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Abstract 22 

Centrosome amplification (CA) is a hallmark of epithelial cancers, yet its spatial complexity and 23 

phenotypic heterogeneity remain poorly resolved due to limitations in conventional image analysis. 24 

We present CenSegNet (Centrosome Segmentation Network), a modular deep learning framework 25 

for high-resolution, context-aware segmentation of centrosomes and epithelial architecture across 26 

diverse tissue types. Integrating a dual-branch architecture with uncertainty-guided refinement, 27 

CenSegNet achieves state-of-the-art performance and generalisability across both 28 

immunofluorescence and immunohistochemistry modalities, outperforming existing models in 29 

accuracy and morphological fidelity. Applied to tissue microarrays (TMAs) containing 911 breast 30 

cancer sample cores from 127 patients, CenSegNet enables the first large-scale, spatially resolved 31 

quantification of numerical and structural CA at single-cell resolution. These CA subtypes are 32 

mechanistically uncoupled, exhibiting distinct spatial distributions, age-dependent dynamics, and 33 

associations with histological tumour grade, hormone receptor status, genomic alterations, and 34 

nodal involvement. Discordant CA profiles at tumour margins are linked to local aggressiveness and 35 

stromal remodelling, underscoring their clinical relevance. To support broad adoption and 36 

reproducibility, CenSegNet is released as an open-source Python library. Together, our findings 37 

establish CenSegNet as a scalable, generalisable platform for spatially resolved centrosome 38 

phenotyping in intact tissues, enabling systematic dissection of the biology of this organelle and its 39 

dysregulation in cancer and other epithelial diseases. 40 
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Introduction 42 

Centrosomes, composed of a pair of orthogonally arranged centrioles surrounded by pericentriolar 43 

material (PCM), function as the principal microtubule-organising centres (MTOCs) in animal cells. 44 

They play essential roles in diverse cellular processes, including vesicular trafficking, cell polarity, 45 

motility, ciliogenesis, and the assembly of a bipolar mitotic spindle during cell division1, 2. Centrosome 46 

number is tightly regulated, with duplication occurring once per cell cycle during S phase, ensuring 47 

the formation of the mitotic spindle and equal inheritance of chromosomes by daughter cells3-5. 48 

Centrosome amplification (CA) can lead to multipolar spindle formation, chromosomal 49 

missegregation, and aneuploidy3, 6, 7—a hallmark of cancer3, 4, 7. The hypothesis that CA-induced 50 

aneuploidy contributes to tumorigenesis was first proposed by Theodor Boveri over a century ago8. 51 

In recent years, CA has been documented in several solid tumours including breast, prostate, colon, 52 

ovarian, and pancreatic cancers3, 7, 9-13, as well as haematological malignancies such as multiple 53 

myeloma, lymphomas, and leukaemias14, 15. While its role in tumour initiation remains debated6, 9, 16-54 

18, CA is consistently associated with aggressive disease features, including high-grade histology, 55 

poor prognosis, recurrence, and metastasis3, 7, 9, 19. Despite its clinical relevance, CA remains poorly 56 

characterised at scale due to the lack of robust, high-throughput tools capable of resolving 57 

centrosome phenotypes in complex tissue architecture. 58 

Mechanistically, CA arises from both numerical and structural centrosome defects. Numerical 59 

amplification results from centriole overduplication, de novo centriole assembly, cytokinesis failure, 60 

mitotic slippage and cell–cell fusion20-29. Disruption of cell-cycle progression, such as prolonged G2 61 

arrest, can trigger premature centriole disengagement and reduplication via PLK1 activation30, 31. 62 

Fragmentation of the PCM, driven by dysregulation of proteins such as pericentrin, γ-tubulin, PLK4, 63 

PLK1, and Aurora-A, also contributes to numerical CA7, 32-34. Structural CA, on the other hand, 64 

involves aberrant accumulation of PCM4, 7, 9, 35, 36 or defects in centriole architecture37-39. Among these 65 

centriole architectural defects, over-elongation and fragmentation can lead to unstable centriole 66 
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structures and further overduplication37, suggesting a mechanistic link between numerical and 67 

structural centrosome aberrations. Yet, their differential contributions to cancer biology remain to be 68 

determined. 69 

Manual centrosome annotation remains the standard but is time-consuming, low-throughput, and 70 

prone to observer bias. Semi-automated pipelines have emerged to address these limitations. For 71 

example, CenFind—a deep learning pipeline based on SpotNet—accurately detects and counts 72 

centrioles in cultured cells using immunofluorescence images but does not support structural 73 

phenotyping40. Other machine learning–based approaches have quantified centriole number and 74 

linked supernumerary centrioles to PCM expansion in breast cancer cells41. Semi-automated 75 

frameworks have also been developed for centrosome quantification in human breast histological 76 

sections, including a HistoQuest-aided method detecting structural CA42 and an IMARIS-based 77 

pipeline integrating both structural and numerical CA7, 43. Similarly, a 3D imaging-based pipeline 78 

quantified structural centriole abnormalities across cancer types37. However, these approaches 79 

require manual curation and offer only moderate throughput. A recent high-throughput platform using 80 

a HarmonyTM software-based framework revealed heterogeneous CA phenotypes in ovarian cancer 81 

tissues44, yet lacked single-cell resolution and subtype discrimination. Moreover, most existing tools 82 

are tailored to immunofluorescence imaging and are not compatible with standard chromogenic 83 

immunohistochemistry workflows used in clinical pathology, limiting their diagnosis and translational 84 

utility. 85 

To address these limitations, we developed CenSegNet (Centrosome Segmentation Network), a 86 

versatile deep learning framework for fully automated, pixel-level detection and segmentation of 87 

centrosomes in both immunohistochemistry and immunofluorescence images at single-cell 88 

resolution. CenSegNet integrates three state-of-the-art models: Ultralytics YOLOv11, a recent 89 

evolution of the You Only Look Once family optimised for fast and accurate performance45, U-Net, 90 

an encoder–decoder convolutional network designed for precise pixel-wise segmentation46, and 91 

StarDist for shape-aware instance segmentation pipeline that models objects as star-convex 92 
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polygons to improve instance separation in dense cellular contexts47, enabling robust delineation of 93 

epithelial cell boundaries within histopathological specimens. This systematically engineered 94 

architecture supports multiscale analysis of centrosomal features in morphologically complex tissue 95 

environments. We present a publicly accessible, expert-annotated dataset comprising human and 96 

murine breast tissues and human mammary epithelial cell cultures (MECs). Implemented in Python 97 

3.10 with a PyQt5-based graphical interface, CenSegNet enables streamlined data input, real-time 98 

PyTorch-based inference, and modular extensibility. Benchmarking against expert annotations and 99 

alternative models, CenSegNet achieves pathologist-level accuracy across imaging modalities. 100 

Using CenSegNet, we perform the first high throughput, spatially resolved quantification of numerical 101 

and structural CA in clinical breast carcinomas. Our analyses reveal that these CA subtypes are 102 

mechanistically uncoupled and evolve along orthogonal spatial gradients: numerical CA 103 

predominates in proliferative tumour cores, whereas structural CA accumulates at invasive margins, 104 

reflecting distinct evolutionary pressures and microenvironmental cues. These spatial trajectories 105 

correlate with histological grade, hormone receptor status, HER2 expression, nodal involvement, 106 

and germline alterations, underscoring the role of centrosome dysregulation in driving intratumoral 107 

heterogeneity and progression. Importantly, we validated CenSegNet in other human epithelial 108 

tissues including kidney, colon, and appendix, demonstrating its generalisability and potential for 109 

broad application in spatial pathology and organelle-level phenotyping across diverse healthy and 110 

disease tissue contexts. To support widespread adoption, CenSegNet is released as an open-source 111 

Python library, available at https://github.com/SKELab/CenSegNet/ and 112 

https://zenodo.org/records/17131573. 113 
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 6 

Results 115 
 116 
Development of CenSegNet for robust centrosome segmentation across imaging modalities 117 

We generated tissue microarrays (TMAs) comprising 911 breast tissue cores from normal breast 118 

tissue, breast tumours, and adjacent areas, sampled from 127 patients enrolled in the ethically 119 

approved and clinically well-characterised BeGIN cohort (Investigating Outcomes from Breast 120 

Cancer: Correlating Genetic, Immunological and Nutritional Predictors), from University Hospital 121 

Southampton (UHS) (Fig. 1a; see Methods). Immunohistochemistry was performed using pericentrin 122 

antibody to label centrosomes, with haematoxylin counterstaining for nuclei (Fig. 1a). For training 123 

dataset construction, we manually annotated 14,679 centrosomes within 2,486 epithelial and 108 124 

stromal compartments across 108 selected images (Fig. 1a, see Methods). To complement this, 125 

immunofluorescence was performed on human MECs and mouse mammary epithelium, labelling 126 

pericentrin and GT335 (centriole), with DAPI as nuclear counterstain. From this, an 127 

immunofluorescence training dataset was assembled comprising 1,285 annotated centrosomes 128 

from 143 cells from mouse tissue and 841 human MECs, revealing strong segmentation 129 

concordance between pericentrin and GT335 labelling [mouse tissue: R2 = 0.9954; human MECs: 130 

R2 = 0.9666 (MCF10A), 0.9085 (MCF10A-PLK4)] (Fig. 1b, Supplementary Fig. 1a–f).  131 

Using these datasets, we initially benchmarked established segmentation models. U-Net, an 132 

encoder–decoder convolutional neural network optimised for pixel-wise segmentation46, was 133 

selected for its extensive use in biomedical imaging. In our datasets, U-Net detected 82.98% of 134 

centrosomes in immunohistochemistry images and 97.6% in immunofluorescence, but despite 135 

achieving an overall F1 score of 0.85 in immunofluorescence, often the model either under-predicted 136 

or over-predicted centrosomes (Supplementary Fig. 2a, b). We next evaluated SegNet (Fig. 1c), 137 

another encoder-decoder model leveraging max-pooling indices for efficient upsampling48. It 138 

achieved 72.73% and 85% detection in immunohistochemistry and immunofluorescence, 139 

respectively, with a precision of 0.90 but reduced recall (0.75) in immunofluorescence and a 140 
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suboptimal overall F1 score of 0.68 in immunohistochemistry (0.82 in immunofluorescence) 141 

(Supplementary Fig. 2c, d). We also evaluated DeepLabv3+, a semantic segmentation model 142 

utilising atrous convolutions and atrous spatial pyramid pooling for multi-scale contextual 143 

information49. Despite its proven success in complex image domains, DeepLabv3+ achieved only 144 

63.25% and 75.1% detection rates in immunohistochemistry and immunofluorescence, respectively 145 

(Supplementary Fig. 2e, f). These findings highlight the limitations of conventional segmentation 146 

pipelines when applied to structurally heterogeneous tissues. 147 

To overcome these constraints, we developed CenSegNet, a novel modular framework that 148 

integrates object robust detection and segmentation (Fig. 1c). Rather than relying on whole-slide 149 

segmentation, CenSegNet focuses on single-cell regions while modelling the entire ROI, explicitly 150 

integrating object detection with region-based segmentation in a three-step architecture (Fig. 1c). 151 

This design enables a more comprehensive capture of centrosome spatial distributions and 152 

morphological features, addressing key challenges such as occlusion, small object detection, and 153 

the disambiguation of overlapping structures. The framework, first employs YOLOv1145, a state-of-154 

the-art object detection model, to identify potential centrosome candidates. YOLOv11 comprises a 155 

convolutional backbone for feature extraction, a neck for multi-scale aggregation, and a head for 156 

classification and localisation. We fine-tuned YOLOv11-seg45, 50, a segmentation-optimised variant 157 

to further enhance detection accuracy, and applied a range of data augmentations—including hue, 158 

saturation, and value (HSV) adjustments, as well as geometric transformations such as translation, 159 

scaling, shearing, and horizontal flipping—to enhance generalisability (Fig. 1c; see Methods). To 160 

refine segmentation, we integrated U-Net in the second step. For all detected centrosomes, we 161 

extracted centrosome-centred patches (256 × 256 pixels, with 40-pixel padding) as input to a U-Net 162 

skip-connected encoder-decoder architecture for precise delineation. These patches underwent 163 

similar augmentation strategies as in the detection step, ensuring consistency. To accurately quantify 164 

centrosome numbers per cell, we incorporated StarDist47 in the third step, a deep learning based 165 

instance segmentation tool widely adopted for nuclear and cell boundary segmentation in biomedical 166 
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imaging (Fig. 1c). In our immunohistochemistry datasets, StarDist segmented 764,354 cells 167 

(Supplementary Fig. 1g, h). To validate StarDist-aided cell-level centrosome assignment in 168 

complex tissues, we analysed keratin 8 (KRT8)-labelled mouse immunofluorescence (620 cells) and 169 

human immunohistochemistry (620 cells) tissues. StarDist-based segmentation demonstrated 170 

strong concordance with KRT8 (immunofluorescence: R2 = 0.99; immunohistochemistry: R2 = 171 

0.9005) (see Supplementary Fig. 1e-i). 172 

Collectively, these results demonstrate that CenSegNet’s multistep architecture effectively 173 

overcomes the limitations of conventional segmentation approaches, delivering robust, 174 

generalisable centrosome detection and quantification across diverse imaging modalities and 175 

complex tissue contexts. 176 

 177 

Validation of CenSegNet for scalable and high-precision centrosome segmentation 178 

To evaluate CenSegNet’s performance, we compiled independent test datasets of 25 179 

immunohistochemistry TMA cores and 17 immunofluorescence images. Predicted centrosome 180 

counts were compared to manually annotated ground truth, revealing strong correlations in both 181 

immunohistochemistry (R2 = 0.9999) and immunofluorescence (R2 = 0.9873) (Fig. 2a–c). 182 

CenSegNet consistently outperformed U-Net, SegNet, and DeepLabv3+ in segmentation accuracy 183 

and boundary resolution across both modalities, with the YOLOv11 detection module significantly 184 

enhancing overall performance (Fig. 2a–c). To further assess precision, we used an independently 185 

annotated subset of 550 centrosomes from tumour regions in the immunohistochemistry test set. 186 

Again, CenSegNet demonstrated superior pixel-level segmentation compared to all benchmarks 187 

(Fig. 2d). F1 score analysis across modalities yielded a mean of 0.82 for CenSegNet, outperforming 188 

U-Net (0.72), SegNet (0.68), and DeepLabv3+ (0.65) (Fig. 2a–e). We next benchmarked 189 

performance on 6,475 expert-annotated centrosomes—921 from normal tissue, 2,694 from edge 190 

regions, and 2,860 from tumour cores (Fig. 2f). These annotations, stratified by size (0.5–1.0 µm2 to 191 

>10.5 µm2), were compared with the full cohort of 333,148 automatically segmented centrosomes 192 
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 9 

(0–0.5 µm2 to >12.0 µm2)—10,834 from normal tissue, 91,803 from edge tissue, and 230,511 from 193 

tumour tissue (Fig. 2g). Both datasets revealed similar size distributions, with the majority falling 194 

within 2.0–3.0 µm2 and a peak at 2.0–2.5 µm2. Normal tissue showed a higher proportion of 1.0–2.0 195 

µm2 centrosomes, while edge regions had more large centrosomes than either normal or tumour 196 

cores. Using a previously established threshold of 6.5 µm2-size to define structural CA42 (see 197 

Methods), both datasets confirmed that centrosomes exceeding this size were absent in normal 198 

tissue. Together, these results establish CenSegNet as a scalable, high-precision tool for 199 

centrosome segmentation, with superior performance across image modalities, tissue 200 

compartments, and size distributions—supporting its utility for high-throughput analysis in complex 201 

tissue environments. 202 

 203 

CenSegNet enables spatial profiling of CA subtypes and clinical correlates in breast cancer 204 

To dissect the contribution of numerical (Num CA) and structural (Stru CA) CA in breast cancer, we 205 

applied CenSegNet to multiplexed TMA data. Num CA and Stru CA were not correlated within either 206 

tumour edge or core regions (Supplementary Fig. 3a), suggesting mechanistic independence. At 207 

the single-cell level, increasing centrosome number per cell was associated with a reduction in the 208 

size of individual centrosomes (Supplementary Fig. 3b), which become smaller, more uniform in 209 

cells containing >4 centrosomes—implying a compensatory constraint on total centrosome volume. 210 

These observations suggest that Stru CA and Num CA represent orthogonal axes of centrosome 211 

dysregulation. In contrast, Num CA levels correlated positively between edge and tumour 212 

compartments (R2 = 0.4857; Supplementary Fig. 3c), indicating progressive numerical amplification 213 

from tumour margins inward. This was reflected in an increasing proportion of cells with ≥4 214 

centrosomes from normal tissue to the edge and tumour core (Fig. 3a). Stratifying patients into four 215 

CA phenotypes (Stru⁻Num⁻, Stru⁺Num⁺, Stru⁺Num⁻, Stru⁻Num⁺) revealed that CA was widespread, 216 

detected in 89.8% of edge and 95% of tumour regions (Supplementary Fig. 3d). Notably, 73% of 217 

tumour regions exhibited both Stru CA and Num CA, representing a ~19.3% increase compared to 218 
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 10 

edge regions (Supplementary Fig. 3d). While the Stru⁺Num⁻ group accounted for 18.4% of edge 219 

regions but only 2% of tumour regions, the opposite trend was observed for the Stru⁻Num⁺ group 220 

(10.2% versus 20%, respectively). These findings allow us to conclude that structural and numerical 221 

centrosome aberrations are mechanistically uncoupled and highlight a spatial shift from centrosome 222 

enlargement at the tumour edge to centrosome accumulation in the tumour core. 223 

To investigate how CA correlates with ages, we stratified patients into four groups: <50, 50–60, 60–224 

70, >70 years. Num CA was elevated in patients aged 50–70 years across edge and tumour regions 225 

(Fig. 3a, b). The frequency of patients with detectable Num CA and Stru CA at the tumour edge 226 

markedly decreased in the 50–70 age group, resurging in patients over 70 years (Fig. 3c). Although 227 

fewer 50 to 60-year-old patients exhibited detectable CA at the edge, those that did had high levels 228 

of both CA subtypes (Fig. 3d, e). CA levels in tumour cores were relatively stable across age. 229 

Notably, normal tissues exhibited age-dependent increases in centrosome size, especially in 230 

patients over 70 (Fig. 3f, g), consistent with previous reports linking age to centrosome expansion 231 

via cumulative DNA damage51. In edge and tumour regions, centrosome size decreased between 232 

ages 50–70 before rising again in patients over 70 (Fig. 3h, i), while centrosome numbers followed 233 

the opposite trend, increasing in the 50–70 group before decreasing in the oldest cohort (Fig. 3j). 234 

This dynamic was mirrored by a higher proportion of cells with three centrosomes or more in the 50–235 

60 age group (Fig. 3k). Finally, we did not observe significant differences in age distribution across 236 

the four CA-defined patient groups (Stru−Num−, Stru+Num+, Stru+Num−, and Stru−Num+) 237 

(Supplementary Fig. 4a). Thus, while age alone may not initiate CA in breast cancer, it modulates 238 

its spatial distribution and severity—particularly by promoting numerical amplification in the 50–70 239 

age group and structural amplification in patients over 70. 240 

We next evaluated associations between CA subtypes and clinicopathological features. Tumours 241 

lacking CA (Stru⁻Num⁻) displayed smaller total and invasive areas in the tumour core relative to the 242 

edge (Supplementary Fig. 4b, c), a pattern absent in other CA groups. Structural and numerical 243 
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CA prevalence increased with histological grade and nodal involvement (Fig. 4a, b). Stru CA was 244 

inversely associated with tumour size across tumour (T) stages both edge and tumour regions, while 245 

Num CA displayed region-specific variation (Fig. 4c). Stru CA and Num CA were more frequent at 246 

the edge in invasive ductal carcinoma, but more abundant in the core of mixed-subtype tumours 247 

(Fig. 4d). To further assess CA heterogeneity, patients were classified by composite CA defects into 248 

StruhighNumhigh, StruhighNumlow, StrulowNumlow, StrulowNumhigh CA groups (Fig. 4e, f). CA burden was 249 

not age-associated (Fig. 4g), and distinct CA subtypes were linked to tumour behaviour. At the edge, 250 

StruhighNumlow and StrulowNumhigh CA tumours were associated with greater nodal involvement than 251 

either the StruhighNumlow or StrulowNumhigh CA groups (Fig. 4h), whereas no such differences were 252 

observed across CA groups in the tumour core. StrulowNumhigh CA tumours exhibited the smallest 253 

overall size, while the largest tumours were enriched in StruhighNumlow (edge) and StruhighNumhigh 254 

(tumour) CA groups (Fig. 4i, j). StruhighNumlow CA tumours grew more aggressively at the edge, while 255 

StruhighNumhigh CA tumours expanded predominantly in the core (Fig. 4k). While StrulowNumlow CA 256 

was the most frequent subtype among large tumours across both regions, neither Num CA (in tumour 257 

cores) nor Stru CA (at the edge) alone stratified tumour size (Fig. 4l). About 40% of tumours within 258 

the StruhighNumhigh CA group exhibited nodal involvement greater than N1 in the core (Fig. 4m), 259 

consistent with increased metastatic potential. Many tumours with StrulowNumlow CA status at the 260 

edge required nodal clearance, suggesting local aggressiveness independently of global CA burden 261 

(Fig. 4n). Identified germline variants were exclusively observed in the StruhighNumhigh CA group (Fig. 262 

4o), consistent with associations between CA and BRCA1-driven genomic instability52. We also 263 

evaluated the relationship between CA subtypes and body composition. Tumours with StrulowNumhigh 264 

CA in the core were associated with increased fat-free mass index (FFMI), (Supplementary Fig. 265 

5a), while fat mass index (FMI), waist circumference, and weight showed no differences across 266 

groups or regions (Supplementary Fig. 5b-d). Taller patients more frequently exhibited 267 

StrulowNumlow CA status in the edge regions, though this association was not observed in cores 268 

(Supplementary Fig. 5e). Collectively, these findings indicate that spatial patterns of CA are linked 269 
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to tumour clinical parameters. StruhighNumhigh CA tumours define a high-risk subgroup marked by 270 

large size, nodal spread, and genomic alterations, while StrulowNumlow CA tumours—despite low CA 271 

burden—can display local aggressiveness.  272 

Single-cell analyses revealed further divergent CA subtype dynamics. At the edge regions, Num CA 273 

decreased with increasing tumour size (Supplementary Fig. 6a), while Stru CA was enriched in 274 

poorly differentiated but smaller tumours (Supplementary Fig. 6b). In the core, the proportion of 275 

cells harbouring either CA subtype increased with both total and invasive tumour size 276 

(Supplementary Fig. 6c, d). Num CA showed no significant differences across histological tumour 277 

grades, although it was more prevalent in well-differentiated tumours (Supplementary Fig. 6c). Stru 278 

CA levels were enriched in poorly differentiated tumours (Supplementary Fig. 6d). No significant 279 

subtype-specific CA differences were observed across histological subtypes (Supplementary Fig. 280 

6a-d), but cells from mixed tumours harboured more centrosomes in both compartments 281 

(Supplementary Fig. 7), highlighting elevated Num CA as linked to increased tumour heterogeneity. 282 

Together, these findings indicate a dynamic evolution of CA during tumour progression, with early-283 

stage tumours characterised by numerical defects and advanced tumours accumulating structural 284 

abnormalities.  285 

Finally, we explored CA patterns in the context of hormone receptor status, a key clinical determinant 286 

in breast cancer53, 54. Stru CA levels varied by receptor status in both edge and tumour core 287 

compartments (Supplementary Fig. 8a). HER2⁻ tumours had the highest Stru CA at the edge, while 288 

PR⁻ and ER⁻ tumours had the lowest. In contrast, ER⁻ tumours displayed elevated Stru CA in the 289 

core, with HER2⁺ tumours showing the lowest levels. Num CA also showed compartment-specific 290 

trends: HER2⁺ tumours exhibited high Num CA at the edge but low levels in the core; ER⁻ tumours 291 

showed the inverse pattern (Supplementary Fig. 8b). Despite broadly similar spatial trends 292 

between Stru CA and Num CA across receptor-defined subtypes, HER2⁺ tumours emerged as an 293 

exception (Supplementary Fig. 8c, d). HER2moderate (2+) tumours had significantly lower Num CA 294 
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levels than HER2high (3+) tumours in both compartments (Supplementary Fig. 8e), suggesting 295 

HER2 dosage impacts centrosome number. HER2⁺ tumours were overrepresented in discordant CA 296 

phenotypes—StrulowNumhigh (28.6%) and StruhighNumlow (35.7%)—at the edge (Supplementary Fig. 297 

8f), indicating HER2 may differentially regulate centrosome structure and number depending on 298 

spatial context. This distribution was not observed in the tumour core. These observations point to 299 

spatially resolved, hormone receptor-specific influence of CA patterns, particularly via HER2 300 

signalling, in a microenvironment-dependent manner. 301 

 302 

CenSegNet reveals CA patterns linked to tumour subtype and progression 303 

Using CenSegNet-derived spatial quantifications, we compared dynamic shifts in Stru CA and Num 304 

CA between tumour edges and cores. Patients were classified based on whether each CA subtype 305 

was more abundant in the tumour core (T>E) or at the edge (E>T). Baseline clinicopathological 306 

features were similar between spatial groups (Supplementary Fig. 9). Stru CAT>E tumours were 307 

associated with lobular histology (15.8%), lower histological tumour grade (26.3% grade 3), and 308 

lower HER2+ prevalence (15.8%). In contrast, Stru CAE>T tumours more frequently displayed high 309 

tumour grade morphology (59.1% grade 3), higher HER2+ status (immunohistochemistry 3+ or FISH-310 

confirmed) (31.8%), and higher differentiation (Supplementary Fig. 10a, b). Single-cell analysis 311 

revealed that in both Stru CA spatial groups, Num CA–positive cells consistently contained more 312 

centrosomes in the core than at the edge (Fig. 5a, b), indicating a conserved numerical asymmetry. 313 

Num CA spatial prevalence was also associated with aggressiveness: Num CAT>E tumours were 314 

more often grade 3 (40.6%), had greater nodal involvement (31.2%), and lower HER2+ frequency 315 

(12.5%) compared with Num CAE>T tumours (28.6%, 7.1%, and 35.7%, respectively; 316 

Supplementary Fig. 10c, d). Mixed histology was more common in Num CAT>E tumours (12.5%), 317 

whereas Num CAE>T tumours were associated with lobular carcinomas (28.6% versus 6.3%), a 318 

subtype typically linked to slower growth and smaller size. Across both Num CAT>E Num CAE>T 319 

groups, centrosomes were significantly larger at the edge than in the core. Notably, Num CA–positive 320 
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cells with larger centrosomes harboured fewer of them (Fig. 5c, d), revealing a robust inverse 321 

relationship between centrosome size and number across all spatial groups (Fig. 5e). These findings 322 

highlight distinct spatial CA patterns associated with tumour subtype and behaviour. Tumours 323 

displaying a shift from fewer, larger centrosomes at the periphery to smaller, more numerous 324 

centrosomes in the core exhibit features of increased aggressiveness. These spatial patterns, 325 

resolved through CenSegNet, provide a proxy for tumour heterogeneity and may reflect the 326 

evolutionary trajectory of CA during tumour progression. 327 

 328 

CenSegNet integration and accessible deployment for high-throughput centrosome analysis 329 

To support broad adoption and integration into diverse analytical workflows, we provide CenSegNet 330 

as both a lightweight application programming interface (API) and an interactive graphical user 331 

interface (GUI) (Fig. 6a, b). The GUI comprises three modules: a data upload panel for inputting 332 

whole-slide or high-resolution images; a prediction module for adjustable inference parameters 333 

including probability thresholds and region selection for optimised segmentation of centrosomes and 334 

epithelial compartments; and an export tool for structured outputs. Post-inference, users can retrieve 335 

per-cell pixel-resolved size estimates, spatial coordinates, and centrosome counts within tissue 336 

context (Fig. 6b). The interface supports batch processing and accepts both immunohistochemistry 337 

and immunofluorescence formats. Benchmarking shows that CenSegNet processes a 6,000 × 338 

6,000-pixel immunohistochemistry image or a 2,048 × 2,048-pixel immunofluorescence image in <1 339 

min on standard GPUs, enabling rapid, scalable analysis across large datasets. 340 

  341 
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Discussion 342 

We introduce CenSegNet, a modular deep learning framework for quantification of centrosomes in 343 

epithelial tissues at spatial and single-cell resolution. Unlike previous approaches that treat 344 

morphological analysis and segmentation as separate tasks, CenSegNet integrates centrosome 345 

detection and phenotyping, nuclear localisation, and epithelial boundary inference into a unified, 346 

multichannel pipeline. This enables context-aware segmentation of both structural (Stru CA) and 347 

numerical (Num CA) abnormalities across diverse imaging modalities. CenSegNet outperforms 348 

established models—including U-Net, SegNet, and DeepLabv3+—in accuracy, generalisability, and 349 

morphological fidelity, particularly in densely packed or morphologically heterogeneous tissue 350 

regions. The framework comprises three specialised modules: a YOLOv11-based detector trained 351 

on over 15,000 annotated centrosomes for robust localisation; a U-Net model for precise 352 

segmentation of centrosome area and morphology; and a StarDist-based cell segmentation module 353 

optimised for delineating epithelial boundaries in complex tissue architectures. This modular 354 

integration, coupled with uncertainty-aware postprocessing, enables systematic and standardised 355 

phenotyping of CA subtypes at single-cell and spatial resolution. Applied to 911 sample cores from 356 

127 patients, CenSegNet-based profiling of over 330,000 centrosomes reveals previously 357 

uncharacterised spatial trajectories and clinical correlates of Stru CA and Num CA, uncovering their 358 

mechanistic uncoupling, age-dependent modulation, and associations with tumour progression, 359 

hormone receptor status, HER2 expression, and genomic alterations. 360 

Computational tools have been developed previously for CA quantification in epithelial cells. A semi-361 

automated machine learning pipeline quantified PCM defects and numerical CA in 362 

immunofluorescence images of normal and breast cancer cells41, but the method offers limited 363 

spatial resolution and required extensive manual curation. Another semi-automated approach linked 364 

centrosome size and number to chromosomal instability in human breast cancer tissues17, yet lacked 365 

single-cell resolution and scalability. Another pipeline assessed centriole number and length, 366 

revealing structural defects arising from fragmentation and ectopic procentriole formation37, but 367 
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without spatially resolved quantification. An automated detection algorithm for high-throughput 368 

mapping of CA in ovarian cancer tissues, identified heterogeneous CA phenotypes associated with 369 

chromosomal instability and chemotherapy resistance44. However, this method did not distinguish 370 

between structural and numerical CA or provide single-cell semantic segmentation. CenSegNet 371 

addresses these limitations by integrating cellular, spatial, and clinical dimensions of CA across 372 

large-scale tissue cohorts. In doing so, it offers new insights into centrosome biology and the 373 

functional relevance of CA heterogeneity in breast cancer, with implications for risk stratification and 374 

precision oncology. Beyond breast cancer, CenSegNet has demonstrated generalisability across 375 

diverse epithelial tissues—including kidney, colon, and appendix—characterised by high stromal 376 

content and architectural complexity (Supplementary Fig. 11). To facilitate broad adoption, we 377 

provide CenSegNet as an open-source GUI enabling scalable extraction of structured, spatially 378 

anchored centrosome metrics. This will allow researchers and clinicians, regardless of computational 379 

expertise, to integrate centrosome profiling into histopathological and biomarker discovery 380 

workflows. Thus, CenSegNet extends beyond methodological innovation to practical application, 381 

accelerating systematic investigation of centrosome biology across anatomically and histologically 382 

diverse tissues, and enabling the identification of CA-driven vulnerabilities with potential therapeutic 383 

relevance. 384 

Recent studies using a composite centrosome amplification score (CAS) that integrates both 385 

numerical and structural abnormalities7, 43, showed a progressive increase in CAS from normal 386 

breast tissue to invasive carcinoma. However, it did not distinguish the individual contributions of 387 

numerical and structural centrosome abnormalities. Our spatially resolved single-cell analysis 388 

demonstrates that Num CA and Stru CA represent distinct phenotypic axes of centrosome 389 

dysregulation. Although they frequently co-occur in tumour tissues, they are uncorrelated at both 390 

tissue and single-cell levels and exhibit unique spatial distributions: Stru CA is enriched at tumour 391 

edges, while Num CA predominates in tumour cores, suggesting that different regional pressures 392 

drive centrosome overduplication versus structural enlargement. Single-cell data further uncover a 393 
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robust inverse relationship between centrosome number and size—cells with multiple centrosomes 394 

tend to have smaller ones—indicating a compensatory constraint on total centrosome volume. 395 

Consistent with this, centriole over-elongation can induce CA via fragmentation and ectopic 396 

procentriole formation in breast cancer cells37, yet not all centrioles within a cell exhibit these 397 

changes, highlighting intra-cellular heterogeneity in elongation susceptibility. Collectively, these 398 

findings support a model in which Num CA and Stru CA are mechanistically uncoupled, evolving 399 

along orthogonal spatial gradients during tumour progression. This challenges the monolithic view 400 

of CA and instead portrays it as a dynamic, regionally modulated process shaped by local 401 

microenvironmental cues. The mechanistic decoupling of CA has important implications for 402 

understanding its functional heterogeneity in cancer and underscores the need for spatially informed 403 

biomarkers. 404 

CenSegNet-based profiling reveals that aging exerts distinct and spatially patterned effects on Stru 405 

CA and Num CA in breast cancer. Num CA peaks between ages 50 and 70—overlapping with the 406 

menopausal transition and the most common window for breast cancer diagnosis55-57—whereas Stru 407 

CA accumulates progressively after age 70, indicating a later-life trajectory of centrosome 408 

architectural dysregulation. While CA overall increases with age—including in normal tissues—our 409 

data suggest that age is not a deterministic initiator but rather a factor that modulates the magnitude 410 

and spatial distribution of CA subtypes. In mid-life patients, Num CA is preferentially enriched in 411 

tumour cores—regions typically characterised by high proliferation—whereas Stru CA in older 412 

individuals extends more diffusely, often into tumour margins, likely reflecting age-associated 413 

changes in epithelial architecture, tissue repair dynamics, and microenvironmental stress. A study in 414 

prostate cancer has reported elevated CA in patients over 53 years of age7. CA increases with age, 415 

in normal breast epithelial cells derived from individuals aged 20-80, treated with DNA damage-416 

inducing stimuli51. Chronic centrosome overduplication in aging mouse models of intestinal cancer 417 

drives aneuploidy and spontaneous tumorigenesis, supporting a role for age-associated CA in early 418 

malignant transformation18. Centrosome function deteriorates with age, evidenced by accumulation 419 
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of structural defects and impaired mitotic fidelity58, 59. Aging epithelial cells exhibit centrosome 420 

fragmentation, aberrant centriole elongation, and altered PCM composition59, 60, while broader 421 

declines in DNA repair and chromosomal segregation fidelity likely contribute to a permissive 422 

environment for CA59. Thus, aging tissues accumulating centrosome abnormalities, mitotic fidelity 423 

defects, and weakened genomic surveillance, may be more vulnerable to CA-driven tumorigenesis. 424 

Our study delineates the divergence of CA subtypes across the lifespan. The inverse scaling 425 

between centrosome number and size supports the idea that Num CA and Stru CA act as 426 

compensatory, rather than co-occurring, phenotypes. Notably, Stru CA in elderly patients is 427 

frequently associated with hormone receptor–negative tumours, implicating centrosome structural 428 

dysregulation in the biology of more aggressive or dedifferentiated late-life cancers. CA can induce 429 

breast cancer cell dedifferentiation and intrinsically drive high-grade tumours61. Age remains a key 430 

prognostic factor in breast cancer, influencing tumour subtype distribution, hormone receptor status, 431 

and genomic instability62, 63. Together, these results establish the first clinically and spatially resolved 432 

framework for understanding how aging modulates centrosome biology in human cancer. This 433 

framework lays the foundation for developing age-stratified biomarkers and clarifies why specific CA 434 

subtypes and their associated chromosomal instability may emerge more frequently or have greater 435 

clinical impact at distinct stages of life. 436 

The spatial heterogeneity of CA and its clinical relevance for cancer remain poorly defined3, 7. 437 

CenSegNet systematically maps Stru CA and Num CA across tumour compartments and stratifies 438 

tumours into composite CA subtypes with distinct spatial, biological, and clinical profiles. 439 

StruhighNumhigh CA tumours are consistently associated with larger size, greater nodal involvement, 440 

and germline genomic alterations. Elevated CA in both core and edge regions suggests a cellular 441 

composition primed for proliferative expansion and invasive dissemination. StrulowNumlow CA 442 

tumours often required nodal clearance, supporting evidence that even modest CA can drive 443 

aggressive behaviour in permissive genomic contexts—particularly when p53 surveillance is 444 

compromised7, 18, 64. CenSegNet also uncovers spatial discordance in CA subtypes, with 445 
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StruhighNumlow and StrulowNumhigh CA profiles enriched at the invasive front. These spatial signatures 446 

are associated with enhanced metastatic potential, consistent with models in which centrosome 447 

abnormalities promote invasion through both cell-autonomous65-67 and non-cell-autonomous68-70 448 

mechanisms. Structural centrosome defects have been shown to drive cell extrusion, facilitating 449 

invasion67, 71. Our findings corroborate longitudinal studies of tumour progression, such as in Barrett’s 450 

oesophagus, where CA appears early in premalignant lesions and expands with p53 loss64, 451 

supporting a role for CA in tumour initiation rather than as a mere by-product of transformation. 452 

Similarly, CA was shown to increase from normal tissue to ductal carcinoma in situ (DCIS) to invasive 453 

carcinoma, and to correlate with recurrence and poor prognosis7, 61. Finally, our observation that Stru 454 

CA and Num CA spatial patterns are uncoupled from systemic physiological metrics reinforces CA 455 

as a tumour-intrinsic hallmark. Together, these results advance our understanding of centrosome 456 

biology in cancer and highlight the power of CenSegNet-driven integration of subcellular organelle 457 

features into spatial pathology, with direct implications for clinical decision-making, prognostic 458 

modelling, and therapeutic targeting. 459 

By integrating CenSegNet-based centrosome phenotyping with spatially resolved hormone receptor 460 

profiling, we uncover compartment-specific associations between CA subtypes and ER/HER2 461 

expression. Num CA is selectively enriched in ER⁻ tumours within the tumour core, whereas HER2⁺ 462 

tumours display lower Num CA in the core despite elevated levels at the tumour edge. This spatial 463 

divergence suggests that hormone receptor signalling modulates centrosome number and structure 464 

in a regionally distinct manner. These observations corroborate previous studies linking CA to 465 

hormone receptor status and tumour aggressiveness37, 42, 66, 72 and support the hypothesis that ER 466 

loss promotes CA through transcriptional or post-translational dysregulation of centriole biogenesis 467 

pathways. Basal-like ER⁻PR⁻HER2⁻ breast cancers—characterised by genomic instability and poor 468 

prognosis73, frequently exhibit high CA, often with centriole fragmentation and ectopic procentriole 469 

formation driven by over-elongation37. These defects recruit excess pericentriolar material (PCM), 470 

generating supernumerary or structurally abnormal MTOCs that drive mitotic errors and 471 
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chromosomal instability74, 75. In contrast, HER2⁺ tumours are more frequently enriched in discordant 472 

CA subtypes (StrulowNumhigh and StruhighNumlow) at the tumour edge, suggesting that HER2 signalling 473 

may differentially regulate centrosome number and structure depending on spatial context. This is 474 

consistent with evidence that both PLK4 and AURKA expression—key regulators of centriole 475 

biogenesis and maturation, respectively—is differentially influenced by HER2 status72, 76. Despite 476 

high proliferative capacity, HER2⁺ tumours exhibit lower overall CA, raising the possibility that these 477 

tumours suppress CA to preserve mitotic fidelity or evade immune detection. Together, our findings 478 

identify spatially distinct and mechanistically diverse relationships between hormone receptor 479 

signalling and centrosome biology. ER loss is associated with elevated Num CA and mitotic instability 480 

in tumour cores, while HER2 signalling appears to exert compartmentalised control over CA subtype 481 

distribution. Spatially resolved centrosome profiling thus provides a framework for identifying 482 

hormone-specific vulnerabilities that could inform targeted breast cancer therapies. 483 

CenSegNet enables fine-grained stratification of tumours based on the relative abundance of 484 

structural (Stru CA) and numerical (Num CA) centrosome abnormalities, revealing distinct spatial–485 

biological associations. Tumours with Stru CA enriched at the invasive edge (Stru CAE>T) are more 486 

proliferative, more frequently HER2+, and exhibit higher differentiation, whereas those with Stru CA 487 

more abundant in the core (Stru CAT>E) are more commonly associated with lobular histology and 488 

slower growth. Single-cell analyses further show that tumours with grade 3 histology, nodal 489 

involvement, and mixed subtypes—hallmarks of aggressive disease—are more prevalent in the Num 490 

CAT>E subgroup, while Num CAE>T tumours are enriched for lobular carcinomas, typically linked to 491 

indolent behaviour73. These spatially resolved patterns corroborate previous reports suggesting that 492 

numerical centrosome abnormalities increase with tumour progression and are more frequent in 493 

aggressive basal-like carcinomas7, 37. Our single-cell data also reveal an inverse relationship 494 

between centrosome number and size—where edge regions harbour fewer but larger 495 

centrosomes—supporting a model in which Stru CA at the periphery primes cells to acquire invasive 496 

behaviours, while Num CA in the core drives proliferation and genomic instability. This dynamic 497 
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interplay likely reflects microenvironmental influences on CA trajectories during tumour progression. 498 

These findings extend the “CA set point” concept77, which postulates that tumours maintain a 499 

context-dependent equilibrium of CA phenotypes to balance proliferation, invasion and survival. 500 

CenSegNet-based spatial profiling demonstrates that CA is not only subtype-specific but also 501 

spatially regulated, providing new insights into the architectural evolution and heterogeneity of breast 502 

cancer. 503 

In summary, CenSegNet delivers the first fully integrated and spatially resolved framework for 504 

profiling CA at single-cell resolution across large-scale human cancer tissues. By enabling precise, 505 

high-throughput quantification of both numerical and structural CA phenotypes, CenSegNet 506 

uncovers distinct mechanistic, temporal, and spatial trajectories of centrosome dysregulation in 507 

breast cancer. The discovery that numerical and structural CA are decoupled numerical and 508 

structural CA are decoupled—not only in cellular architecture but also in their associations with 509 

clinical features such as tumour grade, hormone receptor status, germline mutation, and patient 510 

age—advances our understanding of how centrosome abnormalities contribute to intratumoral 511 

heterogeneity, tumour progression, with considerable implications for therapeutic resistance. 512 

Importantly, the identification of compensatory dynamics between centrosome number and size, and 513 

their divergent distributions across tumour cores and margins, points to context-specific roles in 514 

modulating local tumour ecology and genomic instability. These insights challenge the longstanding 515 

view of CA as a uniform driver of malignancy, instead positioning CA subtypes as distinct functional 516 

modules in tumour evolution. CenSegNet thus provides a foundation for developing CA-based 517 

biomarkers to stratify patients by tumour subtype, age, and aggressiveness, and opens opportunities 518 

for therapies targeting CA-driven vulnerabilities. Given the availability of PLK4, AURKA, and HSET 519 

inhibitors78-82, spatial CA maps could guide personalised strategies, particularly in tumours with 520 

discordant amplification phenotypes. Future studies integrating CenSegNet-based CA profiling with 521 

transcriptomic and proteomic analyses will be essential to uncover the molecular drivers of spatial 522 
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CA dynamics and clarify their roles in tumour progression, metastatic dissemination, and therapy 523 

resistance.  524 
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Methods 525 

 526 

Ethics and human breast tissues 527 

The study participants were a subgroup of women diagnosed with early breast cancer who were 528 

recruited to a single-centre prospective observational cohort study at University Hospitals 529 

Southampton, “Investigating Outcomes from Breast Cancer: Correlating Genetic, Immunological and 530 

Nutritional Predictors (BeGIN)83, 84.” All procedures performed in studies involving human participants 531 

were in accordance with the ethical standards of the institutional and/or national research committee 532 

and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. 533 

All participants in BeGIN gave written informed consent. The research ethics committee approved 534 

the study (Research Ethics Committee (REC) - Cambridgeshire and Hertfordshire reference number: 535 

14/EE/1297). Women were eligible for the BeGIN study if they were aged >18 years and diagnosed 536 

with invasive breast cancer or DCIS at University Hospital Southampton after May 2015. Linked 537 

anonymised patient information, including patient characteristics, tumour characteristics and clinical 538 

management, were extracted from the hospital electronic record system. Body composition 539 

parameters were measured using Bioelectrical Impedance Analysis (BIA) with a phase-sensitive, 8-540 

electrode device (Seca mBCA515)85. To conduct this study, 911 cores from 127 breast cancer 541 

patients were used. The TMAs were constructed from formalin fixed paraffin embedded (FFPE) 542 

histopathology tissue blocks from surgical treatment surplus to diagnostic requirements. Colon, 543 

kidney, and appendix tissue were incorporated into breast tissue TMAs to facilitate orientation during 544 

sectioning and analysis. Colon and kidney samples consisted of histologically normal tissue, the 545 

status of which was independently verified by a board-certified pathologist. A summary of the 546 

clinicopathological information linked to the human breast samples used in this study is included in 547 

Supplementary Table 1. Anonymous data from the BeGIN study is available for request to 548 

researchers who provide a completed Data Sharing request form that describes a methodologically 549 

sound proposal, for the purpose of the approved proposal. Proposals will be reviewed by the study 550 
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steering committee. Data will be shared once all parties have signed relevant data sharing 551 

documentation, covering the study steering committee conditions for sharing and if required, an 552 

additional Data Sharing Agreement from the Sponsor. 553 

 554 

Ethics and mice 555 

BALB/c HER-2/neu transgenic mice (referred to as BALB-NeuT)86 carrying the transforming rat Her-556 

2/neu oncogene under control of a MMTV-LTR were used. All experimental procedures involving 557 

mice were approved by the University of Southampton Local Ethics Committee and registered with 558 

the Ethics and Research Governance Online II (ERGO II; ID: 65385). All animal work was conducted 559 

in accordance with UK Home Office regulations, adhering to the principles of the 3Rs (Replacement, 560 

Reduction, Refinement) and the ARRIVE (Animal Research: Reporting of In Vivo Experiments) 561 

guidelines to minimise animal suffering throughout the study. Mice were housed in a specific 562 

pathogen-free (SPF) facility under controlled environmental conditions, including regulated 563 

temperature and humidity, with a 12-hour light/dark cycle. Animals had ad libitum access to standard 564 

chow and water. 565 

 566 

Cell culture  567 

MCF10A is a non-transformed human mammary epithelial cell line (ATCC® CRL-10317). The 568 

MCF10A-PLK4 cell line is a genetically engineered derivative of MCF10A that enables inducible 569 

overexpression of Polo-like kinase 4 (PLK4), a master regulator of centrosome duplication whose 570 

upregulation induces centrosome amplification66. The MCF10A-PLK4 cell line was kindly provided 571 

by Dr. Susana Godinho (The Barts Cancer Institute, Queen Mary University of London). Both 572 

MCF10A and MCF10A-PLK4 cells were cultured in DMEM/F12 medium (Invitrogen), supplemented 573 

with 10% donor horse serum (Gibco, 31331028), 20 ng/ml human epidermal growth factor (EGF; 574 

Sigma, E9644), 10 μg/ml insulin (Sigma, I1882), 100 μg/ml hydrocortisone (Sigma, H0888), 1 ng/ml 575 

cholera toxin (Sigma, C8052), and 50 U/ml penicillin with 50 μg/ml streptomycin (Life Technologies). 576 
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Cells were maintained at 37 °C in a humidified incubator with 5% CO₂. To induce PLK4 577 

overexpression, cells were treated with doxycycline (Sigma, D9891) at 2 μg/ml for 48 hours. 578 

 579 

Tissue microarray construction and immunohistochemistry  580 

Tissue microarrays (TMAs) were constructed using formalin-fixed, paraffin-embedded (FFPE) tissue 581 

samples obtained following breast cancer surgery from 127 patients diagnosed with primary invasive 582 

breast carcinoma at University Hospital Southampton between July 9, 2015, and January 31, 2019, 583 

and participating in the BeGIN study. All patients underwent standardised treatment at a single 584 

institution, consisting of surgery, followed by adjuvant treatments according to local and national 585 

protocols. Pathological evaluation of hormone receptor and HER2 expression was conducted 586 

according to established national and international guidelines87, 88. Immunohistochemistry was used 587 

to determine hormone receptor status, and in situ hybridization (ISH) was employed to confirm HER2 588 

positivity for tumours with an IHC score of 2+. All procedures were performed within the standard 589 

clinical diagnostic pathway. A total of 911 sample cores were systematically sampled from three 590 

distinct, pathologically classified regions for each patient: tumour tissue (Tumour), tumour margin 591 

(Edge), and tumour-free tissue (Normal). Each patient represented by three technical replicate cores 592 

from Tumour, Edge, and Normal regions, were procured for analysis. Each 0.6 mm in diameter and 593 

5 µm in thickness were extracted from formalin-fixed, paraffin-embedded specimens and arrayed 594 

into recipient tissue microarray (TMA) blocks. This tri-regional, triplicate-core sampling strategy was 595 

designed to provide a comprehensive and robust representation of the tissue heterogeneity within 596 

and around the tumour microenvironment. TMA sections were mounted onto TOMO® adhesion 597 

microscope slides. Immunohistochemistry was performed using the Dako Autostainer Link 48 598 

automated platform. Endogenous peroxidase activity was quenched using EnVision FLEX blocking 599 

reagent (Dako), followed by a 30-minute incubation with the primary antibody against pericentrin 600 

(1:500 dilution; Abcam, ab4448). Signal amplification and enzymatic detection were achieved using 601 

EnVision FLEX HRP (Dako, 20 minutes) and Rabbit Link (Dako, 15 minutes). Slides were 602 
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counterstained with haematoxylin following three 5-minute washes in 3-amino-9-ethylcarbazole 603 

(AEC). 604 

 605 

Assessment of hormone receptor status 606 

ER or PR expression were evaluated by immunohistochemistry and scored using the Allred system 607 

(range 0–8). Tumours with an Allred score ≥ 3 were classified as ER or PR positive. HER2 status 608 

was determined by immunohistochemistry and scored as 0, 1+, 2+, or 3+. Tumours with a score of 609 

3+ were classified as HER2 positive. Cases with a score of 2+ were considered equivocal were 610 

further assessed by fluorescence in situ hybridization (FISH). Tumours with FISH amplification were 611 

designed as HER2 positive, defined as a HER2/CEP17 ratio ≥ 2.0 or average HER2 copy number ≥ 612 

6.0 signals per cell. 613 

 614 

Immunofluorescence  615 

The following primary antibodies were used: anti-GT335 (1:800; Adipogen, AG-20B-0020-C100), 616 

anti-pericentrin (1:250; Abcam, ab4448), and anti-keratin 8/18 (KRT8/18; 1:300; Origene, BP5007). 617 

Secondary antibodies (Life Technologies) included goat anti-mouse (A-32723), anti-rabbit (A-11037 618 

and A-11008), and anti-guinea pig (A-21450), each conjugated to Alexa Fluor 488, Alexa Fluor 594, 619 

or Alexa Fluor 647, and used at a final concentration of 5 μg/ml. 620 

OCT-embedded mammary gland sections (30 µm thick) from BALB-NeuT mice were cryosectioned, 621 

air-dried for 30 minutes, and fixed in 4% paraformaldehyde (PFA) for 20 minutes at room 622 

temperature. Sections were permeabilised for 45 minutes with 0.1% Triton X-100 in PBS, then 623 

blocked for 2 hours in a solution containing 2% bovine serum albumin (BSA), 5% foetal bovine serum 624 

(FBS; Gibco), and 0.1% Triton X-100 in PBS. Sections were incubated overnight at 4 °C with primary 625 

antibodies against pericentrin, GT335, and KRT8, followed by washing and incubation with the 626 

appropriate secondary antibodies for 2 hours at room temperature. Nuclei were counterstained with 627 

DAPI using Fluoroshield mounting medium (Sigma, F6057).  628 
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MCF10A and MCF10A-PLK4 cells were fixed in anhydrous methanol at −20 °C for 10 minutes, 629 

followed by permeabilisation with 0.1% Triton X-100 in PBS for 2 minutes. Cells were then washed 630 

three times for 5 minutes each with 0.1% Triton X-100 in PBS. Blocking was performed using 3% 631 

BSA in 0.1% Triton X-100 in PBS for 1 hour at room temperature. Cells were incubated overnight at 632 

4 °C with primary antibodies against pericentrin and GT335. After washing, cells were incubated with 633 

the appropriate secondary antibodies for 1 hour at room temperature and counterstained with DAPI 634 

using Fluoroshield. 635 

 636 

Microscopy and image annotation 637 

Immunohistochemistry images were acquired using a Zeiss Axio Imager Z1 upright microscope 638 

(Zeiss), equipped with an AxioCam MRc5 colour camera. Image capture was performed using Zeiss 639 

ZEN imaging software, following a predefined whole-slide brightfield scanning protocol (Whole Slide 640 

[WS] Brightfield [BF] fold-light) with a 20× objective lens. This configuration enabled high-resolution 641 

imaging of tissue sections with consistent illumination and contrast across samples. 642 

Immunofluorescence images were captured using an inverted Leica STELLARIS 5 laser scanning 643 

confocal microscope (Leica Microsystems), equipped with a 40× oil immersion objective (HC PL 644 

APO 40×/1.30 Oil CS2). Z-stacks were acquired at 16-bit depth with a 0.2 μm step size, using fields 645 

of view (FOVs) ranging from 1024 × 1024 to 2048 × 2048 pixels. All cells from all FOVs obtained 646 

during the experiments were included in the evaluation of model performance. Image processing 647 

was performed using Fiji software (https://imagej.net/software/fiji/)89. 648 

Manual annotations were performed by Jiaoqi Cheng (see Supplementary Fig. 12), who received 649 

training and supervision from Constantinos Savva. Centrosome size quantification in 650 

immunohistochemistry images was performed using calibrated spatial resolution, wherein each pixel 651 

corresponded to an area of 0.0483 μm2. For each centrosome, pixel-level segmentation masks were 652 

used to compute total pixel occupancy, which was then multiplied by the calibrated pixel area to 653 

derive centrosome size in μm². 654 
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To generate the immunohistochemistry training dataset, images from 78 patients were included, 655 

comprising human breast cancer tissue, normal breast tissue, normal liver, and normal kidney 656 

samples. Within these images, annotations were made for centrosomes (n = 14,679), epithelial 657 

compartments (n = 2,486), and stromal compartments (n = 108), using QuPath v0.5.1 658 

(https://qupath.github.io/)90. All centrosome annotations were performed under 200× magnification 659 

for each region of interest (ROI). The manual annotation process required over 200 person-hours. 660 

Annotations were exported as GeoJSON files. 661 

For the immunofluorescence training dataset, only 15 high-resolution image z-stacks of MCF10A 662 

and MCF10A-PLK4 cell lines were required. Annotation was performed using Cellpose 3.091, 92. 663 

Datasets were first maximum-intensity projected, then split into contrast-adjusted single-channel 664 

images, with boundaries defined by edge features visible in the blue channel. The manual annotation 665 

process took approximately 16 person-hours. All annotations were exported as SVG files. 666 

 667 

Image processing and model training 668 

Image processing. For immunohistochemistry image processing in the CenSegNet pipeline, raw 669 

microscopy images were pre-processed to enhance contrast and suppress background noise, 670 

thereby improving the visibility of cellular structures. Each image was cropped into overlapping 671 

patches of 256 × 256 pixels with a stride of 300 pixels. Patches exhibiting artefacts or poor quality 672 

were manually excluded to ensure dataset integrity. The final immunohistochemistry dataset 673 

comprised 1,122 annotated patches, each containing labelled information on centrosome location 674 

and size. For immunofluorescence images, RGB channels were converted to greyscale to reduce 675 

dimensionality and simplify the training process. This transformation allowed the model to remain 676 

invariant to colour information while improving computational efficiency. 677 

Model architecture and training. CenSegNet employs a modular three-step architecture 678 

comprising approximately 40 million trainable parameters. The first step consists of a detection head 679 

that localises candidate ROIs, while the second stage performs fine-grained segmentation within 680 
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these ROIs to achieve precise spatial delineation. This decoupled design enables task-specific 681 

optimisation and improves memory efficiency and training stability. In the detection stage, we fine-682 

tuned YOLOv11-seg model45 (https://github.com/ultralytics/ultralytics) using our own training set, 683 

guided by a composite loss function comprising box loss, segmentation loss, classification loss, and 684 

distribution focal loss. These components respectively optimise object localisation, foreground-685 

background separation, class prediction, and robustness to complex spatial distributions. Training 686 

was performed using the AdamW optimiser (learning rate = 0.002, momentum = 0.9) with a batch 687 

size of 16 over 300 epochs. The segmentation step 2 employed a U-Net architecture46 with three 688 

input channels (RGB) and one output channel. Given the small size of centrosomes, segmentation 689 

was formulated as a binary classification task. The model was trained for 100 epochs using the 690 

Binary Cross Entropy with Logits loss function (BCEWithLogitsLoss). Optimisation was performed 691 

using RMSprop (learning rate = 1 × 10-4, weight decay = 1 × 10-8, momentum = 0.9), which stabilised 692 

training and improved convergence for small target structures. Training was conducted in Python 693 

(v3.10) using PyTorch (v2.1). We applied data augmentations, such as HSV colour jittering and 694 

geometric transformations, which can be easily implemented using the torchvision.transforms 695 

module in PyTorch. The detection head was trained independently for approximately 24 hours, 696 

followed by an additional 12 hours of training for the segmentation head. All experiments were run 697 

on four NVIDIA A100 GPUs (40 GB VRAM each) using PyTorch’s Distributed Data Parallel (DDP) 698 

framework with NVIDIA Collective Communications Library (NCCL) backend for gradient 699 

synchronisation. Input batches were evenly partitioned across GPUs, with local gradient computation 700 

and synchronisation via NCCL’s optimised collective communication, achieving near-linear scaling 701 

in throughput. Batch sizes were dynamically adjusted to maximise GPU utilisation while maintaining 702 

training stability. 703 

Comparative segmentation models. To benchmark CenSegNet, we compared its performance 704 

against established segmentation models including U-Net46, SegNet48, and DeepLabv3+49. Each 705 

model was trained on uniformly sized 256 × 256 image patches cropped from the original dataset. 706 
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Official implementations were used without architectural modifications. Comparative experiments 707 

were conducted with and without ImageNet pretraining to assess the impact of transfer learning. 708 

Model outputs were evaluated against ground truth segmentation masks using a composite loss 709 

function combining weighted binary cross-entropy and Dice loss, balancing pixel-wise accuracy with 710 

regional overlap. All models were trained under identical conditions: Adam optimiser (initial learning 711 

rate = 1 × 10-4), cosine learning rate decay, L2 regularisation (weight decay = 1 × 10-8), batch size of 712 

16, and early stopping based on validation loss plateauing. A total of 108 immunohistochemistry 713 

images were manually annotated and divided into training (n=80), validation (8), and test (n=20) 714 

datasets. An additional private dataset comprising 25 images was generated and manually curated 715 

for evaluation.  716 

Cell segmentation. For cell nucleus segmentation step 3, we integrated StarDist47 with the QuPath 717 

platform. StarDist offers state-of-the-art performance in dense and noisy biological environments. 718 

Following accurate nucleus segmentation, cell membrane boundaries were estimated using the 719 

spatial coordinates of nuclei as anchor points. Expansion thresholds of 3, 4, 5, and 6 μm were tested 720 

and validated against KRT8-stained images to determine the optimal value for our dataset. 721 

 722 

Evaluation metrics 723 

Centrosome segmentation performance. Centrosome segmentation performance was evaluated 724 

on a test set comprising 25 immunohistochemistry and 17 immunofluorescence images. Metrics 725 

included precision, recall, intersection over union (IoU), and F1 score. IoU was defined as the 726 

common area between the predicted segmentation and the ground truth:  727 

𝐼𝑜𝑈 =
|Prediction ∩ Groundtruth|
|Prediction ∪ Groundtruth|

 728 

The F1 score, representing the harmonic mean of precision and recall, was calculated as: 729 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 2 ∗
Precision ∗ Recall
Precision + Recall

 730 
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With: 731 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃
TP + FN

 732 

Where, TP, FP, and FN denote true positives, false positives, and false negatives, respectively. Both 733 

IoU and F1 scores range from 0 to 1, with higher values indicating superior segmentation 734 

performance. 735 

These metrics provide a comprehensive assessment of spatial overlap, agreement, and pixel-wise 736 

accuracy, with higher values indicating better performance in medical image segmentation. 737 

Epithelial segmentation performance. To assess the performance of epithelial segmentation by 738 

CenSegNet, we quantified the F1IoU50 metric93, a widely adopted benchmark in biomedical image 739 

analysis. IoU50 means the IoU threshold was set to 0.5 (or 50%). A predicted bounding box was 740 

considered a correct detection if: IoU with ground truth ≥0.5. 741 

 742 

Statistical analysis 743 

The exact n is stated in the corresponding figure legend. GraphPad Prism 10.3.1 (GraphPad 744 

Software) was used to perform statistical significance analysis. Normality and lognormality were 745 

assessed prior to statistical analysis. For datasets exhibiting a normal distribution, comparisons 746 

between two groups were conducted using an unpaired t-test, while comparisons across multiple 747 

groups were performed using one-way analysis of variance (ANOVA), followed by Tukey's post hoc 748 

test for multiple comparisons or two-way ANOVA, followed by Tukey's post hoc test for multiple 749 

comparisons. For datasets that deviated from normality, non-parametric testing was employed, using 750 

the Kruskal-Wallis test for multiple group comparisons, followed by the Mann-Whitney U test as a 751 

post hoc analysis. For correlation analysis, a two-tailed Pearson test was used followed by simple 752 

linear regression for graphical representation for correlation analysis. To compare the composition 753 

of groups based on categorical variables (e.g., histological tumour grade, T stage, histological 754 

tumour types, hormone status, nodal status, nodal clearance, HER2 status), Fisher's exact test was 755 
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employed. This non-parametric test was chosen for its appropriateness with count data and its ability 756 

to provide accurate p-values when expected cell counts are low (<5). All comparisons were two-757 

sided. All values were presented as mean ± s.e.m. For all statistical tests, *P  ≤   0.05, **P  ≤   0.01, 758 

***P  ≤  0.001 and ****P  ≤  0.0001 were considered significant. 759 

 760 
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Data availability 766 

Examples of immunohistochemistry and immunofluorescence image datasets used for 767 

benchmarking and for testing CenSegNet within the demo version of the pipeline are available on 768 

https://github.com/SKELab/CenSegNet/ and https://zenodo.org/records/17131573. All other 769 

relevant data supporting the key findings of this study are available within the article and its 770 

Supplementary Information files or upon reasonable request. A summary of the human breast 771 

samples used in this study are included in Supplementary Table 1. For participants on the BeGIN 772 

study, further donor anonymised clinicopathological information is available upon reasonable 773 

request, provided all relevant ethics approvals are in place (see “Ethics and human breast tissues” 774 

section for further details). The source data that support the findings in all Figures and 775 

Supplementary Figures are provided as a Source Data file within the paper. All reagents generated 776 

in this study are available upon reasonable request.  777 

 778 

Code availability 779 

The source code and software CenSegNet as a ready-to-use executable with a quickstart guide, 780 

example datasets and step-by-step procedures are freely available at 781 

https://github.com/SKELab/CenSegNet/ and https://zenodo.org/records/17131573. 782 

. 783 

  784 
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Fig. 1 Development and benchmarking of CenSegNet for centrosome segmentation. a Left: 
workflow for generating tissue microarrays (TMAs) comprising 911 breast tissue sample cores from 
normal breast tissue, breast tumours, and adjacent non-tumour tissue, collected from 127 breast 
cancer patients in the BeGIN cohort. Figure 1a is schematic for illustrative purposes to demonstrate 
sampling strategy for the TMA. Cores were taken from FFPE blocks following breast cancer surgery. 
Top right: immunohistochemical staining of all ROIs with pericentrin (centrosome marker) and 
haematoxylin (nuclear counterstain). Bottom right: random selection of 108 ROIs used to construct 
a training dataset containing 2,486 epithelial compartments, 108 stromal compartments and 14,679 
annotated centrosomes. b Left and middle: representative confocal images of human mammary 
epithelial cells (MECs) and mouse mammary tumour tissues exhibiting normal or amplified 
centrosomes. Cells and tissues were stained for pericentrin (orange) and counterstained with DAPI 
(DNA, teal). Scale bars, 10 µm. Right: training dataset derived from these images, comprising 1,285 
annotated centrosomes. c Left: 256 × 256 pixel cropped patches from immunohistochemistry and 
immunofluorescence datasets. Middle left: training of existing segmentation architectures (U-Net, 
SegNet, DeepLabv3+) and the proposed CenSegNet using these datasets. Middle right: CenSegNet 
performance across both immunohistochemistry and immunofluorescence test sets. CenSegNet 
operates in three sequential phases: (1) object detection to generate bounding-box predictions for 
individual centrosomes; (2) pixel-level segmentation of detected objects; (3) StarDist-based whole-
cell segmentation. 
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Fig. 2 Validation of CenSegNet performance against alternative models and human 
annotations. a Left: representative immunohistochemistry and immunofluorescence images used 
for centrosome segmentation. Right: colour overlays showing predictions from U-Net, SegNet, 
DeepLabv3+, and CenSegNet (teal: ground-truth annotations; orange: predicted segmentation; 
white: overlap between predictions and ground-truth). Magenta text indicates the F1 score for 
corresponding images of each method (0: complete disagreement; 1: complete concordance). 
Yellow arrow marks the overprediction. b Pearson correlation between centrosome counts predicted 
by CenSegNet and ground truth across 25 immunohistochemistry images. Grey circles represent 
individual patients, purple line represents regression line, Black dot line represents confidence band, 
and teal dot line represents 1:1 line. Two-tailed Pearson correlation test followed by simple linear 
regression for visualisation, ****P < 0.0001. c Pearson correlation between centrosome counts 
predicted by CenSegNet and ground truth across 17 immunofluorescence images. Two-tailed 
Pearson correlation test, followed by simple linear regression for graphical representation, ****P < 
0.0001. d Pearson correlation between centrosome size predicted by CenSegNet and measured by 
annotators (n = 550 centrosomes from >200 ROIs across 20 images). Two-tailed Pearson correlation 
test, followed by simple linear regression for graphical representation, ****P < 0.0001. e Heatmap of 
overall F1 scores (maximum 0.82) from combined immunohistochemistry and immunofluorescence 
test datasets. The x-axis represents the detection confidence threshold, and the y-axis represents 
the segmentation confidence threshold. Each cell represents the mean F1 score for that threshold 
pair; darker cyan indicates higher values. Optimal performance (F1 = 0.82) was achieved across a 
broad range of threshold combinations, indicating model robustness to parameter variation. f, g 
Manual annotations of 6,475 centrosomes from normal, edge, and tumour regions—stratified by size 
(0.5–1.0 μm2 to >10.5 μm2) (f) were compared with automated segmentations from the full dataset 
of 333,148 centrosomes (g) (0–0.5 μm2 to >12.0 μm2). CenSegNet segmentation achieved 
performance comparable to expert human annotation. Data are presented as individual data points. 
Source data are provided as Source Data file.  
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Fig. 3 Age-related gradients of centrosome aberrations across breast tissue regions. a 
Percentage of cells with different centrosome numbers in normal, edge, and tumour regions. b 
Representative cell segmentation masks of normal, edge, and tumour regions across patient age 
groups (Light grey: cells with one centrosome; purple: cells with two centrosomes; cyan: cells with 
more than two centrosomes). c Percentage of patients with structural CA (Stru CA) and Num CA 
across age groups in edge (≤50 years: n = 8 patients; 50–60 years: n = 17 patients; 60–70 years: n 
= 10 patients; >70, n = 14 patients) and Tumour (≤50 years: n = 18 patients; 50–60 years: n = 35 
patients; 60–70 years: n = 27 patients; >70 years: n = 20 patients) regions. Two-way ANOVA with 
Tukey’s test, *P = 0.0477, **P = 0.0053. Data are presented as mean ± s.e.m. d Percentage of cells 
with Stru CA in edge and tumour regions across age in Edge and Tumour regions. One-way ANOVA 
(Stru CA+ cells: Edge, P = 0.7637; Tumour, P = 0.4489 with Tukey’s test. absence of asterisks 
indicates no statistically significant correlation. e Percentage of cells with Num CA in edge and 
tumour regions across age. One-way ANOVA (Num CA+ cells: Edge, P = 0.3427; Tumour, P = 
0.9086) with Tukey’s test, absence of asterisks indicates no statistical significance. Data are 
presented as mean ± s.e.m. f, g Centrosome segmentation results from normal regions across age 
groups, stratified by size (0.5–1.0 μm2 to 6.0–6.5 μm2). One-way ANOVA (****P < 0.0001) with 
Tukey’s test, ****P < 0.0001. Data are presented as violin plots showing the distribution of values; 
dashed lines indicate median and interquartile ranges. h, i Centrosome segmentation results from 
edge and tumour regions across age groups, stratified by size (6.5–7.0 μm2 to 12.0 μm2). One-way 
ANOVA (****P < 0.0001) with Tukey’s test, Edge: ****P < 0.0001; Tumour: *P = 0.0484, ****P < 
0.0001. Data are presented as violin plots showing the distribution of values; dashed lines indicate 
median and interquartile ranges. j, k Centrosome number per cell in edge and tumour regions across 
age groups, stratified by centrosome number (1–8). One-way ANOVA (Edge, ****P < 0.0001; Tumour, 
****P < 0.0001) with Tukey’s test, Edge: ***P = 0.0006, ****P < 0.0001; Tumour: **P = 0.0054, ****P 
< 0.0001, absence of asterisks indicates no statistical significance. Data are presented as individual 
data points and mean ± s.e.m. Source data are provided as Source Data file.  
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Fig. 4 Patient stratification by CA burden and correlation with clinicopathological features. a–
d Percentage of patients with Stru CA and Num CA across histological tumour grade, nodal status, 
histological tumour size, and histological tumour type in Edge [Grade: G1 (n= 5), G2 (n=27), G3 
(n=17); Nodal status: N0 (n=38), N2 (n=1), N3 (n=10); T stage: T1 (n=18), T2 (n=16), T3 (n=15); 
Histological type: Invasive ductal (n=36), Lobular (n=8), Mixed (n=5)], and Tumour [Grade: G1 
(n=12), G2 (n=52), G3 (n=35); Nodal status: N0 (n=77), N2 (n=4), N3 (n=18); T stage: T1 (n= 30), 
T2 (n= 29), T3 (n= 40); Histological type: Invasive ductal (n=82), Lobular (n=8), Mixed (n=8)] regions. 
Two-way ANOVA (Grade, **P = 0.0020; Nodal status, ** P = 0.0030; T stage, P = 0.4024; Histological 
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type,  ** P = 0.0037) with Tukey’s test, Grade: *P = 0.0130, **P = 0.0018; Nodal status: *P = 0.0113, 
**P = 0.0030; Histological type: (Invasive ductal versus Lobular) **P = 0.0063, (Invasive ductal 
versus Mixed) **P = 0.0061. Data are presented as mean ± s.e.m. e, f Patients classified by 
composite CA burden into StruhighNumlow (A), StruhighNumhigh (B), StrulowNumlow (C), and 
StrulowNumhigh (D) groups in Edge (A: n = 14 patients; B: n = 7 patients; C: n = 16 patients; D: n = 7 
patients) and Tumour (A: n = 20 patients; B: n = 16 patients; C: n = 35 patients; D: n = 23 patients) 
regions. Histograms and pie charts show percentages of patients in each group in edge and tumour 
regions. g–j Comparative analysis of patient characteristics, including age, number of involved 
nodes, and total and histological tumour size, across composite CA groups A–D in edge and tumour 
regions. One-way ANOVA Age (Edge, P = 0.7719; Tumour, P = 0.6469) Nodal number (Edge, P = 
0.3164; Tumour, P = 0.9944); Total tumour size (Edge, *P = 0.0491; Tumour, *P = 0.0318); 
Histological tumour size (Edge, *P = 0.0403; Tumour, P = 0.0732) with Tukey’s test, Total tumour 
size (Edge, *P (A vs D) = 0.0484; Tumour, *P (B vs D) = 0.0296 ). Absence of asterisks indicates no 
statistical significance. Data are presented as individual data points and as box and whiskers plots 
showing the distribution of values, median and quartiles. k–o Percentage of patients with different 
tumour characteristics (histological tumour grade, T stage, nodal status, nodal clearance, genetic 
subtype) across composite CA groups A–D in edge and tumour regions. Fisher's exact test, left: *P 
= 0.0261; middle: ***P = 0.0005 (middle left), ***P = 0.0006 (middle right) and ****P < 0.0001; right: 
**P = 0.0091. o 1st degree, family history with 1st degree relative; 2nd degree, family history with 2nd 
degree relative. Genetic, pathogenic variant in breast cancer-related gene. Source data are provided 
as Source Data file. 
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Fig. 5 Interplay between Stru CA and Num CA drives centrosome defect spatial heterogeneity 
in breast edge and tumour regions. a Representative immunohistochemistry images of human 
breast tumour tissues (stained for pericentrin, counterstained with haematoxylin) and corresponding 
StarDist cell masks showing differences in Stru CA between edge and tumour regions. Left: Stru CA 
higher in Tumour than Edge. Right: Stru CA lower in Tumour than Edge (teal: cells with ≥4 
centrosomes; purple: cells with three centrosomes; grey: cells with ≤2 centrosomes). Scale bars, 10 
µm. b Comparative analysis of centrosome number per cell in edge and tumour regions for Stru 
CAT>E and Stru CAE>T groups. Comparisons between Edge and Tumour were performed separately 
for each condition using two-sided unpaired t-test, left: ****P < 0.0001; right: ****P < 0.0001. Data 
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are presented as mean ± s.e.m. c Representative immunohistochemistry images of human breast 
tumour tissues (stained for pericentrin, counterstained with haematoxylin) and corresponding 
StarDist cell masks showing differences in Stru CA and Num CA between edge and tumour regions. 
Left: Num CA higher in Tumour than Edge. Right: Num CA lower in tumour than edge (teal: cells with 
≥4 centrosomes; purple: cells with three centrosomes; grey: cells with ≤2 centrosomes). d 
Comparative analysis of centrosome size in Edge and Tumour regions for Num CAT>E and Num 
CAE>T groups. Comparisons between Edge and Tumour were performed separately for each 
condition using two-sided unpaired t-test. Left: ****P < 0.0001; right: ****P < 0.0001. Data are 
presented as violin plots showing the distribution of values; dashed lines indicate median and 
interquartile ranges. e Top: correlation between centrosome number and mean centrosome size at 
the single-cell level in Stru CAT>E, Stru CAE>T, Num CAT>E, and Num CAE>T groups. One-way ANOVA 
(****P < 0.0001 across Stru CAT>E, Stru CAE>T, Num CAT>E, and Num CAE>T groups) with Tukey’s 
test: Stru CAT>E [Edge: ****P < 0.0001; Tumour: (top) *P = 0.0318, (bottom) *P = 0.0416, **P = 0.0056, 
****P < 0.0001]; Stru CAE>T [Edge: *P = 0.0139, ****P < 0.0001; Tumour: (top) *P (2 vs 5) = 0.0362, 
(top) *P (2 vs 6) = 0.0144, ****P < 0.0001); Num CAT>E [Edge: *P = 0.0259, ****P < 0.0001; Tumour: 
*P = 0.0421, (top) **P = 0.0081, (bottom) **P = 0.0025, ****P < 0.0001]; Num CAE>T [Edge: ***P = 
0.0003, ****P < 0.0001; Tumour: (top) *P = 0.0340, (bottom) *P = 0.0115, ****P < 0.0001]. Bottom: 
Corresponding representative StarDist masks showing cells with Stru CA and Num CA in Edge and 
Tumour regions. Data are presented as individual data points and mean ± s.e.m. Source data are 
provided as Source Data file. 
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Fig. 6 Open accessibility and integration of CenSegNet for broad adoption. a CenSegNet can 
be accessed via a Python application programming interface (API). b Top: graphical user interface 
(GUI) of CenSegNet designed for a streamlined workflow, supporting image upload, model-based 
prediction, and data export. Bottom: interface functions for both immunohistochemistry and 
immunofluorescence images, enabling users to upload images, apply the relevant prediction models, 
and export quantitative data including pixel-level centrosome size, localisation, and count. 
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