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Abstract

Centrosome amplification (CA) is a hallmark of epithelial cancers, yet its spatial complexity and
phenotypic heterogeneity remain poorly resolved due to limitations in conventional image analysis.
We present CenSegNet (Centrosome Segmentation Network), a modular deep learning framework
for high-resolution, context-aware segmentation of centrosomes and epithelial architecture across
diverse tissue types. Integrating a dual-branch architecture with uncertainty-guided refinement,
CenSegNet achieves state-of-the-art performance and generalisability across both
immunofluorescence and immunohistochemistry modalities, outperforming existing models in
accuracy and morphological fidelity. Applied to tissue microarrays (TMAs) containing 911 breast
cancer sample cores from 127 patients, CenSegNet enables the first large-scale, spatially resolved
quantification of numerical and structural CA at single-cell resolution. These CA subtypes are
mechanistically uncoupled, exhibiting distinct spatial distributions, age-dependent dynamics, and
associations with histological tumour grade, hormone receptor status, genomic alterations, and
nodal involvement. Discordant CA profiles at tumour margins are linked to local aggressiveness and
stromal remodelling, underscoring their clinical relevance. To support broad adoption and
reproducibility, CenSegNet is released as an open-source Python library. Together, our findings
establish CenSegNet as a scalable, generalisable platform for spatially resolved centrosome
phenotyping in intact tissues, enabling systematic dissection of the biology of this organelle and its

dysregulation in cancer and other epithelial diseases.
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Introduction

Centrosomes, composed of a pair of orthogonally arranged centrioles surrounded by pericentriolar
material (PCM), function as the principal microtubule-organising centres (MTOCSs) in animal cells.
They play essential roles in diverse cellular processes, including vesicular trafficking, cell polarity,
motility, ciliogenesis, and the assembly of a bipolar mitotic spindle during cell division"?. Centrosome
number is tightly regulated, with duplication occurring once per cell cycle during S phase, ensuring

the formation of the mitotic spindle and equal inheritance of chromosomes by daughter cells®®.

Centrosome amplification (CA) can lead to multipolar spindle formation, chromosomal

3 8.7__a hallmark of cancer** ’. The hypothesis that CA-induced

missegregation, and aneuploidy
aneuploidy contributes to tumorigenesis was first proposed by Theodor Boveri over a century ago®.
In recent years, CA has been documented in several solid tumours including breast, prostate, colon,

ovarian, and pancreatic cancers® " %'

, as well as haematological malignancies such as multiple
myeloma, lymphomas, and leukaemias'* '°. While its role in tumour initiation remains debated® ® &
'8 CA is consistently associated with aggressive disease features, including high-grade histology,
poor prognosis, recurrence, and metastasis® "% '°. Despite its clinical relevance, CA remains poorly

characterised at scale due to the lack of robust, high-throughput tools capable of resolving

centrosome phenotypes in complex tissue architecture.

Mechanistically, CA arises from both numerical and structural centrosome defects. Numerical
amplification results from centriole overduplication, de novo centriole assembly, cytokinesis failure,
mitotic slippage and cell—cell fusion®-%°, Disruption of cell-cycle progression, such as prolonged G2
arrest, can trigger premature centriole disengagement and reduplication via PLK1 activation®> 3",
Fragmentation of the PCM, driven by dysregulation of proteins such as pericentrin, y-tubulin, PLK4,
PLK1, and Aurora-A, also contributes to numerical CA” %34, Structural CA, on the other hand,

M4, 7,9, 35,36

involves aberrant accumulation of PC or defects in centriole architecture®*°. Among these

centriole architectural defects, over-elongation and fragmentation can lead to unstable centriole
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structures and further overduplication®’, suggesting a mechanistic link between numerical and
structural centrosome aberrations. Yet, their differential contributions to cancer biology remain to be

determined.

Manual centrosome annotation remains the standard but is time-consuming, low-throughput, and
prone to observer bias. Semi-automated pipelines have emerged to address these limitations. For
example, CenFind—a deep learning pipeline based on SpotNet—accurately detects and counts
centrioles in cultured cells using immunofluorescence images but does not support structural
phenotyping*’. Other machine learning—based approaches have quantified centriole number and
linked supernumerary centrioles to PCM expansion in breast cancer cells*’. Semi-automated
frameworks have also been developed for centrosome quantification in human breast histological
sections, including a HistoQuest-aided method detecting structural CA** and an IMARIS-based
pipeline integrating both structural and numerical CA” *3. Similarly, a 3D imaging-based pipeline
quantified structural centriole abnormalities across cancer types®’. However, these approaches
require manual curation and offer only moderate throughput. A recent high-throughput platform using
a Harmony™ software-based framework revealed heterogeneous CA phenotypes in ovarian cancer
tissues*, yet lacked single-cell resolution and subtype discrimination. Moreover, most existing tools
are tailored to immunofluorescence imaging and are not compatible with standard chromogenic
immunohistochemistry workflows used in clinical pathology, limiting their diagnosis and translational

utility.

To address these limitations, we developed CenSegNet (Centrosome Segmentation Network), a
versatile deep learning framework for fully automated, pixel-level detection and segmentation of
centrosomes in both immunohistochemistry and immunofluorescence images at single-cell
resolution. CenSegNet integrates three state-of-the-art models: Ultralytics YOLOv11, a recent
evolution of the You Only Look Once family optimised for fast and accurate performance*, U-Net,
an encoder—decoder convolutional network designed for precise pixel-wise segmentation*®, and

StarDist for shape-aware instance segmentation pipeline that models objects as star-convex

4
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93  polygons to improve instance separation in dense cellular contexts*’, enabling robust delineation of
94  epithelial cell boundaries within histopathological specimens. This systematically engineered
95 architecture supports multiscale analysis of centrosomal features in morphologically complex tissue
96 environments. We present a publicly accessible, expert-annotated dataset comprising human and
97  murine breast tissues and human mammary epithelial cell cultures (MECs). Implemented in Python
98 3.10 with a PyQt5-based graphical interface, CenSegNet enables streamlined data input, real-time
99 PyTorch-based inference, and modular extensibility. Benchmarking against expert annotations and
100 alternative models, CenSegNet achieves pathologist-level accuracy across imaging modalities.
101 Using CenSegNet, we perform the first high throughput, spatially resolved quantification of numerical
102  and structural CA in clinical breast carcinomas. Our analyses reveal that these CA subtypes are
103  mechanistically uncoupled and evolve along orthogonal spatial gradients: numerical CA
104  predominates in proliferative tumour cores, whereas structural CA accumulates at invasive margins,
105 reflecting distinct evolutionary pressures and microenvironmental cues. These spatial trajectories
106  correlate with histological grade, hormone receptor status, HER2 expression, nodal involvement,
107  and germline alterations, underscoring the role of centrosome dysregulation in driving intratumoral
108 heterogeneity and progression. Importantly, we validated CenSegNet in other human epithelial
109 tissues including kidney, colon, and appendix, demonstrating its generalisability and potential for
110  broad application in spatial pathology and organelle-level phenotyping across diverse healthy and
111 disease tissue contexts. To support widespread adoption, CenSegNet is released as an open-source

112 Python library, available at https://github.com/SKELab/CenSegNet/ and

113 https://zenodo.org/records/17131573.

114
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115 Results
116

117 Development of CenSegNet for robust centrosome segmentation across imaging modalities
118  We generated tissue microarrays (TMAs) comprising 911 breast tissue cores from normal breast
119  tissue, breast tumours, and adjacent areas, sampled from 127 patients enrolled in the ethically
120 approved and clinically well-characterised BeGIN cohort (Investigating Outcomes from Breast
121  Cancer: Correlating Genetic, Immunological and Nutritional Predictors), from University Hospital
122  Southampton (UHS) (Fig. 1a; see Methods). Immunohistochemistry was performed using pericentrin
123  antibody to label centrosomes, with haematoxylin counterstaining for nuclei (Fig. 1a). For training
124  dataset construction, we manually annotated 14,679 centrosomes within 2,486 epithelial and 108
125  stromal compartments across 108 selected images (Fig. 1a, see Methods). To complement this,
126  immunofluorescence was performed on human MECs and mouse mammary epithelium, labelling
127  pericentrin and GT335 (centriole), with DAPI as nuclear counterstain. From this, an
128 immunofluorescence training dataset was assembled comprising 1,285 annotated centrosomes
129 from 143 cells from mouse tissue and 841 human MECs, revealing strong segmentation
130  concordance between pericentrin and GT335 labelling [mouse tissue: R? = 0.9954; human MECs:

131 R?=0.9666 (MCF10A), 0.9085 (MCF10A-PLK4)] (Fig. 1b, Supplementary Fig. 1a—f).

132 Using these datasets, we initially benchmarked established segmentation models. U-Net, an
133  encoder—decoder convolutional neural network optimised for pixel-wise segmentation®®, was
134  selected for its extensive use in biomedical imaging. In our datasets, U-Net detected 82.98% of
135 centrosomes in immunohistochemistry images and 97.6% in immunofluorescence, but despite
136  achieving an overall F1 score of 0.85 in immunofluorescence, often the model either under-predicted
137  or over-predicted centrosomes (Supplementary Fig. 2a, b). We next evaluated SegNet (Fig. 1c),
138  another encoder-decoder model leveraging max-pooling indices for efficient upsampling®. It
139 achieved 72.73% and 85% detection in immunohistochemistry and immunofluorescence,

140  respectively, with a precision of 0.90 but reduced recall (0.75) in immunofluorescence and a
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141 suboptimal overall F1 score of 0.68 in immunohistochemistry (0.82 in immunofluorescence)
142  (Supplementary Fig. 2c, d). We also evaluated DeepLabv3+, a semantic segmentation model
143  utilising atrous convolutions and atrous spatial pyramid pooling for multi-scale contextual
144  information*®. Despite its proven success in complex image domains, DeeplLabv3+ achieved only
145  63.25% and 75.1% detection rates in immunohistochemistry and immunofluorescence, respectively
146  (Supplementary Fig. 2e, f). These findings highlight the limitations of conventional segmentation

147  pipelines when applied to structurally heterogeneous tissues.

148 To overcome these constraints, we developed CenSegNet, a novel modular framework that
149 integrates object robust detection and segmentation (Fig. 1c). Rather than relying on whole-slide
150 segmentation, CenSegNet focuses on single-cell regions while modelling the entire ROI, explicitly
151 integrating object detection with region-based segmentation in a three-step architecture (Fig. 1c).
152  This design enables a more comprehensive capture of centrosome spatial distributions and
153  morphological features, addressing key challenges such as occlusion, small object detection, and

145 a state-of-

154  the disambiguation of overlapping structures. The framework, first employs YOLOv1
155 the-art object detection model, to identify potential centrosome candidates. YOLOv11 comprises a
156  convolutional backbone for feature extraction, a neck for multi-scale aggregation, and a head for

157  classification and localisation. We fine-tuned YOLOv11-seg*® *°

, @ segmentation-optimised variant
158 to further enhance detection accuracy, and applied a range of data augmentations—including hue,
159  saturation, and value (HSV) adjustments, as well as geometric transformations such as translation,
160 scaling, shearing, and horizontal flipping—to enhance generalisability (Fig. 1c; see Methods). To
161 refine segmentation, we integrated U-Net in the second step. For all detected centrosomes, we
162  extracted centrosome-centred patches (256 x 256 pixels, with 40-pixel padding) as input to a U-Net
163  skip-connected encoder-decoder architecture for precise delineation. These patches underwent
164  similar augmentation strategies as in the detection step, ensuring consistency. To accurately quantify

t4 7

165 centrosome numbers per cell, we incorporated StarDist*’ in the third step, a deep learning based

166 instance segmentation tool widely adopted for nuclear and cell boundary segmentation in biomedical
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167 imaging (Fig. 1c). In our immunohistochemistry datasets, StarDist segmented 764,354 cells
168 (Supplementary Fig. 1g, h). To validate StarDist-aided cell-level centrosome assignment in
169  complex tissues, we analysed keratin 8 (KRT8)-labelled mouse immunofluorescence (620 cells) and
170  human immunohistochemistry (620 cells) tissues. StarDist-based segmentation demonstrated
171 strong concordance with KRT8 (immunofluorescence: R? = 0.99; immunohistochemistry: R? =

172  0.9005) (see Supplementary Fig. 1e-i).

173  Collectively, these results demonstrate that CenSegNet's multistep architecture effectively
174  overcomes the limitations of conventional segmentation approaches, delivering robust,
175 generalisable centrosome detection and quantification across diverse imaging modalities and
176  complex tissue contexts.

177

178  Validation of CenSegNet for scalable and high-precision centrosome segmentation

179 To evaluate CenSegNet's performance, we compiled independent test datasets of 25
180 immunohistochemistry TMA cores and 17 immunofluorescence images. Predicted centrosome
181 counts were compared to manually annotated ground truth, revealing strong correlations in both
182  immunohistochemistry (R?> = 0.9999) and immunofluorescence (R?> = 0.9873) (Fig. 2a-c).
183  CenSegNet consistently outperformed U-Net, SegNet, and DeepLabv3+ in segmentation accuracy
184  and boundary resolution across both modalities, with the YOLOv11 detection module significantly
185  enhancing overall performance (Fig. 2a—c). To further assess precision, we used an independently
186  annotated subset of 550 centrosomes from tumour regions in the immunohistochemistry test set.
187  Again, CenSegNet demonstrated superior pixel-level segmentation compared to all benchmarks
188 (Fig. 2d). F1 score analysis across modalities yielded a mean of 0.82 for CenSegNet, outperforming
189 U-Net (0.72), SegNet (0.68), and DeepLabv3+ (0.65) (Fig. 2a—e). We next benchmarked
190 performance on 6,475 expert-annotated centrosomes—921 from normal tissue, 2,694 from edge
191 regions, and 2,860 from tumour cores (Fig. 2f). These annotations, stratified by size (0.5-1.0 um? to

192  >10.5 ym?), were compared with the full cohort of 333,148 automatically segmented centrosomes
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193  (0-0.5 ym? to >12.0 um?)—10,834 from normal tissue, 91,803 from edge tissue, and 230,511 from
194  tumour tissue (Fig. 2g). Both datasets revealed similar size distributions, with the majority falling
195  within 2.0-3.0 ym? and a peak at 2.0-2.5 ym?. Normal tissue showed a higher proportion of 1.0-2.0
196  um? centrosomes, while edge regions had more large centrosomes than either normal or tumour
197  cores. Using a previously established threshold of 6.5 um?-size to define structural CA* (see
198 Methods), both datasets confirmed that centrosomes exceeding this size were absent in normal
199 tissue. Together, these results establish CenSegNet as a scalable, high-precision tool for
200 centrosome segmentation, with superior performance across image modalities, tissue
201 compartments, and size distributions—supporting its utility for high-throughput analysis in complex
202  tissue environments.

203

204 CenSegNet enables spatial profiling of CA subtypes and clinical correlates in breast cancer
205  To dissect the contribution of numerical (Num CA) and structural (Stru CA) CA in breast cancer, we
206  applied CenSegNet to multiplexed TMA data. Num CA and Stru CA were not correlated within either
207  tumour edge or core regions (Supplementary Fig. 3a), suggesting mechanistic independence. At
208 the single-cell level, increasing centrosome number per cell was associated with a reduction in the
209 size of individual centrosomes (Supplementary Fig. 3b), which become smaller, more uniform in
210  cells containing >4 centrosomes—implying a compensatory constraint on total centrosome volume.
211  These observations suggest that Stru CA and Num CA represent orthogonal axes of centrosome
212  dysregulation. In contrast, Num CA levels correlated positively between edge and tumour
213  compartments (R?=0.4857; Supplementary Fig. 3¢), indicating progressive numerical amplification
214  from tumour margins inward. This was reflected in an increasing proportion of cells with >4
215 centrosomes from normal tissue to the edge and tumour core (Fig. 3a). Stratifying patients into four
216  CAphenotypes (StruNum~, Stru*Num?*, Stru*Num~, Stru"Num®) revealed that CA was widespread,
217  detected in 89.8% of edge and 95% of tumour regions (Supplementary Fig. 3d). Notably, 73% of

218  tumour regions exhibited both Stru CA and Num CA, representing a ~19.3% increase compared to
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219  edge regions (Supplementary Fig. 3d). While the Stru*Num™ group accounted for 18.4% of edge
220 regions but only 2% of tumour regions, the opposite trend was observed for the StruNum™* group
221 (10.2% versus 20%, respectively). These findings allow us to conclude that structural and numerical
222  centrosome aberrations are mechanistically uncoupled and highlight a spatial shift from centrosome

223  enlargement at the tumour edge to centrosome accumulation in the tumour core.

224  To investigate how CA correlates with ages, we stratified patients into four groups: <50, 50-60, 60—
225 70, >70 years. Num CA was elevated in patients aged 50-70 years across edge and tumour regions
226 (Fig. 3a, b). The frequency of patients with detectable Num CA and Stru CA at the tumour edge
227  markedly decreased in the 50—70 age group, resurging in patients over 70 years (Fig. 3c). Although
228 fewer 50 to 60-year-old patients exhibited detectable CA at the edge, those that did had high levels
229  of both CA subtypes (Fig. 3d, e). CA levels in tumour cores were relatively stable across age.
230 Notably, normal tissues exhibited age-dependent increases in centrosome size, especially in
231  patients over 70 (Fig. 3f, g), consistent with previous reports linking age to centrosome expansion
232  via cumulative DNA damage®'. In edge and tumour regions, centrosome size decreased between
233 ages 50-70 before rising again in patients over 70 (Fig. 3h, i), while centrosome numbers followed
234  the opposite trend, increasing in the 50—70 group before decreasing in the oldest cohort (Fig. 3j).
235  This dynamic was mirrored by a higher proportion of cells with three centrosomes or more in the 50—
236 60 age group (Fig. 3k). Finally, we did not observe significant differences in age distribution across
237 the four CA-defined patient groups (StruNum~, Stru*Num®, Stru'Num~, and Stru"Num®)
238 (Supplementary Fig. 4a). Thus, while age alone may not initiate CA in breast cancer, it modulates
239 its spatial distribution and severity—particularly by promoting numerical amplification in the 50-70

240  age group and structural amplification in patients over 70.

241  We next evaluated associations between CA subtypes and clinicopathological features. Tumours
242  lacking CA (Stru"Num™) displayed smaller total and invasive areas in the tumour core relative to the

243  edge (Supplementary Fig. 4b, c), a pattern absent in other CA groups. Structural and numerical

10
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244  CA prevalence increased with histological grade and nodal involvement (Fig. 4a, b). Stru CA was
245  inversely associated with tumour size across tumour (T) stages both edge and tumour regions, while
246  Num CA displayed region-specific variation (Fig. 4c). Stru CA and Num CA were more frequent at
247  the edge in invasive ductal carcinoma, but more abundant in the core of mixed-subtype tumours
248  (Fig. 4d). To further assess CA heterogeneity, patients were classified by composite CA defects into
249  Stru""NumM" StruM"Num'", Stru“Num'", Stru®*Num"" CA groups (Fig. 4e, f). CA burden was
250 not age-associated (Fig. 4g), and distinct CA subtypes were linked to tumour behaviour. At the edge,
251  Stru""Num'* and Stru“Num™" CA tumours were associated with greater nodal involvement than
252  either the Stru"®"Num" or Stru®Num"" CA groups (Fig. 4h), whereas no such differences were

high CA tumours exhibited the smallest

253  observed across CA groups in the tumour core. Stru®*Num
254  overall size, while the largest tumours were enriched in Stru™"Num™" (edge) and Stru"®"Num""
255  (tumour) CA groups (Fig. 4i, j). Stru"®"Num" CA tumours grew more aggressively at the edge, while
256  Stru""Num"" CA tumours expanded predominantly in the core (Fig. 4k). While Stru®*Num" CA
257  was the most frequent subtype among large tumours across both regions, neither Num CA (in tumour
258  cores) nor Stru CA (at the edge) alone stratified tumour size (Fig. 41). About 40% of tumours within
259  the Stru""Num"" CA group exhibited nodal involvement greater than N1 in the core (Fig. 4m),
260 consistent with increased metastatic potential. Many tumours with Stru®Num" CA status at the
261 edge required nodal clearance, suggesting local aggressiveness independently of global CA burden

high

262  (Fig. 4n). Identified germline variants were exclusively observed in the Stru""Num"" CA group (Fig.

263  40), consistent with associations between CA and BRCA1-driven genomic instability®?. We also
264  evaluated the relationship between CA subtypes and body composition. Tumours with Stru®*Num"e"
265 CAin the core were associated with increased fat-free mass index (FFMI), (Supplementary Fig.
266 5a), while fat mass index (FMI), waist circumference, and weight showed no differences across
267 groups or regions (Supplementary Fig. 5b-d). Taller patients more frequently exhibited

268  Stru®Num'® CA status in the edge regions, though this association was not observed in cores

269 (Supplementary Fig. 5e). Collectively, these findings indicate that spatial patterns of CA are linked

11
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270  to tumour clinical parameters. Stru""Num"™e" CA tumours define a high-risk subgroup marked by
271 large size, nodal spread, and genomic alterations, while Stru®*Num'" CA tumours—despite low CA

272  burden—can display local aggressiveness.

273  Single-cell analyses revealed further divergent CA subtype dynamics. At the edge regions, Num CA
274  decreased with increasing tumour size (Supplementary Fig. 6a), while Stru CA was enriched in
275  poorly differentiated but smaller tumours (Supplementary Fig. 6b). In the core, the proportion of
276  cells harbouring either CA subtype increased with both total and invasive tumour size
277  (Supplementary Fig. 6¢, d). Num CA showed no significant differences across histological tumour
278  grades, although it was more prevalent in well-differentiated tumours (Supplementary Fig. 6c). Stru
279  CA levels were enriched in poorly differentiated tumours (Supplementary Fig. 6d). No significant
280 subtype-specific CA differences were observed across histological subtypes (Supplementary Fig.
281 6a-d), but cells from mixed tumours harboured more centrosomes in both compartments
282  (Supplementary Fig. 7), highlighting elevated Num CA as linked to increased tumour heterogeneity.
283  Together, these findings indicate a dynamic evolution of CA during tumour progression, with early-
284  stage tumours characterised by numerical defects and advanced tumours accumulating structural

285 abnormalities.

286  Finally, we explored CA patterns in the context of hormone receptor status, a key clinical determinant
287 in breast cancer®® %, Stru CA levels varied by receptor status in both edge and tumour core
288 compartments (Supplementary Fig. 8a). HER2™ tumours had the highest Stru CA at the edge, while
289 PR and ER™ tumours had the lowest. In contrast, ER™ tumours displayed elevated Stru CA in the
290 core, with HER2* tumours showing the lowest levels. Num CA also showed compartment-specific
291  trends: HER2* tumours exhibited high Num CA at the edge but low levels in the core; ER™ tumours
292 showed the inverse pattern (Supplementary Fig. 8b). Despite broadly similar spatial trends
293  between Stru CA and Num CA across receptor-defined subtypes, HER2* tumours emerged as an

294  exception (Supplementary Fig. 8c, d). HER2™%"® (2+) tumours had significantly lower Num CA
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295 levels than HER2"9" (3+) tumours in both compartments (Supplementary Fig. 8e), suggesting
296 HER2 dosage impacts centrosome number. HER2" tumours were overrepresented in discordant CA
297  phenotypes—Stru®“NumM" (28.6%) and Stru"9"Num'" (35.7%)—at the edge (Supplementary Fig.
298  8f), indicating HER2 may differentially regulate centrosome structure and number depending on
299  sgpatial context. This distribution was not observed in the tumour core. These observations point to
300 spatially resolved, hormone receptor-specific influence of CA patterns, particularly via HER2
301 signalling, in a microenvironment-dependent manner.

302

303 CenSegNet reveals CA patterns linked to tumour subtype and progression

304  Using CenSegNet-derived spatial quantifications, we compared dynamic shifts in Stru CA and Num
305 CA between tumour edges and cores. Patients were classified based on whether each CA subtype
306 was more abundant in the tumour core (T>E) or at the edge (E>T). Baseline clinicopathological
307 features were similar between spatial groups (Supplementary Fig. 9). Stru CA™ tumours were
308 associated with lobular histology (15.8%), lower histological tumour grade (26.3% grade 3), and
309 lower HER2" prevalence (15.8%). In contrast, Stru CAF*T tumours more frequently displayed high
310  tumour grade morphology (59.1% grade 3), higher HER2" status (immunohistochemistry 3+ or FISH-
311 confirmed) (31.8%), and higher differentiation (Supplementary Fig. 10a, b). Single-cell analysis
312 revealed that in both Stru CA spatial groups, Num CA—positive cells consistently contained more
313 centrosomes in the core than at the edge (Fig. 5a, b), indicating a conserved numerical asymmetry.
314  Num CA spatial prevalence was also associated with aggressiveness: Num CA™F tumours were
315  more often grade 3 (40.6%), had greater nodal involvement (31.2%), and lower HER2" frequency
316 (12.5%) compared with Num CAFT tumours (28.6%, 7.1%, and 35.7%, respectively;
317  Supplementary Fig. 10c, d). Mixed histology was more common in Num CA™F tumours (12.5%),
318  whereas Num CAFT tumours were associated with lobular carcinomas (28.6% versus 6.3%), a
319  subtype typically linked to slower growth and smaller size. Across both Num CA™F Num CAFT

320  groups, centrosomes were significantly larger at the edge than in the core. Notably, Num CA—positive
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321 cells with larger centrosomes harboured fewer of them (Fig. 5¢, d), revealing a robust inverse
322 relationship between centrosome size and number across all spatial groups (Fig. 5e). These findings
323 highlight distinct spatial CA patterns associated with tumour subtype and behaviour. Tumours
324  displaying a shift from fewer, larger centrosomes at the periphery to smaller, more numerous
325 centrosomes in the core exhibit features of increased aggressiveness. These spatial patterns,
326 resolved through CenSegNet, provide a proxy for tumour heterogeneity and may reflect the
327  evolutionary trajectory of CA during tumour progression.

328

329 CenSegNet integration and accessible deployment for high-throughput centrosome analysis
330 To support broad adoption and integration into diverse analytical workflows, we provide CenSegNet
331 as both a lightweight application programming interface (API) and an interactive graphical user
332 interface (GUI) (Fig. 6a, b). The GUI comprises three modules: a data upload panel for inputting
333 whole-slide or high-resolution images; a prediction module for adjustable inference parameters
334  including probability thresholds and region selection for optimised segmentation of centrosomes and
335 epithelial compartments; and an export tool for structured outputs. Post-inference, users can retrieve
336  per-cell pixel-resolved size estimates, spatial coordinates, and centrosome counts within tissue
337 context (Fig. 6b). The interface supports batch processing and accepts both immunohistochemistry
338 and immunofluorescence formats. Benchmarking shows that CenSegNet processes a 6,000 x
339  6,000-pixel immunohistochemistry image or a 2,048 x 2,048-pixel immunofluorescence image in <1

340 min on standard GPUs, enabling rapid, scalable analysis across large datasets.

341
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342 Discussion

343  We introduce CenSegNet, a modular deep learning framework for quantification of centrosomes in
344  epithelial tissues at spatial and single-cell resolution. Unlike previous approaches that treat
345 morphological analysis and segmentation as separate tasks, CenSegNet integrates centrosome
346  detection and phenotyping, nuclear localisation, and epithelial boundary inference into a unified,
347  multichannel pipeline. This enables context-aware segmentation of both structural (Stru CA) and
348 numerical (Num CA) abnormalities across diverse imaging modalities. CenSegNet outperforms
349  established models—including U-Net, SegNet, and DeepLabv3+—in accuracy, generalisability, and
350 morphological fidelity, particularly in densely packed or morphologically heterogeneous tissue
351  regions. The framework comprises three specialised modules: a YOLOv11-based detector trained
352 on over 15,000 annotated centrosomes for robust localisation; a U-Net model for precise
353 segmentation of centrosome area and morphology; and a StarDist-based cell segmentation module
354  optimised for delineating epithelial boundaries in complex tissue architectures. This modular
355 integration, coupled with uncertainty-aware postprocessing, enables systematic and standardised
356  phenotyping of CA subtypes at single-cell and spatial resolution. Applied to 911 sample cores from
357 127 patients, CenSegNet-based profiing of over 330,000 centrosomes reveals previously
358 uncharacterised spatial trajectories and clinical correlates of Stru CA and Num CA, uncovering their
359  mechanistic uncoupling, age-dependent modulation, and associations with tumour progression,

360 hormone receptor status, HER2 expression, and genomic alterations.

361 Computational tools have been developed previously for CA quantification in epithelial cells. A semi-
362 automated machine learning pipeline quantified PCM defects and numerical CA in
363  immunofluorescence images of normal and breast cancer cells*’, but the method offers limited
364  spatial resolution and required extensive manual curation. Another semi-automated approach linked
365  centrosome size and number to chromosomal instability in human breast cancer tissues'’, yet lacked
366  single-cell resolution and scalability. Another pipeline assessed centriole number and length,

367 revealing structural defects arising from fragmentation and ectopic procentriole formation®, but
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368  without spatially resolved quantification. An automated detection algorithm for high-throughput
369 mapping of CA in ovarian cancer tissues, identified heterogeneous CA phenotypes associated with
370  chromosomal instability and chemotherapy resistance**. However, this method did not distinguish
371 between structural and numerical CA or provide single-cell semantic segmentation. CenSegNet
372  addresses these limitations by integrating cellular, spatial, and clinical dimensions of CA across
373 large-scale tissue cohorts. In doing so, it offers new insights into centrosome biology and the
374  functional relevance of CA heterogeneity in breast cancer, with implications for risk stratification and
375 precision oncology. Beyond breast cancer, CenSegNet has demonstrated generalisability across
376  diverse epithelial tissues—including kidney, colon, and appendix—characterised by high stromal
377  content and architectural complexity (Supplementary Fig. 11). To facilitate broad adoption, we
378 provide CenSegNet as an open-source GUI enabling scalable extraction of structured, spatially
379 anchored centrosome metrics. This will allow researchers and clinicians, regardless of computational
380 expertise, to integrate centrosome profiling into histopathological and biomarker discovery
381 workflows. Thus, CenSegNet extends beyond methodological innovation to practical application,
382 accelerating systematic investigation of centrosome biology across anatomically and histologically
383 diverse tissues, and enabling the identification of CA-driven vulnerabilities with potential therapeutic
384  relevance.

385 Recent studies using a composite centrosome amplification score (CAS) that integrates both

386  numerical and structural abnormalities” *3

, showed a progressive increase in CAS from normal
387  breast tissue to invasive carcinoma. However, it did not distinguish the individual contributions of
388 numerical and structural centrosome abnormalities. Our spatially resolved single-cell analysis
389 demonstrates that Num CA and Stru CA represent distinct phenotypic axes of centrosome
390 dysregulation. Although they frequently co-occur in tumour tissues, they are uncorrelated at both
391 tissue and single-cell levels and exhibit unique spatial distributions: Stru CA is enriched at tumour

392 edges, while Num CA predominates in tumour cores, suggesting that different regional pressures

393 drive centrosome overduplication versus structural enlargement. Single-cell data further uncover a
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394  robust inverse relationship between centrosome number and size—cells with multiple centrosomes
395 tend to have smaller ones—indicating a compensatory constraint on total centrosome volume.
396 Consistent with this, centriole over-elongation can induce CA via fragmentation and ectopic
397  procentriole formation in breast cancer cells*’, yet not all centrioles within a cell exhibit these
398 changes, highlighting intra-cellular heterogeneity in elongation susceptibility. Collectively, these
399 findings support a model in which Num CA and Stru CA are mechanistically uncoupled, evolving
400 along orthogonal spatial gradients during tumour progression. This challenges the monolithic view
401 of CA and instead portrays it as a dynamic, regionally modulated process shaped by local
402  microenvironmental cues. The mechanistic decoupling of CA has important implications for
403 understanding its functional heterogeneity in cancer and underscores the need for spatially informed

404 biomarkers.

405 CenSegNet-based profiling reveals that aging exerts distinct and spatially patterned effects on Stru
406 CA and Num CA in breast cancer. Num CA peaks between ages 50 and 70—overlapping with the

%5-57__\whereas Stru

407  menopausal transition and the most common window for breast cancer diagnosis
408 CA accumulates progressively after age 70, indicating a later-life trajectory of centrosome
409  architectural dysregulation. While CA overall increases with age—including in normal tissues—our
410  data suggest that age is not a deterministic initiator but rather a factor that modulates the magnitude
411 and spatial distribution of CA subtypes. In mid-life patients, Num CA is preferentially enriched in
412  tumour cores—regions typically characterised by high proliferation—whereas Stru CA in older
413 individuals extends more diffusely, often into tumour margins, likely reflecting age-associated
414  changes in epithelial architecture, tissue repair dynamics, and microenvironmental stress. A study in
415  prostate cancer has reported elevated CA in patients over 53 years of age’. CA increases with age,
416 in normal breast epithelial cells derived from individuals aged 20-80, treated with DNA damage-
417  inducing stimuli®’. Chronic centrosome overduplication in aging mouse models of intestinal cancer

418  drives aneuploidy and spontaneous tumorigenesis, supporting a role for age-associated CA in early

419  malignant transformation®. Centrosome function deteriorates with age, evidenced by accumulation

17


https://doi.org/10.1101/2025.09.15.676250
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.15.676250; this version posted September 29, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

420  of structural defects and impaired mitotic fidelity®® *°. Aging epithelial cells exhibit centrosome

59, 60 \while broader

421  fragmentation, aberrant centriole elongation, and altered PCM composition
422  declines in DNA repair and chromosomal segregation fidelity likely contribute to a permissive
423  environment for CA*. Thus, aging tissues accumulating centrosome abnormalities, mitotic fidelity
424  defects, and weakened genomic surveillance, may be more vulnerable to CA-driven tumorigenesis.
425  Our study delineates the divergence of CA subtypes across the lifespan. The inverse scaling
426  between centrosome number and size supports the idea that Num CA and Stru CA act as
427  compensatory, rather than co-occurring, phenotypes. Notably, Stru CA in elderly patients is
428  frequently associated with hormone receptor—negative tumours, implicating centrosome structural
429  dysregulation in the biology of more aggressive or dedifferentiated late-life cancers. CA can induce
430 breast cancer cell dedifferentiation and intrinsically drive high-grade tumours®'. Age remains a key
431 prognostic factor in breast cancer, influencing tumour subtype distribution, hormone receptor status,
432  and genomic instability®® ®. Together, these results establish the first clinically and spatially resolved
433 framework for understanding how aging modulates centrosome biology in human cancer. This
434  framework lays the foundation for developing age-stratified biomarkers and clarifies why specific CA

435  subtypes and their associated chromosomal instability may emerge more frequently or have greater

436  clinical impact at distinct stages of life.

437  The spatial heterogeneity of CA and its clinical relevance for cancer remain poorly defined® ’.
438 CenSegNet systematically maps Stru CA and Num CA across tumour compartments and stratifies
439 tumours into composite CA subtypes with distinct spatial, biological, and clinical profiles.
440  Stru"9"NumM" CA tumours are consistently associated with larger size, greater nodal involvement,
441 and germline genomic alterations. Elevated CA in both core and edge regions suggests a cellular
442  composition primed for proliferative expansion and invasive dissemination. Stru®Num'" CA
443  tumours often required nodal clearance, supporting evidence that even modest CA can drive
444  aggressive behaviour in permissive genomic contexts—particularly when p53 surveillance is

445  compromised” '8 ¢ CenSegNet also uncovers spatial discordance in CA subtypes, with
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446  Stru""Num'" and Stru®"Num"®" CA profiles enriched at the invasive front. These spatial signatures

447  are associated with enhanced metastatic potential, consistent with models in which centrosome

65-67 68-70

448  abnormalities promote invasion through both cell-autonomous and non-cell-autonomous
449  mechanisms. Structural centrosome defects have been shown to drive cell extrusion, facilitating
450 invasion®” "', Our findings corroborate longitudinal studies of tumour progression, such as in Barrett’s
451 oesophagus, where CA appears early in premalignant lesions and expands with p53 loss®,
452  supporting a role for CA in tumour initiation rather than as a mere by-product of transformation.
453  Similarly, CAwas shown to increase from normal tissue to ductal carcinoma in situ (DCIS) to invasive
454  carcinoma, and to correlate with recurrence and poor prognosis’ ®'. Finally, our observation that Stru
455 CA and Num CA spatial patterns are uncoupled from systemic physiological metrics reinforces CA
456  as a tumour-intrinsic hallmark. Together, these results advance our understanding of centrosome
457  biology in cancer and highlight the power of CenSegNet-driven integration of subcellular organelle

458 features into spatial pathology, with direct implications for clinical decision-making, prognostic

459  modelling, and therapeutic targeting.

460 By integrating CenSegNet-based centrosome phenotyping with spatially resolved hormone receptor
461 profiling, we uncover compartment-specific associations between CA subtypes and ER/HER2
462  expression. Num CA is selectively enriched in ER™ tumours within the tumour core, whereas HER2*
463  tumours display lower Num CA in the core despite elevated levels at the tumour edge. This spatial
464  divergence suggests that hormone receptor signalling modulates centrosome number and structure
465 in a regionally distinct manner. These observations corroborate previous studies linking CA to

466  hormone receptor status and tumour aggressiveness®” 42 6. 72

and support the hypothesis that ER
467 loss promotes CA through transcriptional or post-translational dysregulation of centriole biogenesis
468  pathways. Basal-like ER"PR™HER2™ breast cancers—characterised by genomic instability and poor
469  prognosis™, frequently exhibit high CA, often with centriole fragmentation and ectopic procentriole

470 formation driven by over-elongation®’. These defects recruit excess pericentriolar material (PCM),

471 generating supernumerary or structurally abnormal MTOCs that drive mitotic errors and
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472  chromosomal instability’* ”°. In contrast, HER2* tumours are more frequently enriched in discordant
473  CAsubtypes (Stru®Num™" and Stru"9"Num'°") at the tumour edge, suggesting that HER2 signalling
474  may differentially regulate centrosome number and structure depending on spatial context. This is
475  consistent with evidence that both PLK4 and AURKA expression—key regulators of centriole
476  biogenesis and maturation, respectively—is differentially influenced by HER2 status’® ®. Despite
477  high proliferative capacity, HER2* tumours exhibit lower overall CA, raising the possibility that these
478  tumours suppress CA to preserve mitotic fidelity or evade immune detection. Together, our findings
479  identify spatially distinct and mechanistically diverse relationships between hormone receptor
480  signalling and centrosome biology. ER loss is associated with elevated Num CA and mitotic instability
481 in tumour cores, while HER2 signalling appears to exert compartmentalised control over CA subtype
482  distribution. Spatially resolved centrosome profiling thus provides a framework for identifying

483  hormone-specific vulnerabilities that could inform targeted breast cancer therapies.

484  CenSegNet enables fine-grained stratification of tumours based on the relative abundance of
485  structural (Stru CA) and numerical (Num CA) centrosome abnormalities, revealing distinct spatial—
486  biological associations. Tumours with Stru CA enriched at the invasive edge (Stru CAF*T) are more
487  proliferative, more frequently HER2", and exhibit higher differentiation, whereas those with Stru CA
488 more abundant in the core (Stru CA™F) are more commonly associated with lobular histology and
489  slower growth. Single-cell analyses further show that tumours with grade 3 histology, nodal
490 involvement, and mixed subtypes—hallmarks of aggressive disease—are more prevalentin the Num
491  CA™Esubgroup, while Num CA®T tumours are enriched for lobular carcinomas, typically linked to
492  indolent behaviour’. These spatially resolved patterns corroborate previous reports suggesting that
493  numerical centrosome abnormalities increase with tumour progression and are more frequent in
494  aggressive basal-like carcinomas’ . Our single-cell data also reveal an inverse relationship
495  between centrosome number and size—where edge regions harbour fewer but larger
496  centrosomes—supporting a model in which Stru CA at the periphery primes cells to acquire invasive

497  behaviours, while Num CA in the core drives proliferation and genomic instability. This dynamic
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498 interplay likely reflects microenvironmental influences on CA trajectories during tumour progression.

499 These findings extend the “CA set point” concept’’

, Which postulates that tumours maintain a
500 context-dependent equilibrium of CA phenotypes to balance proliferation, invasion and survival.
501 CenSegNet-based spatial profiing demonstrates that CA is not only subtype-specific but also

502  spatially regulated, providing new insights into the architectural evolution and heterogeneity of breast

503 cancer.

504 In summary, CenSegNet delivers the first fully integrated and spatially resolved framework for
505 profiling CA at single-cell resolution across large-scale human cancer tissues. By enabling precise,
506  high-throughput quantification of both numerical and structural CA phenotypes, CenSegNet
507 uncovers distinct mechanistic, temporal, and spatial trajectories of centrosome dysregulation in
508 breast cancer. The discovery that numerical and structural CA are decoupled numerical and
509 structural CA are decoupled—not only in cellular architecture but also in their associations with
510 clinical features such as tumour grade, hormone receptor status, germline mutation, and patient
511  age—advances our understanding of how centrosome abnormalities contribute to intratumoral
512  heterogeneity, tumour progression, with considerable implications for therapeutic resistance.
513 Importantly, the identification of compensatory dynamics between centrosome number and size, and
514  their divergent distributions across tumour cores and margins, points to context-specific roles in
515  modulating local tumour ecology and genomic instability. These insights challenge the longstanding
516  view of CA as a uniform driver of malignancy, instead positioning CA subtypes as distinct functional
517 modules in tumour evolution. CenSegNet thus provides a foundation for developing CA-based
518 biomarkers to stratify patients by tumour subtype, age, and aggressiveness, and opens opportunities
519 for therapies targeting CA-driven vulnerabilities. Given the availability of PLK4, AURKA, and HSET
520 inhibitors’®®2 spatial CA maps could guide personalised strategies, particularly in tumours with
521 discordant amplification phenotypes. Future studies integrating CenSegNet-based CA profiling with

522  transcriptomic and proteomic analyses will be essential to uncover the molecular drivers of spatial
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523  CA dynamics and clarify their roles in tumour progression, metastatic dissemination, and therapy

524 resistance.
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525 Methods

526

527  Ethics and human breast tissues

528 The study participants were a subgroup of women diagnosed with early breast cancer who were
529 recruited to a single-centre prospective observational cohort study at University Hospitals
530  Southampton, “Investigating Outcomes from Breast Cancer: Correlating Genetic, Immunological and
531  Nutritional Predictors (BeGIN)®*# ” All procedures performed in studies involving human participants
532  were in accordance with the ethical standards of the institutional and/or national research committee
533 and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
534  All participants in BeGIN gave written informed consent. The research ethics committee approved
535 the study (Research Ethics Committee (REC) - Cambridgeshire and Hertfordshire reference number:
536  14/EE/1297). Women were eligible for the BeGIN study if they were aged >18 years and diagnosed
537  with invasive breast cancer or DCIS at University Hospital Southampton after May 2015. Linked
538 anonymised patient information, including patient characteristics, tumour characteristics and clinical
539 management, were extracted from the hospital electronic record system. Body composition
540 parameters were measured using Bioelectrical Impedance Analysis (BIA) with a phase-sensitive, 8-
541 electrode device (Seca mBCA515)%. To conduct this study, 911 cores from 127 breast cancer
542  patients were used. The TMAs were constructed from formalin fixed paraffin embedded (FFPE)
543  histopathology tissue blocks from surgical treatment surplus to diagnostic requirements. Colon,
544  kidney, and appendix tissue were incorporated into breast tissue TMAs to facilitate orientation during
545  sectioning and analysis. Colon and kidney samples consisted of histologically normal tissue, the
546  status of which was independently verified by a board-certified pathologist. A summary of the
547  clinicopathological information linked to the human breast samples used in this study is included in
548 Supplementary Table 1. Anonymous data from the BeGIN study is available for request to
549 researchers who provide a completed Data Sharing request form that describes a methodologically

550 sound proposal, for the purpose of the approved proposal. Proposals will be reviewed by the study
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551 steering committee. Data will be shared once all parties have signed relevant data sharing
552  documentation, covering the study steering committee conditions for sharing and if required, an
553  additional Data Sharing Agreement from the Sponsor.

554

555 Ethics and mice

556  BALB/c HER-2/neu transgenic mice (referred to as BALB-NeuT)® carrying the transforming rat Her-
557  2/neu oncogene under control of a MMTV-LTR were used. All experimental procedures involving
558 mice were approved by the University of Southampton Local Ethics Committee and registered with
559 the Ethics and Research Governance Online Il (ERGO lI; ID: 65385). All animal work was conducted
560 inaccordance with UK Home Office regulations, adhering to the principles of the 3Rs (Replacement,
561 Reduction, Refinement) and the ARRIVE (Animal Research: Reporting of In Vivo Experiments)
562  guidelines to minimise animal suffering throughout the study. Mice were housed in a specific
563 pathogen-free (SPF) facility under controlled environmental conditions, including regulated
564  temperature and humidity, with a 12-hour light/dark cycle. Animals had ad libitum access to standard
565 chow and water.

566

567  Cell culture

568 MCF10A is a non-transformed human mammary epithelial cell line (ATCC® CRL-10317). The
569 MCF10A-PLK4 cell line is a genetically engineered derivative of MCF10A that enables inducible
570 overexpression of Polo-like kinase 4 (PLK4), a master regulator of centrosome duplication whose
571 upregulation induces centrosome amplification®®. The MCF10A-PLK4 cell line was kindly provided
572 by Dr. Susana Godinho (The Barts Cancer Institute, Queen Mary University of London). Both
573 MCF10A and MCF10A-PLK4 cells were cultured in DMEM/F12 medium (Invitrogen), supplemented
574  with 10% donor horse serum (Gibco, 31331028), 20 ng/ml human epidermal growth factor (EGF;
575  Sigma, E9644), 10 ug/ml insulin (Sigma, 11882), 100 ug/ml hydrocortisone (Sigma, H0888), 1 ng/mi

576  cholera toxin (Sigma, C8052), and 50 U/ml penicillin with 50 ug/ml streptomycin (Life Technologies).
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577 Cells were maintained at 37 °C in a humidified incubator with 5% CO,. To induce PLK4
578  overexpression, cells were treated with doxycycline (Sigma, D9891) at 2 ug/ml for 48 hours.

579

580 Tissue microarray construction and immunohistochemistry

581  Tissue microarrays (TMAs) were constructed using formalin-fixed, paraffin-embedded (FFPE) tissue
582  samples obtained following breast cancer surgery from 127 patients diagnosed with primary invasive
583 breast carcinoma at University Hospital Southampton between July 9, 2015, and January 31, 2019,
584  and participating in the BeGIN study. All patients underwent standardised treatment at a single
585 institution, consisting of surgery, followed by adjuvant treatments according to local and national
586  protocols. Pathological evaluation of hormone receptor and HER2 expression was conducted
587 according to established national and international guidelines® . Immunohistochemistry was used
588 to determine hormone receptor status, and in situ hybridization (ISH) was employed to confirm HER2
589  positivity for tumours with an IHC score of 2+. All procedures were performed within the standard
590 clinical diagnostic pathway. A total of 911 sample cores were systematically sampled from three
591 distinct, pathologically classified regions for each patient: tumour tissue (Tumour), tumour margin
592  (Edge), and tumour-free tissue (Normal). Each patient represented by three technical replicate cores
5983  from Tumour, Edge, and Normal regions, were procured for analysis. Each 0.6 mm in diameter and
594 5 pm in thickness were extracted from formalin-fixed, paraffin-embedded specimens and arrayed
595 into recipient tissue microarray (TMA) blocks. This tri-regional, triplicate-core sampling strategy was
596  designed to provide a comprehensive and robust representation of the tissue heterogeneity within
597 and around the tumour microenvironment. TMA sections were mounted onto TOMO® adhesion
598 microscope slides. Immunohistochemistry was performed using the Dako Autostainer Link 48
599 automated platform. Endogenous peroxidase activity was quenched using EnVision FLEX blocking
600 reagent (Dako), followed by a 30-minute incubation with the primary antibody against pericentrin
601  (1:500 dilution; Abcam, ab4448). Signal amplification and enzymatic detection were achieved using

602 EnVision FLEX HRP (Dako, 20 minutes) and Rabbit Link (Dako, 15 minutes). Slides were
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603 counterstained with haematoxylin following three 5-minute washes in 3-amino-9-ethylcarbazole
604 (AEC).

605

606 Assessment of hormone receptor status

607 ER or PR expression were evaluated by immunohistochemistry and scored using the Allred system
608 (range 0-8). Tumours with an Allred score = 3 were classified as ER or PR positive. HER2 status
609 was determined by immunohistochemistry and scored as 0, 1+, 2+, or 3+. Tumours with a score of
610 3+ were classified as HER2 positive. Cases with a score of 2+ were considered equivocal were
611  further assessed by fluorescence in situ hybridization (FISH). Tumours with FISH amplification were
612  designed as HER?2 positive, defined as a HER2/CEP17 ratio = 2.0 or average HER2 copy number =
613 6.0 signals per cell.

614

615 Immunofluorescence

616  The following primary antibodies were used: anti-GT335 (1:800; Adipogen, AG-20B-0020-C100),
617  anti-pericentrin (1:250; Abcam, ab4448), and anti-keratin 8/18 (KRT8/18; 1:300; Origene, BP5007).
618  Secondary antibodies (Life Technologies) included goat anti-mouse (A-32723), anti-rabbit (A-11037
619 and A-11008), and anti-guinea pig (A-21450), each conjugated to Alexa Fluor 488, Alexa Fluor 594,

620 orAlexa Fluor 647, and used at a final concentration of 5 ug/ml.

621 OCT-embedded mammary gland sections (30 um thick) from BALB-NeuT mice were cryosectioned,
622  air-dried for 30 minutes, and fixed in 4% paraformaldehyde (PFA) for 20 minutes at room
623 temperature. Sections were permeabilised for 45 minutes with 0.1% Triton X-100 in PBS, then
624  blocked for 2 hours in a solution containing 2% bovine serum albumin (BSA), 5% foetal bovine serum
625 (FBS; Gibco), and 0.1% Triton X-100 in PBS. Sections were incubated overnight at 4 °C with primary
626  antibodies against pericentrin, GT335, and KRT8, followed by washing and incubation with the
627  appropriate secondary antibodies for 2 hours at room temperature. Nuclei were counterstained with

628  DAPI using Fluoroshield mounting medium (Sigma, F6057).
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629 MCF10A and MCF10A-PLK4 cells were fixed in anhydrous methanol at —20 °C for 10 minutes,
630 followed by permeabilisation with 0.1% Triton X-100 in PBS for 2 minutes. Cells were then washed
631  three times for 5 minutes each with 0.1% Triton X-100 in PBS. Blocking was performed using 3%
632 BSAin 0.1% Triton X-100 in PBS for 1 hour at room temperature. Cells were incubated overnight at
633 4 °C with primary antibodies against pericentrin and GT335. After washing, cells were incubated with
634  the appropriate secondary antibodies for 1 hour at room temperature and counterstained with DAPI
635  using Fluoroshield.

636

637 Microscopy and image annotation

638 Immunohistochemistry images were acquired using a Zeiss Axio Imager Z1 upright microscope
639  (Zeiss), equipped with an AxioCam MRc5 colour camera. Image capture was performed using Zeiss
640 ZEN imaging software, following a predefined whole-slide brightfield scanning protocol (Whole Slide
641 [WS] Brightfield [BF] fold-light) with a 20x objective lens. This configuration enabled high-resolution

642  imaging of tissue sections with consistent illumination and contrast across samples.

643 Immunofluorescence images were captured using an inverted Leica STELLARIS 5 laser scanning
644  confocal microscope (Leica Microsystems), equipped with a 40x oil immersion objective (HC PL
645 APO 40x/1.30 Oil CS2). Z-stacks were acquired at 16-bit depth with a 0.2 um step size, using fields
646  of view (FOVs) ranging from 1024 x 1024 to 2048 x 2048 pixels. All cells from all FOVs obtained
647  during the experiments were included in the evaluation of model performance. Image processing

648  was performed using Fiji software (https://imagej.net/software/fiji/)®°.

649  Manual annotations were performed by Jiaogi Cheng (see Supplementary Fig. 12), who received
650 training and supervision from Constantinos Savva. Centrosome size quantification in
651  immunohistochemistry images was performed using calibrated spatial resolution, wherein each pixel
652  corresponded to an area of 0.0483 um?. For each centrosome, pixel-level segmentation masks were
653 used to compute total pixel occupancy, which was then multiplied by the calibrated pixel area to

654  derive centrosome size in pm?2.
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655  To generate the immunohistochemistry training dataset, images from 78 patients were included,
656 comprising human breast cancer tissue, normal breast tissue, normal liver, and normal kidney
657 samples. Within these images, annotations were made for centrosomes (n = 14,679), epithelial
658 compartments (n = 2,486), and stromal compartments (n = 108), using QuPath v0.5.1

659  (https://qupath.github.io/)®. All centrosome annotations were performed under 200x magnification

660 for each region of interest (ROI). The manual annotation process required over 200 person-hours.

661  Annotations were exported as GeoJSON files.

662  For the immunofluorescence training dataset, only 15 high-resolution image z-stacks of MCF10A
663 and MCF10A-PLK4 cell lines were required. Annotation was performed using Cellpose 3.0%" %2,
664  Datasets were first maximum-intensity projected, then split into contrast-adjusted single-channel
665 images, with boundaries defined by edge features visible in the blue channel. The manual annotation
666  process took approximately 16 person-hours. All annotations were exported as SVG files.

667

668 Image processing and model training

669 Image processing. For immunohistochemistry image processing in the CenSegNet pipeline, raw
670 microscopy images were pre-processed to enhance contrast and suppress background noise,
671 thereby improving the visibility of cellular structures. Each image was cropped into overlapping
672  patches of 256 x 256 pixels with a stride of 300 pixels. Patches exhibiting artefacts or poor quality
673 were manually excluded to ensure dataset integrity. The final immunohistochemistry dataset
674  comprised 1,122 annotated patches, each containing labelled information on centrosome location
675 and size. For immunofluorescence images, RGB channels were converted to greyscale to reduce
676  dimensionality and simplify the training process. This transformation allowed the model to remain

677 invariant to colour information while improving computational efficiency.

678 Model architecture and training. CenSegNet employs a modular three-step architecture
679  comprising approximately 40 million trainable parameters. The first step consists of a detection head

680 that localises candidate ROls, while the second stage performs fine-grained segmentation within

28


https://qupath.github.io/
https://doi.org/10.1101/2025.09.15.676250
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.09.15.676250; this version posted September 29, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

681 these ROIs to achieve precise spatial delineation. This decoupled design enables task-specific
682  optimisation and improves memory efficiency and training stability. In the detection stage, we fine-

683  tuned YOLOv11-seg model*® (https:/github.com/ultralytics/ultralytics) using our own training set,

684  guided by a composite loss function comprising box loss, segmentation loss, classification loss, and
685  distribution focal loss. These components respectively optimise object localisation, foreground-
686  background separation, class prediction, and robustness to complex spatial distributions. Training
687  was performed using the AdamW optimiser (learning rate = 0.002, momentum = 0.9) with a batch
688  size of 16 over 300 epochs. The segmentation step 2 employed a U-Net architecture*® with three
689 input channels (RGB) and one output channel. Given the small size of centrosomes, segmentation
690 was formulated as a binary classification task. The model was trained for 100 epochs using the
691  Binary Cross Entropy with Logits loss function (BCEWithLogitsLoss). Optimisation was performed
692  using RMSprop (learning rate = 1 x 10, weight decay = 1 x 10, momentum = 0.9), which stabilised
693 training and improved convergence for small target structures. Training was conducted in Python
694  (v3.10) using PyTorch (v2.1). We applied data augmentations, such as HSV colour jittering and
695 geometric transformations, which can be easily implemented using the torchvision.transforms
696 module in PyTorch. The detection head was trained independently for approximately 24 hours,
697 followed by an additional 12 hours of training for the segmentation head. All experiments were run
698 on four NVIDIA A100 GPUs (40 GB VRAM each) using PyTorch’s Distributed Data Parallel (DDP)
699 framework with NVIDIA Collective Communications Library (NCCL) backend for gradient
700  synchronisation. Input batches were evenly partitioned across GPUs, with local gradient computation
701 and synchronisation via NCCL’s optimised collective communication, achieving near-linear scaling
702  in throughput. Batch sizes were dynamically adjusted to maximise GPU utilisation while maintaining

703 training stability.

704  Comparative segmentation models. To benchmark CenSegNet, we compared its performance
705 against established segmentation models including U-Net*®, SegNet*®, and DeepLabv3+*. Each

706  model was trained on uniformly sized 256 x 256 image patches cropped from the original dataset.
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707  Official implementations were used without architectural modifications. Comparative experiments
708  were conducted with and without ImageNet pretraining to assess the impact of transfer learning.
709  Model outputs were evaluated against ground truth segmentation masks using a composite loss
710  function combining weighted binary cross-entropy and Dice loss, balancing pixel-wise accuracy with
711 regional overlap. All models were trained under identical conditions: Adam optimiser (initial learning
712  rate = 1x 10™), cosine learning rate decay, L2 regularisation (weight decay = 1 x 10®), batch size of
713 16, and early stopping based on validation loss plateauing. A total of 108 immunohistochemistry
714  images were manually annotated and divided into training (n=80), validation (8), and test (n=20)
715  datasets. An additional private dataset comprising 25 images was generated and manually curated

716  for evaluation.

717  Cell segmentation. For cell nucleus segmentation step 3, we integrated StarDist*” with the QuPath
718  platform. StarDist offers state-of-the-art performance in dense and noisy biological environments.
719  Following accurate nucleus segmentation, cell membrane boundaries were estimated using the
720  spatial coordinates of nuclei as anchor points. Expansion thresholds of 3, 4, 5, and 6 um were tested
721  and validated against KRT8-stained images to determine the optimal value for our dataset.

722

723  Evaluation metrics

724  Centrosome segmentation performance. Centrosome segmentation performance was evaluated
725 on a test set comprising 25 immunohistochemistry and 17 immunofluorescence images. Metrics
726 included precision, recall, intersection over union (loU), and F1 score. loU was defined as the

727  common area between the predicted segmentation and the ground truth:

|Prediction N Groundtruth|

728 IoU =
0 |Prediction U Groundtruth|

729  The F1 score, representing the harmonic mean of precision and recall, was calculated as:

Precision * Recall

=2
730 F1score * Precision + Recall
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731  With:

732 Precision = L Recall = e
recision = 5 TP ecall = =5 TN

733  Where, TP, FP, and FN denote true positives, false positives, and false negatives, respectively. Both
734 loU and F1 scores range from 0 to 1, with higher values indicating superior segmentation

735  performance.

736  These metrics provide a comprehensive assessment of spatial overlap, agreement, and pixel-wise

737  accuracy, with higher values indicating better performance in medical image segmentation.

738  Epithelial segmentation performance. To assess the performance of epithelial segmentation by
739  CenSegNet, we quantified the F1'°Y*° metric®, a widely adopted benchmark in biomedical image
740  analysis. loU50 means the loU threshold was set to 0.5 (or 50%). A predicted bounding box was
741  considered a correct detection if: loU with ground truth =0.5.

742

743  Statistical analysis

744  The exact n is stated in the corresponding figure legend. GraphPad Prism 10.3.1 (GraphPad
745  Software) was used to perform statistical significance analysis. Normality and lognormality were
746  assessed prior to statistical analysis. For datasets exhibiting a normal distribution, comparisons
747  between two groups were conducted using an unpaired t-test, while comparisons across multiple
748  groups were performed using one-way analysis of variance (ANOVA), followed by Tukey's post hoc
749  test for multiple comparisons or two-way ANOVA, followed by Tukey's post hoc test for multiple
750 comparisons. For datasets that deviated from normality, non-parametric testing was employed, using
751  the Kruskal-Wallis test for multiple group comparisons, followed by the Mann-Whitney U test as a
752  post hoc analysis. For correlation analysis, a two-tailed Pearson test was used followed by simple
753 linear regression for graphical representation for correlation analysis. To compare the composition
754  of groups based on categorical variables (e.g., histological tumour grade, T stage, histological

755  tumour types, hormone status, nodal status, nodal clearance, HER2 status), Fisher's exact test was
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756  employed. This non-parametric test was chosen for its appropriateness with count data and its ability
757  to provide accurate p-values when expected cell counts are low (<5). All comparisons were two-
758 sided. All values were presented as mean £ s.e.m. For all statistical tests, *P < 0.05, **P < 0.01,
759  ***P < 0.001 and ****P < 0.0001 were considered significant.

760

761 Assistance with manuscript preparation

762  During the preparation of this manuscript, ChatGPT (OpenAl, version 4) was used to assist with
763  stylistic and grammatical refinement. All Al-generated content was critically reviewed and edited by
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766  Data availability

767 Examples of immunohistochemistry and immunofluorescence image datasets used for
768  benchmarking and for testing CenSegNet within the demo version of the pipeline are available on

769 https://github.com/SKELab/CenSegNet/ and htips://zenodo.org/records/17131573. All other

770 relevant data supporting the key findings of this study are available within the article and its
771 Supplementary Information files or upon reasonable request. A summary of the human breast
772  samples used in this study are included in Supplementary Table 1. For participants on the BeGIN
773  study, further donor anonymised clinicopathological information is available upon reasonable

774  request, provided all relevant ethics approvals are in place (see “Ethics and human breast tissues”

775 section for further details). The source data that support the findings in all Figures and
776  Supplementary Figures are provided as a Source Data file within the paper. All reagents generated
777  in this study are available upon reasonable request.

778

779  Code availability

780 The source code and software CenSegNet as a ready-to-use executable with a quickstart guide,
781 example datasets and step-by-step procedures are freely available at

782 https://qgithub.com/SKELab/CenSegNet/ and https://zenodo.org/records/17131573.

783
784
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Fig. 1 Development and benchmarking of CenSegNet for centrosome segmentation. a Left:
workflow for generating tissue microarrays (TMAs) comprising 911 breast tissue sample cores from
normal breast tissue, breast tumours, and adjacent non-tumour tissue, collected from 127 breast
cancer patients in the BeGIN cohort. Figure 1a is schematic for illustrative purposes to demonstrate
sampling strategy for the TMA. Cores were taken from FFPE blocks following breast cancer surgery.
Top right: immunohistochemical staining of all ROIs with pericentrin (centrosome marker) and
haematoxylin (nuclear counterstain). Bottom right: random selection of 108 ROls used to construct
a training dataset containing 2,486 epithelial compartments, 108 stromal compartments and 14,679
annotated centrosomes. b Left and middle: representative confocal images of human mammary
epithelial cells (MECs) and mouse mammary tumour tissues exhibiting normal or amplified
centrosomes. Cells and tissues were stained for pericentrin (orange) and counterstained with DAPI
(DNA, teal). Scale bars, 10 ym. Right: training dataset derived from these images, comprising 1,285
annotated centrosomes. ¢ Left: 256 x 256 pixel cropped patches from immunohistochemistry and
immunofluorescence datasets. Middle left: training of existing segmentation architectures (U-Net,
SegNet, DeepLabv3+) and the proposed CenSegNet using these datasets. Middle right: CenSegNet
performance across both immunohistochemistry and immunofluorescence test sets. CenSegNet
operates in three sequential phases: (1) object detection to generate bounding-box predictions for
individual centrosomes; (2) pixel-level segmentation of detected objects; (3) StarDist-based whole-
cell segmentation.
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Fig. 2 Validation of CenSegNet performance against alternative models and human
annotations. a Left: representative immunohistochemistry and immunofluorescence images used
for centrosome segmentation. Right: colour overlays showing predictions from U-Net, SegNet,
DeepLabv3+, and CenSegNet (teal: ground-truth annotations; orange: predicted segmentation;
white: overlap between predictions and ground-truth). Magenta text indicates the F1 score for
corresponding images of each method (0: complete disagreement; 1: complete concordance).
Yellow arrow marks the overprediction. b Pearson correlation between centrosome counts predicted
by CenSegNet and ground truth across 25 immunohistochemistry images. Grey circles represent
individual patients, purple line represents regression line, Black dot line represents confidence band,
and teal dot line represents 1:1 line. Two-tailed Pearson correlation test followed by simple linear
regression for visualisation, ****P < 0.0001. ¢ Pearson correlation between centrosome counts
predicted by CenSegNet and ground truth across 17 immunofluorescence images. Two-tailed
Pearson correlation test, followed by simple linear regression for graphical representation, ****P <
0.0001. d Pearson correlation between centrosome size predicted by CenSegNet and measured by
annotators (n = 550 centrosomes from >200 ROIs across 20 images). Two-tailed Pearson correlation
test, followed by simple linear regression for graphical representation, ****P < 0.0001. e Heatmap of
overall F1 scores (maximum 0.82) from combined immunohistochemistry and immunofluorescence
test datasets. The x-axis represents the detection confidence threshold, and the y-axis represents
the segmentation confidence threshold. Each cell represents the mean F1 score for that threshold
pair; darker cyan indicates higher values. Optimal performance (F1 = 0.82) was achieved across a
broad range of threshold combinations, indicating model robustness to parameter variation. f, g
Manual annotations of 6,475 centrosomes from normal, edge, and tumour regions—stratified by size
(0.5-1.0 um? to >10.5 ym?) (f) were compared with automated segmentations from the full dataset
of 333,148 centrosomes (g) (0-0.5 um? to >12.0 um?). CenSegNet segmentation achieved
performance comparable to expert human annotation. Data are presented as individual data points.
Source data are provided as Source Data file.
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Fig. 3 Age-related gradients of centrosome aberrations across breast tissue regions. a
Percentage of cells with different centrosome numbers in normal, edge, and tumour regions. b
Representative cell segmentation masks of normal, edge, and tumour regions across patient age
groups (Light grey: cells with one centrosome; purple: cells with two centrosomes; cyan: cells with
more than two centrosomes). ¢ Percentage of patients with structural CA (Stru CA) and Num CA
across age groups in edge (<50 years: n = 8 patients; 50—60 years: n = 17 patients; 60-70 years: n
= 10 patients; >70, n = 14 patients) and Tumour (<50 years: n = 18 patients; 50-60 years: n = 35
patients; 60—70 years: n = 27 patients; >70 years: n = 20 patients) regions. Two-way ANOVA with
Tukey’s test, *P = 0.0477, **P = 0.0053. Data are presented as mean + s.e.m. d Percentage of cells
with Stru CA in edge and tumour regions across age in Edge and Tumour regions. One-way ANOVA
(Stru CA" cells: Edge, P = 0.7637; Tumour, P = 0.4489 with Tukey’s test. absence of asterisks
indicates no statistically significant correlation. e Percentage of cells with Num CA in edge and
tumour regions across age. One-way ANOVA (Num CA" cells: Edge, P = 0.3427; Tumour, P =
0.9086) with Tukey’s test, absence of asterisks indicates no statistical significance. Data are
presented as mean * s.e.m. f, g Centrosome segmentation results from normal regions across age
groups, stratified by size (0.5-1.0 um? to 6.0-6.5 um?). One-way ANOVA (****P < 0.0001) with
Tukey’s test, ****P < 0.0001. Data are presented as violin plots showing the distribution of values;
dashed lines indicate median and interquartile ranges. h, i Centrosome segmentation results from
edge and tumour regions across age groups, stratified by size (6.5-7.0 um? to 12.0 um?). One-way
ANOVA (****P < 0.0001) with Tukey’s test, Edge: ****P < 0.0001; Tumour: *P = 0.0484, ****P <
0.0001. Data are presented as violin plots showing the distribution of values; dashed lines indicate
median and interquartile ranges. j, k Centrosome number per cell in edge and tumour regions across
age groups, stratified by centrosome number (1-8). One-way ANOVA (Edge, ****P < 0.0001; Tumouir,
****P < 0.0001) with Tukey’s test, Edge: ***P = 0.0006, ****P < 0.0001; Tumour: **P = 0.0054, ****P
< 0.0001, absence of asterisks indicates no statistical significance. Data are presented as individual
data points and mean £ s.e.m. Source data are provided as Source Data file.
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Fig. 4 Patient stratification by CA burden and correlation with clinicopathological features. a—
d Percentage of patients with Stru CA and Num CA across histological tumour grade, nodal status,
histological tumour size, and histological tumour type in Edge [Grade: G1 (n= 5), G2 (n=27), G3
(n=17); Nodal status: NO (n=38), N2 (n=1), N3 (n=10); T stage: T1 (n=18), T2 (n=16), T3 (n=15);
Histological type: Invasive ductal (n=36), Lobular (n=8), Mixed (n=5)], and Tumour [Grade: G1
(n=12), G2 (n=52), G3 (n=35); Nodal status: NO (n=77), N2 (n=4), N3 (n=18); T stage: T1 (n= 30),
T2 (n=29), T3 (n=40); Histological type: Invasive ductal (n=82), Lobular (n=8), Mixed (n=8)] regions.
Two-way ANOVA (Grade, **P = 0.0020; Nodal status, ** P = 0.0030; T stage, P = 0.4024; Histological
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type, ** P =0.0037) with Tukey’s test, Grade: *P = 0.0130, **P = 0.0018; Nodal status: *P = 0.0113,
**P = 0.0030; Histological type: (Invasive ductal versus Lobular) **P = 0.0063, (Invasive ductal
versus Mixed) **P = 0.0061. Data are presented as mean ts.e.m. e, f Patients classified by
composite CA burden into Stru""Num'¥ (A), Stru""Num"®" (B), Stru®*Num'®* (C), and
Stru®Num™" (D) groups in Edge (A: n = 14 patients; B: n = 7 patients; C: n = 16 patients; D: n =7
patients) and Tumour (A: n = 20 patients; B: n = 16 patients; C: n = 35 patients; D: n = 23 patients)
regions. Histograms and pie charts show percentages of patients in each group in edge and tumour
regions. g—j Comparative analysis of patient characteristics, including age, number of involved
nodes, and total and histological tumour size, across composite CA groups A-D in edge and tumour
regions. One-way ANOVA Age (Edge, P = 0.7719; Tumour, P = 0.6469) Nodal number (Edge, P =
0.3164; Tumour, P = 0.9944); Total tumour size (Edge, *P = 0.0491; Tumour, *P = 0.0318);
Histological tumour size (Edge, *P = 0.0403; Tumour, P = 0.0732) with Tukey’s test, Total tumour
size (Edge, *P (A vs D) = 0.0484; Tumour, *P (B vs D) = 0.0296 ). Absence of asterisks indicates no
statistical significance. Data are presented as individual data points and as box and whiskers plots
showing the distribution of values, median and quartiles. k—o Percentage of patients with different
tumour characteristics (histological tumour grade, T stage, nodal status, nodal clearance, genetic
subtype) across composite CA groups A-D in edge and tumour regions. Fisher's exact test, left: *P
= 0.0261; middle: ***P = 0.0005 (middle left), ***P = 0.0006 (middle right) and ****P < 0.0001; right:
**P =0.0091. o 1st degree, family history with 15! degree relative; 2" degree, family history with 2™
degree relative. Genetic, pathogenic variant in breast cancer-related gene. Source data are provided
as Source Data file.
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Fig. 5 Interplay between Stru CA and Num CA drives centrosome defect spatial heterogeneity
in breast edge and tumour regions. a Representative immunohistochemistry images of human
breast tumour tissues (stained for pericentrin, counterstained with haematoxylin) and corresponding
StarDist cell masks showing differences in Stru CA between edge and tumour regions. Left: Stru CA
higher in Tumour than Edge. Right: Stru CA lower in Tumour than Edge (teal: cells with =4
centrosomes; purple: cells with three centrosomes; grey: cells with <2 centrosomes). Scale bars, 10
pm. b Comparative analysis of centrosome number per cell in edge and tumour regions for Stru
CA™E and Stru CA®T groups. Comparisons between Edge and Tumour were performed separately
for each condition using two-sided unpaired t-test, left: ****P < 0.0001; right: ****P < 0.0001. Data
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are presented as mean *s.e.m. ¢ Representative immunohistochemistry images of human breast
tumour tissues (stained for pericentrin, counterstained with haematoxylin) and corresponding
StarDist cell masks showing differences in Stru CA and Num CA between edge and tumour regions.
Left: Num CA higher in Tumour than Edge. Right: Num CA lower in tumour than edge (teal: cells with
24 centrosomes; purple: cells with three centrosomes; grey: cells with <2 centrosomes). d
Comparative analysis of centrosome size in Edge and Tumour regions for Num CA™E and Num
CAFT groups. Comparisons between Edge and Tumour were performed separately for each
condition using two-sided unpaired t-test. Left: ****P < 0.0001; right: ****P < 0.0001. Data are
presented as violin plots showing the distribution of values; dashed lines indicate median and
interquartile ranges. e Top: correlation between centrosome number and mean centrosome size at
the single-cell level in Stru CA™E, Stru CAFT, Num CA™F, and Num CA®T groups. One-way ANOVA
(****P < 0.0001 across Stru CA™E, Stru CAFT, Num CA™F, and Num CAFT groups) with Tukey’s
test: Stru CA™E [Edge: ****P < 0.0001; Tumour: (top) *P =0.0318, (bottom) *P=0.0416, **P = 0.0056,
****P < 0.0001]; Stru CAFT [Edge: *P = 0.0139, ****P < 0.0001; Tumour: (top) *P (2 vs 5) = 0.0362,
(top) *P (2 vs 6) = 0.0144, ****P < 0.0001); Num CA™E [Edge: *P = 0.0259, ****P < 0.0001; Tumour:
*P = 0.0421, (top) **P = 0.0081, (bottom) **P = 0.0025, ****P < 0.0001]; Num CAFT [Edge: ***P =
0.0003, ****P < 0.0001; Tumour: (top) *P = 0.0340, (bottom) *P = 0.0115, ****P < 0.0001]. Bottom:
Corresponding representative StarDist masks showing cells with Stru CA and Num CA in Edge and
Tumour regions. Data are presented as individual data points and mean +s.e.m. Source data are
provided as Source Data file.
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Fig. 6
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Fig. 6 Open accessibility and integration of CenSegNet for broad adoption. a CenSegNet can
be accessed via a Python application programming interface (API). b Top: graphical user interface
(GUI) of CenSegNet designed for a streamlined workflow, supporting image upload, model-based
prediction, and data export. Bottom: interface functions for both immunohistochemistry and
immunofluorescence images, enabling users to upload images, apply the relevant prediction models,
and export quantitative data including pixel-level centrosome size, localisation, and count.
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