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Abstract—Reconfigurable holographic surfaces (RHS) are ex-
pected to play a key role in future mobile networks. However,
the substantial increase in antenna aperture and operating
frequency brings new challenges for near-field communication.
We propose a near-field multi-user 3D hierarchical beam training
scheme tailored for RHS-based multi-input multi-output (MIMO)
systems, supporting both near-field and far-field user deployment,
while considering hardware constraints. Since the hierarchical
beam training scheme involves activating varying numbers of
transmitting elements at each search layer, and RHS elements
are densely packed, significant mutual coupling effects may arise.
To mitigate this, we propose two element activation strategies:
centered activation and sparse activation based on different RHS
element positioning patterns within the hierarchical beam train-
ing framework. Furthermore, we design a practical beam training
approach tailored to a hybrid digital-holographic architecture,
optimized through an alternating algorithm that accounts for
both binary and coupled amplitude-phase hardware constraints
on RHS meta-elements. Simulation results demonstrate strong
robustness under various hardware and channel state informa-
tion (CSI) imperfections, achieving performance close to that of
fully digital systems. Finally, we further analyse the asymptotic
orthogonality of near-field beam focusing vectors under different
RHS surface geometries. The results show that rectangular
surfaces offer superior beam orthogonality for beams steered
in the same direction but located at different distances.

Index Terms—Near-field, Hierarchical Beam Training, Beam
Training, Reconfigurable Holographic Surfaces.

I. INTRODUCTION

Driven by the rapid proliferation of smart devices and
advanced applications, future 6G networks are expected to
achieve peak data rates of up to 100 Gb/s [1]. To meet
this demand, extremely large-scale antenna arrays (XL-arrays)
have emerged as a promising solution. However, although
these high-rate schemes offer greater communication quality,
they also impose higher demands on power consumption
and increased hardware complexity, which have emerged as
major technical bottlenecks in highly integrated antennas and
massive multi-input multi-output (MIMO) systems [2].

To address these challenges, reconfigurable holographic
surfaces (RHS) with its continuous aperture and controllable
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phase and amplitude radiation elements offers a practical solu-
tion to achieve low-cost, high-directional gain [3]. Specifically,
RHS consists of a feed source and radiation elements based
on metamaterials, where the feed source connects the radio
frequency (RF) chain to the RHS circuitry. These architectures
convert input signals into electromagnetic waves and achieve
holographic beamforming by electronically controlling the co-
efficients of the radiation elements [4]. Compared to traditional
phase shifters, RHS has lower power consumption, scalability,
and suitability for large-scale integration and packaging [5].

The RHS enables flexible beam steering and control by
dynamically adjusting the electromagnetic response on its
surface, offering a more efficient and adaptable approach to
wireless communication [6]. The RHS provides significant
advantages in terms of flexible beamforming and directional
control, while also reducing the complexity of the system
hardware and power consumption.

To effectively harness these advantages, various hybrid
beamforming strategies tailored for RHS architecture have
been investigated. However, the extremely large scale MIMO
and RHS typically employs hundreds or even thousands of
elements, that leads to a sharp increase in the aperture, which
can result in a fundamental change of the electromagnetic
(EM) characteristics [7] and the corresponding near-field re-
gion expands accordingly. Moreover, the deployment of RHS
is expected to significantly enhance spatial resolution, thus
achieving substantial spatial multiplexing gains. To realize
these gains, the RHS must generate highly directional beams
with substantial array gain through beamforming. In [8] [9],
Deng et al. proposed an RHS-based hybrid beamforming
scheme, where the digital beamformer and the holographic
beamformer are performed in the BS and the RHS, re-
spectively. Specifically, the digital beamformer relies on the
state-of-the-art zero-forcing (ZF) precoding method, while the
holographic beamforming is performed by configuring the
amplitude-controlled RHS radiation elements. In [10] [11],
Li et al. proposed the hybrid beamforming design of the
switch-controlled RHS architecture, and proposed an energy
efficiency maximization problem for switch-controlled RHS-
enabled wireless communication systems operating in the face
of realistic hardware impairments of the transceiver. Addition-
ally, researches on beamforming design of large-scale recon-
figurable surfaces in near-field scenarios, such as the study
by Zhang et al. [12], explored the potential of beam focusing
using fully-digital, phase shifter-based hybrid, and dynamic
metasurface antenna architectures. The study demonstrates
the feasibility of these architectures in near-field operations.
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However, to circumvent the need for accurate channel state
information (CSI), beamforming can be implemented through
codebook-based design and beam training. Specifically, the
optimal codeword is selected from a predefined codebook to
best match the user’s channel prior to beamforming. In [14],
[16]-[19], [21]-[26] the near-field beam training based on
large-scale antenna array was analyzed. In [16] Wu et al
proposed a scheme to jointly estimate the user angle and
range with the DFT codebook. In [17] and [18], the authors
proposed a two-stage beam training method and a two-stage
hierarchical beam training method. These methods decompose
the two-dimensional search into two sequential phases, reduc-
ing the near-field beam-training overhead. In the first phase,
candidate angles are determined using a new approach based
on the conventional far-field codebook and angle-domain beam
sweeping. In the second phase, a customized polar-domain
codebook is used to find the best effective distance for the
user based on the shortlisted angles. In [19], another near-field
hierarchical codebook was proposed, along with a steering
beam gain approximation method. The lower-layer codebook
is designed to provide coverage for the Fresnel region. For
the upper-layer codebook, beam rotation and beam relocation
methods are introduced to position an arbitrary beam pattern at
a target location. In [21], Wu ef al. design a concentric-ring
codebook to achieve efficient codebook-based beamforming
in the near-field region for a uniform circular array (UCA) to
provide uniform and enlarged near-field regions at all angles.
Then, in [22] a polar-domain representation that simultane-
ously accounts for both the angular and distance information
in near-field domain was proposed, which proves that the
near-field beam training requires a beam search over both the
angular and distance domains due to the spherical wavefront
propagation model. In [23], Zhou et al. proposed a sparse
discrete Fourier transform (DFT) codebook to address the
unaffordable beam training overheading both angular domain
and distance domain.

Above all, the aforementioned beam training schemes and
codebook designs are all based on extremely large-scale an-
tenna arrays (ELAA) and extremely large-scale large-scale
MIMO (XL-MIMO), which are typically designed based
on angular domain alignment and distance-domain focus-
ing within the near-field region. Although RHS and planar
ELAAs share similar spatial configurations—both operating in
three-dimensional space—the RHS architecture imposes fun-
damentally different hardware constraints, including coupled
amplitude-phase responses, mutual coupling, and limited feed
structures [27]. These differences necessitate a distinct beam

training strategy as proposed in this work, which explicitly
incorporates holographic-specific impairments into both the
hierarchical codebook design and the orthogonality analysis.
For example, [20] proposed a low-complexity multi-user
beamforming method based on RHS for both near- and far-
field scenarios, while it does not take into account specific
hardware features of the RHS.

On the other hand, the physical deployment of RHSs has a
significant impact on system-level beam training performance.
Recent results in [28] emphasized that practical RHS deploy-
ments must consider the tradeoffs between hardware limita-
tions, propagation geometry, and user field-of-view coverage.
Furthermore, the impact of physical deployment and near-
field electromagnetic nonstationarities has been highlighted
in [27], which shows that spatially varying visibility regions
induce location, dependent array gains and phase distortions,
posing significant challenges to conventional beamforming and
codebook alignment.

Complementary to this, recent works have leveraged high-
dimensional RIS responses to enhance localization accuracy
via learning-based frameworks. For example, [29] employed
convolutional neural networks (CNN) and transfer learning to
extract spatial features from RIS reflections, enabling accu-
rate localization under limited training data. In parallel, [30]
investigated the impact of hardware faults in RIS elements
and introduces a fault-aware learning framework that maintains
localization robustness despite physical impairments.

Due to the unique architecture of RHS, where elements are
densely packed and their behavior is influenced by metamate-
rial properties and fabrication variabilities [31], the commonly
assumed independent control of amplitude and phase is im-
practical in real implementations. Therefore, we aim to design
a practical low-complexity RHS beam training scheme con-
sidering discrete or coupled amplitude-phase in holographic
processes, as well as mutual coupling effects between closely
spaced elements in near-field scenarios. To capture these
effects, we develop a hardware-aware beam training scheme
under a hybrid digital-holographic architecture, and propose
two distinct element activation schemes to assess and mitigate
mutual coupling. These considerations are essential to bridge
the gap between theoretical analysis and deployable RHS-
based communication systems.

Moreover, while the spatial domain is coupled with a large
number of elements present in the RHS, exhaustive search
methods are impractical. Consequently, it is imperative to
develop a cost-effective hierarchical search scheme. Although
[20] proposed a low-complexity hierarchical beam training



approach, it adopts a two-stage strategy in which distance
is searched separately following a coarse angular estimation.
This design assumes that the angular estimate is sufficiently
accurate to allow for a decoupled one-dimensional distance
search, an assumption that becomes questionable in near-field
scenarios. For instance, using a 6-layer binary hierarchical
angular search in the first stage yields an angular resolution
of approximately 180°/2% = 2.8°, which introduces a non-
negligible estimation error. According to the spherical wave-
front model [32], the distance parameter r affects the phase
response as e)/7 and for r > 1m, variations in r con-
tribute minimally to the overall phase. Furthermore, although
the spherical wavefront can naturally span a certain angular
range, this property becomes less reliable when accounting
for hardware-induced offsets and the extremely narrow beams
resulting from ultra-large-scale arrays, leading to increased
estimation errors. As a result, even moderate angular errors
can severely degrade the effectiveness of subsequent distance
refinement, often preventing the system from achieving the
desired beamwidth resolution. Motivated by this, we advocate
for a joint angle-distance sampling strategy in the top hier-
archical layers to enhance robustness and accuracy, which is
particularly practical given the beamwidth limitations imposed
by RHS constraints.

While the aforementioned studies primarily focus on beam-
forming and training under static RHS or RIS configurations,
recent advancements in reconfigurable antenna technologies
have introduced new opportunities for spatial diversity and
adaptability. As comprehensively reviewed in [33], fluid an-
tenna system (FAS) architectures exhibit significant potential
in supporting critical services such as ultra-reliable low-latency
communications (URLLC), intelligent sensing, and physical-
layer security, owing to their inherent electromagnetic recon-
figurability and spatial agility. Building upon this foundation,
[34] proposed a deep reinforcement learning (DRL)-based in-
telligent antenna positioning algorithm for FAS-assisted ISAC
systems, enabling environment-aware beam placement under
mobility and latency constraints. In a complementary study,
[35] investigated the security implications of FAS-RIS hybrid
systems by introducing a block-correlation model, revealing
how spatial correlation among elements affects the average
secrecy capacity and outage probability.

The contributions in this paper can be summarized as
follows:

e We propose a practical multi-user hierarchical beam
training scheme based on holographic principles, which is
flexible and adaptable to both near- and far-field scenar-
ios. Compared to existing ELAA and RHS based beam
training methods, the proposed scheme is particularly
practical when accounting for discrete binary or coupled
amplitude-phase characteristics inherent in holographic
implementations, rather than assuming idealized condi-
tions.

o Additionally, considering the large number of elements
densely arranged on the RHS result in significant mutual
coupling, this effect must be carefully addressed [36].
To account for this, we propose two different element
activation schemes within the hierarchical beam training

framework. In the first scheme, the elements are activated
in the central region of the RHS, while in the second,
they are activated sparsely. We then compare the mutual
coupling effects between these two schemes in the context
of hierarchical beam training design.

o Given that a fully digital architecture with high energy
consumption is impractical in an RHS system, we design
a practical beam training scheme tailored to a hybrid
digital-holographic architecture. Hence, we propose an
alternating optimization algorithm to derive the practical
codeword. Specifically, considering the metamaterial el-
ements on the RHS surface, which can be modeled as
resonant electrical circuits, their frequency responses are
typically characterized by amplitude-only, binary ampli-
tude, or Lorentzian phase constrain [13].

o Moreover, we investigated the asymptotic orthogonality
of near-field beam focusing vectors generated by different
holographic surface shapes. The theory and simulation
results both indicate that a rectangular surface achieves
better beam orthogonality for beams oriented in the same
direction but at different distances in near-field scenarios.

« By simulations, we prove that the proposed alternating
optimization algorithm efficiently converges in fewer than
eight iterations under hardware-constrained RHS-aided
hybrid beamforming, demonstrating fast convergence
suitable for practical implementations. We also simulated
the results with different numbers of RF chains under
multi-user scenarios. The simulation results demonstrate
that the beam training optimization algorithm performs
effectively and approaches full digital performance, even
under a hardware-constrained multi-user hybrid architec-
ture.

In order to highlight the contributions of this paper rela-
tive to other existing works, Table I provides a comparative
analysis of key features in various studies.

The rest of this paper is organized as follows: we firstly
introduce the system model and beam training scheme in
Section II and Section III. Then, we analyze the asymptotic
orthogonality of near-field beam focusing vectors for RHSs
of different sizes and the training overhead for the proposed
schemes in Section IV. Finally, we present the simulation
results of the different proposed schemes in Section V.

II. SYSTEM MODEL

In this section, we briefly highlight the system model of the
considered RHS-aided hybrid beamforming architecture and
codebook design, while communicating in near field scenarios.

A. Signal Model

We consider an RHS-aided near-field scenario in which the
base station (BS) employs a N = N, x N, uniform planar
array holographic element surface with M RF chains to serve
K single antenna users. Consider an RHS surface located at
the origin, with IV, elements along the x-axis and N, elements
along the y-axis. Let H = [hy, ..., hg]T € CV*¥ denote the
channel matrix between the transmission side and the users.
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The general multi-path channel from the RHS to the user can
be modeled as

I
_ N-
hy = VNhyb(0k, dr, i) + Y 4 7 b0k, dk, 7k), (1)

where the complex channel gain are the line-of-sight (LoS)

channel Ay, e VT’; 0

e /X" and the non-line- -of-sight

(NLoS) channel hy = H—K\é—p}e—j %T"‘, while the x repre-

sents the Rician factor and py denotes the channel gain at the
reference distance of 1 m and I denote the number of NLoS
paths, respectively. The 6 and ¢, denote the azimuth and
elevation angles of user k in the spherical coordinate system,
respectively, and r represents the radial distance from user k
to the center of the RHS aperture.

In this paper, we focus on RHS assisted near-field com-
munication scenarios within high-frequency bands. In these
environments, the power of NLoS channel paths is signif-
icantly attenuated due to severe path loss and shadowing
effects [23] [37] [15]. As a result, our analysis is restricted
to the main path, that is, the LoS channels, where the BS-
user channel can be closely approximated by the LoS path
alone, using the uniform spherical wave (USW) model [38].
The near-field LoS channel from the BS to the user can be
characterized as

hy, = VNhiby 0k, dr, 1), )

where 6, ¢, and rj represent the azimuth and elevation
angles, and the distance from the transmitter to user k£ and
the center of the RHS surface, respectively. Moreover, by(-)
is the steering vector of the kth user, which derived based on
the spherical wave model, where it samples both the angles
and the distance as follows [38]
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where (%7) indicates the distance between the (i, j)th element
of the RHS and the user.

The location of the (ng,n,)th element can be expressed
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Whlle the locatlon of the kth user can be represented as Lk =
[r) cos Oy sin ¢, — by, 7'k COS Ok Sin P, — Oy, , 71 COS ] The
distance from the kth user to the (ny,n,)th element of the
surface is then given by
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Unlike Dynamic Metasurface Antennas (DMA) and Holo-
graphic MIMO (HMIMO) architectures [39], where each feed
point connects to a row of metamaterial antennas in a sub-
connected manner without requiring additional phase shifters,
the considered RHS adopts a fully connected architecture with
calibration phase shifters. This design provides finer-grained
beam control and higher beamforming flexibility, at the ex-
pense of increased hardware complexity [11]. Compared to
DMA and HMIMO, the RHS enables continuous holographic
beamforming with improved near-field focusing capability.
We assume in this paper that the user is located in the
Fresnel region and not exceed Rayleigh distance, i.e. r >
Tmin = max{% 1;—3,1.2D and 7 < Tha = %2, where
D and ). denote the aperture size of the array and the carrier
wavelength, respectively. In this region, the amplitude varia-
tions between the antennas are considered negligible [38] [32].
It is also worth noting that when the r is sufficiently large,

r,(cn”’”y) ~ 1% — (0, cOs Oy sin ¢y, — 8, sin O, sin ¢y, )d, where
_ _ 2 —N, —1 . .
Op, = 2= 2NT L and §,, = =™—*—. Then, in this case

b(6, ¢, r) is equivalent to the conventional far-field steering

vector
1

a 97 — 1’ . 7€j7r(nx sin ¢ cos 0+n,, sin ¢ sin 0)’
(0.0) =
ejﬂ'(Nac sin ¢ cos 04N, sin ¢ sin 0)]T. (5)
The received signal at the kth user is given by
Yk = hgwkxk + Z thwjosj + ng, (6)

i#k
where the summation term ., hfw,xz; represents the
multi-user interference, which can be effectively mitigated

by employing precoding schemes [40]. The zj denotes the
symbol transmitted from the BS to the kth user, wy, represents



the codeword of the kth user, and ny ~ CAN(0,0?) is the
additive White Gaussian noise (AWGN) at the user with the
power of o2,

B. Problem formulation

In this paper, we aim to design an RHS-based multiuser
near-field codebook, we formulate the design problem of a
near-field codeword with optimal and hybrid RHS architecture,
respectively.

From the above received signal model, it can be observed
that the optimal codeword should align with the channel
response, specifically w; = by (0, ¢r, 7). In practice, beam
training is typically performed to establish a high-quality ini-
tial link prior to channel estimation and data transmission [17].

In the multi-user RHS-based system, to eliminate inter-user
interference, singular value decomposition (SVD)! can be used
to determine the optimal codeword design. Specifically, we
denote the SVD of the baseband equivalent channel H as

H=UAXY, 7

where A = {A1,)o,..., g} is a diagonal matrix with
diagonal elements representing singular values in descending
order, while U € CE*X and ¥ € CV*K are complex-
value unitary matrices. Since we focus on signal reception
in this paper, the combining vector on the user’s side is
represented as a vector rather than a matrix. Consequently,
the optimal codeword W* at the transmitter is designed as
W+ =[w},...,wi]T =3.

The ideal theoretical codeword W* can only be imple-
mented using a fully digital architecture, where each antenna
is equipped with a dedicated radio frequency (RF) chain
to enable complete digital signal processing. However, in a
holographic MIMO system, such a fully digital architecture re-
sults in prohibitively high energy consumption. Consequently,
a hybrid architecture is often preferred to improve energy
efficiency [10] [14]. Within this hybrid structure, it is essential
to design practical codewords that account for hardware con-
straints, such as the frequency responses of RHS elements [13]
and the limited number of RF chains.

Considering a hybrid RHS architecture shown in Fig. 1,
the digital architecture with M RF chains and holographic
architecture with NV elements in an RHS, the digital beamform-
ing vector for the kth user is vy = [V1 %, V2 k,--., UM k] €
CM>*1 and the holographic beamforming matrix is F =
Diag{v1,v2,...,¥n} € CN*N, where the 1) represents the
phase adjusted on the elements, and include the effect of
the hardware constraints of the RHS elements [13]. Details
regarding to hardware constraints will be discussed later in
section III.

To mitigate the impact of the location of the feed and
RHS element, we employ an excitation wave circuit based
on the discrete Fourier transform matrix (DFT) to define
an excitation wave circuit matrix ® € CN*M [10]. In the
excitation wave circuit between the mth feed and the nth

I Although it is more practical to employ the ZF method for multi-user
systems, the SVD method can help us unveil the performance limits of the
RHS-based multi-user systems [10].
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Fig. 2. Tllustration of the two-stage exhaustive beam training scheme.

RHS element, a calibration phase shifter with a phase of
Adp.m = % + kg - 7™ is applied to the reference
wave, and the excitation wave is generated by

[(I’]n,m — Lej(_kg"r?+A¢rz,nz) — LGJ%

VN VN
where Kk is the propagation vector of the reference wave, and
Lelement jg the position vector of the nth RHS element. The
calibration phase shifters are only used for initial calibration
and can be implemented digitally in practice, thus the addi-
tional hardware cost is negligible. They do not significantly
increase the real-time complexity of the RHS system.

Consequently, the receive signal of the kth user in the RHS-
aided MIMO system can be represented as

yr = hiIF®v, + ny. )

(8

Having established the system model, the next section will
introduce the design of an efficient beam training strategy
tailored for RHS-aided MIMO systems.

III. BEAM TRAINING SCHEME

In this section, we present an exhaustive beam training
scheme, followed by a proposed two-stage hierarchical method
that is more adaptable to RHS structures under hardware
constraints. In addition, we also introduce a practical beam
training scheme.

This section proposes a novel hierarchical beam training
strategy that differs from conventional near-field training by
explicitly incorporating RHS-specific hardware constraints,
including mutual coupling and practical element activation
patterns. These aspects are not addressed in prior works on
generic XL-MIMO beam training.

A. Two Stage Exhaustive Search Near-, Far-Field Beam Train-
ing

In near-field beam training, a beam search is required in both
the angular and the distance domains [41]. For the scenario
considered in this paper, a 3D search region encompasses the
azimuth and elevation angles in the angular domain, as well
as the distance domain.

Previous studies on near-field beam training schemes have
made the following key observation: when far-field beams are



used for beam training, the true spatial direction of the near-
field user typically lies near the center of the dominant angular
region, where beam power is sufficiently high [16]. Based
on this observation, [17] proposed a two-stage beam training
scheme. It is worth noting that this two-stage framework
seamlessly generalizes to far-field scenarios, wherein the initial
angular search aligns with classical beam training strategies.

In the exhaustive search beam training scheme, we also
apply the two-stage scheme. In the first stage, we employ the
far-field codebook to search on the angular domain, given by

wiE s, = @), 651 € [0,7], 8 € -7, 2]}
(10)

In far-field scenarios, the channel is primarily determined
by the angular direction, whereas near-field beam training
requires a joint search over both angular and distance domains.
As illustrated in Fig. 2, Stage I performs an exhaustive
search to identify the optimal angular direction. Based on the
estimated angle from Stage I, Stage II refines the process by
exhaustively searching the distance domain to determine the
optimal user location.

This process in stage II can be represented as

Wl(\IsFl,sz,ss) = {b(3), ¢{5) r5)) | S € [0, 7],

Sel-2. 7] Ssemy an
2°2

where M = {Tmin, - ,"max} € C(:58) and S5 is the
number of samples in the distance domain. When the search
distance exceeds the near-field range, the beam pattern de-
generates into a far-field form without spatial focusing. In
this case, the proposed joint angle-distance search strategy
naturally reduces to a conventional angular-domain search,
making it equally applicable to far-field users. Therefore, our
algorithm samples (S35 — 1) points within the near-field range,
and directly samples the last point at a longer far-field distance
once the near-field range is exceeded. The 7.« represents the
maximum radius distance in the near-field scenario, with each
distance logarithmically sampled as:

i—1
=1
_ Tmax | °3 —1.9
T = Tmin * ’ t=1,4,...
T'min

, S3. (12)
Based on the angular domain code book, we denote
(0, 6) = arg max(|b(0, ¢, 1)w(s, s, |*)- (13)

The optimal distance can be obtained based on near-field beam
training as
NF | 2 )

7 = arg mrax(|b(9, o, r)w(é,J),Sg)

(14)

B. 3D Two Stage Hierarchical Near-, Far-Field Beam Train-
ing

Due to the excessive number of samples required and the
activation of all transmit elements during each sampling in
the exhaustive beam training, significant training overhead is
incurred, particularly in RHS architectures with a large number
of transmission elements. To address this, a hierarchical beam
training scheme is applied.

[=))
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Fig. 3. Tllustration of the proposed two-stage hierarchical beam training
scheme.
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Fig. 4. Tllustration of element activation locations in the proposed two-stage
hierarchical beam training scheme.

The basic idea of hierarchical beam training is to initially
search for a coarse user direction using wide beams and then
progressively refine the user’s spatial direction with narrower
beams. The corresponding far-field hierarchical codebook can
be implemented using either deactivation techniques or a com-
bination of sub-array and deactivation techniques [24]. In this
scheme, the union of the angle and distance domains covered
by all codewords in each hierarchical layer should encompass
the entire domain. Furthermore, the coverage region of any
codeword in a given layer should be fully covered by the
union of several codewords in the next layer. Additionally,
within each layer, all codewords can be derived from a
single codeword by beam rotation, ensuring uniform size and
geometric shape.

The procedure of the proposed two-stage hierarchical beam
training scheme is shown in Fig. 3. The total number of layers
in our hierarchical codebook can be set as L; = L1 + Loy =
log, (N), with the upper- and lower-level codebooks consisting
of Ly and Lo, respectively.

In the bottom layers L, the optimal direction can be
identified by hierarchically searching the angular regions in
each layer. Based on the designed upper-level codebook, a
quadtree-based beam search can be used to search both on the
angular and distance regions.

In the first stage, SiI) and S’él) samples are taken in the
azimuth and elevation domains, respectively, for each layer.

l
In the Ith layer, the codebook contains a total of (S;I)Sg))

codewords, collected as Ml(l). Assume that in the first stage,
the P, = (z’g]), jg))th codeword is sampled. In the subse-



quent [th layers, the coarse direction is then estimated as

i 1
{01, 4y = M {Pu<1>+ I M

2 )

(1)
Pio(2) + (jf” L 1) } . as)
In Stage II, based on the coarse direction estimated in Stage I,
a near-field beam training process is applied to search across
both angular directions and distance. For far-field users, where
the channel response degenerates to a distance-invariant planar
wavefront, the additional distance sampling has negligible
impact on the beamforming performance, effectively reducing

the process to a conventional angular search
Suppose that S(H) S(H) nd S samples are taken
in the azimuth, elevation, and dlstance domains, respec-
tively, for each layer. In the [th layer, the codebook contains

(I=L1)
a total of (SyI)Sén)SéH)) ' codewords, collected as

M(H Assume that in the (L; 4 1)th layer, the Pr, 41 =
(Z(LIIIJ)FI, ](Ljﬁl,z(Llll)th codeword is sampled. In the subse-

quent the [th layers, the coarse direction is then estimated as

an
{91,¢1,Tz}_M(H){ 1(1)+<Z'1(H) U ),

2
(I1)
+1
P_1(2)+ (JZ(H) j12> )
(I1)
+1
Pi1(3) + <z§”> - %2> } .
(16)

The beam gain of the codeword w along the position (6, ¢, )
is defined as

G(w,0,¢,7) = |w'b(0,0,7)].

In the hierarchical beam training scheme, the number of
active elements differs in each layer to generate beams of
varying widths, allowing for a search from a wide range to
a narrow range. In the practical case, the RHS elements are
tightly arranged in a constrained area, and hence, the effect of
mutual coupling should be carefully taken into consideration.
To better study the effect of the distance between activated
antennas on mutual coupling, we proposed two schemes,
where the active location maps are shown in Fig. 4. In the
following, we introduce the layout of the activation element of
the two schemes, and the simulation results will be presented
in section V.

The first is the center-active scheme, where an active index
l, is used to activate 2la elements in the first layer, located
in the center of the surface. The number of active elements
doubles in each subsequent layer until all elements are fully
activated.

The second scheme is a sparse active scheme, where
Noy = N/(Ly —1, —1) elements are activated in the [th layer.
The sparse active matrix is defined as U, with the following
dimensions

a7

_l' alN

Iuy =T/ =1

(18)

TABLE I
IMPERFECT HARDWARE FREQUENCY RESPONSE OF RHS ELEMENTS
UNDER DIFFERENT CONSTRAINTS.

Frequency response
Y €la,b,b>a>0
Y ed-{0,1},d >0

pe {2} ceo2n]

Mode [

Amplitude-only
Binary Amplitude

Lorentzian Phase Constrain

To determine the number of active antennas in the horizontal

and vertical directions, denoted as u, and u,, respectively, we

Na‘I,'N:c
compute u; as u, = =
Y

Nt
Ug

The spacing between active antennas in the horizontal
direction is given by A, = uN —il’ While the spacing in the
vertical direction is defined as A, +1 The positions of
the active antennas are then determlned by placing them at
indices x; and y; in the horizontal and vertical directions,
respectively, where z; = |i-A,]| and y; = |j-A,], for
t=1,...,uz and j=1,..., u,.

The resultlng activation matrix U is an N, X N, matrix
where the element U (x, y) is set to 1 if the antenna at position
(z,y) is active and O otherwise. Mathematically, this can be
expressed as

Ulz,y) = {1

0 otherwise.

J and subsequently calculate

Uy aAS Uy =

if v =x; and y = y;, (19)

This method ensures that N, ; active antennas are distributed
throughout the array with the horizontal and vertical maximum
spacing possible. The training overhead of these two schemes
is analyzed in Section IV.

C. Practical Beam Training Scheme

In this section, we present a joint codeword optimization
algorithm aimed at maximizing the achievable rate at the
receiving end. This is achieved by jointly optimizing the
beamforming matrix at the transmission side and the phase
shift matrix of the RHS, while accounting for the imperfect
hardware frequency response of RHS elements under various
constraints, as detailed in the Table II [13] [31].

The aim of designing a codeword is to make the beam
pattern obtained by the codeword as close as possible to
the ideal codeword w*. We can easily obtain the theoretical
optimal codeword by SVD decomposition as in [10]. Upon
obtaining the theoretical optimal codeword w, for each user,
and defining W* = [w7},..., wi]|T, the practical codeword
under a hybrid RHS architecture can be formulated as a

minimization problem as
K

min wi — Fdvy|?
min > i~ Fov| o0

s.t. F = Diag{v1,v2,...,¥N}.

Here, we propose a alternative optimization (AO) algorithm
to optimize the holographic beamforming matrix F and the
active beamforming vector vy, alternatively. When fixing the
value of F', the value of vy, can be directly solved by the Least
Squared (LS) method as



Algorithm 1 AO Optimization Algorithm for Hybrid Beam-
forming under Hardware Constraints
1: Initialize ¢ randomly under constraints.
2: F < Diag(¢y), vi < pinv(F®)w;
for 1 = 1 to max_iter do
4: Update vi using (21).
if Binary Amplitude Mode then
5: Compute all binary combinations in each ,, satis-
fying (22).
if f1.(¥n) < fa(Yopt) then
6: q/jopt = 1/%-
end if
else
7: Compute gradient V f (1)) using (24) or (27).
8: Update v using the gradient descent algorithm and
project constraints by (25) or (28).
end if
9: Update F.
end for
10: Return v, ¢, F, wi = F®vy.

Vopt .k = pinv(F®)wj, 21
where the pinv(-) defines the pseudo-inverse of matrix. Then,
for the given value of vy, the optimization problem of solving
F under different hardware constraints can be expressed as

K

minz Wi — F®vey |2
v

(22)
s.t. 1, € {constraint in Table II}
F= Diag{d’lﬂ/’% s 7¢N}
The objective function can be written as
f@) = |W" —FaeV|?, (23)

where V. = [vy,...,vk|. To obtain the solution to (22)
under the discrete binary amplitude constraint, we apply an
exhaustive search, where all combinations of 1, %, ..., ¥nN,
when 1),, € d-{0,1} are tested to minimize the objective func-
tion. However, the computational complexity of the exhaustive
search method is extremely high. In this case, we apply a
highly efficient individual search method proposed in [14],
where each v, is determined separately in each iteration. This
method naturally satisfies the convergence condition that the
square error between the theoretical codeword and the practical
codeword in each iteration decreases, which greatly reduces
the computational complexity in the exhaustive search.

When solving (22) under the continuous constraints of the
amplitude-only and Lorentzian phase constraints, we apply
the gradient descent optimization method. Let us look at the
gradient of the objective function for the two cases. For the
amplitude-only constraints case, the gradient of the objective
function (23) is given by

Vyf() = —2Re[(®V) © (W" — Diag(¢)@V)], (24)

and the update rule is
YD = @ — o, f (D), Y € [a,b], b > a > 0.
(25)
For the Lorentzian phase constraints case, as detailed in the Ta-
ble II, we define the hardware constraint for the Lorentzian

mode as L e
pe {”26 } ¢ €0, 2n].

(26)

The gradient of the objective function (23) is expressed as

(tI)V@ <W*—Diag (;(j + ej<)> <I>V>>
o <;je-7<> ] (27)

¢l = ) _ ach(Q(i)), Y= % (U + ejC) ’

where ¢ € [0,2n] represents the Lorentzian-type phase pa-
rameter governing the electromagnetic response of each RHS
element, as defined in Table II. The proposed optimization
process is detailed in Algorithm 1.

Having detailed the practical codeword design, we now
analyze the fundamental beam properties of RHS-based archi-
tectures, with a particular focus on asymptotic orthogonality
and training overhead in Section IV.

V() = ~2Re

with the update rule is given by

(28)

IV. ANALYSIS OF ASYMPTOTIC ORTHOGONALITY AND
TRAINING OVERHEAD

To further analyze the impact of the RHS size and shape on
the properties of near-field beam focusing vectors, this section
investigates the asymptotic orthogonality of near-field beam
focusing vectors for RHSs of different sizes. Additionally, this
section examines the training overhead of the proposed beam
training schemes in various 3D spatial configurations.

In contrast to existing works that consider beam orthogonal-
ity under idealized far-field assumptions, this section provides
a near-field asymptotic analysis tailored to RHS structures with
rectangular and square geometries. The impact of aperture
shape on depth resolution and spatial focusing accuracy is
theoretically and numerically characterized for the first time.

A. Asymptotic Orthogonality Analysis

In this section, we assume that there is only one user
located in the Fresnel region and does not exceed the Rayleigh
distance of the RHS transmitter. The distance between the
(ng,ny)th element of the RHS and the user, based on the
near-field spherical wave propagation model, can be expressed
as in (29). The approximation (a) of (29) is derived using the
second-order Taylor series expansion 1+ 2z =1+ 3 — % +
O(2?). The approximation (b) of (29) has been shown in [15]
to result in a beamforming loss of no more than 5% in the
Fresnel region when the bilinear quadratic term is ignored. If
the approximated near-field spherical wave model is adopted,
the correlation of two beams b (1,6, ¢) and b* (r,,,0, ¢)
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Fig. 5. Numerical results of the correlation as a function of By for different
RHSs shapes in a system operating at 30 GHz, sampled at 6 = 7 /3.
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Fig. 6. Numerical results of the correlation as a function of By for different
RHSs shapes in a system operating at 30 GHz, sampled at 6 =~ /2.

vectors focusing in the same direction but different distances
can be formulated as (30). The approximation (c) of (29)
has been proven in [15] where G(8) = w, with
C(-) and S(-) denoting the Fresnel functions written as
C(z) = [ cos (5t?) dt and S(z) = [ sin (5¢2) dt. In (30),
the parameter is derived as

N2d2 (1 — cos? §sin® ¢) | 1 1
8 = ( e
2 T Tm
N2d2 (1 —sin®#fsin? @) | 1 1
B2 = v ( )—f—. (32)
2\ L Tm
Let 8o =/ & - — 7|, then the 8, and f3; can be expressed
as
B = \/sz (1 — cos2 fsin? ¢)BO, (33)
and
B2 = /N2 (1 - sin” Osin® 6) . (34)

Radius Distance (m)

Fig. 7. Normalized beam gain under RHSs operating at 30 GHz with different
size while focusing on the same point at 6 = 7/3, ¢ = 7/6, and r = 15 m.

The numerical results for the correlation of beams as a function
of [y at different distances but in the same direction are shown
in Fig. 5 and Fig. 6 for various values of §; and different RHS
sizes, with ¢ = 7/6.

From (29) and (30), we observe that the asymptotic cor-
relation decay between beams focusing at different distances
depends on the spatial aperture size along both dimensions.
Given a fixed total number of elements, a rectangular RHS
(with greater disparity between N, and IV,) exhibits stronger
beam decorrelation in the distance domain due to the enhanced
variation of 31 and fs. This implies improved depth resolution
in near-field beam focusing. As shown in Fig. 5 and Fig. 6, the
beam correlation as a function of 3y decays more rapidly when
the RHS surface is rectangular, indicating enhanced beam
orthogonality in radial distance. This conclusion is further
supported by the gain profile in Fig. 7, where a rectangular
RHS exhibits a narrower 3 dB beam depth [32] and faster
gain decay along the distance axis compared to a square
RHS, thereby demonstrating higher distance resolution and
supporting the assertion that rectangular surfaces offer superior
beam orthogonality in the distance domain.

Then, we analyze the correlation between the beams of
b* (r,0;,¢;) and b (r,0,,, ¢,,) in the same direction but at
a different distance, which can be expressed in (35), where
cos 0, sin ¢, — cosO;sin¢;, €3 = sin b, sin ¢, —
sin 6 sin ¢y, €3 = cos? 0, sin? ¢, — cos? 0, sin’ ¢; and €4 =
sin? 6,,, sin’ Om — sin? 6, sin® 1.

In (35), the bilinear quadratic term involving €3 and €4 is
coupled with the squared terms of the two angular param-
eters. In our two-stage hierarchical beam sweeping design,

€1 =
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(35
1 ‘ As observed from Fig. 8 and Fig. 9, the convergence speed
o8} vl of the beam correlation with respect to 3, varies across
%0_6, IRV different angles for RHSs of different shapes at the two
TE 04l sampled angles. This indicates that, when the distance is fixed
s R but the angle varies, the impact of the RHS shape on beam
correlation is not constant. Specifically, the rectangular and
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Fig. 8. Numerical results of the correlation as a function of B¢ for different
RHSs shapes in a system operating at 30 GHz, sampled at §; = 7 /3.
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Fig. 9. Numerical results of the correlation as a function of gy for different
RHSs shapes in a system operating at 30 GHz, sampled at 6; ~ 7/2.

the primary direction is identified through far-field beam
search. Therefore, we consider the correlation between two
far-field beams oriented in different directions. To simplify the
equation, we approximate it to a far-field scenario by assuming
% ~ 0, then (35) can be simplified as

Nz /2 Ny /2
/ eI X nedabo gy, / e X mdBodn, - (36)
—N. /2 —N, /2
where
€1 €2
a = b = .
’ (37
S(E+e) L(E+e)
By defining
dafo dbpo
= N, —— Ny, 38
61 AN x> 52 AN ( )

we can transform the integrals in (36) into the form of Fresnel
functions as

Br i 5t: P2 ci%ts
/ dt / dty = |G(B1)G ().
o P o B

The numerical results for the correlation of beams as a function
of 3y at different distances but in the same direction are shown
in Fig. 8 and Fig. 9 for various values of §; and different RHS
sizes, with ¢,,, = ¢; = 7/6 and 6,, = 7/3.

(39)

square RHSs can provide different correlations for beam focus
at different angles. Therefore, in this analysis scenario, the
shape of the RHS is not considered a primary factor.

In summary, based on the analysis of RHS beam character-
istics in different directions and distances, choosing a rectan-
gular RHS surface for transmission is advantageous for precise
beam depth control in near-field scenarios. Consequently, in
subsequent simulations, we mainly adopt a rectangular antenna
array design. However, it is important to note that the beam
control accuracy and beamwidth in each direction are also
influenced by the number of elements along that direction.
Therefore, the number of elements on the edges of the antenna
array must be carefully chosen.

B. Training Overhead Analysis

In this section, we analyze and compare the training over-
head of three beam training schemes: the two-stage centering
active (CA) hierarchical beam training scheme, the two-stage
sparse active (SA) hierarchical beam training scheme, and the
two-stage exhaustive search scheme. The training overhead is
defined as the total number of operations required to activate
and search across the antenna elements during the beam
training process.

For the CA scheme, the number of activated antennas in
the first layer is given by N/2!, where N is the total number
of antennas, and [, is the starter index, which controls the
number of active antennas in the initial layer. In subsequent
layers, the number of activated antennas doubles until all NV
antennas are fully activated in the final layer. The total training
overhead I is calculated as

il N
Tea Zsmsm min{2la+l_1,N}

=1
+ Ly - SUDSIDSUD N - (40)

where L and Lo represent the number of layers in the first and
second stages, respectively. S’g) and Sél) denote the number
of samples in the angular domain in the first stage, while
S §H), Sén), and Sén) represent the number of samples in the
angular and distance domains in the second stage, respectively.

In the SA scheme, the number of activated antennas starts
with N/, in the first layer and gradually increases by a factor
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Fig. 10. Training overhead of various beam training schemes (CA: Center
Active, SA: Sparse Active) for different numbers of RHS elements.

of [—1 in each subsequent layer until all antennas are activated.
The total training overhead Tg, is expressed as

Ly
N
Tex — Do) yind Y N
SA ;Sl S5 - min I L i1

+ Ly - SUDSHDSUNN - a1y

The Exhaustive Search scheme involves activating all N
antennas in all layers. After determining the direction in the
angular domain, a distance domain sampling is performed. The
training overhead Tgx for this scheme is given by

Tex = (5152 + S3) - N, (42)

where S7 and S, are the sampling numbers in the two angles
of the angular domain and S5 is the sampling number in the
distance domain. Figure 10 illustrates the training overhead as
a function of the number of antennas N for the three beam
training schemes while S’g) = Sél) = S§”) = S’én) =2
and S:,()H) = 4. The results show that the CA and SA
schemes significantly reduce the training overhead compared
to the exhaustive search scheme, particularly as the number
of antennas increases. Although the CA scheme has slightly
lower training overhead than the SA scheme, the simulation
performance of these schemes is presented in Section V.

C. Computational Complexity Analysis

In the following, we quantify the computational complexity
of the proposed AO-based beam training algorithm. In each
iteration, let &K be the number of users, M denotes the number
of RF chains, and N represents the number of RHS elements.
The primary computational steps include a pseudoinverse
operation of size N x M with complexity O(NM), and
a gradient computation per element of v or (, incurring a
per-user cost of O(N). Therefore, for K users, the total
complexity per iteration scales approximately as O(KNM).

Then, in each iteration, the total complexity is approxi-
mately

O(K(NM + N)) = O(KNM). (43)

In practical settings for example using N = 512, M = 16,
K = 4, this leads to a per-iteration complexity on the
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Fig. 11. Comparison of the achievable rate in MISO system, when varying
the beam training scheme .

order of 3 x 10* operations. Given the rapid convergence
within fewer than 8§ iterations (as shown in Fig. 13), the total
computational complexity remains under 2.4 x 10° operations.
This is substantially lower than that of the exhaustive search,
which requires O(N - 515253) ~ 107 beam evaluations per
user, for example, when S; = So = 64 and S3 = 50.

Compared to fully digital architectures, which assume per-
fect per-element control and incur full-size matrix SVD with
complexity O(N?), our scheme offers substantial savings
in both computation and control signaling, making it well
suited for real-time multi-user scenarios with dynamic channel
conditions.

V. SIMULATION RESULTS

In this section, we present the simulation results of the
achievable rate to validate the effectiveness of our proposed
beam training schemes under the proposed hybrid RHS struc-
ture, considering different modes of RHS surface hardware
constraints. The Monte Carlo method is used with 10° iter-
ations. Specifically, we consider an RHS-aided MIMO com-
munication system with N, = 32, N, = 16, f = 30 GHz,
M =32, and 8 = (ﬁ)2 = —53 dB. The reference SNR of
the system is defined as SNR = % [16], where the noise
power is set to o2 = —70 dBm. Moreover, the achievable rate
is given by

K
Z 'y P3N |hi 2
k=1

2.2
TLo

where I'y, is a power allocation parameter which can be
calculated based on the water-filling method [42].

In Fig. 11, we compare the achievable rate versus SNR
for different beam training schemes under both near-field and
far-field conditions. The size of the RHS elements is set
to d, = dy, = A/2, and the user is randomly positioned
within the angular search domain and the near-field distance
domain. We observe that the proposed two-stage exhaustive
beam training scheme performs nearly as well as the perfect
CSI based fully digital result. Additionally, the two proposed
hierarchical schemes achieve satisfactory performance with
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Fig. 12. Comparison of the achievable rate in MISO system, when varying the
beam training scheme of exhausted and hierarchical under different hardware
constrains (binary, amplitude and Lorenzian constrain).

lower training overhead, without significantly compromising
the rate performance compared to the exhaustive near-field
beam training scheme. It is also evident that our proposed
scheme consistently outperforms the far-field exhaustive and
hierarchical beam training scheme.

In Fig. 12, we simulate the performance of different beam
training schemes under various RHS hardware constraints, as
detailed in Table II with @ = 0, b = 1, and d = 1. From the
simulation results, we observe that the practical beam training
scheme achieves satisfactory performance compared to the
fully digital design with hardware constraints. The Lorentzian
phase constrain based scheme outperforms the amplitude-only
constrained and binary amplitude constrained based schemes
by providing a continuous frequency response in both the
real and imaginary parts. Additionally, the amplitude-only
constrained scheme performs better than the binary amplitude
constrained scheme due to its continuous frequency response,
as opposed to the binary response. Furthermore, the CA and
SA hierarchical schemes exhibit similar performance, despite
differing training overhead. For brevity, we refer to the center
active and sparse active hierarchical beam training schemes as
CA and SA, respectively. Since these two schemes activate
a different number and arrangement of RHS elements in
each layer, mutual coupling effects also warrant consideration,
where the corresponding performance is shown in Fig. 16.

Fig. 11 and Fig. 12 demonstrated that the CA and SA
hierarchical schemes exhibit similar performance. Hence, we
only employ the CA scheme with lower overhead training
in Fig. 13 and Fig. 14 as an example of the hierarchical
beam training scheme to analyze other influencing factors.
In Fig. 13, we simulate the performance of different beam
training schemes under various hardware constraints of RHS
with respect to the number of iterations in the proposed
alternating optimization algorithm, as detailed in Algorithm 1.
Although the proposed AO algorithm does not offer strict the-
oretical convergence guarantees, each iteration involves either
a closed-form update via pseudo-inverse or a gradient descent
step that monotonically decreases the cost function. The results
show that the convergence speed of our proposed alternating
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Fig. 13. Comparison of the achievable rate when varying the iteration times
in alternative optimization optimization.
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Fig. 14. Comparison of the achievable rate when varying the number of users
and the number of feeds under different beam training scheme of exhausted
and hierarchical under different hardware constrains (binary, amplitude and
Lorenzian constrain).

optimization algorithm is excellent. Furthermore, the algorithm
converges within fewer than 8 iterations, validating its practical
efficiency and stability in the RHS-aided hybrid beamforming
architecture.

In Fig. 14, we simulate the performance of different beam
training schemes in a multi-user scenario with various RHS
hardware constraints and different numbers of feeds in an
RHS-aided hybrid beamforming architecture. The results show
that the system’s performance increases almost linearly with
the number of users when the number of feeds is M = 128.
However, when M = 32, the system cannot provide a very
high rate for multi-user scenarios when the number of users
exceeds four. Additionally, it can be seen that the contin-
uous Lorentzian phase constrain mode and the amplitude-
only constrained mode achieve better performance than the
binary-constrained scheme as the number of users increases,
due to their continuously adjustable amplitude and phase
characteristics.

In practice, CSI estimation for RHS systems is highly
challenging due to the large number of elements. To evaluate
robustness against imperfect CSI, we model the estimated
channel as hfl = hil + hfl,. The channel estimation er-
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Fig. 15. Comparison of the achievable rate when varying the varying
the channel estimation error under different hardware constrains (binary,
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Fig. 16. Comparison of the achievable rate when varying RHS element size
and hierarchical beam training scheme when existing mutual coupling between
RHS elements.

ror components th’e follow a complex normal distribution
CN(0,0I), where o denotes the variance of the estimation
error [40] [43]. In Fig. 15, we evaluate the impact of imperfect
CSI under different hardware constraint models. The CSI
perturbation is modeled as complex Gaussian noise with zero
mean and standard deviation o. As ¢ increases from 0 to 0.5,
the achievable rate of all schemes declines, with the binary
model showing the most degradation due to its coarse quanti-
zation characteristics. In contrast, the Lorentzian-based design
exhibits superior robustness, maintaining higher performance
across all SNR levels and CSI error variances. These results
clearly demonstrate the effectiveness and robustness of the
proposed beam training scheme.

As the previous simulation results show, the CA and SA
hierarchical schemes exhibit similar performance, despite dif-
fering training overhead. However, we take the mutual cou-
pling between the RHS elements into consideration because
the active elements’ locations of the RHS differ between the
CA and SA schemes.

For the general case where there exists mutual coupling, we
adopt the Z-parameter representation, which is a standard way
to model this effect. The C € CV*¥ is the mutual coupling

matrix given by [13]
C=(Za+2Z1)(Z+ 2D, (45)

where Z, is the antenna impedance and Zi, is the load

impedance. Both Z, and Zi, are fixed to 50 Ohms . The
mutual impedance matrix Z is formulated as
Zn  Zi2 Z1N
Zo1  Za ZaN

Z = (46)
ZN1  ZN2 ZA

The off-diagonal elements of the mutual impedance matrix
Z when m # n are calculated as:

Zmn = 60 Ci(kdpmn) — 30 Ci(kn/d2,,, + 12 + 1)
—30Ci(k\/d2,,, +t*> — 1) — 605 Si(kdmn)
+ 305 Si(k\/d2,, + 2+ 0) + 305 Si(k\/d2,, + 2 — 1)

47

where Kk = 27” denotes the wavenumber and d,,, represents

the distance between dipoles m and n. The symbol ¢ is used to
denote the length of the dipoles, we define ¢ = 10/ here. The
functions Ci(x) and Si(x) refer to the cosine integral function
and the sine integral function, respectively. In addition, j
represents the imaginary unit. The sine integral function Si(x)
is defined as:

€ gin(t
Si(z) = / sin(t) 48)
O t
while the cosine integral function Ci(z) is defined as
e t
Ci(z) = — / Coi( ) at. 49)

In Fig. 16, we simulate the performance of different beam
training schemes versus various reference SNRs with different
RHS element sizes. The results shown in the figure correspond
to a scenario where the total number of active elements
equals N/8. We observe that, when considering the effects
of mutual coupling, the SA hierarchical scheme achieves
better performance than the CA scheme due to the sparser
distribution of active elements on the surface. Moreover, the
system provides a higher achievable rate as the size of the
RHS elements increases.

VI. CONCLUSION

In this paper, we proposed a novel hierarchical beam
training scheme for RHS-aided MIMO systems, which enables
efficient 3D beam scanning in near-field and far-field scenar-
i0s. Our proposed scheme is also suited to addressing the
challenges of RHS design, including hardware constraints and
mutual coupling effects. The introduction of practical beam
training and activation schemes further enhances the feasibility
of RHS-based systems. The findings on beam orthogonality
in different RHS shapes provide valuable insight to optimize
beamforming performance, which makes it better suited for
complex MIMO environments.



The proposed hierarchical beam training framework is in-
herently suitable for 3D space applications, enabling potential
extensions to UAV-assisted communications as well as inte-
grated sensing and communications. Future work may explore
joint beam training and localization strategies to support 3D
user sensing and tracking.
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