therefore suppose that the 7 in equations [4.1.1]-[4.1.3] equals 1
and assume that for the case where 7 # 1, v; and p; posses the same symmetries as v

and p.

The condition for invariance (equation [5.4.6)) yields the following set of simulta-

neous equations:
Pl 4+ Ut 4+ 03U = ki (p1 + o) + kaa(u?p] + 93 — ul) + kis(<Ppi + o’} + 1)),

wlPE 4+ Up? + P2 — U = ki (p! + wu*) + koo (u?p? + p3 — u') + ko (u®p? + u?pd + p3)
and

P+ U+ P+ U+ Py = kaa(pi + w’u) + ks (u”pi + p7 — u')
+ kaa(w’pl + bt + p3).

67



If we substitute for each P/ using equations [5.4.2] and [5.4.8] and equate all coeffi-

)
cients of p! to zero as suggested above, we obtain the following set of simultaneous

differential equations:

Ul  axt
oul ~ oz =0
oUt _3U1 _8U1 _0
o2 Oud  out
0Xx?
oz =0,
1
a—a(]——+u4U3+u3U4—k11u3u4:O,
T
o _or
oul  Out
2 1 aXl
uzaa%—uzaa)i UZ—W—kzzuz—kﬂ;uS:O,
oU?
—— — ko3 =0
oud B=5
oU?  9Xx?
oz a0 =0
2 aUZ
Y
v _ar_,
oul  Out 7
2 1 3
u3gU2 —usaa)i +U3+uzg%—k32u2—k33u3 =0,
u
3 Xl
u
10
— —k 0
auz 32 ;
oUd  ax?
- — kaa =
903~ ot =0



and
;U2 L0U3 QU
U +u +

1 _
Oz oz ot +ksau” =0.

The solution to the above set of equations is a long and laborious task. We shall

therefore simply state the results:

X' = (kg — k11) z + A(2),
X2 = —Tt + ci,
1 _ 1
U = kyu +htt(t),

Ut = (kzo - %) u? + he(t),

k
U3 = <k33 — %) ul

and

In the above, ¢; is a constant and h(t) is an arbitrary function with first and second
order derivatives, hi(t) and hy(t). Using equation [5.4.1], we can now determine our

general symmetry group. Again the integration is complicated so we list the results.

We have:

+28( - a0 { L) - et}
+B(B-1)(t—d)f 2P HE) — H)} +u'elF2,
@ = (- {0 - Gl

+B(t— d)f 1 (A1) {H(t) - H(t)} + uZeA-1)C,

i = e+,

[5.4.9]
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where d = 261/k11, ,@ = 2(k11 - kzz) /ku, C = —k11€/2, 7= 3k33/k11 -3 and,
t
H(t) = —2k2, / h(s) (s — d)"P*D gs,
c2

The right hand side of these equations should technically be functions of ¢ and z only.
However, in an attempt to obtain some brevity, we write some terms as functions of

t.

This set of functions represents the components of the most general transfor-
mation that leaves equations [4.1.1]-[4.1.3] invariant given the assumption that X =
gx(&;x) and @ = gu(e;x,u). Of course to complete the argument we need to prove
that this is the case, and we do so by brute force. We firstly consider equation [4.1.2].

The derivatives of the velocity transform as,
Qﬂ(t z) = e~ (B-1) [%(t,x)
Oz

| R I LR TN |

Oz
= (-1 [%% (#,2) g—i(t,w) + %%i (#.2) g—i(t,x)]
_ e—(ﬂ—l)c%’% (7,5) e
C?;; (i.4),
and
%%(t,:z:) = ¢~ (A-1)¢ [%%—(t,x)
-2 [(t - {0 - G (- 0P S a0 - )|
e o0t [aa (1.3) Lt ) + 22 (22) Lt

dH _¢dH
~s-af o - )
2
~¢-af o { L% - Tl

~B(B8=1) (= d)*P V() ~ H(1)}
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—se—ap e { i - o]

e~ (=2 a”‘ (L2)+B(~ d)ﬂ‘l {HD-HW)} 52 O )
+(t—d)? eC{ ¢ ddil - (t)} g”' (%)
- - af {x S lm - T} - e -0 <o - Go)
~B(B-1)(t—d)’*{H({E) - H(t)}.
In xu space equation [4.1.2] is given by

Oov; Ov;
_F=0. 5.4.10
Vi~ oz + ot [ ]
If we insert the above expressions for Jv;/dz(t,z) and Jv;/0t(t,z) as well as that
for F(t,z) given by equation [5.4.9] into [5.4.10], then it turns out that all terms

containing H or any of its derivatives cancel leaving,

0v; 0v;
—(ﬂ 2)¢ | 5. 9% =
[ 2 2 ] 0

This of course is equivalent to [4.1.2]. By a similar process we find that [4.1.1] and

[4.1.3] also look the same when written in Xt space. This proves invariance.

In previous sections we discussed how the zero gravity picture could be obtained
from the general case using asymptotic solutions. Let us suppose that we require
the above transformations to exhibit the same behaviour. This means that given
a point X that is fixed, then we require that lim¢ 0o X = limewoo gx(e71;%) = 0
(This is equivalent to saying that as ¢ — o0, |¢z(¢;x)| — oo, which illustrates the
magnification process spoken of earlier.). Let us consider the z component. Clearly,
from equation [5.4.9], this is true provided # > 0. The time component also satisfies
this requirement provided d = 0. This defines our family of curves with which we can
asymptotically approach the cusp. The final requirement is that lim¢_, G =0 and
this is true provided v < 0. Then, with the equations of motion now written in Xt
space, we obtain the zero gravity case in the limit as ¢ — oo provided we assume

that F is zero along the time axis.
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So what do we conclude? Well, we have found the most general transformation
group and showed that if we restrict 8 and v (the similarity degrees for z and G
respectively) then the differential equations asymptotically reduce to those of the
gravity free case. We recognise this process as being identical to that of §5.3 and so our
original procedure is compatible with the more complicated symmetry transformation.
The presence of H and its derivatives implies that equations [4.1.1]-[4.1.3] allow a
more complicated symmetry transformation than that given by equations [5.3.1].
However, we notice that these additional terms can be thought of as representing an
arbitrary set of Galilean transformations. This is because the z coordinate is simply
being translated by a factor t#ePS{H(f) — H(t)}. It was because of this we decided
that it was not worth pursuing the problem any further using the more complicated
similarity solution approach. We felt that if any further progress was to be made on

an analytical solution, it would be to simply prove existence.

§5.5. Asymptotic behaviour of Newtonian equations of motion in {r space.

This section acts as a prologue to chapter seven which discusses the asymptotic
limit of the spherically symmetric, General Relativistic equations of motion. We shall
illustrate how the Newtonian equations of motion in ¢r space reduce to that of the
gravity free case, written in terms of Cartesian coordinates, in the appropriate limit.
As before the asymptotic solutions are similarity solutions and therefore are invariant
under a certain symmetry group. The crucial point to realise concerning this analysis,
however, is that g, only represents a symmetry group in the limit. It does not form

a symmetry group for the general tr Newtonian equations.

One dimensional Newtonian gravity in the context of spherical coordinates means

that the equations of motion for three superimposed dusts are:

OF 2F

N R 5.5.1
dv;  Ov;
vig " + 5 = F [5.5.2]
and
Opi | Ovi  2pvi _ Opi
v.—(—?? + pi ar T (5.5.3]
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Let us assume that the cusp forms at r = r.. If we make a transformation, z = r—r¢,
then we have effectively moved our origin from r = 0 to r = r,. « then becomes
the position of some point as measured from r. in much the same way as in previous
sections. If r; is constant then [5.5.1]-[5.5.3] become

oF 2F
5;+ r+re - —G;p,,

aa:+3t

A

= F,

and
Op; + Ovi  2pivi _ Opi
oz  Por Tz +r., Ot

Ui

We now transform our equations according to the following group,
g(g;t,z, Fvg, pi, Q) = (¥, bz, P ehvig eheip; 5kGG) (5.3.1]

and define a new coordinate system according to X = gx(&;x). As mentioned above,
we do not necessarily require equations [5.5.1]-[5.5.3] to be invariant under [5.3.1]. In
fact, the presence of the 1/(z + r¢) factor forces these equations to be not invariant
under these transformations. However, we wish to show that in the limit as ¢ — o0,
the above differential equations reduce to those that govern the gravity free case
written in terms of Cartesian coordinates, (f,z). Following the process described in
sections 5.2 and 5.3, we fix x and suppose that the length and time scales of our £
coordinate system increase asymptotically. To achieve this we insist that k; > 0 and

k¢ > 0. Now under the transformations given in [5.3.1], we have:

OF  2F oF 2F -
Al G — ke—kp kF“kz_kG_kp,'G ~ :
Oz :c+rc+ E pi=¢ {8:1: z+ekzrc+€ zi:/’t

Vi

- — F — T vy 13 vy :1:__~_ — v; F xF
9z Bt i KPR 2 e o ¢

and

Vi

oz +p'5~+x+rc ot il Pioz z 4 ekor,

ap
k1+ku —kg pl
e o7 }

ap,' 8'0, 2/),"0,' _a_& — 5k‘_k”i_kl’i { 8/); . 86, 2ﬁ,”6,’
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Hence in the limit of ¢ — oo, these equations reduce to the Cartesian differential

equations provided

k1’+kG+kp,'_kF=0,

ky — ky; — kit =0,
and

kp + kg — 2k, =0,

which are precisely the conditions for the Cartesian differential equations to be in-
variant under [5.3.1]. If we further stipulate that 4 < 0 and that F'(¢,0) = 0, then we

obtain the zero gravity situation.

This comes expected since r, is being scaled by a factor, ¥ where k; > 0, which
increases as we increase €. Physically, as we change ¢ and move towards the cusp, we
move from different pictures of caustic formation in which the cusp position, e*r,
increases from picture to picture. Hence, locally, along any radial axis, the spherical

shells begin to look like planes. This of course corresponds to the Cartesian picture.
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CHAPTER 6. NUMERICAL APPROACH TO CAUSTICS IN
GENERAL RELATIVITY.

§6.1. Introduction.

The beginning of this chapter marks a change in tack for this thesis for we now
start to look at caustic formation within the context of General Relativity. Now
although General Relativity is a very different theory of gravity to that of the Newto-
nian description, with regards to our problem, there are some similarities. These are
mostly associated with the concepts to do with the setting up of the problem rather
than the mathematics. Having said that, the construction of the tangent bundle sur-
face in the General Relativistic case is compatible with the X-formulation described in
§2.2. If we recall, the construction of S as a congruence of integral curves of a vector
field, Z € T, Xp)(TM ), was made specifically to be metric independent. It was only
when we started to put restrictions on the form of Z did we obtain the Newtonian pic-
ture of caustic formation. Perhaps, to remind ourselves, we should be more specific.
We found that our formulation reduces to the Newtonian case if the vertical part of Z
is a function of time. This implies that the projection onto M of the integral curves
of Z,i.e. z'(t), satisfies a Newtonian-like force law. That is to say, d2z*/dt? = fi(¢).
If fi(t) = (VV)' (x(t)), then the likeness becomes even more obvious. The General
Relativistic picture arises from a different restriction on Z. Let us now suppose that
t represents proper time. Then, if we make a different assertion as to the form of f*,
we obtain the geodesic equation, i.e., if fi(t) = —F;kdxj/dt(t)dxk/dt(t) where each

F; ¢ 1s an, as yet, undefined function of ¢.

Now in the Newtonian case, we described the problem as the solution to the
equations conserving mass and momentum. When we consider caustic formation in
General Relativity, we study the analogous equations. That is to say, in this chapter

we shall analyse

N k B k ) .
Gt] — —K,TU = —k Z T(;) = —K Z ,u(p)vzp)vfp), [611]
r=1 r=1
Vlp)si VT =0 [6.1.2]
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and
7
T(p);j = 0. [6.1.3]

by looking for a numerical solution to these equations. Here, G¥ and T% are the
Einstein and energy-momentum tensors; the other quantities, vzp) and p(y), represent
the components of the velocity field and density of dust p. Equation [6.1.1] is simply
Einstein’s field equation relating the geometry of our spacetime to the mass distri-
bution in it. It illustrates the fact that we are again considering a multi-dust region
(cf. equation [4.1.1], the Newtonian equivalent). [6.1.2] is, of course, the geodesic
equation and is analogous to the conservation of momentum equation, [4.1.2] in other
words. The final equation completes the specification of our problem. It represents
the conservation of matter in our system and this should be compared with equation
[4.1.3]. The fact that we have a dust index on the energy-momentum tensor is impor-
tant. It shows that there is no interaction between the dusts and that each separately
satisfies the equation of motion (the criteria for superimposed dusts). This equation,
therefore, represents a specific input to the problem rather than simply a consequence

of the Einstein equation.

As in the Newtonian case, we again have to address the problem of joining con-
ditions. In this sense, the General Relativistic case is equivalent to the Newtonian
example considered in chapter four. However, as we are developing a model with
the view to solving the equations numerically, we are able to approach this from a
different point of view. For the moment, reconsider the analytical case. There we
were trying to solve our equations as functions of ¢ and z. We knew that information
is lost at the caustic because of the unbounded behaviour in some of our derivatives
and density functions and we therefore prescribed information to replace this. In the
numerical approach, however, we adopt the Euler method to integrate and solve for
the geodesics. Things are now different for no matter how you associate information
with these particles, the information is there when you get to the caustic and remains
so whilst you pass through it. Thus, it is not a problem of loosing information, rather

it is what do you do with the information when you get there.

With regards to the velocity, there is no problem. A particle has a velocity
as it arrives at the caustic, and the equations of motion tell it how to move off.
This is the situation whether it’s particles entering the multi-dust region or if their

trajectories are being re-labelled as they become tangent to the caustic. In order to
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make this statement, however, certain assumptions regarding the metric are required.
Specifically, we assume that the metric is continuous (though not, at this stage,
necessarily its derivatives) so that the connection does not contain an impulsive part.
This is important for it means that the flow vector is continuous and remains so
particularly as we parallelly transport it through the caustic. For the density functions
we have a slight problem. If a conserved mass is associated with each ‘particle’ (which
could mean either a particle in the normal sense or simply a reference point on a
curve) then how this information is transferred depends on the picture we are using
to describe mass. We shall therefore postpone this discussion to a later section when

we consider representations of the dust continuum.

Before we move on to describe the structure for the rest of this chapter, let us
conclude the general description of the problem by choosing our coordinate system.
Ideally, we would like to formulate our problem using planar symmetry, as defined
in §2.2, so that we have a direct comparison with the Newtonian work. This choice
would also simplify matters for we could work with a two dimensional manifold. For
the case of General Relativity, however, such a formalism is not necessarily the sim-
plest. Instead, therefore, we choose spherical symmetry to formulate our problem
because of its greater familiarity and physical relevance. Now there are many differ-
ent coordinate systems that reflect spherical symmetry, each with its own particular
attributes. Curvature coordinates, however, provide us with the greatest degree of
simplification of the field equations for spherical symmetry. In fact we are able to
obtain expressions for the metric components as integrals of G* j, the mixed Einstein

tensor.

The other reason, and this is important, is that we expect the asymptotics of
this system to be similar to that of the gravity free case formulated in Cartesian
coordinates (ref. §5.5). This enables us to answer the question, does gravity really play
no part in cusp formation. We explain; classically, General Relativity is considered
to be a far more descriptive theory of gravity than Newtonian Theory. Thus it could
be that the asymptotics of a General Relativistic formulation of caustic formation
is different to that obtained in §5.5. This would mean that the previous conclusion,
that gravity does not play a significant part in caustic formation, is an artifact of
the simpler, Newtonian theory. On the other hand, we may obtain the same results.

Both conclusions are equally exciting, however, if we obtain the former result then
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the significance of the work presented in chapter five is decreased. This gives the

reader a sneak preview to the work we will present in the next chapter.

We shall continue this discussion on our adopted coordinate system in the next
section. The ideas will follow those presented by Synge [S], however, because they
represent the building blocks with which we construct our model, it is important that
we redevelop them in this thesis. In any case, the aim will be to present the metric

coeflicients as functions of Gij. This then allows us to readily include matter via

Gij = -—fs:Tij.

In §6.3, Synge’s formulation is applied to the case of a spherically symmetric dust.
That is to say we shall define an energy-momentum tensor that reflects the multi-
dust model described in the Newtonian case, and try to relate our metric components
directly to the quantities within this definition that describes the matter. The problem
encountered here is that Tij is in fact a function of g;;j. Thus we cannot write
the metric components as a function of the mass descriptors alone. To solve this
problem we shall introduce an orthonormal tetrad of vectors to act as a new basis
for TM. Using this technique, we are able to write g;; as functions of uzp) and
}i(p), the components of the fluid flow vectors relative to this tetrad and the densities
respectively. This would be a rather nice formulation to invoke in a computer program
designed to numerically solve our equations. It would mean discretising our spacetime
into a series of ‘particles’ (a term which can mean many things and will be defined
later), each holding uzp) and p,) as part of the information defining the dust. In
fact, §6.4 describes this process and presents a method of obtaining a solution to the

geodesic equation assuming we can describe the matter using these variables.

In reality, however, we need to define what we mean by density. In §6.5 this will be
discussed, and in doing so we shall see that the above formulation is again corrupted,
i.e., gi; once again becomes the solution to a first order, differential equation. We
shall introduce the concept of a conserved mass between geodesics and formulate a
functional definition for the density in terms of these quantities. Having done so,
we then proceed to define the representation of our dust continuum that we will
adopt in our computer program. In addition, some of the numerical techniques which
are not specifically designed to solve the equations, but provide valuable information

nonetheless, will be described. Examples of these are: determination of shell crossings,
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determination of dust number and the treatment of how mass is transferred between

dusts at the caustic.

In §6.6, we consider ways to determine the metric coefficients. Now, even though
we no longer have the neat formalism presented in §6.3, there is a feature of this
problem that enables us to find the metric components, numerically at least. This is
that g;; at any point in our spacetime is a function of the integrated mass between
the origin and that point. Thus given the metric at r = 0, we can construct an
Euler scheme that starts at the origin and then proceeds to find an approximation
to ¢;; anywhere on a ¢ = const timeslice in M. Of course the reader might ask
why hadn’t this procedure been adopted at the outset with the variables vz »)? thus
avoiding the need to introduce an orthonormal tetrad. The only answer to this is
that the construction of the computer code was an evolutionary process and that this
was realised perhaps later than it should. It possibly also provides us with equations

that contain fewer terms. In any case, this is work discussed in §6.6.

Finally, in the last section, we shall present the initial conditions and a summary
of the procedures used in the program. The expectation is that the reader will find a
lot of the material presented in this chapter to be rather abstract, a consequence of
the fact that we are, in essence, trying to describe a computer program that evolved
over a number of months. To try and bring this information together into a coherent
set of processes, we shall list, and then dry run so to speak, the procedures that
constitute a single time step. Whilst doing this, it is hoped that the reader will gain

an understanding of the ideas thus previously presented.

At some stage, we shall need to define the initial conditions. We choose to do
so at the end. The reason for this is that to define our variables on an initial ¢ = 0
time slice, we need to know what variables we are dealing with and of course we
don’t. Thus we shall try to construct the argument in general terms. This, in actual
fact, is virtually impossible, for the program does make some assumptions on the
type of caustic we wish to model. Therefore, so as to make the reader aware of these
assumptions, we provide a global picture of the caustics we are considering. This can
be described quite quickly. We suppose that there exists a point, (r¢,0) at which the
cusp forms. This point is analogous to the axis of symmetry considered in the gravity
free case. Moreover, we consider our velocity distribution about r = r,, to look like

that in the gravity free case about z = 0. Thus, v(ll) <0, 0(12) = 0 and v(13) > 0. In
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addition we suppose that if T(p) = :v%p) represent geodesics, then r(;) > r¢, r(g) = 7c

and T(3) < T

§6.2. Synge’s formulation of spherically symmetric spacetimes.

In this section we shall be primarily concerned with the geometrical aspects of
the problem we are considering. That is to say, given the components of the Einstein
tensor, can we obtain the metric. Of course, if we can do this, then due to Einstein’s
equation, we automatically have the metric components as functions of the matter
variables. This procedure, however, produces complications and because of this, we

choose to defer our discussion on the inclusion of matter until the next section.

Now we said that for simplicity in the components of the Einstein tensor, curva-
ture coordinates will be adopted. This means that the line element for this system

becomes

ds® = e®dr? + rldo? — e7dt?, [6.2.1]

where do? = d6? + sin?0d¢?. The quantities, e*(t7) and e7(t7) | are as yet, undefined
functions of ¢ and r, however, we assume that they satisfy the following boundary

conditions:

ea(t,()) - 6'y(t,O) — 1,

or equivalently,
aft,0) = y(t,0) = 0. [6.2.2]

This is the condition for elementary flatness [S]. Its formal definition requires that
the ratio of the circumference of a small circle to its radius is 27. In more mean-
ingful terms, however, this is equivalent to the assumption that spacetime becomes
Minkowskian as r — 0. It is simply a different, but analogous assertion to that
requiring the spacetime to be Minkowskian in the limit as » — oo for asymptotic

flatness.

Using the above form for the metric, we can now calculate the components of

the Christoffel symbol, the Riemann tensor, the Ricci tensor and finally the mixed
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Einstein tensor. We find that the only remaining non-zero components of G*; are

Gli=r"2—r 2 (1 +ry), [6.2.3]
G =G =" <—l’m - l,yz - l1‘_1’)'1 + l1”_1041 + lal”ﬂ)
2 4" 2 2 4
9 14 474 40474 ’
Gly=r"2 _p 2 (1-ra) [6.2.4]
and
e*Gly = —e'G* = —rlay, [6.2.5]

where the subscripts 1 and 4 represent partial derivatives with respect to r and ¢
respectively. This is quite a remarkable result for we can see that equations, [6.2.3]

and [6.2.4], can be integrated to give a and « as functions of G*j. For e* we have
from [6.2.4] that

which implies that
e ¥=1- l/r riGt, dr.
c(t)

7

The function, ¢(t), is arbitrary, however, if we use one of the conditions for elementary

flatness, this can be eliminated. We obtain the result,

1 fr
e_“zl——/ r2Gty dr.
0

T
In a similar manner we can now integrate [6.2.3]. This differential equation can be
rewritten as

Oy  e*—1

a vl
= —re®G'y
or r

rTe® 1
_—_>7=/0 er —re®Gy dr

where again, the elementary flatness condition has been used to determine the func-
tion of integration. Alternatively, we can obtain a different formulation for (¢, r)

simply by subtracting [6.2.4] from [6.2.3]. This gives

—re”* (a1 + 71) = r? (Gll — G44)
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= a1 +71 = —re” (Gll — G44)

= 7= —a—/orre“ (Gll — G44) dr.

The above ideas can be summarised by saying that we have now found «ft,r)
and 7y(t,r) as functions of G*4 and G';. This, given G';, completely determines
the metric. It can be shown [S], using [6.2.5] and the identity, ViG'; = 0, that the
remaining unconsidered, non-zero components of G, i.e., Gl4, G*1, G%3 and G33, can
be written in terms of G4, G'; and their derivatives. This means that we have two
fundamental functions, either a and 5 or Gy and G*4, that describe the geometry of
our system. If we do have some matter with energy-momentum tensor, 7', then only
two of its components need be used to determine the metric components. Moreover,
no matter what form our energy-momentum tensor takes, the limits between which
we integrate imply that at any point the metric components are determined by the
mass that the shell passing through that point encloses. Although we promised not
to include matter within this section, we shall finish by presenting these results in

terms of T" 5t

e =145 / r2T4y dr [6.2.6)
r Jo
and
vy=—a+ n/ﬂr re® (Tll - T44) dr [6.2.7]
or
v = /OT ea; ! + kre®Tty dr. [6.2.8]

§6.3. Synge’s formulation applied to spherically symmetric dusts.

Equations [6.2.6]-[6.2.8] tell us how to relate the metric components to an arbi-
trary energy-momentum tensor. In this section we shall define T*; and therefore the
kind of matter we wish our spacetime to have. We should stress that the equations
that constitute the model of caustic formation, which we are setting up, will not be
presented here in this section. Instead, we merely plan to define our matter in such

a way so as to be compatible with our model. In other words, the aim of this section
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is to simply take equations [6.2.6] and [6.2.8] and develop them further by specifying

the right hand side in terms of the mass or matter variables that describe a dust.

Now, in the Newtonian discussion we modelled caustic formation by considering
converging dust particles. In the General Relativistic case, we do the same thing.
With the notion of a dust given in chapter one, we are able to immediately write
down the energy-momentum tensor for this kind of matter to the future of the caustic

set. That is to say, since a dust (collision-less fluid) implies zero pressure, we have

. k .
Ti; = Zl 1(p) V) Vo) Ik - [6.3.1]
p:

This definition involves two new functions, f(p) and v(y), which represent the proper
density and 4-velocity of a dust indexed by p. For the moment, we shall assume
that the density is simply a given function. The velocity, however, is defined by

]
“(r)
particles from dust p might travel and 7 is the proper time. For convenience we shall

= dz} ,/dr, where ' . represents the components of a geodesic along which
(») (») &

normalise the velocity so that Uzp)v(p)i = —1.

If we picture our spacetime as a single entity, then regardless of the number of
dusts, we again consider our matter continuum to be constructed as a series of shells
(Ref. §2.1.). Since we are dealing with spherical symmetry, if we project these onto the
r0¢ plane we obtain a set of concentric hollow spheres. It also means that fluctuations
in the density and velocity are in the ¢ or r direction only, so our 4-velocity becomes

of the form,

vy = (vf5)0,0,0y)) -

If we use the condition that va)v(P)j = —1, then this becomes

1 —y/2 o
V) = (v(p),(), 0,e v/ 1= v(lp)v(lp)e } ,

which is useful since we now only need two variables, yi(;) and v%p), to specify our

matter.

Clearly, equation [6.3.1] represents the energy-momentum tensor for a multi-dust
region in our spacetime. If we choose k equal to 3 then within the context of a

spherically symmetric dust exhibiting shell crossing singularities, 7(.S) becomes a
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simple fold catastrophe (ref. §4.1). Here, m: TM — M represents the projection
map and S C T'M, the tangent bundle surface generated by xzp). For the region not
enclosed by the caustic we have k = 1 and we can drop the dust index. The simplicity
of [6.3.1] hides the fact that when inserted into [6.2.6]-[6.2.8], the metric components
become complicated functions of the 6 mass variables: £(1)s v(ll), B(2)> v(lz), 1(3) and
v(ls). This means that g;; becomes a function of 3 velocity vectors and is therefore
determined by quantities defined on 3 disjoint regions of S. Since the acceleration of
any particle is a function of the metric components, this corroborates the description

of the gravitational interaction given at the end of §2.1.

With the above form for 7" i, however, we encounter the first problem with Synge’s
formulation—Dby inserting [6.3.1] into [6.2.6], we obtain an integral equation for e™*
that involves e* as part of the integrand. This means that we no longer have a nice
functional formulation for the metric components. To surmount this problem we
introduce a tetrad, e,, of orthonormal vectors to act as a new basis for TM at any
point in the manifold. Using this formulation, a vector with components, v*, relative
to the coordinate basis, 0;, will have components, u®, with respect to the basis, eq,
such that u® = e%v'. Here a = 1,...,4(dim M) and the matrix, (e%;), is invertible
with (e",')_1 = (eai). Now, for curvature coordinates the vectors, J;, are in fact
orthogonal; a direct consequence of having a diagonal metric tensor. This means that
we can choose the e, to be J; but rescaled so that their inner product, with respect

to the Minkowski metric, is unity. Thus we have
e1=€1'9/0z}, ez =200z, e3=e3%0/023, e4 = es*d)0s?, [6.3.2]

implying that (es') is also diagonal. Using the condition, g(eq,e,) = 1, the above

scaling parameters, e;* (no summation implied), can now be identified. We have
; 0 . 0
g(ea,€a) = ¢ (ea’ﬁ, ea]’a;)

and so obtain the result:




We can now determine the relationship between the components of v and u. We have

that u® = e%v* and therefore,
u= (vle“/z,O,O,v467/2) .
We also have eg/u® = ez/e%;vt = 6{vi = v? and thus,

v= (ule_a/z,(),(),u'*e—"/z) .

The upshot of all this is that we now have a new function describing our matter,
Le., upy). We shall see that by rewriting the energy-momentum tensor using this
tetrad formalism, the critical components of T*; become independent of g;;. Now,
from [6.3.1] we have

3
) i b k
T']. = Z:llj,(p)u‘(lp)ea U(p)eb gk]',
p=

and in particular,

3
T! = Z H(p)u‘(lp)ealugp)ebkgkl
=1

3
p:

3 1 1
p=

and
4 > 4 2,4 2
T = 3 e ulye " (o)
p:
3 4 4
=1
Although not relevant to the current discussion, we shall include the T4 component,
1 & 1 2 4 /2
T4 = Elu(p)u(,,)e‘“/ pe (=)
p=

3
= z:l —u(p)u%p)u‘(ip)e(”_a)/z. [6.3.5]
P:
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This will be required in the next section.

Finally, if we insert [6.3.3] and [6.3.4] into the equations that were developed in
the previous chapter giving the metric coefficients as functions of T‘j ([6.2.6] and
[6.2.7]), we obtain

—-a _q n/r23 4 4 d [636]
e = +;— A r pglp(p)u(p)u(p) r 3.
and
r ! 11 4 4
y=—atk /0 re El o) (ulpyly) + ity - [6.3.7]
=

Of course, if we use the normalisation condition imposed on our velocity vectors, we

find that

i i i ia _ib . a b 11 4 4 _
Y(p)U(p)i = v(p)vfp)g,] = €a'U(p)es’ U(y)Gij = U(p)U(p)Tab = U(p)(p) ~ Y(p)U(p) = —1

4
up) =41+ Uiy Y{p)>

so that the left hand side of the above equations become functions of only six mass

implying

variables as expected.

Thus the problem with Synge’s formulation applied to spherically symmetric dusts
is solved, 1.e., one can find a and v at any point in the spacetime given p (¢, r) and
u%p)(t, ). At first sight this seems like an extremely useful result, however, as we shall
show in §6.5, when we consider writing the proper density in terms of a conserved
mass, metric components reappear inside the integrals for a and v. There is no cure
for this new complication and to get around this we must choose an appropriate

integration scheme.

§6.4. Numerical evolution of a spherically symmetric dust.

The earlier part of this chapter presented a method of obtaining the metric com-
ponents, i.e. e* and €7, as a function of the mass descriptors, u%p) and g ), for a
spherically symmetric dust. Whilst we concentrated on obtaining these expressions

we did not discuss in any detail the model we are trying to set up. In other words,
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we defined our matter in a way immediately applicable to modelling caustic forma-
tion, but neglected to describe how this matter evolved. In this section, therefore,
we present the model as a set of differential equations that determine how we must
evolve our dusts. Since we are interested in determining the curves that our dust
particles follow, it is clear that the geodesic equation will be the key equation and
our problem really boils down to solving this. We shall opt for a numerical solution,
primarily because of the highly non-linear differential equations that we expect to
obtain. This, of course, is a characteristic of formulating physical problems within

the context of General Relativity.

Now, the equations we wish to solve are [6.1.1]-[6.1.3]. For convenience, we shall

restate them here:

. . koo k .
GY = —kTY = -k E T(;) = —K E ,u(p)vzp)vgp), [6.1.1]
p=1 =1
vz‘p);].,,{p) =0 [6.1.2]
and
T(';);J. = 0. [6.1.3]

The first equation, [6.1.1], defines the metric in terms of the mass parameters. This
was discussed in great detail in §6.2 and §6.3. [6.1.2] is, of course, the geodesic
equation and as mentioned above, this tells us how we must evolve our dusts. It is
really this equation that we need to solve; the other two can be thought of as there
simply to supply us with information so that all terms in the geodesic equation are
known. The final equation is the General Relativistic equivalent of the conservation
of matter equation, [4.1.3]. This provides us with a single piece of information which
allows us to determine the density as a function of the metric components, each dust’s

4-velocity and a conserved mass (more of this later).

We shall start by explaining the techniques used to numerically solve the geodesic
equation. Of course the density function should be defined since clearly it will ap-
pear within the geodesic equation in one form or another. In order to simplify the
discussion, however, we shall delay specifying the functional form of p,), but assume
that it is known. This enables us to quickly present the ideas for solving the geodesic

equation. The reason why we adopt this segmented approach is because, in actual
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fact, it is the specification of y(,) and the rules by which we must treat this function
on the caustic that provides the complexity of the problem. In other words, we could
say that the real heart of the problem is understanding how the crossing of shells
and therefore the transference of matter between dusts effect the geodesics. These

phenomena alter our equations exclusively through the density function.

Now, the Euler method is perhaps the simplest that one can use to solve differen-
tial equations and therefore, as a numerical technique, it presents an adequate starting
point to model the evolution of a relativistic dust. By way of revision, suppose we
have the differential equation,

dr

i
for some f. Then, if we know r(t) at ¢ = ¢, say, we can write down an approximation
to the solution for r(t) at ¢ = tn + 6t as follows. If r(,) represents r(tn) and tn41 =
tn + 6t, we have, from [6.4.1],

(t,7), [6.4.1]

== T(n+1) = T(n) + (tn+1 - tn)f (tn,r(n)) .

In the case we wish to consider r represents a geodesic, which we now denote by r(,),
along which a particle from the pth dust might travel. The function, f, must then
represent the velocity with respect to our coordinate basis, i.e., f(t,r()) = dr(,)/dt(1).

Thus we have, for a geodesic of dust p,

T(p,n+1) = T(p,n) + (tn+l - tn) d(tp) (tn)

=T(pm) T (tnt1 —tn (p’n)

(P,n)

= T(pn) T+ (tnt1 = tn) E”’"; e(Ym—am))/2
P,

= rpm) + (tns1 — (’”") e(Tm—am)/2, [6.4.2]

[+ u(p, )u(p,n)

where we have used the requirement that the v(,) be normalised. It can also be seen
that we have developed the notation further. From now on we shall discriminate

between coordinate and non-coordinate indices by grouping the latter in brackets.
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Moreover, for clarity in the argument, only those indices relevant to the discussion

will be grouped, but we will try to explain this at the appropriate juncture.

The numerical scheme is not complete for we have yet to find a way of estimating
the (tp41—1n) coefficient in equation [6.4.2]. For this the geodesic equation is required,
however, before we consider this, it might be worth listing all the procedures that are
required in a single time step of a computer simulation. Although at this stage, it may
seem rather abstract, the hope is to provide the reader with the chance to formulate
a global picture of what is going on. Thus, the logical sequence of events for a single

geodesic are as follows:

1. Given all variables evaluated at t = t,, i.e., T(p,n)> u%p n) and M(y) (which
represents a conserved mass for this geodesic and will be defined in the next

section), calculate e*(™) at r = r(, ) (process not yet defined).

2. Using information from step 1, calculate €™ at r = r(, ,) (process not yet

defined).

3. Using information from step 1, calculate p(, ) at 7 = rp 5 (process not yet

defined).

1

4. Using information from steps 1, 2 and 3, calculate Uipnt1)

(solution of geodesic

equation and process not defined).

5. Using information from steps 1 and 2, calculate r(, ,1) (equation [6.4.2]).

We can use this list of procedures as an aide-mémoire in the rest of this chapter to
ensure that the program and all required analytical calculations are described. Once
this is done, we shall revisit this list and fill in the blanks.

The first blank that we shall fill in is a description of how to obtain an approx-
imation for u%p,n +1)> given every other function evaluated at ¢ = ¢,. To do this, we
again use the Euler technique with the result that

1 1 d“%p)
u(p,n«i—l) ~ u(p,n) + (tn+1 - tn) dt (tn) [643]
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The (tn41 — tn) coefficient is essentially the time derivative of the velocity. This
information can be supplied by the geodesic equation provided we can write it in a
form that we can use. In other words, we require equation [6.1.2] in terms of the tetrad
velocity, u‘(‘p). Until now we have been formulating our ideas in terms of discrete time
steps, if we return to the continuous picture then we can drop the subscript n and

simplify the notation. Thus to obtain du%p) /dt we have,

Vv(p)v(p) =0 [6.1.2]

a b _
= ufy) Ve, (ufyes) =0
a b a b c .
= ufyyea (uly)) e + ufpyuy Caec = 0

a c a b c . _
= U(p)€a (u(p)) + u(p)u(p e = 0,

where [y, are the connection coefficients with respect to the basis, e,, defined by
Veses = I'apec (To avoid confusion, the I'¢,; will never be evaluated so that com-
ponents, I''y; for example, will always refer to the connection with respect to the
coordinate basis.). Note also that e, (ufp)) is a function defined on M. To proceed,

we need to determine the relationship between I'*;; and I'°,;. Now,

Ves€h = eaiV' (e,,fa-)
= ea'0i (&) 9j + ea' e TX 04

and since J; = e%;e,, we therefore have
TS = eq'd; (ebj) e + eaiebjF%eck.
Inserting this result into our geodesic equation gives
u((lp)e“ia‘ (ufp)) + u‘(lp)ul(’p) (e“iai (ebj) ej + e“ie”jrfj eck) =0,

then since vzp) = d(ltzp)/dT, we have u‘(‘p)eai(')i = d/dr resulting in,

(p)

d k :
o T U g + e iea T e = 0.

90



By the normalisation condition, u® \u(,« = —1, we automatically have u? , as
(n)"(p) ’ (»)
a function of u%p) and so therefore we only need to solve the r component of this

equation. Thus for ¢ = 1,

dul u d
T ) oo
Iy T Ul T 2ulpule T T s+ upuly e s = 0,

[6.4.4]
meaning that in order for us to write our geodesic equation in terms of known quan-
tities, we need to determine the connection coefficients. This, in fact, is easy because
the metric in curvature coordinates is a diagonal matrix. Thus by simply inserting the
form for g;; that we have into the definition of I'* jk» we obtain the following results:

1 1 1

'y = 201, My = 504 and Tly = 56’7_0[71-

Equation [6.4.4] then becomes

dul
@ 11 1 _ap Ly 4 1y 1 a2 1 4 —v/2

= gt a1t () () ey = Fupulye Fan = ufyyulpye ™" e

1 4 4 —af2

5 U(p)Up)® "

dul 1 1
(p) _ 1 4 _—~/2 4 4 —af2
= 3r ~ 4o "me K a4 = SUp)Y(p)© Py

This equation is now beginning to look like the form that we require. The left
hand side is giving us the derivative of u%p), albeit with respect to 7 (although this is
not a problem), whereas the right hand side is a function of the mass descriptors, the
metric components and derivatives of the metric components. In fact the troublesome
metric derivatives can be removed using the G'; and G'4 components of the Einstein
tensor (equations [6.2.3] and [6.2.5]) in conjunction with the energy-momentum tensor
(equations [6.3.3] and [6.3.5]). In other words, since

3
ay = _relrta)/2, Zl ”(p)u%p)u?p)
p:
and
e* 1 a 3 1.1
n= T tres Zf(p)"(p)“(p)’
p=
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our geodesic equation becomes

du%p) _Lly 4 e 3 1,4 L 4 4 a2 1 —a
dr _ t@%mTe " F Zlﬂ(q)u(q)u(q) 5 Y M) ® ( € )
q=

1 4 4 af2 3 1
BERORON / “;ﬂ(q)“(q)“%p)-

We can remove the derivative with respect to 7 and replace it with one with respect
to t simply by dividing by dt/dr = v?p) = u‘(ip)e_"/ 2, In addition, the summation
signs can be removed if we allow (p, g,r) to represent some permutation of (1,2,3).

Thus finally,

du%p) _ 1 iy 1‘_63)_ (1 —a) 1 4 1 4 1 )
=75¢ . 0T ) TETH(gU(g) (u(q)u(p) ~ Up)%(g)

dt 2 [6.4.5]
1 4 1 4 1
 RTE(n)Y(r) (“(r)“(p) - “(p)“(r)) '

To summarise, the above analysis results in an equation that relates the time
derivative of u%p) to known quantities. If we wish, we could evaluate both sides of
this equation at ¢ = t, so that the result is immediately applicable in the numerical
scheme summarised by equation [6.4.3]. In essence then, given T(p,n)» u(lp’n), E(p,n)>
e”™ and "™, we have developed numerical techniques with which we can calculate
T(pn41) and u%p,n—}-l)' This completes parts 4 and 5 of the list of procedures that need

to be implemented in a computer program.

Before we move on, we should say that equation [6.4.5] is quite important in its
own right. It is analogous to the force equation presented in §4.1 (and indeed reduces
to it in the low velocity limit as the next chapter will show), but is clearly far more
complicated. It is quite believable, from a superficial glance, that there may indeed
be certain additional terms that are determining the physics of cusp formation. That
is to say, if we could perform an asymptotic analysis in much the same way as we did
for the Newtonian equations of motion, we might find extra, non-linear terms that
remain at the end of this process. On a less profound level, we can see from equation
[6.4.5] that the terms containing p(,) cancel. This means that as T(p) approaches the
caustic it is unaffected by its own local density except via its own integrated coulomb
field. That is to say, the only effect that x(,) has on a geodesic, T(p) say, is due to the

integrated mass between 0 and r(,) distorting the spacetime metric.
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The last thing to point out regarding this equation, is that as noticed by Clarke
and O’Donnell [CO], it is possible for the derivative to remain bounded even on the
caustic. To explain, suppose that p, ¢ and r equal 1, 2 and 3 respectively. Then as r(;)
approaches the caustic, the term on the right hand side of equation [6.4.5] containing

K(2) has the potential to become infinite. Let us consider this term. We have

—rriayuly) (ulpyuly — ulyuly)

or equivalently,

—wriayuly (1 + ulyulyy — by 1+ el

Now, there eventually becomes a point (on the caustic) where r(1) and r(y) coexist.
Thus, although f(1) and gy both tend towards infinity, “%1) - “%2) tends to zero and

it becomes possible for the above product to be finite on the caustic.

§6.5. Approximations to the dust continuum and determination of the

density function.

We have now come to a point in our discussion where we cannot proceed any
further without discussing the density function. The reason for this is that in doing
so, we define a quantity known as the conserved mass which crops up in the processes
to determine the metric coefficients; the last two blanks in our list of procedures. In

this sense, therefore, y(,) is more fundamental and so we discuss this next.

This section is likely to be of some length for not only do we need to define
the density and how it relates to the concept of conserved mass, we must define the
representation for the dust continuum that we wish to use in our computer model.
This, of course, leads us into the discussion on how to manipulate our information
regarding mass when our geodesics reach the caustic; joining conditions in other
words. Here we will have to talk specifically about certain techniques used in our
computer program to track particles as they move and cross, as well as keeping a
record of which dust they are a member. We therefore leave this to the end of this

section.

We begin by supposing that M(,) represents the contribution to the total mass in

a region, U, of our spacetime, made by particles that are members of dust p. Then, as
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required, if U represents a ¢t = const time slice orthogonal to V(p), We can construct a
relationship between these quantities and each H(p) (Note that the evolution equations
discussed in the previous chapter essentially approximate our spacetime by a series
of t = const hypersurfaces.). To do this we shall firstly define the idea of a conserved
3-form on M that represents the mass flux of a single dust having a unique flow vector,
v. This allows us to define as an integral, the relationship between M;, the total mass
in U due to our single dust, and g, its density. Having done this we then modify this
definition so that it becomes applicable to the case that we have, namely a.multi—dust
region in M. The result will ultimately constitute the functional definition for the

densities that we have been neglecting to specify.

Now to determine this 3-form we note that for a single dust,

TV, = pololy + (w?) o,

which by equation {6.1.2] and [6.1.3] implies that,

@ML:O.

We now write the left hand side of the above equation in terms of the co-vector, v,.

Thus,

)=
= — % (;aj (\/—_g,ugjkvk) dz' A dz? A de® A d:z;4>

= — % (%8]' (\/—g/tglkvk) 61mnpda:j Adz™ A dz™ A d:cp)

3!
= —xd* (,uvkdxk)
= —*d* (/va) )

—xd (——'_gpglkvkszmnpdxm Adz™ A dz”)

so that

d * (uvy) =0,
meaning that * (uv,) is a conserved 3-form [N]. It is this that represents the mass flux
3-form for a single dust. To see this we now show that * (yv,) can also be written as
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piyapyr, where aps represents the standard volume form on M. The quantity zyap is
said to be the restriction of a)s to a hypersurface orthogonal to v, i.e. U, and thus the
integral of pi,os is the total mass in this region. This calculation also consolidates

the two definitions for M(;)(U) given by equations [4.5.1] and [4.5.2]. So,

*(pyy) = = (/‘gikvidmk)
= ——?ygikviekpqrdz” Adz? A dz"
- _\’3“!9 v Eipgrdz? A dzd A dz”
= Miyapy

= Hog,

as required.

We can summarise the first part of this section by saying that the conservation
equation for a single dust (namely [6.1.3]) implies the existence of a conserved 3-form.

The integral of this 3-form over a surface in M, orthogonal to v, is given by

b= = =
s U*(/“)b) |, Hivan = | pas

and represents the mass in U due to a single dust with unique flow vector. Finally
we note that if U always corresponds to a t = const surface, then M, is a constant,
a result of the fact that * (uv,) is a conserved 3-form. We shall use this feature to

remove the integral signs, thus obtaining the density function.

The next question is how do we modify this definition to account for the fact we
wish to consider a multi-dust region in our spacetime. For this, it is worth bearing in
mind that this situation is equivalent to considering a region that contains a single
dust with a non-unique velocity vector. To solve this problem we recall §4.5, which
discussed how to define the notion of density in a Newtonian formulation of the
problem. Because of the fact that 7 was not orientation preserving when restricted
to S C TM, we needed to use the idea of a of pseudo-1-form on M to define p,
so that it transformed between T'M and M in the correct manner. For the General
Relativistic case we have a similar scenario and we therefore define p(,) to reflect this.

Thus, as in [4.5.2], we define the total mass in U C M due to dust p to be the integral
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of the proper density over a t = const hypersurface, orthogonal to V(p)- This means
that

Mo =, Hoew) 16.5.1]

where a(p) is the volume form on this surface such that op) = (—1)”+1iu(p)a M. Asin
the Newtonian case, the factor of (—1)?*! is important for it takes into account the
fact that 7 is not orientation preserving (ref. §4.5) and insures that the a(p) all have

the same orientation with respect to ayy.

We now proceed to remove the integral signs in equation [6.5.1]. The previous

calculation showed that for a general hypersurface orthogonal to V(p)»

. —g . .
Loy M = ——-—'?)!e,-jklvzp)dm’ A dz* A do.

If we make this a t = const hypersurface, then the above becomes
: 2
Loy M = \/—gv?p)d:vl A dz?® A dzd.

This means that for this particular choice for U, the integral in [6.5.1] can be formu-

lated in terms of the more familiar integral over IR,

My = (—1)P*! /U \/—gp(p)vfp)d:z:l A dz? A dz3 [6.5.2]
27 W poO A A
= (=07 [T " [T gyl di dd 3
2 pmw poO o A A
= (—1)”‘”/0 /0 /0 /t(p)v?p)ea/zeﬁzfzsinﬂdf' df d¢

= 4 (—1)PH! /(;oo u(p)v‘(lp)ea/zeﬂzfz dr, (6.5.3]

and this is essentially the relationship between M(,) and g, spoken of earlier. This
result can be developed further; suppose we define M(,)(r) as the integral,

Myy(r) = 47r(—1)”+1/0 u(p)v?p)ea/ze'yﬁfz dr.

Then this evaluates the mass in a region, [0,7], of a ¢ = const hypersurface. Now,
since geodesics in dust p never intersect (an artifact of the multi-dust model that we
have set up), it follows that M, (r(p’n)) is a conserved quantity. This is because the

region enclosed by r(; ) is comoving with respect to dust p. In other words, since
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there is zero flux of dust p across the timelike surface swept out by the boundary of
this region, i.e. r = T(p,n)> the mass inside, i.e. M, (r(p)), must remain constant.
Now consider a finite number, N, of geodesics, indexed by i and denoted by 7, , ;)-
We shall order these curves such that 0 < T(p,0,i) < T(q,0,i+1) < T(r,0,N) on the initial
time slice, but place no restriction on their order for arbitrary ¢. p, ¢ and r represent
dust numbers and are not necessarily different, however, it is important to realise that
as these curves may cross, it is likely that these dust numbers will change. Returning
to our discussion on conserved quantities, it follows that M) (T(p,(),i)) is conserved

as 1s,

M) = M) (rp0) = Mig) (r@0.i-1)) - 6.5.4]
The latter we shall call the conserved mass between the ith geodesic and its nearest
neighbour in the direction of the origin on the initial time slice. In most cases, at
any time, the dustnumbers, p and ¢, of adjacent geodesics will be the same. The only
exception to this is near the caustic where, due to the crossing of shells, we might
have, T(1,m,i=1) > T(2,n,i)> Whereas initially we had, T(1,0,i-1) < T(1,0,i)- Lhe M, ;) are
important and we shall return to these later when we discuss ways of discretising the

dust continuum to implement in a computer program.

The next step in this process of obtaining an expression for y(;) is to remove the
integral sign in equation [6.5.3]. As mentioned, because geodesics corresponding to

dust p never intersect, we can conclude that
;

— +1 ®) 4 9 /242 1a

M) (T(p)) = (-1) 47r/0 ,u(p)v(p)e“/ 11272 gi

is a constant. This equation can, of course, be rewritten in terms of a differential

equation in M(,)(r). We obtain the result:

—1)t+1 dM
(-1) () (7‘(,,))

H(p) (T(p)) ~ 4rod ea/ZT%p)e*r/Z dr

()
= 1 dM(y)
B 47ru‘(*p)ea/2r%p) dr (r(p)) ) [6.5.5]

which defines our density function, thus completing one of the aims of this section. If
we are associating with each geodesic a conserved mass (as in equation [6.5.4]) then

approximately we have

K (p) (’"(P,‘",i)) ~ Al al(n 0)/2,.2
Thpnn® 7 T(p,ni)

M,
(p.3) l, [6.5.6]
T(P’n’i) - r(?a”»i“l) i
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where again ¢ is most likely equal to p, the exception being near the caustic. The
introduction of the modulus signs allows us to remove the (—1)?*1 factor. We can
do this since our initial conditions (which we define later) dictate that M) increases
as r increases away from the origin. When geodesics cross, however, we can see that
the conserved masses, M(y ;), although positive, decrease as r increases thus making
dMy)/dr negative. It follows that (—1)?*! dMy)/dr is always a positive quantity and
we illustrate this by inserting the modulus signs. We shall use this approximation
wherever H(p) Occurs in the either the geodesic equation, [6.4.5], or the metric defining
equations, [6.2.6] and [6.2.7].

With the ideas developed above in mind, it becomes a relatively simple matter to
visualise the representation for the dust continuum that we shall use in our computer
program. We discretise our continuum by considering a finite number of reference
geodesics and associate with each, three numbers representing the position, velocity
and a quantity that is the conserved mass between it and its nearest neighbour on
the t = 0 time slice. We can then picture the interaction between dusts if we imagine
a series of small springs attached to each other, end to end, along a line. The refer-
ence points would be represented by the joins and the conserved masses, the springs
themselves. A compressed spring would mean a region of high density, a stretched
spring, low density. As we move each join axially, we model the movement of our
reference points, and if we fold the line of springs back on itself, we model the crossing
of adjacent geodesics and the formation of the caustic. In the case where we have a
fold, any join will coincide with a spring that is part of the line going the other way.
Where a spring and join coincide, we have the situation where the density of dust p
say, is influencing the movement of particles on the reference geodesic corresponding
to dust ¢ (¢ # p). This is essentially how we model the interaction of shells in our
computer model and we stress again the fact that the strength of this kind of interac-
tion is controlled through the non-zero value for the density function, ), evaluated

at r(g) (recall equation [6.4.5]).

In the case where p(y) is influencing the movement of dust particles along r(g 4,
we will need to calculate dM(y/dr (T(q,n,i)) . To do this, we simply determine the value
Of] such that T(p,n,j—l) S r(q,n,i) S r(p,n,j) for pP= 1, 3, or T(Z,n,j—l) Z T(q,n,i) 2 r(2,n,j)
for p = 2, and thus

dMy)

M R
- (r (q,n,i)) _ (p,5)

T(p,n,]‘) - r(pan)j_l)

[6.5.7]
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The reason behind the change in direction for the inequalities in the p = 2 case is to
account for the fact that adjacent geodesics have crossed. Without this proviso, the
computer could never satisfy all the requirements stipulated by the combination of
inequalities and suffixes. If an ¢ cannot be found then the right hand side is set to

zero. This models the possibility that r may not be within the 3-dust region.

Having defined the density function and this notion of conserved masses, we need
to describe how this information is carried through a caustic. There are, of course,
two cases; the first is the simplest and corresponds to a trajectory passing through
the caustic at an angle with the tangent. In this case we do nothing, the conservation
of matter tells us that what goes in must come out, and since no geodesics from the
same dust cross, the dust numbers do not change. The only physical effect is that the
acceleration may see a discontinuity due to the high densities associated with dusts

that are travelling parallel to the caustic curve.

The other case takes a little more care and to describe this we need to define a
few quantities. The C programming language provides a means to aggregate variables
of different types such as integers and doubles. These groups are called structures.
As each shell has associated with it a conserved mass, position and tetrad velocity,
we create a structure called a particle to hold this information. For N dust shells in
total, we simply create an N-dimensional array of these particles. With this notation
it is important to realise that since particlefi].position (i = 1,..., N) holds the value
of r(pn,i) and that we initialise this array at ¢ = 0, then ¢ essentially orders the
reference geodesics with respect to their initial position. In this sense, the i’s in

particle[i].position and r(, , ;) are equivalent.

We are now able to discuss how the conserved mass is treated on the caustic. In
fact, with the above numerical variables, this process becomes virtually trivial. We
first of all define another integer known as the dustnumber for each geodesic and store
this within the particle structure. With regards to the numerics then, the caustic is
defined where two adjacent geodesics cross and to model the passage of particles from
one dust to another, we simple change the dustnumber for the appropriate geodesic.
We illustrate by example (and apologise for this is where the discussion becomes
specific in the sense of implied boundary conditions). On the right caustic we might
initially have two adjacent geodesics such that, r(304) < r(3,0,i41) (This inequality
could be replaced by particle[i].position< particlefi+1].position if we wished to explain
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the example in terms of computer variables.). Then if at t = ¢, T3m,6) < T(3,n,i+1)
whereas at a time step later, 73 n41,i) > 7(3,n41,i+1), We relabel the dust number of
the (¢ + 1)th geodesic to be 2 (equivalent to setting particle[i+1].dustnumber equal
to 2). Likewise on the left caustic, for if at ¢t = t,, T(1,n,i) < T(1,n,i+1)» Whereas for
t = tntls T(Lntl,i) > T(1ndl,itl) WE relabel the dust number of the ith geodesic
to be 2. Returning to the original question of how the conserved mass is treated
for particles ‘touching’ the caustic, we find the answer is again do nothing. The
conserved mass between the 7th and (2 + 1)th geodesic is always the mass between
these curves regardless of whether they have crossed or not and thus regardless of
their dust number. The only complication that could arise is due to the fact that the
‘direction’ of the conserved mass flips from going to the left of the geodesic, to going
to the right when two curves cross. This would provide a negative dM(,)/dr and thus

possibly a negative density, however, this is avoided by the modulus sign in [6.5.5].

Of course it is possible that during any time step two or more particles may be
exchanged between dusts. This case is still valid for it simply means that the shell
crossings are happening faster than our smallest time step. To check for this we
must, for the p =1 case, sequentially repeat the above process checking from r(; g » )
to r(3,0,1) In sequence. Here n; corresponds to the largest integer such that r(y , )
exists and we should understand that this is a dynamic variable; n; reduces by 1 each
time a reference geodesic ‘touches’ the caustic. For the p = 3 case, we have a similar
situation; we repeat the process from r(3 g ;) sequentially to (3¢ x), where now n3

is the smallest integer such that r(3 , n5) exists.

The last point to mention regarding the assignment of dust numbers is that
shell crossing can only occur at r(;gy,), if only a single particle from dust 1, for
example, ‘touches’ the caustic during a time step, and at r(j 9 n,) and (g 0,2,-1), if
two particles are exchanged and so on. If we find ourselves in the regime where the
geodesic corresponding to p = 1, ¢ say, crosses that corresponding to p = 1, ¢ — 1,
with geodesic 7 + 1 still a member of dust 1, then we have an error. In physical terms
this is a perfectly acceptable phenomena, however, this corresponds to a multi-dust
region where k > 3. Since our model is rigid in the sense it cannot account for varying

k-values, we must abort the calculation.
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§6.6. Determination of metric coefficients.

It has taken a while, but we are now at a stage where we have defined all of
the mass variables. The only two processes that we have left on our list to describe
are methods to determine the metric coefficients, e* and €”. We begin with the
former. If we consider equation [6.5.5] alongside [6.3.6], we can see that again metric
coeflicients occur within the integral that determines e*. When we had this problem
before we were able to get around this by adopting a tetrad formalism. In this case,
however, there is no option other than to reformulate the integral equation in [6.3.6]

as a differential equation in €%, which we must solve.

For the moment we assume that we are still considering a continuous rather than

a discrete model. By inserting matter into equation [6.2.4] via the Einstein equation

we have
3 dM
= e f(r)=1— e+ raje®,
where
3 dM,
_ K 4 (p)
f(T) - E 4_7;’”(1’) dr )
p=1
Putting y = re™“ gives
d
Yo e rane™,

dr

and so the above equation transforms to

ey Y ¥ %
\/;f(r)—l r+r dr

— %é =1-/%500. 6.6.1]

If we solve this equation numerically, we have a method by which e¢* can be de-
termined. To do this, we again adopt the simple Euler method starting from r = 0.

Thus if Y(n) (i) = T(m)iye ™4}, where the suffix {¢} notation represents the geodesics
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ordered by current position rather than initial position (cf. T(n,j) Where the ¢ and j
might be different.), then

dy
Y(m){i+1} = Y(m){i} + (r(n){H—l} - ’"(n){i}) I (r(n){,-}) , [6.6.2]

dy _ o)) s~ & 4 |9M)
E(T("){i})—l— "(n>{i}pz=:111?“(z”"’f) i ()

Here the curves, T(p,n,j)» ar€ determined by the requirement that j is the integer such

where

. [6.6.3]

that T(pn,i—1) < T(a) {5} < T(p,n,5) for p = 1,3 or T(2,n,j—1) > T(n){i} > T(2,n,5)" The
derivative, dM(,)/dr (r(pynyj)), is as given in [6.5.7], but if a j cannot be found then

this contribution to the sum is set to zero. In any case we have

e mi+1) = I} [6.6.4]
T(n){i+1}

Note that this method of numerical integration jumps from shell to shell according
to each shell’s position with respect to the origin and does not recognise which dust
each shell is a member of (hence the reason for dropping the p suffix in the above).
For example, as one performs this iteration for some time slice, ¢,, the position of each
consecutive shell would obey, -+ < )} < T)fid1) < T(n){i+2} < T){iv3) < *°°
for all 2, whereas the corresponding dust numbers could look like, --- — 3 — 3 —
3—2—53—2-—2—3—2-—2— 2— ..., The crucial point is
that when evaluating f(r), and in particular e*(™{} even though the ith shell may
be a member of dust p say, the other two dusts play a role in evaluating e*({i} by
contributing a term proportional to their density. We also note that this method can
be extremely inaccurate since errors in dy/dr (r(n){,-}) are compounded. This can

only be controlled by increasing the number of shells.

The final check to be made, if this method is to be used, is whether or not dy/dr

has a well defined limit at » = 0. Now,

d .
lim < =1 - lim /2 lim (r),
r—0 dr r—0V rr—0

and since

lim y_ lime ™ ® =1
r—0 r r—0
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by [6.2.2] and lim,—o f(r) exists, it follows that dy/dr has a well defined limit as

r—s 0.

To enable us to implement the above procedure within a computer program it is
clear we need to have the particles ordered with respect to their current position. We
provide this information by constructing an array of N variables that ‘point’ to the
information stored by a particular particle. This array of variables is called pointers.
In terms of the C programming language, the quantity stored by each element of
pointers 1s the address of the memory location that stores the information in the
particle that it ‘points’ to and initially, we have pointersfi/=&particles[i] where the &

stands for address.

We can access the information stored in a particle quite simply since we know
that pointers[i/— position is equivalent to particlesfj].position if pointersfi] ‘points’
to particle[j], for example. This means that the actual evolution can therefore occur
either by moving the particles or by moving the pointers and in fact we for convenience
we shall choose the second method. To ensure that the i in pointersfi/— position,
essentially orders the geodesics with respect to their current position, we perform a
bubble sort which exchanges pointers between particles according to increasing radial
position. Moreover, pointers[i/— position is clearly equivalent to the notation, r(z)(i,

introduced earlier on.

The final point to make regarding the fact that the evolution occurs with respect
to pointersfi] rather than particles[j] is that at some stage, when we check to see if
trajectories cross for example, we need to know ¢ given j and visa versa. To provide
this information we introduce another integer variable within our particle structure
called pointernumber. This variable is set to be equal to ¢ (pointers[i]— pointernumber
= 1) prior to the simulation, but during the above bubble sort, we also exchange
pointernumbers. This insures that the equation, pointers[i/— pointernumber = 1, is
always true. This gives us a route from knowing : to knowing 7 and back again if we

so wish.

The last metric component, e~7, is much easier to determine; we simply perform
the integration of [6.3.7] as all quantities are given. The technique used in the actual
program is simply to approximate the curve within the integral sign by a series of

rectangles, whose sides correspond to r(,)(;}, which are then summed. We can see
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directly from equation [6.3.7] that again, at each rectangle being considered, the

density of all dusts plays a role in calculating e™7.

§6.7. Initial conditions, summary and example of results.

This chapter has been dedicated to presenting the techniques used in a computer
program designed to model the formation of caustics. We introduced certain variables,
T(p,n,i)» u%p’n,i) and M(, ;), which describe the dusts and formulated a numerical scheme
to solve for these quantities. In this section we shall collect together all the ideas and
talk our way through a single iteration referring to all relevant equations. We shall
begin at the ¢ = ¢, time step, stating what we know, and what we need to find out.
This means that we will essentially revisit the list of procedures laid out in §6.4. This
approach of summarising this chapter avoids the specification of initial conditions.

These will be quickly presented towards the end.

1. At the beginning of each time step, we suppose that for each reference
geodesic, T, n)(i)) u%p,n){i} and M(,)(;) are known. Note that this notation is
that of §6.6 where the suffix {i} labels the geodesics with respect to current po-
sition, equivalent to working with the pointers computer variable. Note also that
M) iy = M(p,i) for the initial time slice. Now the first step is to calculate e

at 7 = r(y);) for every i. The method is an Euler technique, i.e.,

dy
Y1) = Yy + T —Tme) 72 (Fee) [6.6.2]
and
- (rmw) = . Zl =iy |5 (Fomi) |- [6.6.3]
n p=

Here, for pointers[ij— dustnumber = p, we determine j such that r,);y = 70 5)

so that

dMy) (r .)) _ Mp.5) _
dr N Om) i) = Tamio1)

104




For pointers[ij— dustnumber # p, we determine j such that, r, , i_1) < ")} <

T(pm,j) for p=1,3, and r(g 5 j_1) > T(n){i} > "(2,n,5) Otherwise. In this case

dM,)

M, ;
dr (T(P,n,j)) = (r.4)

T(p1n’j) - T(p)nrj_l)

The last step can be done because we introduced the integer, pointernumber, into

the particle structure. Finally,

e+ = Y1} [6.6.4]
T(n){i+1}

2. Calculate €™ at r = r()(;) (final paragraph of §6.6) for every 1.

3. Calculate p(n)(;y for each ¢. This uses

)

1 dM(p)
,U/(p) (r(p’n){'}) ~ 4 [« TP Y /2 2 l (r(pyn)j)
BT E L TP R

where dM(y) /dr (r(p,n, j)) is defined in 1 above. The above equation for the density
is equivalent to [6.5.6].

4. Calculate u%p,n—{-l){i} for each 7 using

Ulpnt1){i} = Ypn)(i) T (Ent1 —ta) —g

which is essentially equation [6.4.3], and

1 4
du(p,n){i} _ _le(a(n){i}ﬂ(n){i})/?(u_(l’__’"____){"} (1 — e_“(n){i})
dt 2 r
1 4 1 4 1
= KT (q,n,5)Y(q,n,5) (“(q,n,j)“(p,n){i} - “(p,n){i}“(q,n,j))

1 4 1 4 1
- lir”(r’n’k)u(rvnﬂk) (u(r,n,k)u(p,n){i} o u(pvn){i}u(rv"1k)))’

where j and k are defined such that, T(gn,i=1) < T(pu){i} < T(g,n.j) and T(rnk—1) <

T(p,n){i} < T(rn,k) for ¢,r = 1,3, and T(2,n,j—1) > T(pn){i} > T(2,n,5) and T(2,n,k—1) <
T(p.m){i} > T(2,n,k) otherwise. This equation is equivalent to [6.4.5].
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5. Calculate r(; ny1)(i} for each i. This process uses

Ul .
1(p,n){'} : =)/,
\/1 T Uy iy ) (i)

Tpm+1){i} = T(pn)(i} T (Ent1 — tn)

which is equivalent to [6.4.2].

Of course, we cannot immediately proceed to the calculation of the n+2 quantities

because we have to check if any geodesics have crossed. Thus we should add:

6. Check for any geodesic crossings and adjust dustnumber accordingly. These

processes are described in §6.5, paragraph 13.

We now quickly present the choice of initial conditions used in our simulation.
The idea here is to copy as far as possible, the initial conditions obtained from the
zero gravity case (ref. chapter 3). Thus we chose (r¢,0) to be the point of cusp
formation, and define our N geodesics such that they were distributed with a finite
interval between each, centred around r.. We supposed a uniform mass distribution
throughout M. This means that if D represents a constant density per unit area,
then the mass of each shell is given by M(;) = D - (r(g){,-})z. Finally, we chose the
velocity so as to approximately mirror that of the gravity free initial conditions. That

is to say,

—¢))).

Here V is some user defined constant that has units of velocity. The choice of ¢ in the

)1/3

woyiy = =V - (roysy — 0)1/3 (1 = exp (6 (|royesy — e

above exponential defines a multiplicative factor that modulates the (7'(0){1'} -0
— c))) ~ 1, whereas for

Ty} — Te| — c))) ~ 0. This mimics the initial con-

term, so that for r(g)(;} = 7o, (1 — exp (6 (|7‘(0){,'} —Te

T(O){i} —Te|l = C, (1 — exp (6 (
ditions for the simple gravity-free model (ref. chapt. 3) close to the cusp, but allows

for the velocity to tail off as Ir(o){,-} —Tc

becomes sufficiently large. This enables us

to compare our results (fig. 5) with that presented in fig. 1.
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Fig. 5. Caustic produced by a spherically symmetric dust.
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CHAPTER 7. MATHEMATICAL APPROACH TO CAUSTICS IN
GENERAL RELATIVITY.

§7.1. Introduction.

The previous chapter described a model for caustic formation within the context
of a spherically symmetric formulation of General Relativity. We can think of this
as essentially being an extension to the multi-dust construction of the equivalent
problem in Newtonian theory: equations [5.5.1]-[5.5.3] were simply replaced by their
relativistic analogues. The differential equations that really constitute the model
were presented ([6.1.1]-{6.1.3]), and a method by which a numerical solution could
be obtained was proposed. This solution was based on the same initial conditions as
that for the zero gravity caustic discussed in chapter 3, about a new radial origin at

r = r¢, and assuming a uniform density distribution for the initial time slice.

The initial reason as to why we chose to change tack and construct a computer
simulation of caustics within the framework of General Relativity was to try to grasp
some sort of understanding of the processes at work during cusp formation. This
implies the need for some sort of asymptotic analysis of equations [6.1.1]-[6.1.3] and
the plan was to perform this investigation numerically. In the end we chose the more
rigorous mathematical approach, which we shall now describe, and the numerical work
really became an exercise in formulating the General Relativistic problem correctly.
This explains the lack of results and conclusions in the previous chapter. Having said
that, we do not wish to give the impression that the work presented in chapter 6 can be
overlooked. In fact it is significant because it provides us with a deep understanding
of how each term in our defining equations should be formulated mathematically.
As examples of this we have the definition of the volume forms, a(;,), such that
their orientation is always positive with respect to the orientation supplied by the
standard volume form (o) = (—1)p+1iv(p)a M in other words), or the idea of writing
f(p) in terms of the derivative [dM(;)/dr|, and indeed the insertion of the modulus
signs. There are other examples, but these are particularly important for it was only
when we concentrated on formulating the p;) in terms of derivatives of M(,), did
we understand the real significance of the effect that a non-orientation preserving

projection map, w, when restricted to S C T'M, has on our equations. Specifically,
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this understanding forced us to interpret our density functions in terms of pseudo-
(m — 1)-forms on M, insert the (—1)P*! factor in the definitions of a(,) and oy,
(found in §4.5), and also the (—1)**! correction in equation [4.5.3]. Thus, although
not eluded to in any of the previous chapters, it was only when the numerical work
was well under way did we begin to understand the intricacies involved with the
density functions. This enabled us to backtrack and correct some of the work that
had already been done, particularly on the tv space approach to similarity solutions

in the Newtonian formulation of caustics.

As mentioned, the intention is to investigate the shape of the caustic as we con-
sider a smaller and smaller neighbourhood containing the cusp. This would be equiv-
alent to the analysis of chapter 5 where we investigated the possibility that cusp
formation is independent of gravity. One might ask why repeat this analysis, or ask
this question again, when we have already established that in the Newtonian case at
least, gravity plays no part in cusp formation. Well the previous sentence essentially
answers its own question. General Relativity is considered to give a far greater insight
into the mechanisms behind the gravitational interaction than the simpler Newtonian
description. The equations that we associate with any problem formulated within the
framework of General Relativity are generally far more complicated and non-linear
than their Newtonian equivalent. It is therefore conceivable that gravity can in fact
play a part in cusp formation via the extra terms each equation has. Thus, to be sure
our original conclusion is correct, we need to repeat the analysis of §5.3 but based on

the equations supplied by General Relativity.

This chapter does just this. We choose the more rigorous method using the
asymptotic solutions developed in chapter 5. That is to say, we construct rational
algebraic curves along which we approach the cusp in a manner that allows us to
define a limiting process based on the group of transformations given by [5.3.1}. In
order for us to be able to define such a process, certain assumptions need to be made
concerning the continuity of the metric components: i.e. we assume that « and ~
are continuous functions. This requirement ensures that the curves we define are
continuous particularly as we pass through the caustic. This will be explained in
detail in §7.4. but we can summarise by stating that we require the densities to be

integrable.
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En route to doing this work, we shall consider another limit to our General Rel-
ativistic equations of motion. This is the Newtonian limit where we assume all ve-
locities are small compared with ¢, the speed of light, but still keeping any mass
contributions. This statement needs defining and to do this we must first of all con-
vert equations [6.1.1]-[6.1.3] so that all variables are in terms of physical units. As
is generally the case when discussing aspects of General Relativity, we assume that
¢ = G =1 for simplicity. This assumption is equivalent to setting all dimensions
equal to that of length and the resulting equations are said to be written in terms of
geometrised units. Thus to begin, we must reinsert the ¢’s and G’s. This process is

discussed in the next section.

Having achieved this, we can now non-dimensionalise our General Relativistic
equations of motion. This is done in the latter parts of the next section by replacing
any variable, such as r for example, by a product of a constant that holds the units of
that variable, and a dimensionless scaling factor. Thus in our example we might have
r = ryL, where L is a constant and having dimension length, and ry is some non-
dimensional parameter. If we introduce M and T to represent the dimensions of mass
and time respectively, it becomes possible for each term in any equation, to separate
and group together all the constants providing the units for that particular term, and
all the dimensionless parameters that are describing the physics. If we multiply our
equation by the relevant dimension, i.e L, T or M, we obtain dimensionless groups
that can tell us which terms are significant in the differing velocity régimes. It is

using these ideas that we shall define our notion of the Newtonian limit.

Without going into any detail, we find that all the resulting dimensionless groups
can be written as some product of the following two non-dimensional quantities:
GMT?/L?® and L/cT. Now, supposing that whilst keeping the first group finite, we
allow the second group to tend towards zero. Physically, this means we assume that
any velocity (with dimension L/T') is small when compared to that of light. The fact
that the first group is finite allows any term that arises from quantities that are purely
mass driven, and hence would contribute to any gravitational effects, to remain. For
comparison, we can say that the opposite limit, i.e. allowing the first term to tend
towards zero whilst keeping the second finite, gives the situation where on M we have
caustics formed by massless particles moving with velocities that in some cases can be
said to be a significant fraction of ¢. Now, it is the former that we are most interested

in and so §7.3 and §7.4 essentially take the non-dimensionalised relativistic equations
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provided by §7.2, and determine those terms that remain after the limit, L/cT" — 0,
is taken (the definition of the Newtonian limit). The hope and expectation is that
the resulting equations will be equivalent to [5.5.1]-[5.5.3]. If we do not obtain this
result, then clearly the two sets of equations are describing different mechanisms of
caustic formation. It may be that a General Relativistic formulation of spherically
symmetric caustics provides us with a different caustic type [A] to that of the simple
caustic or worse, that one or both sets of the modelling differential equations are

wrong.

§7.5 and §7.6 complete this chapter by considering the asymptotic limit of the
General Relativistic equations of motion. Because we have already spoken of this, and
also because the techniques are so close to those considered in §5.3 and §5.5, we shall
not elaborate any further. We shall, however, conclude by making a few observations
regarding the results so far obtained. The expectation is that the procedures: let
L/cT — 0, let € — o0, should commute. In our conclusion then, we say whether
or not this is a true statement. We are also interested in the equations that the
procedure, let € — oo, alone yields. Of course we expect the resulting equations
to describe the physics of cusp formation and because they are derived from a more
complicated theory of gravity, it is possible for them to be different to the asymptotic
limit of the spherically symmetric Newtonian equations (§5.5). If this is the case,
then we have the situation where our analysis suggests that gravity does in fact play
a part in cusp formation; a clear contradiction to the conclusion of chapter 5 and an

extremely important result.

In chapter 6 we found it useful to formulate our equations of motion with respect
to a tetrad of orthonormal vectors acting as a basis for TM. In the following three
sections we shall find it easier to use the ordinary coordinate basis so let us briefly

reconstruct the geodesic equation in these terms. We have

\Y =0

v(p)V(p)
= va)Vai (v(p)aj) =0

i o (.1 . i ) k.. _
- v(p)(?, (U‘zp)) BJ + v(p)vfp)l‘ ,]Bk =0.
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Since UZP) = d:vép)/dT, it follows that

dv* .
(») k.4 .7 _
7 (v =0

dvl
(p) 1.1 .1 1 1 4 1 4 .4 _
= 3y T T v + 211404 v0) + 1 aav) i) =0-

If we work directly with the energy-momentum tensor given by equation [6.3.1], then
the definition of the Christoffel symbol and equations [6.2.3]-[6.2.5] imply that

1 K 3 1
1 - _ oo 4 4 v _ L
T = gM = oTe ,,Z=1 Fp)V(p)V(p)e T 2 (1 =e%),

1 r 8
1., _ L+t T a 1,4
I''y = 2014 = 26 KPEZI y(p)v(p)v(p)e‘r,
and
1 1

3

_ _ K

Iy = 567 n= 567 (1 —e a) + 5’"67 z:ll‘(P)”(lp)v(lp)ea'
p:

Substituting these results into the above form for the geodesic equation finally gives

dv(lp) 1 —a K oty 4 4 : 1 1
dr o2 (7 —1) - 5"€ Vi)V (p) 2o ) ¥(0)(a)
g=1 {7.1.1]

3 3
1 4 1 4 1 1 4 4
=20, V() El Ha) (%) T 20) V() qzl #(q)”(q)"(q)} :
q= —_

§7.2. Non-dimensionalising the General Relativistic equations of motion.

This section discusses the concept of non-dimensionalising the General Relativistic
equations of motion. It essentially acts as a precursor to the following two sections in
the sense that it formulates all our equations in a way so that they are immediately
applicable in a procedure which determines their Newtonian limit. Now, before we
can consider non-dimensionalising our equations, we need to ensure that they are
written in terms of physical units. This requires that we reintroduce the ¢’s and G’s.
To clarify this we should point out that, as is the case for the majority of problems

in General Relativity, we usually simplify our equations by setting ¢ = G = 1. This
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process is equivalent to supposing that all units have dimensions of length and we say
that we work in geometrised units. It means, for example, that if in physical units
a quantity has dimensions of L™T™MP then in geometrised units the same quantity
has dimension, L™1"+P,

We have a procedure, however, that enables us to reverse the above action [W].
We can see that [c] = LT~! and [G/c?] = LM™1; it follows therefore that

G P
L™ MP [c" (—2) ] = [minte [7.2.1]
C

and so to convert a quantity, A, written in geometrised units to physical units, we
simply replace A by Ac®~?PGP if, in physical units, [A] = L™T™MP. It is best to
illustrate this process by example. The Minkowski metric written in geometrised
units is given by

ds? = dz? + dy* + d2* — di?.
From this it follows that [t] = L, since otherwise terms in the same equation would

have different units. In physical units, however, [t] = T and so by the procedure

outlined above, we must replace ¢ by ct to obtain

ds? = do? + dy® + d2? = Adt®.

For a second example, consider the Schwarzschild radius,
r=2M.

Again, our procedure implies that the conversion factors for r and M are 1 and G/c?

respectively. Hence in physical units, the Schwarzschild radius is given by

2MG
5

r =
C

Let us now consider our particular equations. We begin with [6.1.1]. In its mixed
form the only relevant non zero components of G are Gy, G*4 and G'4. Thus for

G'y = —kT; we have

3
r?—r e (1) =~k Y, ”(P)”(lp)v(lp)ea‘
p=1
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The conversion factors for r and 'U(lp) are 1 and 1/c respectively since [r] = L and

[v(lp)] = [dr(p) /dr] = L/T. The quantities, o and +, are dimensionless (it doesn’t
make sense to exponentiate a quantity with dimensions) and they must have a con-
version factor of 1. The fact that [u(p)] = ML™3 implies a conversion factor of G/c?
so that in physical units the above Einstein equation becomes

-2 _ -2 —a kG & 1.1 a
rt = e (Lh ) = = X k) V) (e
r=1

In a similar manner the remaining components of the Einstein equation are

-2 -2 —a G & 4 4 7
r e (- rag) = 2 2 Fe) V() V()
r=1
and
21 —a kG S
rle %y = 2 z%“(ﬁ)v(lp)v?p)ey‘
p:

Slightly more complicated, although still using the same procedure, the geodesic

equation becomes

dl, & G >
(®) _ & (o Eret Lok o ()"
=g (1) - ggre™ {v"’)v(”) 2000
q=

3 3
1 4 1 4 1 1 4 4
—20(5)%(p) El (o) V(9)%g) T V() (p) Zl #(q)“(q)”(q)} ’
q= qg=

whereas the continuity equation T . =0or[6.1.3]) is simply
(p);s

1 :
7= tov=op) ;=0

thus completing the first stage.

Now that all the relevant equations are written in terms of physical units, we can
consider non-dimensionalising them. As hinted at in the introduction, to do this we
introduce a length, a time and a mass parameter denoted by L, T' and M respectively,
which have, for example, units of metres, seconds and kilogrammes. This enables us

to define dimensionless variables, ry, ty and u N(p)» according to

r=ryL, [7.2.2]
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t=tyT, [7.2.3]

and

M
For the velocity, however, things are not so simple. This is because we essentially have
two parameters, L/T and ¢, which can be used to non-dimensionalise any velocity

component. In other words, since [dr(p) / dT] = LT, we could have either

1 _ L dr N (p)
“0) T T dry
or
dr
1 N(p)
DT Ty

and it would be naive of us to assume any of these without further investigation.

Now, the metric (equation [6.2.1]) implies that

Adr? = —gijd.’c"d:cj

= —e%dr? — r2do? + cteVdt?.

Thus we have

since for spherical symmetry, § and ¢ are not functions of time. It follows that

dt 1
T L e (drw ]
T e e \dy

and this clearly represents the non-dimensionalised form for the time component of

any 4-velocity we might have. In order to simplify the above expression we define the

dimensionless variable, f, to be the denominator in the above equation. Thus,

2
poie Lo (&)

272 dty

and
a _1 7.2.5)
T 2.
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Finally, we can use this result to non-dimensionalise any radial component of the
velocity. We have

dr_drdt
dr — dtdr
L1ldry
- N 7.2.6
T fdin [ ]

Using these results, we can now complete this section by non-dimensionalising
the Einstein, geodesic and continuity equations. It is a process where we simply
replace our usual variables with their dimensionless equivalent using [7.2.2]-[7.2.6].
We obtain:

- 0 «kGLM & 1
rN2 - T‘N e (1 + TNa ’jv) =~ Tagz Z BN (p) fz v(p)v(p)e [7.2.7]
Oa kGM 1
-9 -2 —a
W (1—"Nar1v> =L ZﬂN(p) A [7.2.8)
1 _a0a kGM 2 1
er atN = ch X:IHN(P) f2)v(P)e77 [729]
p= (p
d (1 AT? 1
dty (f(;;v(p)> Nz 2er(P) (7 ~1)
kGM N , 1
T L 2 ¢ +A’f(li) {Z#N(q) f2 Y(a)Y(q) [7.2.10]
1 1
~20() 2 N () T2 V)t U0) V) Z BN T
g=1 (9) ¢=1 ()
and
1 0 9 v( |
7.2.11
V=9 9ty ("”(’”’” ) mar ("NW ) (7211

In the above we have assumed the shorthand notation, V(p) = dr N(p) /dty. This in
turn defines the quantity, f(,), by

2
foy=¢"- Z72¢ V()V)- [7.2.12]

We have also implicitly defined gy = r%vsin206"e7.
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§7.3. Newtonian limit of the geodesic equation.

In this section we shall discuss the Newtonian limit of the geodesic equation. This
forms part of an important process that seeks to determine the dominant characteris-
tics of our equations of motion ([6.1.1]-[6.1.3]) in the limit of small velocities. We shall
make this statement more precise in a moment, however, it is important to realise the
significance of this calculation. From a physical point of view, the situation where
we only consider relatively slow moving, massive particles, can quite easily fall within
the validity of a Newtonian-like description. It follows therefore, that we expect our
General Relativistic equations in the limit of small velocities to be identical to those
of [5.5.1}-[5.5.3]. This is the expectation; if for some reason there is a difference,
then in order for us to present a reasonably complete study of spherically symmetric
caustic formation, we will need to investigate why. It might be, for example, that the
two models are describing different caustic types [A], or even that one or both of the

defining differential equations are wrong. Clearly we need to check this.

The idea of considering only slow moving bodies in General Relativity we shall
call the Newtonian limit. To define this, we first of all note that the process of non-
dimensionalising our differential equations highlights a series of dimensionless groups:
GLM/[c*T?, GM/c*L and L/cT (ref. equations [7.2.7]-[7.2.12]). By looking carefully
we can see that there are in fact only two groups from which all the others can be

determined. These are GMT?/L3 and L/cT. This can be seen if we write

GM GMT? [(L\?

2L I8 (c_T_)
and

GLM GM _ (L\?

drr T Lt (ZT) '
Thus it becomes possible to formally define the Newtonian limit as the end product
of a process that continuously reduces the dimensionless group, L/cT', to zero whilst
keeping GMT?/L3 finite. Physically, this is telling us that in the limit, velocities
with dimension L/T are small in magnitude when compared to c. The last condition
is important for it ensures that in the limit we consider the movement of massive dust
particles and hence a gravitational interaction. This section performs this calculation
on the geodesic equation, [7.2.10], and attempts to determine those terms that are

significant in the sense that they remain after the limit has been taken.
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The assumption that is implied throughout this analysis is that all quantities
can be expressed as a power series in L/cT'. We shall also make use of the Lesbesgue
dominated convergence theorem which allows us to exchange limits and integral signs.
With this approach we can easily take each quantity found within [7.2.10] and deter-

mine its behaviour as we allow this group to tend to zero. We first of all choose f(zp).

From [7.2.12] we have

L2
. 2 _ . o
i o= i, {4 - g |
= lim e€". [7.3.1]
L/cT—0

If we integrate equation [7.2.8] with respect to ry we obtain the non-dimensionalised

form of [6.2.6] and so

GM 1 [~
. o _ _kGM 1
= i D e S ],

= 1.

Similarly, if we subtract [7.2.8] from [7.2.7] and integrate, we get the non-dimensional

equivalent of [6.2.7] and

. . —a kGM (v |3 L2 1
L/ICIII{OGA/:L}C‘]’EO {e eXP{ 2L /0 re {Z 2T2'“N(p)f2 V(p)V(p)e”

p=1

=1 [7.3.4]

Here we have used the results of [7.3.1] and [7.3.2] and the fact that the velocities are

normalised. Consequently,

L/lciil“li»() f(p) = 1. [7.3.5]
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If we return to the geodesic equation, [7.2.10], and consider in the first instance
the limit of the right hand side, then using [7.3.1]-[7.3.5],

. d 1 AT? 1 —
L/lclzrgoﬂ(ﬂ,)v(”» L/lc:r_.o{ L2 2er(”)( —1)

kGMry 1
T2 9 ¢ +‘Yfp) {E /‘N(q)f2 Y(9)¥(q)

3 1 1
+200) D #N () 770 0) + V(p)V(p) Z HN() 72 } }
g=1 (9) g=1 {9)

A3T? 1
= i —— e =1
L/cIII‘ILO L2 2ry (e )’

AT? 1 kGM 1 v, 3 1
= 1 — ——/ 2 —e¥d
L/cl’_lr‘n—m L? 2ry 2L ry Jo r ZﬂN(q) f(q e

q=1
KkGMT? 1 /w .
=2 [ Y e dr [7.3.6]
¥ 2% Jo q; (@)

We now expand the left hand side and consider how these terms behave as L/cT — 0.

We have

. 1 dv() 1 df(p) KZGMT2 1
L/lcT->0 { foy @ty fZ )”(1’) dtn 3 2% Jo / Z#N(q) dr

— b {1dv(p) 1 Wy 1 3f(p)}

/et | Ty din Ty P 0tn  ffy O P ary, .
KGMT? 1 -
=TT 2TN/ E/‘N(q) dr.
Now from the definition of f,) (equation [7.2.12]) it follows that
9f(p) vy L? , 0a L2 ,  Ovgy
20 Gy = Bty ~ 2T Biy O ~ 2720 5,
. O0fp) . Oy L? da
— L/chYI“ILO oty L/lclilr‘llo oty Y(@)V(p) L/cT 0 T2 9ty
Similarly,
o) _ pm 7 L* da
L/c’.lr"ILO (9'I‘N(p) - L/lclir“n—m aTN( ) ) Y) L/cT—+0 Csz aT‘N( ) [7.3.8]
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From [7.2.7] it follows that

i 27_ _ 5 kGLM 3 1 _1_ fi
L/cT—0 Ory L/CI:F-I»O cAT? ATz "N Z KNG f2 - f2 V) V@) TN + TN

=0, [7.3.9]

using the result of [7.3.2]. From [7.2.8] and again using [7.3.2] we have

im 9% _ g JFOM 23: Loy, 1
L/cT—0 ory LjcT—0 | c2L rye’ KN () 2 f(p) e’ TN TN
=0, [7.3.10]
so that the right hand side of equation [7.3.8] vanishes, i.e.
O _, [7.3.11]

L/cT—0 aTN(p)

The limit of the total time derivative of f(;) is a little more complicated because
there is no component of the Einstein equation that conveniently provides us with
an expression for dvy/dt. To calculate this quantity we resort to differentiating the
non-dimensional form of equation [6.2.8] with respect to ty by brute force. Before
we do this, however, we quickly calculate limy /.7 o 0ca/Otn as this will be needed.
This information is given by [7.2.9]. Thus,

. Oa lim kGM z 1 oY
L/cl’.lI“ILO Oty LjcT—o0 | c2L rne KNG F2_ fz V(p)
=0. [7.3.12)

We now calculate limp /g9 07/0tn. To begin, we integrate equation [7.2.7] with

respect to ry to obtain

v [e*—1 kGLM 3 1 J
7= /0 r T2 re” Z EN(p)y 73~ f2 V(p)V(p)e” ( dr-
This is essentially the non-dimensional form of [6.2.8] spoken of earlier. If we differ-

entiate this with respect to time then

) Iy .. ™~ | e* &kGLM 3 1 Ja
BTy = 1R { T T LN 720 e }BtNd
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. v [kGML .
+L/1§71{0 A { ar? ¢ {E NN(P)fz U(p)V(p)® }} dr,

and since the first term is zero by [7.3.12] and the fact that we have a L*/c*T* factor
multiplying the second part of the integrand, we obtain

: Ay . ™~ kGM 3 a,LLN( ) 1
1 —_— J p LY d
L/cllr“nao oty L/lclir‘rl»o/o 2l re {pZ::l Otn f(QP)e 1 r
. v kGML 3 1 0 1 o
* L/lc‘%’io/o ATz C {E_: AN ()2 (Hv(”)> ET (}(;v(,,)) e } dr
. TN nGM da
s e o (1) )

Here we have used equation [7.2.12] to make the substitution,

L* 1 -
272 }5”(17)”(?) = fTe -1

The first and last terms of the equation for limy/.r_,, 07/0tN are both zero due to

the L?/c*T? found within the GM/c?L factor as well as by equations [7.3.1] and
[7.3.12]. It follows then that

) a0y
Iim ——
L/cT—0 Oty

. ~ kGML |3 1 a (1 o
=B, | e {Z#m)? (%%)) ET (Ej)%)) ¢ } dr.

p=1
This in turn implies that

lim —8—7—
L/cT—0 Ot 5

g [MEOME [ 2(1v)d<1v)
= L/cljr‘l.l_.() A ———C4T2 re ot /LN(p) f(p) (») dtN f(p) (»)
™~ kGML 3 1 9 1
IRERT ! 9| — — | — @
L/liqglo[) 77 {,; ) <f(p) v(”)) Wrg) (f(p)v(p) ) i }dr

v kGML 3 ( 1 ) d ( 1 )
= 1 ——re® 2 v v
L/clzr“rio/o AT {,,2::1 N\ Fy @) dtn \ Ty @
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™~ kGML 3 1 1 Oy
S RaM L  a L ) al
L/clr}{o/o ATz ¢ {pz___:l KN (p)2 (f(p) ”(p)) Ue) T, ) 07 ) } r
. ™~ kGML 3 1 1 3f(p)
+ L/lc’?_l_,o/o a7 € {Z N (p)2 (f( )”(p)) v(p)f Y(p) ar(, ) dr.
The first term must be zero since by the geodesic equation ([7.3.6]) the limit of the

term, d (v(p) f(; )1) /dty, is finite allowing the L*/c*T* factor within the GML/c*T?

group to dominate. For similar reasons (0v(p)/0r(y), by assumption, is finite and

limp/cr_0 @ f(p) / 37'(1,) = 0) the second and third terms are zero and so finally we have

im 2 _g, [7.3.13]
L/CT—>0 atN
which is down to the L*/c*T* factor dominating. This, along with [7.3.12], implies
that
9f(p)

=0 7.3.14
L/cT—0 Oty ’ [ )

which when coupled with [7.3.11] implies that the limit of the geodesic equation
([7.3.7]) is of the form,

1 d'U( /i',GMT2 1
lim P d
L/cT—0 f(p) dty L3 QTN / Z KN (q) 0T

If we allow our variables to re-absorb the constants that provide our units, i.e. L, T

and M then since ¥ = 87, we obtain

dzr(p) 47TG

dt2 - / Z 'u(Q) dS

which is exactly the Newtonian force equation written in spherical coordinates.

§7.4. Newtonian limit of T(Z)'j = 0.

To determine the limit of this equation we can make use of the many results

obtained in the previous section. The non-dimensional form of T( Vi = = 0 is given by

1 0 1 0 V(p)
= Oin (HN(p)x/_ f(p)) t = (MN(p)\/— ) 0, [7.2.11]
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and expanding this gives

Oun@) 1 1 Ogn 1 N Ofw) | Okng)v 1 dgN V(p)

+ _ BN Zp) () “(p) | P

AN Ty 298 YO bty f) )y ot N fip) 29n "V Bry Ty
vy 1 V) ) _

TR B B =0,
D ory f) ® 72 oy

_ONg 1 1eng) (Ba dy ) _ ) W) | OrNg) V)
oty f(p) 2 f(p) oty Oty f(zp) Oty ory f(p)

2 vp) 1 V(p) <8a 4 87)

* ;,;#N(p)% + §”N(p) f(p) aTN aT‘N
v 1 v) 9f)
+ p_— _\p) 7)) 0,
N Gry fr) e J (2p) ory
where we have that gy = —r*sin®fe®e”. Taking the limit of this equation as L/cT —

0 is easy for we can simply appeal to equations {7.3.9], [7.3.10], [7.3.11}, [7.3.12],
[7.3.13] and [7.3.14] to set the second, third, sixth and eighth terms equal to zero.
Thus we have

Ok ()

20N (pyv
et gy

Do) | NG _
ory

ory oty

0,

which again is precisely equivalent to the Newtonian conservation of matter equation
written in spherical coordinates. Thus we conclude that the differential equations de-
scribing a spherically symmetric, General Relativistic formulation of caustic formation

reduce to the corresponding Newtonian equations in the limit of small velocities (i.e.

as L/cT — 0).

§7.5. Asymptotic behaviour of geodesic equation.

The conclusion at the end of the last section is an important result as it reassures
us that our model is the correct one for caustic formation in General Relativity. In
this section we consider a different limiting process. That is to say, using the concept
of asymptotic solutions introduced in §5.2, we shall construct a coordinate system
whose length scale increases unboundedly as we allow a parameter, ¢, to tend to
infinity. This technique describes a magnification type of process and enables us to
probe a small area containing the cusp so that we can determine the essential physics

of cusp formation. We have already explained the reason why we are doing this but
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since it 1s an extremely significant calculation, we shall reiterate. In chapter 5 we
demonstrated that under a similar asymptotic analysis, the spherically symmetric
Newtonian equations of motion reduced to those of the gravity free case formulated
such that the solutions exhibit planar symmetry. This is an important result for it
allows us to conclude that it is only the boundary conditions that determine whether
or not a cusp is formed. The effect of gravity is to simply shape the caustic. If we
perform the same asymptotic analysis based on the General Relativistic equations of
motion then we can compare the two results. Of course the hope is that by taking the
asymptotic limit (¢ — oo) and then the Newtonian limit (L/cT" — 0) we should

obtain the gravity free differential equations and thus confirm the conclusion of §5.5.

In previous chapters we have developed two different, but similar formulations for
the General Relativistic problem. That is to say we have the tetrad formalism and
the coordinate basis formalism. The first was developed during the discussion on the
development of the computer program, the second was used exclusively during the
calculation of the Newtonian limit. In this section we shall again resort to using the
tetrad formalism since we wish to use the useful feature that it possesses, namely the

lack of metric components within the mixed form for the energy-momentum tensor.

We shall begin this asymptotic analysis by considering the geodesic equation and
making the transformation, r = z + r.. This illustrates the fact that we intend to
convert all equations in the General Relativistic picture so that the origin for the
radial coordinate now occurs at some finite distance, r.. Moreover, we assume that
the point, ¢ = 0, ¢t = 0, corresponds to the point where the cusp of the caustic
initially forms. A family of curves, parameterised by €, can now be constructed using
the transformation functions introduced in §4.2. We choose a fixed point x € M
and define a particular curve by X = gx(e;x). We then model the magnification
process mentioned above by stipulating that relative to % coordinates, lime—_,o0 |X| =
lime 00 ng (5“1; i)l = 0. Since we shall choose gx(e;t, z) = (¢¥tt,e¥z), these curves
become defined by =/ t# = const where B = kyz/kt. To complete the picture we assume
that as the length and time scales of our {7 coordinate system increase, so do the

mass descriptors. In other words we choose the general transformation group to be
k kx ku k k —hu
g (e;t,x(p),u%p),u(p),G, c) = (5 e T (), € u%p),e “l(p)r € GG, e k c) ,  [7.5.1]

which, we can see, has essentially been lifted from the equivalent Newtonian analysis

of §5.5. In order to compare the results here with those of §5.5, we shall furthermore
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assume the same similarity degrees. That is to say, we suppose that if k; = Bk; then
ky = (B8 — 1)ki, ky = —(2 + v)kt and kg = vk for B = 3/2 and v < 0. Finally, we
note that the constant, k;, becomes important for it determines whether g defines a

magnifying or reducing process.

It is noticeable that in [7.5.1] all velocities are scaled. The reason for this is quite
simply to make it work. In our first attempt at looking for asymptotic solutions
the velocity of light was not scaled and the result was that we could not make the
derivatives of the metric components exist in the limit. This was an undesirable
feature for this, as we shall see, implies that the geodesic equation does not have
a limiting form. To solve this problem we found it necessary to scale ¢ and we do
so in the opposite manner to all other velocities. That is to say, with k, > 0 (a
relation arising from the fact that we must require k; > 0) e*¢ increases indefinitely
as € = 0 is approached. The only physical interpretation of this is that in Newtonian
theory there is no upper limit for the magnitude of any velocity vector. It seems,
therefore, that by choosing to scale ¢ we might somehow be coupling together the
€ — oo and L/cT — 0 limiting processes. This rather muddies the implication in
the first paragraph of this section that the two limits are distinct. It might be that
our asymptotic solutions defined by [7.5.1] will be equivalent to the planar symmetric

Newtonian solutions encountered earlier in chapter 4.

The last thing we must mention before starting with our asymptotic analysis
is that we require our metric components to be continuous. The reason for this
is that the curves predefined by the above group of transformations must, at some
stage, cross the caustic. If we did not make this restriction on g;;, then from the
geodesic equation the r-component of dﬁzp) /dt possesses an impulsive part implying
that &%p) would be discontinuous. It follows then that the limiting process cannot
be constructed because the velocity at some point on the curve (where it crosses the
caustic) becomes undefined meaning that as X approaches the cusp, it is unknown

which value for ﬂ%p) to take when we come to scale it accordingly.

Let us now consider the behaviour of the modelling equations ([6.1.1]-[6.1.3])

under the transformation given by [7.5.1]. We start, in this section, with the geodesic
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equation,

dul
® _ _1 (at+v)2 -1 -
TRl T {c(w+rc) ¢+ ufyyuy (1-¢7)

kG 1

— 5 (e+ro) M) ™(a) (“%p)\/ ¢ + u(g) (g ~ g V ¢t + u%l’)u%l’)>
kG

— 55 (@ o) gyl (b6 wlyuly = vl [yt )}

[7.5.2]

written in terms of our fixed coordinate system, x. To determine the asymptotics of

our system, i.e. to determine how the above equation changes as x moves towards
the origin in £# space, we need to relate all variables, f, to their value at X. For those
functions whose dependence on ¢ is not absolutely specified by [7.5.1], we suppose
that they transform by virtue of the quantities of which they are functions of. This

means that the dependency of e~* on ¢, for example, can be calculated since,

KG 1

A x4,

e *=1+

z+4Tre 3
f 2 H) (¢" + uypyuly) dr
p=

h?é gkx—kg—k“—2ku
o

I

F + gkor, /0 r pgl F(p) (c Te u(P)u(P)) dr.

In order to take the limit of this equation, we have to be sure of the dependence on ¢
for each factor. In the above, the exponent of ¢ is given by kz —kg—ky—2ky, = (4—8)k:
which is positive, implying that this term at least becomes very large as € increases.
If this were indicative of e™® as a whole then this is likely to be bad news for it is
implying that the metric is unbounded in the limit contradicting the result from the
Newtonian asymptotic analysis. Clearly then we need to be sure of how the integral

behaves as ¢ increases. By making the transformation, s = e*sr, we obtain

_ K,é 6—2kx—kG—ku—2ku
€ * = 1 + T
C

i+etor, 3
2 > ~2 ~4ky~1 ~1
Z + ekor, /0 s Zl K(p) (c +e U(p)u(p)) ds. [7.5.3]
p:

Since k; = Bk; > 0, we have that as ¢ — oo, the above integral in some sense

represents the total mass in our spacetime. We suppose that this is finite and since
—2kg — kg — ky — 2ky = 4(1 — B)kt < 0, we have

lim e™® = 1.
E—0Q
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Next we can look at the time component of the metric. We have from [6.3.7]
v kG [rtre 3 2 1.1
e’ =e aexp {0_4/0 re® Z:l H(p) (c + 2U(p)’lt(p)) dr
p:

. ks 3

_ .- —Okp—kg—ku—2ky KG [ETFETe . (2 —4ky~1 ~1

B {6 e s 2 e (&8 + 270 agyyagy) ds
p:

which by a similar argument to that for e implies that

lim ¥ = 1.
E—00

We conclude, therefore, that in the limit the metric is Minkowskian. This may seem
an odd result considering the fact that in §6.2 we show that the metric components
at a point (t,7) € M are functions of the total mass enclosed by the shell of radius r.
It turns out, however, that the above limiting process requires that the cusp position
be rescaled according to e*sr. for each . By assumption, k; > 0 and so it follows
that in the limit as € — 00, the position of the cusp increases resulting in a situation
that locally looks more and more planar. In this kind of scenario we can assume that

the gravitational force is zero corresponding to a flat metric as proved.

Let us now return to the discussion on the e-dependence of equation [7.5.2].
Clearly, the behaviour of all terms on the right hand side of the geodesic equation
has been determined. However, before we can consider the limiting form for the
geodesic equation, we need to investigate how du%p) /dt transforms under g. Since this
quantity is essentially the acceleration along a geodesic, it must somehow be related
to dzw(p) /dt?. We assume that this quantity must survive as ¢ — oo for otherwise

we do not anticipate a sensible result. Now,

du} d
(r) _ 1 _af2
dt  dt (U(P)e / )
d (drp) 4 o
I (Tt v e’
d (drp) 4 (a=m)/2
=a(ﬁwm(w
Pri) 4 (a-my2 L ) dufy) (@=1)/2 L L9() 4 (a—y)2 [da dy
~ T 0° LR TR 3o Y@ (E_E)
1 4 1
_ dz"(p) ut ele=/2 4 Y(p) du(p) n Up) (do  dy
dez @ uf, dt 2 \dt dt
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1 1 1
_ ) s ey, LM% Pl M) (do
Tdiz “)°© Eulyul di 2 \dt dt

where in the last step we have used du'(ip) /dt = u%p) / c3u‘(1 ») -du%p) /dt; this is obtainable
by differentiating the normalisation condition. Thus, in terms of our fixed coordinate

system we finally obtain

du}

UGy 3/2 d? T'(p) (a—7)/2 da dy

i 3 (c +u(p)"(p)) a2 PeleD/2 4 “(p) (c +“(p)u(p)) at dt
[7.5.4]

We now combine equations [7.5.2] and [7.5.4]. This gives us

d’z _
(») ¢ 3 a)/2 1/2 {da d7
= —5ulpe TV (& + ubyyuly) <dt 7

c4

— 5@ tr) T (4 uyuly) (1-€7)
+ %HG (c2 + “b)%)) e (@ +re)

X €7h(g){g) (U%P) V ¢+ Uiy — o) V ¢t + "%p)u%p)>

1 —-3/2
+ —2-nG (c2 + u%p)u%p)) (z+re)

X 67ﬂ(r)u%r) (U%P) c? + u%r)u%f) o u%r) ¢+ u%p)ua)) ’

which in terms of our {1 coordinates becomes

di? 2
- %kx_zkmk" e (Thez 4 r) T (E 4 e ealyily) T (1-e7)
n %nGsk,~kg—k,‘—4ku—2kt (~2 te 4k“u(p)u(,,)) —3/2 (E_kmjc n rc)
x gy ([ + kol iy — by 2 + el )
+ %Kéek,-—kg—k,,—%u—%t (62 + 6—41:.‘&%?)&%1))) -3/2 (E—k,i + TC)
< iy ([ + e hetly iy = iy + et i )
We can now take the limit as ¢ tends to infinity. We note that k; — ky, — k& = 0,
ky — 2y + 2ke = (38 — 4)ky > 0 and ky — kg — ky — dky — 2ky = (4 — 38)ke < 0

d?z ¢ —1/2 {d d
(P) € kp—ku—ki~l (y—a)/2 (2 | —dkur1 =1 / o Y
= 5 “iifgyet= ) (&% +e “(p)u(p)) (dt dt)

-1
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so clearly, the last two terms tend towards zero. The first two terms require more

consideration and so we write,

d*z ) 1, da  dy & ko —2k
_ - . . z—2kt+2ky _ -
= gty Jim, (57~ ) - g Jim (e (1-77)).

For the second term on the right hand side of the above equation we have

lim (5’“’_2’“”2’““ (1 — e—“))

E—00

kG e~ke—ho—hu=2ke piteter, B —dky 1 ~1
= lim — (i + eker,) /0 8 ,; F(p) (c te ”(p)“(p)) ds
=0,

and thus to complete the analysis we need to determine the dependence on ¢ of the

derivatives of a and ~.

To find this information we resort to Einstein’s equation. This gives the e-
dependence for da/d%, da/0t and 0v/0% immediately, but for 0/t it is a little

more complicated. From [6.2.5] we have,
O kG o 3
E (@ +re) el Zl #(”)u(lp) V ¢t + u%p)u%p)
p__—"

3
— a_a = _f_g —kG—ku—3ku—ks ( kg 4 rc) ele+n/2 21 "7(17)&%1))\/52 + et i)
p:

ot &3

= lim —= =0 [7.5.5]
(since —kg — ky — 3ku — bt = (4 — 38)ks < 0). Similarly [6.2.4] gives,

da 1—¢e* kG P s 1 1
oz a:+rc+_cz_(x+rc)e Pzz:lﬂ(l’) (c +u(P)"(P))

do 1—e”*
8% & +eker,
G _, _ _ -
4 '24 ks—kg—ku 2ku( k’x+rc) Zl‘(p)( —4ky u(p)u(p))

[7.5.6]
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To determine the limit of the right hand side of this equation we need to investigate
how (1 — e”) depends on €. We define A, by

A - kG 1 Ftekor. ) 8 2 —akugl 21 g
e = ?(5:+ek$rc)/0 s };1/‘(1') (@ +e u(p)"(p)) 5

so that lim._.o A exists and is constant. Then equation [7.5.3] becomes
e~ = 1 4+ e~ke—ka—ku—2ku 4_

o 1

:} e =
1+ 6_2k”—kc—kl‘_2k"Ae

1
1 + e 2ko~ka—ku—2ku 4 _
1— (1 + 6—2kz—kg-—k,,—2kuA€)
1+ e—2ka—Fg—ku—2ku A_
g~ 2ks—kG—ku—2ku A_
1+ e 2ke~kg—kyu—2ky Ae

:ea—l 1

= lim (" - 1) =0,

E—0Q

so that finally, using the fact that —k; — kg — ky — 2ky = (4 — 38)k: < 0, equation
[7.5.6] becomes

A, 5z = 0

It now follows that

Iim d_a_ lim 5_a+ lim ai?ﬁ—
e—oo df  e—oo Jf  e—o0 Jf 0F

Next we consider the total time derivative for 4. From [6.2.3] we have,

_81_6“—1 kG

3
o 1 1
G " ngr T L Lkt

a"}’ e*—1 Iié —ko—ku—6ky (_—kg ~ 3 v A1 ~1
= 5-5 = —_‘—5: n 5k1‘7‘c + 54—8 G~y (6 T+ Tc) e” Zl M(p)u(P)u(P)
p:
= lim 8—7 =0,
£~ g
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since —kg — ky — 6ky = (8 — 68)ks = —k; < 0. Next we consider dv/dt. This is a
much more complicated calculation for we do not have an Einstein equation to resort

to. Instead we are forced to differentiate {6.3.7] by force. We have

kG [ztre 3
y=—-a+ A re El H(p) (c2 + Qu%p)u%p)) dr
p:

37 8a K)G T+7e aaa 3 9 1 1
= Et— = 5{ + —c_‘i—/ﬂ re —a—t' E /l,(p) (C + ZU(p)U(p)) dr
&G z+'° ”(;v) 2 1.1
= Z (¢ + 2ulyyuly ) dr

4G [otTe a 1 6”(1’)
+ g, /0 re pz:lp(p)u(p) ¢ dr.

Transforming to tZ coordinates gives

6’7 Oa Iié —ka—ky—2ky—2kg i+€kzrc aa —4ky
9% ot + = c Ghu /0 Z K (p) (c + 2 u(P)u(P))

kG e—kG—ku—2ku—2ks i+efore ﬂ(p) ) —4ky
4+ ——g7kGTRu /(; se"z ( + 2™ u(p)u(p))

=1 ¢
c =1 ot
e ¢~ kG —ku—6ku—2k B+etore a .1 a&%p)
tge e I/0 se E”(P)“(p) ot ds,
p=1

so that —kg—k,—2ky ~2k; = 4(1—-p)kt < 0 and —kg—k,—6ky—2k; = 8(1—-8)k; < 0
imply that

lim 2 = [7.5.7]

e—00 a

=>lmd7 Oy 00y

’ = 0.
emoo df O | 01 0%

Thus finally we can conclude that the asymptotic form of the geodesic equation is

x(p)
o o, [7.5.8)
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§7.6. Asymptotic behaviour of T

i =0

We know that written in terms of our static x variable, [6.1.3] implies that

1

7= (Hov=avy) =0

If we expand this equation then we obtain

Opp) o 1 g Ol , gy 4 , 1 g vy
SV + 50 5% )5+ Sty +3 55" 5V T e 5 =

Iy 1 1 da | D7) , 2 Ml
=50 + ﬂ(p)”(p)(a Tt )t 1)) T )
Okw) 4 1 4 (0o 3”/ Fv)

o Yo T 3w (g T ) Tre g =0
recalling that ¢ = —r*sin?@e®e”. We now transform coordinates so that r = z + re.
Then,

t(p) dw(p) 1 dag) 4 (da D7), 20 drg) 9 dx(p)
pe a0 g Y0 \5s Yoz ) Y agre @t tF05; ¥
) 4 1 da | By ) _
+ ap”(l’)+2”@)”<ﬂ)<at at>+“(1’) Bt
Opp dep) 1~ dog) (Do 07  2up) do(p) 9 (dz()
oz dt +§,u(p) dt %_*_5:1—: r+re di o gz \ "at

4
ko 4o ) | I | 1 (8a N 87) P g
2

4
ii) dt Oz ot ot ot Vip) ot

Now if y represents either z or ¢ then

1 81;‘(1’)) _ 1 au‘(ip) _ la_’Y

4 - .4
v %y 9y 20y

_ u%l’) au(zv) 1 8_7
¢t + u%p)u(p) 9y 20y
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Thus,

Obp)drp) | 1~ d2g)da | 2p(p) da() 90 (dz()
577+5“<P>75;+m7 “ma( )
“(r)“(p) dz(p) Ouly) | Ouy) da #(p)“%p) Dy _

' /"( ) a7

i P 2 ul
c+u(p)() dt Oz ot 2 ot c+u()() ot
We now transform to our dynamic coordinate system, X. The result is,

Ohpda , 1, H@a 2p) B
9z dt 2" gt 9z T i+ eber, di

+ i i di(f) 4 gtk ﬁ(P)ﬁ%p) dj(p) Bﬁgp)
®) oz \ " di &+ el il dt 0%
~ =1
L0y (1o Do g, P Diy) _
5 TaloEr & ekl al ot 0,
which becomes in the limit,
~ ~ ~ ~ ~1 ~ ~1
O o) | o O (#) o sk P0%)  dEg O
i di "oz \ di =00 el ul dt 0k

[7.6.1]

- ] -1
+ 8’;(1’) + lim { —4ky /L(p)U(p) au(}’)} =0.

o0 & +emthuiy i, Of

Here we have used the fact that lime_,o(z 4 €¥27) ™! = 0 as well as equations [7.5.5]
and [7.5.7]. To be sure of how the above equation behaves as ¢ — oo we need
to investigate the e-dependence of aﬁ%p) /0% and aﬁzp) /0t. The dependence of these
quantities can easily be determined from the normalisation condition. We have, for

y representing ¢ or z,

Oul 3/2 0 dx 0 0
) _ 1,1 @) (a—v)/2 @ 2
By & 5 (& + ulyuly) 5y dt el 4 “(p) (<" + ufyyule) (a—y“@)’

(ref. equation [7.5.4]) which imply that
oul 1 3/2 0 di
(P) _ 1 kitku—ks (22 | —4kyrl = AT(p) (a—7)/2
95 & t (c te u(P)u(P)) 35 di el*™7)

0a 0
=2 | _—4ky 7
gzt (& +e7 Mgy (ay ay)

133



(again noting that k; — k: — ky = 0). Inserting these results into equation [7.6.1] gives

Oip) d2p) | . 9 (di,
9 df +"(P)5§( df)

~ ~1 -
. - K (p)¥(p) dEp) [ 1 (9 _aku-1 -1 \3/2 0 d””(p) a—v)/2
1 { 4ky P (p) | = u ela=7)/
T E2+6-4k“a%1’)'&%1’) dt | & (c e u(”)u(”)) 3z di

Oa 0
~2 —-4ku 7 7
+-——'u,(p) (4 + 9 u(P)u(p)) (ax ax) }}
Ofi(p)

ot

ol
N S e O ) 1 —akugl 21 \32 0 BE(p) (a2
t ellf&{g 21 E—4kua(1p)ﬁ% ) = ( Te g (p)) 9t di !

| Jda 0O«
5l (& +e M afyif,) (at 5{)}}

=0,

which finally becomes

Ohp) d2p) . 0 (di)) , Ok _
@ reg\Ta )t ar [7.62]

Equations [7.5.8] and [7.6.2] complete an extremely interesting calculation for we

have shown that given the transformation group,

g (s;t,:v(p), u%p), H(p)» G c) = (ak‘t,ek”w(p),sk“u%p),ek“p(p),ekGG, e_k"c) , [7.5.1]

our General Relativistic equations of motion ([6.1.1]-[6.1.3]) reduce to the planar
symmetric, gravity free equations of caustic formation in Newtonian theory. We notice
that G plays the same role as in the Newtonian analysis. The resulting asymptotic
solutions are exactly the same as the solutions obtained in §5.3. In other words,
under an appropriate Galilean transformation and choice of boundary conditions,
the asymptotic solution is given by z = ¢(¢,v) with the tangent bundle surface, S,
reducing to Sg. This result corroborates the conclusion of chapter 5, which is that

gravity does not play a part in caustic formation.

We also have the result that the asymptotic limit of the full General Relativistic
equations is identical to the asymptotic limit of the equations obtained after L/cT

has been set to zero. This result differs from the expectation at the beginning of
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this chapter where we supposed that the two limiting processes are distinct and thus
could commute. It rather suggests that by choosing to scale the velocity of light we
have somehow incorporated the Newtonian limit within the procedure, let ¢ — oo.

To explain we note that according to the transformation specified by equation [7.5.1],

lim & = Jim ekhehe L g
e—oo T €—00 eT

(since ki — ks — ky = 2(1— )k < 0), which is the Newtonian limit and thus highlights

the coupled nature of our General Relativistic transformation group.
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CHAPTER 8. TOWARDS AN EXISTENCE PROOF FOR THE
NEWTONIAN EQUATIONS OF MOTION.

§8.1. Introduction.

In this chapter we begin the ground work in the setup of an existence proof for
a solution to the Newtonian differential equations describing caustic formation (ref.
§4.1). Although a complete proof cannot be given here in this thesis, the results
we shall present are used to prove existence for a certain class of solution in [SC].
The method, which we are working towards, adopts a contraction mapping type of
argument. We can think of this as a mathematical way of specifying an iterative
procedure that tends to the required solution. For example, if J represents our
contraction mapping, z(¢) the solution to a differential equation, and zo(t) the initial,
and approzimate solution that might be our first guess, then z(t) = limp—. J"[z0](%),
where J2[zo] = J [J[zo]], J3[z0] = J [J[J[z0]]] and so on. At this point we refer the
reader to appendix 2, which defines the concept of a contraction mapping. We also
give an example of how these ideas can be used to establish the existence of a unique
solution to dy/dz = f(z,y) with initial condition, y(zo) = yo. This example is useful
for it highlights certain aspects of this approach that need to be considered with care.

The basic idea begins by reformulating the Newtonian equations of motion in
terms of an integral, or set of integral equations. This allows a function, J, to be
defined that is a map from some, as yet undefined, metric space such that the solution
to equations [4.1.1]-[4.1.3] (or equivalently [4.5.3]-[4.5.5]) correspond to a fixed point
of J. To clarify what we mean, we illustrate using the example mentioned above. In

appendix 2 we show that dy/dz = f(z,y), y(x0) = yo, is equivalent to
y(@) = y(e) + [ fit,y() dt. [8.1.1]
T

In this case, given that z,z¢ € [a,b] and ¢ € C[a,b], we could define J to be the map,
J:Cla,b] — Cla,b], '

T6)@) = vieo) + [ flt.60)

so that the above integral equation, [8.1.1], is equivalent to J[y] = y.
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Another example of how we might define J to form a contraction mapping is
that where the above ideas are applied to the tv space formulation of our Newtonian

problem. We have for the multi-dust region in M,

oF - Oz ~ AN
— (1)1 . _1yH! . . 4.5.3
g = "ot G (a, (F) ¢) 453
oz
v; — a—f = E?’ [4.5.4]
do; F' 0oy
S+ 5 =0, [4.5.5]

where the arguments of all equations are (t,v;). The function, ¢;, defined by

¢i(t, vi) = {(t,v5)lvj # vi, (2, vi) = z(t,v5)},

highlights the fact that in calculating the acceleration there are contributions to the
total density from the three velocities that satisfy = = z(¢,v;) (This harks back to
§2.1 where we talked about disjoint regions in 7'M contributing to the gravitational
force.). Now suppose that we are solving these equations for some initial conditions
on r and o; at time, s (the boundary condition on F' is that F(¢,0) = 0). Let
U(s,t):IR — IR be the diffeomorphism from the v-axis at time, s, to the v-axis
at time, t > s defined by the geodesic flow, Z = 3/0t + F3/0v. This vector field
is equivalent to the Z of §3.3 except that now we assume that the tangent bundle
surface, S, has local coordinates, (f,v). This means that if z(¢) represents a specific
integral curve of Z then W(s,t)(u) = v (really ¥(s,t; F)(u) since in actual fact we

have

0
'6_t\p(37t)(u) = F(t,\Il(s,t)(u)),

implying that the form of ¥ is dependent on the given F) where u = dz/dt(s)
and v = dz/dt(t). In addition we also have ¥(s,s) representing the identity and
VU(s,t)~! = U(¢,s), the inverse function.

We can we now rewrite equations [4.5.3]-[4.5.5]. We have from [4.5.5]

do;

oF
dt (t, ¥ (s,t)(u) = —ailt, \I’(s,t)(u))—a—;(t,\ll(s,t)(u))
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= 0i(t,v) = 0y(s, (¢, 5)(v))

t
_/ ag(t',W(t,t')(v))—a;—(t',\Il(t,t')(v))dt' = Jilz, oy, F(t,v).
3 v
Similarly, [4.5.4] gives

dz
6 W, )(w)) = (s, )(w)

= a(t,0) = (s, W(t,5)(0)) + [ "Wt ¢)(v) dt' = Jaf, o, F(2, v),

whereas equation [4.5.3] is equivalent to

v -1
F(t,v) = —/ oi(t, v')-}—%(t, v) 3" {0 Oz 0 ¢; | (t,0') dv’ = J3[z, 0y, F|(t,v).
0 v oy Jv
It follows then that we can construct a map (that maps some, as yet, undefined metric

space to itself) by the equation,

(z,04, F) = (Ji[z, 0, F], o[z, 0%, F, J3|z, 04, F]) = J[z, 03, F).

The above equation completes the second example illustrating how a differen-
tial equation or set of equations can be reformulated so that they suggest a possible
candidate for a contraction mapping. It might be possible to proceed with this devel-
opment in our quest for an existence proof, however, we find that by reformulating
our Newtonian equations using a Lagrange coordinate system, we obtain a much sim-
plified set of differential equations with which to work with. We shall concentrate on

this new formalism for the rest of this chapter and indeed thesis.

The next step in any contraction mapping proof involves defining the metric space.
We neglected to stress this in our second example because we were primarily concerned
with ensuring that the reader understands the motivation behind the definition of J.
To complete the specification of this map we must of course state the metric space
upon which J acts. That is to say we need to define the class of functions which
J takes as its arguments, as well as the metric itself. In reality this process is the
hardest part. The reason for this is that in order for us to determine the appropriate
metric space, we must have a good idea of what we expect the solution to look like.
Moreover, even if this is the case and we know to some degree of certainty where the

function or its derivatives become unbounded, for example, the process of defining
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the metric space is one of trial and error. Having said this intuition is a great help in

reducing the number of possible permutations to a reasonable number.

The final stage is to show that J does in fact define a contraction mapping.
Although this is not necessarily easy, it can, in general, always be done provided the
metric space can be made sufficiently small enough. A good example of what we
mean is that given in appendix 2. There we supposed that f in [8.1.1] was Lipschitz
continuous (|f(z,y1) — f(z,y2)| < K|y1 — y2|) in order to prove the theorem. The
constant, K, was chosen such that K < 1/6(b — a) where é = d(y1,y2). Had we
chosen K unwisely so that it did not satisfy this condition then our defined J would
not have been a contraction. In this case we have restricted our class of functions
by reducing K. Another example is that where we restrict the size of the region on
which we are trying to prove existence. Suppose that we were stuck with a K such
that K > 1/8(b — a). Then defining a' and ¥ so that K < 1/8(8 — a') again means

that J is a contraction, provided of course we still have zo € [d', V].

The above summarises the procedure that we hope to take. The rest of this
chapter will be dedicated to defining both the map, which stands as our candidate for
a contraction mapping, and the metric space. To begin, the next section introduces
the Lagrangian coordinate system, (¢, X), that we will adopt. We do this whilst
presenting the exact solution that is to be found in the external region, i.e. those
points not enclosed by the cocaustic. The significance of the X variable is three-fold.
Firstly, and primarily, we will show that for the case of a single dust with initial
conditions z = ¢(¢,X), X is proportional to the force at (£, X) (or equivalently,
zx(t)). We can think of this as its definition and it is the job of §8.3 to show
how this generalises to the case where we have a system of several superimposed
dusts. Its second importance is its relation to the velocity on the initial time slice;
we have v(0, X) = X (For the rest of this thesis, we shall assume initial conditions
that coincide with the special model used to illustrate the zero gravity case. This
means that we also have the relationship, z(0,X) = —X3.). Finally, we have that
geodesics, zx(t) = z(t, X) say, become functions of time, labelled by the X variable,
and correspond to straight, vertical lines in X space. In this sense, therefore, we

have a comoving coordinate system.

In §8.3 we use the ideas developed in §8.2 to transform our differential equations

describing caustic formation so that they are now written in terms of Lagrangian
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coordinates. This involves the introduction of three new variables, X;(t,X) (¢ =
1,2,3), that are defined by z(t, Xi(t, X)) = z(¢, X). That is to say, X; labels those
geodesics that are coincident at zx(¢) in tx space. In some sense this is quite a
complicated quantity for we can use it, quite unambiguously, as both a dependant or
independent variable. To explain, we point out that the subscript ¢ has an additional
meaning for we choose, X; < — X, < X3 < X, < X3, where X = X(t) represents
the equation of the caustic in tX space. This implies that the i also corresponds
to the dust number in much the same way as the 7 in v; of §4.5. It follows, by the
fact that we assume a multi-dust spacetime, that in each region zx(t) is unique and
moreover, that X;(¢, X) = X when X satisfies the above condition for the zth region.

This illustrates its behaviour as an independent variable

The two reasons why we adopt this approach are as follows: the first is that the
differential equations that describe the motion of particles get completely decoupled
from those that describe the changes in the density. This has a secondary effect
(also the second reason), which is that the force at any point is given by a vastly
simplified expression. To illustrate, we state without proof the force equation in this

new coordinate system,
F(t,X) = A(X1(t, X) — Xa(t, X) + X3(t, X)). [8.1.2]

The constant, A, is defined so that AX;(¢, X), for example, represents the mass of
dust 1 enclosed between zx(t) and the origin in tz space. The right hand side of
equation [8.1.2] therefore represents the total mass between zx(t) and = = 0. Finally
we complete this section by suggesting a map, J such that z(t, X) = J[z](¢, X), as a

candidate for a contraction mapping.

In sections 8.4, 8.5, and 8.6 we discuss the behaviour of the type of solution that
we are trying to prove existence of. This is based on the assumption that the solution
can be thought of as a perturbation on ¢ (the solution for G = 0) in some sufficiently
small region of tX space containing the cusp. By assumption, the continuity of the
X; dictate that £ must be at least C? in the time coordinate. However, due to
the step function-like behaviour in the acceleration of any particle as it crosses the
cocaustic (remember that in tz space the caustic and cocaustic are identical and that
the former corresponds to points where there are unbounded densities), we expect
the differentiability with respect to X of z(t,X), a geodesic, to be less than C2.
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The caustic is another problem area and to examine the solution’s behaviour close to
these curves we split the multi-dust region into three parts. These are represented by
those points that correspond to: 0 < X < X, X, < X < Xp and Xp < X < Xee.
The boundary, Xy, between the last two regions is simply there to illustrate that the
region close to the cocaustic should never stretch to the caustic and visa versa. We
shall thus leave this undefined. Lastly we point out that by the symmetry inherited

from ¢, we need only consider the half problem.

The discussion concerning the differentiability of z consists of a series of calcu-
lations that concentrate on investigating the continuity of 8%z/8X2. We allow q to
provide a basis from which we can begin this calculation in the sense that we shall
assume that dz/9dX is continuous everywhere as is 82z/9X? except at points corre-
sponding to the caustic or cocaustic. To perform this investigation, we differentiate
z = J[z] twice with respect to X to obtain §%x/dX? = §%/8X?J[z]. The right hand
side of this equation is now the second order differential of a double iterated integral.
We can interchange the two operations to get an expression for 82/3X2%J[z] as an

iterated integral of terms involving the second order derivative of z. Specifically we

obtain
2 t/ 2 2
gx2(t X)= —6X+A/ / aa;,(; ", X) — aa))((z ", X) + %))((2 (", X) dt"dt'.

(8.1.3]

The next stage is to express the integrand as a power series expansion in either
|t — ke| or [t — kee| (here ke(X) = X71(X) and keo(X) = X1(X) so that ¢ = k. and
t = k. are alternative representations of the equations of the caustic and cocaustic
respectively) depending on if we are close to the caustic or cocaustic. In constructing
these series, we illustrate the expected singular nature of 9%z/3X? by pulling out a
factor of |t — k|7Pk, i.e. by writing,

%z o

a6 X) = 3 oIt = K, X)lt = KPP = ft k[T ~ k], X).
Here k represents either the caustic or cocaustic depending on which region of our
tX plane we are considering and « is assumed to be analytic. The constant, pg, is
then determined so that we have consistency between the left and right hand sides of
equation [8.1.3]. Assuming that p; > 0 means that 9%z/8X? is less than C? meaning

that we may be forced to work with a complicated metric space.
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In the final section we take the results so far obtained and propose a metric space
in which we hope to find the solution. The aim is to base the set of functions that

we are considering on

V={f:Br — R|(t,X) = ~f(t,-X), #(0,0=0, |flv<oo} [814

o f
* laxatl}

Br={(tX)eR?||X|<T, 0<t<T}.

where
o2 f
0X?

% f
012

Iflly = sup { +

(t,.X)eBr

and

Br is the domain in which we hope to prove existence and we can control the size of
this by varying T'. || f|ly, which we shall use to define the metric function, is simply
the standard C? norm. If we are unlucky and it turns out that we must expect = to

be less than C?, then we may have to introduce a weighting that modifies the above

*f
+,8X6t.}’

where p and p’ ‘measure’ the rate at which 8?f/90X? becomes unbounded as (¢, X)

approaches these curves. Finally the conditions placed on the space of functions in

norm to

o f
0X?

1
|t — kP

&*f
X2

o f
ot?

+

= s

(t,X)eBr

the above definition for V reflect the assumption that = always looks like q. To express
the fact that we look for a solution that is near to ¢ we shall restrict V still further

by considering

Vo={feVI]If—-dqlv<a}.

§8.2. Exact solution for the external region.

Working in tv space we have for a single dust,

do oF

where we note that in terms of v coordinates, d/dt = 3/t + F3/dv. This represents

the relationship between the force and the matter in the region external to that
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enclosed by the cocaustic for we realise that here we have a well defined fluid flow

vector. Let us now introduce comoving coordinates. We make the transformation by
the assumption that for any function, f say, f(t, X) = f(¢,v(¢, X)) with v(0, X) = X.

It follows then, using the results summarised in appendix 1, that
oF AF\ (ov\™’
(50),= (5%), (%), B
of\ _ (of Ov ofy d
(at)X - (av>t (E>X i (—5-{)0 dt X=const fttw),
so that

(), - (e (4)),- (& (2),),- (3 39)) - 3

Applying these equations to [8.2.1] gives
do w\ ' d [ ov
&~ "\ox), a@\ox),

-1
= o(t,X) = oo(X) <§—;{>t . [8.2.3]

and

(5%),

We now assume zero gravity boundary conditions at ¢ = 0 to determine oo(X).
This means that dv/dX(0,X) = 1. To obtain an expression for o(t, X) we have
to refer to an asymptotic analysis of the Newtonian equations written in terms of
(t,v) coordinates ([4.5.3]-[4.5.5]). This work has not been presented in this thesis,
however, it has been done and we summarise the results as follows. The general
approach follows very closely that described in §5.3. That is to say we consider the

group of transformations,
g(e;t,vi, Foz,04,G) = (5k’t, sﬂkfv,-, ekFF, 5"":1:, sk"a,~, akGG) ,

in conjunction with equations [4.5.3]-[4.5.5] with G reinserted (this quantity only
appears as a multiplicative factor in front of each o; in equation [4.5.3]). For invariance
of our equations we require that kr = (8 — 1)ks, kz = (B + ks, ke = —(1 + 7)ke
and kg = vk;. Asymptotic solutions exist provided k1 > 0, # > 0 and v > 0,
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resulting in a solution for (¢, v;) given by [4.6.3] but modified slightly to give o; =
Ait=(4Dk ¢, |=(47)/B  [f we assume that we require non zero and finite behaviour
on £ = 0 then we must have 1 + 4 = 0. This means that o;(¢,v;) = A; represents the
asymptotic solution for the density in a tv space formulation of caustic formation.

Finally, using this result, it follows that we have o9(X) = A where A is also a constant.

oF\ _
Ov t—a.

In terms of tX coordinates this becomes

ory _
ax),~ "

Next we consider,

which if we integrate gives
X
F(t, X) = / g0dX + aft) = AX + a(t),

where « is an arbitrary function. In section 5.4 we showed that the tz space formu-

lation of the Newtonian equations of motion exhibit the symmetry,
t=t, iE=z+HW), o=v+H@), F=F+H'{).

A similar symmetry exists (although we do not prove this here) in the tv space

formulation. We therefore set a(t) = 0 to obtain
F(t,X) = AX. [8.2.4]

This result is worth remarking on since we shall use it later on. Firstly, we note that
since d/dt|x—const = (0/0t)x we can define curves, rx(t) = z(¢, X), that represent
geodesics in tz space. Equation [8.2.4] is therefore telling us that along these curves,
the gravitational force is constant. Moreover, since we are assuming zero gravity
boundary conditions, the constant, A, can be chosen so that AX represents the mass
enclosed by z¢(0) and zx(0). This point is extremely important for we shall use this
idea when we come back to considering caustic formation. The simplicity of [8.2.4]
illustrates what we meant in the introduction when we stated that this Lagrange
approach decouples those differential equations describing the motion of our particles

from those describing the changes in the density. That’s not to say that o has no
g y
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dependence on the motion of our fluid; the presence of the (Jv/8X); ! term dictates
the opposite. What we mean is that, as shown, the original differential equations can
be manipulated into a form that has the density dependency removed from the force

equation allowing a solution for o, [8.2.3], to be obtained.

We complete this section by integrating equation [8.2.4] to obtain the solutions
for z, v and consequently o. Since
d’z 0’z Jdv
— = —(t,X)=—(t,X) = F(t,X),
| X)=R0X) = X0 = F.X)
we obtain firstly v(t, X) = X(1 + At), and then z(t, X) = X (¢t + At%/2) — X3, using
of course the boundary conditions, v(0, X) = X and z(0,X) = —X?3 (corresponding
to ¢(0,X) = —X3). With v defined we can now fully determine the density. Since
0v/0X =1+ At we have ¢ = A/(1 + At). Thus the solution for a self gravitating

dust with zero-gravity initial conditions is

1
r=Xt+ EAXtZ - X3,

’U:X(1+At)

and

_ A
TT1Y A

In terms of a tv space formulation we obtain

v3 v 1.9
= - t+ At
(1+At)3+(1+At)(+2 )

v = ’Uu(l + At)

and
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§8.3. Lagrangian formulation of Newtonian caustics.

According to our tv space formulation of the problem we have essentially four
functions, o; and x, described by [4.5.3]-[4.5.5]. To convert these equations so that
each term is a function of ¢ and X, our Lagrangian coordinates, we use the results
of appendix 1. The first thing to notice, however, is that the analysis concerning o
for a single dust in the previous section holds in our multi-dust scenario. That is to
say, we can immediately write the solution for o; as o;(t, X) = A(dv;/dX);*. This is
essentially because the aforementioned solution was obtained without reference to the
specific form of the force equation (ref. §8.2). Furthermore, since 8%z/dt%(t, X) =
F(t,X), we need only investigate how the force equation transforms into these new

coordinates. We have

(g—i) = (=1)"*lg; + Z(—l)j+la'j (52—1’)1:) : [4.5.3]
t J#i 1/

This is a tv space formulation of equation [4.1.1] and tells us that the force at (t,v)
is a function of the mass enclosed by z(¢,v). Here each v;, defined by z(¢, vi(t,v)) =
z(t,v), represents the velocity fields of those geodesics that are coincident at a point
in tz space (Recall that since we have chosen to model caustic formation using a
multi-dust spacetime, the velocity field is unique having a one to one correspondence
with geodesics on M.). The subscript has a further meaning for it labels those regions
in TM corresponding to different dusts. That is to say, we have, v; < —v, < vy <
ve < v3, where v = v.(t) represents the equation of the caustic. We note that as
v varies, depending on which region we happen to be considering at the time, there

must exist a v; such that v;(t,v) = v.

Let us now introduce comoving coordinates, (¢, X), such that if f(¢,v) is any
function then we define f(¢, X) = f(¢,v(¢,X)). with v(0,X) = X. An alternative
choice for defining the relationship belween X and v might be v(ke(X), X) = X. This
essentially specifies initial conditions for v at the cocaustic. We let (¢, X) be any point
in our new ¢X space but to mimic the different regions in tv space mentioned earlier,
we introduce three functions, X;(¢, X), such that X3 < —X () < X3 < X.(¢) < X3,
where X = X,(¢) (and its inverse, t = k.(X)) represents the equation of the caustic.

This means that again we have 2 labelling the different dusts.
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We continue this construction by stipulating an additional requirement that can
be thought of as a secondary definition of the X;. That is to say we assume that
z(t, Xi(t, X)) = z(¢,X). This means that X;(¢, X) labels those geodesics that are
coincident at (t,zx(t)) in tz space. Having said this, however, it does not make
sense to define geodesics such as zx;(t). The reason for this is purely because X; is
a function of X; there is nothing to stop us considering curves such as y(t, Xi(t, X))
except that we cannot attach any physical meaning to them. In this sense, the X;
constitute quite confusing quantities, more so if we consider the fact that they can
be thought of as both dependent and independent variables. That is to say, in all
of the above we have considered them as dependent variables, however, we point out
that due to the uniqueness of curves, zx(t), in any of the regions defined above, we
must always have one X; such that X;(¢, X) = X depending on which region we are
considering. This is an artifact of the fact that in TM the tangent bundle surface

can be constructed by ‘gluing together’ three separate subsurfaces.

Now we move on to transforming [4.1.1]. Using the results of appendix 1 and

following similar lines to the previous chapter we have

(7). (5%), - (35),

s (22) (22)

J#i t

Note how we have already used the X; as an independent variable as we have assumed

that a specific region of our tX space has been chosen, i.e., we have the relation,

Xi(t,X) = X. This implies that

(562%>t = (~1)*oio(X:) + 2 (— 1) aj0(X;) (58’%)_1 (Z_Z)t (g)%)t

i t

Xi [ OF R TS :
:>/ (5)7'_>tdx,_/ (1)1 A dX;

e[ erra ()" (5, (55), o
+ alt),
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where «a(t) is the arbitrary function of integration. As per the previous section, the
force equation is again invariant under the addition of arbitrary functions of time.

This means that the above then simplifies to

X;(4,X; .
Fit,X) =Y | 5 1y g ax,
J

= F(t,X) = A(X1(t, X) — X2(t, X) + X3(t, X)). 8.3.1]

In terms of z(t, X), the desired solution, the above becomes the following second

order partial differential equation,

?T:(t’X) = A(X1(t, X) — Xa2(t, X) + X3(t, X)), 8.3.2]

together with the initial conditions, £ = ¢(0,X) and v = d¢/30t(0, X). Of course we

also have

Xx)= A2y B
7 N 0X; ’

t
but since this is a solution, albeit dependent on the knowledge of v;, we realise that
the problem of obtaining a solution to the Newtonian equations of motion boils down

to solving just a single differential equation, namely [8.3.2].

Now we consider the beginnings of the construction of a contraction mapping
proof. We first of all write [8.3.2] as an integral equation. One example is the

following,

t ot ,
(t, X)=-X+ A X1(t", X) = Xo(t", X) + Xs(t", X) dt" dt’,
0 JO

where we have considered initial conditions corresponding to z = ¢(0, X). However,
care must be taken in interpreting this equation because the integration with respect
to the time coordinate must pass through the external region before it reaches the
cocaustic (the equation of which is defined by ¢ = keo(X) or X = X¢c(t)). In this
instance, therefore, we must remember that the X; are defined by z(t, X;(t, X)) =
z(t, X) for | X| < Xee(t), Xi(t, X) = X for X < =X (t) with Xz(t, X) = X3(t, X) =
0, and X3(t,X) = X for X > Xc(t) with X1(¢, X) = X2(¢t,X) = 0. An alternative

integral formulation might be

1 t gt /
2(t, X) = Xkeo+ 5AXKE = X'+ A /k /k X (8", X) = Xa(t", X) + X3(t", X) dt" d¢'.
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This reflects the assertion that we wish to specify boundary conditions on the co-
caustic itself. That is to say, we have also used the solution to the external region to
evolve the gravity free initial conditions specified at ¢ = 0 up to the cocaustic. Now
there are two things that we must be aware of when interpreting the above equation.
Firstly, we only consider ¢ such that ¢ > k... This avoids the confusion produced by
the different definitions of X; in the above. The second thing is that the symmetry
of our system still allows the external solution to be valid, even though at points
to the interior of (¢, X) say, geodesics are passing through X = 0 (corresponding to
zx(t) = 0, the axis of symmetry). To explain, we notice that one of the conditions
on z specified by equation [8.1.4] (we must have z € V for our contraction mapping
proof to work) is that z(¢,X) = —z(t,—X). It follows that as time evolves and a
geodesic, z x(t) say crosses that of X = 0, its opposite partner, z_x(¢) with the same
mass associated with it appears from the other side. Thus provided |X'| > X, the

mass enclosed by z x/(t) is constant resulting in a uniform acceleration according to

F=-AX"

For simplicity we choose the first of the above integral equations to work with.

This implies the following as a candidate for our contraction mapping,

T, X) = X + A /0 t /0 ‘ X", X) de" dt', 8.3.3]

where we have defined x[f](¢, X) to represent the right hand side of equation [8.3.2]
evaluated for any trial or approximate solution, f(¢,X). The function f is taken to
be a member of some undefined function/metric space. Our next task is to determine

what this metric space is.

§8.4. Investigation to determine the differentiability of z.

Before we can define the function/metric space upon which J acts, we must in-
vestigate the behaviour of our solution, z. It is insufficient to simply assume each
f in equation [8.3.3] to be at least C™ because without prior knowledge, it is dif-
ficult to say whether the iterative procedure defined by J will preserve this degree
of differentiability (Remember, if we stipulate a certain degree of differentiability on
f then we must show that J[f] also exhibits this degree of differentiability in order
for J to be a mapping from some metric space to itself.). This implies that by the

term ‘behaviour’ we mean the degree of differentiability that we expect x to have. In
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addition to this, we may have the situation where z might be C™ but that we are
required to know something about the (n + 1)th order derivative. In this case by
‘behaviour’ we mean knowledge of those regions in our tX plane where D"t1(z) is

discontinuous and possible the rate at which these functions become unbounded.

The general procedure in determining the behaviour of x, therefore, is to assume
the lowest order of differentiability for z and then show, by explicit calculation, that

J{z] has similar behaviour. We do this using

oz 2 ¢ 3X " "
oo =t—3X +A// (t", X)dt"dt',
v aZX[x] " "o
_ 8.4.1
o7 6X+A/ | S x) dt"at [8.4.1]

and

taxz] '
atax 1+ / (¢, X)dt,

where we realise that the z on the left hand side of all of the above really represents

J[z].

Now we can automatically assume that = must be C? with respect to the time
coordinate because the right hand side of equation [8.3.1] is continuous. This is an
assumption based on the fact that we require the surface, S € T'M, generated by
geodesics, zx(t), to be continuous. It remains therefore to determine the differentia-
bility with respect to X. We shall assume that z is definitely C! in the X coordinate
because we require that the velocity field associated with our dust particles to be
continuous and this is as far as we can go. We don’t know anything about the second
derivative with respect to X except possibly that it might be continuous everywhere

apart from those points that lie on either the cocaustic or caustic.

We shall base our analysis on these assumptions by proving that they are self con-
sistent under a single application of J in the following manner. The idea is to replace
the integrand of all of the above by Taylor expansions that reflect the assumptions
made on the differentiability of z. For the reasons stated above, however, we will only

consider [8.4.1]. The definition of x[z] implies that we need to consider §2X;/8X?2.
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From the definition of X;, namely (¢, X;(¢, X)) = z(t, X), we find by differentiation
that
#X;  2"(X) (X)2"(X;)
0X?  I(Xy) (X2

[8.4.2]

This equation illustrates exactly where we expect possible unbounded behaviour in
z": one can see that things only go bad when X; — X, since in these regions
limy,_x, '(t, X;) = 0. To proceed with our investigation we should suppose that
our multi-dust region can be split into six parts. By the symmetry we expect z to
have, however, we only need consider the positive half of the X plane. This reduces
the number of regions to three. We define these regions as those points corresponding
to 0 < X < X, X > X, close to the caustic and X < X, close to the cocaustic.
With these in mind, we then expand each quantity appearing within the integral on
the right hand side of [8.4.1] in terms of |t — k¢| or |t — X¢c| (ie. for X < Xeo we

might have

0%z 0 _ _
2z (6X) = D0 am) (X))t = kee|" P = [t — ke Pa(|t — kee|, X)
0X =

for example) depending on which region ‘we are considering. This will allow us to
perform a single iteration defined by [8.4.1] so that we can determine the value of p

by insuring that we have consistency between the left and right hand sides.

§8.5. Near the cocaustic.

We write equation [8.4.1] as

ng = —6X+A / / ‘ % ;,(; (A", X) — %2; (", X) dt"dt', [8.5.1]
since in this region, X3(¢,X) = X. Now equation [8.4.2] tells us how to relate the
derivatives of X; to derivatives of z. In order to feed in the assumptions regarding z
and its derivatives mentioned in the previous section, we replace all terms on the right
hand side of [8.4.2] that are expected to produce singular behaviour near the caustic
by an appropriate Taylor expansion. To illustrate what we mean by this we first of all
notice that for X close to X, z(t, X1(t, X)) = z(¢, X)) implies that X7 must be close
to —X_. indicating that the z'(X;) terms on the right hand side of equation [8.4.2]
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will be causing a degree of singular behaviour as X approaches X... To illustrate this

we write, using Taylor’s theorem with remainder,

2(X1) = 2'(—X) — | X1 + Xela'(Ya)
= — X1 + Xel"(Ya), [8.52]

since z'(—X,) = 0. In the above, to simplify things, we have dropped the time depen-
dence and defined Y, (¢, X) such that X; < Y; < —X,. In addition, z(¢, X1(¢, X)) =
z(t, X) implies that

1
z(—Xe) + §|X1 + XC|2$”(YI>) = 2(Xee) = |X ~ Xeelz'(Ye),

20/ (Yy) 1/2

1/2
— |X1 +XC| = |X —XCC| / x"(ifb)

8.5.3]

since by definition of the cocaustic, z(—Xc(t)) = z(Xec(t)). We also have X; <
Yi(t,X) < —X¢ and X < Y (t,X) < Xc. Clearly, equations [8.5.2] and [8.5.3]
determine exactly how quickly (z'(X71))~! tends to infinity in the limit X — X.

Inserting these equations into [8.4.2] gives

92X, (X = — 2"(X) 2" (%3) 1/2 N 2'(X)22"(X1) 2"(Y}) 3/2
ox2\v | X — ch|1/233"(Y2;) 2z (Y,) |X — ch|3/2:v”(Y;)3 2z/(Y,)
8.5.4]

We do not need to concern ourselves with expanding the z'(Y:) since close to the

cocaustic, z' is assumed to be non-zero and finite.

Of course it is not only the (z'(X1))™! and (2/(X1))™3 terms that determine the
singular behaviour of 82X;/8X?%, we also have the second order derivatives causing
problems. The next stage, therefore, is to assume singular behaviour at both the
caustic and cocaustic. The first assumption is possibly a little severe, however, since
the analysis is not complicated any further by this assumption, we may as well include
it. We assume that for Yy close to the cocaustic, z"(Yy(t, X)) for example, has the
following dependency on X,

o0

"f'"(Yy(t’X)) = Z a(n)(Y;/(t7X))|t — kee|" P = [t — kee| Py (|t — kecl, X),

n=0
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whereas for Yy < —X_ close to the caustic,

00
(Y, X)) = 3 am)(Yy(t, X))t = Fee "™ = [t = kee| oy ([t ~ keel, X),
n=0
noting the replacement of p by q. Both of these are real constants satisfying 0 <
P, g < 1. We draw attention to the a. These can be supposed to be analytic since we
have pulled out the factors, |t — kcc|™” and |t — kcc| 7P, to represent the divergence of
" in the two regions. We have also introduced a subscript y. This is simply a label
that allows us to define a unique a, according to the argument of z". If o has no

subscript then we take the argument of z” to be X.

If we are supposing that «a, is analytic and arbitrary, then it does not make any
sense to consider values of p and ¢ less than zero since this replaces ay(|t — keel, X)
by [t — kec|ay (|t — kee|, X) for example, which is also analytic and so we remove this
redundancy. The upper bound on p and ¢ arise from the assumption that dz/0X is

continuous everywhere. To see this we write for X near the cocaustic,
2'(X) = o' (Xee) = |X = Xecl2" (Ya(t, X))
= ' (Xee) — |t — kccll_”ad(lt - kcc,aX)lkéc(Ye)l_]a

where X < Yy(t, X),Ye(t, X) < Xcc and the mean-value theorem has been used to

write,
t—=kee(X) = —(X - ch(t))kLC(Ye).

A similar argument holds for X close to the caustic. Clearly then, for p > 1 the first

derivative becomes unbounded at the cocaustic contradicting our assumptions.

Returning to the argument we have, upon using the mean value theorem,

A2 Y o ¥ ] L6 il | e
X2\ |t — kee| V2|t = keo| 90 | 22'(Y2)
2! (X)2|t = kee| 0 [ko(Ye) > |1t = kool ~0u [*/?
|t — kee|3/2|t — kee| 3903 22'(Ye)
X, a/2—1/2—p @ | apkee(Ye) v
= =57 (X,t) = —|t — kec| o | 22 (V)
) [ [8.5.5]
_ q/2-3/2_1 291 |ApRec\Ye
+ [t — el Y X 3 vy

153



This represents the singular behaviour of 82X;/8X? as t — ke (or equivalently
as X — X¢c). The coefficients of each of the |t — k.| terms are continuous. This

implies that we need k. to be at least C.

Let us now repeat the analysis and calculate an expression for 92Xz /0X?*(X, ¢).
Again for X > 0 near the cocaustic we expect X, to be close to —X,. Using Taylor’s

theorem with remainder gives
x,(X2) = |X2 + kcclzl(Y;i),

for — X < Ya(t, X) < X3. Also, since z(t, X2(¢, X)) = z(¢, X),

(ch) 1/2

|Xa + Xe| = | X — Xeo|/?
=1 My

b

where — X, < Yj(t,X) < X2 and X < Yz(¢, X) < X¢e. Thus, using [8.4.2] we have
92X, 2"(X) 32

z"(¥5)
o0X2 Tz (K1) = |1 X — X, |1/2 "(Yz) |2

z'(Ye)

VO dX)R(X) | 2"(%)
X = Xecl¥22" (Va)? | 20/ (¥e)

[8.5.6]

We note the similarities between the above and equation [8.5.4], which is due to the
symmetry, | X1 + X¢| = | X2 + X¢|.

We now assume, for example, that

o0

2" (Yy(t, X)) = 3 ) (Yy(ts X))t = kee|™™" = |t — kel "oy (|t ~ kecl, X)

n=0

in order to model the possible singular behaviour for some Y, > —X, close to the

caustic. With this assumption the above becomes

G YISy MR i B P
OX2 7 Tt — kY2t = kee|Tam | 22 (Ya)
2! (X)?t = keel e [ (Yo) /7 |1t — kel " ag [/
|t — kec|/2|t — kee| 73703 22'(Yz)
2 _ 1/2
0° Xy (X t) _ |t _ ]r/2 1/2—p O[bk,cc(Y)
OX2 2¢'(Yz)
o [8.5.7]
— |t — ke Ir/2 —3/2 :(X)zaZ ogke(Ye)
2x'(Yz)
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Inserting [8.5.5] and [8.5.7] into [8.5.1] gives

Oz t ¢ " a |apkl (Ye) 1/2
- - _ _ . g/2~1/2—p & |FXblec\le
sxr =6+ a [ [[{ -1t ke o | 22/ (Y,)
1/2
N |t"—k lr/2——l/2—p_a_ al‘;kic(Y;) /
c az | 22'(Yz)
K (Vo) P
" — ke, 4/2-3/2 17y 2 XL | XbFec\Ye
+ | kee| z (X) o __—_23:'(}’0)
_kl (Y) 3/2
{1 g |T2302 202 [OfKcelYe }dt"dt’.
+ | keel z (X) o3 —————21:,(}/6)

For convenience, we shall write the above as
0%z t gt 3
b_ﬁ = _6X + A/O [) {lt” _ kchQ/z—lﬂ_"ﬂl + |t” . kcclr/2—1/2 P3,
+]t" _ kcclq/Z—3/2ﬂ3 + lt” _ kcclr/2_3/2,84} dt”dt’,

or
52 t ot
6_5”2. = —6X + A/ / {|t” — kee|1/2V2P By 4 | — k|2 P

+lt" _ kcclq/2_3/2,83 + It" _ kcclr/2—3/2ﬁ4} dtlldtl + -

where we have defined Fi(|t — kee|, X) (: = 1,...,4) to be the unknown analytic
functions representing the coefficients of each |t — k.| term in the above equation
and (|t — kec], X), which is assumed to be analytic, to represent the functions of
integration. If we now integrate this equation then provided ¢ does not approach k.

we have

0%z
0X?

= ~6X + A{lt ~ Bty 4|t keI,
It = Focl 2By 4 [t = Kecl TRy} 4 7.

We again assume tha:t the Bi(|t — keel, X) and F;(|t — kcc|, X) are analytic. Now we
observe that the left hand side is O(|t — kc¢|™7) and so for p # 0, we have a divergence
as t — kce. On the other hand the terms on the right are always finite. We conclude
therefore, that p = 0 and consequently that z” is continuous near the cocaustic. This

is remarkable because our worry was that this would not be the case, forcing us to use
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a complicated, weighted norm to define our metric. Instead the above result implies
2

All things now point towards a function space that is C? in both the ¢ and

that we can use a norm that looks like

+ 9%z
00X ot

0%z
ot

iz
a0X?

0%z
X2

lell = sup { "

(t,X)eD

for some D, or at least a derivative of this.

X coordinate. We must, however, check that there are no surprises at our other

suspected problem area, the caustic.

§8.6. Near the caustic, X > X,.

Since X > X, equation [8.5.1] is still valid. We shall consider the two regions of
tX space separated by ¢t = k.(X) to have a different dependence on |t — kc|. That is
to say, we shall assume singular behaviour at the caustic in much the same way as in
the previous chapter, but allow the rates at which z" diverges either side of this curve

to be different. This was essentially done in §8.5 when we introduced the different ¢

and r.

We begin using the same Taylor expansion methods described in the previous
section and consider first of all 92X,/0X 22 Since X is now close to the caustic, it
follows from the definition of the X; that X; must be close to the cocaustic. Thus
in this case, both z"(X;) and z'(X1) are expected to be finite and non-zero (we have
just proved this). The behaviour of z'(X) can be determined. We have

2(X) = [X - X[2"(Ya),

where X, < Ya(t, X) < X is different to the Y, introduced in the previous section as
are the Y}’s Y.’s etc. that will follow. This means that

82X1 B :c"(X) B IX—XclziB”(Ya)zx”(Xl)
oX?2  '(Xy) z'(X1)3

If Y, > X, is close to the caustic then we illustrate the possible unbounded nature of

the second derivative in this region by writing,

(V) = [t — k| Pay(|t — ke, X) 0<s< 1.
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Then,
0%X,
0X?

2.0
= [t — kel T 5 — = kel R 2()1(1) N
z'(X1) |EL(Y3) 22 (X1)

where again the subscripts to each a indicate the arguments for the original z” from

[8.6.1]

which it is derived. Also we have used the mean value theorem to write,
ke(X) =t = —(X ~ Xe(t)) ke(Ys).
Here X; < Y3(t, X) < X.

Let us now consider 82X5/0X?. We have, remembering that for X > X, close to

the caustic X2 must also be close to the caustic,
z'(X2) = —|X2 — Xcle"(Yo),
where X, < Y,(¢,X) < X,. Also, from z(¢t, X;(¢, X)) = z(¢, X), we have
o(Xe) + 51X = Xe5"(Ya) = 2(Xe) + 51X = Xefa"(Yo),
where X, < Y;(t, X) < X, and X, < Ye(t,X) < X. This implies that

m"(Ye) 1/2

.'L'"(Yd)

|X2 - XC| = IX —Xcl

Thus it follows that

1/2 3/2

#X,  "X)
0X?2 X — X, |z"(Y.)

IX —Xc|2$”(Ya)2.’lJ"(X2)
IX—Xc|3-’E"(Yc)3

13"(1/;1)
zll(}/e)

m”(Y;l)
z"(Ye)

We are again required to feed in our assumptions regarding the expected singular
behaviour. For any Yy < X, close to the caustic we assume that the second derivative

can be written as
2"(Yy) = |t — k| oyt — ke], X) 0<t<1.

Thus,

Xy |t — k| olK(V3)] ||t — kol taa |

X2 |t — k||t — ke|tae ||t — ko|~Sa
|kL(Y3)I|t — k|2 a2t — ke| o
|t — ke||t — kc|~3ta?

|t — ke ~%a

b
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which finally becomes

FXa _ _t = ko[2-sra-1 2k (D) | v t — kg |t/2-s/2-1 eV lagas |aa |/
aXz ¢ (e 723 Qe ¢ a% e
- [3.6.2)

Inserting [8.6.1] and [8.6.2] into equation [8.4.1] gives

0’z t " —s « " 2—2s azx"(Xl)
oxr =X +4 [ | {'t ~kl T amy T R e
S —k It/2—s/2—la|ké(}/b)| ad 172
¢ . o,
2
e — g 2msre-1 B 2(Yb)3|aa0‘2_ od 3/2} dt"dt',
ol Qe

which we shall simplify by writing as
0z tot " —s " 2—2s
" — k22 Y dtdt! + .

Here the 8; and 4 are different functions to that defined in the previous section. They
do, however, possess the same attributes, namely that they are analytic functions,
and in particular, that « still represents the arbitrary function of integration. Since
z is C? in a region close to the caustic, the above representation holds for all ¢ < k.
Thus, if we integrate we obtain

Tt 6X 4+ A{Jt kel — |t kel Ba + = k)

6X2 C (4 (4 .
But again for s # 0 the left hand side is O(|t — k¢|™°) and therefore unbounded as
t — k. whereas the right hand side is finite. It follows that for consistency, s = 0

and we conclude that z” is continuous for X > X,.

§8.7. Near the caustic, X < X..

For the other side of the caustic we proceed in the same manner. Things are
getting progressively easier for as we proceed to integrate expressions for z” up the

time axis, we seem to be proving that z is C? at all points below (¢, X). The only
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function whose continuity is not known is z"(Yy) for Y, < X, close to the caustic.

We have, using Taylor’s theorem,
2'(X) = —|X — Xc|2" (Ya),

where X < Y,(¢,X) < X.. Assuming that all second order derivatives this side of

the caustic behave like

oo

"E”(}/y) = Z a(n)(Y;J)It - kCIn_u = It - kcl_uay,

n=0

then for 9%2X;/0X? (remembering that now X = X3),

2’ X, a ol (Xq)
e kTt |t — k|22 a 8.7.1
BXQ | CI II)I(Xl) |t kC| lké(n)lzx,(Xl)’ [ ]
where we have used the mean value theorem to write,
t— ke = —(X - X )EL(Y}),
where X < Y3(t, X) < X..
Similarly, we have from Taylor’s theorem that
z'(X3) = | X3 — Xc|2"(Ye)
and
2"(Y,) 1/2
|X3 - XCI - |X - XC' :I:”(l/;l)
Thus it follows that
Xz |t — k| o(W)|| 2"(Ya) [V*
oxz [t — kc|z" [t — ke|~%ae
|t = ke Plke(Yo)IIt — kel aaz(X3) | 2"(Ye) [
|t — ke*z"(Yc)? |t — k| =%
1/2
PXs 1y imwiam @R8] |2 (0) |
ox c ) | e 8.7.2]
3/2 o
e ReO0lear" (Xs) |2 (V)
mu(yc):} Qe
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Finally, inserting [8.7.1] and [8.7.2] into [8.4.1] gives

0z t ot a alz"(X1)
— = —6X / / "_ —u "o 2-2u a
0X? AL ) {lt kel 7 = el |kt (Yp) 22" (X1)

#(X) Y))Pe
1/2
2 0| EACAT
¢ :l:”(Yc) Qe
2
0 v el (Xs) | 2" () 2]
—|t" — kel :c”(Yc)3 Qe :

For simplicity we write this as

. 8213 t ot " —u " 2—2u
8X2=—6X+A// {It" — k|71 — [t — ke|* ™22

+|t" _ kc|_u/2—l,33} dt" dt' 45

0%z - _ _
= oo = —6X + At — k[T By — |t — ke[ B + |t — e T Bs 4 5.

Since the left hand side is O(|t — kc|™*) we conclude that to have consistency we must

have u = 0. The implications of this and the previous two section’s conclusions imply

that x is C? everywhere in the three-dust region. This will have profound implications

on the simplicity of both the metric space that will be used and the actual calculation

proving that J is a contraction.

§8.8. Metric space proposed for a contraction mapping proof of existence.

In the previous three sections we have shown that 6%z/0X? is continuous every-

where in the three dust region. The fact that z is now C? means that we can focus

our attention on a relatively simple formulation of the metric function. By this we

mean something that looks like

d(flsfz) = ”fl - f2”v

where
82¢
X2

0%¢
ot?

+ X ot

2
I= s { +|‘”S }

t,X)eD
which is the standard C? norm.
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First of all we define the domain in which we hope to prove existence, i.e.,
Br={(,X)eR?||X|<T,0<t< T},

which, for suitably small T' > 0, defines a box enclosing the cusp. Next, to model our
assumption that the solution looks like q, which is the solution for zero gravitational

constant, we define
v:{f:BT__’IRl flS CZ, f(t7X):_f(t’—X)a %(0,0):()’ “f“V<OO}

as the space of functions within which we hope to prove existence. The norm defined
in the above is given by

9%¢
X2

9%
ot?

1
= s { s

(t,X)eBr m

+ ‘ ¢ } : 8.8.1]

If we restrict this further to the set of functions given by

Ve={feVIIf—dqlv<e},

then this confines our test solution, f, to a tube around ¢q. The ‘width’ of this tube

is determined by the constant c.

The above definitions embody all of the ideas so far presented in this chapter,
however, the thoughts that led to the exact form of equation [8.8.1] have not been
presented. We shall now do so. In defining our metric space we postulated that
for a small enough region containing the cusp, any trial solution must be close to
z = ¢(t, X) where q is the solution for zero gravitational constant (ref. §3.1). To put

meaning to this statement we required that

1. z is an odd function in X (as is q) and

2. that the bounds to be used for D*(z — ¢) should be linear in | X]|.

Item 2 suggests that for X > 0,

Pz 0%

5%~ gxz| = o talX], [8.8.2]
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0%z 0%q
_ < 8.
9X ot axat’ < b+ balXl, 8.83]
0%r 0%
w - 3t2 < C1 + C2IX| [8.8.4]

To show that these conditions imply bounds on z that are cubic in nature we
must integrate the above and to do this we note that for all f € V.,

X 32f
axbX)= | 3%z

! 1
——=(0, X") dX-I—/ at

and

f(t,X):/O g)’;(t X" dx'.

Thus, for X > 0 (we can obtain estimates for the X < 0 case by symmetry), equations
[8.8.2] and [8.8.3] imply that

af q *f o O ,
F(X) - X(t,X)’ 5/0 7570, X") = 525(0, X")| dX
Wf d%q
+/ siax %)~ gax X)' &

S[) a1+a2XXm+/Obl+b2th
1
=a1X+§a2X2+b1t+b2Xt.

This in turn gives
(¢, X) — q(t, X)|</ l (t, X") — g—f{(t,x')’dx'

1
= -2—a1X2 + ngXz + b Xt + §b2X2t'

Item 1 in the above list forces a; = by = 0. This finally gives,
(1= b)) Xt - (1+ 6)X3 < f(t,X) < (1+ b)) Xt - (1_963))(3

for X > 0 and provided az < 6. Thus for X > 0, f is bounded above and below by
a cubic that looks like g. We can refine equations [8.8.2]-[8.8.4] still further since we
can set cg = 0 without affecting the cubic structure of our upper and lower bounds.
In addition, if we set ¢ = max{ag,b1,c1} then [8.8.2]-[8.8.4] become equivalent to
If—all <e
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CHAPTER 9. ESTIMATES FOR §%x[f]/6X% IN MULTI-DUST REGION.

§9.1. Introduction.

The next step is to show that J, as defined by [8.3.3], is a contraction mapping on
the space of functions, V.. To do this, we need to estimate ||J[f]||y. The only difficulty

arises with the second X-derivative given by equation [8.4.1] which we restate below,

32J[f] v 82 ) o
0X2 (t,X)=—-6X + A/ / 0X2 t (", X)dt"dt’, [8.4.1]
where
*x!f] X, 92X, 92X,
axz (bX) = 55 L(t, X) - xz 6 X) + 55 22, X)
and
P X1, x) = LX) SO (X
0X? 1(X5) (X3

The last equation represents the difficulty entirely for it contains two divergent terms,
[F(X:)]~! and [f'(X;)]~3. We complete this thesis by constructing estimates for the

first of these quantities.

§9.2. Bounds for the caustic and its derivative.

In this section estimates for the caustic, k.(X), and its inverse, X.(t), will be
obtained. We shall do this by first of all calculating bounds on the derivatives, k.(X)
and X/(t), and then integrating these using the boundary conditions kc(0) = X.(0) =
0. This results in expressions that bound k. and X, away from zero; an important
requirement for later on when [ f'(t,X,')]_1 is considered as a function of ¢ and X,

terms like k! will appear.

We begin by considering the definition of the caustic, f'(k;, X) = 0. By differ-
entiating this expression k. can be defined in terms of 2nd order derivatives of f,
i.e.,
02f10X2 (kc, X)
0%f0tdX (ke, X)

E(X) =~
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Previous analysis has discussed the need to confine f about g, where ¢ = Xt — X3
is the cubic corresponding to caustic formation in the absence of gravity. This was
achieved by stating that ||f — ¢||y < ¢ resulting in

o f d%q

o2 9%
9X? (1, X) - axt !

sx %) ~ iax

t X)' <c¢|X| and (t,X)| <e¢, [9.2.1]

where c is an unrestricted constant that defines the size of our tube containing f. By
the symmetry of f about the origin we only need consider that half of the tX plane

corresponding to X > 0. From equations [9.2.1] we therefore have

0% f
—(6+¢)X < 8X2(t X)<—-(6-¢0X
and
0% f
—c< < .
1-¢c< 8taX(t’X) <l+4e¢c
Clearly then,
6 — 6+c
X< K < X. 9.2.2
14+¢ “1l-c [ ]

Integrating this expression between 0 and X with the boundary condition, k.(0) = 0,

gives

X
/ 6— X’dX’</ k(X dX’</ 6+CX’dX’
0o 1+4+¢

6—c 6+c
= X2 <k < —— X% 2.
2(14+¢)" ~ 7 2(1-¢ [9:2.3]

To obtain estimates for X, and X we can use the inverse function theorem to
bound X| from above and below and then follow a similar argument to the above.

Now,

XU(t) = (kL(Xc(t»)‘l

\/(—1 “9y < X, < N 2(61_+cc)t, [9.2.4]

using the boundary condition, X, = 0. Finally,
l—c X! 1+c¢ 6+c
6+ c\ 2( C—G—CV 1—¢)t [9-2.5]
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§9.3. Bounds for the cocaustic and its derivative.

We have already defined the equation for the cocaustic in tX space to be t =
kce(X) with its inverse, X = X c(¢). In this section bounds for both of these functions
and their derivatives will be obtained. The argument will follow along similar lines
as in the previous section: estimates for the derivatives will be obtained which will
then be integrated to give estimates for the functions themselves. The analysis is
complicated by the fact that we can only define the first derivative of the cocaustic
as a composite function involving f and X,(¢). Having to estimate the derivatives of
both of these functions therefore results in bounds for the cocaustic that are perhaps

less stringent than those for the caustic.

It is possible to find bounds for the second derivative of the cocaustic, however,
this is a lengthy procedure and cannot be used to improve upon the estimates for the
first derivative of the cocaustic or the function itself. Moreover it does not feature

anywhere in the evaluation of estimates for 92X;/0X?.

To begin we have, by definition,

f(kcc(X), _Xc(kcc(X))) =f (kcc(X)’X) .

Differentiating this gives

O (e = X)) Xiee Ko+ 2 (s = X)) e = 2L (ke X)
89X ot X [9.3.1]
of ' '
+ 5, (kcey X ) e
The first term vanishes by the definition of the caustic and so
kee(X) = J/OX (hee, X) 9.3.2]

~ 0f /8t (kee, X) = 0F [0t (kee, ~Xeo(kec))

By virtue of the assumption that f is confined to some ‘tube’ centred upon ¢ (as

defined above), we can show that

of dq 1 L2
- —_—_— < —
= (6,X) = (2, X)| S et 45X
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and

of Jdq
e — 2t. X\ < el X 3.3
L 4,x) - 2(1,5)| < elx) 933
(ref. §8.8), which are equivalent to
1 af 1
1—¢)t—- 2co < — (6 —o)X?
(1—2¢ 2(6+c)X _aX_(1+c)t 2(6 )X* VX

and
of
(1-9X <5 <(1+eX VX 20,
or

(I+e)X <

2|

<(1-cX VX<O0.

For the moment, let us only consider an upper bound for k.. Now,

af 1
and
of of
S (ke X) = 2 (ke ~Xelhee)) 2 (1= €)X = (1= ) (~ Xe(keo))

2(1 —-¢)

Thus from [9.3.2],

T {xz—zu—c)(mc)“kcc}
721 =) | X +4/2(1 = ¢)(6 + ) ke

_ 6+c [2(1 — ¢)
_2(l—c){X_ 6+c kcc}

Integrating this equation with respect to X and using the boundary condition for the

cocaustic at the origin, namely k..(0) = 0, gives

6+c X2

e < ——-X7,
k°—4(1—c)

[9.3.4]
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For a bound going the other way,

af

1 2
— o (bees X) 2 =(1 4 kec + 5(6 — )X

2
and

%{fi (kCC’X) - g[ (kec, _XC(I"CC)) S(14+X~(1+¢) (“XC(kCC))

Bt
<1+ {X L +c)kcc}

6 —c

together imply that

; 6—c (14+¢)(6+c¢)
Fee 2 2(1+c){1_\j2(1—0)(6—c)}X’

using equation [9.3.4].

We can think of this estimate as being the most general lower bound for k...

However, this expression must be used to determine bounds for the inverse function,

Xce, and it would be desirable if we could simplify it. ¢ is an arbitrary constant such
that 0 < ¢ < 1 (the condition that df/0t must still exhibit g-like behaviour, ref.
[9.3.3]) and essentially determines the thickness of the ‘tube’ that confines f close

to ¢. Reducing the value of this constant tightens this tube and improves all the

estimates for f, the caustic, the cocaustic and all the corresponding derivatives. We

shall find later on when bounds for [f'(X;(¢, X ))]_1 are calculated for various regions

in the positive half of the X plane, that the range of admissible values for ¢ must be

reduced. Consequently there is no reason to stop us from modifying this range even

at this early stage, so as to simplify the lower bound for £...

We suppose therefore, that c satisfies,

(1+¢)(6+¢)
2(1 —¢)(6—¢)

<2
9

With this choice we have 1 — 1/5/9 > 1/4 so that

6—c
X
8(1+¢)
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Now equation [9.3.5] clearly restricts the value of c. The extent to which it does this
can be determined by solving ¢? — 133¢ + 6 > 0, which is equivalent to [9.3.5]. Since
z? — 133z 4 6 = 0 has solutions,

_ 133 £ V17665
= 5 ,

we can say that provided

133 — V17665 1596 — /2543760 S 1596 — v/2544025 1

2 = 24 24 Y

then both [9.3.5] and [9.3.6] are true statements. This means that we can write,

6—c 6+c
_ X e 7
STt ke S5y

X, [9.3.7]

which if we integrate using the assumption that kc.(0) = 0 gives

6—c 2 6+c

Again, to find estimates for X, and its derivative we use the inverse function

theorem. Equation [9.3.7] therefore implies that

2(1 —c¢) <X < 8(1+¢)

(6 + C)ch (6 - C)XCC. [9-3.9]

Integrating this with the boundary condition Xc.(0) = 0 gives

tQ(l X' (¢ dt' t8(1+c) '
< | X t /——————dt
/0 6+ c dt / eo(t) Xec(t) dt' < 0o 6—c

/4 1-— 16(1
é (——_clt S ch < Mt. [9.3.10]
6+ c 6 —c
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§9.4. Summary of estimates for the caustic and cocaustic.

In order to facilitate reference to the estimates for the caustic and co-caustic we

list them in this section:

6 6+c

< X 9.2.2
14¢ — ¢~ 1-¢" [ ]

6 2 6+C 2
ke S g X 9.2.3
( + ) —2(1—0 [ ]
l—¢c | 6-— X! 1+c 6+c [9.2.5]
6+c 1+c C—6—c 2(1 —c)t e
\/2%1; ¢ ,/ [9.2.4]

c
—X < X, 9.3.7
8(1+c) _2(1 ) [ )
6—c 6+ c
——X2 koe < ——— X2, 9.3.8
61+ ~fSi1-0 [9:3.8]
2(1—0 X! 8(1+c) 6+c

9.3.9
9\ 16(1 Te ST6=oVia=or 19:3.9]

i1-9), 161+c)
9.3.10
6+c 6—c [ )

§9.5. Estimates for [f'(Xi(¢, X))]"! for X near the cocaustic.

We begin our analysis on [f'(X;(¢, X))]~! by considering the case when X is close
to the cocaustic and z = 1. By definition of the cocaustic we expect X; to be close
to the caustic and so [f'(X1(X,t; f))]~! becomes unbounded as X approaches Xc..
To illustrate this feature we use the mean value theorem three times to express this

quantity in terms of the distance from the cocaustic, |t — kccl-

By definition,

f(X1) = f(X)
= f(Xee) = 1X = Xeel /' (¥a) = F(=X0) + 51X + Xef2 (),
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where X <Y, < X, and X7 <Y} < —X_. It follows that

\/§|f'(Y;)|1/2|X — ch|1/2
| (¥3)[M/2

|X1 + XC| =

Also,
f1(X1) = fl(=Xe) = 1 X1 + Xl f" (Ye),

where X; < Y, < — X, and
It - kCCl = ‘X - XCC”kéc(Y;i)‘a

where X < Y; < X;.. Combining these three results gives the expression,

ORIk
V2 (Y (Ya) V2]t — kee| /2
_ Ok (Y2
VRIS (Ya) V2]t — kel /2

[f(X) ™ =

[9.5.1]

which we can use as a basis to begin the estimation process. The procedure is to

simply take each term and use either
IF"(X) ~ ¢"(X)] < | X] [9.5.2]

If'(X) —¢'(X)| < et + %-cX2 [9.5.3]

to obtain upper and lower bounds.

Obtaining bounds for any term that is the second derivative of f is easy since
0 < ¢ < 1 restricts the ‘tube’ containing f” so that it is linear and strictly negative
for positive X. The first derivative, however, is much more difficult and this is chiefly
because f’' becomes zero at the caustic. This must be avoided if finite estimates for
[f(X1)]"! are required. As we shall see, the way around this problem is to impose
restrictions on X so that |f'(Y,)| is bounded away from zero. This of course begins

to define in specific terms what we mean by the region close to the cocaustic.
Consider first of all the term |f"(V})|/2. Now equation [9.5.2] implies that

(6 —)Ya| < 1f"(V3)] < (6 + 9|V},
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but since X7 < Y} < —X. we can make the above estimates more restrictive, i.e.,
(6 —c) X <" (V)| < (6 + ¢)Xee [9.5.4]
In a similar fashion the term |f"(Y;)| can also be estimated; we obtain

(6 — o) Xe < |f"(Ye)l < (6 + ¢) Xee- [9.5.5]

The term |f'(Y,)|'/? is treated differently. Since this occurs in the denominator

we must ensure that this term is bounded away from zero. Now from equation [9.5.3],

F'(¥a) < g (Ye) + et + e¥?

1
=1+t —5(6- o)YZ. [9.5.6]
For convenience we might like to choose, using [9.2.4],

2(1 — o)t

X <X <Y,
6+c < < <Yq

as a lower bound for Y;, however, with this choice,

6—c)(1l—c)t
(6+¢)

F(Ya) < (14t =1

and it is not obvious whether the right hand side is positive or negative. We must

therefore choose a tighter bound on X (and consequently Y, ).

Suppose av/t < X < Y. Then
/ 1 2
f(Ya) < {(1+c)—§(6—c)a }t

and hence if we wish to bound f'(Y;) away from zero a must satisfy the inequality,

[9.5.7]

Clearly, as a increases the lower bound on X approaches the cocaustic and the

region that is close to this boundary becomes smaller. We therefore chose a so that it
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only just satisfies [9.5.7]. This of course will correspond to a weaker estimate for f'(Y3)
and hence ultimately a weaker estimate for 8%x[f]/9%X, but this does not matter for
we simply consider a smaller neighbourhood of the origin to ensure a contraction
mapping. If we choose a? = 2(1 + 2¢)/(6 — ¢) then clearly [9.5.7] is satisfied and

F (V) <{Q+¢) -1 +2)}t

= —ct.

A lower bound for f'(Y;) is easy. Using [9.5.3] and [9.3.10],
F(¥)> ¢ (Ya) — ct = 3o
= (1 -t~ 5(6+ )Y
>0—mﬁ—%@+@X&

>(1_C)t_%(6+6).l§(1+_c)t

6—c
e +fci)£66+ ot (6+0)- S(é jz)t
96+ c)(1+)t
6—c ’
Thus finally,
ct < |f’(Y;1)| < 9(6 +66¥1c+ c)t VX > 2_(_16_4____26_(:2{ [9.5.8]

The last term to consider is |k..(Yg)|. From previous discussions on estimates for

the cocaustic and its derivative,

6 — 6+c
St < el S g

Yy

provided ¢ < 1/24. Since

14 2c)t
\/2( tcc) X<Y,1<ch<\/ 1+C)t
2(1 + 2¢)t 6+c 1+c)t
(l+c” e < [k [9.5.9]

it follows that




With all these results ([9.5.4], [9.5.5], [9.5.8] and [9.5.9]) we can now construct

estimates for [fl(Xl)]—l using [9.5.1]; we obtain
V(6 +¢)2(1 + O -
_ (6 — ¢)3/2(1 — ¢)cM /21 /2|t — k |1/ < [f'(X1)]
_ (6 - c)7/4(1 - c)1/4(1 + 2c)l/4
24/2(6 + ¢)T/4(1 + )3/ 21/2|t — ko |12

V2(6 + ¢)*/*(1 + )2 »
" 6= o1 - e — e < U (0]
<- (6= )41 —o)"/*
24\/5(6 + c)7/4(1 + C)7/4t1/2|t _ kccll/2 :

Using [9.3.5] we can then remove most of the terms involving c; we obtain

=

~ \/i . 103/2 < [f/(X ]—1 97/4
93/2 /241 /2]t — ke |1/ TN BTy
— 5 < [ ! X ]—-1 < 1
3CI/ZE12[ — koy|1/2 F(x) 48112t — k|12
for all
2(1 + 2¢)t 1
(_6-__C)_<X<ch and c<§z.

§9.6. Estimates for [f'(X2(t,X))]”! for X near the cocaustic.

[9.5.10]

We follow similar arguments to the previous section since if X is close to the

cocaustic, then we expect X3 to be close to the caustic in the opposite sense to X,

(i.e. X7 € =X < X3). Now by Taylor’s theorem,

f(Xee) = 1X = Xeel f'(Ya) = f(=Xe) + %Ixz + X[ (%)

and

Fi(X2) = f(=Xe) + | Xz + Xe| S (Ye).

Here Yg, Y, and Y, such that X <Y, < X¢, —Xe < ¥ < Xp and — X, < Y, < X

are different to those defined in the previous section. These equations imply that

B ()2
S = ey X~ X
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Again, by the mean value theorem, |X — X c| = |t — kee||kL.(Ya)|™! where X < ¥; <
Xec so that finally,

L7 ()2 ke (Y)

"(X)]™1 = , 9.6.1
SR AT AT -
noting that f"(Y;) is positive.
Consider first of all |f"(¥;)|. Equation [9.5.2] implies that
(6= X2l < (6- AV < If"(H)| < 6+ W) < (640X, [962
Similarly,
(6 - )| Xz2| < |f"(Ye)] < (6 + ) Xe. [9.6.3]
The previous section calculated a bound for |f'(Ys)],
t
ot < | (va)| < WoFAE O oy [2LH 2 [9.5.8]
(6 —c) 6—c

This is valid even though technically the Y, are no longer the same quantity. The
reason for this is that in both cases, when estimates for |f'(Y;)| are calculated, Y,
terms are introduced via equation [9.5.6] and then removed by using X, < X <Y, <

Xce. This makes the Y, in this context equivalent. For a similar reason we again have

6—-c [2(1+2¢c)t

6+c [16(1+ )t
8(1+¢) 6—c )

2(1 -¢) 6—c

< ke (Ya)l <

[9.5.9]

Finally, inserting estimates [9.6.2], [9.6.3], [9.5.8] and [9.5.9] into equation [9.6.1] gives

(6 _ 6)7/4(1 + 20)1/4]X2|1/2
12 - 21/4(6 + 6)3/2(1 + 6)3/2t3/4lt _ kcc|1/2
2146 + c)(1 + ¢)1/?
c/2(6 — ¢)3/2(1 — )12 Xa||t — kee|1/?

< [f'(X2))7
[9.6.4]
<

At this point the estimation process diverges from that of the previous section.
Although this was not explicitly done, the quantity, |Xi|, which is the unknown
function of X, was removed using — X, < X7 < —X,. These are of course the least

rigorous bounds on Xj there can be. In this case, however, since — X, < X, < X,
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we must conclude that 0 < |X2| < X, meaning that [f/(X2)]™! could potentially be
infinite as illustrated by equation [9.6.4]. To solve this problem we need to find an
upper bound, Xyp say, such that —X, < X3 < Xyp. The way that we shall do
this is a two step process: firstly it will be shown that for fixed ¢ > 0, f is strictly
increasing on [0, X.), and strictly decreasing on (X, X¢c]. Then, using these results
and the asymmetry of the problem, we shall find an Xy p such that for all X > av/%,
f(X2) < f(XupB) and consequently X; < Xyp. Here a is an undetermined constant

different to that of the previous section.

First of all let us argue that f is strictly increasing on [0, X.) and strictly decreas-
ing on (X¢, Xc]. By definition, X, and —X, are the only solutions to f'(X) = 0.
Thus for X € (0, X,), either f/(X) > 0 or f/(X) < 0. Now |f"(X) — ¢"(X)| < ¢|X]
implies that for all X > 0, f"(X) < ¢"(X) + ¢|X| = —6X 4 c¢X < 0 since ¢ < 1/24.
Thus f'(X) is strictly decreasing for all X > 0 and hence must be positive on (0, X,).
By the continuity of f' this region can be extended to [0, X.). Thus f is strictly in-
creasing on (—X,, X.). Furthermore, since f'(X) is strictly decreasing for all X > 0,
it follows that f'(X) is negative in (X, Xcc] and that f(X) is strictly decreasing in

this region.

We can now begin to find the constant, @, that defines Xyp. Unfortunately
there is no chronological argument that begins with an assumption and ends by
defining Xyp. Instead we suppose that Xyp is given and then proceed to show
that it is in fact an upper bound for X;. We begin by simplifying the estimate
for f which makes the following calculation easier. Previous analysis shows that
integrating the second order derivatives of f with the appropriate boundary condition
gives |f(X) — ¢(X)| < et|X]| + ¢|X|3/6. Since we are working with a fixed ¢ domain,

we can define a new constant, k, and write for any point in the 3-dust region,

7(X) = 9(X)] < etlX| + el XTP
< (et+ %cxfc) 1X|
= kt|X|.
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We shall find it useful to relate k to ¢. Using [9.3.10],

cX CZC
6t

<<(1+3555)

8(1+c) .82 _9-25
36—c) " 3-143 ~3-125

k=c+

and since ¢ < 1/24,

3
5
so that, without loss of generality, we can redefine k = 2c¢.

Next, since ¢ is not invertible on [ \/4t/3,1/4t/3|, we define ¢; (: = 1,2,3) that

do have inverses by ¢ = ¢ VX € [—\/4t/3,—\/£ﬂ, g2 =q VX € ( \/7 m

and g3 = ¢ VX € (\/t/3, \/4t/3i. Here the quantities /t/3 and/4t/3 represent the
caustic and cocaustic corresponding to z = ¢(¢,X). Now, supposing that Xyp is

defined by Xyp = q2_1 (q(a\/f) + 4ct - a\/f), then

f(X2) = f(X)

< f(avt)
< q(a\/f) + 2ct|a\/f|
= q(a\/f) + 2ct - aV/t
< q(avt) + 4ct - av/t — 2ct| Xy p|
= q (7" (g(avt) + 4ct - avt)) — 2¢t| Xy |
= q(Xvg) — 2¢t| Xv B
< f(XuB)

= X2 < XyB.

There are a number of conditions that Xy p and the constant a must satisfy for this

argument to work. First of all we have

—%t\/;< q(a\/_) +4ct - av/t < —t\/g [9.6.5]

This ensures that ¢(av/t)+4ct-av/t lies in the domain of ¢; !, Clearly, without this con-
dition Xy p cannot be defined. The quantities 2¢/31/t/3 and —2t/3/t/3 are simply
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the maximum and minimum values of g2, namely ¢ (\/ t/3) and ¢ (—-,/t/3) respec-
tively. The second condition is that | Xy p| < av/%. This arises from the above math-

ematics since without this statement we could not conclude that f(X3) < f(XvB)-
Thirdly we require that Xy p is negative. This last condition is crucial for estimating

[f'(X2)]™! as it ensures that this quantity remains bounded.

Now,
Xup =¢;* (q(a\/f) + 4et - a\/f)
zqz_l (a\/Z-t— (a\/i)3+4ct-a\/5) .

If one temporarily reinserts the time dependence of ¢ then

Xup =g (¢((1+4)t,av))
_ {—a—}-\ﬂl(l -+-40)—3(12}\/Z

2

and hence in addition to the above three conditions we must have
9, 4
a® < §(1 + 4c), [9.6.6]

which again ensures the existence of Xyp. This requirement is different to the one
above which is also ensuring that Xy p can be defined because in this case the restric-
tion is more on X than on X3 or Xyp. The inequality, 4(1 + 4¢) — 3a® > 0, implies
that 4(144¢)t—3X? > 0 and can be interpreted as ensuring that the point, (¢, X), lies
within the 3-dust region defined by ¢ at a later time of (1 +4c¢)t. This means that the
above procedure for showing that f(X3) < f(Xyp) is, in essence, a procedure which
finds a constant, ¢, and a new cubic, gg(X,t) = ¢(X, (1 + 4c)t) = (1 + 4c) Xt — X3,
which is an upper bound for f for all X > 0. Since ¢ has been made invertible by
segmenting its domain, gg can be made invertible in a similar manner enabling Xy g,
the solution to ¢3(Xyp,t) = qﬂ(a\/f,t), to be determined.

Let us begin with the constraints on Xyp that are the least complicated. For
Xyp to be negative,

a > \/4(1 + 4¢) — 32

= a® > (1 + 4¢). [9.6.7]
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In fact we find that this requirement means that the inequality, | Xyp| < avt, is

automatically satisfied since

Xyg] = {a— V4 —;—4c) —3a2}\/£

< —a\/t—.

Let us now consider the final requirement of equation [9.6.5] which can be written

2 Nl ) 2 Nl
_Z = — By 9.6.8
3\/;<a(1 a +4c)<3\/; [ ]

Now [9.6.6] and [9.6.7] imply that (remembering that a > 0)

as

——%(1 +4c) < a(l —a® +4¢) <0

1
a(l+4c) < 2\/—-3:.

In order to maximise the area of the region adjacent to the cocaustic, a must be
chosen to be as small as possible. Equations [9.6.6] and [9.6.7] imply that (1 +4c¢) <
a? < 4(1 + 4¢)/3. For this reason we therefore chose a? = 1 + 6¢. This means that ¢

so [9.6.8] is satisfied if

is required to satisfy

(14 6¢)(1 +4c)? < %

1
—-——>96c3+64c2+14c-§<0

and this inequality holds if ¢ < 1/48.

Xy p can now be determined as a function of t. We have

Xy = {—\/1—}-—6c + \/4(12+ 4¢) — 3(1 + 6c)} i

_ {—\/1+6c+\/1——2c}\/£

2
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Now,

2
(—-\/1+6c+\/1—2c) —146c+1—2¢c—2V1F6ev1 = 2¢
>1+6c+1—2c—2(1+46¢)
= 16¢,

hence

—V1+46c+ V1 —2c < —4/c < —4c,

noting that ¢ < 1. It follows that Xyp < —2¢v/t.

In conclusion we now have

2(1 —
- ( c)t<—Xc<X2<XUB<—2c\/Z
6+c
or
2(1 —-¢)
2¢eV't X i.
eVt < |X;| < e

As can be seen, the quantity —2cv/? is used rather than the messy but exact definition

of Xyp. This is fine as the object of this exercise was purely to find an upper bound

for X which is negative and bounded away from zero; criterion which —2c+/? satisfies.

Xvp was simply used as a tool to prove existence of an upper bound for X3 for all

V(1 +6c)t < X < Xe.

Having determined bounds for X;, we can return to the main discussion of this
chapter and determine the bounds for [f'(X2)]~!. Using these results, [9.6.4] becomes

21/401/2(6 _ 6)7/4(1 + 2c)1/4t1/4 3 [f’(X )]—1
12(6 + )" (1 + P28/t — ke 1 ;

(6 +c)(1+¢)"/?
= BAS(6 = PPP(1 — )PPt — kg P2

21/41/2(6 — ¢)T/4(1 — ¢)7/4
12+ (6 4 ¢) /(1 + &) /41/2]t — keo[!/?
(6+c)3/2(1 +C)3/2
S PAS(E — PP(1 — o P — keo]1/2

=

<[f'(x)™

91/4 . g7/4.1/2 103/2

! -1
= 17. 10774 172]f — koo |12 <[f(X)]7 < 9374 . PI2A22|f _ k|12
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cl/2 : 1
= X))t <
12v/2t1/2t — ko |1/? <1f(X2)] V2312412t — k|22

[9.6.9]

for all

1
V(1 +6c)t <X <X and c¢< T

§9.7. Summary of estimates for [f(Xi(t,X))]"! and [f(X2(¢, X))]™! for X

near the cocaustic.

To clarify the restrictions placed on X and c, the estimates obtained in the pre-

vious two sections are summarised here. We have

S ' -1 1
3cA24172|t — ko |12 < [fi(X1)]" < "I — ke 12 [9.5.10]
provided
2(1 4+ 2c)t 1
TE——<X<XCC and c< 51
and
e <[ < : 9.6.9]
12V/2t1/2|t — k|12 2 VIS _ ko |12 0.
provided

PP 1

Clearly, for ¢ < 1/48,

2(1 +2c) _ 100
6—c = 287

and hence

100 2(1 + 2¢)
1+66>1>2—87->'—'6—:'c—.

So in order for the above estimates for [f(X1)]™! and [f(X2)]™! to be valid simul-

taneously in the region close to the cocaustic, we must define this region to be

{(X, 1)1 /(1+6e)t < X < Xec}.
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§9.8. Estimates for [f'(X;(t,X))]™! for X > X, near the caustic.

Because X is near to the caustic, X; must be close to the cocaustic by definition.
Thus, provided X is sufficiently close to the caustic, we expect f'(X1) to be well

behaved and bounds can be obtained without expanding in powers of |t — k|.
We have from [9.5.3],
1 1
(1=t =36 +)X] < f/(X1) S L+t — 56— )XT VX [9.8.1]

The least restrictive bounds on X7 are — X, < X7 < —X_, and if these are used in

conjunction with [9.8.1] then we obtain

{1 - S(gjcc))(“c)}t < fi(X1) < {1 - Eé;z;(G—c)}t,

using the bounds for X and X, as given by equations [9.2.4] and [9.3.10]. As can be
seen this does not provide useable estimates because f'(X7) is required to be non-zero
and the above does not enforce this. To proceed, therefore, we need to determine an
upper bound, Xy p say (which is different to that of the previous section), which can

ensure that f'(X7) is negative and non-zero so that [f’'(X1)]™! remains bounded.

The procedure for determining Xyp follows a similar argument to that of the
previous section where an upper bound for X2 was found. Using the fact that f is
decreasing VX < —X, and X > X, it will be shown that f(X;) > f(Xyp) for all
X < b/t and hence X; < Xup.

To prove this inequality, let us suppose that Xpp = ¢y (q(b\/f) —4ct - b\/f)
Then, using |f(X) - ¢(X)]| < 2¢/X],

f(X1) = f(X)
> f(bV1)
> q(bVt) — 2ct|bV/1|
> q(bVt) — 4ct|bVt]| + 2¢t| Xy B]
= q (¢ (a(bVD) — det - bVA) ) + 2ct| X Bl
> f(XvuB)
= X1 < XysB.
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Once again this series of mathematical statements only works provided a number of
conditions are met. Firstly, in order for Xy p to be defined, ¢ (b\/f) — 4ctby/t must

lie in the domain of ¢y, i.e.,

2t |t 2t |1
R - = 9.8.2
3V3 <q (b\/f) 4etbV/t < 3\/3 [ ]

Since ¢ is strictly decreasing the quantities 2¢/3/t/3 and —2¢/3,/t/3 can easily be
identified as ¢ (—-\/4t/3 ), the value of ¢ at the cocaustic and ¢ (—\/t/3 ), the value
of ¢ at the caustic respectively. The other condition that enables Xy g to be defined

is essentially a restriction on the possible values of X. To see this we have from its

definition,

Xup = q* (q (b\/f) — 4ct - b\/i)
=g (bVE-t — (bV2)® ~ dct - bVE).

If we temporarily reinsert the time dependence of ¢ then

Xyp = ql_l (q ((1 — 4c)t,b\/i))
_ {—b— VA1 — 4c) — 382 } 0.8.3]

2

and so for the square root to be real,

B < f;-(l — 4c). [9.8.4]
This inequality has a similar interpretation to that of [9.6.6] for it ensures that the
point (¢, X) lies within the 3-dust region defined by ¢ at an earlier time of (1 — 4c¢)t.
This means that the above argument showing that f(Xi) > f(Xyg) is a procedure
defining a new cubic, ga(X,t) = ¢(X, (1 —4¢)t) = (1 —4¢) Xt — X3, which is an upper
bound for f for all X < 0 and that Xyp is simply the solution to ¢o(Xvp,t) =

qa(b\/f,t).

The last two conditions are |Xyp| < bv/t, which allows the proof of f(X1) >
f(XuB) to go through, and

2(1 + o)t

(6—c)’
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which ensures that f'(X;) is negative and bounded away from zero (the point to this
exercise) and is derivable from [9.8.1]. Let us consider the condition that [Xyp| <
b/t. From [9.8.3], Xyp is clearly negative and so this condition becomes

b+ 1/4(1 — 4c) — 382

3 <b

= b2 > (1 — 4c). [9.8.6]

There now exist upper and lower bounds on b as given by [9.8.4] and [9.8.6] and to
proceed, b? should be defined. Now as b increases the range of admissible values for X;
also increases as Xy g moves closer to —X,. Clearly, it is our desire to have the region
close to the caustic as large as possible. To this end b is defined by b* = 4(1 — 6¢)/3
which only just satisfies the bounds imposed on b%. Since c is at least less than
1/48, this choice automatically satisfies [9.8.4] and [9.8.6] simultaneously. With Xy p
defined explicitly by equation [9.8.3], [9.8.5] becomes

8(1+¢)
b2 b _ _ 912 _ _ 2
+2b1/4(1 — 4¢) — 362 + 4(1 — 4c) — 3% > -
4 1
=>§(1—6c)+2 %(1—66)\/86+8C> 8(6 +)
— C

with the above choice for 2. With the current value for ¢, 1/4(1 — 6¢)/3v/8¢c > 8¢
and the above becomes
8(1+¢)

—C

4
5(1 + 126) >

This inequality is equivalent to 12¢? — 65¢ < 0, which has solutions 0 < ¢ < 65/12.
Since we already have ¢ < 1/48, the choice that X < 1/4(1 — 6¢)/3 means that Xyp
satisfies [9.8.5].

The last constraint to consider is of course [9.8.2]. Now

q (bV2) — dct - bVt = btv/t — (bV2)® — det - bVE
= ((1 — 4c)b— *)tv2

- ,/%(1 ~ 6c) {-%(1 - 12c)} i,
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which is negative since 1 — 12¢ > 0 for ¢ < 1/48. Thus if [9.8.2] is to be satisfied, we
simply need to show that

2 /1 1 4
—Zy /= < =21 =120/ - 6e).
5\3 < 3(l 2¢) 3( c)

This, however, is trivial for the above becomes
1> (1-12¢)V1 —6c,

which is true for all ¢ > 0.

With b given, Xy p can be defined explicitly, however, this produces a complicated
bound for Xj. For this reason, Xy g is itself estimated by a quantity, Xy p say, such
that Xyp < Xyp < 0 satisfies

2(1+¢)
6 —c

X(sz > Y%IB > t. [987]

This statement is important for it allows X; to be estimated by Xy g whilst insuring
that f'(X3) is negative and bounded away from zero. Now since ¢ < 1/48,

{—,/4(1 —62c)/3 - \/§é} Vi

Xy =

implies that

2
Xyp =

4(1 — 6¢c /3+8c+2,/41—6c /3\/—}

\%

+ —(48c - 6c)8c}

cll}

(1 4 ¢v1008)¢
(1 + ¢V/961)t

09|*—‘ QO

5
{
i

1
= X{pg < — 3(1+31e)t.
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If Xyp = —/(1 + 31c)t/3 then [9.8.7) implies that

2(1+¢)

1
§(1+31c)> 6_c

= 312 —179¢ < 0

and hence [9.8.7] holds provided ¢ < 179/31.

In conclusion, therefore, using [9.3.10],

4(1 — o)t /1
—_ X —/ = lelt
65 c <Xi<Xyp< 3(1+3 c)

for all X, < X < 1/4(1 — 6¢)t/3 so that [9.8.1] implies that

4(1 —c)t

67 ¢ <fi(X) <@ +e)t—- %(6 - c)%(l + 3le)t

1
(1—c)t— 5(6 +¢)
= —(1—et)t < 1'(X1) < (=30 go+ )

= —(1 —c)t < f'(X1) < —25ct

1

<[f(x))t < oo

§9.9. Estimates for [f'(Xa(t, X))]"! for X > X, near the caustic.

Since we are close to the point where X3 is relabelled as X5, [f'(X2)] ™! is expected
to become unbounded as X approaches X, the point of transition. For this region

we must expand [f'(X3)]7! in powers of |t — k¢|. By Taylor’s theorem,

$1X = X1 (%) = =5 1% = XL 1 (1),

fl(X2) = =1 Xz — Xc|f"(Ye) = | X2 — Xe||f"(Ye))

and
|t — k| = | X — Xc||k(Ya)]
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where X; <Y, < X, Xo <Yy, < X, X <Y, < X, and X, < Yy < X. These
equations together imply that
" ()21 ke(Ya)|

' -1 _
[f (X2)] - |f"(Yc)||f”(Ya)|1/2|t— kcl‘ [9-9-1]

Let us consider first of all the terms that involve second derivatives of f and
estimate these. Using |f"(X) — ¢"(X)| < ¢|X], it follows that

(6—c)Xc < |f"(Ya)] < (6 + €)X,

(6 — o)l Xa| < |f"(W)| < (6 + )X,
and

(6 — o)| Xa| < |f"(Ye)| < (6 + ) Xe.
Next, from the estimates given by [9.2.2] and [9.2.4],

6—c 6
1+c¢ ¢

Hence equation [9.9.1] implies the following upper and lower bounds,

(6= 0)*/*) Xs /2
(6 4+ ¢)3/2(1 + ) XV2|t — k.|

—c 6+c 6+ c
Y, kY, Y, X.
1+¢ a < [ke( d)|<l—c d<1—c

(6 4+ ¢)¥/2X
(6 = ¢)3/2(1 — o) Xallt — kc|

<[f(x))" <

[9.9.2]

As can be seen, in order to proceed with estimating [f'(X2)]~! the quantities | X2|
and X need to be bounded by functions of t. The latter is the easiest for its bounds
are determined coarsely by X, < X < X, and more accurately by X, < X < b/t
where bv/t defines the region close to the caustic. Estimating | X2|, however, involves

a complicated process similar to that of the previous section.

Clearly, from [9.9.2], | X32| must be bounded away from zero. Since X is close to the
caustic, X, must be close to the caustic in the opposite sense (i.e. 0 < X7 < X, < X)
and hence for X very close to X, X2 will be positive. The way forward therefore, is to
decrease the value of b so that X3 is always positive and bounded below by X g > 0.

The proof of the existence of X p is stated concisely in the following theorem.

Theorem. Suppose that X1p = ¢; ! (q( (1-— 6c)t) —4cty/(1 — 6c)t), Xc<X<
v/ (1 = 6¢)t and |f(X) — q(X)| < 2¢t|X], then X1p < X2 < X.
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Proof. Let X < bv/t and define X1 p = ‘I2—1 (q (b\/f) — 4ct - b\/f) Since f is increas-
ing on (—X,, X.) and decreasing on (X, c0) we have
f(X2) = f(X)
> f(bV?)
> q(b\/t_) — 2ct - b/t
> q(bV/t) — 4ct - bVt + 2¢t| X8|
=gq (qz—1 (q(b\/i—i) —4ct - b\/z)) + 2ct| X B|
= ¢(XB) + 2ct| X1
> f(XLB)
= X7 > XB.

There are, as expected, a number of conditions that X;p and consequently b
must satisfy. Firstly, to insure that Xy p exists, ¢ (b\/f) — 4ct - by/t must lie in the
domain of ¢3. In other words,

2 [t 2 [t
——gt\/; <gq (bﬂ) —4et-bVE < 313 [9.9.3]

where the upper and lower bounds are simply the maximum and minimum values for

g2(X). Secondly, since
Xip=¢" (q(b\/f) — 4ct - b\/i)

2

in order for X p to be real,

B < %(1 _ 40). [9.9.5]

Additional constraints on Xjp other than those needed for its existence are
Xip > 0 and | X | < bv/t. The first of these two conditions ensures that X;p > 0
which means that [f/(X32)]™! for X > X, close to the caustic can be estimated. The
last constraint allows the conclusion that f(X2) > f(Xrp) to be made.

Now X1p > 0 implies, from [9.9.4], that

VA(1 — 4¢) — 382 > b
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= b* < (1 — 4¢), [9.9.6]

which of course supersedes [9.9.5] in determining b.

The constraint, | X1 p| < by/t, determines a lower bound for b; since b is chosen

to ensure that X;g > 0,

|Xrp| < bVt

—b+ /4(1 — 4c) — 32
2

= b > %(1 — 4c). [9.9.7]

The final condition to consider is that of [9.9.3]. In actual fact this condition
determines a range of admissible values for ¢. This range, which at the moment
stands at 0 < ¢ < 1/48, is of course dependant on the choice of b. However, it is more
important to allow the boundary for the current region in tX space to determine
b rather than the upper value for ¢ as otherwise it becomes impossible to estimate
[f'(Xi)]™} over all of the X plane. To this end we chose b = 1 — 6¢. This choice,
which only just satisfies [9.9.6] and [9.9.7] for ¢ < 1/48, clearly allows the region close
to the caustic such that X > X, to be as large as possible.

With this choice of b,

q(b\/Z) —det -0Vt = b(1 — b — 4c)t\/i
= bt/

>0
and hence [9.9.3] can be simplified to
2 /1
2¢h < =y =
co < 3\ 3
This in turn implies that
1
2
1-6 —

which is satisfied Ve > 0.
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Having proved that a lower bound for X3 exists, it is useful to determine this

bound as a function of ¢. Now from [9.9.4],

Xyp {—m+\/4(1—4c)—3(1—6c)}\/£

2
={—\/l—60+\/1+2c}\/£
2
:>X%B:{1—6c+1+2c—42\/1—60\/1+2c}\/i
1-6 —2(1 —
>{ c+1+4+2c—2 66)}\/5
4
= 2¢Vt
= X1p > V2t
> cV/2t.
Hence in conclusion,
1
V2t < Xpp < Xy < X, VX, <X </(1-6c)t and c< o5

This means that from [9.9.2],

(6 — c)3/2\/ev/2t , ) (6 + ¢)3/2,/(1 — 6c)t
<[f(X2)]7" < 373
(6 + ¢)3/2(1 + ¢)y/\/(1 — 6c)t|t — k| (6 = c)/2(1 = c)ev/2tlt — kel

21/4(6 _ c)3/2(1 _ c)3/2cl/4 , 1 (6 + c)3/2(1 + c)3/2
X .
(6 4 ¢)3/2(1 + ¢)3/2|t — k| <X < V2(6 — ¢)3/2(1 — ¢)3/2¢|t — k|

Using [9.3.5], this implies that

93/2 . 21/4cl/4
103/2)t — k.|

103/2
93/2+/2¢|t — k|

<[f'(X)]™" <

cl/4 5

! -1
= gy SR <gm T

[9.9.8]

for all
X, <X <y/(1—-6¢)t and c<:11§.
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§9.10. Summary of estimates for [f'(Xi(¢,X))]”! and [f'(Xa(t, X))]! for
X > X, near the caustic.

Since the estimates for these quantities require different constraints on the values
for X, they will be listed here for clarity. We have

1

1 ' -1
- — 9.8.8
for all
X<X<\/é(l 6¢c)t d <—1—
e < 3 c and ¢ Y
and
cl/4 , 1 5
- - 9.8
It_ kcl < [f (XZ)] < 6C|t _ kcl [9 9 ]
for all

1
<X <4/(1- Iy
Xc <X (1-6¢)t and c< 13

Hence, so that the above estimates for [f'(X1)]™! and [f'(X2)]™! are valid simulta-
neously on the region close to the caustic with X > X., we must define this region

by choosing the minimum upper bound on X i.e. {(X,t) | Xe > X > /(1 —6c)t }

§9.11. Estimates for [f'(X1(¢, X))]™! and [f'(X2(¢, X))]~! for the region where
X is bounded away from the caustic and cocaustic (X; < X < X¢c).

For X finitely far from the caustic and cocaustic such that X, < X < X, both
[f(X1)]7! and [f'(X2)]™! are expected to be well behaved. The estimates for these
quantities can therefore be obtained directly from |f'(X)—¢'(X)| < ct+cX?/2 rather
than by expanding in powers of either |t — k¢| or |t — kel

The primary goal is to estimate f'(X;) and to ensure that this quantity is bounded

away from zero. Now for all X

H1—c)— %(6 +OXE< FI(X)<t(14¢)— %(6 _ o) X2 [9.11.1]
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and since f'(X7) is negative, this requirement becomes

2(1+¢)
6—c

X > t. [9.11.2]

Similarly, the fact that f'(X2) should be positive and bounded away from zero means
that

2(1 —¢)

6+c

As will be seen, [9.11.2] and [9.11.3] determine the boundaries to the region of which
we are considering. Since f is decreasing for both (—oo0,—X,) and (X, c0) and
increasing for (—X,, X;), it follows that the processes which make X; as large as
possible and X, as small as possible, whilst still satisfying [9.11.2] and [9.11.3], must

jointly determine the upper boundary for this region. Likewise making X7 as large

X2 <

. [9.11.3]

as possible will determine the lower boundary.

Let us first of all estimate [f'(X;)]™!. Clearly an upper bound, Xy p say, for X;
is needed which satisfies [9.11.2] with X7 replaced by Xy p. The existence of Xyp is

proved in the following theorem.

Theorem. Suppose Xyp = ¢! (q (\/4(1 —6¢)t/3) — dct\/4(1 — 6c)t/3), Xyp =
—/(1+300)t/3, X < X < 1/4(1 — 6c)t/3 and |f(X) — q(X)| < 2¢t|X|, then 0 >

Xup > Xyp > Xj such that X3 5 and —X%IB are both greater than 2(1 + ¢)t/(6 — ¢).

Proof. Suppose that X < by/t and define Xyp = ¢! (q (b\/i_f) — 4ct - b\/f) Since f
is decreasing on both (—oo, —X,) and (X, 00),

f(X1) = f(X)
> q (bv/t) — 2ct - bVt
> q (b\/z_f) — 4et - bVt + 2¢t | Xy 8|
=q (ql"1 (q (b\/Z) —4ct - b\/f)) + 2¢t | Xy B|
= q(Xup) + 2¢t | Xvs|
> f(XuB)
= X1 < XuB
provided
—§t\/§ < q(bVE) — 4t - bVt < ;t -;- [9.11.4]
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and
|Xug| < bVt [9.11.5]
In addition to these constraints we must have

21 +¢)
6—c

Xt > t [9.11.6]

and for the existence of Xy g, which has the form

Xyp = {—b — \/4(1 i } Vi, [9.11.7]

2

B < %(1 _4¢). [9.11.8)

Let us consider [9.11.4]-[9.11.8] and ensure that b and consequently c satisfy these
constraints. Firstly, [9.11.5] implies that

b+ 1/4(1 — 4c) — 302

b
5 <

— b* > 1 — A4, [9.11.9]

and this together with [9.11.8] give upper and lower bounds for b? which are self-
consistent if ¢ < 1/4.

In order for this region to be as large as possible it is sensible to define ? =
4(1 — 6¢)/3, a choice which is clearly compatible with both [9.11.8] and [9.11.9] for
¢ < 1/48. With this choice, [9.11.6] and [9.11.7] imply that

4 4 8(1+¢)
5(1—6c) +2\/-3-(1 — 6c)1/4(1 — 4¢) — 4(1 — 6¢) + 4(1 — 4¢) — 4(1 — 6¢) > S

and since c is at least less than 1/48, the above inequality holds if

/4 1
% + 2\/ §(4SC — 6¢)V8c > ?_%_tfl
—c

Now 24/4/3 - 42 - 8 > 40 so again the above inequality holds if

4 8(1+¢)
3—{-400> 6_c '
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This is equivalent to 30c? — 173¢ < 0, which has solutions 0 < ¢ < 173/30. Therefore,
the choice of 5% = 4(1 — 6¢)/3 with ¢ < 1/48 means that X7 5 satisfies [9.11.6].

The last condition that b must satisfy is [9.11.4]. Now,

g(bVt) — dct - bVt = (b— b — 4cb) tv/2

= —%b(l —12e)tVt
<0

for ¢ < 1/48. Thus [9.11.4] simplifies to
V1 —6¢(l —12¢) < 1,

which is identically satisfied for any c less than 1. This proves existence of an Xyp >
X1 that satisfies [9.11.6].

If we try to determine Xy p explicitly as a function of ¢, [9.11.7] with 6% = 4(1 —
6¢)/3 implies that

giving a rather complicated bound for [f'(X7)]™!. In practice, therefore, a new quan-
tity, XuB, such that Xpg > Xyp > X1 shall be defined and used to determine
bounds for [f'(X7)]~!. Now,

X2 {4(1 —6c)/3 + 8¢ +42\/§E\ /a1 = 6c)/3} s

UB =

1
> g(l + 3OC)t.
If Xyp = —/(1 + 30c)t/3 then clearly by the above, Xy g > Xyp. Xy g also satisfies
[9.11.2] with X; replaced by Xy p. To see this we note that in order for

2(1+c)t
6—c

=2
XUB >

to be a true statement, we require ¢ to satisfy

1
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= 30c? —173¢ < 0

=0< <173
c —
30°

which is compatible with current values for ¢ and completes the proof.

With all of the above information gathered by the above theorem it becomes
a relatively trivial task to calculate estimates for [f'(X1)]™!. For ¢ < 1/48 and

X <X <1/4(1 = 6¢)t/3, —Xce < X1 < Xyp < Xyp and [9.11.1] imply that

16(1 + ¢)

t(14¢) — =(6+ ) L

! L<1(X0) < (14 6) — (6 — ) - (1 + 300

These bounds can be simplified by noting that

1 173
L+e— (6~ c)(1+30c) = ———c+3¢

6
< 173 +3
——C C

6

< —25¢.

Also, since ¢ < 1/48, we have, by [9.3.5],

8(6 + ¢)(1 + )

10
14+c— g >1+c—8-§(1-—c)
_m, e
9 9
> —T.
Therefore in conclusion,
1 , 1 1
—_ X - A1,
< [P < 9.11.10]

for ¢ < 1/48 and X, < X < 1/4(1 — 6¢)t/3.

Let us now consider an estimate for [f’(X2)]~!. For the region that is sandwiched
between those regions close to the caustic and cocaustic, the range of X2(X) must
include zero. Hence an upper bound and a lower bound for X3 must be found to
ensure that X, satisfies [9.11.3]. The following two theorems prove the existence
of X;p and Xyp, which are defined as the lower and upper bounds respectively of
X,. In addition, simpler estimates, X 5 and Xy g, will be found such that X ;p <
Xip < X2 < Xup < Xyp. All of these quantities bounding X» are required to
satisfy [9.11.3] with X3 replaced and this will also be shown.
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Theorem. Suppose Xyp = g5 (q( 2(1 — 3¢)t/3) + 4ct\/2(1 — 3¢)t/3), Xup =
\/1(1 + 36¢)t/6, \/2(1 —3c)t/3 < X < X and |f(X) — ¢(X)| < 2¢t|X]|, then Xz <
Xvp < Xup such that X} g and 7?13 are both less than 2(1 — ¢)t/(6 + c).

Proof. Let a be such that av/t < X and define Xyp = qz"l (q (a\/f) + 4ct - a\/f).

Then since f is decreasing on (X,,c0) and increasing on (—X¢, X),

f(X2) = f(X)

< f(a\/i)

< Q(a\/{) + 2ct - aV/t

<gq (a\/t_) + 4ct - av/'t — 2t | Xy g|

=gq (q{l (q (a\/Z) + 4ct - a\/Z)) — 2¢t | Xyp|

< f(XuB)
= X9 < XvunB

provided |Xyp| < a+v/t. The other constraints that Xy p must satisfy are that

2(1 —c¢)
X3 9.11.11
UB < T6 e [ ]
(required to ensure that all positive values of Xy satisfy [9.11.3]) and
lq (av2) + 4ct - av?] < -Q—tﬁ 9.11.12]
3 V3

(for existence of Xy p).

Now from the definition of Xy g we have

—a+\/4(1 + 4c) — 3a2
Xvup = ’

2

so clearly a must satisfy a® < 4(1 +4c)/3. Since X3 has positive and negative values
for this region of tX space, it makes sense to assume that Xy p is positive and as large
as possible. This assumption implies that a® < 1+ 4c, which of course supersedes the
above estimate. With this choice of a, |Xyp| < av/t implies that a? > (1 + 4c)/3.

Thus in summary,
1
3(1 +4c) <a® <1 +4e. [9.11.13]
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To ensure that this region of ¢ X space is as large as possible we need to make a as
small as possible. The obvious choice is to make a? only slightly larger than its lower
bound, such as a? = (1 + 6¢)/3 for example. However, it turns out that this choice
of @ means that ¢ (a\/f) + 4ct - av/t is no longer within the domain of ¢ 1 In fact
any choice for a of the form, a? = 1/3 + O(|c|), implies that Xy p cannot be defined.
The details of this remark can be explained quite easily: if a® = 1/3 + O(]¢|), then
q (a\/f) +4ct-avt = a(l—a? +4c)t\/f evaluated at ¢ = 0 equals 2t/3\/2/_3:. Moreover
this cubic in ¢ has a positive gradient in a neighbourhood of the origin. This means
that in order for [9.11.12] to be satisfied we must prescribe a minimum value for c,

a procedure which is rather incompatible with the contraction mapping proof one is

trying to formulate.

For the above reason, a? is chosen to be of the form a? = 2/3 + O(|c|). Indeed
if a? = 2(1 — 3¢)/3, for example, then the cubic, a(1 — a® + 4c), evaluated at ¢ = 0
equals 1/3,/2/3 and hence even with a positive gradient, [9.11.12] can be satisfied for

small enough ¢. To see this we have

q (a\/f) + 4et - avt = %(1 + 18¢)y/ g(l — 3¢) - tV/1,

which is positive for ¢ < 1/48. [9.11.12] then becomes (1 — 3¢)(1 + 18¢)? < 2, which
is equivalent to 972¢® — 216¢2 — 33c+ 1 > 0. This inequality is satisfied for ¢ < 1/48.

Finally Xyp must satisfy [9.11.11]. This requires that

8(1 —
g(1 —3c) -2 g(1—3c)x/2+20c-{-2-i—20c< —(———c—) [9.11.14]
3 3 6+c
Now,
2 2
3—(1 —3c)V2+ 20c = §(1 —3¢)(2 + 20¢)
>1—-3c
meaning that [9.11.14] is satisfied if
2 8(1 —¢)
—(1
3( + 36¢) < 6 1o
= 36¢? +229¢ — 6 < 0. [9.11.15)
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The equation 36224229z —6 = 0 has solutions z = (—229 £ 1/53305)/72. So [9.11.15]
is satisfied if

—229 + /53305  —458 £ /213220 S —458 + /212521 1

72 144 144 48

In other words for ¢ < 1/48, Xy p satisfies [9.11.11] if a2 is chosen to be 2(1 — 3¢)/3.

Moreover, since

2(1 — C)t
6+c

’

1
Xip < (14360t <

we can define Xyp = /(1 + 36¢)t/6 and use this instead of Xyp when estimating

[f'(X2)]~.

Theorem. Supposing Xrp = g5 (q( 4(1 — 6c)t/3) — 4t /4(1 — 6c)t/3), XiB=
—/1(1 =30¢e)t/3, X < X < /4(1 —6¢)t/3 and |f(X) — ¢(X)| < 2ct|X]|, then

X8 < X1 < Xo such that X%B and YZLB are both less than 2(1 — ¢)t/(6 + c¢).

Proof. Let b be such that X < bv/t and define Xip = q{l (q (b\/f) — 4ct - b\/f)

Then since f is decreasing on (X, 00) and increasing on (—X¢, X),

f(X2) = f(X)

(V1)

(6vt) ~ 2ct - bV

(bv/t) ~ 4ct - bVt + 2ct| X B

(‘h_l (q (b\/i) —4ct - bﬁ)) + 2¢ct| X |
> f(XLB)

= X9 > XrB

VERVAR.
S

f
q
q
q

provided | Xz p| < bv/t. In addition, X;p must satisfy

2(1—-¢)
X2 t 9.11.1
LB < 61 o [ 6]
and for the existence of X g,
lg (bv2) — 4et - bVE| < gt\ﬁ. [9.11.17)
3 V3
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Now the functional form of X p is

X,y = {—b +1/4(1 — 4c) — 302 } Vi 0.11.18]

2

so clearly b < 4(1 — 4¢)/3 in order for the square root to be real. Again, since
X2(X) can be positive or negative, Xy p is assumed to be less than zero requiring
that 52 > 1 — 4¢. This then means that

|XrB| = —XrB < bVt

1
- b2 > 5(1 — 40).

In summary then,

%(1 4o < B < %(1 — 4e).

Choosing b% = 4(1 —6¢)/3 is valid for ¢ < 1/48 and means that the region of X space
between X, and X, can be made as large as possible. With this choice, [9.11.17] is
identically satisfied for

q(bvt) — 4ct - b/t = ~%(1 —12¢)y/ %(1 — 6c)tV/t

= |q (bV) — et - bVE| < %\/%t\/f

_2, [E
St

The final condition to consider is [9.11.16]. Using [9.11.18],
9 1
XLB < 5(1 - 3OC)t

and [9.11.16] becomes

1 2(1 — )
—(1 -
3( 30¢) < 6+c

= 30c® 4+ 173¢ > 0.
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This inequality holds for all positive ¢ meaning that Xp must satisfy [9.11.16]. In

addition to this, since

1 21 —
X}p < 5(1-300)t < (=),

6+c

we can define X;p = —4/(1 —30¢)t/3 such that X1 < X1B < X2 and YzLB is less
than 2(1 — ¢)/(6 + ¢), thus proving the theorem.

Pulling together the information that is contained in the above two theorems we
have, for ¢ < 1/48 and 1/2(1 — 3¢)t/3 < X < \/4(1 — 6¢)t/3, —/(1 — 30c)t/3 < Xz <
/(1 4+ 36¢)t/6. Depending on the range of values for c we are allowed, there is a choice
of upper bound for X2: if 1/96 < ¢ < 1/48 then we must choose X2 < (1 + 36¢)t/6
and if ¢ < 1/96 we must choose X2 < (1 — 30c)t/3. For flexibility, however, a lower
bound for ¢ is not desirable. Hence the range of c is reduced further to ¢ < 1/96 so
that 0 < X% < (1 — 30c)t/3. Finally then, using [9.11.1], we obtain

(%c—i— 5c2> t< f{(X2) < (1+c)t

= 33ct < f'(X2) < (1 +¢)t

1
(1+¢)t

<[ X)) < E;'gl_ct' [9.11.19]

—

§9.12. Summary of estimates for [f'(Xi(¢,X))]™! and [f'(X2(t, X))]"! for the
region where X is bounded away from the caustic and cocaustic (X, < X <
Xee)-

We have
1 Coy 1
— < (X)) < = [9.11.10]
for ¢ < 1/48 and X, < X < 1/4(1 — 6¢)t/3, and
L[] < e [9.11.19)]
(1+ o)t 2 33ct o

for ¢ < 1/96 and 4/2(1 — 3¢)t/3 < X < 4/4(1 — 6¢)t/3. Hence, in order for the above

estimates to be valid simultaneously on the region between both the caustic and

cocaustic, we define this region to be {(X,t) | /2(1 —3e)t/3 < X < +/4(1 — 6c)t/3}.
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§9.13. Estimates for [f'(Xi(¢,X))]™! for X < X, near the caustic.

In this section estimates for [f'(X7)]~! for X < X, are calculated. Since X is
close to the caustic, [f'(X1)]™! is expected to be well behaved and thus expanding
this quantity in terms of |t — k.| is not necessary. Having said this, however, we
will be forced to modify our approach slightly to account for the fact that since
—X. < X < X,, we can never have |Xyp| < av/%, a requirement that we have
previously had to satisfy. The following paragraph explains.

Since f'(X3) is expected to be non-zero for these values of X we have, using

[9.5.3],

(1—c)t — %(6 +OX2 < f(X1) < (1+ o)t — %(6 _ X2,

With this approach we immediately have the condition that

2(1+¢)

6—-c

X; >

t, [9.13.1]

which ensures that [f'(X;)]~! is negative. If this assumption was not made [f'(X;)] ™
could become unbounded. Clearly an upper bound, Xy p say, for X; as a function
of X is needed such that [9.13.1] is satisfied with X#p replacing X?. Continuing
with the theme from previous sections, we have a method that proves existence of
this upper bound, however, if we recall, this process depends on the fact that a,
which defines the lower bound for the region containing X (i.e. avt < X < b/?),
satisfies | Xy g| < av/t. Clearly, since X is in the region where it could be relabelled
as X, and that X; < —X, < avt < X2 < X,, | Xyp| is necessarily greater than
av/t. This requires the existence proof for Xyp to be modified. Instead we will
require that |Xyp| is less than n multiples of av/t (|Xyp| < nav/t) which is clearly
true for large enough n. This amounts to redefining the curves ¢4 and ¢g such that
ga(X,t) = q(X, (1 = 2¢(1 +n))t) and qg(X,t) = q(X, (1 +2¢(1 +n))t). The following
theorem determines possible values for n, compatible with current restrictions on ¢,

that prove existence of Xyp.

Theorem. If Xyp = a7 (¢ (VE/8) — tv2/12), Xyp = —/3t/8, 1/8vE < X < X.
and |f(X) — ¢(X)| < 2¢t|X|, then X1 < Xyp < Xy such that Xl2IB and Y?IB are
both greater than 2(1 + ¢)t/(6 — c).
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Proof. Suppose X > av/t and define Xyp = ql—l (q (a\/f) —2c(1+n)t- a\/i_f) where
n > 0. Then, since f is decreasing on (—X,, X) and increasing on (—Xcc, —X), and
providing nav/t > | Xy,

f(X1) = f(X)

f
q (a\/f) —2ct - aVt

q (a\/Z) — 2¢t - aV/t — 2net - av't + 2¢t| Xy B|

q (ql_1 (q (a\/f) —2¢(1 +n)t- a\/f)) + 2¢t| Xyl
q

The similarities between this and the previous sections can be seen. The only
difference is that values for n must be determined that allow the above procedure
to go through. The same arguments as those in the previous section give rise to the

following constraints:

|7 (avt) = 2¢(1 +n)t - avt| < g\/g [9.13.2]
Xy o {—a — /41 - 22c(1 +n)) — 3a2 } Vi 0133
nav't > | Xy | [9.13.4]
and
Xip> 2(61—+c6) t. 9.13.5]

In addition to these equations, [9.13.3] implies that

a? < %(1 — 2¢(1 4 n)) [9.13.6]

and

n<—-—1. (9.13.7]



The conditions [9.13.2]-[9.13.6] are of course expressing the criteria which have
been discussed before. [9.13.7], however, is new. Clearly the above procedure is
constructing a curve ¢q(X,t) = ¢(X,(1 — 2¢(1 + n))t) which is a lower or upper
estimate for f when X is positive or negative respectively. Moreover this curve looks
like ¢ = Xt — X3. If on the other hand [9.13.7] is not satisfied then gq(X,t) =
q(X,—|1 = 2¢(1 + n)|t), which would look like ¢ = —Xt — X3. Although this is
compatible with the initial conditions one might wish to prescribe, it does not allow

for a caustic set near the origin for positive t.

Considering first of all [9.13.4], which should give a lower bound for a?, we have
from [9.13.3],

2na > a + \/4(1 —2¢(1 +n)) — 3a?
= (2n —1)%a% > 4(1 = 2¢(1 + n)) — 3a?

= (n? —n+1)da? >1-2¢(1+n). [9.13.8]

To proceed we need to fix a? and n as functions of c¢. Firstly, choose a? = 1/64; this
is motivated by the fact that a\/t must be significantly less than X.. In other words
for small enough ¢ we have the inequality, av/t < 2(1 — ¢)/(6 + ¢) < X,, ensuring
that the region close to the caustic such that X < X, is not an empty set. Secondly,
choose n = 1/3c — 1. This is the largest value for n permissible by [9.13.7]. By
initially choosing such a large value, [9.13.4] is more likely to be satisfied without

further adjusting the upper bound on c.

With these values, [9.13.8] becomes 165¢? +9c¢—1 < 0 implying that 0 < ¢ < 1/19.
With current values of ¢ being less that 1/96 we conclude that [9.13.8], and hence
[9.13.4], is satisfied with these choices of a® and n.

Let us now consider [9.13.5]. By [9.13.3] we have

8(1+¢)
6—c

a® +2a\/4(1 —2¢(1 4+ n)) —3a2 +4(1 —2¢(1 + n)) — 3a% >

1.1 /247+247>8(1+c)
64 4V192 1927 6-—c
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This inequality is clearly satisfied if
1 1/5 5 8(1+¢)
az+1\/;+z> T6-¢c

1 1 5 8(1+4c¢)
eat1T1” 6 ¢

and again if

1,15 5 80+¢
64 4 4 4 6—c
3 8(1+c)
s> TY 9.13.10
27 6-c [ ]
e 2
C -
19

Thus for ¢ < 1/96, a® = 1/64 and n = 1/3c — 1, [9.13.5] is satisfied.
The last condition to consider is [9.13.2]. Now,
q(avt) = 2¢(1 4 n)t - eVt = atv/t — (a\/f)?’ —2¢(1 +n)t-avt
and so [9.13.2] is equivalent to

2 /1
la(1 — a® —2¢(1 +n))| < =4/ =

3v3
_, 6 <z\/1
1536 3V 3’

Having proved existence of Xy p a more elegant estimate, Xy g, such that _X-%] B
is greater than 2(1+c¢)/(6 —c) can be established. Now [9.13.9] and [9.13.10] together
imply that

which is a true statement.

3 2(1
X(2]3>§t> ( +C)

for all ¢ < 1/96. This establishes the quantity Xyp = —4/3t/8 and proves the

theorem.
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We are now in a position to estimate [f'(X7)]~!. Since —X.c < X < Xy, [9.5.3]

implies that

- BUAOLD,  px) < (14 0) - (6 )3t

(1—e)t
using [9.3.10]. [9.3.5] gives, for ¢ < 1/24,

(1+¢)(64+¢c) 10
——6 e < —9-(1 - C)

= {(1 —c)— %1—0(1 - C)}t < fl(X1) < {(1 +¢)— —;—(6 - c)%}t

— —8(1 = )t < f'(X1) < —%(1 — 100)t

= —0%6?)2 <X < —gl—}_—;)—t-

This inequality holds for 1/8v/t < X < X, and ¢ < 1/96.

[9.13.11]

§9.14. Estimates for [f'(X3(¢,X)))]™! for X < X, near the caustic.

In this region [f'(X3)]™! is expected to become unbounded as X approaches X..
We therefore estimate this quantity in terms of the distance from the caustic. Now

the mean value theorem gives
f1(Xs) = X3 = X|f"(Ya)
with X, < Y, < X3. Similarly, f(X) = f(X3) implies that

% 1/2

()
where X <Y, < X, and X, <Y, < X3. Also,

ky(Ya)|
where X < Y; < X.. Combining these results the expression for [f'(X3)]™! becomes

(Y2 [ke(Ya)
LY (Vo) [2 ]t — ke
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As usual equation [9.5.2] implies that
(6 — ) Xe < (6 — ¢)|Ya| < |f'(Ya)| < (6 + c)Ya] < (6+ )X
Similarly,
(6 - )X <|f' (V)| < (6+c)Xe
and
(6 — ) Xe < |f'(Ye)l < (6 + 0)Xs.
In addition, [9.2.2] implies that

6 —c
l1+e¢

' 6+c
Xc.

6—c
X < Yyl <
T3 ol <
If we insert these estimates into [9.14.1] then we obtain

_ (6 + ¢)3/2X3"* / L
(6 —¢)3/2(1 + ) XV/2|t — k| <[f(X3)]" <

(6 —c)32X
(6 4 ¢)3/2(1 — ) X3t — ke|’

which, using [9.3.5], implies that

93/2x
103/2(1 — ¢) X3t — kol

10%/2 X,/

_ o
P+ X =y < X<

3x,/?

_— ~ <
2(1 4+ )X V2|t — k|

2X
3(1 — O X3t — ke

[F(X) ! < — [9.14.2]

To simplify these estimates further upper and lower bounds for X and X3 are
needed. In this case, for estimates of X3 the straight forward choice of X, < X3 < X,
is sufficient. Moreover, we only have the condition that X is bounded away from zero
and less than X, so there is no reason why we cannot use the lower bound, 1/8+/,

determined by the previous section. It follows then that [9.14.2] becomes

3vaxal:
(14 c)tV/4|t — k|

Vi
121 — ) Xoolt — ko]’

<X <~
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and using [9.3.10] this becomes

3\/5\/\/16(1 +¢)(6— )1t

(1 + c)tV/4]t — k| <

- Vi
12(1 — ¢)y/16(1 + ¢)(6 — ) ~1t]t — ke|
= — 6v2 <[F'(X3)]™ < - (6= [9.14.3]

(14 ¢)3/4(6 — c)1/4|t — k|
for all 1/8v/t < X < X, and ¢ < 1/24.

48(1 + ¢)3/2|t — k.|

§9.15. Summary of estimates for [f'(X;(¢, X))]~! and [f'(X2(t, X))]™! for the
region where X is close to the caustic (X < X,).

We have
8

1
IESTATAN

Fx) < T

[9.13.11]

and

Y
1+ c)3/4(6 — c)1/4|t — k|

(6 — c)1/2

<X < — 181 + P2 = k]

[9.14.3]

for all 1/8v/t < X < X, and ¢ < 1/96.

§9.16. Estimates for [f'(X1(¢,X))]™! and [f'(X3(t, X))]~! for X close to the
origin.

Let us consider estimates for [f'(X3)]™! first of all as by the asymmetry of f,
these will automatically imply bounds on [f'(X1)]~!. Since in this region X is close
to the origin, it should be possible to bound X3 away from X, by reducing the upper
bound on X. This means that finite estimates for [f'(X3)]~! can be obtained because

we can appeal directly to [9.5.7] rather than expanding in terms of |t — k|-
Now, [9.5.7] implies that

(1—-c)t— %(6 + C)X32 <f(X3) < (1+o)t— %(6 — c)X32.
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Clearly, if X3 is sufficiently far from X, then f'(X3) will always be negative. We shall
therefore find an upper bound on X which defines a lower bound for X3, denoted by

X B say, which is greater than 2(1 + ¢)t/(6 — ¢). These conditions are proved in the
following theorem.

Theorem. If Xpp = g5 (¢ (1/2v%) +3ctvt), X1p = 1/7t/16,0 < X < 1/2f
and |f(X) — q(X)| < 2¢t|X|, then X3 > X1 > Xp such that XLB and XLB are
both greater than 2(1 + ¢)t/(6 — c).

Proof. Define Xy p = q;l (q (b\/Z) +2¢(1 +n)t- b\/f) where b is a constant chosen so
that X < bv/t. Then, since f is increasing on (—X,, X.) and decreasing on (X, Xcc),

f(X3) = f(X)
< f(bv?)
< q(bV/t) 4 2ct - bVt
< q(bVt) + 2ct - bVt + 2nct - b/t — 2ct| X g|
q( ( (b\/-) +2¢(1 +n)t- b\/—))QcthLB|
= ¢(X1B) — 2ct| X8|
< f(XLB)
= X3 > XiB

if nbyv/t > |XB|. The conditions that must be satisfied are:

|q (b\/i) +2¢(1 4+ n)t - b\/ZI < g\/g [9.16.1]

{ —b+ \/4(1 + 2¢(1 + 1)) — 352 }
Xip = 5 Vit [9.16.2]
= b < 14 2¢(1+n), [9.16.3]

which ensures that X p is positive,

nbvt > | Xpp| [9.16.4]

and
2(1 + c)t
6 .
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Consider [9.16.4] first of all. We have
(2n +1)%0% > 4(1 4 2¢(1 4 n)) — 3b°.
Define n = 2 and b% = 1/4. Then with these choices,

(n? +n+1)02 > 14 2¢(1 + n)

7
:>1>1+6C,

which is true for all ¢ < 1/8.

Now consider [9.16.5]. With [9.16.2] this becomes

b?—%¢4L+%u+n»—3m+4u+241+n»—3¥>8

1 / 3 3 8(1+C)
:>Z— 4(1+6€)—Z+4(1+6C)-—4> 6—c

If ¢ < 1/96 then this inequality is satisfied if

1 7 7 8(1+c¢)
z—\/;““? 6_c

6 —c

which in turn is satisfied if

1 7 8(1+c)
12t 6o
=>'_7_>8(1+c)
4 6 —c
— <
C 4,

which current restrictions on ¢ satisfy.

(1+¢)

[9.16.6]

Finally consider [9.16.1]. This inequality becomes, with the above choices for n

and b,

§-l-3c<-2—\/I
8 3V3

=>3+3 <1
— c —
8 3
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1
ﬁ6<g,

which is again satisfied by ¢ < 1/96.

Having proved existence of X g, X 1 can now be defined. From [9.16.6],

2(1
X%B>lt> ( +C)

t
16 6—c

implying that X p = /7t/16 is a valid choice.

With these estimates for X3, we can now establish estimates for [f'(X3)]~!. Equa-
tion [9.5.7] implies that

(1= )t = 5(6-+ X2 < ['(Xs) < (14 )t = (6 - )X} g

, 1 7
— (1= o)t — %(6 + c)%t < f'(Xs) < (1+ )t — 5(6 )7t
Using [9.3.5] this becomes
(1—c)t — 8—%)-(1 — o)t < f1(X3) < —35—2(2 — 5e)t
32 S 1
= —3(2——56—)2 < [f (X3)] < —m [9.16.7]

for all 0 < X < 1/2y/t and ¢ < 1/96.

This result can be used to immediately estimate [f'(X;)]™}. Since X > 0, it
follows that X3 must be closer to X, than Xj is to —X.. This means that if Xygp =
— X1 = —+/7t/16, then for all 0 < X < 1/2v/t and ¢ < 1/96, X1 < Xyp and

32 <
5(2 — 5c)t

1

[FX)) ™ < oot

[9.16.8]
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§9.17. Summary of estimates for [f'(Xi(t,X))]~! and [f'(X3(t, X))]™! for X

near the origin.

We have

32 1

— e < (X)) 7' < 81—

5(2 — 5¢)t c)t

for all 0 < X < 1/24/t and ¢ < 1/96.
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APPENDIX 1.

§A1.1. Presentation of formulae for transforming differential equations in

tz space to differential equations in tv space.

In this appendix, four relations regarding the partial derivatives of functions with
two independent variables are derived. These shall be used in Chapter 4 to transform
equations [4.1.1]-[4.1.3], which are differential equations with respect to ¢ and z, to

equivalent equations with ¢ and v as the independent variables.

If z = z(v(t,v),t) then

(5:),~ (52). (2).+ (30). (),

Now we have (0t/9z), = 0 and (dz/0z), = 1, hence

(%)t _ (ax/l—av)t' [A1.1.1]

(#).= (@), (3), (),

But (0z/0t), = 0 and (0t/0t), =1 so that

R R
)~ (.6 6.6)

&)~

)-8 .6

ORI R
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Similarly,

0

ll

$>t [A1.1.3]

Q

and similarly,

+



APPENDIX 2.

§A2.1. Metric spaces and contraction mappings [TA].

In chapters 8 and 9 we describe the setting up of an existence proof for the
solution to the differential equations defining the Newtonian formulation of caustics
in a spacetime. The method which we base this existence proof on is to use the
fixed point theorems pertaining to contraction mappings on metric spaces. This will
be explained in detail within the main text; the point of this appendix, however, is
to briefly introduce the reader who is unfamiliar with such tools, to a few relevant
definitions and an example that neatly illustrates what we are trying to do with the

main equations. We begin by stating the following

Definition. A non-empty set, S, of objects together with a function, dg: S x § —
R, satisfying:

1. dg(z,z) =0,
2. ds(z,y) >0ifz #y,
3. dS(Z,y) = dS(y,x)’

4. dg(z,y) < ds(z,z) + ds(z,y),

Vz,y,z € S is called a metric space and denoted by (S,dg). The function, dg, is

called the metric.

Two possible examples of a metric space are now given. The first corresponds to
the case where S = IR and ds(z,y) = |z — y|. This illustrates the fact that dg is to
be thought of as the distance from x to y; properties 1 through 3. Another example,
more relevant to the case that we consider in the main text, is that where S = C|a, b],

the set of continuous functions on [a, b]. Here the metric is given by

ds(91,¢2) = max [$1(z) — $2(z)]. [A2.1.1]
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In both of these examples we can easily show that items 1 through 4 are satisfied.

Definition. A sequence, {zy}, in a metric space, (S, ds), is called a Cauchy sequence
if, for every € > 0, there exists an integer, N, such that ds(zs,zm) < € whenever
n>Nandm > N.

It is possible, from the definition of a convergent sequence, to prove that all
convergent sequences are Cauchy sequences. The point of introducing this, however,

is that we can now give the idea of a complete metric space.

Definition. A metric space is complete if every Cauchy sequence in S converges in

S.

For the above two examples we can show that both (IR,ds) and (Cf[a,b],ds) are

complete.

With these ideas the concept of a contraction mapping on (S, dg) can be defined.
Furthermore, we now have sufficient information to allow us to state Banach’s fixed-

point theorem.

Definition. Let J: S — S be a map of (S,ds) onto itself. Then J is called a
contraction of S if dg(J[z], J[y]) < kds(z,y) Vz,y € S and k < 1.

Theorem (Banach’s fixed-point theorem). A contraction, J, of a complete met-

ric space, S, has a unique fixed point, i.e. there exists a point ¢ € S such that
J[z] = z.

§A2.2. Fixed-point theorems and existence proofs.

In this section we shall illustrate the power of fixed-point theorems and contraction
mappings by proving an existence theorem for the solution to a particular class of

ordinary differential equations. That is to say, let f(z,y) be a real valued function
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defined on an open set, 2, of IR? such that it satisfies a Lipschitz condition of the

form,

|f(z,y1) — f(z,92)| < Kly1 — y2l, [A2.2.1]

for all (x,y1) and (z,y2) in . Then we shall prove the existence of a unique solution
to the following:

dy

- = A2.2.2

7 = f(@:y) [ ]
with initial condition,

Theorem. Assume that f(z,y) is a continuous bounded function in an open set, {1,
of R? satisfying equation [A2.2.1]. Then there exists a unique solution to [A2.2.2]
and [A2.2.3] on [a,b] € Q provided K in [A2.2.1] satisfies K < 1/6(b — a).

We shall make this proof self contained by introducing the concept of continuous
functions on a metric space. In other words, we give the condition that functions

must satisfy in order for them to be members of Cla, b].

Definition. Let (S,ds) and (T, dr) be metric spaces and f: S — T a function from
S toT. Then f is said to be continuous at a point s € S if for every € > 0 there
exists a 6 > 0 such that dr (f(z), f(s)) < € whenever dg(z,s) < é.

Proof of theorem. We first of all show that equations [A2.2.2] and [A2.2.3] are equiv-
alent to an integral equation, which we use as an indicator to construct a mapping,
J, from Cla,b] onto itself. We will see that the solution to equations [A2.2.2] and
[A2.2.3] corresponds to a fixed point of J. Since we know that C|[a, b] equipped with
the metric defined in equation [A2.1.1] is complete, the proof automatically follows

from our fixed-point theorem if we can show that J is a contraction on C(a, b).

So, we begin by integrating equation [A2.2.2] between z and zg. We have

[ o= [ sty

= [y = [ s, u@par

y(zo)
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— 3(e) = y(a0) + [ ft,3(0)at
Now suppose that given z,z¢ € [a,b] and ¢ € Cla,b], J[¢] is defined by
T = vlz) + [ 1t 6(0)

We show that J[¢] is also continuous: let § and ¢ be continuous functions on [a, b],
then

ds (J[¢], J10)) = max,

/z: f@t, 8(t)) — f(¢,0(t))dt
< max /x |f(t, ¢(t)) — f(t, a(t))l dt

a<z<bJzg
< _
< max K [ 16() — o)
< K(b—a) ax, l6(t) — 6(2)] .
So if e > K(b— a)é we have ds (J[4], J[0]) < ¢ whenever dg(¢,0) < 6 and conse-

quently J[¢] is continuous and therefore maps C|a, b] onto itself.

Finally we show that J is a contraction. By the above argument,
ds (J[4],J[0]) < K(b— a)ds (¢,0) < ds (4,9)

as required, which thus completes the proof.

This example is a nice way of introducing the reader to the method of using
contraction mappings to prove existence of solutions to certain types of differential
equation. We can see that the procedure essentially defines an iterative scheme in
which the solution exists at the end of an infinite number of successive applications of
J on an initial guessed solution, ¢o. That is to say, y(z) = lims—00 J™[¢0)(z) where
J2 o] = J [J[¢o]], J3[¢o] = J [J [J[$0]]] and so on. We measure the ‘closeness’ of the
nth iteration at any stage using the metric function. Thus if ¢, = J"[¢¢] then

ds (ya ¢n) =dg ('][y]v J[¢n—1]) <ds (y, ¢n—1)

and the nth approximation is nearer to the true solution than the (n — 1)th approx-

imation.

The procedure that is developed in the main text, although is fixed upon a very

specific class of differential equation, has many similarities with the above. For this
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reason we shall now highlight the three crucial steps in the above that appear in the
development of an existence proof for the Newtonian equations of motion. The first
step was simply to realise that the differential equation and the initial condition that
the solution had to satisfy could be written in terms of an integral equation. This
suggested a possible candidate for the contraction mapping. The second step, and
this, in general, is usually the most difficult, was to define the metric space in which
one expects to find the solution to this integral equation: in the above, we supposed
that the solution lay in the set of continuous functions on [a,b]. These two stages
together allowed us to define a map, J, from this metric space onto itself such that
the solution corresponded to a fixed point of J. The third and final stage was to
show that this fixed point is unique. For this we proved that J was a contraction on
Cla,b] and hence, by the fixed-point theorem, has a unique fixed point. Note that
here we assumed that as a metric space, C|a, b] is complete. The uniqueness of this

fixed point then implies uniqueness of the solution to [A2.2.2] and [A2.2.3].
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