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The gravitational collapse of a spherically symmetric, pressure-free dust is an inter-

esting problem in General Relativity for it can lead, under certain initial conditions,

to the situation where infinitesimally neighbouring shells approach and cross each

other. The curve generated by these points of crossing generate a particular case of a

caustic. In the situation where we have matter associated with each shell the density

becomes unbounded on the caustic and, in a General Relativistic framework, we have

a singularity.

The interest in these types of singularity is two-fold: they present a possible mecha-

nism for galaxy formation and they represent a counter example to both the strong

and weak versions of the cosmic censorship hypothesis. In fact, Yodzis and collabora-

tors prove that an event horizon is generated to the future of the initial singularity, so

that these types of singularity are naked. If, however, a solution to the field equations

describing a spacetime with a caustic represent points that are internal (rather than

being excluded as is generally the case for singularities), then this would stop these

solutions as being counter examples to the simplest form of the cosmic censorship

hypothesis. In addition, this would reinforce the idea that only strong singularities

are censored.

The characteristic feature of shell crossing singularities is that at some point the world

lines of shells coincide, meaning that the fluid flow vector becomes non-unique. If,

however, we lift the geodesies that our shells follow onto the tangent bundle, then the

vector tangent to these curves is unique. This indicates that we might be able to use

the methods of Rendall and collaborators as a way to obtain existence to a solution of

the field equations but, unfortunately, the unbounded nature of the density functions

which arises in our formulation precludes this. We are forced, instead, to take the



direct approach and consider solving the equations that model several superimposed

dusts.

The critical factor in any existence proof is to determine the shape of the caustic

close to the point of cusp formation. In Newtonian theory or General Relativity this

becomes the question of whether or not gravity alters the shape that is predicted

by the simple cubic which is well known from catastrophe theory. We shall refer to

this as the zero gravity solution. In this thesis we present a rigorous investigation

of the limiting behaviour of both the Newtonian and General Relativistic pictures,

showing in both cases that it can be represented by a similarity solution. We also

relate the Newtonian to the Relativistic case. To further our understanding we also

investigate the dynamics of the situation by constructing a computer model based

on the Relativistic formulation. This numerical solution corroborates the results

previously obtained.

In the Newtonian analysis we show that the similarity solution (based on simple

scaling transformations) obtained in the limit as we approach the cusp describes

unbounded densities on the axis of symmetry. To correct this we suppose that the

Newtonian constant G must also be scaled. We find that the solution now obtained

in the limit is one where G = 0 which describes the zero gravity case. Moreover,

if the initial conditions are described by a cubic, then we find that the asymptotic

shape of the caustic does not differ from that of the generic caustic. We check for

any other, more general transformation group that leaves the Newtonian differential

equations invariant whilst reducing to the gravity free equations in this asymptotic

limit. The conclusion is that, subject to an arbitrary Galilean transformation, the

scaling transformations are the only transformations that fit this description.

A similar analysis is performed with the General Relativistic equations. In this case,

to enable asymptotic solutions to exist, we find that c must also be scaled. The result

is that the geodesic and conservation of matter equations reduce again to the gravity

free case. Thus even in the General Relativistic formulation of caustic formation we

have gravity playing no part.

In the latter parts of this thesis, work is presented that goes some way towards an

existence proof for the Newtonian problem. We formulate the differential equations



using a Lagrangian coordinate system and then discuss the set-up of a contraction

mapping proof of existence of the solution to these equations. In the set-up of the

existence proof, we prove that the solution must be C2. We assume that any solution

corresponding to G ^ 0 cannot deviate from the zero gravity solution by more than a

certain parameter which we are able to chose. By considering a small neighbourhood

containing the cusp, we write the solution as a double iterated integral in time away

from t = 0. We find that the integrand is not integrable through the cocaustic

thus excluding any proof of existence of an initial value problem using a contraction

mapping type of argument. It did, however, prove possible to show existence for

a family of solutions parameterised by two arbitrary functions based on using the

Arzela-Ascoli theorem. This approach which has been published in collaboration

with C.J.S. Clarke.
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CHAPTER 1. THESIS OVERVIEW.

§1.1. Introduction.

The gravitational collapse of a spherically symmetric dust (pressure-free perfect

fluid) is an interesting problem in any gravitational theory for it leads to the formation

of two types of singularity known as shell focusing and shell crossing singularities.

Shell focusing singularities occur when the dust geodesies focus to a point and are

essential in the sense that these singularities cannot be eliminated via an extension of

the metric. Shell crossing singularities or caustics on the other hand, are non-central

and are formed by the piling up of dust trajectories at some finite radius.

The unbounded behaviour of the density in the second example is of particular

interest in both cosmology and General Relativity since it provides a model for galaxy

formation and points to the existence of naked singularities respectively. Yodzis et

al. [YMS] describe what happens in the region external to the caustic but conclude

that no analytical continuation can be made through the singularity. The reason for

this is that the solution exhibits unphysical behaviour in the sense that pressures

become negative, forcing us to consider the proper caustic described by multi-dust

spacetimes, [CO] and [C] (ref. §1.3 and chapter 4). Now, although Clarke and

O'Donnel have succeeded in showing that an extension through the singularity can

be made self consistent, as yet no exact solution exists in either the Relativistic or the

simpler, Newtonian case. This thesis presents a rigorous analysis of the equations that

describe caustic formation in both theories with the aim being to try to understand the

essential physics of caustic formation. We finish by presenting in the final two chapters

the beginnings of an existence proof for the Newtonian case. This is completed in a

joint paper, [SC].

§1.2. Caustics, cocaustics and tangent bundle surfaces.

As mentioned, caustics represent those regions of unbounded density caused by

the crossing of shells. Fig. 1 illustrates what this means. The plane of the paper

represents a single spacial coordinate along the horizontal axis and time along the

vertical and therefore it can illustrate the General Relativistic description of either a



two dimensional spacetime or a four dimensional spacetime with symmetry conditions,

or the Newtonian description of one dimensional motion parameterised by time. The

lines represent the trajectories of particles and at points where adjacent lines cross,

the density becomes unbounded and a singularity forms. By way of notation, we shall

call these types of singularities caustics and the point at which the left and the right

caustics meet, we shall call the cusp.

Fig. 1. Newtonian caustic.
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For realistic reasons, we shall only concern ourselves with higher dimensional

spacetimes simplified by assuming certain symmetry conditions: spherical symmetry

for General Relativity and planar symmetry for Newtonian theory. To take the first

case and relate this to fig. 1 as an example, we impose two dimensional motion in a

four dimensional spacetime by assuming that there is no 0 or <f> dependence in any of

our dust variables, v, representing the fluid's flow vector and />, its density, and that

v has only radial and temporal components. With this picture of 'two dimensional

gravity' in mind, we realise that the converging lines in fig. 1 represent geodesies

followed by shells rather than particles. In addition, since each trajectory is straight,

we conclude that the spacetime is Euclidean and that in actual fact, the diagram

represents the motion of massless particles.

The fact that Fig. 1 illustrates caustics being formed by particles of zero mass

does not preclude it from our discussion. In fact, since exact solutions exist for this

situation (catastrophe theory, [A]), a lot of the work we shall present concerning



gravity will at least involve the same initial conditions but also, in general, will be

based on the assumption that any solution for the gravitational case can be thought of

as a perturbation on the solution obtained for G (the gravitational constant) equal to

zero. This is important to realise for it becomes an underlying assumption throughout

most of this work. Indeed for the final two chapters where we present ideas towards

an existence proof, this underlying theme is brought out and made a fundamental

assumption upon which the whole theorem will hinge. In other words, we will look

for the existence of a solution to the differential equations describing caustic formation

that are near to that generated when G = 0.

In the following chapter we spend time introducing a mathematical description

that encompasses caustic formation within the two formulations of gravity as well as

any Euclidean spacetime. Without going into much detail, we construct manifolds, M

and N, and a map, / : N —• TM, such that ir o f(N) = M where it is the projection

of TM onto M. We suppose that (t,x) and (t,v) represent local coordinates to M

and N respectively, and relate the x and v by ir o f(t,v) = (t,x(t,v)). So far the

i's, o?'s and u's have no meaning, however, as soon as we place a dust in M, we can

begin to interpret these quantities. For M, t and x adopt the labels time and position

respectively and if X{(t) represents a geodesic in M then for N, v(t,x) is defined by

v = vi(t) = dxi/dt(t) whenever x = Xi(t), and represents the velocity.

The problem we have is that if we allow particle trajectories in M to cross, then we

must be prepared to accept the fact that v(t,x) must be multi-valued (corresponding

to different geodesies, x\, X2 etc. being coincident at (t,x)). It is this behaviour of v

that one way or another, encompasses all of the technical problems that are associated

with trying to understand caustic formation.

To continue, f(N) represents an embedded surface in the tangent bundle associ-

ated with M. We shall construct this surface in such a way so that f(N) is ruled by

curves that project down onto geodesies in M. Now, the multi-valued nature of v(t, x)

and the continuity of the geodesies in M imply that f(N) looks like a sheet of paper

that has been folded twice to make an 'S' shape. The projection of this surface onto

M acts in such a way so as to squash these folds into creases, which correspond to

the caustic set in M. In terms of our mathematical construction, we have the caustic

set corresponding to the image, 7r o /(£, vc), of those points, (t, vc) £ N, where TT O f

becomes singular. We will show, in terms of our local coordinates for M and N, that



this condition translates into the following statement: the caustic in M corresponds

to x(t, vc) where vc(t) is the solution to dx/dv(t, v) = 0. We shall call v = vc(t) the

equation of the caustic in TM and its image under TT, namely x = x(t,vc(t)), the

equation of the caustic in M.

To complete this section we introduce the idea of another curve in /(iV), which

we call the cocaustic. Again, since v(t,x) is multi-valued, it is clear that there will

exist points, (t,vcc,x(t, vcc)) in f(N), such that vcc ^ vc but with x(t,vcc) = x(t,vc).

In other words, given vc(t) we define vcc to be the solution of x{t, v) = x(t, vc(t)) and

call v = vcc(t) the equation of the cocaustic. It follows from its definition that the

images of the caustic and cocaustic coincide in M and so it is unnecessary to define

a cocaustic in M and redundant if we specify the cocaustic to be a curve in TM.

Finally, since the above definitions of the caustic and cocaustic are possibly a

little abstract, we illustrate their significance in terms of particles moving on M. We

recall that f(N) can be constructed by lifting geodesies on M into the tangent bundle.

It follows, therefore, that as particles move along trajectories in M a corresponding

point moves along a curve in f(N), which must at some stage cross the caustic and

cocaustic. Now refer to fig. 1. As we follow a particular trajectory from the initial

time slice, through the external region and into the region to the future of the caustic

set, we can say that the lift of this geodesic crosses the cocaustic when the particle

on M first crosses the caustic set, and crosses the caustic in TM when the particle

'touches' the caustic in M for the second time. Note that it is only when this particle

'touches' the caustic for the second time does it cross neighbouring geodesies, and

so only at these points does the density associated with this particular trajectory

become unbounded.

§1.3. Multi-dust regions.

The other thing that we wish to mention before we launch into a description of

each chapter is the concept of a multi-dust spacetime. In order to at least attempt to

obtain an exact solution for the region in M to the future of the caustic, we have to

work with a unique fluid flow vector and for reasons that we have already stated, this

is certainly not the case. To solve this problem we are forced to introduce the added

complication of a multi-dust region [CO] where we expect shells to cross. In M, this



corresponds to a region, bounded by the caustic, where we have several superimposed

dusts, each with a unique flow vector whose z-component is given by vi(t,x). This

system can be seen to represent a special case of the Einstein-Vlasov equations for a

collisionless gas, however, the singular nature of the problem precludes the use of the

existence results obtained by Rendall [R].

The equations that illustrate what we mean by this are, for the Newtonian case,

k

x 1=1

dvi _ dvi

and

at

dpi dvi dpi .
ox ox at

With k — 1, equations [4.1.2] and [4.1.3] represent the standard conservation equa-

tions for a single dust whereas equation [4.1.1] expresses the Newtonian law of gravity.

For k > 1 we notice two things, firstly that only variables describing the ith dust ap-

pear in the corresponding conservation equations, and secondly, that from the force

equation, the gravitational field is dependent on the total density at a point and is

constructed by the sum of the three />,-. This illustrates what we mean by super-

imposed dusts, i.e. we model our fluids in such a way so that they are essentially

invisible to each other except via their gravitational interaction.

In TM the situation is somewhat different. Because of the now distinct u,-,

f(N) can be considered as the union of three parts corresponding to those points,

(t,Vi,x(t,Vi)), satisfying, v\ < —vc, —vc < V2 < vc and vc < v$. Thus in TM, the

multi-dust region corresponds to the union of three disjoint surfaces characterised

by those points satisfying, — vcc < vi < —uc, — vc < V2 < vc and vc < vs < vcc. In

addition to this, we often find that working in the tangent bundle makes the situation

that we are trying to understand a lot clearer. We can express this if we reformulate

the above equations in terms of tv coordinates. Equations [4.1.2] and [4.1.3] simply

transform into their tv space equivalents and we shall not restate them. The force

equation, however, becomes



with arguments, (t,Vi). The function, <j)j, defined by

4>j{t,Vi) = {(t,Vj) | Vj ^ Vi, x(t,Vi) = x(t,Vj)} ,

illustrates what we have been trying to say all along: namely that in order for us to

determine the force at any point, (t, vi) we have to be aware of contributions from

(t,vj) (i =̂  j) that correspond to points elsewhere on f(N). Understanding Vj(t,Vi)

summarises all the problems associated with caustic formation in any gravitational

theory

§1.4. Thesis overview.

This thesis is structured in three parts. The first considers the problem of under-

standing caustics within the Newtonian framework. This constitutes chapters 2-5.

The next part (chapters 6 and 7) considers the application of the techniques developed

so far to the General Relativistic case. Finally, chapters 8 and 9 present the ground

work for an existence proof for the solutions to the Newtonian differential equations.

Chapter 2 formulates the idea of caustic formation in terms of surfaces in the

tangent bundle. The argument is of a general nature for it describes the generation of

caustics as the projection of this surface onto M in terms of arbitrary m-dimensional

manifolds. Gravity is not a requirement, however, we specify how both the Newtonian

and General Relativistic pictures sit within this formulation.

Chapter 3 applies the above ideas to the case where caustics are formed in Eu-

clidean spacetimes. This chapter forms an important part in constructing the foun-

dations upon which we build ideas that are used to discuss the more general picture.

It first of all describes the conditions that the flow vector must satisfy in order for the

cusp of a caustic to be formed. It then proceeds to discover the solution, x = q(t,v),

that can be obtained for the case when G = 0. This process is equivalent to defining

the surface, Sq, in the tangent bundle. Then, by actually projecting Sq onto M, we

proceed to determine the shape of the caustic set. It also introduces the reader to

the idea of the cocaustic.

Chapter 4 tries to understand the Newtonian formulation of caustics on a space-

time with local coordinates (i,z). That is to say, we investigate the solution of the



equations that describe 1-D Newtonian gravity within the context of a multi-dust

spacetime exhibiting planar symmetry ([4.1.1]-[4.1.3]). The procedure that we adopt

is to look for similarity solutions for the general case and then check our results by

setting G = 0 and solving for the gravity free scenario. We then repeat this procedure

for the Newtonian equations written in terms of (t,v) coordinates.

Chapter 5 takes this analysis further. One of the problems we obtained from using

simple similarity solutions is that unbounded densities are predicted on the axis of

symmetry. This is clearly unrealistic and to try to solve this, we consider asymptotic

solutions of the tx space equations. These type of solutions are based on a 'stretching'

or scaling transformation of the form,

= (ekttek*xekFT £*"g(e;t,x,F,vi,Pi) = (ektt,ek*x,ekFT, £*"«,-,£*> pi).

The idea is to consider a new coordinate system, (i, x) say, whose length and time

scales increase, as e —• oo, relative to that of the original and fixed coordinate

system, (t,x). During this magnification process, the dependant variables are also

scaled by an amount determined by the similarity degrees which were obtained in the

previous chapter. The result of this analysis is that a fixed region in our tx coordinate

system which contains the cusp, increases in size exponentially so that points relative

to the original coordinate system approach the cusp asymptotically. Moreover, the

differential equations based on this coordinate system are transformed so that only

those terms that are significant during cusp formation remain. We find that in order

for us to obtain asymptotic solutions that are bounded on the symmetry axis, the

Newtonian constant must also be scaled and we do so in such a way so as to ensure

that G asymptotically approaces zero. The implication of this is profound for, as our

differential equations transform, we can answer the question, 'does gravity play a role

in cusp formation?'

Chapter 6 changes tack for we now begin to consider the General Relativistic

formulation of caustics. We start by denning the concept of a multi-dust spacetime

within this theory. This follows ideas presented by Clarke and O'Donnel [CO] and

essentially replaces each Newtonian equation by its Relativistic analogue. In other

words we solve,

T'\p) = - K £ Hp)v\p)vlpV [6.1.1]
l



and

Tl\p).j = O. [6.1.3]

We consider these equations within Synge's formulation of spherically symmetric

spacetimes [S] and look for a numerical solution. This involves time evolving a finite

set of points that are initially spaced at regular intervals throughout the spacetime

using the Euler numerical scheme. These points should be considered as reference

points within our dust that move along geodesies. The key problem with this approach

concerns the definition of the density function. It turns out that the conservation of

matter equation ([6.1.3]) allows us to define firp\ in terms of conserved masses that

can be associated with each reference point. The numerical intricacies are primar-

ily concerned with tracking each geodesic and ensuring that these conserved masses

are treated correctly, particularly when trajectories cross. These problems will be

described.

Chapter 7 continues our discussion on General Relativistic caustics by looking

at firstly the Newtonian limit and secondly at the asymptotic limit of [6.1.1]—[6.1.3].

There are three reasons for doing this work. The first is to check that the Newtonian

limit corresponds to a Newtonian formulation using tr coordinates so as to ensure that

the two models are consistent. The second reason concerns the asymptotic analysis;

we hope to determine, within the context of General Relativity, whether or not gravity

plays a role in cusp formation. Again we seek correlation between this and the result

obtained in the Newtonian case. The other and final reason is that we expect the

processes, take the Newtonian limit and take the asymptotic limit, to commute. The

results concerning this particular aspect are surprising for we obtain an unexpected

link between the planar symmeric Newtonian problem and the spherically symmetric

Relativistic case.

Chapter 8 returns to the Newtonian discussion of caustic formation and begins the

construction of an existence proof. We first of all reformulate the Newtonian equations

in terms of a comoving or Lagrangian coordinate system, (t, X). The reason for doing

this is because a remarkable simplicfication takes place: the equations describing the

motion of our dust particles get completely decoupled from those that determine how

the density functions change with time and a solution for the latter readily presents

itself. The next stage is to formulate the solution for x(t,X) in terms of an integral



equation, which we write as x(t, X) = J[x](t, X). The idea behind the existence proof

is to then show that J is a contraction mapping on some suitable space of functions.

We then appeal to the fixed point theorems of such maps to conclude uniqueness.

To proceed with this proof we need to complete the specification of J. In other

words we need to define the metric space upon which it acts. This consists of two

parts. The first concentrates on determining the exact differentiability of a;, the second

part involves defining the class of functions in which we look to prove existence. This

is where the underlying theme of the general solution being approximately equal to

x = q(t,X) is brought out and made the main assumption. In fact, it becomes the

main driver behind the specification of the particular metric space that we aim to

use.

The final chapter takes these ideas further. The final stage in our contraction map-

ping proof involves showing that J , our candidate, is in fact a contraction. To do this

we need to estimate the size of J[f] with respect to the norm that we have previously

defined. The only difficulty arises from the second X-derivative and so we concentrate

on this aspect of the work. The problem manifests itself as the occurrence of terms

that look like [/'(*, F ^ , * ) ) ] - 1 within the integrand of d2x/dX2 = d2/dX2J[x}.

Since these become unbounded as Y(t, X) tends towards the caustic, estimating these

quantities then becomes the last stumbling block for our theorem. In this chapter,

therefore, we perform this calculation considering all X within the multi-dust region.



CHAPTER 2. CAUSTICS IN GRAVITATIONAL THEORIES.

§2.1. Introduction.

To facilitate the understanding of caustics and how they are generated it is use-

ful to lift the discussion from the spacetime, M, to its tangent bundle. The main

reason for this is that the congruence of geodesies that are particular to the type

of caustic being formed, generates a surface, S C TM. This surface gives a clearer

understanding of how the dust particles self-interact when gravitational effects are

considered.

Fig. 2. Illustration of the surface, Sq (E TM, generated by geodesies satisfying

x = q(t,v). The -+- represents the axis of symmetry of the caustic.

dust 3

dust 2

dust 1

x

The means by which this surface provides this picture can be illustrated by first

of all considering the simple example of converging dust particles in zero gravity. Fig.

1 shows the formation of a caustic under these conditions. It represents a spacetime

of only two dimensions; position x and time t. It can also be used to represent a

spacetime of four dimensions. In this example the y and z directions are suppressed by

the assumption that all motion occurs in the x direction and that there is no variation

with respect to y or z (planar symmetry). In either case, the spacetime is Euclidean

so that all geodesies are straight lines with an associated velocity, v = dx/dt. Now,

at any point on this diagram there is either one or three geodesies passing through
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implying a relationship between x, v and t. For the simple caustic (ref. chap. 3),

which has slightly different initial conditions to that illustrated in fig. 1 but is still

a zero gravity solution, we obtain x = q(t,v): = vt — v3. This equation is defining a

surface in the tangent bundle and in order to distinguish this from the general S, we

shall denote this by Sq.

Fig. 2 shows this surface, Sq, for some fixed t > 0. It illustrates how x varies with

velocity on this time slice. Now as is the case for ordinary differential equations, the

shape of the caustic must be dependent on the initial conditions. For any zero gravity

solution, however, no matter what its initial conditions are, provided a small enough

region enclosing the point of caustic formation is considered, a section through its

tangent bundle surface will always look like that illustrated by fig. 2 (ref. §3.2).

This last statement can be carried over into the case where gravitational effects are

included. In fact, for the general case it becomes of fundamental importance as it gives

a handle by which an existence theorem for Newtonian caustics can be constructed.

Suppose now a different spacetime is considered with converging dust particles

which are allowed to interact via the gravitational force. The effect that this may have

on the surface can be thought of in either of two ways. Firstly, that starting from

the same initial conditions as those for the simple caustic, the gravitational forces

generate a surface that can be thought of as a perturbed form of Sq. Obviously the

perturbation becomes greater as t increases so this picture is only valid for early times.

Alternatively, that with different initial conditions, a section through the surface is

identical to a section through Sq at that time. In either case Sq can be thought of as

a representation of S at t.

The surface for the general case can now be visualised showing how S clarifies

the way in which gravity acts. Consider a point, (t,x), in a spacetime that contains

a caustic set. Then knowing 5", the velocities, Vi (i = 1,2,3), which represent the

trajectories of all particles that are coincident at that point, can be determined. For

gravitational theories where a degree of symmetry is involved such as spherically

symmetric or planar spacetimes, we can think of the region in M containing dust

particles to be composed of a series of shells that move along geodesies. In addition

to this we can show that the acceleration of any shell is governed by the integrated

mass between the origin and its position at that time. This is where the surface

in TM becomes of use for we can now see that the integrated mass between (t, x)

11



and the symmetry axis is also a function of the velocities i>,\ If the velocity at some

arbitrary time can be used to parameterise the geodesies in M, then this acceleration

is determined by three disjoint regions in TM centred on the trajectories labelled

by Vi. It is this concept of different, isolated regions influencing the motion of each

particle that determines the complexity of the gravitational interaction.

§2.2. The S-formulation of the tangent bundle surface, S.

To understand further the importance of 5", how it is generated and how it relates

to caustic formation within a spacetime, we suppose the existence of a manifold, N,

of dimension m = dim(M) and a map, / , such that / : TV —> TM with f(N) = S.

This simple statement gives the overall picture for the general case where a surface

is embedded in TM. However, if N and / are constructed in a particular way then a

structure to S is given that makes caustic formation a lot clearer.

In order to make this construction, let us suppose that a nowhere zero vector

field, Z, on TM and a smoothly embedded surface, S, in TM of dimension m — 1

and transverse to Z, i.e. Z fi T? x >S, is given. Then the family of integral curves

of Z, CZ:JR —> TM, such that Cz(0) = z E S , defines an immersion, / : E x S D

N 3 (t,z) —> Cz(t) G TM, the image of which we call S. A consequence of this

particular construction is that the union of all integral curves that pass through S,

i-e- Uz€s{^z(0 I ̂  ^ ®-}> is eclual to S. This is the picture that we are trying to

emphasise and we shall describe this by saying that the surface is ruled by the curves

Cz. In a moment we shall discuss particular cases of this construction whereby making

refinements to the definition of Z, each Cz projects onto a curve in the spacetime which

has specific properties. In the meantime, however, we shall complete the definition

of / by stating that the converse to the above also holds. That is to say, given Z,

a surface, S, of dimension m everywhere tangent to Z and a n m - 1 dimensional

subsurface, E, transverse to Z, then the integral curves as defined above remain in S.

The general situation specialises to the particular case we wish to consider where

dust particles are allowed to move along geodesies in M. This specialisation can be

summarised in two steps. The first is the case where for (p,Xp) £ f(N) C TM,

(7r+Z)r(P)x ) = Xp a n d the integral curves of Z project down onto curves in M that

are solutions to 2nd order differential equations. The second specialises further to
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when these integral cures project onto geodesies in M. This refinement requires,

in addition to the above, that the vertical part of Z in natural coordinates is a

homogeneous polynomial of degree 2.

To explain these comments, let us take an arbitrary vector field evaluated at

a point p G M, i.e. Xp say. Now p and Xp define a point (p, Xp) G TM which

we can suppose lies on a curve. We let this curve be Cz as defined above so that

Cz(t) = (p,Xp) and Z = Cz>d/dt has components, (dCl/dt(t).. .dC2m/dt(t)). Now
let us consider the restriction on Z that forms the first specialisation mentioned above,

namely {^*Z)^pXp) = Xp. Since local coordinates to M and TM can be (x1,..., xm)

and (x , . . . ,xm,y , . . . , ym) respectively, this means that the components of both

sides of this equation can be equated to give

d d
_ (xk o *) = X*(p)

•=i "•" (P,XP) j

where k = 1 , . . . , m. This simplifies to

j=\

The above equation tells us that there exists a one-to-one relationship between the

first m components of Z(p x ) and those of Xp. Moreover, we have, by the definition of

Cg, Cz
+m(t) = Xi{Cl(t),..., C™(t)) (j = 1 , . . . , m) and thus C|+m = dCs'/dt, mean-

ing that (p, Xp) has local coordinates, (C]( t ) , . . . , C?(t), dCl/dt(t),..., <fC™/rf<(t)),

and that the vertical part of Z^vxv) (i-e. the components Z J + m (p , Xp)) is given by

(d2Cl/dt2(t),... ,d2Cz
n/dt2(t)). These components are unrestricted and we could

choose many different vector fields that satisfy the above conditions. To express this

we introduce arbitrary functions, f}{t), so that one choice for Z might be such that

d2Ci/dt2(t) = ft(t)- It follows therefore, that since r(Cz(t)) has local coordinates

(Cl(t),..., C™(£)), we have Cz projecting onto a curve in M, which is a solution to

a 2nd order differential equation.

This argument can be continued to include the second step where the projected

curves are geodesies. In this case the requirement that the vertical part of Z in
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natural coordinates is a homogeneous polynomial of degree 2 means that f3(t) =

—T-j.fdCz /dt(t)dCl
z/dt(t). The coefficients, T3

kl, are as yet undetermined functions of

t. Within this definition it follows that d2CHdt2{t) = -Tj
kl(t)dC*/dt(t)dCl

z/dt(t),

which is precisely the geodesic equation.

§2.3. Caustic formation in gravitational theories.

Given the above construction for the surface in the tangent bundle, it is now

possible to see how caustics in M are generated by the knowledge of / (or more

precisely, the knowledge of Cz). Since / is essentially taking N, folding it twice

and embedding the result in TM, it follows that when projecting this surface onto

the spacetime we obtain points in N where the map describing this process (x o / )

becomes singular1. It is the image of these points that form the caustic set. The

reason as to why this occurs can be clearly seen if we again use the zero gravity

situation as an example. In this case we are basically taking a folded two dimensional

surface and mapping this from a three to a two dimensional manifold (we shall see

in the next chapter that all points on Sq have local coordinates (t,x,l,v)). The

corresponding reduction in dimension means that the folds get pressed into creases,

implying a reduction in the degree of differentiability of (TTO/)" 1 and hence that iro f

is singular.

1 In this context a function is singular if there exists a point where at least one of

its derivatives is non-invertible.
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CHAPTER 3. CAUSTICS IN EUCLIDEAN SPACETIMES.

§3.1. Introduction.

In the previous chapter the surface in the tangent bundle was constructed for the

most general case and it was shown how this specialises to when the curves which rule

S project onto geodesies in M. These ideas are also applicable to spacetimes where

the geometry is Euclidean corresponding to zero gravitational force.

To put this within the context of the previous chapter's definition of S, we need

to stipulate a further refinement on Z. This requirement is, quite simply, that Z

must satisfy (ft*Z)x(ptxp) = Xp and Zl+m(p,Xp) = 0 (i = l , . . . , r a ) . If Cz rep-

resents some integral curve of Z as defined in the previous chapter, then the first

constraint implies that points along this curve have local coordinates which look like

(Cl(t),..., C?{t), dCl/dt{t),..., dC™/dt(t)). The second states that d2Ci/dt2(t) =

0. Since TTOCZ is a curve in M with local coordinates, {C\(t),..., C™(2)), this is equiv-

alent to saying that the connection on M is flat or that the geodesies are straight

lines, implying a Euclidean geometry.

In order for these straight lines to produce caustics the initial conditions need to

be determined. Of course this amounts to defining the surface in TM. Now there are

an infinite number of different caustic types that can be generated depending on how

we define the initial conditions. An example that is of particular importance, because

of its relevance in the discussion of Newtonian caustics encountered later on, is that

where the surface, Sq C TM, defined by x — q(t, v) generates caustics on a manifold

that has planar symmetry with respect to the plane described by x — 0. For this

reason, we will concentrate this chapter on discussing Sq in some detail and finish by

using it as an example to show how, in general, the surface in TM generates caustics

in M.

To begin this discussion Sq must be derived and the next two sections will be

dedicated to doing this. The aim here will be to provide an indication that this

simple surface generates caustics rather than a formal proof. In the first section we

will start with the flow and obtain the surface. That is to say, an approximation to

Sq will be obtained based on certain assumptions regarding the geodesic congruence
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in M. The second section will start with the surface and obtain the flow. This means

that given Sq, we can prescribe a vector field, Z, on TM which is everywhere tangent

to this surface so that a subset of its integral curves lie in Sq. It will then be shown

how Z can be related to straight lines in M using the ideas discussed in the early

parts of this introduction.

In the final section of this chapter we will demonstrate how caustics in M are

generated by the knowledge of / . This will be illustrated by using the caustics

produced by Sq as an example. Since in this case both S (which we shall identify

with IR via the v coordinate) and the immersion, / g : E x S C iV —> TM, can be

defined, the function TT O fq is known. Hence it becomes a relatively simple matter

to determine the set Nc C N and its image, it o fq(Nc), such that n o fq is singular.

In terms of local coordinates this process is defining two relationships; one between

t and v known as the equation of the caustic in TM, and the other between t and x

which we call the equation of the caustic in M. By way of providing the reader with

an indication as to the shape of these curves for the general case, and also because we

shall refer to this in the latter part of this thesis, we shall perform these calculations

and determine the aforementioned equations.

Within the tangent bundle, the caustic set becomes of greater significance for it

defines a set of points Ncc C N such that Ncc f~l Nc = 0 known as the cocaustic. By

definition, each point ncc in this new set corresponds to a single point nc G Nc via

the relation TT O f(ncc) — IT o f(nc). Thus, working locally in TM it is possible to

obtain a different relation between t and v for the case when geodesies in M generate

Sq. We shall call this relation the equation of the cocaustic. Since this plays a role

in the latter part of this thesis where an existence proof for the Newtonian equations

of motion is considered, this will also be done.

§3.2. Star t ing with the flow and getting the surface.

In this section an approximation to the equation defining Sq based on certain

assumptions regarding the geodesic flow will be given. These assumptions allow us to

determine which straight lines produce caustics in a Euclidean spacetime. It will be

supposed, in the first instance, that geodesies in M are parameterized by time. Hence,

the relationship that determines which points lie on a particular line is quite simply
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x = vt + XQ. On any time slice the position of points which lie on these lines varies

as a function of v. Thus instead we can consider x = vt + xo(v) which corresponds

to a continuum of curves rather than a single one characterised by v and xo- At this

stage XQ(V) can be an arbitrary function, however, if xo(v) is smooth then a surface is

generated in TM according to the previous equation. It follows that the problem of

finding an equation which defines Sq becomes one of finding which initial conditions

generate caustics in M. The next restriction imposed on the geodesic congruence

allows this to be done.

We suppose that there exists a point p € M such that the velocity field satisfies

dv/dx ^ 0, d2vjdx2 = 0 and d3v/dx3 ^ 0. These constraints are the criteria for

cusp formation and are applicable in the general case where gravitational effects are

considered. To understand what these equations are saying let us consider, as an

example, fig. 1 which is an illustration of caustic formation in the zero gravity case.

Now the most obvious thing is that in a region surrounding the cusp all trajectories

have either crossed or are travelling towards the axis of symmetry. The rate of

this convergence is determined by the velocity of each particle. However, a single

particle cannot produce caustics on its own meaning that it is not the velocity that

determines caustic formation. Instead, we need to consider how v varies with respect

to neighbouring trajectories. Specifically, we are interested in how this rate of change

of convergence varies as we hop from one line to its neighbour on some chosen time

slice.

The rate of change of v with respect to x represents this important quantity and

having identified this as such, it is now possible to discuss certain attributes we must

assign it for caustic formation to occur. Let us consider the time slice that intersects

the caustic at its cusp and denote this point of intersection to be p. We can see from

fig. 1 that neighbouring geodesies at the cusp must converge. If this is not the case

then a cusp will not be formed and the caustic set will constitute two intersecting

curves in M which are symmetric about the time axis. This implies that dv/dx ^ 0

at p. Secondly, dv/dx must increase as x increases or decreases away from the spatial

origin if it is required that three adjacent trajectories are to cross near a common

point. This implies that dv/dx must have a minimum at p and so d2v/dx2 = 0.

These are the two conditions required for a caustic to be formed and as has been

explained there is a clear physical meaning to each of the above statements. There is
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a third condition that the velocity field must satisfy and that is d3v/dx3 ^ 0. This

ensures that any perturbation on v(x) also satisfies the above conditions allowing for

the fact that the position of p may change slightly. To explain, suppose the converse

is true and that v(x) satisfies the first two of the conditions with d3v/dx3 = 0. This

implies a turning point with respect to x in dv/dx at p. If v' is a perturbation on

v then even though dv'/dx ^ 0 and d2v'/dx2 = 0 at p' close to p, it is possible that

d3v' /dx3 is non-zero at p'. This means that dv'/dx has a maximum or minimum at p'

rather than a turning point and the graphs of these two functions, v and v', will then

be very different. Mathematically speaking, the non-vanishing of the third derivative

is necessary for all functions, v' say, sufficiently close to v in any C2 topology to

satisfy the above conditions on its first and second derivatives if they hold for v itself.

To begin the derivation of Sq let us consider the point p such that dv/dx ^ 0,

d2v/dx2 = 0 and d3v/dx3 ^ 0. Now by a simple change of coordinates this point

can be made to occur at x = t = 0. In addition, a Galilean transformation allows

us to consider a co-ordinate system that is stationary with respect to the cusp. This

means that at the origin, v = 0. Now let us consider the time slice t = 0. Clearly

the velocity of those particles on this time slice varies as a function of XQ and so close

to the cusp, v(x$) = axQ + {3XQ + O(XQ). The inverse function can also be written

as a Taylor approximation and this is given by xo(v) = a + bv -\- cv2 + dv3 + 0(u4).

Combining these two relationships gives,

{CM + /3a3) + (ab + 3/?a26 - l)v + (ac + 3/?a2c + 3f3ab2)v2

+ (ad + 3/3a2d + Gpabc + pb3)v3 + <9(u4) = 0.

and since this is true for all v, we can suppose that the coefficients of v vanish. Taking

the first term, oca + 0a3 = 0 implies that a = 0 or a = yl—a/fl. The condition that

v is zero at the origin means that the second solution must be discarded. Thus with

a = 0 the above equation becomes

(ab - l)v + acv2 + (ad + fib3)v3 + O(v4) = 0,

which implies that b = I /a , c = 0 and d — —/3/a4. The initial conditions are then

xo = v/a + /3v3/a* + O(vA) so that x = vt - v/a - (3v3/a4 + O(u4). Finally we

may change coordinates in order to simplify this equation. If t —> {3/aH — I/a

and x —»• /3/a^x then dropping all terms of order higher than 3 finally results in

x = vt — v3.
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§3.3. Starting with the surface and obtaining the flow.

In this section one will show that Sq is ruled by curves which produce Newtonian
geodesies in the spacetime under the projection map, TT. The argument to be adopted
is quite concise for it uses ideas that were discussed in the introduction concerning
the E-formulation of 5". Firstly Sq will be denned in terms of local coordinates. Then,
a vector field, Z, will be prescribed on TM and we will show that Z is everywhere
tangent to this surface. This simple calculation demonstrates that a subset of its many
integral curves rule Sq. The next part will show that for some point (p,Xp) G Sq,
Z satisfies {^*Z)T^Xp) = Xp. This result coupled with the fact that the vertical
components of Z are zero, implies that those curves through (p,Xp) project onto
straight lines in M.

The previous section derived Sq given assumptions on the geodesic congruence
in M. With this result we can write Sq as the set of points in TM having local
coordinates (t,vt — v3,l,v) for all t,v G IR. The fact that all points in Sq have
local coordinates of the form (t, x, 1, u) is a direct consequence of the assumption that
geodesies in M are parameterized by the time coordinate. We say that Sq lies in a
reduction of the tangent bundle to T1 M = {(p,Xp)\p G M, Xp G TPM, and Xl{p) =
1}. To see this we suppose that C: IR —> M is a curve with local coordinates (£, x(t)).
Then for each t, C(t) defines a tangent vector,

d_
dt

d_
dt

dx, . d

C(t) C(t)

so that points (C(t),Y(jit\) 6 TM have local coordinates (t,x(t), l,dx/dt(t)) implying

that they also lie in T1M.

An alternative formulation is to suppose that

Sq = {(p,Xp) I (p,Xp) G TXM and g(p,Xp) = 0}

where g: TM —• IR is defined by g(t, x, 1, v) = x — q(t, v). This is a far more useful
definition for it allows us to proceed quite easily with defining Z and proving that it
is tangent to Sq. We do this by first of all noting that the one-form, dg(p,Xp), is in
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the nullifier of the tangent space to the surface in TM: its components are exactly

those of V# in normal coordinate geometry. Next we choose Z to be the vector field

d/dt + vd/dx. With dg and Z defined we perform the contraction dg(Z) and show

that this equals zero, viz.,

dg(Z) = Zg

= dt{x -vt + v3) + vdx(x -vt + v3)

= —v + v

= 0.

This calculation shows that Z E Tipx )S* and that therefore a subset of all its integral

curves rule this surface.

Let us now complete this section and show how Z is related to straight lines in M.

This will essentially explain in mathematical terms why Yc{t) a n d ^(C(t),Yc(t)) n a v e

the same components if C is a straight line in M with coordinates {t, vt + xo) say. We

shall prove that if (p,Xp) 6 TlM then {^*Z)^px ) = Xp so that with the fact that

the vertical part of Z is zero, we can conclude that integral curves of Z project onto

straight lines in M. The calculation goes as follows; if p and (p,Xp) have coordinates

(t, x) and (t, x, 1, v) respectively then locally,

= dt(t,x,l,v) — vdx(t,x,l,v) -^

_ d_
~ &i
= xp

d

as required.

§3.4. The caustics produced by Sq.

In this section we shall demonstrate how the surface in the tangent bundle gener-

ates caustics in M for the general case by considering Sq as an example. Since in the

case of zero gravity those curves in TM which project onto this kind of singularity

in M are known, both S and fq can be determined. This means that the function

7r o fq can be written down explicitly allowing us to find its singular points in terms

of local coordinates to either M or N. The result is two equations, one in terms of
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local coordinates to N and the other in terms of local coordinates to M. Both of

these represent the equation of the caustic, and since these will be used extensively

throughout this thesis, we shall take the time to derive them.

In N, the set of singular points define a different set known as the cocaustic. This

was defined in the introduction and by way of an illustration as to what this set looks

like in the case where gravitational effects are considered, this set will be determined

for Sq. Since TT O fq is known and an equation for the caustic has been determined,

a relation between t and u, local coordinates to N, representing the equation of the

cocaustic can be determined and this will also be done.

In order to begin we must first define n o fq. Now from results presented in the

previous section it follows that an arbitrary point z ? S C TM has local coordinates

(0, — v3, l,u). Thus £ corresponds to the t = 0 time slice through Sq. This is a

one-dimensional surface in TM parameterized by v and so it follows that locally,

fq-.MxT, D N 3 (t,v) —> (t,vt - v3,1,v) <E TM. This implies that TT O /,(«,v) =

(t,vt-v3).

To find the singular points of n o fq we follow standard practice and construct its

Jacobian matrix. This is given by

1 v \
0 t-Zv2 J •

Clearly this matrix has rank less than 2 whenever

t = 3u2 [3.4.1]

(or more generally, dx/dv = 0), which implies that points in N with local coordinates

that satisfy this equation correspond to points where TT O fq is singular. Furthermore,

since Sq is a two dimensional surface parameterized by t and v, this relation tells us

which points on this surface project onto caustics in M. For this reason we shall call

this the equation of the caustic in TM.

To find the points in M which lie on the caustic we can simply find the image under

7T o fq of those points in N which satisfy t = 3v2. So, inserting v = ±Jt/3 into the
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above expression for 7ro/g results in an equation relating t and x by x = q(t, ±Jt/3).

We find that

3l2

± V 33/2

which we shall call the equation of the caustic in M. >

Finally, to complete this section we shall determine the equation relating points

on the cocaustic in TM. Again, working in N we see that TT O fq is not one-one. That

is to say there are points on N other than those that satisfy t = 3v2 which map onto

the caustic set in M. To find these points we need to solve TV O fq(ncc) = TT o fq(nc) in

order to find ncc given that nc has local coordinates which satisfy the equation of the

caustic in TM. This amounts to solving ^(i,A;~1(i)) = q(t,k~^(t)) where t = kc(v)

and t = kcc(v) are the equations of the caustic and cocaustic respectively. Inserting

our relation, A:"1^) = ±(^/3)1/2 into the left hand side of this equation we obtain a

cubic, vt — v3 =p 2(t/3)3 '2 = 0, where now, with an abuse of notation, v represents the

velocity of the geodesic that intersects the cocaustic at time t, i.e. v = k~l(t). We

can solve this equation using the following known algebraic recipe.

Suppose that x3 + a\x2 + a2X + 03 = 0 and define Q = (3a2 — Oi)/9, R =

(9aia2 - 27a3 - 2a^)/54, S = R + ^Q3 + R2 and T = R - y/Q3 + R2. Then the

solutions to this general cubic equation are:

x\ = S + T — - a i ,

X2 = - g l

and

Applying this formula to our equation we obtain Q = —1/3, R = — x/2, 5 =

and T = T(</3)1/2 SO that ui = =F2(^/3)1/2 and u2 = u3 = ±( t /3) 1 / 2 are the solutions

we are looking for. The relations containing V2 and U3 can be identified as describing
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points that lie on the caustic. The fact that two solutions correspond to the caustic
is to be expected for the curve x = ±2(£/3)3/2 must be tangent to Sq at t because
dv/dx is unbounded for points on the caustic in TM. The solution corresponding to
v\ therefore corresponds to points in N (or equivalently TM) which we know as the
cocaustic. Thus t = 3/4i>2 and we shall call this the equation of the cocaustic in TM.
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CHAPTER 4. NEWTONIAN CAUSTICS.

§4.1. Introduction.

In order to fully understand caustics within the framework of General Relativity, it

is helpful to consider the simpler case of converging dust particles in Newtonian theory.

The idea is that by considering caustic formation in the low velocity limit of General

Relativity we might be able to gain an insight into how the gravitational interaction

behaves in a more general system. To begin we must formulate the problem that we

wish to solve. We shall consider a spacetime that has planar symmetry with respect

to the plane x = 0, and place in it a dust which can move according to the acceleration

prescribed by Newton's law. This means that particles within our four dimensional

spacetime move in groups known as shells. In general these shells can be thought of

as volumes with an infinitesimally small thickness and whose shape is determined by

the symmetry of our manifold, M. In the case we are considering and in the zero

gravity case described in the previous chapter, these shells are planes described by

x = x(t) and having thickness dx, moving towards or away from the plane x = 0.

As in fig. 1, if we choose our initial conditions carefully, caustics are formed which

act as boundaries between two regions. Clearly, to the past of the caustic set there

is a region where all geodesies are non-intersecting. This means that the velocity

field as a function of t and x is well defined and we can therefore model this region

in terms of a single dust. The region to the future of the caustic, however, is far

more complicated because particle trajectories are now allowed to cross. If we were

to model this situation using a single dust then clearly the velocity field would be

multi-valued at any point in this region. To resolve this problem we will adopt the

approach taken by Clarke and O'Donnell [CO]. This means that we shall split the

dust into several parts and consider a region that contains a number of superimposed

dusts. This insures that Vi (i = 1 , . . . , k), which represents the velocity field for the

ith dust, is now unique at any point to the future of the caustic. We shall call this

part of our spacetime the multi-dust region.
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In the case of a multi-dust spacetime the equations governing the motion of the

previously mentioned shells are

* dx dt

and

p i ^ + V i ^ = - ^ t [4.1.3]

where i = 1 , . . . , k. These equations are simply the Newtonian law of gravity, the

conservation of momentum equation and the conservation of mass equation respec-

tively. Their solution, which we look for, defines time parameterised geodesies in

M. Here F represents the gravitational force per unit mass, Vi represents the three

velocity fields associated with each dust such that v\ < —vc < v% < vc < v% and pi

is the density associated with that velocity. The quantity vc represents the velocity

of the particle whose trajectory is tangent to the caustic at time t. These equations,

along with boundary conditions for each dependant variable, can be thought of as

defining the concept of a multi-dust spacetime. To explain what we mean by this

we notice two things: firstly that only i>, and pi appear in the equations defining the

flow of the ith dust and secondly that F depends on the sum of all densities. This

means that the dusts interact only via gravity and in this sense can be thought of as

being superimposed. The last thing to mention is the choice of k. Following on from

our hypothesis that S looks like Sq, we assume that TT: f(N) —> M is a simple fold

catastrophe (as is 7r(fg(N))). This implies that k = 3.

Of course we must now concern ourselves with joining conditions which describe

how regions with different values of k join. This, in general, can be quite intricate

because of two reasons. The first reason is that any point, p say, on the caustic

in M represents the end point of two geodesies as well as the initial point of two

different geodesies. Specifically, for the left caustic in M, any point such as p is the

end point to a geodesic with velocity v say, which originates in the 1-dust region,

and an initial point of a geodesic with velocity v% say, which proceeds into the 3-dust

region. These trajectories must be joined in the correct manner for they represent a

particle being transferred from one dust to another. In addition to this we have the

other case where p also represents the end point of a 3-dust geodesic with velocity
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v\ say, and the initial point of a different 3-dust geodesic with velocity v<i say. Again

these represent particle trajectories and must be joined in the right way. We achieve

this by prescribing boundary conditions for these velocities at the caustic.

The second reason concerns the boundary conditions for the pi. At any point on

the caustic we have the situation where neighbouring geodesies converge and even-

tually cross. This means that the density becomes infinite and the mass flux is not

defined at the caustic in M. We can solve this particular problem if we can find

a quantity that tends towards zero as we approach the caustic. If we can do this

then the mass flux can be defined as the limit of the product of the density with this

quantity. The velocity component transverse to the caustic set tends to zero as any

particle approaches the caustic. This quantity therefore represents a possible candi-

date with which we can define the mass flux. Alternatively, we can lift the problem

to TM where the mass flux is well defined. We shall discuss how to do this in the

relevant section (ref. §4.5.).

In the next section we shall define, in general terms, the concept of a similarity

solution. The tools developed will be used to transform equations [4.1.1]—[4.1.3] into

ordinary differential equations. The hope is that with this simplification the problem

might be soluble. Having done this we then consider the case where the gravitational

force is switched off in order to try to recover the solution x = q(t, v), described in the

previous chapter. It will, however, take the discussion further for we shall consider

how the density functions vary across M. Following this we shall discuss reformulating

the problem in terms of (t,Vi) coordinates rather than the (t,x) coordinates of M.

This is equivalent to working in the tangent bundle. Finally, we finish by seeing how

the criteria for cusp formation (ref. §3.2.) allows the solution x = q(t, v) to emerge

naturally from the more general solution that we obtain describing the zero gravity

case.

§4.2. Similarity solutions.

When modelling physical systems analytically it is often the case that we must

choose a simplified version of the reality that we are interested in. In most cases

we look for possible symmetries that we can impose on our system. This means that

under certain transformations the differential equations that govern the system we are
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interested in remain unchanged in form. In other words the equations are identical in
either xf or xf coordinates where, given an e € IR, (x, f(x)) = ^r(e;x,f(x)). We say
that the differential equations are invariant under such a g. The above transformation
actually represents a set of transformations and to clarify, we shall list them. We have,
for n coordinates, x{, and m dependant variables, fj,

xi = 0*.-(e;x) and /j-(x) = gfj(e;x,f(x)).

To describe what we mean by invariance, we notice that the Newtonian equations
of motion given in [4.1.1]—[4.1.3] are invariant under Galilean transformations. In the
following analysis we shall not exploit this symmetry, however, since it is a simple
example, we shall use this as an illustration. Suppose that 0 and 0 are the origins
of two coordinate systems such that a point relative to 0 has coordinates (t, x) and
relative to O has coordinates (£, x). If O moves with a velocity e in the negative
x direction with respect to O then we have the relations, I = t and x = x + et.
Furthermore, due to the relative motion, we have £>,- = vi + e. Since there is no
relative acceleration F = F and because the density is simply a scalar field, pi = pi.
Our transformation function, g, can then be represented by

t = fift(e;x) = t, xi = gXi(e;-x) = x,- + et,

,(x) = gv.(e; x, F(x)u,(x), #(x)) = u,-(x) + e,

and these define Galilean transformations. Under g, [4.1.1] becomes

dF_

equation [4.1.2] becomes,

{vx - e)-(vt -e)- + ~{Vi -e)Tt+ -.(t,,- - e)- = F
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,~ sdvi dvi dvi ~
{vi - e)—r + -wre + —j = F

dx dx dt

_ dvi dvi ~
vi— + —~ = F ,

ox dt

and finally, [4.1.3] becomes

„ d _ dx dpi dx dpi dt dpi dx
ox dx dx dx dt dt dx dt

v „ dvi dpi dpi dpi
dx dx dt dx

„ dvi . dpi dpi
dx dx dt

By comparison with [4.1.1]—[4.1.3], the above differential equations clearly have the

same form. This is what we mean by the invariance of a differential equation un-

der a given set of transformations. It can be described mathematically if we define

F{xi, fj,p'f,. • • ,plf"Am) = 0, where pj1-1'"1 = dmfj/dxil . . . dxim, as a representation

of our mth order partial differential equation. Then, by invariance we mean that

F(xiJj,pj,...Jy"^) = A(e)F(xiJi,pj,...,pi}-"im) [4.2.1]

where the arguments on the left hand side are as defined by g and A is an arbitrary

function.

Let us now continue our construction of the transformations denoted collectively

by g- We shall again consider an arbitrary transformation function so as to keep the

discussion general, however, in the next section the ideas that we shall develop here

will be applied directly to equations [4.1.1]—[4.1.3] together with a new symmetry

transformation. Now, the fact that e € IR implies that we have, in actuality, a 1-

parameter family of transformations. This set can be given a group structure under

the composition of maps, i.e. g(e\;g(e2','X; f(x))) = flf(ei£2;x,f(x)), with the identity

corresponding to e = 1, i.e. (x, f(x)) = flr(l;x,f(x)). We can now ask how this affects

our prototype solution, f. If the form of our differential equations remains the same

under g then this implies that our solution must also be unchanged in form under g.

In mathematical terms, this means that

f(x) = 0 f(e;x,f(x)) [4.2.2]
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(or equivalently, f(x) = f(x)). In this equation, the right hand side represents the

transformed solution in xf space; the left hand side is simply our original solution

with the independent variables renamed. The equals sign is therefore telling us that

f and f are of the same form. We shall call solutions which satisfy [4.2.2] for a given

group of transformations, similarity solutions.

The group structure that we have denned provides us with a way of finding all

possible candidates for a similarity solution. In summary, we will show that given

a set of transformations, g, f can be written as a function of a single X{ and n — 1

other quantities which are constant under g. We shall first of all prove this statement

for the general case. In the next section, however, these ideas will be illustrated by

considering a particular set of transformations that act upon F, vi, and pi in equations

[4.1.1]—[4.1.3]. Now, considering only one component of the vector equation, [4.2.2],

we have,

/G7x(e;x)) = $/(£; x , / (x) ) . [4.2.3]

By differentiating this equation with respect to e and evaluating the result at e = 1

we obtain,

- d9j, r , •

e = l de v '•
[4.2.4]

£ = 1

This is a linear partial differential equation and we can solve this using the method

of characteristics. The characteristic system is

dx{ df

dgXi/de\£=1 dgf/de

Integrating the first pair of equations gives

£ = 1

= const,

whereas the rest, bar one, give

Si = hi(x\,xi) = const (i = 3 , . . . ,n).

This leaves
dx\ df

dgxjde\e=1 dgf/de
£ = 1
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Letting xi = Xi(xi,si), where i = 2, ...,n enables us to integrate (in theory) this

last equation to give

h(x\,si,f) — const.

Consequently, the general solution to [4.2.4] is given by F(si,h(x\,Si,f)) = 0 from

which we can obtain /(x) and thus candidates for similarity solutions.

§4.3. Similarity solutions for Newtonian equations.

We shall illustrate the construction of g, the group of transformations, and / , the

set of all possible similarity solutions, of the previous section by considering [4.1.1]—

[4.1.3] in conjunction with a new symmetry. We suppose that in the case of caustic

formation with planar symmetry, equations [4.1.1]—[4.1.3] are also invariant under a

simple scaling transformation. Consider a region surrounding the cusp, an example

might be the set U = [0,T] x [—X,X]. We might wish to magnify this region by

multiplying the t coordinate by a > 1 and the x coordinate by or so that we now

have Ua = [0,aT] x [—a^X,a^X]. Suppose now that / is some function denned

on Ua as might be F, V{ or /»,-. Then by invariance under the above transformation

we really mean that there exists an a/ such that for (t,x) £ U C Ua, we have an

^x) G Ua and f(t,x) = a ^

We now write our scaling transformations in the following concise form,

g(a;t,x,F,vi,Pi) = {at,aPX,akF F,ak"ivi,akn Pi), [4.3.1]

where o: G IR and ft and kf are fixed constants. The fact that g(l;t,x, F, V{,pi)

corresponds to the identity transformation and that

g(a\; g(a2; t, x, F, u,-, />,-)) = g(a\; a2t, a%x, a2
FF, a2"' Vi, a2

P' /?,))
/ , 0 0 kp kp n "'"t ""i ""W kpt \

= (aia2^«i«2 ; E ' a l a2 F->a\ a2 viial a2 Pi)

= g(aia2]t,x, F,v{,pi)

implies that g, for all a £ IR, has a group structure. Similarity solutions are deter-

mined by the solution of equation [4.2.4], which for our case has the characteristic

system,
dt dx df

t ftx kff
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The first pair can be integrated to give

whereas the second pair gives

= hx(t, x) = —j = const,

= -TJ = const.

The general solution to [4.3.2] can then be written as

Consequently, one possible candidate for a similarity solution is then,

/(*,*) = **//(£). [4-3-3]

Equation [4.3.3] illustrates nicely the invariance of / for under such transforma-

tions discussed above, £ is clearly constant and so the shape of / is preserved under g.

Looking for solutions of this kind simplifies the mathematics because the number of

independent variables in [4.1.1]—[4.1.3] is reduced from two to one. From a physical

point of view this particular type of similarity solution suggests a kind of magnifi-

cation invariance; if points on the caustic are related by t = xr where r £ H, then

for the correct choice of r, the caustic structure is preserved under x —• a@x and

t —> at.

Substituting [4.3.3] into [4.1.1]—[4.1.3] the 3 equations transform to

and
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These equations simplify further; as a result we obtain,

and

For the above set of equations to be invariant under our scaling transformations, the

coefficients of each term must be time independent. We are thus required to set all

powers of t to be zero, i.e.

kPi +(3-kF=0, p-kVi-1=0, fi + kF- 2kn = 0.

This implies for the similarity degrees,

kVi=P-l, kF = p-2, kPi = -2,

and equations [4.1.1]—[4.1.3] become

, [4.3.4]

v'^F, [4.3.5]

=2Pi, [4.3.6]

where ' denotes differentiation with respect to £.

We now specialise by stipulating boundary conditions. Rather than setting up

conditions on some t = 0 time slice for example, we define the equation of the caustic

in M. We require that the three dust region is bounded by

( = ±1 [4.3.7]

for P > 1. This forms part of our joining conditions that was mentioned earlier for it

tells us where in the tx plane this occurs. To complete these instructions we define
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how particles are transferred from one dust to another. That is to say, we require

that at £ = ± 1 , the trajectories with velocity v% and t>3, or respectively, with velocity

v\ and V2, to be tangent to the caustic. This defines a limit for V{ as it approaches

the caustic. At £ = 1 we have x = t& and hence dx/dt = f3t^~l. Thus

-1) = /3 i = 2,3.

Similarly at £ = — 1,

^ = rkvivi = t1-^-^-1) = -p i = 1,2.

This also defines the domains for the functions Vi and p{. For v\, p\\ V2, p2 and v$,

ps, we have the sets (—1, oo), (—1,1) and (-co, 1) respectively. Boundary conditions

for the pi are needed for a complete specification but we shall consider this in the

next section.

The important feature of equations [4.3.4]-[4.3.6] is that having specified bound-

ary conditions for each u,-, we find that the latter two become singular on the caustic.

In other words the coefficient of the highest derivative vanishes. To highlight this

behaviour in v,-, we transform the equations using to,- = u,- — /?£. In this case the

boundary conditions become

w i ( - l ) = to2(- l ) = M>2(1) = ti»3(l) = 0, [4.3.8]

and if we include the symmetry about the plane x = 0, we have

F(0) = 0

and

M0 = -M-0, Mt) = -M-0, w2(o) = o. [4.3.9]

Transforming [4.3.5] and [4.3.6] using the above substitution gives

wiw'i + (2/9 - l)wi + (3{f3-\)Z = F [4.3.10]

and

w^ + piw'i - (2 - pfa = 0. [4.3.11]

With the original equations rewritten in this final form, we can clearly see that [4.3.5]

and [4.3.6] become singular when the boundary conditions are imposed.
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§4.4. Zero gravity case.

Having obtained the differential equations involving the variables ttfi, pi and F,

we specialise further by considering the case when F = 0. Integrating [4.3.11] gives

for the density

ft= » {/(L^U), [4.4.!,
\Wi\ [Jai W{ J

where a,- £ IR represents the constants of integration. For the transformed velocity,

dividing equation [4.3.10] by Wi gives a homogeneous differential equation which when

solved yields,

^ 1 ) / * [4.4.2]

where £ ^ 0 and C; £ C are constants. We should say at this point that [4.4.2] is in

fact four solutions. We obviously have the cases where i — 1 and i = 3 but also we

have the cases where i — 2, £ < 0 and i = 2, £ > 0. The reason why for i = 2 we

have two solutions is because [4.3.10] is singular at the origin and thus is essentially

two differential equations defined on the domains (—1,0) and (0,1) respectively. This

gives the two solutions that we mention above. To determine W2 we simply 'glue' the

solutions together at the origin.

We now impose the boundary conditions given above in order to verify that

solutions [4.4.2] are in fact consistent with this analytic model of a caustic. To apply

the four conditions of [4.3.8], we take limits of both sides of equation [4.4.2], noting

that xr is continuous for all r > 0 in IR. We obtain,

lim wi- ft = Ci I lim wi - (P - 1)) i = 1 and i = 2 with £ < 0

Similarly,

lim Wi + P = Ci I lim wi + (p - 1) 1 i = 2 with £ > 0 and i = 3

i = 2 with * > 0 and ,• = 3.
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The fact that W2 has two different constants of integration is an artifact of what we

discussed above: the different C{ arise from the two solutions for u>2-

Having set the constants C;, we must now check that the final three constraints

of [4.3.9] (recall that F = 0) agree with this choice. To verify that lim^_o w2(0 — 0

let us define two new variables, p, = to,- -f (/? — 1)£ and qi = W{ + /?£. We then obtain

from [4.4.2],

qi = G- [4.4.3]

whereas from the definitions of p, and

= qi — pi,

and

= 0Pi - (0 - l)qi.

[4.4.4]

[4.4.5]

Fig. 3. Plot ofp = wi + ^7^ against q = wi + (j3 + 1)7^ for q> 0, /3 = 3/2

and 7 = 22 /3 /3. Here the lines a, b,...,f represent £ = 1, £ = 0, £ = - 1 ,

Wi = 0, wi = 1/2 and wi = 1 respectively.
b

Pi
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On a pq graph, lines of constant £ and Wi can be plotted using equations [4.4.4],

[4.4.5] and assumed values for /?. This is shown in fig. 3. Equation [4.4.3] is also

plotted. Since this is a representation of the solution given by [4.4.2] it is possible,

using this information, to sketch t«x(£i) and this is given in fig. 4. Note that these

graphs must be interpreted with care for they do not consider how the i-value might

change as different points, (p, q) or £, are chosen. In the latter case it is easy for the

changes from w\ to W2 and from W2 to w$ occur when £ equals —1 and 1 respectively

(recall the boundary conditions of [4.3.8]). For the former we need to find the set

of points in 1R2 such that q — p = —1 and q — p = 1. These lines then identify

where points corresponding to £ = ±1 lie on our pq graph and thus where the i-value

changes.

Fig. 4. Plot of w{ against £

for £ > 0 and F = 0.

(0,0) (1.0)

Now one can see from fig. 3 that for any /? > 1 there will be two values for

£_,oP2 and l im^o <72 and thus possibly four values for lim£_o u>2(£) by [4.4.5].

Hence, to prove that l im^o ^ ( 0 = 0> w e specify the direction along the curve

qr, = dp\ with which we approach £ = 0. This is done by removing the

second limit point and we do this in the following manner. We have from our pq

graph that the line corresponding to £ = 0 has equation q = p. Define p to be the

point where q = kp (k £ IR) intersects [4.4.3]. In other words p is the solution to

kp = C- . Then if we start from the origin and move along the curve given

by [4.4.3], we reach the point {p,kp) before the curve crosses £ = 0 again provided

q = kp has steeper gradient than q = p. In other words, provided the constant k
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is greater than one. This means that by restricting ourselves to 0 < P2 < P w e

have defined a domain where only a single limit point exists. Thus we have for all

0 < P2 < P that kp2 < q2 and

( = q2~P2 >(k~l)p2 >0

=>• lim P2 = 0

==>• lim 92 = 0

by equation [4.4.4]

£) = 0

by equation [4.4.5].

The final check to be made is that w{(£) satisfies the boundary condition, Wi(£) =

—WJ(—£), where the i and j take the appropriate values determined by [4.3.9]. Now

suppose £ £ (—oo,l) and — £ 6 (l,oo). Then the solutions to [4.3.10] in these

regions with F = 0 are W3(£) and u>i(—0- By [4.4.4], £ = 93(0 — P3(£) and — £ =

q\(—£) — Pi(—£)• Thus,

Since this equation must hold for all /? and hence for all C3 we can equate coefficients.

This gives

1)0

as required. To show that W2 is an odd function we repeat the above analysis for

-1 <£ < 1.
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Now that we have an expression for the solution to Wi that satisfies all the nec-

essary constraints (equations [4.3.8] and [4.3.9]), let us check that this reduces to the

cubic equation of §3.2. Referring back to equations [3.4.2] and [4.3.7], the appropriate

choice for (3 in order to match the exponents of the two equations would be (3 = 3/2.

This value of /3 is in fact justified in a more rigorous manner in section 4.7 of this

chapter. However, with these values [4.4.2] becomes for £ = x/t@ € (—oo, 1),

3/2 / x y / 3

3̂ 9 27 /
'3 = 2 -

_ 27
" 4

3 27 ,
=> V3 = "J (t>3< - X) .

So if we transform x and t such that x —> 27x/4 and t —• 27t/4 we obtain x =

q(t,vz) as required. This same procedure can be repeated for the regions (—1,1) and

(—l,oo) giving x = q(t,V2) and x = q(t,v\) respectively.

Having discussed the analytic solution to [4.3.10] for F = 0, let us reconsider

the solution for the density given in equation [4.4.1]. Now as of yet, no boundary

conditions have been specified for the pi. In fact we shall not bother to define any

conditions except to say that the density should be finite everywhere apart form

points on the caustic. We will show that with the solution of the form given by [4.4.1]

this simple requirement is not satisfied.

Let us investigate the limit of pi as £ tends towards zero. To do this, we need to

calculate two quantities, namely l im^o^ /^2 and l i m ^ o ^ - From [4.4.2] we have

for i ± 0,

0?-i)/£
I = O2 1 H

W2 J \ W2 J
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o = ,im f,f +

Km — = . l „, [4.4.6]
H » ( 1 / 3 ) L

and hence from [4.3.10],

£-0

=$• lim w'2 = (1 — /3). [4-4.7]

Now provided the constant a,- in [4.4.1] is small, we can use [4.4.7] to make the

approximation, wi « (1 — /?)£, so that

2 - / 3 , I
= -In —.

I - f t a,-
Thus, using l'Hopital's rule,

f i
lim /»2 = lim

and since ft > I we conclude that the limit cannot exist, i.e. /?2 —* oo as ( —> 0.

This is unfortunate as it predicts unbounded behaviour for the density on the axis

of symmetry, contradicting our requirement that pi must be finite everywhere other

than at points on the caustic.

We finish this section by raising two important points. The first is an observation

on the above solution for p{. If we refer back to where values for the similarity degrees

were derived, we can see that kPi is fixed only by the force equation, [4.3.4]. In other

words, by fixing F = 0, [4.3.4] can effectively be discarded so that we are able to freely
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choose kPi. If this is the case, then by following the above method and replacing the

constant (2 — j3) by (—kPi — /?), we find that the limit of pi as £ tends to zero exists

if kPi = — 1. The second point is that had we removed all force terms at the onset,

we surely would have obtained a realistic solution. In other words, it seems that the

presence of F is supplying information that is corrupted when we "turn off the force".

Clearly these two points are intrinsically linked and we shall expand on these in the

next chapter.

§4.5. Similarity solutions in tv space.

Having given a detailed discussion on similarity solutions to equations [4.1.1]-

[4.1.3] in tx space, this section digresses from the natural flow to analyse the same

equations but in tv space. This is equivalent to working in the tangent bundle. The

benefit of this approach is that, as eluded to in the introduction of this chapter, the

mass flux is well defined even at the caustic where the density becomes infinite.

Now to formulate the problem we need to transform equations [4.1.1]—[4.1.3] and

the boundary conditions we wish to consider. Appendix 1 provides us with the equa-

tions which help us to do this. Care must be taken, however, when defining the mass

flux in TM since although it overcomes the problems that we have if we formulate

the problem in tx space, it does have an extra subtlety. This extra complication

arises from the fact that the projection of the tangent bundle surface onto M is not

orientation preserving. Before we discuss how the mass flux shall be defined, let us

explain exactly why this is so.

The formation of S can be visualised by folding a piece of paper. We begin with

a flat sheet which represents N (see chapter 2). An orientation can be considered

as a chosen direction for any vector that traverses the paper. Thus we have two

possible orientations for N. Suppose that we make a fold, without creasing, in the

sheet of paper and then another so that the two folds are parallel. The paper is now

in an 'S'-shape if looked at edge on. This action represents the map / : N —> TM

of §2.2. Note that the orientation is preserved for we can still define a unique way of

traversing S = f(N). It does not matter that a vector, n say, normal to the original

flat sheet of paper, would first enter, then exit and then re-enter S if we pushed it

through the folded region. We now ask ourselves what happens if we collapse our
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surface onto itself so that the folds in our sheet become creases. In this case our

surface, again looked at edge on, becomes like a concertina. This action is equivalent

to the map ir:TM —> M and the result represents n(S). We immediately see that

our orientation is no longer preserved for where we have three layers that coincide,

there is not a well denned direction with which we can cross S. In other words, n can

simultaneously enter and exit S if placed at a point on w(S) that was formed by the

superposition of three separate parts of S.

How does this affect our definition of the mass flux in TM1 To answer this, let us

suppose that P and Q are orientable manifolds and that there exists g: Q —> P which

is orientation preserving. Furthermore, let there be some matter, a fluid for example,

which moves on both manifolds. The simplest case is where the fluids are identifiable

and that P and Q are simply different coordinate systems. In this example, if U C Q

is some region then the masses in U and g(U) are the same. We can write this

mathematically by supposing that

where p, by assumption, is a closed gu-form (gu = dim(g(U))) on P representing the

mass flux at some arbitrary point in g(U). The assumption that p is closed illustrates

the fact that it is conserved. We could show that equation [4.1.3] implies this state-

ment, however, in order to avoid a complicated aside, this will be demonstrated in

chapter 6 where the calculation becomes essential to the argument.

Such a definition is fine except when g is not orientation preserving. If this is the

case then the integral over g(U) is not defined because the integration of forms over

the whole of this region requires a continuous orientation. Since this is the situation

we expect when we project S onto M for Newtonian caustics, we are forced to modify

our definition of mass flux. Instead, we define the mass in U as in [4.5.1] except that

we insist that p be regarded as a pseudo-gu-iorm. This is because pseudo-forms can

be integrated over non orientable manifolds and they transform between coordinate

systems in a very similar manner to forms, i.e. for q G U and p, a pseudo-g{/-form on

/ * \ , ^ dxh dxi9u

(9 P)n..,gu(<l) =9jfi

where the xl and y1 are local coordinates to P and Q respectively.
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We can easily calculate the components of the corresponding p for the case that

we are considering. Thus, Q becomes TM, P becomes M, g becomes TT and U is a

region in TM such that ft(U) is a one dimensional surface in M. The reason why

we choose TT(U) to be one dimensional is because ultimately, we wish to define the

mass as the integral over a t = const region. Now, since we have a region in M in

which there are three superimposed dusts, we consider a pseudo-1-form for each, i.e.

we now have p^ for k = 1,2,3. We also introduce 07j.\, which is defined on TM, to

be the pullback of p^ky Suppose now that fi/}.\ is a scalar field on M representing the

density of the fcth dust at any point. Then the mass in TT([/) say, of the kth dust is

also given by

X (*) [4-5-2]
where mj.\ is a psuedo-1-form and can be thought of as the volume form on a 1-

dimensional surface in M (The equivalence of [4.5.1] and [4.5.2] will be shown in

chapter 6.). If U/M represents the kth dust's flow vector and X a vector such that

(v^,X) constitutes a basis for M, then if we choose v(U) to be orthogonal to v^

then «(£) can be defined as (—l)k+1iV(k)(XM where ctji/ is the volume form on M.

This quantity represents the restriction of a.M to a surface in M corresponding to

those points which contain particles of dust k. The factor of (—l)k+1 is important

for it takes into account the fact that TT is not orientation preserving. If we recall the

Euclidean tangent bundle surface, Sq, and project this onto M, we obtain a 'squashed

Z'-shaped hypersurface. The horizontal parts of this 'Z' would represent dusts 1 and

3, whereas the diagonal part would represent dust 2. Thus, because a normal to the

line formulating our 'Z' flips in direction as it moves form the dust 1 (or dust 3)

region into the dust 2 region, it follows that iV(2)otM has the opposite orientation with

respect to ivi^&M °r iv(3\
aM- The (—1) + 1 factor accounts for this and therefore

insures that the aif.\ all have the same orientation with respect to OCM- NOW, since in

our case the spacetime is flat,

and

iv(k)otM{X) = —ySijdx% A

= l e y (dx\v{h))dx>{X) - dx\X)d*>{v(h)))
2!
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= y£ij (v'{k)dxJ - v3
{k)dxl)

Thus finally we have p^ = (—l)k+1 fi^SijvW^dx^ = (—l)fc+1/i(ifc) ylx — v^dtj if our

fluid follows time parameterised geodesies in M. Note that U/M corresponds to V{ of

the previous section when k = i. Note also that if we restrict this to a t = const time

slice then p^ = (—l)k+lfitk\dx.

This quantity pulls back onto the tangent bundle. We have, for any basis vector

for TM,

= sgn

= sgn

fdx

, fdx
det {an.

P(k) {**

dx1

W
Thus for the Newtonian case, which we are considering, we have (xl,x2) = (t,x) and

(y11V21V3•> V^) = (£,#,«,«) so that upon restricting crn.\ to a surface in TM defined

by (t,x,u, v) — (t,x(t,v), l ,u ) we have

d

*>(*) ,
= sgn det —

and

det
d

If we restrict this further t o a < = const time slice in TM then

We define ak and pk as the components of aik\ and ptk\ respectively. Here the

quantity pk represents the density function of §4.1-$4.4. It is the occurrence of the

sgn [det (dx/dy)] term in the definition of crk that constitutes the complexity spoken
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of at the beginning of this section. We can remove this if we know the sign of

for different values of k since

dxldt 1
0

dx

If we refer to fig. 2, §2.1, where the surface Sq C TM is sketched, then we see that

this quantity is positive for k = 2 and negative for k = 1,3. In other words we write

#•(£) = —pLi^dx/dv^dv or a^ = {—Vyp^dx/dv^. Finally, now that both pn^ and

07M are defined, we can see how the mass flux in TM remains bounded even at the

caustic, clarifying the statement to this effect towards the end of $4.1. The reason

is simply that dx/dv^ tends to zero (ref. §3.4) as we approach the caustic allowing

the product, (i(k)dx/dvtk\, to remain finite.

We are now in a position to convert [4.1.1]—[4.1.3] into equivalent equations with

t and v as the independent variables. Now equation [4.1.1] is correctly written as,

(dF\ „

9
So that if one assumes F = F(t, Ui(i, x)) and defines o\ as above, then using equation

[Al.1.3] this becomes

(d_F\ /av* .

dF\ _ v- (d*

(dx/dvj)t (dx/dvi)t

'' (dx/dvj),

upon using [Al.1.1] and again [yll.1.3]. For [4.1.2] we have,
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_ (?±\ - F I -

using [Al.1.1] and [Al.1.2]. Finally for [4.1.3] we have,

Idvi\ (dpi\ [dpi
Pi ~~z~ + vi \ — = ~ ~̂ ~

\ (IT I \ rlT I \ fit .

dt
X

K / t \ * / t \ \ */ t/ t \ \ *
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'd*iF\ _(dai\ fdvi\ _a.(JL
, dx ) t \dx)t\dt)s °l \dx

\dxjt\dtjx \dt \dxJJx

d<TjF\ _ fdaA (dcrA _ (dai\
dv,)t \dt)x

+\dt)Vi [dt)x

where use has been made of equations [Al.1.1]—[^41.1.4]. To summarise, equations

[4.1.1]-[4.1.3] transform to

, | S , ,4.5.3,

which represent our equations of motion in tv space.

We now analyse these equations using the same techniques discussed in the pre-

vious two sections. That is to say we shall look for similarity solutions which are

invariant under simple scaling transformations in the t and v coordinates. We sup-

pose that if f(t,v{) is any dependent variable then

Pvi), [4.5.6]

or equivalently,

f(t,vi) = tktf(tf. [4.5.7]

We note that the kf and 0 represent different constants to those seen in the tx space

analysis. If we insert [4.5.7] into equations [4.5.3]-[4.5.5] then
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These equations simplify to,

6 -

«?» «?i «Ci

Again, if we require these equations to be invariant under our scaling transformation

then each t exponent must be zero. If this was not the case then for each value of

i, the coefficients of the differential equations would change resulting in a different

differential equation and thus different solution. It follows that the similarity degrees

must satisfy,

kx = p + l, kF = p - l , k a i = - l , kVi = [3,

and equations [4.5.3]-[4.5.5] become the following set of linear differential equations:

( ) ^ ; - { l 3 + l ) x + ti=0 [4.5.8]

and

To obtain the boundary conditions for this problem, we again specialise by re-

quiring that caustics bound the 3 dust region at £,• = ±1 for /? > 0 (Note that the

condition on P has now changed since, with an abuse of notation, P represents a

different scaling parameter to that in §4.3.). Such a choice is really motivated by the

equation for the caustic derived in §3.4 for the zero gravity case, i.e. equation [3.4.1].
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We now have the domains for each £,•; they are — oo < £1 < — 1, — 1 < £2 < 1 and

1 < £3 < 00. Since this effectively defines the boundaries between each dust, we need

to specify how dust particles are transferred. Now, for & = ± 1 , v{ = ±t@ for i — 2,3

and i = 1,2 respectively. Hence,

X(t,±tfl) =

If we impose the obvious symmetry requirements, i.e. if Vi = —VJ then x(t,vi)

—x(t, VJ), where j = 2,3 if i = 2,1 respectively, then c = 0 and

±

x(±l) = ±-

Hence the boundary conditions on x are,

r(f\ — —T(£\ yt——t- ifO) — 0 f4 5 101

where again j = 2,3 if i = 2,1. Boundary conditions for each <r, are needed if we

wish to complete the specification of our problem. However, we shall see that this

analysis suffers from the same problem of infinite density on the axis of symmetry as

that of the tx space solution. For this reason we shall go no further than to stipulate

O{ to be finite everywhere (Note the more stringent restriction that the mass flux be

bounded for all t and v, ref. §4.1.).
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§4.6. Zero gravity case revisited.

For the case F = 0, equation [4.5.8] becomes

dx
P£i— - (/? + l)x + ii = 0, [4.6.1]

and this has solution

x{£t) — Ci + AS,- [4.b.2j

where the A,- £ (D are constants of integration. We can immediately see the advan-

tages of working in tv space for equation [4.6.1] is only singular when £2 = 0. This

should be compared with [4.3.10] which is singular in three regions and is essentially

the equivalent equation in tx space. The resulting solutions ([4.6.2]) are therefore

differentiate at the caustic. Furthermore, x(£) can be constructed by 'gluing' to-

gether the two solutions which are valid on (—00,0) and (0,oo). Again, this is an

improvement on the equivalent solution in tx space, namely [4.4.2], where Wi(£) is a

function composed of four parts.

The constants, Ai € (D, are fixed by [4.5.11] and [4.5.12] so that

.-, i = 1 and i = 2 with £ < 0,

and

~ ^ i = 2, with (, > 0 and i = 3.
" f 0 + 1

This specifies a solution subject to the boundary conditions given by [4.5.11] and

[4.5.12]. However, we need to check that this is consistent with [4.5.10]. Suppose that

6 > 0 for i = 2,3 and & < 0 for j = 1,2 such that & = -£_/. Then

m) = b -

,)

as required.
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Having shown that the solution for x(£,) satisfies all the constraints imposed

by the boundary conditions, we can again demonstrate how this contains the cubic

solution of §3.2 under an appropriate choice of /3. Now the boundary condition,

£ = ± 1 , is effectively the equation of the caustic in TM and so is equivalent to

[3.4.1]. If we again match the exponents of t and v in these equations then /? = 1/2.

Inserting this into our solution gives for £; = vi/fP and i = 2,3,

* = »• 1 "*
*!/2 3

Vi 1
£l/2 3

1 3

Then, if we suppose that t —• i/3 and x —> x/3, our solution reduces to x =

q(t, v) as required. The case for £j = —vj/t^ gives the same result by the symmetry

argument, x(£i) = —x(£j) where j = 1,2 if i = 3,2 respectively.

Let us now consider the differential equation for <r,-, the transformed density, in

the case when F — 0. Solving [4.5.9] gives

[4-6.3]

where the B{ G (D are constants. Now although we do not have any boundary con-

ditions for this quantity, we are still able to analyse our solution and quite quickly

see that it is giving us spurious results. In §4.1 we stated that the mass flux is finite

everywhere in TM. Clearly, from equation [4.6.3], we have that as the velocity tends

towards zero, oi becomes unbounded contradicting our assertion. This means that

our tv space solution suffers from the same problems that our tx space solution had.

In terms of the density function we see that [4.6.3] implies, for £,• > 0,

( 1 ) P l d v i ~ t^1

e l "
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using [4.6.2] and assuming £ > 0,

* 1 -
pi =

and so again we have that p2 —• oo as £2 —• 0 (Recall that the axis of symmetry

in tx space corresponds the v = 0 geodesic in the Newtonian case.).

This unwanted infinity is obviously produced by the £,• term in [4.6.3]. How-

ever, for the F = 0 case, kffi is effectively free to be chosen by a similar argument for

kPi before. This means that by choosing kffi = 0, [4.5.9] transforms to

which in turn forces the mass flux, (T2, to be non-singular on £2 = 0. We conclude

this section therefore, by noting two things. The first is that although the similarity

solutions obtained in tv space are perhaps more elegant than those obtained in tx

space, the problems of the latter are still evident. The second point is that in the cases

where F = 0, the similarity degrees for the mass fluxes could be arbitrarily chosen

so that their corresponding solution was no longer singular on the axis of symmetry.

These points are clearly analogous to those made in the concluding paragraph of

§4.4. It seems that 'turning off the force', is the incorrect way of reducing our general

Newtonian equations of motion to those of the gravity free case. We shall use this by

way of a lead into our next chapter.

§4.7. A note on the generic condition for gravity free caustics.

During the discussion on the cubic surface in §3.2, it was mentioned that the

existence of caustics depended on the existence of a point in M such that d2x/dv^ =

0. It was also explained that the satisfaction of this condition was stable against

small perturbations provided d3x/dv3 / 0 and finite at this point. We can use this

information to prove that /? in the tv space formalism for the zero gravity problem is

equal to 1/2. The procedure is to simply differentiate the solution for x(t,v{) given

by [4.6.2]. We have,
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x = vti +

Al p fi Vi

and thus the second derivative is zero and the third derivative non-zero and finite at

V2 = 0 if and only if fl = 1/2. Finally since,

X

is an invariant under the transformations described in equation [4.5.6], it follows that

the value of /3 = 1/2 corresponds to a value of /? = 1/2 + 1 = 3/2 if we are considering

similarity solutions in tx space. This value of 0 is consistent with the smooth case

[A].
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CHAPTER 5. NEWTONIAN CAUSTICS II.

§5.1. Introduction.

In the previous chapter a model describing the physics of caustic formation was

set up and analysed. The resulting differential equations were assumed to be invari-

ant under a given set of scaling transformations and using this symmetry, similarity

solutions were found for the case of zero gravity. This was done in both the tx and

tv space formalism however, although the latter was more elegant, they both suffered

from a single and fundamental flaw. That is to say, they both predicted unbounded

densities on the axis of symmetry. We concluded the analysis in each case by notic-

ing that it was the force equation which determined the similarity degrees of pi and

<r,- prior to setting F = 0. We also concluded that had we been allowed to freely

choose kpi or fc^-, then a term in the corresponding differential equation could be

made to vanish so that when we integrate, the unwanted infinity does not appear.

This last statement suggests a way forward for us obtaining sensible solutions for

the density function. Indeed, this chapter concentrates on formulating a new process

that 'switches off' the gravitational interaction whilst allowing bounded densities on

the axis of symmetry. This results in a greater understanding of how the gravity-free

scenario fits within the more general picture.

This problem of infinite density can be split into two parts. The first is to find

the correct description of how our general Newtonian equations reduce down to the

zero gravity case. The second is how do we change the symmetry that we impose on

our system so that the problem on the axis is resolved. We find that the first part

arises quite naturally if we look at the asymptotics of our equations. This involves

the introduction of what we call asymptotic solutions. These will be defined in the

next section but their concept is strongly based on similarity solutions which were

developed in §4.4. The idea is to transform our general Newtonian differential equa-

tions using the transformation group, g, developed in the previous chapter, in such a

way so that as e increases a point in the three-dust region moves along predetermined

curves towards the origin. In the limit as s tends to infinity, this point coincides with

the cusp. The resulting differential equations describe the physics in a neighbourhood

containing the origin. This can be put more boldly by saying that they describe the

physics of cusp formation. This of course, is extremely important. From the point of
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view of understanding this particular type of singularity, it may tell us the extent of

the role that gravity plays in determining whether or not a cusp (and then caustic)

is formed.

If we return now to this problem of infinite densities on the axis, we see that the

zero gravity differential equations can be obtained quite easily. Since in the limit we

have our aforementioned reference point lying on the symmetry axis, we must require

the force term to asymptotically tend towards zero. In other words, the 'switching

off' of the force becomes a continuous process. If we assume that g represents the

scaling transformations of §4.3 (as we shall), then this process is governed by the

similarity degree, kp, via the condition that kp < 0.

At this point it is apparent why this asymptotic process does not solve the problem

on the axis; we find that the asymptotic equations are identical to those of [4.1.2] and

[4.1.3] with F = 0. We are therefore forced to reconstruct our transformation group

and this is the second part mentioned above. We shall re-introduce the gravitational

constant and assume that this can scale in much the same way as F or Vi for example.

The aforementioned technique of retrieving the zero gravity case is then transferred

from a restriction on kp to a restriction on &Q. This procedure solves the problem

on the axis. The way it does this, as we shall see, is to provide an extra degree of

freedom which manifests itself in providing us with four similarity degrees rather than

three. Since we have only three equations governing kp, ko, kVi and kPi (if we work

in tx space), we find that in order to specify all the similarity degrees we are forced to

choose either kPi or k@- By choosing wisely, the term in the mass flux equation that

when integrated produces the infinity can be removed. This work will be covered in

the third section.

At this stage we can confidently say that the zero gravity case has been fully

understood and that the solutions obtained are compatible with the full Newtonian

picture if we consider asymptotic solutions. But, if we look again at the general

equations of motion ([4.1.1]—[4.1.3]), we have to admit that no real progress has been

made by way of finding a solution. This of course does not go for our understanding

of the problem for we now realise the complexity and highly non-linear behaviour

that we are dealing with. As a last ditch attempt at obtaining a full analytical

solution, a more general approach to asymptotic/similarity solutions was considered.

This involves generating the most general transformation group, g, that equations
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[4.1.1]—[4.1.3] admit. The hope is that it might be possible to choose a particular

transformation that is compatible with our boundary conditions and which provides

us with a way of removing some of the non-linearities. Specifically, we would hope that

the contributions from pi and pj to the acceleration at a point where a particle with

velocity v^. (i ^ j , i =fi k and j ^ k) exists, can be removed or simplified or perhaps

represented by some symmetry transformation. This seems unlikely however, we will

most definitely learn from this process and so this work is presented in §5.4.

To complete this chapter, we shall briefly discuss the asymptotic behaviour of the

Newtonian equations of motion in a tr space formalism. The idea is to show that

these differential equations have the same asymptotics as their equivalent partners

in tx space. More importantly, however, this section, although small, will act as

a prologue to the next two chapters where we consider caustics in the context of

General Relativity. The significance being that we shall try to use the techniques of

asymptotic solutions that we are about to develop to analyse the most general case.

§5.2. Asymptotic solutions.

The main conclusion from the previous chapter is that similarity solutions, in the

context that we have used them, are incompatible with the process of discontinuously

'switching off' the force. This is not to say that similarity solutions cannot be used

to obtain sensible results. Indeed, had we considered the zero gravity equations of

motion in the first place, then there is no doubt that these techniques could be used

successfully. The point, however, is that the procedure: look for similarity solutions,

set F = 0, cannot be used because it passes an incomplete set of information con-

cerning the gravitational picture through to the zero gravity picture via the similarity

degrees.

We conclude that it is necessary to do two things to correct this. The first is to

alter the method by which we obtain the zero gravity equations of motion from the

full Newtonian picture. The second, which we leave to the next section, is to ensure

that the right information is passed between the two cases. In fact ideas concerning

the first point come as a result of answering the different question, does gravity play a

significant role in the physics of cusp formation? Of course the answer to this has huge

implications for the general case and therefore is an important question in its own
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right. It could be, for example, that gravity plays a key role and that given any initial

situation, caustics will always be formed. Alternatively, it may have no significance

whatsoever meaning that it is purely the boundary conditions that determine whether

or not a cusp can form.

To answer these questions, we consider asymptotic solutions. These constructs

are functions defined in the following manner. Let (t,x) and (i, x) represent two

coordinate systems whose origins, 0 and 0, coincide at the cusp. We assume that

our tx coordinate system is fixed and 'pinned' onto our spacetime, the tx coordinate

system on the other hand is free to be defined. Next we define a transformation,

<7, that relates our two coordinate systems so that points, x and x, are related by

x = <7(e;x). It follows by the definition of g that our two coordinate systems are

identical when e = 1. We now define curves along which points can move towards the

cusp in the following way. We consider x and x to be to be points that are fixed relative

to O and 0 respectively. Next we define g so that relative to tx space, the length and

time scales of our tx coordinate system increases as e increases. This implies that the

locus of points such as x describe curves in our tx coordinate system as we 'sweep' this

spacetime over them. Since in the limit as e tends to infinity the length and time scales

of our tx spacetime become infinitely large, it follows that the distance between x and

0 becomes infinitely small implying that x moves along curves in tx space towards the

origin. All of this is defining a magnification type of process: we are essentially taking

a small and fixed region containing the origin and enlarging this according to the rules

specified by g. As this process occurs, the Newtonian differential equations written

in terms of (t,x) coordinates must change since x approaches 0. This implies that

the solution to these transformed differential equations must also change as certain

terms become less significant. We call these limiting solutions asymptotic solutions.

Since we have defined g so that small regions containing the cusp are magnified, these

solutions must be describing how our dependent variables behave in an infinitesimally

small region containing the cusp at the instant of cusp formation. Their behaviour

gives us the physics that determine this process.

The above ideas can be formulated in terms of a mathematical definition: we

define the asymptotic solution, /„, of any variable to be / a(x) = lim^oo #/(e; x, / (x)) .

The existence of these functions, or equivalently the fact that the differential equations

have a limiting form, is an assumption that we have to make. Now the above definition

implies that asymptotic solutions are also similarity solutions. This is an artifact of
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the group structure of the transformation, g, which appears in both definitions. To
prove that this is so, we need to show that /a(#x(a;x)) = #/(a;x,/a(x)) which is
equation [4.2.3]. We begin by rewriting the definition of our asymptotic solutions so
that as functions, fa and its definition have the same arguments, i.e.,

r1
;x))). [5.2.1]

Note that the tilde has been removed from / since this is purely a label. Then,

0/(a;x,/«(x)) =gf[a;x,\\mogf(e;gx ( e " 1 ^ ) ,

1;^) , / (gx (e-^

(/3;gx (a /T^x) , / (</x (a/

1; <7x (<*;x)) , / (gx (/T
1; 5 x («;x

as required.

We are now in a position to analyse equations [4.1.2] and [4.1.3] using these new
techniques. To do this we introduce an intermediate, dependant variable, f£, such
that

/B(x) = Jim /e(x) = Jhn gf (e;gx ( e" 1 ^) , / (gx ( e" 1 ^) ) ) . [5.2.2]

This simply allows us to separate the two operations: assume similarity solutions
and take the limit. The symmetry group we shall use is that of equation [4.3.1] and
we shall begin by assuming that all dependant variables are invariant under these
transformations. From [5.2.2] we have,

gf (e-^xje (x)) = gf (li9x (e^jx) ,f(gx (e"1^))) = / (gx

1; ̂ x (e; x), fe (<7x (e; x))) = /(x)

and this is the basis by which we transform our equations from x / space into x£/e

space (Note that in the above calculation the coordinates, xe have been written as
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gx (e; x).). Of course we need to consider how the derivatives of / transform. Thus,

if our coordinates are (t,x) then using [4.3.1] we find that for any function,

-I
- J -
-e

(«**)}('.«)

Similarly, we obtain

by simply replacing the similarity degree for x by that for t, i.e. by changing /? for 1.

We should note that since it is clear that we are now working in x£ /£ space (note the

subscript on the / £ ) , the subscript e will be dropped from the coordinate variables.

Using these results, equations [4.1.2] and [4.1.3] become,

«. ^ 1 1 + ffc»j
ox ot

and

l£ dx le dx dt

We need not concern ourselves with the force equation ([4.1.1]) for this becomes

irrelevant in the limit.

Again we require that these equations are invariant; the functions fe are, by

definition, similarity solutions. This means that the similarity degrees must satisfy

kVi — 0 + 1 = 0 and 2kVi — f3 — kp — 0. We now take the limit as e —> oo. This

is a continuous process and it replaces the discontinuous operation of 'switching off'

the force. The quantity that governs this limiting process is the similarity degree,

kp. We must have, in order for any force terms to tend towards zero, kp < 0. Thus

Fa — lirrie-xx) F£ = lime—xx, e*F F = 0 and we therefore finally obtain

V i a ^ . + ^ = 0 [5.2.3]

and
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Again we draw the attention of the reader to the fact that x now represents the

coordinate system, xe, in the limit as e —> oo.

On the face of it, this looks like an extremely important result. It seems we have

shown that by considering asymptotic solutions of the form [5.2.1], the equations of

motion for the general Newtonian picture reduce to those of the gravity free case.

We could therefore conclude that gravity does not contribute to cusp formation. The

problem with this however, is that V{a and pia satisfy the same equations as u, and pi of

§4.4 with the same similarity degrees. In other words the solutions are identical! The

above conclusion concerning the role that gravity plays must therefore be treated with

scepticism since clearly it is based on a result that predicts unbounded densities on

the axis. The only achievement that this asymptotic approach has above the original

similarity solution approach is to formulate the turning off of the gravitational force

in a mathematically elegant manner.

§5.3. Asymptotic solutions with a scaled Newtonian constant.

The above section describes a new procedure by which we can obtain the zero

gravity equations of motion from the general case. The problem of unbounded den-

sities on the axis however, has not been solved and we now propose to do this. As

mentioned in both the introduction and in the title of this section, we will achieve

this by scaling the gravitational constant.

We shall consider the following equations:

dF

ox at

and
dvi dpi dpi
ox dx ot

alongside the transformation given by,

g(e;t,x,F,vi,pi,G) = (sk%ek*x,ekF F,ekvivi, ekn Pi,e
kGG). [5.3.1]
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We again look for asymptotic solutions but instead of having the limiting process

governed by F or rather by kp, we insure that the force tends to zero by imposing

the boundary conditions, kc < 0 and F(t,0) = 0. The combination of all these ideas

allow us to obtain sensible results for the density as we shall now demonstrate.

We introduce four intermediate dependant functions, Fe, u,e, pi£ and Ge. They

are defined by equation [5.2.2]. Remember that they are similarity solutions which

means that we now have

dFe v

dx ~ G* V '

fc^ + ^ k ^ .
(1T (IT

and
dvi£ dpi£ dpi£

ri dx ' l£ dx dt '

where the similarity degrees, kx = (3kt, kp = (f3—2)kt, kVi = ((3—l)kt, kPi — —(2+f)kt

and Arc = 7^ , have been chosen for invariance of the above equations.

The force equation must be included this time because at the moment we do not

specifically have Fa = 0. To achieve this we need to consider our boundary conditions.

The first boundary condition is that k(j < 0 meaning that Ga — linie-̂ oo Ge =

lim£_oo £ GG = 0. If we apply this result to the force equation then it follows that

in the limit we have,

dFa

dx = 0.

This gives Fa independent of x. The boundary condition F(t,Q) = 0 implies that

Fa = 0. We therefore obtain

dx dt

and
dvjg dpja __ dpja

dx dx dt

as expected.
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Now comes the new bit. As mentioned in §5.2, asymptotic solutions are similarity
solutions where for any variable, /„, the kf are as defined above. If we transform these
equations using the notation that fa(t,x) = e*/ /(£) then we obtain

« . -^ + ( / J - l ) « . - - ^ = 0 [5.3.2]

and

*§+*§ = (2+ 7)« + « § . [5-3.3]

The difference of this approach compared to that of §4.4 can now be seen Although
the velocity equation ([5.3.2]) is identical in both cases, the density equation is not.
We notice that the coefficient of the pi term has changed from 2 to 2 + 7. We will
see the relevance of this in a moment.

The boundary conditions have not yet been mentioned. For the velocity equation,
we choose the same boundary conditions as in §4.4 and obtain [4.4.2] as a solution.
For the density we shall simply show that it now becomes bounded on the axis. To
fully specify this function we need to prescribe the density function along some curve
£ = const. We shall not bother to do this as this corresponds to an arbitrary choice.
The most appealing candidate however, is the curve corresponding to the caustic.
This amounts to prescribing the density of dusts 1 and 3 as their particles traverse
this curve and prescribing the density of dust 2 as it receives particles from the other
two dusts at the caustic.

So, in order to check that the density function can now be made finite everywhere,

we write the velocity in the same manner as before to illustrate the singular nature of

our differential equations, i.e., Vi = Wi + f3£. The solution to equation [5.3.3] is then

Pi = I—r e x P

where a,- £ IR again represents the constants of integration. Since Wi has the same

solution as before, the values of £/u>2 and w'2 as £ tends to zero are the same. By

following the analysis as in §4.4 we have that
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Thus pi is finite and non-zero at £ = 0 if 7 = — 1.

We are now in a position to make several conclusions. Firstly, we have shown that

by considering asymptotic solutions together with the new symmetry group given by

[5.3.1], the equations of motion for the general picture again reduce to the gravity

free case. Secondly, we have shown that the corresponding asymptotic solution for

the density now predicts finite behaviour on the symmetry axis. These two results

are extremely important for it means that the physics governing cusp formation is

relatively simple. In other words, we can finally conclude that gravity does not

contribute except to shape the caustic to the future of the cusp. Also, by using the

idea that G should scale and determine the asymptotics of our system rather than

F, we have understood how information is passed from the full gravitational picture

to the zero gravity picture in our reduction process. This is important for we shall

again use these ideas when we consider the asymptotics of the General Relativistic

equations of motion.

§5.4. The general symmetry group.

Although the gravity free case has been analysed and how it can be realised

as a limit of the full Newtonian equations of motion understood, no real headway

into solving the general case has been made. Therefore, in this section, we shall try

to determine the most general symmetry group that equations [4.1.1]—[4.1.3] admit.

The idea is that possibly, by choosing carefully the symmetry group, g, we may find

similarity solutions which greatly reduce the degree of non-linearity that this problem

possesses. An excellent account of how to find these general transformations for a

system of first order partial differential equations is given in [L]. Hence we shall simply

give an overview of the techniques used and state the results.

Before we launch into the mathematics, it might be instructive to briefly describe

the process that we will use to determine our symmetry transformations. This tech-

nique hinges on the fact that we assume our one-parameter group of transformations,

g, to be analytic functions of e. This means that for e close to the identity, we

can construct an approximation to g by writing each transformation as a first order

Taylor series. These infinitesimal transformations define quantities which we call the

generators of g. We shall denote this set of functions by (X, U), the dimensions of
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these vectors being m (the number of independent variables) and n (the number of

dependant variables) respectively. Now g does not tell us any information about how

the derivatives of our functions transform. Since we are dealing with first order partial

differential equations, this is important and we need to know this. We shall therefore

extend g to include transformations of all possible derivatives. This new group we

shall call g%. If we suppose that gg is also analytic, then by a similar argument we

obtain m + n + m x n generators which we denote by (X, U, P) .

The generators turn out to be important quantities because we can develop a

technique that presents the most general symmetry transformation as the solution

to a set of simultaneous equations in X, U and P . However, since we are only

interested in obtaining similarity solutions for u, we need only determine g, and we

can therefore simplify things if we write each component of P in terms of the other

m + n generators. This process gives us a set of linear equations in pi, the coefficients

of which are functions of X, U and their derivatives. Since each p\ are independent,

we can equate coefficients to give (usually) a huge set of simultaneous, differential

equations. Their solution gives us X and U. We shall show that these generators

are related to gx and gn by a simple differential equation. The problem with this,

however, is that it is not always soluble. In fact the same problem occurs when finding

the most general similarity solution, for any candidate satisfies a similar differential

equation.

We begin by introducing a new quantity that parameterises our transformation

group, g. In fact if e is the parameter of §4.2, then we suppose that e —• ee so that

now e 6 (—00,00). This simply changes the identity from 1 to 0, i.e. g(0;x, f(x)) =

(x , / (x)) . Let uj also define u = fu1,. ••>«'") = (/i(x)> • • • >/m(x))- Then the

transformation, g, can be written as

xl = #x,-(£;x), * = 1,2,

if we index our coordinates by a superscript rather than a subscript, and
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We now assume that g is analytic. In other words, for e € (—£o,£o) close to the
identity,

= x{ + eXl (x) + o(e).

Similarly,

v,J = u
j + eW (x, u) + o(e).

The quantities X1 and U1 given by

X* (x) = ^ (0; x) and tf' (x,u) = ^ (0;x,u)

are called the generators of the transformation group and are uniquely determined
by g. Conversely, the generators, X1 and f/-7, determine g itself. To see this, let us
suppose that (x, u) represents a point fixed in IRm+2. Then <?(£;x, u) corresponds to
a curve, parameterized by e, that passes through (x, u) when e = 0, with tangent
vector, dg/de(0;x,u) = (Xx(x,u),X2(x,u), I ^ f o u ) , . . . , *7m(x,u)). Of course we
can repeat this argument for any point such as (x, u) = g(i; x, u) for example. This
implies that the generators form a vector field on Hm + 2 which has integral curves
given by g. It follows then that to determine the group from the generators we simply
solve

^ - ( 0 ; x ) = X l(x) and ^ - ( 0 ; x , u ) = W (x,u). [5.4.1]
de

^ ( 0 ; x ) = X ( x ) and ^
de de

Uniqueness is given by the boundary conditions, x = x and u = u at e = 0.

Let us now introduce a further set of dependant variables given by p = [p{) =

Idu3 /dx1). These quantities can be used to extend g so that it now includes trans-

formations for each derivative. We shall denote this extension by g£- Infinitesimally,

this new group has the form,

x* = xi + eXl (x) + o(e),

& = u
j + eUJ (x, u) + o(s)

and
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where Pj are the generators of the derivative transformations in gg. Now it is pos-

sible, although too lengthy to be given here in this document, to write the function

that transforms each p? in terms of the functions gxi (e; x) and g^ (e; x, u) (a simple

account for the case when m = 2 and n = 1 is given in [L]). Hence it follows that the

generators, P / , can be written down in terms X1 and W. We shall simply quote the

result here,

i 2 BXk

g * I542!

The above ideas are the building blocks with which we develop the theory to

determine the most general group of transformations (g in other words) that a system

of first order partial differential equations admit. To do this, we need to modify our

definition of invariance ([4.2.1]) to include a system of partial differential equations.

Definition. Suppose that

F W ( x , u , p ) = 0 [5.4.3]

represents a system of R first order partial differential equations. Then [5.4.3] is said

to be constantly conformally invariant under g£ if, and only if,

F^ (x, u, p) = £ Ars(e)F^ (x, u, p), [5.4.4]

where Ars(0) = Srs.

Unfortunately, although this is useful if one is considering stretching transfor-

mations as in §5.3, for example, this definition is not of the form where it can be

effectively applied to the general case. We therefore reformulate this using the fol-

lowing

Proposition. The system of R partial differential equations, F^r' (x, u ,p) = 0, is

constant conformally invariant under the group gg if, and only if,

de v '
c — u
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= J2 krsF^ (x, u, p). [5.4.5]
£=0 S = l



Proof. Suppose the R differential equations are constant conformally invariant as in
the above definition. Then if we differentiate equation [5.4.4] we have,

R dATS

e=0 de
F « ( x , u , p )

e=0

•/W(x,u,p)

Running the proof in reverse proves the converse.

Corollary. The system of partial differential equations, F^ (x, u, p) = 0 is invariant
under gg if, and only if,

R

krsF^s\ [5.4.6]
s=l

where,

T) - Y1 ® -L Y2 ^ _L 771 ^ _L _L TTn-H— J. P 1 ^ _L J- Pn ^

Proof. One simply expands the left hand side of [5.4.5].

This gives us a way of determining the generators of our symmetry group. We can

see that equation [5.4.6] is simply a set of R simultaneous equations in the components

of (X, U, P). If, however, we are looking for similarity solutions, then we are not really

interested in determining each P\. Indeed, with the equations in their current form,

we do not have enough information to solve them. The usual thing therefore, is to

substitute each P/ by the sum of derivatives of X and U as given by equation [5.4.2].

This yields a first order, homogeneous polynomial in p. Since the components of p

can be considered as independent variables, we set the coefficients of each p? to be

zero. The result is a rather large set of simultaneous differential equations in the

components of X and U. In theory this set of equations can be solved to obtain

X1 and UK Equation [5.4.1] then gives us g. This last step, however, is usually the

deciding factor for whether or not we can obtain g depends on the complexity of X

and U.
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To illustrate this process, we shall now apply these techniques to our general

Newtonian equations of motion. We first of all rewrite equations [4.1.1]—[4.1.3] so

that they fit the formalism of [5.4.3]. We therefore have R = 3, i = 2 and j = 4. If

x = (a;1,^2) = (t,x) and u = (it1,u2,u3,u4) = (F,v,p,G) then we have

and

The Newtonian constant is special in the sense that we do not require it to be a func-

tion of t or x; we would expect a spacetime that contains matter which is uniformly

distributed, to have the same strength gravitational field throughout. The upshot of

this statement is that

k=\jb=i

We also, for simplicity, consider a single dust and so drop the subscript i. Since we are

really only duplicating equations by having the extra variables, we do not expect any

new symmetries. We therefore suppose that the i in equations [4.1.1]—[4.1.3] equals 1

and assume that for the case where i ^ 1, v{ and pi posses the same symmetries as v

and p.

The condition for invariance (equation [5.4.6]) yields the following set of simulta-

neous equations:

Pi = ku(p\ k12(u
2pj +p2

2- u1) 2p\u2p\ + p3),

u2P2

and

U2p\

U3P2

- U1 = fo (p\

3
P\u3

P\ U2P3 2
P\u2

P\

+p2
2 - u1) u2p\ +p3)

v\
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If we substitute for each P/ using equations [5.4.2] and [5.4.8] and equate all coeffi-

cients of pi to zero as suggested above, we obtain the following set of simultaneous

differential equations:

dU1 dX1

du1 dx

dU1 dU1 dU1

du2 du3 du*

8X2

- hi = 0,

= 0,

dx

?HL + u*u3 + u
3u*

dx

du2 du2

= o,

r4 7 3 4 c\

= 0,
^u1 3

,<9£/2 29X1
 r r 2 a x 1 , 2 , 3

W-^^r - uz— h f/ x k22u
l - A;23u = 0,

dU2

-5-5- - k23 = 0,

5t/2 dx2 ,
-5-5- 5 ^ - «22 = 0,

2dU2 dU2
 TTX

dx dt

du3

dx
dU3

 7 o , 3 ^
V - ^2U2 - k33u

3 = 0,

dU2 odU3
 2dXl

 TT2 dX1
 7 2 n

+ u " — j - u2—- + U2- —— - &33U2 = 0,

du3 dx2 ,
H: «33 = 0
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and

3dU2
 2dUz dU* , j n

The solution to the above set of equations is a long and laborious task. We shall

therefore simply state the results:

X = t + Ci,

U1 = k22u
1 + hu(t),

U2 = [k22 -k~f)u2 + ht(t),

and

In the above, c\ is a constant and h(t) is an arbitrary function with first and second

order derivatives, ht(t) and hu(t). Using equation [5.4.1], we can now determine our

general symmetry group. Again the integration is complicated so we list the results.

We have:

x = (t- df e^ {H(t) - H(t)}

I = tec + d (l - ec) ,

{ }
1) (t - df~2

 e0»-2K {H(t) - H(t)}

{^(f) - ^(*)}
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where d = 2ci/kn, P = 2(kn -k22)/hi, ( = -kne/2, 7 = 11 - 3 and,

H(t) = -2k[x I h{s) (s - ds.

The right hand side of these equations should technically be functions of t and x only.

However, in an attempt to obtain some brevity, we write some terms as functions of

i.

This set of functions represents the components of the most general transfor-

mation that leaves equations [4.1.1]-[4.1.3] invariant given the assumption that x =

<7x(£;x) and u = gu(e;x.,u). Of course to complete the argument we need to prove

that this is the case, and we do so by brute force. We firstly consider equation [4.1.2].

The derivatives of the velocity transform as,

dx[ ' x) - ^i t x)

d
dx

=

a

(t-

dvi /~ ^\ dx t

dx ^ '
i /~ \ di

and

dxi

- 1) (t - {H(t) - H(t)}
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§ (i, i

In xu space equation [4.1.2] is given by

^ + ^ - F = 0. [5.4.10]
ax ot

If we insert the above expressions for dvi/dx(t,x) and dvi/dt(t,x) as well as that

for F(t,x) given by equation [5.4.9] into [5.4.10], then it turns out that all terms

containing H or any of its derivatives cancel leaving,

ox at
= 0.

This of course is equivalent to [4.1.2]. By a similar process we find that [4.1.1] and

[4.1.3] also look the same when written in xu space. This proves invariance.

In previous sections we discussed how the zero gravity picture could be obtained

from the general case using asymptotic solutions. Let us suppose that we require

the above transformations to exhibit the same behaviour. This means that given

a point x that is fixed, then we require that lim£_+oox = lim£_>Oo5fx(£~1;x) = 0

(This is equivalent to saying that as e —• oo, |^rx(e;x)| —> oo, which illustrates the

magnification process spoken of earlier.). Let us consider the x component. Clearly,

from equation [5.4.9], this is true provided /? > 0. The time component also satisfies

this requirement provided d = 0. This defines our family of curves with which we can

asymptotically approach the cusp. The final requirement is that lim^oo G = 0 and

this is true provided 7 < 0. Then, with the equations of motion now written in xu

space, we obtain the zero gravity case in the limit as e —> 00 provided we assume

that F is zero along the time axis.
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So what do we conclude? Well, we have found the most general transformation

group and showed that if we restrict /? and 7 (the similarity degrees for x and G

respectively) then the differential equations asymptotically reduce to those of the

gravity free case. We recognise this process as being identical to that of §5.3 and so our

original procedure is compatible with the more complicated symmetry transformation.

The presence of H and its derivatives implies that equations [4.1.1]—[4.1.3] allow a

more complicated symmetry transformation than that given by equations [5.3.1].

However, we notice that these additional terms can be thought of as representing an

arbitrary set of Galilean transformations. This is because the x coordinate is simply

being translated by a factor t^e^{H(i) — H(t)}. It was because of this we decided

that it was not worth pursuing the problem any further using the more complicated

similarity solution approach. We felt that if any further progress was to be made on

an analytical solution, it would be to simply prove existence.

§5.5. Asymptotic behaviour of Newtonian equations of motion in tr space.

This section acts as a prologue to chapter seven which discusses the asymptotic

limit of the spherically symmetric, General Relativistic equations of motion. We shall

illustrate how the Newtonian equations of motion in tr space reduce to that of the

gravity free case, written in terms of Cartesian coordinates, in the appropriate limit.

As before the asymptotic solutions are similarity solutions and therefore are invariant

under a certain symmetry group. The crucial point to realise concerning this analysis,

however, is that g, only represents a symmetry group in the limit. It does not form

a symmetry group for the general tr Newtonian equations.

One dimensional Newtonian gravity in the context of spherical coordinates means

that the equations of motion for three superimposed dusts are:

+ % = F [5.5.2]
dr dt J

and
dpi dvi 2pjVj _ dpi
dr dr r dt
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Let us assume that the cusp forms at r = rc. If we make a transformation, x = r — rc,

then we have effectively moved our origin from r = 0 to r = rc. x then becomes

the position of some point as measured from rc in much the same way as in previous

sections. If rc is constant then [5.5.1]-[5.5.3] become

dF IF

and

dx x + rc Y

dvi dvi
ui-fl- + ^ 7 = F,ox at

dpi dvi 2piVi dpi
v*~^—i" P*~E~ ^ — ; — = —ET-

ox Ox x + rc ot

We now transform our equations according to the following group,

g(e;t,x,F,vi,Pi,G) = (ek<t,ek*x,ekFF,ek»ivi,ek<>i Pl,e
kGG) [5.3.1]

and define a new coordinate system according to x = gx(e;x.). As mentioned above,

we do not necessarily require equations [5.5.1]-[5.5.3] to be invariant under [5.3.1]. In

fact, the presence of the l/(x + rc) factor forces these equations to be not invariant

under these transformations. However, we wish to show that in the limit as e —> oo,

the above differential equations reduce to those that govern the gravity free case

written in terms of Cartesian coordinates, (t,x). Following the process described in

sections 5.2 and 5.3, we fix x and suppose that the length and time scales of our tx

coordinate system increase asymptotically. To achieve this we insist that kx > 0 and

kt > 0. Now under the transformations given in [5.3.1], we have:

dx x + rc

vtdx ' dt M ~" \ldx ' " dt

a n d

dpi dvi 2Pivi dpi kx-kv-kp. I ~ dpi „ dvi
d d + dt y dx dxdx dx x + rc dt 1 dx dx x + ekxr,
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Hence in the limit of e —• oo, these equations reduce to the Cartesian differential

equations provided

kx-\-kG + kPi - kf = 0,

Kx KVi Kt = U,

and

kF + kx - 2kVi = 0,

which are precisely the conditions for the Cartesian differential equations to be in-

variant under [5.3.1]. If we further stipulate that 7 < 0 and that F(t, 0) = 0, then we

obtain the zero gravity situation.

This comes expected since rc is being scaled by a factor, e , where kx > 0, which

increases as we increase e. Physically, as we change e and move towards the cusp, we
ft.

Cimove from different pictures of caustic formation in which the cusp position, e rr,

increases from picture to picture. Hence, locally, along any radial axis, the spherical

shells begin to look like planes. This of course corresponds to the Cartesian picture.
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CHAPTER 6. NUMERICAL APPROACH TO CAUSTICS IN
GENERAL RELATIVITY.

§6.1. Introduction.

The beginning of this chapter marks a change in tack for this thesis for we now

start to look at caustic formation within the context of General Relativity. Now

although General Relativity is a very different theory of gravity to that of the Newto-

nian description, with regards to our problem, there are some similarities. These are

mostly associated with the concepts to do with the setting up of the problem rather

than the mathematics. Having said that, the construction of the tangent bundle sur-

face in the General Relativistic case is compatible with the S-formulation described in

§2.2. If we recall, the construction of S as a congruence of integral curves of a vector

field, Z (E Tipx \(TM), was made specifically to be metric independent. It was only

when we started to put restrictions on the form of Z did we obtain the Newtonian pic-

ture of caustic formation. Perhaps, to remind ourselves, we should be more specific.

We found that our formulation reduces to the Newtonian case if the vertical part of Z

is a function of time. This implies that the projection onto M of the integral curves

of Z, i.e. xl(t), satisfies a Newtonian-like force law. That is to say, d2xl/dt2 = fl(t).

If f*(t) = (VV)1 (x(£)), then the likeness becomes even more obvious. The General

Relativistic picture arises from a different restriction on Z. Let us now suppose that

t represents proper time. Then, if we make a different assertion as to the form of / ' ,

we obtain the geodesic equation, i.e., if fl(t) = —T'-^dx3/'dt(t)dx• /dt(t) where each

T'jj. is an, as yet, undefined function of t.

Now in the Newtonian case, we described the problem as the solution to the

equations conserving mass and momentum. When we consider caustic formation in

General Relativity, we study the analogous equations. That is to say, in this chapter

we shall analyse

= -K £ HP)V\P)V[PY [6.1.1]
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and

Tftyj = 0. [6.1.3]

by looking for a numerical solution to these equations. Here, Gl* and T"J are the

Einstein and energy-momentum tensors; the other quantities, v) ^ and fJ-u), represent

the components of the velocity field and density of dust p. Equation [6.1.1] is simply

Einstein's field equation relating the geometry of our spacetime to the mass distri-

bution in it. It illustrates the fact that we are again considering a multi-dust region

(cf. equation [4.1.1], the Newtonian equivalent). [6.1.2] is, of course, the geodesic

equation and is analogous to the conservation of momentum equation, [4.1.2] in other

words. The final equation completes the specification of our problem. It represents

the conservation of matter in our system and this should be compared with equation

[4.1.3]. The fact that we have a dust index on the energy-momentum tensor is impor-

tant. It shows that there is no interaction between the dusts and that each separately

satisfies the equation of motion (the criteria for superimposed dusts). This equation,

therefore, represents a specific input to the problem rather than simply a consequence

of the Einstein equation.

As in the Newtonian case, we again have to address the problem of joining con-

ditions. In this sense, the General Relativistic case is equivalent to the Newtonian

example considered in chapter four. However, as we are developing a model with

the view to solving the equations numerically, we are able to approach this from a

different point of view. For the moment, reconsider the analytical case. There we

were trying to solve our equations as functions of t and x. We knew that information

is lost at the caustic because of the unbounded behaviour in some of our derivatives

and density functions and we therefore prescribed information to replace this. In the

numerical approach, however, we adopt the Euler method to integrate and solve for

the geodesies. Things are now different for no matter how you associate information

with these particles, the information is there when you get to the caustic and remains

so whilst you pass through it. Thus, it is not a problem of loosing information, rather

it is what do you do with the information when you get there.

With regards to the velocity, there is no problem. A particle has a velocity

as it arrives at the caustic, and the equations of motion tell it how to move off.

This is the situation whether it's particles entering the multi-dust region or if their

trajectories are being re-labelled as they become tangent to the caustic. In order to
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make this statement, however, certain assumptions regarding the metric are required.

Specifically, we assume that the metric is continuous (though not, at this stage,

necessarily its derivatives) so that the connection does not contain an impulsive part.

This is important for it means that the flow vector is continuous and remains so

particularly as we parallelly transport it through the caustic. For the density functions

we have a slight problem. If a conserved mass is associated with each 'particle' (which

could mean either a particle in the normal sense or simply a reference point on a

curve) then how this information is transferred depends on the picture we are using

to describe mass. We shall therefore postpone this discussion to a later section when

we consider representations of the dust continuum.

Before we move on to describe the structure for the rest of this chapter, let us

conclude the general description of the problem by choosing our coordinate system.

Ideally, we would like to formulate our problem using planar symmetry, as defined

in §2.2, so that we have a direct comparison with the Newtonian work. This choice

would also simplify matters for we could work with a two dimensional manifold. For

the case of General Relativity, however, such a formalism is not necessarily the sim-

plest. Instead, therefore, we choose spherical symmetry to formulate our problem

because of its greater familiarity and physical relevance. Now there are many differ-

ent coordinate systems that reflect spherical symmetry, each with its own particular

attributes. Curvature coordinates, however, provide us with the greatest degree of

simplification of the field equations for spherical symmetry. In fact we are able to

obtain expressions for the metric components as integrals of G*j, the mixed Einstein

tensor.

The other reason, and this is important, is that we expect the asymptotics of

this system to be similar to that of the gravity free case formulated in Cartesian

coordinates (ref. §5.5). This enables us to answer the question, does gravity really play

no part in cusp formation. We explain; classically, General Relativity is considered

to be a far more descriptive theory of gravity than Newtonian Theory. Thus it could

be that the asymptotics of a General Relativistic formulation of caustic formation

is different to that obtained in §5.5. This would mean that the previous conclusion,

that gravity does not play a significant part in caustic formation, is an artifact of

the simpler, Newtonian theory. On the other hand, we may obtain the same results.

Both conclusions are equally exciting, however, if we obtain the former result then
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the significance of the work presented in chapter five is decreased. This gives the

reader a sneak preview to the work we will present in the next chapter.

We shall continue this discussion on our adopted coordinate system in the next

section. The ideas will follow those presented by Synge [S], however, because they

represent the building blocks with which we construct our model, it is important that

we redevelop them in this thesis. In any case, the aim will be to present the metric

coefficients as functions of Glj. This then allows us to readily include matter via

In §6.3, Synge's formulation is applied to the case of a spherically symmetric dust.

That is to say we shall define an energy-momentum tensor that reflects the multi-

dust model described in the Newtonian case, and try to relate our metric components

directly to the quantities within this definition that describes the matter. The problem

encountered here is that Tlj is in fact a function of gij. Thus we cannot write

the metric components as a function of the mass descriptors alone. To solve this

problem we shall introduce an orthonormal tetrad of vectors to act as a new basis

for TM. Using this technique, we are able to write gij as functions of u\ x and

flu,) i the components of the fluid flow vectors relative to this tetrad and the densities

respectively. This would be a rather nice formulation to invoke in a computer program

designed to numerically solve our equations. It would mean discretising our spacetime

into a series of 'particles' (a term which can mean many things and will be defined

later), each holding u\ •> and /j,<p\ as part of the information defining the dust. In

fact, §6.4 describes this process and presents a method of obtaining a solution to the

geodesic equation assuming we can describe the matter using these variables.

In reality, however, we need to define what we mean by density. In §6.5 this will be

discussed, and in doing so we shall see that the above formulation is again corrupted,

i.e., gij once again becomes the solution to a first order, differential equation. We

shall introduce the concept of a conserved mass between geodesies and formulate a

functional definition for the density in terms of these quantities. Having done so,

we then proceed to define the representation of our dust continuum that we will

adopt in our computer program. In addition, some of the numerical techniques which

are not specifically designed to solve the equations, but provide valuable information

nonetheless, will be described. Examples of these are: determination of shell crossings,
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determination of dust number and the treatment of how mass is transferred between

dusts at the caustic.

In §6.6, we consider ways to determine the metric coefficients. Now, even though

we no longer have the neat formalism presented in §6.3, there is a feature of this

problem that enables us to find the metric components, numerically at least. This is

that gij at any point in our spacetime is a function of the integrated mass between

the origin and that point. Thus given the metric at r = 0, we can construct an

Euler scheme that starts at the origin and then proceeds to find an approximation

to gij anywhere on a t = const timeslice in M. Of course the reader might ask

why hadn't this procedure been adopted at the outset with the variables u?p\, thus

avoiding the need to introduce an orthonormal tetrad. The only answer to this is

that the construction of the computer code was an evolutionary process and that this

was realised perhaps later than it should. It possibly also provides us with equations

that contain fewer terms. In any case, this is work discussed in §6.6.

Finally, in the last section, we shall present the initial conditions and a summary

of the procedures used in the program. The expectation is that the reader will find a

lot of the material presented in this chapter to be rather abstract, a consequence of

the fact that we are, in essence, trying to describe a computer program that evolved

over a number of months. To try and bring this information together into a coherent

set of processes, we shall list, and then dry run so to speak, the procedures that

constitute a single time step. Whilst doing this, it is hoped that the reader will gain

an understanding of the ideas thus previously presented.

At some stage, we shall need to define the initial conditions. We choose to do

so at the end. The reason for this is that to define our variables on an initial t = 0

time slice, we need to know what variables we are dealing with and of course we

don't. Thus we shall try to construct the argument in general terms. This, in actual

fact, is virtually impossible, for the program does make some assumptions on the

type of caustic we wish to model. Therefore, so as to make the reader aware of these

assumptions, we provide a global picture of the caustics we are considering. This can

be described quite quickly. We suppose that there exists a point, (rc,0) at which the

cusp forms. This point is analogous to the axis of symmetry considered in the gravity

free case. Moreover, we consider our velocity distribution about r = rc, to look like

that in the gravity free case about x = 0. Thus, ujL < 0, vh-, = 0 and ujL > 0. In
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addition we suppose that if r^ = xj x represent geodesies, then r^ > rc, r(2) = rc

and

§6.2. Synge's formulation of spherically symmetric spacetimes.

In this section we shall be primarily concerned with the geometrical aspects of

the problem we are considering. That is to say, given the components of the Einstein

tensor, can we obtain the metric. Of course, if we can do this, then due to Einstein's

equation, we automatically have the metric components as functions of the matter

variables. This procedure, however, produces complications and because of this, we

choose to defer our discussion on the inclusion of matter until the next section.

Now we said that for simplicity in the components of the Einstein tensor, curva-

ture coordinates will be adopted. This means that the line element for this system

becomes

ds2 = eadr2 + r2dcx2 - e^dt2, [6.2.1]

where da2 = dO2 + sm26d<f)2. The quantities, ea(*'r) and e7^'7"), are as yet, undefined

functions of t and r, however, we assume that they satisfy the following boundary

conditions:

e«(t,o) = ey(t,o) = 1?

or equivalently,

) = 0. [6.2.2]

This is the condition for elementary flatness [S]. Its formal definition requires that

the ratio of the circumference of a small circle to its radius is 2TT. In more mean-

ingful terms, however, this is equivalent to the assumption that spacetime becomes

Minkowskian as r —• 0. It is simply a different, but analogous assertion to that

requiring the spacetime to be Minkowskian in the limit as r —> oo for asymptotic

flatness.

Using the above form for the metric, we can now calculate the components of

the Christoffel symbol, the Riemann tensor, the Ricci tensor and finally the mixed
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Einstein tensor. We find that the only remaining non-zero components of Glj are

G i = r — r e a (1 + r7 i ) , [6.2.3]

/^2 /^3 -a ( *• 1 2 1 - 1 , 1 - 1 , 1 \
u 2 = w 3 = e I — 7 n 71 r 71 -\—r a i H—0:171 I

+ c"T f-«44 + i« 2 - -a 4 4)

G4
4 = r~2 - r-2e~a (1 - m i ) [6.2.4]

and

eaG\ = - e 7 G 4 i = - r - 1 ^ , [6.2.5]

where the subscripts 1 and 4 represent partial derivatives with respect to r and t

respectively. This is quite a remarkable result for we can see that equations, [6.2.3]

and [6.2.4], can be integrated to give a and 7 as functions of Glj. For ea we have

from [6.2.4] that

r2G4
4 = 1 - e~a (1 - mi ) ) = 1 - TT (re~a) ,

CJT*

which implies that

lG\dr./
r Jc(t)

The function, c(t), is arbitrary, however, if we use one of the conditions for elementary

flatness, this can be eliminated. We obtain the result,

-a = 1 - - f r2G*A dr.
r Jo

In a similar manner we can now integrate [6.2.3]. This differential equation can be

rewritten as

a 7 e - i j
— = re G 1
or r

rr ea — 1
7 = / re"G 1 dr

Jo r

where again, the elementary flatness condition has been used to determine the func-

tion of integration. Alternatively, we can obtain a different formulation for 7(2, r)

simply by subtracting [6.2.4] from [6.2.3]. This gives
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7 = -a - I' rea (G\ - G4
4) dr.

The above ideas can be summarised by saying that we have now found a(t, r)

and 7(£,r) as functions of G44 and Gl\. This, given Glj, completely determines

the metric. It can be shown [S], using [6.2.5] and the identity, V{G*j = 0, that the

remaining unconsidered, non-zero components of (7, i.e., Grl4, G4i, G2i and G33, can

be written in terms of G4$, Gl\ and their derivatives. This means that we have two

fundamental functions, either a and 7 or G'i and Cr44, that describe the geometry of

our system. If we do have some matter with energy-momentum tensor, T, then only

two of its components need be used to determine the metric components. Moreover,

no matter what form our energy-momentum tensor takes, the limits between which

we integrate imply that at any point the metric components are determined by the

mass that the shell passing through that point encloses. Although we promised not

to include matter within this section, we shall finish by presenting these results in

terms of T1J:

- / vlT\dr [6.2.6]
r Jo

and

i J i - T4
4) dr [6.2.7]rea

or

7 = / — — - + AcreaT1i dr. [6.2.8]

§6.3. Synge's formulation applied to spherically symmetric dusts.

Equations [6.2.6]-[6.2.8] tell us how to relate the metric components to an arbi-

trary energy-momentum tensor. In this section we shall define Txj and therefore the

kind of matter we wish our spacetime to have. We should stress that the equations

that constitute the model of caustic formation, which we are setting up, will not be

presented here in this section. Instead, we merely plan to define our matter in such

a way so as to be compatible with our model. In other words, the aim of this section
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is to simply take equations [6.2.6] and [6.2.8] and develop them further by specifying

the right hand side in terms of the mass or matter variables that describe a dust.

Now, in the Newtonian discussion we modelled caustic formation by considering

converging dust particles. In the General Relativistic case, we do the same thing.

With the notion of a dust given in chapter one, we are able to immediately write

down the energy-momentum tensor for this kind of matter to the future of the caustic

set. That is to say, since a dust (collision-less fluid) implies zero pressure, we have

This definition involves two new functions, fi/p\ and vrp\, which represent the proper

density and 4-velocity of a dust indexed by p. For the moment, we shall assume

that the density is simply a given function. The velocity, however, is defined by
v(p) = dx\p)ldr, where x\ s represents the components of a geodesic along which

particles from dust p might travel and r is the proper time. For convenience we shall

normalise the velocity so that v%(p)
v(p)i = — 1-

If we picture our spacetime as a single entity, then regardless of the number of

dusts, we again consider our matter continuum to be constructed as a series of shells

(Ref. §2.1.). Since we are dealing with spherical symmetry, if we project these onto the

rO(j) plane we obtain a set of concentric hollow spheres. It also means that fluctuations

in the density and velocity are in the t or r direction only, so our 4-velocity becomes

of the form,

V(P)=

If we use the condition that v\p\V(p)j = — 1, then this becomes

v(p) =

which is useful since we now only need two variables, fi/p\ and v) N, to specify our

matter.

Clearly, equation [6.3.1] represents the energy-momentum tensor for a multi-dust

region in our spacetime. If we choose A; equal to 3 then within the context of a

spherically symmetric dust exhibiting shell crossing singularities, ft(S) becomes a
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simple fold catastrophe (ref. §4.1). Here, n:TM —• M represents the projection

map and S C TM, the tangent bundle surface generated by x\ y For the region not

enclosed by the caustic we have k = 1 and we can drop the dust index. The simplicity

of [6.3.1] hides the fact that when inserted into [6.2.6]-[6.2.8], the metric components

become complicated functions of the 6 mass variables: fin), vh)i At(2)) V(2V ^(3) an<^

vhy This means that gij becomes a function of 3 velocity vectors and is therefore

determined by quantities defined on 3 disjoint regions of S. Since the acceleration of

any particle is a function of the metric components, this corroborates the description

of the gravitational interaction given at the end of §2.1.

With the above form for Tlj, however, we encounter the first problem with Synge's

formulation—by inserting [6.3.1] into [6.2.6], we obtain an integral equation for e~a

that involves ea as part of the integrand. This means that we no longer have a nice

functional formulation for the metric components. To surmount this problem we

introduce a tetrad, ea, of orthonormal vectors to act as a new basis for TM at any

point in the manifold. Using this formulation, a vector with components, v\ relative

to the coordinate basis, di, will have components, ua, with respect to the basis, ea,

such that ua = e°,-t;\ Here a = 1 , . . . ,4 (dim M) and the matrix, (ea,), is invertible

with (ea,-)~ = (e a ' ) . Now, for curvature coordinates the vectors, di, are in fact

orthogonal; a direct consequence of having a diagonal metric tensor. This means that

we can choose the ea to be d, but rescaled so that their inner product, with respect

to the Minkowski metric, is unity. Thus we have

ei = e^d/dx1, e2 = e2
2d/dx2, e3 = e^d/dx3, e4 = e4

4d/dx4, [6.3.2]

implying that (ea ') is also diagonal. Using the condition, </(ea,ea) = 1, the above

scaling parameters, e,1 (no summation implied), can now be identified. We have

and so obtain the result:

e2=

84



We can now determine the relationship between the components of v and u. We have

that ua = eaiv* and therefore,

We also have ejua = ejeaivl = Sjv1 — v> and thus,

The upshot of all this is that we now have a new function describing our matter,

i.e., urp\. We shall see that by rewriting the energy-momentum tensor using this

tetrad formalism, the critical components of T*j become independent of gij. Now,

from [6.3.1] we have
3

and in particular,

P=\

= E HP)U\P)UIP)
p=l

and

P=\
3

Although not relevant to the current discussion, we shall include the Tl± component,

E
P=\
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This will be required in the next section.

Finally, if we insert [6.3.3] and [6.3.4] into the equations that were developed in

the previous chapter giving the metric coefficients as functions of Tlj ([6.2.6] and

[6.2.7]), we obtain

and

7 = - a + K f re* £ ,{p) (u\p)u\p) + u\p)u\p)) dr. [6.3.7]
p=l

Of course, if we use the normalisation condition imposed on our velocity vectors, we

find that

V\P)V{PY = v(p)v(P)9iJ

implying

= ulp)u\p) - u\p)u\p) = - 1

so that the left hand side of the above equations become functions of only six mass

variables as expected.

Thus the problem with Synge's formulation applied to spherically symmetric dusts

is solved, i.e., one can find a and 7 at any point in the spacetime given firp\(t,r) and

uj \(t, r). At first sight this seems like an extremely useful result, however, as we shall

show in §6.5, when we consider writing the proper density in terms of a conserved

mass, metric components reappear inside the integrals for a and 7. There is no cure

for this new complication and to get around this we must choose an appropriate

integration scheme.

§6.4. Numerical evolution of a spherically symmetric dust.

The earlier part of this chapter presented a method of obtaining the metric com-

ponents, i.e. ea and e7, as a function of the mass descriptors, u) \ and fJ-tp), for a

spherically symmetric dust. Whilst we concentrated on obtaining these expressions

we did not discuss in any detail the model we are trying to set up. In other words,
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we defined our matter in a way immediately applicable to modelling caustic forma-

tion, but neglected to describe how this matter evolved. In this section, therefore,

we present the model as a set of differential equations that determine how we must

evolve our dusts. Since we are interested in determining the curves that our dust

particles follow, it is clear that the geodesic equation will be the key equation and

our problem really boils down to solving this. We shall opt for a numerical solution,

primarily because of the highly non-linear differential equations that we expect to

obtain. This, of course, is a characteristic of formulating physical problems within

the context of General Relativity.

Now, the equations we wish to solve are [6.1.1]—[6.1.3]. For convenience, we shall

restate them here:

& * -KJ2 T^ = -K £ Hp)v\p)v[py [6.1.1]
p=\ p=\

and

^ = 0. [6.1.3]

The first equation, [6.1.1], defines the metric in terms of the mass parameters. This

was discussed in great detail in §6.2 and §6.3. [6.1.2] is, of course, the geodesic

equation and as mentioned above, this tells us how we must evolve our dusts. It is

really this equation that we need to solve; the other two can be thought of as there

simply to supply us with information so that all terms in the geodesic equation are

known. The final equation is the General Relativistic equivalent of the conservation

of matter equation, [4.1.3]. This provides us with a single piece of information which

allows us to determine the density as a function of the metric components, each dust's

4-velocity and a conserved mass (more of this later).

We shall start by explaining the techniques used to numerically solve the geodesic

equation. Of course the density function should be defined since clearly it will ap-

pear within the geodesic equation in one form or another. In order to simplify the

discussion, however, we shall delay specifying the functional form of /x/p\, but assume

that it is known. This enables us to quickly present the ideas for solving the geodesic

equation. The reason why we adopt this segmented approach is because, in actual
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fact, it is the specification of firp\ and the rules by which we must treat this function

on the caustic that provides the complexity of the problem. In other words, we could

say that the real heart of the problem is understanding how the crossing of shells

and therefore the transference of matter between dusts effect the geodesies. These

phenomena alter our equations exclusively through the density function.

Now, the Euler method is perhaps the simplest that one can use to solve differen-

tial equations and therefore, as a numerical technique, it presents an adequate starting

point to model the evolution of a relativistic dust. By way of revision, suppose we

have the differential equation,

for some / . Then, if we know r(t) at t = tn say, we can write down an approximation

to the solution for r(t) at t = tn + St as follows. If r^n\ represents r(tn) and tn+\ =

tn + St, we have, from [6.4.1],

In the case we wish to consider r represents a geodesic, which we now denote by r^,

along which a particle from the pth dust might travel. The function, / , must then

represent the velocity with respect to our coordinate basis, i.e., f(t, r^) = dr/p)/dt(t).

Thus we have, for a geodesic of dust p,

r(p,n+l) * r(p,n)

v1

tfl+1 — tn) —I"J—
V(p,n)
..1

U(p,n)

= rM + (tn+i - tn) . U\'n)
 1 e(^)-g(»))/2, [6.4.2]

where we have used the requirement that the vrp\ be normalised. It can also be seen

that we have developed the notation further. From now on we shall discriminate

between coordinate and non-coordinate indices by grouping the latter in brackets.
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Moreover, for clarity in the argument, only those indices relevant to the discussion

will be grouped, but we will try to explain this at the appropriate juncture.

The numerical scheme is not complete for we have yet to find a way of estimating

the (tn+i— tn) coefficient in equation [6.4.2]. For this the geodesic equation is required,

however, before we consider this, it might be worth listing all the procedures that are

required in a single time step of a computer simulation. Although at this stage, it may

seem rather abstract, the hope is to provide the reader with the chance to formulate

a global picture of what is going on. Thus, the logical sequence of events for a single

geodesic are as follows:

1. Given all variables evaluated at t = tn, i.e., r(pn\, u}pn\ and M(p) (which

represents a conserved mass for this geodesic and will be defined in the next

section), calculate ea(") at r = r(P,n) (process not yet defined).

2. Using information from step 1, calculate e7(") at r = ripn-\ (process not yet

defined).

3. Using information from step 1, calculate /^(p,n) at r = ftpn\ (process not yet

defined).

4. Using information from steps 1, 2 and 3, calculate u) n+l-, (solution of geodesic

equation and process not defined).

5. Using information from steps 1 and 2, calculate r^pn+^ (equation [6.4.2]).

We can use this list of procedures as an aide-memoire in the rest of this chapter to

ensure that the program and all required analytical calculations are described. Once

this is done, we shall revisit this list and fill in the blanks.

The first blank that we shall fill in is a description of how to obtain an approx-

imation for u)pn+1\, given every other function evaluated at t = tn. To do this, we

again use the Euler technique with the result that

du) •,
U\p,n) + (*»+l - tn)-jf-(tn). [6-4.3]
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The (tn+i — tn) coefficient is essentially the time derivative of the velocity. This

information can be supplied by the geodesic equation provided we can write it in a

form that we can use. In other words, we require equation [6.1.2] in terms of the tetrad

velocity, u? _*. Until now we have been formulating our ideas in terms of discrete time

steps, if we return to the continuous picture then we can drop the subscript n and

simplify the notation. Thus to obtain du\ \/dt we have,

V . w « w = 0 [6.1.2]

= * «(P)Vea (n\p)eb) = 0

eb + ua
{p)u\p)T

c
abec = 0

uJoufor^ = 0,

where Tc
ab are the connection coefficients with respect to the basis, e0, defined by

Ve<Jej = r c
a je c (To avoid confusion, the Tc

ab will never be evaluated so that com-

ponents, F1!! for example, will always refer to the connection with respect to the

coordinate basis.). Note also that ea \ucr %J is a function defined on M. To proceed,

we need to determine the relationship between Tkij and r c
a j . Now,

Veaefe = eJVi

f h.

and since di = ea,ea, we therefore have

Tc
ab = ejdi (eb>) ec

3 + ejeJ

Inserting this result into our geodesic equation gives

ua
{p)ea

ldi (uc
(p)) + ua

ip)u\p) (ejdi (cj>) eej + eje^e^) = 0,

then since v', \ = dxl, \/d,T, we have uf \ea
ldi = d/dr resulting in,
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By the normalisation condition, u? \Urp\a = ~ 1 , we automatically have u, \ as

a function of uK and so therefore we only need to solve the r component of this

equation. Thus for c = 1,

[6.4.4]

meaning that in order for us to write our geodesic equation in terms of known quan-

tities, we need to determine the connection coefficients. This, in fact, is easy because

the metric in curvature coordinates is a diagonal matrix. Thus by simply inserting the

form for gij that we have into the definition of P ' ^ , we obtain the following results:

r X n = x" ! ' r 1 u = - a 4 and T1^ = -ey~a-yi.

Equation [6.4.4] then becomes

it = -h
This equation is now beginning to look like the form that we require. The left

hand side is giving us the derivative of u} N, albeit with respect to r (although this is

not a problem), whereas the right hand side is a function of the mass descriptors, the

metric components and derivatives of the metric components. In fact the troublesome

metric derivatives can be removed using the G^\ and (7*4 components of the Einstein

tensor (equations [6.2.3] and [6.2.5]) in conjunction with the energy-momentum tensor

(equations [6.3.3] and [6.3.5]). In other words, since

c*4 = —r

and

e
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our geodesic equation becomes

9 = 1

We can remove the derivative with respect to r and replace it with one with respect

to t simply by dividing by dt/dr = uK = uKe~ 7 / 2 . In addition, the summation

signs can be removed if we allow (p,q,r) to represent some permutation of (1,2,3).

Thus finally,

To summarise, the above analysis results in an equation that relates the time

derivative of uK to known quantities. If we wish, we could evaluate both sides of

this equation at t — tn so that the result is immediately applicable in the numerical

scheme summarised by equation [6.4.3]. In essence then, given rtpn\, u) \, /̂ (p,n)>

ea(") and e7("), we have developed numerical techniques with which we can calculate
r(p,n+l) a n d u\p n+i)- This completes parts 4 and 5 of the list of procedures that need

to be implemented in a computer program.

Before we move on, we should say that equation [6.4.5] is quite important in its

own right. It is analogous to the force equation presented in §4.1 (and indeed reduces

to it in the low velocity limit as the next chapter will show), but is clearly far more

complicated. It is quite believable, from a superficial glance, that there may indeed

be certain additional terms that are determining the physics of cusp formation. That

is to say, if we could perform an asymptotic analysis in much the same way as we did

for the Newtonian equations of motion, we might find extra, non-linear terms that

remain at the end of this process. On a less profound level, we can see from equation

[6.4.5] that the terms containing fiip\ cancel. This means that as rtp\ approaches the

caustic it is unaffected by its own local density except via its own integrated coulomb

field. That is to say, the only effect that fi^ has on a geodesic, rip\ say, is due to the

integrated mass between 0 and r^ distorting the spacetime metric.
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The last thing to point out regarding this equation, is that as noticed by Clarke

and O'Donnell [CO], it is possible for the derivative to remain bounded even on the

caustic. To explain, suppose that p, q and r equal 1, 2 and 3 respectively. Then as r^

approaches the caustic, the term on the right hand side of equation [6.4.5] containing

//(2) has the potential to become infinite. Let us consider this term. We have

-Krn{2)u\2)

or equivalently,

-KrH2)u\2) [u\1)yjl + u\2)u\2) - u\

Now, there eventually becomes a point (on the caustic) where r^\ and rv2) coexist.

Thus, although /i(n and /j(2) both tend towards infinity, UJLN — uL-, tends to zero and

it becomes possible for the above product to be finite on the caustic.

§6.5. Approximations to the dust continuum and determination of the
density function.

We have now come to a point in our discussion where we cannot proceed any

further without discussing the density function. The reason for this is that in doing

so, we define a quantity known as the conserved mass which crops up in the processes

to determine the metric coefficients; the last two blanks in our list of procedures. In

this sense, therefore, ^itp\ is more fundamental and so we discuss this next.

This section is likely to be of some length for not only do we need to define

the density and how it relates to the concept of conserved mass, we must define the

representation for the dust continuum that we wish to use in our computer model.

This, of course, leads us into the discussion on how to manipulate our information

regarding mass when our geodesies reach the caustic; joining conditions in other

words. Here we will have to talk specifically about certain techniques used in our

computer program to track particles as they move and cross, as well as keeping a

record of which dust they are a member. We therefore leave this to the end of this

section.

We begin by supposing that M(p) represents the contribution to the total mass in

a region, U, of our spacetime, made by particles that are members of dust p. Then, as
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required, if U represents a t = const time slice orthogonal to U(p), we can construct a

relationship between these quantities and each fi<p) (Note that the evolution equations

discussed in the previous chapter essentially approximate our spacetime by a series

of t = const hypersurfaces.). To do this we shall firstly define the idea of a conserved

3-form on M that represents the mass flux of a single dust having a unique flow vector,

v. This allows us to define as an integral, the relationship between Ms, the total mass

in U due to our single dust, and /z, its density. Having done this we then modify this

definition so that it becomes applicable to the case that we have, namely a multi-dust

region in M. The result will ultimately constitute the functional definition for the

densities that we have been neglecting to specify.

Now to determine this 3-form we note that for a single dust,

which by equation [6.1.2] and [6.1.3] implies that,

(nvj) . = 0.

We now write the left hand side of the above equation in terms of the co-vector, v\,.

Thus,

d

- - * (-fy (y/-9lj'9jkvk) dx1 A dx2 A dx3 A dx* ]

= - * Qjdj (V=gnglkvk) eimnpdxj A dxm A dxn A

= - * d f —^-^glkvkeimnpdxm A dxn A dxp j

= — * d* \uv}.dx J

so that

d * (/iub) = 0,

meaning that * {ftv\,) is a conserved 3-form [N]. It is this that represents the mass flux

3-form for a single dust. To see this we now show that * (fity) can also be written as
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fj,ivatM, where CUM represents the standard volume form on M. The quantity ivatM is

said to be the restriction of OLM to a hypersurface orthogonal to v, i.e. U, and thus the

integral of \IIVOLM is the total mass in this region. This calculation also consolidates

the two definitions for M^(U) given by equations [4.5.1] and [4.5.2]. So,

= *

A dxq A dxT

A dxq A dxr

as required.

We can summarise the first part of this section by saying that the conservation

equation for a single dust (namely [6.1.3]) implies the existence of a conserved 3-form.

The integral of this 3-form over a surface in M, orthogonal to v, is given by

= Ju* ^V^ = Ju ^iv<XM = Ju
and represents the mass in U due to a single dust with unique flow vector. Finally

we note that if U always corresponds to a t = const surface, then Ms is a constant,

a result of the fact that * (//V|>) 1S a conserved 3-form. We shall use this feature to

remove the integral signs, thus obtaining the density function.

The next question is how do we modify this definition to account for the fact we

wish to consider a multi-dust region in our spacetime. For this, it is worth bearing in

mind that this situation is equivalent to considering a region that contains a single

dust with a non-unique velocity vector. To solve this problem we recall §4.5, which

discussed how to define the notion of density in a Newtonian formulation of the

problem. Because of the fact that TT was not orientation preserving when restricted

to S C TM, we needed to use the idea of a of pseudo-1-form on M to define pip\

so that it transformed between TM and M in the correct manner. For the General

Relativistic case we have a similar scenario and we therefore define fj,rp\ to reflect this.

Thus, as in [4.5.2], we define the total mass in U C M due to dust p to be the integral
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of the proper density over a, t = const hypersurface, orthogonal to V(p\. This means

that

M(P) =

where a^ is the volume form on this surface such that a^ = (—l)p+1iv, ,OCM• As in

the Newtonian case, the factor of (—l)p+1 is important for it takes into account the

fact that 7T is not orientation preserving (ref. §4.5) and insures that the atp\ all have

the same orientation with respect to

We now proceed to remove the integral signs in equation [6.5.1]. The previous

calculation showed that for a general hypersurface orthogonal to

e u < f e J A dxk A

If we make this a i = const hypersurface, then the above becomes

= V-~9v(p)dx1 A dx2 A dx3.

This means that for this particular choice for U, the integral in [6.5.1] can be formu-

lated in terms of the more familiar integral over IR4,

M{p) = ( -1 /+ 1 ^ V=9Hp)vtv)dxl A dx" A dx* t6-5-2]{p)
/•27T fit fOO

/ /

fit fOO

/o /o V=twU#
firJ

and this is essentially the relationship between M(p) and fiip\ spoken of earlier. This

result can be developed further; suppose we define M^(r) as the integral,

M{p)(r) = 47r(-l)»+1 jT M ( p )^p )e
a /2e^2r2 dr.

Then this evaluates the mass in a region, [0,r], of a t = const hypersurface. Now,

since geodesies in dust p never intersect (an artifact of the multi-dust model that we

have set up), it follows that M^ \r^pn)) is a conserved quantity. This is because the

region enclosed by rip n\ is comoving with respect to dust p. In other words, since
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there is zero flux of dust p across the timelike surface swept out by the boundary of

this region, i.e. r = ?*(P)n), the mass inside, i.e. M<p\ yip))-, must remain constant.

Now consider a finite number, N, of geodesies, indexed by i and denoted by r^p n,).

We shall order these curves such that 0 < 77Pj0),-) < r/q,o,j+i) < r(r,o,N) o n the initial

time slice, but place no restriction on their order for arbitrary t. p, q and r represent

dust numbers and are not necessarily different, however, it is important to realise that

as these curves may cross, it is likely that these dust numbers will change. Returning

to our discussion on conserved quantities, it follows that Mrp) (r^o.t)) 1S conserved

as is,

M(p,i) = M(p)

The latter we shall call the conserved mass between the zth geodesic and its nearest

neighbour in the direction of the origin on the initial time slice. In most cases, at

any time, the dustnumbers, p and q, of adjacent geodesies will be the same. The only

exception to this is near the caustic where, due to the crossing of shells, we might

have, »"(ijWji_i) > f(2,n,i)i whereas initially we had, rn 0 t_i) < 77i,o,t)- The Mip{\ are

important and we shall return to these later when we discuss ways of discretising the

dust continuum to implement in a computer program.

The next step in this process of obtaining an expression for fi^ is to remove the

integral sign in equation [6.5.3]. As mentioned, because geodesies corresponding to

dust p never intersect, we can conclude that

M(p) (rw) = H

is a constant. This equation can, of course, be rewritten in terms of a differential

equation in M/p\(r). We obtain the result:

dM{p)

1

dr
[6.5.5]

which defines our density function, thus completing one of the aims of this section. If

we are associating with each geodesic a conserved mass (as in equation [6.5.4]) then

approximately we have

(p,n,i)
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where again q is most likely equal to p, the exception being near the caustic. The

introduction of the modulus signs allows us to remove the (—l)p+1 factor. We can

do this since our initial conditions (which we define later) dictate that M(p) increases

as r increases away from the origin. When geodesies cross, however, we can see that

the conserved masses, M(2)t\, although positive, decrease as r increases thus making

dM(2)ldr negative. It follows that (—\)p+1dM^/dr is always a positive quantity and

we illustrate this by inserting the modulus signs. We shall use this approximation

wherever fi^ occurs in the either the geodesic equation, [6.4.5], or the metric defining

equations, [6.2.6] and [6.2.7].

With the ideas developed above in mind, it becomes a relatively simple matter to

visualise the representation for the dust continuum that we shall use in our computer

program. We discretise our continuum by considering a finite number of reference

geodesies and associate with each, three numbers representing the position, velocity

and a quantity that is the conserved mass between it and its nearest neighbour on

the t = 0 time slice. We can then picture the interaction between dusts if we imagine

a series of small springs attached to each other, end to end, along a line. The refer-

ence points would be represented by the joins and the conserved masses, the springs

themselves. A compressed spring would mean a region of high density, a stretched

spring, low density. As we move each join axially, we model the movement of our

reference points, and if we fold the line of springs back on itself, we model the crossing

of adjacent geodesies and the formation of the caustic. In the case where we have a

fold, any join will coincide with a spring that is part of the line going the other way.

Where a spring and join coincide, we have the situation where the density of dust p

say, is influencing the movement of particles on the reference geodesic corresponding

to dust q (q ̂  p). This is essentially how we model the interaction of shells in our

computer model and we stress again the fact that the strength of this kind of interac-

tion is controlled through the non-zero value for the density function, /i(»), evaluated

at rrq\ (recall equation [6.4.5]).

In the case where /j,/p\ is influencing the movement of dust particles along riq n ,),

we will need to calculate dMip\/dr [r(q,n,i))- To do this, we simply determine the value

of j such that r{p^j_x) < r{q^{) < r ^ j ) for p = 1,3, or r{2,n,j-i) > ̂ (g,n,«) > r(2,n,j)

for p = 2, and thus

r(p,n,j) r{p,n,)-\)
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The reason behind the change in direction for the inequalities in the p = 2 case is to

account for the fact that adjacent geodesies have crossed. Without this proviso, the

computer could never satisfy all the requirements stipulated by the combination of

inequalities and suffixes. If an i cannot be found then the right hand side is set to

zero. This models the possibility that r may not be within the 3-dust region.

Having defined the density function and this notion of conserved masses, we need

to describe how this information is carried through a caustic. There are, of course,

two cases; the first is the simplest and corresponds to a trajectory passing through

the caustic at an angle with the tangent. In this case we do nothing, the conservation

of matter tells us that what goes in must come out, and since no geodesies from the

same dust cross, the dust numbers do not change. The only physical effect is that the

acceleration may see a discontinuity due to the high densities associated with dusts

that are travelling parallel to the caustic curve.

The other case takes a little more care and to describe this we need to define a

few quantities. The C programming language provides a means to aggregate variables

of different types such as integers and doubles. These groups are called structures.

As each shell has associated with it a conserved mass, position and tetrad velocity,

we create a structure called a particle to hold this information. For N dust shells in

total, we simply create an N-dimensional array of these particles. With this notation

it is important to realise that since particlefij.position (i = 1 , . . . , N) holds the value

of r(p n ,•) and that we initialise this array at t = 0, then i essentially orders the

reference geodesies with respect to their initial position. In this sense, the i's in

particlefij.position and rtpn A are equivalent.

We are now able to discuss how the conserved mass is treated on the caustic. In

fact, with the above numerical variables, this process becomes virtually trivial. We

first of all define another integer known as the dustnumber for each geodesic and store

this within the particle structure. With regards to the numerics then, the caustic is

defined where two adjacent geodesies cross and to model the passage of particles from

one dust to another, we simple change the dustnumber for the appropriate geodesic.

We illustrate by example (and apologise for this is where the discussion becomes

specific in the sense of implied boundary conditions). On the right caustic we might

initially have two adjacent geodesies such that, r^o.t) < r(3,o,i+i) (This inequality

could be replaced by particle[i].position<particle[i+lj.position if we wished to explain
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the example in terms of computer variables.). Then if at t = tn, f73jnit) < r(3)n,i+i)>

whereas at a time step later, r/3 n + 1 ,\ > rv3 n+1,,+!), we relabel the dust number of

the (i + l)th geodesic to be 2 (equivalent to setting particle[i+ lj.dustnumber equal

to 2). Likewise on the left caustic, for if at t = tn, rn,n,i) < r(l,n,i+l)-> whereas for

t = tn+i, r(i,n+i,i) > r(i,n+l,i+i)> w e relabel the dust number of the ith geodesic

to be 2. Returning to the original question of how the conserved mass is treated

for particles 'touching' the caustic, we find the answer is again do nothing. The

conserved mass between the ith and (i + l)th geodesic is always the mass between

these curves regardless of whether they have crossed or not and thus regardless of

their dust number. The only complication that could arise is due to the fact that the

'direction' of the conserved mass flips from going to the left of the geodesic, to going

to the right when two curves cross. This would provide a negative dMtp\/dr and thus

possibly a negative density, however, this is avoided by the modulus sign in [6.5.5].

Of course it is possible that during any time step two or more particles may be

exchanged between dusts. This case is still valid for it simply means that the shell

crossings are happening faster than our smallest time step. To check for this we

must, for the p = 1 case, sequentially repeat the above process checking from r ^ o ^ )

to r(i,o,i) in sequence. Here n\ corresponds to the largest integer such that r ( l n n i )

exists and we should understand that this is a dynamic variable; n\ reduces by 1 each

time a reference geodesic 'touches' the caustic. For the p = 3 case, we have a similar

situation; we repeat the process from r ^ ^ ^ j sequentially to r ( 3 0 m, where now n3

is the smallest integer such that 773nn3) exists.

The last point to mention regarding the assignment of dust numbers is that

shell crossing can only occur at f"(i o.ni)* ^ o m y a single particle from dust 1, for

example, 'touches' the caustic during a time step, and at r ( 1 0 ni\ and ^(i^nj-i), if

two particles are exchanged and so on. If we find ourselves in the regime where the

geodesic corresponding to p = 1, i say, crosses that corresponding to p = 1, i — 1,

with geodesic i + 1 still a member of dust 1, then we have an error. In physical terms

this is a perfectly acceptable phenomena, however, this corresponds to a multi-dust

region where k > 3. Since our model is rigid in the sense it cannot account for varying

A;-values, we must abort the calculation.
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§6.6. Determination of metric coefficients.

It has taken a while, but we are now at a stage where we have denned all of

the mass variables. The only two processes that we have left on our list to describe

are methods to determine the metric coefficients, ea and eT. We begin with the

former. If we consider equation [6.5.5] alongside [6.3.6], we can see that again metric

coefficients occur within the integral that determines ea. When we had this problem

before we were able to get around this by adopting a tetrad formalism. In this case,

however, there is no option other than to reformulate the integral equation in [6.3.6]

as a differential equation in ea, which we must solve.

For the moment we assume that we are still considering a continuous rather than

a discrete model. By inserting matter into equation [6.2.4] via the Einstein equation

we have

dM,(p) = r~2-r
dr

e-*/2/(r) = 1 -

where

Putting y = re a gives

——
dr

-a -a
— roc\e ,

and so the above equation transforms to

» / ( r ) , ! _ » + » _ £
7- r r dr

(r). [6.6.1]

If we solve this equation numerically, we have a method by which ea can be de-

termined. To do this, we again adopt the simple Euler method starting from r = 0.

Thus if ytn){i] = r(n){«}e~a^'*> wh e r e the suffix {i} notation represents the geodesies
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ordered by current position rather than initial position (cf. r/nj\ where the i and j

might be different.), then

y(n){i+i} = </(„){,•} + (r(n){,+l} - *"(„){,}) -^ (r(n){i}) , [6-6.2]

where

[6.6.3]

Here the curves, f{p,n,j)i
 a r e determined by the requirement that j is the integer such

that rfanj^ < r(n){l} < r ( p n j ) for p = 1,3 or r^J-i) > r(n){i} > r(2,n,j)- The

derivative, dM^/dr \r(Pjn,j))i ^s ^ given in [6.5.7], but if a j cannot be found then

this contribution to the sum is set to zero. In any case we have

[6.6.4]

Note that this method of numerical integration jumps from shell to shell according

to each shell's position with respect to the origin and does not recognise which dust

each shell is a member of (hence the reason for dropping the p suffix in the above).

For example, as one performs this iteration for some time slice, tn, the position of each

consecutive shell would obey, • • • < r (n ){ t} < r{n){i+i} < f(n){i+2} < r(n){.+3} < • • •

for all i, whereas the corresponding dust numbers could look like, • • • —> 3 —* 3 —*

3 —> 2 —• 3 —> 2 —>2 —>3 —>2 —> 2 —> 2 —>••• . The crucial point is

that when evaluating f(r), and in particular ea(nK'\ even though the ith shell may

be a member of dust p say, the other two dusts play a role in evaluating ea(")W by

contributing a term proportional to their density. We also note that this method can

be extremely inaccurate since errors in dy/dr [f(n){i}) a r e compounded. This can

only be controlled by increasing the number of shells.

The final check to be made, if this method is to be used, is whether or not dy/dr

has a well defined limit at r = 0. Now,

dr T—*6 V v

and since

lim J— = lim e~a = 1
r_o V r r->0
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by [6.2.2] and limr_,.o f(r) exists, it follows that dy/dr has a well defined limit as

r — • ().

To enable us to implement the above procedure within a computer program it is

clear we need to have the particles ordered with respect to their current position. We

provide this information by constructing an array of iV variables that 'point' to the

information stored by a particular particle. This array of variables is called pointers.

In terms of the C programming language, the quantity stored by each element of

pointers is the address of the memory location that stores the information in the

particle that it 'points' to and initially, we have pointersfi]=hparticlesfi] where the k.

stands for address.

We can access the information stored in a particle quite simply since we know

that pointersfi]—* position is equivalent to particlesfj].position if pointersfi] 'points'

to particle fj], for example. This means that the actual evolution can therefore occur

either by moving the particles or by moving the pointers and in fact we for convenience

we shall choose the second method. To ensure that the i in pointersfi]—>position,

essentially orders the geodesies with respect to their current position, we perform a

bubble sort which exchanges pointers between particles according to increasing radial

position. Moreover, pointersfi]—> position is clearly equivalent to the notation, 7*(n){«}>

introduced earlier on.

The final point to make regarding the fact that the evolution occurs with respect

to pointersfi] rather than particlesfj] is that at some stage, when we check to see if

trajectories cross for example, we need to know i given j and visa versa. To provide

this information we introduce another integer variable within our particle structure

called pointernumber. This variable is set to be equal to i (pointers[i]—*pointernumber

— i) prior to the simulation, but during the above bubble sort, we also exchange

pointernumbers. This insures that the equation, pointersfi]—> pointernumber = i, is

always true. This gives us a route from knowing i to knowing j and back again if we

so wish.

The last metric component, e~7, is much easier to determine; we simply perform

the integration of [6.3.7] as all quantities are given. The technique used in the actual

program is simply to approximate the curve within the integral sign by a series of

rectangles, whose sides correspond to f^^, which are then summed. We can see

103



directly from equation [6.3.7] that again, at each rectangle being considered, the

density of all dusts plays a role in calculating e~1.

§6.7. Initial conditions, summary and example of results.

This chapter has been dedicated to presenting the techniques used in a computer

program designed to model the formation of caustics. We introduced certain variables,
r(p,n,i)i u\p n i)

 a n d ^{p,i)i which describe the dusts and formulated a numerical scheme

to solve for these quantities. In this section we shall collect together all the ideas and

talk our way through a single iteration referring to all relevant equations. We shall

begin at the t = tn time step, stating what we know, and what we need to find out.

This means that we will essentially revisit the list of procedures laid out in §6.4. This

approach of summarising this chapter avoids the specification of initial conditions.

These will be quickly presented towards the end.

1. At the beginning of each time step, we suppose that for each reference

geodesic, f*(p,n){i}> u\pn){i\ an<^ ^(p){i) a r e known. Note that this notation is

that of §6.6 where the suffix {i} labels the geodesies with respect to current po-

sition, equivalent to working with the pointers computer variable. Note also that

M(p){,} = Mip,) for the initial time slice. Now the first step is to calculate ea(")

at r = f(n){i} f° r every i. The method is an Euler technique, i.e.,

{ r ) [6-6.2]

and

dy dM
{P) S . - J ) ) • [6-6.3]

Here, for pointersfi]-^dustnumber = p, we determine j such that ^(n){i} = r(p,n,j)

so that

dr
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For pointersfi]—*dustnumber ^ p, we determine j such that, r(p,n,j-l)
 < r(n){i} <

r(P,n,j) for p = 1,3, and r^>nj-i) > r(n){,} > r ( 2 n j ) otherwise. In this case

dM(p) \ _
,n,j)J -(P,n,j

(p,n,j)

The last step can be done because we introduced the integer, pointernumber, into

the particle structure. Finally,

y ( H } [ 6 . 6 . 4 ]

2. Calculate e7(") at r = f(n){t'} (final paragraph of §6.6) for every i.

3. Calculate /*(n){i} f° r e a c h «• This uses

where dM^/dr (^(p,nj)) is defined in 1 above. The above equation for the density

is equivalent to [6.5.6].

4. Calculate ul n , ̂ . i for each i using

dulsi-i

which is essentially equation [6.4.3], and

e
eft 2

i,n,j)^\q,n,j) {U(q,n,j)U\p,n){i} ~ Uip,n){i}u\g,n,j))

where j and k are defined such that, r (? „_,_!) < r (pn){ i} < r(g >B ̂  and r(rn>A._1

r(p,n){«} < r(r,n,k) ^T q,r = 1,3, and r ^ j ^ > r(p,n){t} > r(2jBji) and r(2)n)fc_1

r(p,n){«} > r(2,n,Jt) otherwise. This equation is equivalent to [6.4.5].
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5. Calculate r ( p n + 1 \m for each i. This process uses

u)
In) r— J j eV A ,

/ I I Of Of **"

which is equivalent to [6.4.2].

Of course, we cannot immediately proceed to the calculation of the n+2 quantities

because we have to check if any geodesies have crossed. Thus we should add:

6. Check for any geodesic crossings and adjust dustnumber accordingly. These

processes are described in §6.5, paragraph 13.

We now quickly present the choice of initial conditions used in our simulation.

The idea here is to copy as far as possible, the initial conditions obtained from the

zero gravity case (ref. chapter 3). Thus we chose (rc, 0) to be the point of cusp

formation, and define our iV geodesies such that they were distributed with a finite

interval between each, centred around rc. We supposed a uniform mass distribution

throughout M. This means that if D represents a constant density per unit area,

then the mass of each shell is given by Mu\ = D • (r(o){t})2- Finally, we chose the

velocity so as to approximately mirror that of the gravity free initial conditions. That

is to say,

(X ( 6 ( | r (0)W -

Here V is some user defined constant that has units of velocity. The choice of c in the

above exponential defines a multiplicative factor that modulates the f̂ (o){i} ~~ O\

term, so that for r(0)/,j « rc, fl — exp (6 ( r(o){*} ~ rc \~ c ) ) ) ^ 1? whereas for
r(°M»} ~~ r° ~ c ' (^ ~ e xP (^ ( r(0){»} ~" Tc\ ~ c ) ) j ~ ®' ^ i s mimics the initial con-

ditions for the simple gravity-free model (ref. chapt. 3) close to the cusp, but allows

for the velocity to tail off as f(o){i} ~ rc becomes sufficiently large. This enables us

to compare our results (fig. 5) with that presented in fig. 1.
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Fig. 5. Caustic produced by a spherically symmetric dust.
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CHAPTER 7. MATHEMATICAL APPROACH TO CAUSTICS IN
GENERAL RELATIVITY.

§7.1. Introduction.

The previous chapter described a model for caustic formation within the context

of a spherically symmetric formulation of General Relativity. We can think of this

as essentially being an extension to the multi-dust construction of the equivalent

problem in Newtonian theory: equations [5.5.1]-[5.5.3] were simply replaced by their

relativistic analogues. The differential equations that really constitute the model

were presented ([6.1.1]—[6.1.3]), and a method by which a numerical solution could

be obtained was proposed. This solution was based on the same initial conditions as

that for the zero gravity caustic discussed in chapter 3, about a new radial origin at

r = rc, and assuming a uniform density distribution for the initial time slice.

The initial reason as to why we chose to change tack and construct a computer

simulation of caustics within the framework of General Relativity was to try to grasp

some sort of understanding of the processes at work during cusp formation. This

implies the need for some sort of asymptotic analysis of equations [6.1.1]—[6.1.3] and

the plan was to perform this investigation numerically. In the end we chose the more

rigorous mathematical approach, which we shall now describe, and the numerical work

really became an exercise in formulating the General Relativistic problem correctly.

This explains the lack of results and conclusions in the previous chapter. Having said

that, we do not wish to give the impression that the work presented in chapter 6 can be

overlooked. In fact it is significant because it provides us with a deep understanding

of how each term in our defining equations should be formulated mathematically.

As examples of this we have the definition of the volume forms, arp\, such that

their orientation is always positive with respect to the orientation supplied by the

standard volume form («(„) = (—\)pJrliV/ ^M in other words), or the idea of writing

//(p) in terms of the derivative \dM^/dr\, and indeed the insertion of the modulus

signs. There are other examples, but these are particularly important for it was only

when we concentrated on formulating the pi(p\ in terms of derivatives of Mrp\, did

we understand the real significance of the effect that a non-orientation preserving

projection map, w, when restricted to S C TM, has on our equations. Specifically,
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this understanding forced us to interpret our density functions in terms of pseudo-

(m — l)-forms on M, insert the (—l)p+1 factor in the definitions of atp\ and a^

(found in §4.5), and also the (—1)I+1 correction in equation [4.5.3]. Thus, although

not eluded to in any of the previous chapters, it was only when the numerical work

was well under way did we begin to understand the intricacies involved with the

density functions. This enabled us to backtrack and correct some of the work that

had already been done, particularly on the tv space approach to similarity solutions

in the Newtonian formulation of caustics.

As mentioned, the intention is to investigate the shape of the caustic as we con-

sider a smaller and smaller neighbourhood containing the cusp. This would be equiv-

alent to the analysis of chapter 5 where we investigated the possibility that cusp

formation is independent of gravity. One might ask why repeat this analysis, or ask

this question again, when we have already established that in the Newtonian case at

least, gravity plays no part in cusp formation. Well the previous sentence essentially

answers its own question. General Relativity is considered to give a far greater insight

into the mechanisms behind the gravitational interaction than the simpler Newtonian

description. The equations that we associate with any problem formulated within the

framework of General Relativity are generally far more complicated and non-linear

than their Newtonian equivalent. It is therefore conceivable that gravity can in fact

play a part in cusp formation via the extra terms each equation has. Thus, to be sure

our original conclusion is correct, we need to repeat the analysis of §5.3 but based on

the equations supplied by General Relativity.

This chapter does just this. We choose the more rigorous method using the

asymptotic solutions developed in chapter 5. That is to say, we construct rational

algebraic curves along which we approach the cusp in a manner that allows us to

define a limiting process based on the group of transformations given by [5.3.1]. In

order for us to be able to define such a process, certain assumptions need to be made

concerning the continuity of the metric components: i.e. we assume that a and 7

are continuous functions. This requirement ensures that the curves we define are

continuous particularly as we pass through the caustic. This will be explained in

detail in §7.4. but we can summarise by stating that we require the densities to be

integrable.
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En route to doing this work, we shall consider another limit to our General Rel-

ativistic equations of motion. This is the Newtonian limit where we assume all ve-

locities are small compared with c, the speed of light, but still keeping any mass

contributions. This statement needs denning and to do this we must first of all con-

vert equations [6.1.1]—[6.1.3] so that all variables are in terms of physical units. As

is generally the case when discussing aspects of General Relativity, we assume that

c = G = 1 for simplicity. This assumption is equivalent to setting all dimensions

equal to that of length and the resulting equations are said to be written in terms of

geometrised units. Thus to begin, we must reinsert the c's and G's. This process is

discussed in the next section.

Having achieved this, we can now non-dimensionalise our General Relativistic

equations of motion. This is done in the latter parts of the next section by replacing

any variable, such as r for example, by a product of a constant that holds the units of

that variable, and a dimensionless scaling factor. Thus in our example we might have

r = I~NL, where L is a constant and having dimension length, and r^ is some non-

dimensional parameter. If we introduce M and T to represent the dimensions of mass

and time respectively, it becomes possible for each term in any equation, to separate

and group together all the constants providing the units for that particular term, and

all the dimensionless parameters that are describing the physics. If we multiply our

equation by the relevant dimension, i.e L, T or M, we obtain dimensionless groups

that can tell us which terms are significant in the differing velocity regimes. It is

using these ideas that we shall define our notion of the Newtonian limit.

Without going into any detail, we find that all the resulting dimensionless groups

can be written as some product of the following two non-dimensional quantities:

GMT21L? and L/cT. Now, supposing that whilst keeping the first group finite, we

allow the second group to tend towards zero. Physically, this means we assume that

any velocity (with dimension L/T) is small when compared to that of light. The fact

that the first group is finite allows any term that arises from quantities that are purely

mass driven, and hence would contribute to any gravitational effects, to remain. For

comparison, we can say that the opposite limit, i.e. allowing the first term to tend

towards zero whilst keeping the second finite, gives the situation where on M we have

caustics formed by massless particles moving with velocities that in some cases can be

said to be a significant fraction of c. Now, it is the former that we are most interested

in and so §7.3 and §7.4 essentially take the non-dimensionalised relativistic equations
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provided by §7.2, and determine those terms that remain after the limit, L/cT —• 0,

is taken (the definition of the Newtonian limit). The hope and expectation is that

the resulting equations will be equivalent to [5.5.1]-[5.5.3]. If we do not obtain this

result, then clearly the two sets of equations are describing different mechanisms of

caustic formation. It may be that a General Relativistic formulation of spherically

symmetric caustics provides us with a different caustic type [A] to that of the simple

caustic or worse, that one or both sets of the modelling differential equations are

wrong.

§7.5 and §7.6 complete this chapter by considering the asymptotic limit of the

General Relativistic equations of motion. Because we have already spoken of this, and

also because the techniques are so close to those considered in §5.3 and §5.5, we shall

not elaborate any further. We shall, however, conclude by making a few observations

regarding the results so far obtained. The expectation is that the procedures: let

L/cT —> 0, let e —> oo, should commute. In our conclusion then, we say whether

or not this is a true statement. We are also interested in the equations that the

procedure, let e —• oo, alone yields. Of course we expect the resulting equations

to describe the physics of cusp formation and because they are derived from a more

complicated theory of gravity, it is possible for them to be different to the asymptotic

limit of the spherically symmetric Newtonian equations (§5.5). If this is the case,

then we have the situation where our analysis suggests that gravity does in fact play

a part in cusp formation; a clear contradiction to the conclusion of chapter 5 and an

extremely important result.

In chapter 6 we found it useful to formulate our equations of motion with respect

to a tetrad of orthonormal vectors acting as a basis for TM. In the following three

sections we shall find it easier to use the ordinary coordinate basis so let us briefly

reconstruct the geodesic equation in these terms. We have

VV(p)v(p) = 0
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Since v^ = dxlJdr, it follows that

dvf -,

If we work directly with the energy-momentum tensor given by equation [6.3.1], then

the definition of the Christoffel symbol and equations [6.2.3]-[6.2.5] imply that

i „ 3 1
•pi L "" a V""* 4 4 t i /-i a\

r ii = -ai = -re ^ A ^ o O ^ e 7 + — (1 - e ),ai re ^ A^oO^e +

= - a 4 = - - c<l r

and

F 4 4 = 2 e ^ = 27C I 1 " 6 ) + 2 r
 p=1

Substituting these results into the above form for the geodesic equation finally gives

dv}^ 1
~ \ e ~~ J ~ ~ore l V(P)V(P)

[7.1.1]
3 ^ l J

9 = 1 J

§7.2. Non-dimensionalising the General Relativistic equations of motion.

This section discusses the concept of non-dimensionalising the General Relativistic

equations of motion. It essentially acts as a precursor to the following two sections in

the sense that it formulates all our equations in a way so that they are immediately

applicable in a procedure which determines their Newtonian limit. Now, before we

can consider non-dimensionalising our equations, we need to ensure that they are

written in terms of physical units. This requires that we reintroduce the c's and G"s.

To clarify this we should point out that, as is the case for the majority of problems

in General Relativity, we usually simplify our equations by setting c = G = 1. This
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process is equivalent to supposing that all units have dimensions of length and we say

that we work in geometrised units. It means, for example, that if in physical units

a quantity has dimensions of LmTnMp then in geometrised units the same quantity

has dimension, /,m+n+J>.

We have a procedure, however, that enables us to reverse the above action [W].

We can see that [c] = LT~X and [G/c2] = LM~X\ it follows therefore that

\n f^Y] = Lm+n+P [7.2.1]

and so to convert a quantity, A, written in geometrised units to physical units, we

simply replace A by Acn-2pGp if, in physical units, [A] = LmTnMp. It is best to

illustrate this process by example. The Minkowski metric written in geometrised

units is given by

ds2 = dx2 + dy2 + dz2 - dt2.

From this it follows that [t] = L, since otherwise terms in the same equation would

have different units. In physical units, however, [t] = T and so by the procedure

outlined above, we must replace t by ct to obtain

ds2 = dx2 + dy2 + dz2 - c2dt2.

For a second example, consider the Schwarzschild radius,

r = 2M.

Again, our procedure implies that the conversion factors for r and M are 1 and G/c2

respectively. Hence in physical units, the Schwarzschild radius is given by

2MG

Let us now consider our particular equations. We begin with [6.1.1]. In its mixed

form the only relevant non zero components of G are G1!, G44 and G*4. Thus for

we have

3
_2 - 2 -a /•> , \ V ^ l l a

r — r e (1 + v~f\) = —K 2_^ ^(p)v(p)v(p)e •
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The conversion factors for r and vi ^ are 1 and 1/c respectively since [r] = L and

r(p)J = Hr0>)/^T] = L/T. The quantities, a and 7, are dimensionless (it doesn't

make sense to exponentiate a quantity with dimensions) and they must have a con-

version factor of 1. The fact that U(p)l = ML"3 implies a conversion factor of G/c2

so that in physical units the above Einstein equation becomes

r7l) . _-G_ £ . V « .
c p=l

In a similar manner the remaining components of the Einstein equation are

—2 —2 —a (-1 \ _ K(* V~̂  4 4 7

and

Slightly more complicated, although still using the same procedure, the geodesic

equation becomes

dv(p)

-2VIP)V(P) E ^(?)u(?)uw + U(P)U(P) E A*(,)«O,)4) ['
J

whereas the continuity equation \Tf3y • = 0 or [6.1.3]) is simply

V-9

thus completing the first stage.

Now that all the relevant equations are written in terms of physical units, we can

consider non-dimensionalising them. As hinted at in the introduction, to do this we

introduce a length, a time and a mass parameter denoted by L, T and M respectively,

which have, for example, units of metres, seconds and kilogrammes. This enables us

to define dimensionless variables, rjy, t^ and (J,N(P), according to

r = rNL, [7.2.2]
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t =

and

M

[7.2.3]

[7.2.4]

For the velocity, however, things are not so simple. This is because we essentially have

two parameters, L/T and c, which can be used to non-dimensionalise any velocity

component. In other words, since [dr^ /dr l = LT"1 , we could have either

L drN(p)

T drN

or

and it would be naive of us to assume any of these without further investigation.

Now, the metric (equation [6.2.1]) implies that

c dr = —

Thus we have

dr = dt
\

ea (drs

since for spherical symmetry, 6 and <j> are not functions of time. It follows that

dt
dr

\ <

1
2 / \ 2

z2T2 c2 \dtNj

and this clearly represents the non-dimensionalised form for the time component of

any 4-velocity we might have. In order to simplify the above expression we define the

dimensionless variable, / , to be the denominator in the above equation. Thus,

dtN)

and

dr T [7.2.5]
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Finally, we can use this result to non-dimensionalise any radial component of the

velocity. We have

dr dr dt
dr dt dr

L 1 drjj [7.2.6]

Using these results, we can now complete this section by non-dimensionalising

the Einstein, geodesic and continuity equations. It is a process where we simply

replace our usual variables with their dimensionless equivalent using [7.2.2]-[7.2.6].

We obtain:

-2 -2 -a (, ®1 \ _ KGLM A 1 „ r n

c p=l

rN ~ rN e

--*--°da
 - K G M ^ . . UMe\ [7.2.9]

d ( 1 \ c2T2 1

)

-e" " ' - — < > '.HK(n\-^-V(n\V(n\ [7.2.10]
c L z

 HP) U=I
3 1 3

~2V(P) Y, ^N{q)-PTv{q) + V{P)V{P) J2 ()
q=\ J(q) q=\ J(q)

and

1 d
/ fi-f

In the above we have assumed the shorthand notation, v/p) = dr^tp)/dtj^. This in

turn defines the quantity, ftp), by

ftp) = e7 " ^ e % ( ? ) u ( p ) - [7-2-12^

We have also implicitly defined gx = r'^fsm20eae1.
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§7.3. Newtonian limit of the geodesic equation.

In this section we shall discuss the Newtonian limit of the geodesic equation. This

forms part of an important process that seeks to determine the dominant characteris-

tics of our equations of motion ([6.1.1]—[6.1.3]) in the limit of small velocities. We shall

make this statement more precise in a moment, however, it is important to realise the

significance of this calculation. From a physical point of view, the situation where

we only consider relatively slow moving, massive particles, can quite easily fall within

the validity of a Newtonian-like description. It follows therefore, that we expect our

General Relativistic equations in the limit of small velocities to be identical to those

of [5.5.1]-[5.5.3]. This is the expectation; if for some reason there is a difference,

then in order for us to present a reasonably complete study of spherically symmetric

caustic formation, we will need to investigate why. It might be, for example, that the

two models are describing different caustic types [A], or even that one or both of the

defining differential equations are wrong. Clearly we need to check this.

The idea of considering only slow moving bodies in General Relativity we shall

call the Newtonian limit. To define this, we first of all note that the process of non-

dimensionalising our differential equations highlights a series of dimensionless groups:

GLM/c4T2, GM/c2L and L/cT (ref. equations [7.2.7]-[7.2.12]). By looking carefully

we can see that there are in fact only two groups from which all the others can be

determined. These are GMT2 /L and L/cT. This can be seen if we write

GM GMT2 (L\2

c2L L3 \cT)

and
GLM GM

Thus it becomes possible to formally define the Newtonian limit as the end product

of a process that continuously reduces the dimensionless group, L/cT, to zero whilst

keeping GMT2/L3 finite. Physically, this is telling us that in the limit, velocities

with dimension LjT are small in magnitude when compared to c. The last condition

is important for it ensures that in the limit we consider the movement of massive dust

particles and hence a gravitational interaction. This section performs this calculation

on the geodesic equation, [7.2.10], and attempts to determine those terms that are

significant in the sense that they remain after the limit has been taken.
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The assumption that is implied throughout this analysis is that all quantities

can be expressed as a power series in L/cT. We shall also make use of the Lesbesgue

dominated convergence theorem which allows us to exchange limits and integral signs.

With this approach we can easily take each quantity found within [7.2.10] and deter-

mine its behaviour as we allow this group to tend to zero. We first of all choose f?y

From [7.2.12] we have

lim /£A = lim < e7 -
I/VTCO-'W ~ L/CTU \ c2T2 W W j

= lim e7. [7.3.1]
L/cT^O

If we integrate equation [7.2.8] with respect to r^ we obtain the non-dimensionalised

form of [6.2.6] and so

1 rr
/r - a r I, *GM 1 rN

lim e = lim < 1 / r
L/cT-,0 L/cT^o\ cU rNJ £i g,) J

= 1.

Similarly, if we subtract [7.2.8] from [7.2.7] and integrate, we get the non-dimensional

equivalent of [6.2.7] and

\KGM pN aexp{-^r/o re
T2 1

lim e7 = lim <e exp < — 9 / re < > ~T^fxN(p)^2~v(p)v(P)e

L/cI^O L/cl-+0 | | C L, JO 1 B = 1 C J J(p)

ar

P=\

_a (KGM
rea y^ / ivw I -^r-e7 — 1 I dr

[7.3.3]

= 1. [7.3.4]

Here we have used the results of [7.3.1] and [7.3.2] and the fact that the velocities are

normalised. Consequently,

lim f(v) = 1. [7.3.5]
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If we return to the geodesic equation, [7.2.10], and consider in the first instance

the limit of the right hand side, then using [7.3.1]—[7.3.5],

KGMTN „, 1

3 11
+2V(P) 52 ^N(q)jrV(q) + V(P)V(P)H)9=1 J(q) <?=1 J(i)

c

£/cT—0

c2r2 1
= lim L2 2rN \ c2L rN Jo q=1 J{q)

KGMT2 . , ..

9=1

We now expand the left hand side and consider how these terms behave as L/cT —> 0.

We have

1 df{p) 1 _ KGMT2 1

f 1 ^ ( p ) 1 a/ ( p ) 1 df{p)
bm < ^ ^ ^ r 2 -7~V()VI)f{p) dtN f2

p) W dtN

1 /•'•iv 2
 3

7
Now from the definition of /(p) (equation [7.2.12]) it follows that

_ 7 5 7 ^ 2
 a da J?_a dv{p)

~e e ^U ( ) U w e u w

= ^ lim -^r1 = lim — V(P)V(P) l i m ~2r^"57~-
L/cT-+0 Ot^ L/cT-+0 Otx Ky) yy> L/cT^-0 C* 1 l Otjsf

Similarly,

df{P) v ^7 ,. L2 da
T ; — ^ - = l im — V(-\V,lim i ^ - = lim _ ^ _ - , , w l , w lim - ^ ^ - . [7.3.8]

i/cT-^0 Orft(p\ L/cT-+0 or^tp) L/cT-^O
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From [7.2.7] it follows that

.. d1 \KGLM a » 1 a 1 ea

Tod L / T \ *T2 A ^ T i ( ) / ( 2
p ) ( P ) W rN rN

= 0, [7.3.9]

using the result of [7.3.2]. From [7.2.8] and again using [7.3.2] we have

r da \KGM a ^ 1 7 1 e°
lim - — = hm < 0 T rNe > ̂  /x^(p^ —«° 7 -̂e;

= 0, [7.3.10]

so that the right hand side of equation [7.3.8] vanishes, i.e.

0. [7.3.11]
i/cT-o

The limit of the total time derivative of ftp\ is a little more complicated because

there is no component of the Einstein equation that conveniently provides us with

an expression for d-f/dt. To calculate this quantity we resort to differentiating the

non-dimensional form of equation [6.2.8] with respect to t^ by brute force. Before

we do this, however, we quickly calculate Vvoa.LicT-*Q da/dt^ as this will be needed.

This information is given by [7.2.9]. Thus,

da _ {nGM a* 1 71
J% AT LICL—•() I C LJ t f / \ I

I p = l ** [Pf J

= 0. [7.3.12]

We now calculate limx/ct_+o d-f/dt^. To begin, we integrate equation [7.2.7] with

respect to rj\r to obtain

rN [ ea - 1 KGLM a

This is essentially the non-dimensional form of [6.2.8] spoken of earlier. If we differ-

entiate this with respect to time then

d-f .. rNJea
 KGLM a ^ 1 J 9a

l i m = l i m .. . . ~. ». - *
L/cT-*0
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'N IKGML , 8 f ' 1 .11

and since the first term is zero by [7.3.12] and the fact that we have a L4/c4T4 factor

multiplying the second part of the integrand, we obtain

.. d1 rrN KGM a\XdiiN{p)(\ \ \
bm -^r- = hm / Or r e a < > . KV> - p r e - l \ ) dr

dt J0 2L [^ dt \ff ) \z/cT-Wo c2L \^[ dtN

, [ r N K G M L a I ̂  o / l \ tf / i \ a \ i

+ iim r^re«(f:^ (P)f^-i)|^wr.

Here we have used equation [7.2.12] to make the substitution,

2 1 7 ,e

The first and last terms of the equation for lim^JCJ~^Q d"f/dt^ are both zero due to

the L2/c2T2 found within the GM/c2L factor as well as by equations [7.3.1] and

[7.3.12]. It follows then that

lim
Z/cT—0

8 ' ' J e« V *.

This in turn implies that

lim
L/cT->0

'N KGML

dr

fr N KGML
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The first term must be zero since by the geodesic equation ([7.3.6]) the limit of the

term, d (i>(p)/£j) /dtN, is finite allowing the L4/c4T4 factor within the GML/c4T2

group to dominate. For similar reasons (dvtp\/drrp\, by assumption, is finite and

lim^/cT^o df(p)/dr(p) = 0) the second and third terms are zero and so finally we have

lim -P- = O, [7.3.13]
L/cT^O dtN

which is down to the L4/c4T4 factor dominating. This, along with [7.3.12], implies

that

lim -4^- = 0, [7.3.14]
L/cT-^o dtN

which when coupled with [7.3.11] implies that the limit of the geodesic equation

([7.3.7]) is of the form,

1 dv^ _ KGMT2 1 p 3

ttN L3 2r2
NJo r ^{fiN{g)

If we allow our variables to re-absorb the constants that provide our units, i.e. L, T

and M then since K = 8TT, we obtain

d\
M_

r ° 9=1

which is exactly the Newtonian force equation written in spherical coordinates.

§7.4. Newtonian limit of T^ = 0.

To determine the limit of this equation we can make use of the many results

obtained in the previous section. The non-dimensional form of Tl,K- = 0 is given by

'-gN<JtN \ *' / ( p ) / y/~9N
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and expanding this gives

9/J-NJP) 1 1 dgN 1 i lN(p)9f(p) dHN{P)v{p) 1 dQN V(P)
f{p) IQN^^ dtN f{p) ffp) dt + drN

dv{) l (P)df(p) n

da
f(P) 2 / (p ) \dtN dtN)

2 «(-) 1 »(-

where we have that gx = —r4sm20eae~1/. Taking the limit of this equation as L/cT —•

0 is easy for we can simply appeal to equations [7.3.9], [7.3.10], [7.3.11], [7.3.12],

[7.3.13] and [7.3.14] to set the second, third, sixth and eighth terms equal to zero.

Thus we have

V() + _J_t^L_WL + mp)-XL + -LJpU. = 0,
drN

 w ' rN ' ri^p> drN dtN

which again is precisely equivalent to the Newtonian conservation of matter equation

written in spherical coordinates. Thus we conclude that the differential equations de-

scribing a spherically symmetric, General Relativistic formulation of caustic formation

reduce to the corresponding Newtonian equations in the limit of small velocities (i.e.

as L/cT —> 0).

§7.5. Asymptotic behaviour of geodesic equation.

The conclusion at the end of the last section is an important result as it reassures

us that our model is the correct one for caustic formation in General Relativity. In

this section we consider a different limiting process. That is to say, using the concept

of asymptotic solutions introduced in §5.2, we shall construct a coordinate system

whose length scale increases unboundedly as we allow a parameter, e, to tend to

infinity. This technique describes a magnification type of process and enables us to

probe a small area containing the cusp so that we can determine the essential physics

of cusp formation. We have already explained the reason why we are doing this but
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since it is an extremely significant calculation, we shall reiterate. In chapter 5 we

demonstrated that under a similar asymptotic analysis, the spherically symmetric

Newtonian equations of motion reduced to those of the gravity free case formulated

such that the solutions exhibit planar symmetry. This is an important result for it

allows us to conclude that it is only the boundary conditions that determine whether

or not a cusp is formed. The effect of gravity is to simply shape the caustic. If we

perform the same asymptotic analysis based on the General Relativistic equations of

motion then we can compare the two results. Of course the hope is that by taking the

asymptotic limit (e —> oo) and then the Newtonian limit (L/cT —• 0) we should

obtain the gravity free differential equations and thus confirm the conclusion of §5.5.

In previous chapters we have developed two different, but similar formulations for

the General Relativistic problem. That is to say we have the tetrad formalism and

the coordinate basis formalism. The first was developed during the discussion on the

development of the computer program, the second was used exclusively during the

calculation of the Newtonian limit. In this section we shall again resort to using the

tetrad formalism since we wish to use the useful feature that it possesses, namely the

lack of metric components within the mixed form for the energy-momentum tensor.

We shall begin this asymptotic analysis by considering the geodesic equation and

making the transformation, r = x + rc. This illustrates the fact that we intend to

convert all equations in the General Relativistic picture so that the origin for the

radial coordinate now occurs at some finite distance, rc. Moreover, we assume that

the point, x = 0, t — 0, corresponds to the point where the cusp of the caustic

initially forms. A family of curves, parameterised by e, can now be constructed using

the transformation functions introduced in §4.2. We choose a fixed point x G M

and define a particular curve by x = #x(£;x)- We then model the magnification

process mentioned above by stipulating that relative to tx coordinates, lime-^oo |x| =

liirie-Kx, gx (e~1;xj\ = 0. Since we shall choose gx(e;t,x) = (ektt,ekxx), these curves

become defined by x/t@ = const where /? = kx/kt. To complete the picture we assume

that as the length and time scales of our tx coordinate system increase, so do the

mass descriptors. In other words we choose the general transformation group to be

g (e;t,x{p),u\p),Hp),G,c) = (ekH,sk*x{p),e
k"ulp),e

k»n(p),e
kGG,e-k»c) , [7.5.1]

which, we can see, has essentially been lifted from the equivalent Newtonian analysis

of §5.5. In order to compare the results here with those of §5.5, we shall furthermore
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assume the same similarity degrees. That is to say, we suppose that if kx = f3kf then

ku = (/? - l)kt, kp = - ( 2 + i)kt and kg = 7 A* for /? = 3/2 and 7 < 0. Finally, we

note that the constant, kt, becomes important for it determines whether g defines a

magnifying or reducing process.

It is noticeable that in [7.5.1] all velocities are scaled. The reason for this is quite

simply to make it work. In our first attempt at looking for asymptotic solutions

the velocity of light was not scaled and the result was that we could not make the

derivatives of the metric components exist in the limit. This was an undesirable

feature for this, as we shall see, implies that the geodesic equation does not have

a limiting form. To solve this problem we found it necessary to scale c and we do

so in the opposite manner to all other velocities. That is to say, with ku > 0 (a

relation arising from the fact that we must require kt > 0) ekuc increases indefinitely

as £ = 0 is approached. The only physical interpretation of this is that in Newtonian

theory there is no upper limit for the magnitude of any velocity vector. It seems,

therefore, that by choosing to scale c we might somehow be coupling together the

e —> 00 and L/cT —• 0 limiting processes. This rather muddies the implication in

the first paragraph of this section that the two limits are distinct. It might be that

our asymptotic solutions defined by [7.5.1] will be equivalent to the planar symmetric

Newtonian solutions encountered earlier in chapter 4.

The last thing we must mention before starting with our asymptotic analysis

is that we require our metric components to be continuous. The reason for this

is that the curves predefined by the above group of transformations must, at some

stage, cross the caustic. If we did not make this restriction on gij, then from the

geodesic equation the r-component of dul-^/dt possesses an impulsive part implying

that u) \ would be discontinuous. It follows then that the limiting process cannot

be constructed because the velocity at some point on the curve (where it crosses the

caustic) becomes undefined meaning that as x approaches the cusp, it is unknown

which value for uK to take when we come to scale it accordingly.

Let us now consider the behaviour of the modelling equations ([6.1.1]—[6.1.3])

under the transformation given by [7.5.1]. We start, in this section, with the geodesic
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equation,

u

[7.5.2]

written in terms of our fixed coordinate system, x. To determine the asymptotics of

our system, i.e. to determine how the above equation changes as x moves towards

the origin in tx space, we need to relate all variables, / , to their value at x. For those

functions whose dependence on e is not absolutely specified by [7.5.1], we suppose

that they transform by virtue of the quantities of which they are functions of. This

means that the dependency of e~a on e, for example, can be calculated since,

-a . HG 1 fx+*c
e = c4 x + 7Y - _ p_

dr.
fc» ye

P=\

In order to take the limit of this equation, we have to be sure of the dependence on e

for each factor. In the above, the exponent of £ is given by kx — kG—kll—2ku = (4—f3)kt

which is positive, implying that this term at least becomes very large as e increases.

If this were indicative of e~a as a whole then this is likely to be bad news for it is

implying that the metric is unbounded in the limit contradicting the result from the

Newtonian asymptotic analysis. Clearly then we need to be sure of how the integral

behaves as e increases. By making the transformation, s = e xr, we obtain

e-a = l + ̂ £ I G
k * [X+S TCs2J2

c x + e rc JO p=1

Since kx = /3kt > 0, we have that as e —* oo, the above integral in some sense

represents the total mass in our spacetime. We suppose that this is finite and since

—2kx — ko — kp — 2ku — 4(1 — fl)kt < 0, we have

£lhne-a = l.
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Next we can look at the time component of the metric. We have from [6.3.7]

= e - exp { f ^^ re« £
3

= e~aexp < e

which by a similar argument to that for e~a implies that

lim e7 = 1.
£->0O

We conclude, therefore, that in the limit the metric is Minkowskian. This may seem

an odd result considering the fact that in §6.2 we show that the metric components

at a point (t, r) £ M are functions of the total mass enclosed by the shell of radius r.

It turns out, however, that the above limiting process requires that the cusp position

be rescaled according to ekxrc for each e. By assumption, kx > 0 and so it follows

that in the limit as e —> oo, the position of the cusp increases resulting in a situation

that locally looks more and more planar. In this kind of scenario we can assume that

the gravitational force is zero corresponding to a flat metric as proved.

Let us now return to the discussion on the £-dependence of equation [7.5.2].

Clearly, the behaviour of all terms on the right hand side of the geodesic equation

has been determined. However, before we can consider the limiting form for the

geodesic equation, we need to investigate how du\ \/dt transforms under g. Since this

quantity is essentially the acceleration along a geodesic, it must somehow be related

to d?X(p\/dt2. We assume that this quantity must survive as e —> oo for otherwise

we do not anticipate a sensible result. Now,

(
dt + 2 \dt dt

, I±(Elu4 C(«-7)/2 (^L _ ^L
+ 2 dt w \dt dt



uUuU duUM U > ) / + _k
dt2

 U(p)e + C 2 U 4 ^ dt ^ 2 \dt dtj'

where in the last step we have used duj s/dt = u) \/c3u4 -, • du] Jdt; this is obtainable

by differentiating the normalisation condition. Thus, in terms of our fixed coordinate

system we finally obtain

)

[7.5.4]

We now combine equations [7.5.2] and [7.5.4]. This gives us

dt2 2 We

O ley

u - uh)]/°2 + UWU(

X ^Hr)U\r) (U\p)\jc2 + U(r)"(r) " u\r)J* + U\v)U\p)

which in terms of our tx coordinates becomes

\dt di

1 (

(

(c2

(c2

x + re)

x

We can now take the limit as e tends to infinity. We note that kx — ku — kt = 0,

kx - 2kt + 2ku = (3/3 ~ A)kt > 0 and kx - kG - fcM - 4fcu - 2fc« = (4 - 30)/* < 0
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so clearly, the last two terms tend towards zero. The first two terms require more

consideration and so we write,

" X(P) 1 ~i ,. fda d~f\ c2 ,.
— -• lim I —- limdt2 2 W e-oo \dt dtj 2rc «—

For the second term on the right hand side of the above equation we have

£lun

K(n, fcx_fcG_fcM_2fct i + e * « r e 3
= hm —. r, 1 r - / s2 V p ( ) (c2 + 6 *kuu}p)u}p)) ds

= 0,

and thus to complete the analysis we need to determine the dependence on e of the

derivatives of a and 7.

To find this information we resort to Einstein's equation. This gives the e-

dependence for da/dx, da/di and d'f/dx immediately, but for dj/di it is a little

more complicated. From [6.2.5] we have,

3

E
P=\

= ^ „- - - 3 e G " " ' (e xx + rcj e a T J J ^{j>)u{p)\j^ + £ "U(P)U(P)

^=^ lim —- = 0 [7.5.5]

(since -kG - k^ - Uu - h = (4 - 3/9)fct < 0). Similarly [6.2.4] gives,

da
dx

1

ta 1 —

-ea

•ekxrc

e" 3

C P=l

*-x + r.) «•

[7.5.6]
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To determine the limit of the right hand side of this equation we need to investigate

how (1 — ea) depends on e. We define Ae by

c + £ "

so that lirne—Kx, Ae exists and is constant. Then equation [7.5.3] becomes

1
i £—2kx—kG—kfj,—2ku A

1

I _ (l +£-2kx-kG-kfi~2kuA^

=> lim (ea - 1) = 0,
e—too v '

so that finally, using the fact that —kx — ko — k^ — 2ku = (4 — 3/3)fct < 0, equation

[7.5.6] becomes

It now follows that

da
bm TTT = 0.

da ,. 5a .. dx da
lim -^r = lim —- + hm -^-^— = 0.e^°° dt £^°° 5t e^°° dt ox

Next we consider the total time derivative for 7. From [6.2.3] we have,

£lhn - i = 0,
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since —kc — k^ — 6ku — (8 — 6j3)kt = —kt < 0. Next we consider d^/dt. This is a

much more complicated calculation for we do not have an Einstein equation to resort

to. Instead we are forced to differentiate [6.3.7] by force. We have

7=-a+^ C" re° 5 "<" (°2+2uw"'"))dr

Transforming to tx coordinates gives

dj da KG t h 9L 9 t fx+ekxrc/„

p=l

so that -kG-kp-2ku-2kx = 4(1—/9)fc* < 0 and -fcG-Avi-6fcu-2fcx = 8(l-^)fc< < 0

imply that

lim ^ = 0 [7.5.7]

Thus finally we can conclude that the asymptotic form of the geodesic equation is

U0. [,,8,
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§7.6. Asymptotic behaviour of TJK. • = 0.

We know that written in terms of our static x variable, [6.1.3] implies that

If we expand this equation then we obtain

dg ! dvl
{) dHp) 4 1 dg

4 1 4 (da df\
uw ( ^ + Tt)

recalling that g = — r4sin20eae7. We now transform coordinates so that r = x + rc.

Then,

1
dTv^ [dx + dx)+ x + rc dt + ^dx { dt

dHv) 4 , 1 4 (da ,d-r\ df

dx dt
9a 97 \

fi^dx^dv^ dj^ l_ Ida 97 \ HP) H ) _ Q
+
 V4 dt 9a:"1" dt +2^p)\dt + dtT vf, dt ~

Now if y represents either x or t then

1 d^fp) _ 1 du4
{p) ^ ]^dj_

V(P) dy ~ UU dy 2dy

UU du\p) ldl
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Thus,

dx(p)da 2fi{p) dx{p)

x\ dt

We now transform to our dynamic coordinate system, x. The result is,

{p) l d s ( p ) da
t 2M(p) df 55 £dx dt

5 /dx(p)\
5 ^ df J

+ dt +2^di+£ c2 + e-Ak»u\p)u\p) dt

which becomes in the limit,

Here we have used the fact that lime^oo^ + ekxrc)~
l = 0 as well as equations [7.5.5]

and [7.5.7]. To be sure of how the above equation behaves as e —> oo we need

to investigate the e-dependence of du} Jdx and duj Jdt. The dependence of these

quantities can easily be determined from the normalisation condition. We have, for

y representing t or x,

£r [dy Ty

(ref. equation [7.5.4]) which imply that

.

133



(again noting that kx — k% — ku = 0). Inserting these results into equation [7.6.1] gives

A^Mc(«-7)/2

= o,

which finally becomes

Equations [7.5.8] and [7.6.2] complete an extremely interesting calculation for we

have shown that given the transformation group,

g ( e ; t , I W ) U | p ) ) ^ ) , G , c ) = (sk%ek*x{p),e
k»u\p),e

k^{p),e
kGG,s-kuc) , [7.5.1]

our General Relativistic equations of motion ([6.1.1]—[6.1.3]) reduce to the planar

symmetric, gravity free equations of caustic formation in Newtonian theory. We notice

that G plays the same role as in the Newtonian analysis. The resulting asymptotic

solutions are exactly the same as the solutions obtained in §5.3. In other words,

under an appropriate Galilean transformation and choice of boundary conditions,

the asymptotic solution is given by x = q(t, v) with the tangent bundle surface, S,

reducing to Sq. This result corroborates the conclusion of chapter 5, which is that

gravity does not play a part in caustic formation.

We also have the result that the asymptotic limit of the full General Relativistic

equations is identical to the asymptotic limit of the equations obtained after L/cT

has been set to zero. This result differs from the expectation at the beginning of
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this chapter where we supposed that the two limiting processes are distinct and thus

could commute. It rather suggests that by choosing to scale the velocity of light we

have somehow incorporated the Newtonian limit within the procedure, let e —> oo.

To explain we note that according to the transformation specified by equation [7.5.1],

U r n — = l i m £

e—<-oo c T £~>°° cT

(since kt — kx — ku = 2(1 — ft)kt < 0), which is the Newtonian limit and thus highlights

the coupled nature of our General Relativistic transformation group.
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CHAPTER 8. TOWARDS AN EXISTENCE PROOF FOR THE

NEWTONIAN EQUATIONS OF MOTION.

§8.1. Introduction.

In this chapter we begin the ground work in the setup of an existence proof for

a solution to the Newtonian differential equations describing caustic formation (ref.

§4.1). Although a complete proof cannot be given here in this thesis, the results

we shall present are used to prove existence for a certain class of solution in [SC].

The method, which we are working towards, adopts a contraction mapping type of

argument. We can think of this as a mathematical way of specifying an iterative

procedure that tends to the required solution. For example, if J represents our

contraction mapping, x(t) the solution to a differential equation, and xo(t) the initial,

and approximate solution that might be our first guess, then x(t) = limn_*oo Jn[xo\(t)^

where J2[zo] = ^[•/[^o]], «/3[zo] = ^[^[^[^o]]] a n d so on. At this point we refer the

reader to appendix 2, which defines the concept of a contraction mapping. We also

give an example of how these ideas can be used to establish the existence of a unique

solution to dy/dx = f(x,y) with initial condition, £/(xo) = r/o- This example is useful

for it highlights certain aspects of this approach that need to be considered with care.

The basic idea begins by reformulating the Newtonian equations of motion in

terms of an integral, or set of integral equations. This allows a function, J , to be

defined that is a map from some, as yet undefined, metric space such that the solution

to equations [4.1.1]—[4.1.3] (or equivalently [4.5.3]-[4.5.5]) correspond to a fixed point

of J . To clarify what we mean, we illustrate using the example mentioned above. In

appendix 2 we show that dy/dx = f(x,y), y(xo) — yo, is equivalent to

y(x) = y(xo) + f f(t,y{t))dt. [8.1.1]
Jxn

In this case, given that x, XQ € [a, b] and (j> € C[a, b], we could define J to be the map,

J:C[a,b]—^C[a,b],

f f(t,<j>(t))dt,
Jxn)x0

so that the above integral equation, [8.1.1], is equivalent to J[y] = y.

136



Another example of how we might define J to form a contraction mapping is

that where the above ideas are applied to the tv space formulation of our Newtonian

problem. We have for the multi-dust region in M,

[4.5.5]
ovi at

where the arguments of all equations are (t,vi). The function, <f>j, defined by

&(*>ui) = {(*>«i)l"i / *>•> x(t,vi) = x(t,Vj)} ,

highlights the fact that in calculating the acceleration there are contributions to the

total density from the three velocities that satisfy x — x(t,vi) (This harks back to

§2.1 where we talked about disjoint regions in TM contributing to the gravitational

force.). Now suppose that we are solving these equations for some initial conditions

on x and <Ji at time, s (the boundary condition on F is that F(t,0) = 0). Let

^(s,t):IR —• IR be the diffeomorphism from the u-axis at time, s, to the u-axis

at time, t > s defined by the geodesic flow, Z = d/dt + Fdjdv. This vector field

is equivalent to the Z of §3.3 except that now we assume that the tangent bundle

surface, S, has local coordinates, (t,v). This means that if x(t) represents a specific

integral curve of Z then ty(s,t)(u) = v (really ty(s,t;F)(u) since in actual fact we

have

implying that the form of ^ is dependent on the given F) where u = dx/dt(s)

and v = dx/dt(t). In addition we also have ty(s,s) representing the identity and

^(fijt)"1 = W(t,s), the inverse function.

We can we now rewrite equations [4.5.3]-[4.5.5]. We have from [4.5.5]

^ ( i , *(«,*)(«)) = -ff,-(t,*(*,*)(u
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Similarly, [4.5.4] gives

dx
^• ( t , * (M)(« ) ) = *(«>*)(«)

= * x(t, v) = x(s, *(t, s)(v)) + f* V(t,t')(v) dt1 = J2[x, ai, F](t, v),
Js

whereas equation [4.5.3] is equivalent to

F(t,v) = - j T ^ t y j + ^ r (¥\ °^ j (*,»')*>' = J3[x,at,F](t,v).

It follows then that we can construct a map (that maps some, as yet, undefined metric

space to itself) by the equation,

(x,viyF) = (J1[x,ai,F},J2[x,ai,F],Mx,ai,F}) = J[x,<n,F].

The above equation completes the second example illustrating how a differen-

tial equation or set of equations can be reformulated so that they suggest a possible

candidate for a contraction mapping. It might be possible to proceed with this devel-

opment in our quest for an existence proof, however, we find that by reformulating

our Newtonian equations using a Lagrange coordinate system, we obtain a much sim-

plified set of differential equations with which to work with. We shall concentrate on

this new formalism for the rest of this chapter and indeed thesis.

The next step in any contraction mapping proof involves defining the metric space.

We neglected to stress this in our second example because we were primarily concerned

with ensuring that the reader understands the motivation behind the definition of J .

To complete the specification of this map we must of course state the metric space

upon which J acts. That is to say we need to define the class of functions which

J takes as its arguments, as well as the metric itself. In reality this process is the

hardest part. The reason for this is that in order for us to determine the appropriate

metric space, we must have a good idea of what we expect the solution to look like.

Moreover, even if this is the case and we know to some degree of certainty where the

function or its derivatives become unbounded, for example, the process of defining
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the metric space is one of trial and error. Having said this intuition is a great help in

reducing the number of possible permutations to a reasonable number.

The final stage is to show that J does in fact define a contraction mapping.

Although this is not necessarily easy, it can, in general, always be done provided the

metric space can be made sufficiently small enough. A good example of what we

mean is that given in appendix 2. There we supposed that / in [8.1.1] was Lipschitz

continuous (\f(x,yi) — f(x,y2)\ < K\yi — yi\) m order to prove the theorem. The

constant, K, was chosen such that K < l/S(b — a) where S = d(y\,y2). Had we

chosen K unwisely so that it did not satisfy this condition then our defined J would

not have been a contraction. In this case we have restricted our class of functions

by reducing K. Another example is that where we restrict the size of the region on

which we are trying to prove existence. Suppose that we were stuck with a K such

that K > l/S(b — a). Then defining a' and b' so that K < l/$(b' — a') again means

that J is a contraction, provided of course we still have XQ G [a1', b1].

The above summarises the procedure that we hope to take. The rest of this

chapter will be dedicated to defining both the map, which stands as our candidate for

a contraction mapping, and the metric space. To begin, the next section introduces

the Lagrangian coordinate system, (t,X), that we will adopt. We do this whilst

presenting the exact solution that is to be found in the external region, i.e. those

points not enclosed by the cocaustic. The significance of the X variable is three-fold.

Firstly, and primarily, we will show that for the case of a single dust with initial

conditions x = q(t,X), X is proportional to the force at (t,X) (or equivalently,
xx{t))- We can think of this as its definition and it is the job of §8.3 to show

how this generalises to the case where we have a system of several superimposed

dusts. Its second importance is its relation to the velocity on the initial time slice;

we have v(0,X) = X (For the rest of this thesis, we shall assume initial conditions

that coincide with the special model used to illustrate the zero gravity case. This

means that we also have the relationship, x(0, X) = —X3.). Finally, we have that

geodesies, xx{t) = x(t,X) say, become functions of time, labelled by the X variable,

and correspond to straight, vertical lines in tX space. In this sense, therefore, we

have a comoving coordinate system.

In §8.3 we use the ideas developed in §8.2 to transform our differential equations

describing caustic formation so that they are now written in terms of Lagrangian
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coordinates. This involves the introduction of three new variables, Xi(t,X) (i =

1,2,3), that are denned by x(t,Xi(t,X)) = x(t,X). That is to say, Xi labels those

geodesies that are coincident at xx{t) in tx space. In some sense this is quite a

complicated quantity for we can use it, quite unambiguously, as both a dependant or

independent variable. To explain, we point out that the subscript i has an additional

meaning for we choose, X\ < —Xc < X2 < Xc < X3, where X = Xc{t) represents

the equation of the caustic in tX space. This implies that the i also corresponds

to the dust number in much the same way as the i in V{ of §4.5. It follows, by the

fact that we assume a multi-dust spacetime, that in each region xx{t) is unique and

moreover, that Xi(t, X) = X when X satisfies the above condition for the ith region.

This illustrates its behaviour as an independent variable

The two reasons why we adopt this approach are as follows: the first is that the

differential equations that describe the motion of particles get completely decoupled

from those that describe the changes in the density. This has a secondary effect

(also the second reason), which is that the force at any point is given by a vastly

simplified expression. To illustrate, we state without proof the force equation in this

new coordinate system,

F(t,X) = A(X1(t,X)-X2(t,X) + X3(t,X)). [8.1.2]

The constant, A, is defined so that AX\(t,X), for example, represents the mass of

dust 1 enclosed between xx(t) and the origin in tx space. The right hand side of

equation [8.1.2] therefore represents the total mass between xx(t) and x = 0. Finally

we complete this section by suggesting a map, J such that x(t,X) = J[x](t, X), as a

candidate for a contraction mapping.

In sections 8.4, 8.5, and 8.6 we discuss the behaviour of the type of solution that

we are trying to prove existence of. This is based on the assumption that the solution

can be thought of as a perturbation on q (the solution for G — 0) in some sufficiently

small region of tX space containing the cusp. By assumption, the continuity of the

X{ dictate that x must be at least C2 in the time coordinate. However, due to

the step function-like behaviour in the acceleration of any particle as it crosses the

cocaustic (remember that in tx space the caustic and cocaustic are identical and that

the former corresponds to points where there are unbounded densities), we expect

the differentiability with respect to X of x(t,X), a geodesic, to be less than C2.
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The caustic is another problem area and to examine the solution's behaviour close to

these curves we split the multi-dust region into three parts. These are represented by

those points that correspond to: 0 < X < Xc, Xc < X < XQ and XQ < X < Xcc-

The boundary, XQ, between the last two regions is simply there to illustrate that the

region close to the cocaustic should never stretch to the caustic and visa versa. We

shall thus leave this undefined. Lastly we point out that by the symmetry inherited

from q, we need only consider the half problem.

The discussion concerning the differentiability of x consists of a series of calcu-

lations that concentrate on investigating the continuity of d2x/dX2. We allow q to

provide a basis from which we can begin this calculation in the sense that we shall

assume that dx/dX is continuous everywhere as is d2x/dX2 except at points corre-

sponding to the caustic or cocaustic. To perform this investigation, we differentiate

x = J[x] twice with respect to X to obtain d2x/dX2 = d2fdX2J[x]. The right hand

side of this equation is now the second order differential of a double iterated integral.

We can interchange the two operations to get an expression for d /dX J[x] as an

iterated integral of terms involving the second order derivative of x. Specifically we

obtain

J (t * ) ( i X) + (t ,X)dt dt.
{t,X) = o JQ ^ ^ ^

[8.1.3]

The next stage is to express the integrand as a power series expansion in either

\t - kc\ or \t - kcc\ (here kc(X) = X~1(X) and kcc(X) = X^(X) so that t = kc and

t = kcc are alternative representations of the equations of the caustic and cocaustic

respectively) depending on if we are close to the caustic or cocaustic. In constructing

these series, we illustrate the expected singular nature of d2x/dX2 by pulling out a

factor of \t — k\~Pk, i.e. by writing,

( ) k\n~Pk = I* - k\-pk<*(\t - k\,X).
n=0

Here k represents either the caustic or cocaustic depending on which region of our

tX plane we are considering and a is assumed to be analytic. The constant, pj., is

then determined so that we have consistency between the left and right hand sides of

equation [8.1.3]. Assuming that pi- > 0 means that d2x/dX2 is less than C2 meaning

that we may be forced to work with a complicated metric space.
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In the final section we take the results so far obtained and propose a metric space

in which we hope to find the solution. The aim is to base the set of functions that

we are considering on

j&(0,0)=0, 0 0 } [8.1.4]

where

and

V = sup
(t,x)eBT

dX2 +
dt2 +

dXdt

= {{t,X)elR2\\X\<T, 0<t<T}.

is the domain in which we hope to prove existence and we can control the size of

this by varying T. ||/||v> which we shall use to define the metric function, is simply

the standard C2 norm. If we are unlucky and it turns out that we must expect x to

be less than C2, then we may have to introduce a weighting that modifies the above

norm to

ll/llv = sup
(t,x)eBT

1
1/ _ Up

1
t - k\p' dx2 +

dt2 +
dXdt

where p and p' 'measure' the rate at which d2f/dX2 becomes unbounded as (t, X)

approaches these curves. Finally the conditions placed on the space of functions in

the above definition for V reflect the assumption that x always looks like q. To express

the fact that we look for a solution that is near to q we shall restrict V still further

by considering

§8.2. Exact solution for the external region.

Working in tv space we have for a single dust,

da dF
[8.2.1]

where we note that in terms of tv coordinates, d/dt = d/dt + Fd/dv. This represents

the relationship between the force and the matter in the region external to that
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enclosed by the cocaustic for we realise that here we have a well defined fluid flow

vector. Let us now introduce comoving coordinates. We make the transformation by

the assumption that for any function, / say, f(t, X) = f(t, v(t, X)) with v(0, X) = X.

It follows then, using the results summarised in appendix 1, that

_ (dF\ (dv_
- 1

[8.2.2]

and

so that

Kdt)x \dv)t\dt)x
+\dt)v dt X=const

f(t,v),

'dF\ _ 'dv\\ _ ld_ (dv\
\ \9X \dtj)t \dX \dt)x)t

Applying these equations to [8.2.1] gives

_ d_ (dv\
~dl \dX)t'

- l

dt ~~a\dXJt It \dX)t

- l

JXJt
[8.2.3]

We now assume zero gravity boundary conditions at t = 0 to determine ao(X).

This means that dv/dX(0,X) = 1. To obtain an expression for a(t,X) we have

to refer to an asymptotic analysis of the Newtonian equations written in terms of

(t,v) coordinates ([4.5.3]-[4.5.5]). This work has not been presented in this thesis,

however, it has been done and we summarise the results as follows. The general

approach follows very closely that described in §5.3. That is to say we consider the

group of transformations,

= (ektt,ef"ttvue
kFF,ek'x,ek'*i,e

iGG) ,

in conjunction with equations [4.5.3]-[4.5.5] with G reinserted (this quantity only

appears as a multiplicative factor in front of each cr,- in equation [4.5.3]). For invariance

of our equations we require that kp = (0 — l)h, kx = (0 + l)kt, k^ = —(1 + *y)kt

and ko — "fkt. Asymptotic solutions exist provided kt > 0, (3 > 0 and 7 > 0,
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resulting in a solution for a(t, v{) given by [4.6.3] but modified slightly to give <r, =

A,i~(1+7)fc<|^,|~(1+7)/^. If we assume that we require non zero and finite behaviour

on £ = 0 then we must have 1 + 7 = 0. This means that <x;(£, vi) = A{ represents the

asymptotic solution for the density in a tv space formulation of caustic formation.

Finally, using this result, it follows that we have (To(X) = A where A is also a constant.

Next we consider,

In terms of tX coordinates this becomes

(dF

which if we integrate gives

F(t, X) = f <rodX + a(t) = AX + a(t),

where a is an arbitrary function. In section 5.4 we showed that the tx space formu-

lation of the Newtonian equations of motion exhibit the symmetry,

t = t, x = x + H(t), v = v + H'(t), F = F + H"(t).

A similar symmetry exists (although we do not prove this here) in the tv space

formulation. We therefore set a(t) = 0 to obtain

F(t,X) = AX. [8.2.4]

This result is worth remarking on since we shall use it later on. Firstly, we note that

since <Vdi|x=const = (®/®t)x w e c a n define curves, xx(t) = x(t,X), that represent

geodesies in tx space. Equation [8.2.4] is therefore telling us that along these curves,

the gravitational force is constant. Moreover, since we are assuming zero gravity

boundary conditions, the constant, A, can be chosen so that AX represents the mass

enclosed by xo(0) and xx{0). This point is extremely important for we shall use this

idea when we come back to considering caustic formation. The simplicity of [8.2.4]

illustrates what we meant in the introduction when we stated that this Lagrange

approach decouples those differential equations describing the motion of our particles

from those describing the changes in the density. That's not to say that a has no
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dependence on the motion of our fluid; the presence of the (dv/dX)t
 1 term dictates

the opposite. What we mean is that, as shown, the original differential equations can

be manipulated into a form that has the density dependency removed from the force

equation allowing a solution for a, [8.2.3], to be obtained.

We complete this section by integrating equation [8.2.4] to obtain the solutions

for x, v and consequently a. Since

d2x

dt2

f)l)

X=const

we obtain firstly v(t,X) = X(l + At), and then x(t,X) = X(t + At2/2) - X3, using

of course the boundary conditions, v(0,X) = X and x(0, X) = —X3 (corresponding

to <?(0,X) = —X3). With v defined we can now fully determine the density. Since

dv/dX = 1 + At we have a = A/(\ + At). Thus the solution for a self gravitating

dust with zero-gravity initial conditions is

x = Xt + \AXt2 - X3,

v = X(l+ At)

and

a = 1 +At

In terms of a tv space formulation we obtain

v3 v
x = —-7 At)3

and

a = Y+-Af
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§8.3. Lagrangian formulation of Newtonian caustics.

According to our tv space formulation of the problem we have essentially four

functions, <T{ and x, described by [4.5.3]-[4.5.5]. To convert these equations so that

each term is a function of t and X, our Lagrangian coordinates, we use the results

of appendix 1. The first thing to notice, however, is that the analysis concerning a

for a single dust in the previous section holds in our multi-dust scenario. That is to

say, we can immediately write the solution for <r,- as <Ti(t,X) = A(dvi/dX)J"1- This is

essentially because the aforementioned solution was obtained without reference to the

specific form of the force equation (ref. §8.2). Furthermore, since d2x/dt2(t,X) =

F(t,X), we need only investigate how the force equation transforms into these new

coordinates. We have

14-5-31

This is a tv space formulation of equation [4.1.1] and tells us that the force at (t,v)

is a function of the mass enclosed by x(t,v). Here each u,-, defined by x(t,Vi(t,v)) =

z(2,i>), represents the velocity fields of those geodesies that are coincident at a point

in tx space (Recall that since we have chosen to model caustic formation using a

multi-dust spacetime, the velocity field is unique having a one to one correspondence

with geodesies on M.). The subscript has a further meaning for it labels those regions

in TM corresponding to different dusts. That is to say, we have, v\ < — vc < vi <

vc < ^3) where v = vc(t) represents the equation of the caustic. We note that as

v varies, depending on which region we happen to be considering at the time, there

must exist a V{ such that vi{t, v) = v.

Let us now introduce comoving coordinates, (t,X), such that if f(t,v) is any

function then we define f(t,X) — f(t,v(t,X)). with t;(0, X ) = X. An alternative

choice for defining the relationship between X and v might be v(kcc(X), X) = X. This

essentially specifies initial conditions for v at the cocaustic. We let (i, X) be any point

in our new tX space but to mimic the different regions in tv space mentioned earlier,

we introduce three functions, Xi(t,X), such that X\ < —Xc(t) < X2 < Xc(t) < X3,

where X = Xc(t) (and its inverse, t = kc(X)) represents the equation of the caustic.

This means that again we have i labelling the different dusts.
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We continue this construction by stipulating an additional requirement that can

be thought of as a secondary definition of the Xi. That is to say we assume that

x(t,Xi(t,X)) = x(t,X). This means that Xi(t,X) labels those geodesies that are

coincident at (t,xx(t)) in tx space. Having said this, however, it does not make

sense to define geodesies such as xx^t). The reason for this is purely because Xi is

a function of X; there is nothing to stop us considering curves such as y(t,Xi(t,X))

except that we cannot attach any physical meaning to them. In this sense, the Xi

constitute quite confusing quantities, more so if we consider the fact that they can

be thought of as both dependent and independent variables. That is to say, in all

of the above we have considered them as dependent variables, however, we point out

that due to the uniqueness of curves, xx(t), in any of the regions defined above, we

must always have one Xi such that Xi(t,X) = X depending on which region we are

considering. This is an artifact of the fact that in TM the tangent bundle surface

can be constructed by 'gluing together' three separate subsurfaces.

Now we move on to transforming [4.1.1]. Using the results of appendix 1 and

following similar lines to the previous chapter we have

/ a n \ / o \ —1 / c\ \ —1

(dvA 1 (dvj\

j£i \0Xj/t \aVt/t

Note how we have already used the Xi as an independent variable as we have assumed

that a specific region of our tX space has been chosen, i.e., we have the relation,

Xi(t,X) = X. This implies that

a(t),
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where a(t) is the arbitrary function of integration. As per the previous section, the
force equation is again invariant under the addition of arbitrary functions of time.
This means that the above then simplifies to

F(t,X) = A(X1{t,X)-X2(t,X) + X3(t,X)). [8.3.1]

In terms of x(t, X), the desired solution, the above becomes the following second
order partial differential equation,

d2x
(tX) A(X(tX)X(tX) + X(tX)) [8.3.2]

together with the initial conditions, x — q(0,X) and v = dq/dt(0,X). Of course we
also have

but since this is a solution, albeit dependent on the knowledge of u,-, we realise that
the problem of obtaining a solution to the Newtonian equations of motion boils down
to solving just a single differential equation, namely [8.3.2].

Now we consider the beginnings of the construction of a contraction mapping
proof. We first of all write [8.3.2] as an integral equation. One example is the
following,

. ./
x(t,X) = -X3 + A [ f Xi(t",X) - X2(t",X) + X3(t",X)dt''dt',

Jo Jo

where we have considered initial conditions corresponding to x = q(0,X). However,
care must be taken in interpreting this equation because the integration with respect
to the time coordinate must pass through the external region before it reaches the
cocaustic (the equation of which is defined by t = kcc(X) or X = Xcc(t)). In this
instance, therefore, we must remember that the X{ are defined by x(t,Xi(t,X)) =
x(t,X) for |A"| < Xcc(t), Xi{t,X) = XiorX< -Xcc(t) with X2{t,X) = X3(t,X) =
0, and X3(t,X) = X for X > Xcc(t) with Xi(t,X) = X2{t,X) = 0. An alternative
integral formulation might be

AXk2X3 + A f fx(t,X) = Xkcc + -AXk2
cc-X

3 + A f f
& J Kcc ** kc
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This reflects the assertion that we wish to specify boundary conditions on the co-

caustic itself. That is to say, we have also used the solution to the external region to

evolve the gravity free initial conditions specified at t = 0 up to the cocaustic. Now

there are two things that we must be aware of when interpreting the above equation.

Firstly, we only consider t such that t > kcc. This avoids the confusion produced by

the different definitions of X{ in the above. The second thing is that the symmetry

of our system still allows the external solution to be valid, even though at points

to the interior of (t, X) say, geodesies are passing through X = 0 (corresponding to
xx(t) = 0, the axis of symmetry). To explain, we notice that one of the conditions

on x specified by equation [8.1.4] (we must have x G V for our contraction mapping

proof to work) is that x(t,X) — —x(t,—X). It follows that as time evolves and a

geodesic, xx(t) say crosses that of X = 0, its opposite partner, x-x(t) with the same

mass associated with it appears from the other side. Thus provided \X'\ > Xcc, the

mass enclosed by xx'(t) is constant resulting in a uniform acceleration according to

F = -AX'.

For simplicity we choose the first of the above integral equations to work with.

This implies the following as a candidate for our contraction mapping,

' xlf](t",X)dt''dt', [8.3.3]

where we have defined x[f](ti-X) t° represent the right hand side of equation [8.3.2]

evaluated for any trial or approximate solution, f(t,X). The function / is taken to

be a member of some undefined function/metric space. Our next task is to determine

what this metric space is.

§8.4. Investigation to determine the differentiability of x.

Before we can define the function/metric space upon which J acts, we must in-

vestigate the behaviour of our solution, x. It is insufficient to simply assume each

/ in equation [8.3.3] to be at least Cn because without prior knowledge, it is dif-

ficult to say whether the iterative procedure defined by J will preserve this degree

of differentiability (Remember, if we stipulate a certain degree of differentiability on

/ then we must show that J[f] also exhibits this degree of differentiability in order

for J to be a mapping from some metric space to itself.). This implies that by the

term 'behaviour' we mean the degree of differentiability that we expect x to have. In
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addition to this, we may have the situation where x might be Cn but that we are

required to know something about the (n + l)th order derivative. In this case by

'behaviour' we mean knowledge of those regions in our tX plane where Dn+1(x) is

discontinuous and possible the rate at which these functions become unbounded.

The general procedure in determining the behaviour of x, therefore, is to assume

the lowest order of differentiability for x and then show, by explicit calculation, that

J[x] has similar behaviour. We do this using

dx

dX

dX2

and

t f ?0(t",X)dfdt1,
Jo oX

I* /-''^[x] „ x)dtndt, [8.4.x]
Jo Jo aXl

dtdX

where we realise that the x on the left hand side of all of the above really represents

J[x).

Now we can automatically assume that x must be C2 with respect to the time

coordinate because the right hand side of equation [8.3.1] is continuous. This is an

assumption based on the fact that we require the surface, S G TM, generated by

geodesies, xx(t), to be continuous. It remains therefore to determine the differentia-

bility with respect to X. We shall assume that x is definitely C1 in the X coordinate

because we require that the velocity field associated with our dust particles to be

continuous and this is as far as we can go. We don't know anything about the second

derivative with respect to X except possibly that it might be continuous everywhere

apart from those points that lie on either the cocaustic or caustic.

We shall base our analysis on these assumptions by proving that they are self con-

sistent under a single application of J in the following manner. The idea is to replace

the integrand of all of the above by Taylor expansions that reflect the assumptions

made on the differentiability of x. For the reasons stated above, however, we will only

consider [8.4.1]. The definition of x[x] implies that we need to consider d2X{/dX2.
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From the definition of Xi, namely x(t, Xi(t, X)) = x(t,X), we find by differentiation
that

_ x"(X) x'(X)2x"(Xi)

~ xVV ~ x'(Xif • 18>4-2J

This equation illustrates exactly where we expect possible unbounded behaviour in

x": one can see that things only go bad when X{ —»• Xc since in these regions

\\mXi-*xc
 x'{tjXi) = 0. To proceed with our investigation we should suppose that

our multi-dust region can be split into six parts. By the symmetry we expect x to

have, however, we only need consider the positive half of the tX plane. This reduces

the number of regions to three. We define these regions as those points corresponding

to 0 < X < Xc, X > Xc close to the caustic and X < Xcc close to the cocaustic.

With these in mind, we then expand each quantity appearing within the integral on

the right hand side of [8.4.1] in terms of \t — kc\ or \t — Xcc\ (i.e. for X < Xcc we

might have

82x _ ~

for example) depending on which region we are considering. This will allow us to

perform a single iteration defined by [8.4.1] so that we can determine the value of p

by insuring that we have consistency between the left and right hand sides.

58.5. Near the cocaustic.

We write equation [8.4.1] as

o JodX2

since in this region, X${t,X) = X. Now equation [8.4.2] tells us how to relate the

derivatives of X{ to derivatives of x. In order to feed in the assumptions regarding x

and its derivatives mentioned in the previous section, we replace all terms on the right

hand side of [8.4.2] that are expected to produce singular behaviour near the caustic

by an appropriate Taylor expansion. To illustrate what we mean by this we first of all

notice that for X close to Xcc, x(t,Xi(t,X)) = x(t,X) implies that X\ must be close

to — Xc indicating that the x'(X\) terms on the right hand side of equation [8.4.2]
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will be causing a degree of singular behaviour as X approaches Xcc. To illustrate this

we write, using Taylor's theorem with remainder,

x\Xx) = x'(-Xc) - |Xi + Xc\x"(Ya)

= -\X1+Xc\x"(Ya), [8.5.2]

since x'(—Xc) = 0. In the above, to simplify things, we have dropped the time depen-

dence and defined Ya(t,X) such that X\ < Ya < —Xc. In addition, x(t,Xi(t,X)) =

x(t,X) implies that

*(-*c) + ^ i + Xc\
2x"(Yb) = x(Xcc) -\X~ Xcc\x\Yc),

2x'(Yc)
x"(Yb)

1/2

[8.5.3]

since by definition of the cocaustic, x(—Xc(t)) = x(Xcc(t)). We also have X\ <

Yb(t,X) < -Xc and X < Yc(t,X) < Xcc. Clearly, equations [8.5.2] and [8.5.3]

determine exactly how quickly (^'(Xi))"1 tends to infinity in the limit X —> Xc.

Inserting these equations into [8.4.2] gives

d2x1

dX2 (X,t) = -
x"(X)

\X-Xcc\^x"(Ya)
x"(Yb)
2x'(Yc)

1/2 x'{Xfx"{Xx) x"(Yb)
2x'(Yc)

3/2

[8.5.4]

We do not need to concern ourselves with expanding the x'(Yc) since close to the

cocaustic, x' is assumed to be non-zero and finite.

Of course it is not only the (x'(Xi))~^ and (x1(Xi))~3 terms that determine the

singular behaviour of d2X\/dX2, we also have the second order derivatives causing

problems. The next stage, therefore, is to assume singular behaviour at both the

caustic and cocaustic. The first assumption is possibly a little severe, however, since

the analysis is not complicated any further by this assumption, we may as well include

it. We assume that for Yy close to the cocaustic, x"(Yy(t,X)) for example, has the

following dependency on X,

x"(Yy(t,X)) = £ a{n)(Yy(t,X))\t - A;ccr
P = \t ~
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whereas for Yy < —Xc close to the caustic,

x"(Yy(t,X)) = £ a{n)(Yy(t,X))\t - kcc\
n-« = \t- kcc\-

9ay(\t - fccc|,X),
n-0

noting the replacement of p by q. Both of these are real constants satisfying 0 <
p, q < 1. We draw attention to the a. These can be supposed to be analytic since we
have pulled out the factors, \t — kcc\~

p and \t — kcc\~
p, to represent the divergence of

x" in the two regions. We have also introduced a subscript y. This is simply a label
that allows us to define a unique ay according to the argument of x". If a has no
subscript then we take the argument of x" to be X.

If we are supposing that ay is analytic and arbitrary, then it does not make any
sense to consider values of p and q less than zero since this replaces ay(\t — kcc\,X)
by \t — kcc\ay(\t — kcc\, X) for example, which is also analytic and so we remove this
redundancy. The upper bound on p and q arise from the assumption that dx/dX is
continuous everywhere. To see this we write for X near the cocaustic,

x'(X) = x'(Xcc) ~\X- Xcc\x"(Yd(t,X))

= x'(Xcc) -\t- kcc\
x-*>«d(\t - kcc\,X)\k'cc(Ye)\-\

where X < Yd(t,X),Ye(t, X) < Xcc and the mean-value theorem has been used to
write,

t - kcc(X) = -(X - Xcc(t))k'cc(Ye).

A similar argument holds for X close to the caustic. Clearly then, for p > 1 the first
derivative becomes unbounded at the cocaustic contradicting our assumptions.

Returning to the argument we have, upon using the mean value theorem,

hx,*) = - \t-kcc\-*a\k'cc(Ye)\1/2 \t -
2x'(Yc)

x'{X)2\t - \t -
2x'(Yc)

3/2

dX2
Ota

cchk'cc{Ye)

2x'(Yc)

1/2

2x'(Yc)

[8.5.5]
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This represents the singular behaviour of d2X\/dX2 as t —• kcc (or equivalently

as X —> Xcc). The coefficients of each of the \t — kcc\ terms are continuous. This

implies that we need kcc to be at least C1.

Let us now repeat the analysis and calculate an expression for d2X2/dX2(X,t).

Again for X > 0 near the cocaustic we expect X2 to be close to — Xc. Using Taylor's

theorem with remainder gives

x'(X2) = \X2 + kcc\x'(Ya),

for -Xc < Yd{t,X) < X2. Also, since x(t,X2(t,X)) = x(t,X),

2x'(Yc)
1/2

*"(n)
where -Xc < Y$(t,X) < X2 and X < Yc(t,X) < Xcc. Thus, using [8.4.2] we have

02X2

dX2 (X,t) =
\X-Xcc\^

2x"(Ya) 2x'(Yd)

1/2 x'(X)2x"(X2)
\X - Xcc\*l2x"{Yaf 2x'(Yc)

3/2

[8.5.6]

We note the similarities between the above and equation [8.5.4], which is due to the

symmetry, \X\ + Xc\ « \X2 + Xc\.

We now assume, for example, that

00

x"(Yy(t,X)) = ^ a{H)(Y,(t,X))\t - kcc\
n-r = \t - kcc\-

ray(\t - fccc|,X)
n=0

in order to model the possible singular behaviour for some Yy > —Xc close to the

caustic. With this assumption the above becomes

d2X2 (X,t) =
\t-kcc\-Pa\k'cc(Ye)\

l/2 \t - kcc\-
ra-b

1/2

x'(X)2\t-kcc\-'a2\k'cc(Ye)f2 \t - kcc\
 rai

2x'(Yc)

3/2

d2X2

0 5 2x'(Yc)

1/2

2x'(Yz)

3/2
[8.5.7]
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Inserting [8.5.5] and [8.5.7] into [8.5.1] gives

d2x
dX2 / / l ~ * ~Jo Jo I

_ \f _

7, |?/2—1/2

aik'cc(Ye)
2x'(Y-)

-p a

1/2

abk'cc(Ye)
2x'(Yc)

1/2

For convenience, we shall write the above as

= -GX + A J* £ {\t" - k^
+ 1*" - ^c|9/2-3/2/?3 + \t" -

\t" - hccY

} dt"dt',

or
rt rt' .

= -6X + Aj J {|t"
+l<" - k dt"dt' + 7 ,

where we have defined fli(\t — kcc\,X) {i = 1,...,4) to be the unknown analytic

functions representing the coefficients of each \t — kcc\ term in the above equation

and 7(|^ — kcc\,X), which is assumed to be analytic, to represent the functions of

integration. If we now integrate this equation then provided t does not approach kc

we have

+1* -
- ^ +1* - M
- kcc\

r/2+1/2fc} + 7

We again assume that the fii(\t — kcc\,X) and ~fi(\t — kcc\,X) are analytic. Now we

observe that the left hand side is 0(\t — kcc\~
p) and so for p ^ 0, we have a divergence

as t —> kcc. On the other hand the terms on the right are always finite. We conclude

therefore, that p = 0 and consequently that x" is continuous near the cocaustic. This

is remarkable because our worry was that this would not be the case, forcing us to use
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a complicated, weighted norm to define our metric. Instead the above result implies
that we can use a norm that looks like

x\ =
d2*

+ d2x
dX2 + a2x

dt2 + d2x
dXdt }•

for some D, or at least a derivative of this.

All things now point towards a function space that is C in both the t and
X coordinate. We must, however, check that there are no surprises at our other
suspected problem area, the caustic.

§8.6. Near the caustic, X > Xc.

Since X > Xc, equation [8.5.1] is still valid. We shall consider the two regions of
tX space separated by t — kc(X) to have a different dependence on \t — kc\. That is
to say, we shall assume singular behaviour at the caustic in much the same way as in
the previous chapter, but allow the rates at which x" diverges either side of this curve
to be different. This was essentially done in §8.5 when we introduced the different q
and r.

We begin using the same Taylor expansion methods described in the previous
section and consider first of all 82X\/dX2 . Since X is now close to the caustic, it
follows from the definition of the X{ that X\ must be close to the cocaustic. Thus
in this case, both x"(X\) and x'(X\) are expected to be finite and non-zero (we have
just proved this). The behaviour of x'(X) can be determined. We have

x'(X) = \X-Xc\x"(Ya),

where Xc < Ya(t,X) < X is different to the Ya introduced in the previous section as
are the Yj's Yc's etc. that will follow. This means that

32XX = x"(X) \X - Xc\
2x"(Ya)

2x'\Xl)
dX2 ~ x'iXi) x'(Xif

If Yy > Xc is close to the caustic then we illustrate the possible unbounded nature of
the second derivative in this region by writing,

x"(Yv) = \t- kc\-'ay(\t - kc\,X) 0 < s < 1.
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Then,
d2Xx

[8.6.1]

where again the subscripts to each a indicate the arguments for the original x" from
which it is derived. Also we have used the mean value theorem to write,

-t = -(X-Xc(t))k'c(Yb).

EereXc<Yb(t,X)<X.

Let us now consider d2X2/dX2. We have, remembering that for X > Xc close to
the caustic X2 must also be close to the caustic,

x'(X2) = -\X2-Xc\x"(Yc),

where X2 < Yc(t,X) < Xc. Also, from x(t,Xi(t,X)) = x(t,X), we have

x(Xc) + \\X2 - Xc\
2x"(Yd) = x(Xc) +

 l-\X - Xc\
2x"(Ye),

where X2 < Yd(t,X) < Xc and Xc < Ye(t,X) < X. This implies that

1/2

\X2-XC\ = \X-XC x"(Yd)

Thus it follows that

d2X2 x"(X)
8X2 \X - Xc\x"(Yc) x"(Ye)

1/2
\X-Xc\

2x"(Ya)
2x"(X2)

x"(Ye)

3/2

We are again required to feed in our assumptions regarding the expected singular
behaviour. For any Yy < Xc close to the caustic we assume that the second derivative
can be written as

x"(Yy) = \t-kc\-
tay(\t-kc\,X)

Thus,

d2X2

dX2
\t-
\t-

kc \-'«\KW)\
Wt-kc-totc

\t~
\t~

kc
1/2

\t - ke\\t - ke\-**c$
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\t - kc\~
sae
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which finally becomes

ac

1/2
\t -

Ctl

Old

OLe.

3/2

[8.6.2]

Inserting [8.6.1] and [8.6.2] into equation [8.4.1] gives

w^2 = ~QX + A I* [* 1^" ~ M~ S -WT - \t" - koXl Jo Jo \ x'(Xi)

+ It" - /;c|</2-W2-lQlfcc(Ft)l a* 1 /2

3/2'

which we shall simplify by writing as

Here the /3i and 7 are different functions to that defined in the previous section. They

do, however, possess the same attributes, namely that they are analytic functions,

and in particular, that 7 still represents the arbitrary function of integration. Since

x is C2 in a region close to the caustic, the above representation holds for all t < kc.

Thus, if we integrate we obtain

d2x
dX2 - \ t - \t- 7.

But again for s / 0 the left hand side is 0(\t — kc\
 s) and therefore unbounded as

t —* kc whereas the right hand side is finite. It follows that for consistency, 5 = 0

and we conclude that x" is continuous for X > Xc.

§8.7. Near the caustic, X < Xc.

For the other side of the caustic we proceed in the same manner. Things are

getting progressively easier for as we proceed to integrate expressions for x" up the

time axis, we seem to be proving that x is C2 at all points below (t,X). The only
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function whose continuity is not known is x"(Yy) for Yy < Xc close to the caustic.
We have, using Taylor's theorem,

x'(X) = -\X-Xc\x"(Ya),

where X < Ya(t,X) < Xc. Assuming that all second order derivatives this side of
the caustic behave like

*"{Y9) = £ *(n)(Yy)\t - kc\
n-« = \t- kc\-»ay,

n=0

then for d2Xi/dX2 (remembering that now X = X2),

where we have used the mean value theorem to write,

-kc = -(X-Xc)k'c(Yb),

where X < Yb(t, X) < Xc.

Similarly, we have from Taylor's theorem that

x'(X3) = \Xz-Xc\x"(Yc)

and

\X3 - Xc\ = \X - X,

Thus it follows that

\t-kc\-*a\k>c(Yb)\

*"(Ye)

dX2 \t - kc\x"

x"iYd)

1/2

1/2

\t- kc\~
uae

\t-kc\
2\kc(Yb)\\t-kc\-

2uaax"(Xz)
\t - kc\*x"{Ycf

[8.7.1]

1/ _ U \—v

3/2

d2X3

dX2

1/2

Ote

3/2
[8.7.2]
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Finally, inserting [8.7.1] and [8.7.2] into [8.4.1] gives

_ | /" _ h |-«/2-ll^( rfc)lQ°x / /(^3)

1/2

3/2'

For simplicity we write this as

d2x rt rt'

A {|t- - I* - 7-

Since the left hand side is O(\t — kc\ ") we conclude that to have consistency we must

have u = 0. The implications of this and the previous two section's conclusions imply

that x is C2 everywhere in the three-dust region. This will have profound implications

on the simplicity of both the metric space that will be used and the actual calculation

proving that J is a contraction.

§8.8. Metric space proposed for a contraction mapping proof of existence.

In the previous three sections we have shown that d2x/dX2 is continuous every-

where in the three dust region. The fact that x is now C means that we can focus

our attention on a relatively simple formulation of the metric function. By this we

mean something that looks like

where

= sup •
(t,x)ev

which is the standard C2 norm.

d2cf>
dX2 + d2<t>

dt2 + d2^
dXdt
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First of all we define the domain in which we hope to prove existence, i.e.,

\X\<T,0<t<T},

which, for suitably small T > 0, defines a box enclosing the cusp. Next, to model our

assumption that the solution looks like q, which is the solution for zero gravitational

constant, we define

as the space of functions within which we hope to prove existence. The norm defined

in the above is given by

y = sup
1

dX2 + d'2<f>
dt2 + d2<f>

dXdt
[8.8.1]

(t,X)£BT 1 1 X I

If we restrict this further to the set of functions given by

Vc = {/ € V | | | / - «||V < c} ,

then this confines our test solution, / , to a tube around q. The 'width' of this tube

is determined by the constant c.

The above definitions embody all of the ideas so far presented in this chapter,

however, the thoughts that led to the exact form of equation [8.8.1] have not been

presented. We shall now do so. In defining our metric space we postulated that

for a small enough region containing the cusp, any trial solution must be close to

x = q(t,X) where q is the solution for zero gravitational constant (ref. §3.1). To put

meaning to this statement we required that

1. x is an odd function in X (as is q) and

2. that the bounds to be used for D2(x — q) should be linear in \X\.

Item 2 suggests that for X > 0,

d2x
dX2 a2\X\, [8.8.2]
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d2
X

dXdt dXdt

d2x d2q

dt2 dt2

[8.8.3]

[8.8.4]

To show that these conditions imply bounds on x that are cubic in nature we

must integrate the above and to do this we note that for all / G Vc,

dX'

and
df

Thus, for X > 0 (we can obtain estimates for the X < 0 case by symmetry), equations

[8.8.2] and [8.8.3] imply that

df
dJT '

dX'

J: ^ U ) -dtdX'
dt'

< [ ai + a2X dX' + [ bx + b2X dt'
Jo Jo

= axX + -a2X
2 + bit + b2Xt.

This in turn gives

\f(t,X)-q(t,X)\< I
J 0

df
dX

dX'

\ \ \b2X
2t.

Zi \) Zi

Item 1 in the above list forces a\ = b2 = 0. This finally gives,

(1 - h)Xt - (l + °^j X* < f(t,X) < (1 + h)Xt - (l - f ) X3

for X > 0 and provided a2 < 6. Thus for X > 0, / is bounded above and below by

a cubic that looks like q. We can refine equations [8.8.2]-[8.8.4] still further since we

can set c2 = 0 without affecting the cubic structure of our upper and lower bounds.

In addition, if we set c = max{a2, &i,ci} then [8.8.2]-[8.8.4] become equivalent to
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CHAPTER 9. ESTIMATES FOR d2x[f]/dX2 IN MULTI-DUST REGION.

§9.1. Introduction.

The next step is to show that J , as defined by [8.3.3], is a contraction mapping on

the space of functions, Vc. To do this, we need to estimate || </[/]||v- The only difficulty

arises with the second X-derivative given by equation [8.4.1] which we restate below,

t f"(X) f(Xff"(Xt)

where

d2x[f] (t x) - d'Xl
{tx)

and

The last equation represents the difficulty entirely for it contains two divergent terms,

[/'(X,)]"1 and [f'(Xi)]~3. We complete this thesis by constructing estimates for the

first of these quantities.

§9.2. Bounds for the caustic and its derivative.

In this section estimates for the caustic, kc(X), and its inverse, Xc(t), will be

obtained. We shall do this by first of all calculating bounds on the derivatives, k'c(X)

and X'c(t), and then integrating these using the boundary conditions kc(0) = Xc(0) —

0. This results in expressions that bound kc and Xc away from zero; an important

requirement for later on when [f'(t,Xi)] is considered as a function of t and X,

terms like kjl will appear.

We begin by considering the definition of the caustic, f'(kc,X) = 0. By differ-

entiating this expression k'c can be defined in terms of 2nd order derivatives of / ,

i.e.,

d2f/dX2(kc,X)
d2f/dtdX(kc,X)'
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Previous analysis has discussed the need to confine / about q, where q = Xt — X3

is the cubic corresponding to caustic formation in the absence of gravity. This was

achieved by stating that | | / — q\\v < c resulting in

a i 2 V V < c\X\ and
dtdxy' dtdXK '

< c, [9.2.1]

where c is an unrestricted constant that defines the size of our tube containing / . By

the symmetry of / about the origin we only need consider that half of the tX plane

corresponding to X > 0. From equations [9.2.1] we therefore have

and

Clearly then,

<k'c<
~ c ~ - c

[9.2.2]

Integrating this expression between 0 and X with the boundary condition, kc(0) = 0,

gives

Jo 1 +
rX tXP, _ r rX fX P, _|_ r

—X'dX'< k'c(X')dX'< *-±±X'dX'
1+c - Jo cV ' ~ Jo 1 - c

2 < j <
 6

~ c - W
~ c

Y 2 [9.2.3]

To obtain estimates for Xc and X'c we can use the inverse function theorem to

bound X'c from above and below and then follow a similar argument to the above.

Now,

x'c(t) = (K(Xc
- l

t* 1 — c , /"* , , , , /"* 1 + c ,

Jo 6 + c —Jo c ~ Jo 6 - c

6 + c ~ " - V 6 - c

using the boundary condition, Xc(0) = 0. Finally,

1 - c / 6 - c 1 + c / 6 + c

6 - c V 2 ( l -c)t'

[9.2.4]

[9.2.5]
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§9.3. Bounds for the cocaustic and its derivative.

We have already defined the equation for the cocaustic in tX space to be t =

kcc(X) with its inverse, X = Xcc(t)- In this section bounds for both of these functions

and their derivatives will be obtained. The argument will follow along similar lines

as in the previous section: estimates for the derivatives will be obtained which will

then be integrated to give estimates for the functions themselves. The analysis is

complicated by the fact that we can only define the first derivative of the cocaustic

as a composite function involving / and Xc(t). Having to estimate the derivatives of

both of these functions therefore results in bounds for the cocaustic that are perhaps

less stringent than those for the caustic.

It is possible to find bounds for the second derivative of the cocaustic, however,

this is a lengthy procedure and cannot be used to improve upon the estimates for the

first derivative of the cocaustic or the function itself. Moreover it does not feature

anywhere in the evaluation of estimates for d2Xi/dX2.

To begin we have, by definition,

) , -Xc(kcc(X))) = f (kcc(X), X).

Differentiating this gives

— -KTf {kcc, —Xc(kcc)) Xc(kcc)kcc + — (kcc, —Xc(kcc)) kcc — —— (kcc, X)
dX dt dX [9.3.1]

+ ~K7 \kcciX) kcc.

The first term vanishes by the definition of the caustic and so

df/dx(kcc,x)
-Xcc(kcc)) •

By virtue of the assumption that / is confined to some 'tube' centred upon q (as

defined above), we can show that

q '*, X) <ct + -cX2
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and

dt
- <c\X\

(ref. §8.8), which are equivalent to

VX

and

[9.3.3]

or

c)X< ^-
at

For the moment, let us only consider an upper bound for k'c. Now,

and

^ (kcc,X) - ^ (Jbcc, -Xc(kcc)) > (1 - c)X - (1 - c) (-Xc(kcc))

\

2(1 - c)
(6 + c ) '

Thus from [9.3.2],

^cc

2(1 - c) \ X

2(1 - c)

6 + c
6 + c

Integrating this equation with respect to X and using the boundary condition for the

cocaustic at the origin, namely kcc(0) = 0, gives

*cc Z^
6 + c 2

4(1 - c) •
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For a bound going the other way,

1
-^(kcoX) > - (1 + c)kcc + 1(6 - c)X2

and

df

together imply that

^WTiV-V
c)(6 + c)

2(l-c)(6-c)J '

using equation [9.3.4].

We can think of this estimate as being the most general lower bound for k'cc.

However, this expression must be used to determine bounds for the inverse function,

Xcc, and it would be desirable if we could simplify it. c is an arbitrary constant such

that 0 < c < 1 (the condition that df/dt must still exhibit <j>-like behaviour, ref.

[9.3.3]) and essentially determines the thickness of the 'tube' that confines / close

to q. Reducing the value of this constant tightens this tube and improves all the

estimates for / , the caustic, the cocaustic and all the corresponding derivatives. We

shall find later on when bounds for [f'(Xi(t, X))] are calculated for various regions

in the positive half of the tX plane, that the range of admissible values for c must be

reduced. Consequently there is no reason to stop us from modifying this range even

at this early stage, so as to simplify the lower bound for k'cc.

We suppose therefore, that c satisfies,

< ' + « = ) < « + • = > < * ,9 .3 .5]
2(1 - c)(6 - c) 9

With this choice we have 1 — y5/9 > 1/4 so that

,/ 6 — c ,.
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Now equation [9.3.5] clearly restricts the value of c. The extent to which it does this

can be determined by solving <? — 133c + 6 > 0, which is equivalent to [9.3.5]. Since

x2 — 133x + 6 = 0 has solutions,

133±VT7665
x = .

we can say that provided

133-^17665 _ 1596 - \/2543760 1596 - y/2544025 _ J_
2 ~ 24 > 24 ~ 24 > C'

then both [9.3.5] and [9.3.6] are true statements. This means that we can write,

8(l + c ) A < f c c c S 2 ( l - c ) ' L J

which if we integrate using the assumption that A;cc(0) = 0 gives

6 — c o , , 6 + c «
16(1+c) c c - 4 ( l - c ) '

[9.3.8]

Again, to find estimates for Xcc and its derivative we use the inverse function

theorem. Equation [9.3.7] therefore implies that

<0 < x , 8(1+c)
X < [ 9 3 9 ]

Integrating this with the boundary condition Xcc(0) = 0 gives

ob + c Jo Jo b — c
c)dt'

19.3.10]
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§9.4. Summary of estimates for the caustic and cocaustic.

In order to facilitate reference to the estimates for the caustic and co-caustic we

list them in this section:

^ <k'c< f±^X, [9.2.2]
1 c

X <kc<
c

2(1
6 c

 Y2 < h < 6 + c y2 rq o oi

6 - c < ^ ! + £ / 6 + c
6 + c\ 2(1 + c)< - c - 6 - cV 2(1 - c)*'

6 + c - " - V 6 - c

8(1 + c) ^"cc- 2 ( 1 - c )

6 —c „ , , , 6 + c

16(1+ c) o t - - 4 ( l - c ) "
[9.3.8]

<X <
(6 + c) V 16(1 + c)t S cc < (6 - c) V 4(1 - c)V

Xcc < JM±AL [9.3,o]
V o c

fcf, < Xcc <
0 + c V o — c

9.5. Estimates for [/'(Xi(t, X))] x for X near the cocaustic.

We begin our analysis on [f'(Xi(t, A"))]"1 by considering the case when X is close

to the cocaustic and i = 1. By definition of the cocaustic we expect X\ to be close

to the caustic and so [f'(Xi(X,f;/))]"1 becomes unbounded as X approaches Xcc.

To illustrate this feature we use the mean value theorem three times to express this

quantity in terms of the distance from the cocaustic, \t — kcc\.

By definition,

f(X1) = f(X)

) -\X- Xcc\f'(Ya) = f(-Xe) + \\Xi + Xc\
2f"(Yb),
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where X < Ya < Xcc and X\ < Yb < -Xc. It follows that

1 1 + c | "

Also,

f(Xi) = f'(~Xc) - \Xi + Xc\f"(Yc),

where X\ < Yc < -Xc and

\t-kcc\ = \X-Xcc\\k'cc(Yd)\,

where X < Yd < Xcc. Combining these three results gives the expression,

[9.5.1]

which we can use as a basis to begin the estimation process. The procedure is to

simply take each term and use either

\f"(X)-q"(X)\<c\X\ [9.5.2]

or

\f'(X)-q'(X)\<ct+1-cX2 [9.5.3]

to obtain upper and lower bounds.

Obtaining bounds for any term that is the second derivative of / is easy since

0 < c < 1 restricts the 'tube' containing / " so that it is linear and strictly negative

for positive X. The first derivative, however, is much more difficult and this is chiefly

because / ' becomes zero at the caustic. This must be avoided if finite estimates for

[/ '(Xi)]"1 are required. As we shall see, the way around this problem is to impose

restrictions on X so that | / '(K,)| is bounded away from zero. This of course begins

to define in specific terms what we mean by the region close to the cocaustic.

Consider first of all the term {/"(Yf,)]1^2. Now equation [9.5.2] implies that
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but since X\ < Yj < — Xc we can make the above estimates more restrictive, i.e.,

(6 - c)Xc < \f"{Yh)\ < (6 + c)Xcc. [9.5.4]

In a similar fashion the term |/"(V^)| can also be estimated; we obtain

(6 - c)Xc < \f"{Yc)\ < (6 + c)Xcc. [9.5.5]

The term \f(Ya)\^l2 is treated differently. Since this occurs in the denominator
we must ensure that this term is bounded away from zero. Now from equation [9.5.3],

f'(Ya) < q'(Ya) + ct+ \cY2
a

= (l + c)t-l-(6-c)Yl [9.5.6]

For convenience we might like to choose, using [9.2.4],

6 + c

as a lower bound for Ya, however, with this choice,

and it is not obvious whether the right hand side is positive or negative. We must
therefore choose a tighter bound on X (and consequently Ya).

Suppose a\[i < X <Ya. Then

and hence if we wish to bound f'(Ya) away from zero a must satisfy the inequality,

Clearly, as a increases the lower bound on X approaches the cocaustic and the
region that is close to this boundary becomes smaller. We therefore chose a so that it
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only just satisfies [9.5.7]. This of course will correspond to a weaker estimate for f'(Ya)
and hence ultimately a weaker estimate for d2x[f]/d2X, but this does not matter for
we simply consider a smaller neighbourhood of the origin to ensure a contraction
mapping. If we choose a2 = 2(1 + 2c)/(6 — c) then clearly [9.5.7] is satisfied and

= -ct.

A lower bound for f'(Ya) is easy. Using [9.5.3] and [9.3.10],

f'(Ya) > q'(Ya) -ct- X-

Thus finally,

c)(6 + c)t | 8(1 + c)t

6 — c
9(6 + c)(l + c)t

6 - c

6 — c

The last term to consider is |
the cocaustic and its derivative,

6 - c
8(1

provided c < 1/24. Since

6 — C

it follows that

6 - c

From previous discussions on estimates for

6 + c

2(1-c)

— C
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With all these results ([9.5.4], [9.5.5], [9.5.8] and [9.5.9]) we can now construct

estimates for [f'{Xi)]~l using [9.5.1]; we obtain

(6 - c ) 3 / 2 ( i _ c)cV2tV2\t -fee <

24x/2(6 +

(6 _ c)3/2(! _

(6 - c)7/4(l -
24^2(6 + c)7/4(l + c) W / 2 | * _ fccc|i/2 •

Using [9.3.5] we can then remove most of the terms involving c; we obtain

_ f c c c | l / 2

5

- M 1 / 2

for all

< [ / ' (X i ) ] - 1 < - w * 7, , 1 / 2 [9.5.10]

2c)t v v 1
< * < * and c < —.

24
V 6 - c 24

§9.6. Estimates for [f'(X2(t,X))}-1 for X near the cocaustic.

We follow similar arguments to the previous section since if X is close to the

cocaustic, then we expect X2 to be close to the caustic in the opposite sense to X\

(i.e. X\ < —Xc < X2). Now by Taylor's theorem,

f(Xcc) -\X- Xcc\f'(Ya) = f(-Xc) +l-\X2 + Xc\
2f"(Yb)

and

f'(X2) = f'(-Xc) + \X2 + Xc\f"(Yc).

Here Ya, Yb and Yc such that X < Ya < Xcc, -Xc < Yb < X2 and -Xc < Yc < X2

are different to those defined in the previous section. These equations imply that
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Again, by the mean value theorem, \X — Xcc\ = \t — fcccll^ccC^)!"1 where X <

Xcc so that finally,

f 9 g l l

noting that f"(Yc) is positive.

Consider first of all \f"(Yb)\. Equation [9.5.2] implies that

(6 - c)\X2\ < (6 - c)\Yb\ < \f"(Yb)\ < (6 + c)\Yb\ < (6 + c)Xc. [9.6.2]

Similarly,

(6 - c)|X2| < \f"(Yc)\ < (6 + c)Xc. [9.6.3]

The previous section calculated a bound for | / ' (

(0 — C)
[9.5.81

This is valid even though technically the Ya are no longer the same quantity. The

reason for this is that in both cases, when estimates for | / ' ( ^ ) | are calculated, Ya

terms are introduced via equation [9.5.6] and then removed by using Xc < X < Ya <

Xcc. This makes the Ya in this context equivalent. For a similar reason we again have

„ , , _ , , . 6 + c / I6( l+c)< rn _ n,

< |fc~rai < w^cj V " b r - [9-5-9]

Finally, inserting estimates [9.6.2], [9.6.3], [9.5.8] and [9.5.9] into equation [9.6.1] gives

12 • 21/4(6 + C)3/2(l + c ) / t / | t fccc|/
l J

- c)3/2(l -

At this point the estimation process diverges from that of the previous section.

Although this was not explicitly done, the quantity, |Xi|, which is the unknown

function of X, was removed using — Xcc < X\ < —Xc- These are of course the least

rigorous bounds on X\ there can be. In this case, however, since — Xc < X2 < Xc,
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we must conclude that 0 < \X2\ < Xc meaning that [/'(X2)] 1 could potentially be

infinite as illustrated by equation [9.6.4]. To solve this problem we need to find an

upper bound, XUB say, such that — Xc < X2 < XUB- The way that we shall do

this is a two step process: firstly it will be shown that for fixed t > 0, / is strictly

increasing on [0,Xc), and strictly decreasing on (XC,XCC\. Then, using these results

and the asymmetry of the problem, we shall find an XUB s uch that for all X > ay/t,

/(X2) < /(XUB) and consequently X2 < XUB- Here a is an undetermined constant

different to that of the previous section.

First of all let us argue that / is strictly increasing on [0, Xc) and strictly decreas-

ing on (XC,XCC]- By definition, Xc and — Xc are the only solutions to f(X) = 0.

Thus for X € (0,Xc), either f'(X) > 0 or f(X) < 0. Now \/"(X) - q"(X)\ < c\X\

implies that for all X > 0, /"(X) < q"(X) + c\X\ = -6X + cX < 0 since c < 1/24.

Thus /'(X) is strictly decreasing for all X > 0 and hence must be positive on (0, Xc).

By the continuity of / ' this region can be extended to [0,Xc). Thus / is strictly in-

creasing on (—XC,XC). Furthermore, since /'(X) is strictly decreasing for all X > 0,

it follows that f(X) is negative in (XC,XCC\ and that /(X) is strictly decreasing in

this region.

We can now begin to find the constant, a, that defines XUB- Unfortunately

there is no chronological argument that begins with an assumption and ends by

defining XUB- Instead we suppose that XUB is given and then proceed to show

that it is in fact an upper bound for X2. We begin by simplifying the estimate

for / which makes the following calculation easier. Previous analysis shows that

integrating the second order derivatives of / with the appropriate boundary condition

gives \/(X) — q(X)\ < ct\X\ + c|X|3/6. Since we are working with a fixed t domain,

we can define a new constant, fc, and write for any point in the 3-dust region,

\/(X)-q(X)\<ct\X\+1-c\X\3

< (ct + l-cX2
c)j \X\

= kt\X\.
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We shall find it useful to relate k to c. Using [9.3.10],

f 8 ( l + c ) \

and since c < 1/24,

8(1 + c) 8-25 9-25 _ 3
3(6 - c) < 3 • 143 < 3 • 125 ~ 5

so that, without loss of generality, we can redefine k = 2c.

[ / I 1
—•jAt/3,jAt/3\, we define <?,- (i = 1,2,3) that

do have inverses by qx = q VX G [-y/to/Z,-y/t/3\, q2 = q VX e (-y/t/3,y/t^

and qs = q VX G fv/t/3,-v/4t/3 . Here the quantities vA/3 andJAt/3 represent the

caustic and cocaustic corresponding to x = ^(<,X). Now, supposing that X\jB is

defined by X\jB — q^1 (q(a\/i) + Act • ay/ij, then

/(X2) = f(X)

< f(ay/i)

< q{aVi) + 2ct\a\/i\

= q(ay/i) + 2ct • aVi

< q(aVi) + Act • ay/t - 2ct\XUB\

= q {q2 (^(avi) + Act • avt)) — 2cf|X[/5|

= q(XUB)-2ct\XUB\

<f(XUB)
= > X2 < X\jB.

There are a number of conditions that X\jB and the constant a must satisfy for this

argument to work. First of all we have

This ensures that q(ay/t)-\-4ct-a^t lies in the domain of q^ . Clearly, without this con-

dition XJJB cannot be defined. The quantities 2t/3Jt/3 and —2t/3\/t/3 are simply
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the maximum and minimum values of q2, namely q (yJt/S) and q ( — \/t/3) respec-
tively. The second condition is that |X[/£| < ay/i. This arises from the above math-
ematics since without this statement we could not conclude that /(X2) < /(XUB)-

Thirdly we require that XUB 1S negative. This last condition is crucial for estimating
[f'(X2)]~1 as it ensures that this quantity remains bounded.

Now,

XUB = Q21 (?(«V*) + 4c* • a\/i)

= q^1 (ay/i • t - (ay/if + Act • ay/t) •

If one temporarily reinserts the time dependence of q then

XUB = q^1 (q ((1 + 4c)t,aVi))

and hence in addition to the above three conditions we must have

a2 < 1(1+4c), [9.6.6]

which again ensures the existence of XUB- This requirement is different to the one
above which is also ensuring that XUB can be defined because in this case the restric-
tion is more on X than on X2 or XUB- The inequality, 4(1 + 4c) — 3a2 > 0, implies
that 4(1 +Ac)t — 3X2 > 0 and can be interpreted as ensuring that the point, (t, X), lies
within the 3-dust region defined by q at a later time of (1 +4c)i. This means that the
above procedure for showing that /(A2) < J(XUB) is> m essence, a procedure which
finds a constant, c, and a new cubic, qp(X,t) = q(X, (1 + 4c)t) = (1 + Ac)Xt — X3,
which is an upper bound for / for all X > 0. Since q has been made invertible by
segmenting its domain, qp can be made invertible in a similar manner enabling
the solution to qp(XuB>t) = ^ ( G V M ) , to be determined.

Let us begin with the constraints on XUB that are the least complicated. For

XUB to be negative,

a > ^4(1+ 4c) - 3a2

a2 > (1 + 4c). [9.6.7]
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In fact we find that this requirement means that the inequality, |X{/B| < a\/t, is

automatically satisfied since

,v_.,_ (a-yJ^l+Ac)-

Let us now consider the final requirement of equation [9.6.5] which can be written
as

[9.6.8]

Now [9.6.6] and [9.6.7] imply that (remembering that a > 0)

-^ (1 + 4c) < a(l - a2 + 4c) < 0

so [9.6.8] is satisfied if

a ( l + 4 c ) < 2 ^ .

In order to maximise the area of the region adjacent to the cocaustic, a must be
chosen to be as small as possible. Equations [9.6.6] and [9.6.7] imply that (1 +4c) <
a2 < 4(1 + 4c)/3. For this reason we therefore chose a2 = 1 + 6c. This means that c
is required to satisfy

96c3 + 64c2 + 14c - \ < 0

and this inequality holds if c < 1/48.

XJJB
 c a n n o w De determined as a function of t. We have

- V
/ TT63 + */4(l + 4c) - 3(1 + 6c)

2
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Now,

-2c)2 = l + 6c+l - 2c - 2\/l

> l + 6c+l-2c-2(l+6c)

= 16c,

- 2c

hence

—v/1 + 6c + Vl - 2 c < -4-v/c < -4c ,

noting that c < 1. It follows that XUB < —2c\/i.

In conclusion we now have

+ c
-Xe <X2< XUB < -

or

As can be seen, the quantity —2cy/i is used rather than the messy but exact definition

of XUB- This is fine as the object of this exercise was purely to find an upper bound

for X2 which is negative and bounded away from zero; criterion which —2cy/i satisfies.

XUB was simply used as a tool to prove existence of an upper bound for X2 for all

X < Xc.

Having determined bounds for X2, we can return to the main discussion of this

chapter and determine the bounds for [/'(.X^)]"1. Using these results, [9.6.4] becomes

11 Y M —1

12(6 + c)3/2(l < lf'(X2)}

23/4c3/2(6 _

_ c)7/4 (1 _ c)7/4
''/ V M —1

12 - (6 < lf\x2)]

23 /4c3 /2(6-c)3 /2( l -

2l/4 . 97/4cl/2

12

1Q3/2
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l /2

^ 12y/2tV*\t -

for all

+ 6c)i < X < Xcc and c < —.

§9.7. Summary of estimates for [/(^(t.X))]"1 and [/(^(^X))]"1 for X

near the cocaustic.

To clarify the restrictions placed on X and c, the estimates obtained in the pre-

vious two sections are summarised here. We have

[/'(^)]"1 [ 9 5 1 0 ]

provided

2c)< „ v , 1
<X <XCC and c < —,

246 - c "" 24

and
J/2

12y/2tV*\t -

provided

+ 6c)i < X < Xcc and c < —.
4o

Clearly, for c < 1/48,

2(1 + 2c) 100

6 - c < 287

and hence
100 2(1

1 + f e > 1 > > J

So in order for the above estimates for [/(Xi)] -1 and [/(-X^)]"1 to be valid simul-

taneously in the region close to the cocaustic, we must define this region to be
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§9.8. Estimates for [/'(Xi(«, X))]"1 for X > Xc near the caustic.

Because X is near to the caustic, X\ must be close to the cocaustic by definition.
Thus, provided X is sufficiently close to the caustic, we expect f'(Xi) to be well
behaved and bounds can be obtained without expanding in powers of \t — kc\.

We have from [9.5.3],

(1 - c)t - 1(6 + c)X\ < / ' (*!) < (1 + c)t - 1(6 - c)Xl VXi. [9.8.1]

The least restrictive bounds on X\ are — Xcc < X\ < —Xc and if these are used in
conjunction with [9.8.1] then we obtain

using the bounds for Xc and Xcc as given by equations [9.2.4] and [9.3.10]. As can be
seen this does not provide useable estimates because / ' (X\) is required to be non-zero
and the above does not enforce this. To proceed, therefore, we need to determine an
upper bound, XUB s a v (which is different to that of the previous section), which can
ensure that f'(X\) is negative and non-zero so that [/'(Xi)]"1 remains bounded.

The procedure for determining XUB follows a similar argument to that of the
previous section where an upper bound for X2 was found. Using the fact that / is
decreasing VX < —Xc and X > Xc, it will be shown that f(X\) > /(XJJB) for all
X < by/i and hence X\ < XUB-

To prove this inequality, let us suppose that XUB — Q^
Then, using \f(X)-q(X)\<2c\X\,

/(X,) = f(X)

> f(by/i)

> q{byfi) - 2ct\by/i\

> q(by/i) - Act\by/i\ + 2ct\XUB\

= q(qil (q(bVi)-4ct• bVt)) + 2ct\xUB\

> f(XUB)
=^> X\ < XUB-
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Once again this series of mathematical statements only works provided a number of

conditions are met. Firstly, in order for XUB to be defined, q (by/i) — ictby/i must

lie in the domain of qi, i.e.,

- f /!< q ̂  - ̂ ctUt < f\fl- [9-8-2]
Since q\ is strictly decreasing the quantities 2t/3yf/3 and —2t/3Jt/3 can easily be

identified as q (—yJit/S), the value of q at the cocaustic and q (—v/i/3j, the value

of q at the caustic respectively. The other condition that enables XUB to be defined

is essentially a restriction on the possible values of X. To see this we have from its

definition,

XUB = qi1 (q (bVi) - Act •

= q^1 [bVt • t - {by/if - Act • bVt)

If we temporarily reinsert the time dependence of q then

| 9 . 8 . 3 ,

and so for the square root to be real,

2 ^ [9.8.4]

This inequality has a similar interpretation to that of [9.6.6] for it ensures that the

point (t,X) lies within the 3-dust region defined by q at an earlier time of (1 — Ac)t.

This means that the above argument showing that f(X\) > /(XUB)
 ls a procedure

defining a new cubic, qa(X, t) = q(X, (1 — ic)t) = (1 — Ac)Xt — Xz, which is an upper

bound for / for all X < 0 and that XUB is simply the solution to qa(XuBi^) —

qa(by/t,t).

The last two conditions are |X[/£| < by/i, which allows the proof of f(X\) >

to go through, and

2 2(1 + c)t
XuB > l e ^ T ' [ ]
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which ensures that f'(Xi) is negative and bounded away from zero (the point to this

exercise) and is derivable from [9.8.1]. Let us consider the condition that |AVJ?| <

by/i. From [9.8.3], X\JB is clearly negative and so this condition becomes

= > 6 2 > ( l - 4 c ) . [9.8.6]

There now exist upper and lower bounds on b2 as given by [9.8.4] and [9.8.6] and to

proceed, 6 should be defined. Now as b increases the range of admissible values for X\

also increases as XJJB moves closer to — Xc. Clearly, it is our desire to have the region

close to the caustic as large as possible. To this end b is defined by 62 = 4(1 — 6c)/3

which only just satisfies the bounds imposed on b2. Since c is at least less than

1/48, this choice automatically satisfies [9.8.4] and [9.8.6] simultaneously. With X\JB

defined explicitly by equation [9.8.3], [9.8.5] becomes

b2 + 2bJ^l - Ac) - 362 + 4(1 - 4c) - 362 >
6 -

| (1 - 6c) + 2 ^ ( 1 - 6c) V ^ + 8c >

with the above choice for ft2. With the current value for c, \IA(\ — 6c)/3\/8c > 8c

and the above becomes

This inequality is equivalent to 12c2 — 65c < 0, which has solutions 0 < c < 65/12.

Since we already have c < 1/48, the choice that X < y4(l — 6c)/3 means that X\JB

satisfies [9.8.5].

The last constraint to consider is of course [9.8.2]. Now

q (bVt) - Act • by/i = bty/i - (by/i)3 - Act • by/i

= ((1 - Ac)b - b3)ty/i
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which is negative since 1 - 12c > 0 for c < 1/48. Thus if [9.8.2] is to be satisfied, we

simply need to show that

This, however, is trivial for the above becomes

1 > (1 - 12c)Vl - 6c,

which is true for all c > 0.

With b given, XUB c a n be defined explicitly, however, this produces a complicated

bound for X\. For this reason, XUB is itself estimated by a quantity, XUB say? s u c n

that XUB < XUB < 0 satisfies

Y2 ^ T2 ^ 2 ( 1 + c h ro 8 71
XUB > XUB > —^ *• [9.O.7J

0 — C

This statement is important for it allows X\ to be estimated by XUB whilst insuring

that f'(Xi) is negative and bounded away from zero. Now since c < 1/48,

implies that

4(1 - 6c)/3 + Sc + 2^4(1 - 6c)/3V8c

= -(1 + cVl008)t
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If XUB = -y/(l + 31c)</3 then [9.8.7] implies that

= • 31c2 - 179c < 0

and hence [9.8.7] holds provided c < 179/31.

In conclusion, therefore, using [9.3.10],

<XuB < - ^

for all Xc < X < ^4(1 - 6c)t/3 so that [9.8.1] implies that

1 4(1 _ rU 1 1

(1 - c)t - -(6 + c) l J < f(Xx) < (1 + c)t - -(6 - c)-(l + 31c)t
Z D + C Z O

-(1 - ct)t < f(Xi) < (-30c+ ic+ yc2) t

= » - ( 1 - c)t < / ' (Xi) < -25ci

< W^M"' < "

9.9. Estimates for ffflofi,!))!"1 for X > Xc near the caustic.

Since we are close to the point where X$ is relabelled as X2, [ / ' (^2)] - 1 is expected

to become unbounded as X approaches Xc, the point of transition. For this region

we must expand [f'(X2)]~1 in powers of \t — kc\. By Taylor's theorem,

\\X - Xcff"(Ya) = -\\X2 - Xc\
2f"(Yb),

f'(X2) = -\X2 - Xc\f"(Yc) = \X2 - Xc\\f"(Yc)\

and

\t - kc\ = \X - Xc\\k'c(Yd)\
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where Xc < Ya < X, X2 < Yb < Xc, X2 < Yc < Xc and Xc < Yd < X. These
equations together imply that

] [ 9 9 1 ]

Let us consider first of all the terms that involve second derivatives of / and
estimate these. Using \f"(X) - q"(X)\ < c\X\, it follows that

(6-c)Xc<\f"(Ya)\<(6 + c)X,

(6-c)\X2\<\f"(Yb)\<(6 + c)Xc

and

Next, from the estimates given by [9.2.2] and [9.2.4],

Hence equation [9.9.1] implies the following upper and lower bounds,

c)^X
- c)\X2\\t - kc\- ^ J

As can be seen, in order to proceed with estimating [/'(^2)] -1 the quantities \X2\
and X need to be bounded by functions of t. The latter is the easiest for its bounds
are determined coarsely by Xc < X < Xcc and more accurately by Xc < X < by/i
where by/t defines the region close to the caustic. Estimating IX2I, however, involves
a complicated process similar to that of the previous section.

Clearly, from [9.9.2], IX2I must be bounded away from zero. Since X is close to the
caustic, X2 must be close to the caustic in the opposite sense (i.e. 0 < X2 < Xc < X)
and hence for X very close to Xc, X2 will be positive. The way forward therefore, is to
decrease the value of b so that X2 is always positive and bounded below by XIB > 0.
The proof of the existence of XIB iS stated concisely in the following theorem.

Theorem. Suppose that XLB = q2
l (q (^/(l - 6c)*) - 4ci^/(l -6c ) i ) , Xc < X <

- 6c)t and \f{X) - q(X)\ < 2ct\X\, then XLB < X2 < Xc.
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Proof. Let X < by/i and define XLB = % * (? (&>/£) — 4c£ • by/ij. Since / is increas-

ing on (—XC,XC) and decreasing on (Xc, oo) we have

f(X2) = f(X)

> q{by/t) - 2ct • bft

> q(by/i) - Act • by/i + 2ct\XLB\

- Act • b\/t)) + 2ct\XLB\

> f(XLB)

=> X2 > XiB.

There are, as expected, a number of conditions that XiB and consequently b

must satisfy. Firstly, to insure that XyB exists, q (by/t\ — 4ct • by/i must lie in the

domain of 52- In other words,

where the upper and lower bounds are simply the maximum and minimum values for

92 (X). Secondly, since

XLB = q^1 (q(l>Vi) - ±ct • bVt)

[ -6+ 74(1 -4c) -362)
- j *-4 " V^, [9-9-4]

in order for XiB to be real,

,2 4V < - (1 - 4c). [9.9.5]

Additional constraints on XiB other than those needed for its existence are

> 0 and | X i 5 | < b\/i. The first of these two conditions ensures that XLB > 0

which means that [f'{X2)]~1 for X > Xc close to the caustic can be estimated. The

last constraint allows the conclusion that / ( ^ ) > J{XLB) to be made.

Now XLB > 0 implies, from [9.9.4], that

- Ac) -3b2 >b
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= > b2 < (1 - 4c), [9.9.6]

which of course supersedes [9.9.5] in determining b.

The constraint, |X/,5| < 6\/f, determines a lower bound for ft; since b is chosen

to ensure that XLB > 0,

\XLB\ < by/t

<b

62>i(l-4c). [9.9.7]

The final condition to consider is that of [9.9.3]. In actual fact this condition

determines a range of admissible values for c. This range, which at the moment

stands at 0 < c < 1/48, is of course dependant on the choice of ft. However, it is more

important to allow the boundary for the current region in tX space to determine

6 rather than the upper value for c as otherwise it becomes impossible to estimate

[/'(X,)]"1 over all of the tX plane. To this end we chose ft2 = 1 — 6c. This choice,

which only just satisfies [9.9.6] and [9.9.7] for c < 1/48, clearly allows the region close

to the caustic such that X > Xc to be as large as possible.

With this choice of ft,

^(ftv^) - 4ci • by/i = 6(1 - ft2 - 4c)*v^

= 2cbt\Tt

> 0

and hence [9.9.3] can be simplified to

This in turn implies that

c2(l - 6c) < 1 ,

which is satisfied Vc > 0.
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Having proved that a lower bound for X2 exists, it is useful to determine this

bound as a function of t. Now from [9.9.4],

xLB ,
+2c

- 6c + 1 + 2c -

rr

l-6c+l + 2c-2(l-6c)
rt

=> XLB

Hence in conclusion,

o/2t < XLB <X2<XC

This means that from [9.9.2],

X — 6c)t and c < —.
48

(6 + C)3/2(1 + c)yjy/(l-6c)t\t - kc

- e ) 3 / * ( 1 - c ) ^ < [ / ( X 2 ) r l < C)3/2(1+C)3/2

Using [9.3.5], this implies that

93/2 . 103/2

93/2x/2c|i - kc

c

for all

6c\t — kc

Xc < X < ̂ ( 1 - Qc)t and c < -^

[9.9.8]
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§9.10. Summary of estimates for [/'(X^t.X))]-1 and [f(X2(t,X))]-1 for
X > Xc near the caustic.

Since the estimates for these quantities require different constraints on the values

for X, they will be listed here for clarity. We have

for all

and

and c < -^,

for all

Xc < X < y/(l - 6c)t and c < •£-.

Hence, so that the above estimates for [f'(Xi)]~l and [/'(^2)]~1 a r e valid simulta-

neously on the region close to the caustic with X > Xc, we must define this region

by choosing the minimum upper bound on X, i.e. \(X,i) | Xc > X > -i/(l — 6c)t >.

§9.11. Estimates for [/'(X^X))]-1 and [f'(X2(t,X))]-1 for the region where

X is bounded away from the caustic and cocaustic (Xc < X < Xcc).

For X finitely far from the caustic and cocaustic such that Xc < X < Xcc, both

[/'(Xi)]"1 and [f'(X2)]~1 are expected to be well behaved. The estimates for these

quantities can therefore be obtained directly from \f'(X) — q'(X)\ < ct + cX2/2 rather

than by expanding in powers of either \t — kc\ or \t — kcc\.

The primary goal is to estimate f'(Xi) and to ensure that this quantity is bounded

away from zero. Now for all X,

*(1 - c) - ik6 + C)X<2 < f'(X) < *(1 + c) - J(6 - c)X2 [9.11.1]
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and since f'(Xi) is negative, this requirement becomes

Xj > H£±^t . [9.11.2]
6 — c

Similarly, the fact that /'(X2) should be positive and bounded away from zero means

that

X\ < ^ Z £ ) * . [9.11.3]
0 + c

As will be seen, [9.11.2] and [9.11.3] determine the boundaries to the region of which

we are considering. Since / is decreasing for both (—00, — Xc) and (Xc, 00) and

increasing for (—XC,XC), it follows that the processes which make X\ as large as

possible and X2 as small as possible, whilst still satisfying [9.11.2] and [9.11.3], must

jointly determine the upper boundary for this region. Likewise making X2 as large

as possible will determine the lower boundary.

Let us first of all estimate [/'(Xi)]"1. Clearly an upper bound, XUB say, for X\

is needed which satisfies [9.11.2] with X\ replaced by XUB- The existence of XUB is

proved in the following theorem.

T h e o r e m . Suppose XUB = q\X (q {\/^(l ~ 6c)</3) - 4c*^4(l - 6 c ) < / 3 ) , XUB =

-xj(l + 30c)*/3, Xc < X < ^4(1 - 6 c ) i / 3 and \f(X) - q(X)\ < 2ct\X\, then 0 >

XJJB > XUB > X\ such that XUB and XUB
 are both greater than 2(1 + c)i/(6 — c).

Proof. Suppose that X < by/i and define XUB — <1~1 (<7 f^V^) — 4ci • by/i). Since /

is decreasing on both (—00,— Xc) and (Xc,oo),

f{X{) = f(X)

> q (b\ft) - 2ct • by/i

> q (by/t) - Act • bVi + 2ct \XUB\

= q ( ? r ! (q (by/t) - Act • by/i)) + 2ct \XUB\

= q{XUB) + 2ct\XUB\

> f(XUB)

=^- X\ < XUB

provided

~3*V 3 < q (b^ ~ ̂  ' ̂  < 3 V 3 [9"1L4]
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and

\XUB\ < by/t. [9.H.5]

In addition to these constraints we must have

r2 2(1
>XUB > ^f±f-t [9.11.6]

and for the existence of XUB-, which has the form

f -b - J 4 ( l - 4c) - 362

XUB = { ^

[9.11.8]

Let us consider [9.11.4]—[9.11.8] and ensure that b and consequently c satisfy these

constraints. Firstly, [9.11.5] implies that

b + 7 4 ( 1 - 4c) -3b2

^—2 <b

=^62>l-4c, [9.11.9]

and this together with [9.11.8] give upper and lower bounds for b2 which are self-

consistent if c < 1/4.

In order for this region to be as large as possible it is sensible to define 62 =

4(1 — 6c)/3, a choice which is clearly compatible with both [9.11.8] and [9.11.9] for

c < 1/48. With this choice, [9.11.6] and [9.11.7] imply that

1(1 _ ec) + 2 ^ 1 ( 1 - 6 0 ) ^ 4 ( 1 - 4 c ) - 4 ( 1 - 6 c ) + 4(1 - 4c) - 4(1 - 6c) > ^ ^ ,

and since c is at least less than 1/48, the above inequality holds if

Now 2A/4 /3 • 42 • 8 > 40 SO again the above inequality holds if

4 , , n _ 8 ( ! + C )
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This is equivalent to 30c2 — 173c < 0, which has solutions 0 < c < 173/30. Therefore,
the choice of b2 = 4(1 - 6c)/3 with c < 1/48 means that XUB satisfies [9.11.6].

The last condition that b must satisfy is [9.11.4]. Now,

q(by/i) - Act • by/i = (b - b3 - 4cfe) tyft

= -\b(\ - 12c)tVi

<o

for c < 1/48. Thus [9.11.4] simplifies to

VI - 6c(l - 12c) < 1,

which is identically satisfied for any c less than 1. This proves existence of an X\JB >
X\ that satisfies [9.11.6].

If we try to determine XUB explicitly as a function of t, [9.11.7] with b2 = 4(1 —
6c)/3 implies that

giving a rather complicated bound for [f'(X\)] 1. In practice, therefore, a new quan-
tity, XJJB-, such that XUB > XUB > X\ shall be defined and used to determine
bounds for [/'(Xi)]"1. Now,

8c + 2V8cA/4(l-6c)/3
'UB =

i ( l + 30c)i.

If XUB = ~\/(l + 30c)^/3 then clearly by the above, XUB > XUB- XUB also satisfies
[9.11.2] with X\ replaced by XUB- To see this we note that in order for

T 2 2(1+c)
X > t

to be a true statement, we require c to satisfy

D — C
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30c2 - 173c < 0

173

=>0<e<lQ>

which is compatible with current values for c and completes the proof.

With all of the above information gathered by the above theorem it becomes

a relatively trivial task to calculate estimates for [f'(Xi)]~l. For c < 1/48 and

Xc < X < ^4(1 - 6c)i/3, -Xcc <Xi < XUB < X~UB and [9.11.1] imply that

t(l + c) - 1(6 + c) 1 6^ 1 + c ) t < fiX,) < t{\ + c) - 1(6 - c) • 1(1 + 30c)*.

These bounds can be simplified by noting that

1 173
1 + c - - (6 - c)(l + 30c) = — — c + 3c2

6 6
173

+ 3c<
0

< -25c.

Also, since c < 1/48, we have, by [9.3.5],

> 1 + c 8

6 — c 9
71 89
9 + 9

> - 7 .

9

Therefore in conclusion,

25ct

for c < 1/48 and Xc < X < ^4(1 - 6c)</3.

Let us now consider an estimate for [/'(X2)]"1. For the region that is sandwiched

between those regions close to the caustic and cocaustic, the range of X2(X) must

include zero. Hence an upper bound and a lower bound for Xi must be found to

ensure that X2 satisfies [9.11.3]. The following two theorems prove the existence

of XIB and XUB, which are defined as the lower and upper bounds respectively of

Xi- In addition, simpler estimates, XIB and XJJB, will be found such that XIB <

XLB < X2 < XUB < X\JB- All of these quantities bounding X2 are required to

satisfy [9.11.3] with X2 replaced and this will also be shown.
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Theorem. Suppose XUB = q^1 (q (^2(1 - 3c)i/3) + 4 ^ 2 ( 1 - 3c)t/3), XUB =

+ 36c)t/6, ^2(1 - 3c)t/3 < X < Xcc and \f(X) - q(X)\ < 2ct\X\, then X2 <

< XJJB such that XUB and Xug are both less than 2(1 — c)</(6 + c).

Proof. Let a be such that a\fl < X and define XJJB = fy1 (i (aV^) +

Then since / is decreasing on (Xc,oo) and increasing on (—XC,XC),

f(X2) = f(X)

< f (ay/t)

< q (ay/tj + 2ct • ay/i

< q (aVt) + ict • aVi - let \X\JB\

= q (q2
l (q (ay/t) + Act • aVt)) ~ 2ct \XUB\

< f(XUB)

=> X2 <

provided \XUB \ < ciy/i. The other constraints that XJJB must satisfy are that

X2
UB < 2-^-t [9.H.H]

(required to ensure that all positive values of X2 satisfy [9.11.3]) and

q (aVi) + Act • aVi\ < ^tJ^ [9.11.12]

(for existence of XUB)-

Now from the definition of XUB w e have

f -a + 74(1 + 4c) - 3a2

XUB = < ^

so clearly a must satisfy a2 < 4(1 + 4c)/3. Since X2 has positive and negative values

for this region of tX space, it makes sense to assume that XUB is positive and as large

as possible. This assumption implies that a2 < 1 + 4c, which of course supersedes the

above estimate. With this choice of a, |X[/5| < a\Ji implies that a2 > (1 + 4c)/3.

Thus in summary,

\(1 + ic) < a2 < 1 + Ac. [9.11.13]
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To ensure that this region of tX space is as large as possible we need to make a as
small as possible. The obvious choice is to make a2 only slightly larger than its lower
bound, such as a2 = (1 + 6c)/3 for example. However, it turns out that this choice
of a means that q (ay/t\ + Act • ay/l is no longer within the domain of q^ . In fact
any choice for a of the form, a2 = 1/3 + 0(|c|), implies that X\JB cannot be defined.
The details of this remark can be explained quite easily: if a2 = 1/3 -f 0(|c|), then
q [ay/Vj + Act • a\/i = a{\ - a2 + Ac)ty/i evaluated at c = 0 equals 2t/3y/t/3. Moreover
this cubic in c has a positive gradient in a neighbourhood of the origin. This means
that in order for [9.11.12] to be satisfied we must prescribe a minimum value for c,
a procedure which is rather incompatible with the contraction mapping proof one is
trying to formulate.

For the above reason, a2 is chosen to be of the form a2 = 2/3 + O(|c|). Indeed
if a2 = 2(1 — 3c)/3, for example, then the cubic, a(l — a2 + 4c), evaluated at c = 0
equals 1/3^/2/3 and hence even with a positive gradient, [9.11.12] can be satisfied for
small enough c. To see this we have

1 12
q (aVt) + Act • aVi = -(1 + 18cW-(l - 3c) • ty/i,

which is positive for c < 1/48. [9.11.12] then becomes (1 - 3c)(1 + 18c)2 < 2, which
is equivalent to 972c3 - 216c2 - 33c + 1 > 0. This inequality is satisfied for c < 1/48.

Finally X\JB must satisfy [9.11.11]. This requires that

-(1 - 3c) - 2W-(1 - 3c)V2 + 20c + 2 + 20c < - ^ '-. [9.11.14]
o V " 0 -\- C

Now,

h . h ~ "
W-(l - 3c)y/2 + 20c = W-(l - 3c)(2 + 20c)

> l - 3 c

meaning that [9.11.14] is satisfied if

36c2 + 229c - 6 < 0. [9.11.15]
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The equation 36z2 + 229z-6 = 0 has solutions x = (-229 ± v/53305)/72. So [9.11.15]

is satisfied if

-229 ± V53305 _ -458 ± V213220 -458 ± y/212521 _ J_
~ > ~ 48 > °'72 144 144

In other words for c < 1/48, XUB satisfies [9.11.11] if a2 is chosen to be 2(1 — 3c)/3.

Moreover, since

we can define XUB = y (1 + 36c)f/6 and use this instead of XUB when estimating

[f'{x2)]-\

Theorem. Supposing XLB = q^1 (q (^4(1 -6c)t/s) - 4 ^ 4 ( 1 -6c)</3),

-y/l(l-Z0c)t/3, Xc < X < ^4(1 - 6c)t/3 and |/(X) - 9(
——— ^ o

< -̂ 2 sucii that -^^5 an<^ ^LB a r e fcoti iess than 2(1 — c)i/(6 + c).

< 2ct\X\, then

Proof. Let 6 be such that X < h\fi and define XLB — q^1 (<?

Then since / is decreasing on (Xc, oo) and increasing on (—XC,XC),

f(X2) = f(X)

> f (bVt)

> q (by/tj - 2ct • bVi

> q (by/t) - Act • by/i + 2ct\XLB\

= 1 fer1 (q (bVt) - Act • bVt)) + 2ct\XLB\

>f(XLB)

=£- Xi >

provided |Xx,#| < b\/t. In addition, XLB must satisfy

and for the existence of XLB-,

q (by/Tj - Act • bVi\ <
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Now the functional form of XLB is

( -6+^/4(1 -4c) -362
= { - St, [9.11.18]

so clearly b2 < 4(1 — 4c)/3 in order for the square root to be real. Again, since

Xi(X) can be positive or negative, XLB is assumed to be less than zero requiring

that b2 > 1 - 4c. This then means that

\XLB\ = -XLB

>-(l-4c).

In summary then,

-(1 - 4 c ) < b2 < - (1 - 4 c ) .

Choosing b2 = 4(1 — 6c)/3 is valid for c < 1/48 and means that the region of tX space

between Xc and Xcc can be made as large as possible. With this choice, [9.11.17] is

identically satisfied for

q(by/i) - Act • by/i = - - ( 1 - 12c)W - ( 1 - 6c)ty/i

- Act • b\/i
3V

2 ft
= 3*V 3"

The final condition to consider is [9.11.16]. Using [9.11.18],

and [9.11.16] becomes

30c2 + 173c> 0.
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This inequality holds for all positive c meaning that XLB must satisfy [9.11.16]. In

addition to this, since

XLB < o (1 - 30c)t <

we can define XLB — — y ( l — 30cjt/3 such that XLB < XLB < X2 and XLB is le s s

than 2(1 — c)/(6 + c), thus proving the theorem.

Pulling together the information that is contained in the above two theorems we

have, for c < 1/48 and ^2(1 - 3c)*/3 < X < ̂ 4(1 - 6c)t/3, - ^ / ( l - 30c)*/3 < X2 <

J(1 + 36c)£/6. Depending on the range of values for c we are allowed, there is a choice

of upper bound for X\: if 1/96 < c < 1/48 then we must choose X\ < (1 + 36c)i/6

and if c < 1/96 we must choose X\ < (1 — 30c)i/3. For flexibility, however, a lower

bound for c is not desirable. Hence the range of c is reduced further to c < 1/96 so

that 0 < X\ < (1 - 30c)</3. Finally then, using [9.11.1], we obtain

( !^ c + 5c2)i < f'(X2) < (l + c)t

Zf'(X2)<(l+c)t

§9.12. Summary of estimates for [/'(Xi^X))]-1 and [f'(X2(t,X))]-1 for the
region where X is bounded away from the caustic and cocaustic (Xc < X <

Xcc).

We have

- 2 L < t ^ " 1 < ~Tt [9-1L10]

for c < 1/48 and Xc < X < ̂ 4(1 - 6c)t/3, and

J- r ~l s - r \-t \ -*-

33ct

for c < 1/96 and ̂ 2(1 - 3c)t/3 < X < yjA(l - 6c)t/3. Hence, in order for the above

estimates to be valid simultaneously on the region between both the caustic and

cocaustic, we define this region to be {(X,t) | ^2(1 - 3c)t/3 < X < ̂ 4(1 - 6c)</3}.
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§9.13. Estimates for [f'(Xi(t,X))] 1 for X < Xc near the caustic.

In this section estimates for [f'{X\j\~l for X < Xc are calculated. Since X is
close to the caustic, [f'{X\)\~l is expected to be well behaved and thus expanding
this quantity in terms of \t — kc\ is not necessary. Having said this, however, we
will be forced to modify our approach slightly to account for the fact that since
—Xc < X < Xc, we can never have |X[/£| < ay/i,, a requirement that we have
previously had to satisfy. The following paragraph explains.

Since f'(X\) is expected to be non-zero for these values of X we have, using

[9.5.3],

(1 - c)t - i(6 + c)X\ < f(X{) < (1 + c)t - i(6 - c)Xl

With this approach we immediately have the condition that

X\ > ^±^t, [9.13.1]
6 — c

which ensures that [/'(^l)]"1 is negative. If this assumption was not made [/'(Xi)]"1

could become unbounded. Clearly an upper bound, XJJB say, for X\ as a function

of X is needed such that [9.13.1] is satisfied with XyB replacing X*. Continuing

with the theme from previous sections, we have a method that proves existence of

this upper bound, however, if we recall, this process depends on the fact that a,

which defines the lower bound for the region containing X (i.e. ay/i < X < by/t),

satisfies |X[/#| < ay/i. Clearly, since X is in the region where it could be relabelled

as X2 and that X\ < —Xc < ay/i < X2 < Xc, \XUB\ is necessarily greater than

a\/i. This requires the existence proof for X\JB to be modified. Instead we will

require that |AV#| is less than n multiples of ay/i (\X[/B\ < nay/i) which is clearly

true for large enough n. This amounts to redefining the curves qa and q@ such that

qa(X,t) = q(X,(l-2c(l+n))t) and qp(X,t) = q(X, (1 + 2c(l +n))t). The following

theorem determines possible values for n, compatible with current restrictions on c,

that prove existence of X\JB-

Theorem. If XUB = ^ (</ ( ^ / 8 ) - ty/i/\2), XUB = -yfit/8, 1/By/i < X < Xc

and \f(X) - q(X)\ < 2ct\X\, then Xx < XUB < ~XUB such that X$B and X%B are

both greater than 2(1 + c)t/(6 - c).
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Proof. Suppose X > ay/i and define X\jB = q1
 1 (q (a\/i) — 2c(l + n)t • a\/i) where

n > 0. Then, since / is decreasing on (—XC,XC) and increasing on (—Xcc, —Xc), and

providing na\fi > \XJJB\,

q (a\/t) - 2ci • av^

- let • ay/i - 2nd • aVi + 2ct\XuB\

- 2c(l + n)t • a\/i)) + 2ct\XUB\

f(XUB)
XUB.

The similarities between this and the previous sections can be seen. The only

difference is that values for n must be determined that allow the above procedure

to go through. The same arguments as those in the previous section give rise to the

following constraints:

q (ay/t) - 2c(l + n)t • ay/t\ < | J^ [9.13.2]

XUB = { V V 7 " Vt, [9.13.3]

naVi>\XUB\ [9.13.4]

and

V2 . 2(1
-t. [9.13.5]

In addition to these equations, [9.13.3] implies that

a2 < - (1 - 2 c ( l + n)) [9.13.6]
3

and

n < 1 - 1. [9.13.7]
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The conditions [9.13.2]—[9.13.6] are of course expressing the criteria which have

been discussed before. [9.13.7], however, is new. Clearly the above procedure is

constructing a curve qa(X,t) = q(X, (1 - 2c(l + n))t) which is a lower or upper

estimate for / when X is positive or negative respectively. Moreover this curve looks

like q = Xt - X3. If on the other hand [9.13.7] is not satisfied then qa(X,t) =

q{X,-\l - 2c(l + n)\t), which would look like q = -Xt - X3. Although this is

compatible with the initial conditions one might wish to prescribe, it does not allow

for a caustic set near the origin for positive t.

Considering first of all [9.13.4], which should give a lower bound for a2, we have

from [9.13.3],

2na > a + ^4(1 - 2c(l + n)) - 3a2

= > (2n - l)2a2 > 4(1 - 2c(l + n)) - 3a2

= ^ ( n 2 - n + l)a2 > 1 - 2c(l + n). [9.13.8]

To proceed we need to fix a2 and n as functions of c. Firstly, choose a2 = 1/64; this

is motivated by the fact that ay/i must be significantly less than Xc. In other words

for small enough c we have the inequality, a\fi < 2(1 — c)/(6 + c) < Xc, ensuring

that the region close to the caustic such that X < Xc is not an empty set. Secondly,

choose n = l/3c — 1. This is the largest value for n permissible by [9.13.7]. By

initially choosing such a large value, [9.13.4] is more likely to be satisfied without

further adjusting the upper bound on c.

With these values, [9.13.8] becomes 165c2 + 9 c - l < 0 implying that 0 < c < 1/19.

With current values of c being less that 1/96 we conclude that [9.13.8], and hence

[9.13.4], is satisfied with these choices of a2 and n.

Let us now consider [9.13.5]. By [9.13.3] we have

a2 + 2a^4( l - 2 c ( l + n)) - 3 a 2 + 4 ( 1 - 2c(l + n)) - 3a2 >

247 8(1 + c)

192 + 192 > 6 - c
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This inequality is clearly satisfied if

1 1 IE 5 8(1+c)
64 4 V 4 4 6 - c '

and again if

1 1 5 8(1+c)
64 4 4 6 - c

1 + 1 5 I 5 -
64 4 4 4 6 - c

| > °%±* [9.13.10]
2 o — c

2

^ C < l 9 -

Thus for c < 1/96, a2 = 1/64 and n = l/3c - 1, [9.13.5] is satisfied.

The last condition to consider is [9.13.2]. Now,

q(aVi) - 2c(l + n)t • ay/i = aty/i - [ay/Tj - 2c(l + n)t • ay/i

and so [9.13.2] is equivalent to

61 2 ft
1536 3 V 3 '

which is a true statement.

o

Having proved existence of X\JB a more elegant estimate, X\JB, such that XuB

is greater than 2(1 + c)/(6 —c) can be established. Now [9.13.9] and [9.13.10] together

imply that
2 3 2(1 + c)

for all c < 1/96. This establishes the quantity X\JB — —\l^tl^> and proves the

theorem.
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We are now in a position to estimate [/'(A"i)] 1. Since — Xcc <• X < XJJB, [9.5.3]

implies that

using [9.3.10]. [9.3.5] gives, for c < 1/24,

{(1 - c ) - ^ ( 1 - c)} t < /'(Xx) < {(1 + c) - 1(6 - c ) | } t

-8(1 - c)* < / (X i ) < -^ (1 - 10c)i
o

This inequality holds for \/%y/i < X < Xc and c < 1/96.

§9.14. Estimates for [/'(A"3(i, A")))]"1 for X < Xc near the caustic.

In this region [/'(X^)]"1 is expected to become unbounded as X approaches Xc.

We therefore estimate this quantity in terms of the distance from the caustic. Now

the mean value theorem gives

f'(X3) = \X3-Xc\f"(Ya)

with Xc < Ya < X3. Similarly, f(X) = f(X3) implies that

\f" (Yh)\
1/2

\X3-XC\ = \X-XC\" { h)\/2

where X < Y\, < Xc and Xc < Yc < X3. Also,

\t-kc\ = \X-Xc\\k'c(Yd)\

where X < Yd < Xc. Combining these results the expression for [ / ' (^s)]"1 becomes

- l \f"(Yc)\1/2 \K(Yd)\ , „ , , , ,
1 = [ 9 1 4 1 1
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As usual equation [9.5.2] implies that

(6 - c)Xc < (6 - c)\Ya\ < \f'(Ya)\ < (6 + c)|rB | < (6 + c)X3.

Similarly,

(6-c)X<\f'(Yb)\<(6 + c)Xc

and

(6-c)Xc<\f(Yc)\<(6 + c)X3.

In addition, [9.2.2] implies that

If we insert these estimates into [9.14.1] then we obtain

which, using [9.3.5], implies that

_ kc
< -

o v

To simplify these estimates further upper and lower bounds for X and X3 are

needed. In this case, for estimates of X3 the straight forward choice of Xc < X3 < Xcc

is sufficient. Moreover, we only have the condition that X is bounded away from zero

and less than Xc so there is no reason why we cannot use the lower bound, l/8y/t,

determined by the previous section. It follows then that [9.14.2] becomes

< \nxi)\ * < -
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and using [9.3.10] this becomes

- < [ / ' ( ^ 3 ) ] - 1

- kc

12(1- c)y/16(l + c)(6-c)

6^2 . r w ^ M - i . (6"-)1/2

-)fcc| < ^ ( ^ ) l < 48(1 + cf/i\t - kc\

for all l/8y/i < X < Xc and c < 1/24.

§9.15. Summary of estimates for [/'(Xi^X))]"1 and [f'(X2(t,X))]-1 for the
region where X is close to the caustic (X < Xc).

We have
8

(l- lOc)i w v WJ 8 ( 1 -

and

< [/'(Xx)]"1 < - — 1 — [9.13.11]

[9-14.3]
(l + c)3 /4(6- c) i /4 | i_fc cp l- / v ^ J ^ 48(l + c)3/2|i_A;c|

for all 1/Sy/i < X < Xc and c < 1/96.

§9.16. Estimates for [/'(Xi(*, X))]-1 and [/'(Xa^X))]-1 for X close to the
origin.

Let us consider estimates for [/'(X3)]""1 first of all as by the asymmetry of / ,
these will automatically imply bounds on [/'(Xi)]-1. Since in this region X is close
to the origin, it should be possible to bound X3 away from Xc by reducing the upper
bound on X. This means that finite estimates for [/'(Xa)]"1 can be obtained because
we can appeal directly to [9.5.7] rather than expanding in terms of \t — kc\.

Now, [9.5.7] implies that

(1 _ c)t _ I(6 + c)xl < f\X3) < (1 + c)t - | (6 - c)X2
3.

206



Clearly, if X3 is sufficiently far from Xc then f'{Xz) will always be negative. We shall

therefore find an upper bound on X which defines a lower bound for X3, denoted by

XLB say, which is greater than 2(1 + c)t/(6 — c). These conditions are proved in the

following theorem.

Theorem. If XLB = q'1 (q (l/2y/t) + Zcty/i), XLB = / f t /16, 0 < X < l/2y/i

and \f(X) - q(X)\ < 2ct\X\, then X3 > XLB > X~LB such that X\B and X~\B are

both greater than 2(1 + c)t/(6 - c).

Proof. Define XiB — q^1 (q (by/tj + 2c(l + n)t • by/t\ where b is a constant chosen so

that X < by/t. Then, since / is increasing on (—XC,XC) and decreasing on (Xc,XCc),

f(X3) = f(X)

< f(bVt)

< q(by/i) + 2ct • by/i

< q(b\/i) + 2ct • by/i + 2nd • by/i - 2ct\XLB\

= 1 Us1 U (by/t) + 2c(l + n)t • by/t)) 2ct\XLB\

= q(XLB)-2ct\XLB\

<f(XLB)
=> Xz > XLB

if nb\/i > \XLB\- The conditions that must be satisfied are:

' | \ / 1 . [9-16.1]

XLB = i v v
 2

V " 1 Vt [9.16.2]

= • b2 < 1 + 2c(l + n), [9.16.3]

which ensures that XLB 1S positive,

nby/i >\XLB\ [9.16.4]

and
2 2(1+ c)

•X-LB > ~ ^ t- I9.lo.5j
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Consider [9.16.4] first of all. We have

(2n + 1)262 > 4(1 + 2c(l + n)) - 3b2.

Define n = 2 and b2 = 1/4. Then with these choices,

(n2 + n + 1)62 > l + 2 c ( l + n)

which is true for all c < 1/8.

Now consider [9.16.5]. With [9.16.2] this becomes

b2 - 26^4(1 + 2 c ( l + n ) ) - 3 6 2 + 4(1 + 2c(l + n)) - 362

If c < 1/96 then this inequality is satisfied if

I _ fix 7>
4 V 2 + 2 6 - c '

which in turn is satisfied if

6 - c

which current restrictions on c satisfy.

Finally consider [9.16.1]. This inequality becomes, with the above choices for n

and b,

3 „ 2 / f
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1.

which is again satisfied by c < 1/96.

Having proved existence of XLB-, XLB c a n n o w be defined. From [9.16.6],

2 7 2(1
XLB > 16* > "6

implying that X/,5 = J7t/16 is a valid choice.

With these estimates for X3, we can now establish estimates for [/'(X^)}^. Equa-

tion [9.5.7] implies that

(1 - c)t - 1(6 + c)X2
cc < f'(X3) < (1 + c)t - 1(6 - c)X\B

- c)t - 1(6 + C)1 6^_+
c

C )^ < f'(X3) < (1 + c)t - 1(6

Using [9.3.5] this becomes

- c)t - ^ ( 1 - c)t < f(X3) < ~(2 - 5c)t

09 1

i ** ) ] - 1 ^a [9-16J1

for all 0 < X < l/2y/i and c < 1/96.

This result can be used to immediately estimate [/'(Xi)]""1. Since X > 0, it

follows that X$ must be closer to Xc than X\ is to — Xc. This means that if X\JB =

-XLB = -y/Tt/16, then for all 0 < X < l/2y/i and c < 1/96, X\ < XUB and
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§9.17. Summary of estimates for [ / ' (^ ( i ,* ) ) ]" 1 and [ / ' (^ ( i ,* ) ) ]" 1 for X

near the origin.

We have

3 2 <[/(*;)]-! < _ _ ! _ i = 1,3 [9.16.7] and [9.16.8]
5(2 - 5c)* " u v xn ^ 8(1 - c)t

for all 0 < X < l/2y/i and c < 1/96.
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APPENDIX 1.

§A1.1. Presentation of formulae for transforming differential equations in

tx space to differential equations in tv space.

In this appendix, four relations regarding the partial derivatives of functions with

two independent variables are derived. These shall be used in Chapter 4 to transform

equations [4.1.1]-[4.1.3], which are differential equations with respect to t and x, to

equivalent equations with t and v as the independent variables.

If x = x(v(t,v),t) then

(dx\ _ fdx\ fdv\ (dx\ fdt\

Now we have (dt/dx)t = 0 and (dx/dx)t = 1, hence

fdv\ 1

Similarly,

But (dx/dt)x = 0 and {dt/dt)x = 1 so that

fdx\ __(dx\ (dv\

\ / v \ / f \ / x

If / = f(v(t,v),t) then

fdf\ fdf\ (dv\ , fdf\ (df

and similarly,
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APPENDIX 2.

§A2.1. Metric spaces and contraction mappings [TA].

In chapters 8 and 9 we describe the setting up of an existence proof for the
solution to the differential equations defining the Newtonian formulation of caustics
in a spacetime. The method which we base this existence proof on is to use the
fixed point theorems pertaining to contraction mappings on metric spaces. This will
be explained in detail within the main text; the point of this appendix, however, is
to briefly introduce the reader who is unfamiliar with such tools, to a few relevant
definitions and an example that neatly illustrates what we are trying to do with the
main equations. We begin by stating the following

Definition. A non-empty set, S, of objects together with a function, ds: S x S —•
IR, satisfying:

1. ds(x,x) - 0,

2. ds(x,y)>0 ifx^y,

3. ds(x,y) = ds(y,x),

4. ds(x, y) < ds(x, z) + ds(z, y),

Vx,y,z G S is called a metric space and denoted by (S,ds). The function, ds, is
called the metric.

Two possible examples of a metric space are now given. The first corresponds to
the case where S = IR and ds(x,y) = \x — y\. This illustrates the fact that ds is to
be thought of as the distance from x to y; properties 1 through 3. Another example,
more relevant to the case that we consider in the main text, is that where S = C[a,b],
the set of continuous functions on [a, &]. Here the metric is given by

= max \<t>i(x) - <f>2(x)\. [A2A.1]

a<x<b
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In both of these examples we can easily show that items 1 through 4 are satisfied.

Definition. A sequence, {xn}, in a metric space, (S, ds), is called a Cauchy sequence

if, for every e > 0, there exists an integer, N, such that ds(xn,xm) < e whenever

n> N and m > N.

It is possible, from the definition of a convergent sequence, to prove that all

convergent sequences are Cauchy sequences. The point of introducing this, however,

is that we can now give the idea of a complete metric space.

Definition. A metric space is complete if every Cauchy sequence in S converges in

s.

For the above two examples we can show that both (IR, ds) and (C[a,b],ds) are

complete.

With these ideas the concept of a contraction mapping on (S,ds) can be defined.

Furthermore, we now have sufficient information to allow us to state Banach's fixed-

point theorem.

Definition. Let J:S —• S be a map of (S,ds) onto itself. Then J is called a

contraction of S if ds(J[x], J[y]) < kds(x,y) Vx,y € S and k < 1.

Theorem (Banach's fixed-point theorem). A contraction, J, of a complete met-

ric space, S, has a unique fixed point, i.e. there exists a point x £ S such that

J[x] = x.

§A2.2. Fixed-point theorems and existence proofs.

In this section we shall illustrate the power of fixed-point theorems and contraction

mappings by proving an existence theorem for the solution to a particular class of

ordinary differential equations. That is to say, let f(x, y) be a real valued function
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defined on an open set, ft, of IR such that it satisfies a Lipschitz condition of the
form,

< K\yi - w|, [A2.2.1]

for all (a;, yi) and (x, j/2) in ft. Then we shall prove the existence of a unique solution
to the following:

with initial condition,

y(x0) = y0. [A2.2.3]

Theorem. Assume that /(x, y) is a continuous bounded function in an open set, ft,
of IR2 satisfying equation [A2.2.1]. Then there exists a unique solution to [A2.2.2]
and [A2.2.3] on [a,b] <= ft provided K in [A2.2.1] satisfies K < 1/S(b - a).

We shall make this proof self contained by introducing the concept of continuous
functions on a metric space. In other words, we give the condition that functions
must satisfy in order for them to be members of C[a, b].

Definition. Let (5, ds) and (T, d?) be metric spaces and f: S —> T a function from
S to T. Then f is said to be continuous at a point s £ S if for every e > 0 there
exists a 8 > 0 such that dx (f(x), /(s)) < e whenever <is(x, s) < 8.

Proof of theorem. We first of all show that equations [̂ 42.2.2] and [y!2.2.3] are equiv-
alent to an integral equation, which we use as an indicator to construct a mapping,
J, from C[a, 6] onto itself. We will see that the solution to equations [A2.2.2] and
[A2.2.3] corresponds to a fixed point of J. Since we know that C[a, b] equipped with
the metric defined in equation [A2.1.1] is complete, the proof automatically follows
from our fixed-point theorem if we can show that J is a contraction on C[a, b].

So, we begin by integrating equation [v42.2.2] between x and xo. We have

I* J-dx = f f(t,y(t))dt
JXn ClX Jxn

ry(x) tX

, dy= f(t,y(t))dt
JyiXn) Jxnly(x0) " Jxn
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= > y(x) = y{x0) + I* f(t,y(t))dt.
JXQ

Now suppose that given X,XQ € [a, b] and <f> G C[a,6], J[^] is defined by

f(t,<j>(t))dt.

We show that J[(j>] is also continuous: let 6 and ^ be continuous functions on [a, b],

ds (J[0, J[0]) = max I f /(*, #*)) - f(t, 6(t))dt
a<x<b \Jx0

then

< max f
a<x<bJx0

< max K I \<t>{t) - O(t)\dt
a<x<b JXQ

< K(b-a) max \<f>(t) - 6(t)\.
a<x<b

So if £ > K(b — a)8 we have ds (J[<j>], J[0]) < £ whenever ds {<l>,0) < 8 and conse-

quently J[<j>] is continuous and therefore maps C[a, b] onto itself.

Finally we show that J is a contraction. By the above argument,

ds (J[(j>l J[e\) < K(b - a)ds {</>, 6) < ds {<f>, 0)

as required, which thus completes the proof.

This example is a nice way of introducing the reader to the method of using

contraction mappings to prove existence of solutions to certain types of differential

equation. We can see that the procedure essentially defines an iterative scheme in

which the solution exists at the end of an infinite number of successive applications of

J on an initial guessed solution, </>o. That is to say, y{x) = limn^oo Jn[(f)o](x) where

J2[^0] = J[J[</>o]], J3[<^o] = J [J [<̂ [<̂ o]]] a n d s o o n- We measure the 'closeness' of the

nth iteration at any stage using the metric function. Thus if <f>n = Jn[<j)o] then

ds (V, <f>n) = ds (J[y], J[<f>n-l]) < ds (y, ^B - l )

and the nth approximation is nearer to the true solution than the (n — l)th approx-

imation.

The procedure that is developed in the main text, although is fixed upon a very

specific class of differential equation, has many similarities with the above. For this
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reason we shall now highlight the three crucial steps in the above that appear in the

development of an existence proof for the Newtonian equations of motion. The first

step was simply to realise that the differential equation and the initial condition that

the solution had to satisfy could be written in terms of an integral equation. This

suggested a possible candidate for the contraction mapping. The second step, and

this, in general, is usually the most difficult, was to define the metric space in which

one expects to find the solution to this integral equation: in the above, we supposed

that the solution lay in the set of continuous functions on [a, b]. These two stages

together allowed us to define a map, J, from this metric space onto itself such that

the solution corresponded to a fixed point of J . The third and final stage was to

show that this fixed point is unique. For this we proved that J was a contraction on

C[a,fe] and hence, by the fixed-point theorem, has a unique fixed point. Note that

here we assumed that as a metric space, C[a, b] is complete. The uniqueness of this

fixed point then implies uniqueness of the solution to [A2.2.2] and [A2.2.3].
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