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ARTICLE INFO ABSTRACT

Keywords: Standard machine learning predictors become more effective as larger input datasets are made available. While
Data compression this is desirable for enhancing predictive power, it often implies substantial computational costs. One feasible
Coresets

approach to mitigate this issue is to replace large datasets with smaller, carefully crafted representations that
retain the essential properties of the original data. In this paper, we revisit the exploration of this approach
through the interaction of coresets - small, provably correct summaries of data - and Conformal Prediction, a
robust and general method for calibrating machine learning predictions. Specifically, we build on existing work
to introduce Conformal Compressors, a method inspired by coresets that leverages Conformal Prediction for data
compression. Initial results indicate that these compressors effectively capture meaningful information from the
data while demonstrating significantly better stability and reliability compared to Uniform Random Sampling

Conformal prediction

and state-of-the-art coreset constructions.

1. Introduction

Modern machine learning systems increasingly rely on vast amounts
of data to generalise successfully across a wide range of predictive tasks.
The “success” of a learner is often assessed through its error bounds [1],
which are closely tied to the volume of data utilised during the learning
process. Essentially, having more information enhances the likelihood of
effective generalisation. However, the algorithmic implications of deal-
ing with large datasets can lead to the depletion of computational re-
sources and storage capacity, rendering the task of uncovering patterns
within these extensive datasets quite challenging.

A line of work started in Riquelme-Granada et al. [2] explored the im-
plications of using a surrogate dataset, a coreset [3], to speed-up the in-
stantiation of Conformal Prediction (CP) [4]: a frequentist framework to
statistically calibrate the prediction of standard machine learning algo-
rithms such as logistic regression, support vector machines, neural net-
works, etc. Such calibration process generates set-valued predictions that
are subject to strong error bounds. Riquelme-Granada et al. [2] demon-
strated that an effective data compression methodology can not only
save significant computing time during training but also retain impor-
tant properties of the original dataset, as measured by the efficiency of
the resulting conformal predictors. Similar arguments were presented
in Riquelme-Granada et al. [5] regarding the probability calibration of
Venn-Abers predictors [6], which were instantiated over small coresets
for the problem of Support Vector Machines.
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In this work, we will further pursue the aforementioned line of re-
search that integrates the concepts of data compression and conformal
prediction, but with an important twist: we propose to reverse the argu-
ments presented in Riquelme-Granada et al. [2] and explore the idea of
utilising CP to identify a meaningful representation of a dataset, which
can then be employed for machine learning tasks. That is, instead of
using conformal prediction as a post hoc procedure to scrutinise the cali-
bration of learners trained on compressed data, we propose to use CP as
a tool for computing the data compression itself. Technically, we draw
parallels between the concept of non-conformity scores from CP and that
of sensitivity from the coreset literature [7], proposing an importance
sampling distribution concentrated on these scores for performing data
selection. Similar to Riquelme-Granada et al.[2], we assume a Logistic
Regression (LR) setting. We refer to this new method for reducing data
complexity as Conformal Compressors (CC), and in the next couple of
pages, we will present its motivation and examine its potential.

The contributions of our work can be summarised as follows:

¢ Conformal Compressors: Inspired by the algorithmic framework of
coresets, we propose the novel idea of using conformal information
generated by CP to define a measure of importance for data points
in a dataset. This notion is then used to non-uniformly sample rep-
resentative examples from the dataset and collect them into a small
summary of data, whose size is just a small fraction, e.g. 1%, of the
original dataset size.
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¢ Empirical results: We present initial empirical results for the perfor-
mance of CC on public datasets. As is standard in the data reduction
literature, we compare our idea against Uniform Random Sampling
(URS) and recent coreset constructions for LR. Our results indicate
that CC is preferable over both URS and coresets because the predic-
tors trained over the resulting summaries exhibit higher and more
stable predictive performance.

« Extension of the research initiated by Riquelme-Granada et al. [2]:
We extend the foundational work established by Riquelme et al.
by introducing innovative methodologies that apply the principles
of coreset construction within the context of conformal prediction.
Hence, we continue to advance this line of research that explores the
interplay between Reliable Machine Learning [8] and Data Compres-
sion.

The paper is organised as follows. Section 2 discusses the Logistic
Regression learning problem and conformal prediction. Section 3 covers
preliminaries for coresets and introduces our main contribution: Confor-
mal Compressors. In Section 4, we present empirical results and discus-
sions on the initial findings on conformal compressors. Section 5 pro-
vides an overview of related work. Finally, we summarise our contribu-
tions and outline future research directions in Section 6.

2. Binary Logistic Regression and Conformal Prediction

In this section, we provide a comprehensive overview of the problem
of Logistic Regression (LR), alongside standard concepts from conformal
prediction, addressing both its transductive and inductive versions.

2.1. Binary classification with Logistic Regression

Our focus is on the binary classification problem using logistic re-
gression, a widely recognised form of a generalised linear model. We
choose the binary framework as it simplifies the discussion and is easily
extendable to multi-class situations through approaches such as “one-
against-all” or “one-against-one” [9].

Formally, consider a dataset D := {(x,,y,)}\, where x, € R*! rep-
resents a feature vector extended with a 1 to account for the bias term and
v, €Y its corresponding label. Let Y = {—1, 1} be a binary label space.
For LR, the probability of observing y, = 1, the positive case, given pa-
rameters § € RY*! is defined as:

Plagistic(yn = llxn;e) = 1 +6Xp(l—xn ‘ 0) (1)

For observing the negative case, y, = —1, the logistic probability is:

. 1
Progisiic(Vn = —11x,30) 1= m. (2)

Combining the definitions in Eqs. (1) and (2), we write the likelihood
for observing any label y, as:

1

I+ exp(_ynxn - 0) @

plagisric (yn Ixn; 9) =

Using the per-point likelihood defined in Eq. (3), and applying the log-
arithmic function as in Shalev-Shwartz and Ben-David [10], we obtain
the log-likelihood function, which aggregates over the full dataset of N
observations, D, as follows:

N
LLy(OID) := = Y In(l + exp(=y, X, - 0)). )
n=1
Eq. (4) is the objective function for LR, where we seek the optimal pa-
rameter § by maximising the log-likelihood function LL (6|D). In prac-
tice, however, it is more standard to minimise the negative log-likelihood
over § € R4+1:

Ly @ID) := ~LLy(0|D)

N
= ) In(l +exp(-y,x, - 0).

n=1
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Hence, the LR optimisation problem is written as in Eq. (5):
0" =arg mingepa+r1 Ly (0|D). 5)

Our work relies on exploiting redundancy in the data, as not all points
in the dataset contribute equally to the learning process. Some points are
more significant in influencing Eq. 5, which forms the basis of our strat-
egy: to identify and assign weights to points based on their contribution
to the LR optimisation problem. The basis for identifying such points
lies in using non-conformity scores from CP, which we introduce in the
next section, and importance sampling from Coresets, which we detail
in Section 3.

2.2. Conformal Prediction framework

We now present the necessary technical details to inscribe the ma-
chine learning (ML) setting described in the previous section within the
CP framework. First, we define CP in its original, transductive setting;
then we extend the definitions to the more standard inductive ML sce-
nario.

Conformal Predictors, as discussed in Vovk et al.[11], are a type of
Confidence Predictor that measure conformity to generate prediction
sets for each test object, containing a p-value for each potential label.
These p-values provide a robust measure of reliability, reflecting the
probability of an object possessing a particular label under the IID as-
sumption.

In this subsection, we adopt a compact notation for representing fea-
ture vectors and labels: z; = (x;, y;) denotes the i-th example in the finite
sequence Z*. As defined in Section 2.1, x; € R¥*! and y, € {1,-1}.

Given any natural number N, a non-conformity measure .A assigns
a sequence of real-valued non-conformity scores («,, a,, ..., ay) to each
sequence (z;, z,, ... , Zy ), Maintaining invariance with permutations [8].
For an unlabelled object x ., the Conformal Predictor, determined by
A, is defined as in Vovk et al. [12]:

(21, 2p, 02N XNgp) = {y 1 pY > €, (6)

where ¢ € [0, 1] is a user-defined significance level and, for each y € Y,
the p-value p” is defined as:

P Ly y
Hi=12,....N+1:!a Z(XNHH

= N+1 )
The non-conformity scores are given by:
(af @y, ay,ay, ) 1= A2y 2, s 2y Oy V) ®

In the CP framework, existing machine learning algorithms, termed
single-point predictors, serve as subroutines. They are integral for defining
A, as outlined in Vovk et al. [11].

The process for computing the prediction set in Eq. (6) may vary
depending on the specific problem context. For a feature vector x i,
we compute Eq. (7) per pair (xy,,y)Vy € Y and filter the |Y| p-values
via Eq. (6). This procedure is repeated for each subsequent example.

To build more intuition on these fundamental formulations
in CP, each ¢; in Eq. (8) is really a score that measures the
strangeness of example z; with respect to the rest of the examples
(21,29, -, Zi_1» Ziy1» -+ » ZN» (X415, ¥). The greater the score, the more
unusual the example is, according to .A. Since the goal of measuring non-
conformity is to make a statement about whether the pairing (xy,, ) is
a reasonable one, Eq. (7) compares the relative strangeness of this pair,
i.e., with respect to the strangeness of all other examples. If a large frac-
tion of ¢; are larger than ay . (the strangeness score of object x ., ; with
a postulated label y 1), then it is likely that y is a good label for x|,
since this event is not very strange. If the opposite happens and most of
the ¢; are smaller than ay ., then this indicates that y is indeed a very

! This is why we write y and not yy,,. y represents only the hypothetical case
where it is the true label for the new object x,,,, while yy, is the true label for
the object.
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strange label for x ;. Eq. (7) conveys this information in the form of a
p-value for each y € Y, where high values indicate stronger evidence for
y being a good label candidate for x|, and low values indicate a lack
of evidence supporting that belief. Finally, after obtaining one p-value
for each y € Y, Eq. (6) produces the final prediction set that includes all
labels for which Eq. (7) assigned p-values greater than the significance
level e. CP guarantees that the true label yy,; will be included in the
prediction set from Eq. (6) with probability at least 1 — e [11].

2.2.1. Inductive Conformal Predictors

Examining the definitions of Conformal Predictors reveals their orig-
inal design for an online setting, benefitting from improved prediction
accuracy as the training sequence lengthens. Nonetheless, they require
recomputation from scratch for every new example. Consequently, these
transductive algorithms quickly become computationally expensive for
large data sets, limiting their applicability.

Inductive Conformal Predictors (ICPs) [13] offer an inductive alterna-
tive, enhancing the usability of their transductive counterparts by miti-
gating computational demands and relaxing the online constraint. The
trade-off involves reduced validity and efficiency, resulting in less pre-
cise and larger prediction sets. For an in-depth discussion on transductive
versus inductive learning, refer to Vapnik [14].

To utilise ICPs, the training set (z,, z,, ..., zy) is divided into:

e The proper training set (z;, z,, ..., z,,) of size m < N;
¢ The calibration set (z,,,1, Zy42, ..., Zy) Of size N — m.

Typically, the training set is larger than the calibration set. The def-
initions from Section 2.2 adapt to this setting: the non-conformity mea-
sure A : Z™ x Z — R requires:

e |{i=m+1,m+2,...,N+1:aiyZaf\Hl}l ©
N-m+1 ’
with non-conformity scores:

o = AZ1,2p, -, 2y, 2), i=m+ Lm+2,... N (10)
ajli/+l = A2y, 29, v s Zyps (XN 415 V) an

Notice that Egs. (9) and (10) are re-definitions of Egs. (7) and (8),
respectively. The modifications are subtle: they depict the same com-
putations with the important difference that they are performed over
the calibration set, which is of fixed size. Hence, ICPs evaluate the con-
formity of a new example in relation to the training set and calibration
set. They significantly reduce computation time by calculating the non-
conformity measure for each calibration example only once. A single
non-conformity score is computed for each new example to compare
against existing scores, making ICPs advantageous for large-scale ma-
chine learning compared to CPs. Riquelme-Granada et al.[2] reveals
how a coreset-based strategy can further enhance the instantiation of
ICP in terms of computing time.

Finally, to complete our exposition of ICP, we show how to use the LR
model 6* (Eq. (5)) to define a non-conformity measure, thereby making
the connection between single-point predictors and conformal predic-
tors explicit. The non-conformity scores «; (Eq. (10)) can then be written
as follows:

o = A2y, 235 -+ 5 Z» 21) = Ay, f= (X)), (12)
where f : R¥*! - R is a function that, parameterised by the LR model
0* trained on the proper training set (z,, z, ..., z,,), returns the logit for

the positive class, and A : Y x R — R is a discrepancy function between
a label and a prediction 2 [13]. To simplify the notation, let the logit for
the positive class for object x; be o; = f,«(x;). For LR, a natural choice
of discrepancy function is proposed by Vovk et al. [11]:

1 + exp(—o;),
a; = A(y;,0) = !
1 + exp(o;),

ify =1;
if y; 13)
if y, =-1.

2 Notice that ay,, can also be written as Eq. (12)
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Therefore, the resulting non-conformity scores will be large when the LR
model does not consider y; a suitable label for x;, and small otherwise.

In the next section, we present the framework of coresets and how
they define a non-uniform importance distribution over a dataset to se-
lect critical examples from it. With that notion in mind, we then show
that non-conformity scores, in their own right, can be used to implement
a similar mechanism for detecting redundancy in data.

3. Coresets & Conformal Compression

Having discussed the background concepts of transductive and in-
ductive CP, this section introduces the concept of data summarisation,
presenting coresets as a principled method for achieving approximately
correct summaries of data. Building on coreset approaches, we then
present our contribution: Conformal Compressor (CC), an approach that
leverages the non-conformal information generated by CP to craft infor-
mative data summaries.

3.1. Summarising data

As previously mentioned, having more data means access to more
information from which, hopefully, we will get a better understanding
of an underlying truth. Learning becomes harder as datasets grow be-
cause many machine learning algorithms use computationally expensive
numerical solvers to optimise an underlying objective function. Given
that not all data points in a dataset are equally relevant to this opti-
misation problem, substantial research effort has been put in identi-
fying the portion of data that is more important from the optimisa-
tion point of view. The set constructed with the more important por-
tion of data can be interpreted as a summary of the original dataset
since it contains sufficient information to provide a (provably) good so-
lution to the optimisation problem. It is common to refer to such a sum-
mary as a “compression” of the original data [15], emphasising the fact
that the portion of important points is small compared to the original
full data.

3.2. Coresets

Coresets are a powerful algorithmic framework that has been used to
analyse big and complex data. A coreset is a small weighted set of data
i.e. a summary, such that the solution found in the summary is prov-
ably correct with respect to the solution found in the full data. Ideally,
a coreset should be significantly smaller than the original dataset. Fur-
thermore, state-of-the-art coreset results involve coresets whose sizes
are independent of the original data size [16].

Most machine learning problems involve defining an optimisation
problem to estimate model parameters or to describe other aspects of
the data, as shown in the previous section for LR. Thus, for a given
learning problem, a coreset can be constructed to reduce the volume of
data. Learning can then proceed using the coreset alone, discarding the
rest of the data, while still guaranteeing approximately the same result
[17].

3.2.1. Coreset design

Any algorithm that constructs a coreset for some dataset can only
provide provably correct guarantees for one specific learning problem.
Hence, the design of a coreset construction algorithm entirely depends
on the problem of interest. Nevertheless, we can still define coresets in
the following problem-agnostic fashion.

Definition 1. (A-coreset): Let f : RY — R be the objective function of
some learning problem and D C R? be the input data. We call C a A-
coreset for D if the following inequality holds:

|f(D) - (O < Alf(D)]. 14



N. Riquelme-Granada et al.

What makes coresets highly desirable is that they are not merely a
heuristic approach for performing data reduction; they come equipped
with theoretical guarantees, as generally stated in Eq. (14). We say that if
such a guarantee can be obtained by approximating the original dataset
D with a weighted set C with respect to function f, then C is called a
A-coreset for D.

Notice that A establishes a bound for the solution quality found in
the coreset. That is, A defines how far a solution found in the coreset
can be from a solution found in the original dataset.

There are three general quantities that need to be bounded when
designing a coreset algorithm for an optimisation problem: 1) the size
M of the coreset; 2) the error tolerance A, i.e. maximum discrepancy
between solutions found in the full data and in the coreset; and 3) the
running time of the algorithm, i.e. if constructing the coreset is compu-
tationally comparable to solving the problem using the full data, then it
becomes difficult to justify computing a coreset in the first place.

Designing a coreset algorithm for a learning problem is a challen-
ging task. In fact, as stated in Munteanu et al. [18], not every problem
allows for a practical coreset construction. For the problem of LR, how-
ever, a good number of coreset constructions have been proposed in the
specialised literature; see Huggins et al.[19], Tolochinksy et al.[20],
Munteanu et al. [21], and Munteanu et al. [18].

3.2.2. Coresets via importance sampling

A naive randomised approach to construct coresets is by doing uni-
form sampling. We can simply assign probability 1/N to each point in
D and then sample according to this distribution. The problem with
this simple approach is that we have to sample a very large number of
points to ensure relatively low error [22]. This happens because differ-
ent points make different contributions to the objective function at hand
and hence we can easily leave important points out of the coreset if we
do not sample sufficiently large coresets. Hence, a more sophisticated
sampling scheme is needed.

The most effective randomised approach for constructing coresets is
by doing non-uniform sampling, namely importance sampling [23]. Un-
der this approach, rather than just assigning equal probability to all our
input data points, we first compute an importance score that tells us
“how redundant” a data point is for our learning problem. This score
is called the sensitivity of the point, and is the central quantity for con-
structing coresets non-uniformly. Once we computed the sensitivity for
each input point, we sample M points according to these sensitivity
scores. The final step is to compute the weights for each sampled point,
which are generally inverse-proportional to the sensitivity scores, and
return the M weighted points.

When constructing coresets using importance sampling, defining and
computing the sensitivity is very challenging because (i) computing the
exact sensitivity is not computationally tractable; that is, we need to de-
fine lower and upper bounds for it and prove that using these bounds
yields small coresets, and (ii) the bounds should be efficiently com-
putable. On this front, it is worth mentioning that coreset algorithms
need to inspect each input point at least once. Hence, by “efficiently
computable” we mean near-linear time.

Fig. 1 shows an example of how a coreset approach, proposed by
Huggins et al. [19], uses importance sampling over synthetic input data
to obtain a weighted coreset. As explained in Feldman [7], one of the key
theoretical challenges when working with importance-sampling based
coreset constructions is the bounding of the sensitivity measure. For the
algorithm depicted in the figure, the authors used a k-clustering sub-
routine to upper-bound the total sensitivity. For the technical details,
we refer the reader to Huggins et al. [19], Lemma 3.1, p. 4.

To ground the discussion in intuition, notice that the k-clustering
bound brings an intuitive interpretation of sensitivity: points that are
bunched together are redundant, whereas points that are far from
other points exert more influence over the LR objective function Reddi
et al.[24], Huggins et al. [19]. Hence, points far from the cluster cen-
tres are assigned high sensitivity scores while nearby points will get low
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scores. After computing the sensitivities, the algorithm defines the non-
uniform distribution based on these values.

As detailed in Section 2.2, valid prediction sets are generated by
comparing the strangeness of examples. That is, through its internal
workings, CP provides strong non-conformity measurements that can
be interpreted as a form of sensitivity regarding the model’s knowledge.
When considering ICP, calibration points that are not well supported by
the proper training set are assigned high non-conformity scores. Hence,
such nonconforming points constitute important sources of uncertainty
for the final prediction set. Somewhat analogous to the sensitivity scores
used in coresets, then, non-conformity scores could be understood as
quantifiers of the importance of individual data points based on the
amount of uncertainty they induce into the whole prediction system. This
interesting parallel between CP and sensitivity-based coreset algorithms
is the bedrock of the idea we are introducing in the next section.

3.3. Introducing Conformal Compressors

We now turn to the main idea introduced in this work: Conformal
Compressors (CC), which proposes using conformal prediction to in-
spect large datasets and ultimately select good representative samples
from them. CC reverses the existing interactions between CP and core-
sets Riquelme-Granada et al. [2], Riquelme-Granada et al. [5], where a
coreset is built as a proxy to the original dataset, and CP functions as a
distribution-free uncertainty quantification tool that operates over the
coreset to assess how much uncertainty is retained in the compressed data
compared to the original dataset. We remind the reader that the main
idea in data compression is to effectively approximate data; therefore, if
the original examples do not provide a good representation of the un-
derlying data-generating distribution, a good approximation to them will
also suffer from the same shortcomings. We emphasise this to clarify that
data approximation is not concerned with addressing the limitations and
particularities of datasets, but rather with faithfully representing them.

Returning to our discussions in Section 3.2.2, we stated that coreset
methods define the concept of sensitivity and that a non-uniform distri-
bution is concentrated on this measure to probabilistically choose influ-
ential points from a set of points. The assumption here is, as noted by
Reddi et al. [25], that points that are far from others, or points that are
members of very small clusters (i.e., sensitive points), make much more
significant contributions to the objective functions of learning problems,
e.g., the LR objective defined in Eq. (5). However, coreset algorithms
classically present three important particularities; they are:

1. problem dependent: This refers to the price we must pay for having
strong approximation guarantees, as stated in Eq. (14). This means
that when using a coreset construction, we can only benefit from its
performance guarantees as long as we are compressing data for a
particular target problem, e.g., LR. Using it for a different classifica-
tion algorithm may reduce the method to a heuristic with intractable
behaviour, which could perform worse than Uniform Random Sam-
pling.

2. complex to design: This is closely related to the previous point. Re-
covering strong approximation guarantees for a new ML problem of
interest requires instantiating a theoretical framework, as presented
in Bachem et al. [22], Reddi et al. [25], Feldman and Langberg [23],
or Munteanu et al. [18]. This could be a challenging endeavour, not
only because it requires deep theoretical insights into the ML prob-
lem and its underlying mechanisms but also because some prob-
lems do not allow for coreset constructions (see Phillips [26] and
Munteanu et al. [18]).

3. oblivious to labelling information: This arises from coresets be-
ing used in ML originally for unsupervised learning problems (see
Section 5 for details). In supervised settings, however, we do pos-
sess ground truth labels at training time, which we believe could be
useful information when selecting meaningful examples from the in-
put data.



N. Riquelme-Granada et al.

6
o
o o
5
o)
o
© © o o
4 1)
oO Sy o
o ° ,% o o
3 0o © 0 &£ o ©
o ¥ oo o ®
’ oed o °
R, 00 O o 0o
o]} Q)Oo &
O oo O o O
1 (e8] & OO @OO O 008
o o o
0 OO o
o
-1
°05
=2 -1 0 1 2 3 4 5
X1
(a) Original dataset
6
5
°
® ® ° o
4
o. °, o
o 2 o °
3 00 ® ° ' Y
° ? o0 g0 0
) .“ ° [}
R o® [ % °
°® o %o @
[ o0 PY [ ]
1 o0 ¢
o® : .. ... [ ®
® )
0 ° [ ) ®
°
-1
=2 -1 0 1 2 3 4 5

(c) Sensitivity distribution

Pattern Recognition 172 (2026) 112515

6
o
o o
° o
o © o° o
4 @
oo S, o
o ° . o o
3 0o0?©° ®° oo CPO S ©
o © Xeo) %08. o o
K 00 (o] o o
o° @ Oo &
(9 8 00 @] 0 O
1 OO0 O
o8 oO @OO o 3
le) 9 o
0 o O o
o
-1
° 0
-2 -1 0 1 2 3 4 5
X1
(b) Cluster centers
6
°
o (@)
® o
o © o° o
) 3
e O ° o ¢
3 [} oo Y OO O& o o
® oo o))
le) 9 OQ) o O
% 00 o O CBDO o le)
00 @ ~O &
O oo O O
1 ®© 8 O. o o) OO%
le) 8o O
° o o
0 o (@) o
o)
-1
e
-2 -1 0 1 2 3 4 5
X1
(d) Coreset

Fig. 1. The coreset construction from Huggins et al. [19] over a simple 2-dimensional synthetic dataset; (a) shows an illustrative synthetic 2-dimensional data for
which a logistic regression coreset will be computed; the data has 100 points; (b) displays a k-clustering of the data to be used by the coreset algorithm to compute
the sensitivities, with k = 3; (c) shows the sensitivity distribution for the dataset; the brighter the colour, the more sensitive the point is; (d) shows the obtained
coreset, with the coreset size being 9 points; the colours here indicate the weights of points: the brighter the colour, the “heavier” the point is.

Upon close inspection of the above three points, and keeping in mind
the idea of valuing points that are sensitive to the dataset, we realised
that conformal prediction itself can be an effective means of address-
ing these limitations. Specifically, CP is concerned with capturing the
conformity of the calibration set with a training set through the lens
of a trained ML model. Therefore, these values could be interpreted as
the particularity of points. Furthermore, CP is a general framework with
mild assumptions on data, which can be deployed with virtually any
ML model, thereby addressing the concerns raised in point 1 above; it
provides a sound theoretical basis that guarantees error bounds (point
2 ), and finally, CP was designed for the supervised setting and there-
fore takes full advantage of labelling information (point 3 ). These are
strong motivations for instantiating CC as an alternative to coresets for
reducing the complexity of modern large-scale data.

3.3.1. Non-conformity and sensitivity
Inspired by the arguments in coreset construction methods, we
therefore propose utilising the non-conformity measure, as written in

Eq. (12), as a mechanism for performing importance sampling and for
finding a representative subset of a large dataset that is critical for learn-
ing a LR classifier. In essence, we link the two concepts of sensitivity
and non-conformity to establish the first steps towards a systematic ap-
proach to summarising data focusing on the importance of data points
through the knowledge of a trained model and the uncertainty it induces.
Data points that yield higher non-conformity scores «; are considered
less conforming, indicating that they could be outliers or points about
which the model is less certain. Consequently, these points can be pri-
oritised for inclusion in the final compressed representation of the data,
as they can be seen as peculiar examples which, if we were to train a
fresh LR classifier on the dataset, would have a high impact on the LR
optimisation problem. Importantly, since our method concentrates the
sampling distribution on the «; values, it naturally takes into account
the labelling information in the dataset (see Eq. (13).

In Section 4, CC will be evaluated against standard sampling meth-
ods for summarising data. We will occasionally refer to the output of a
conformal compressor as a conformal summary.
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(a) Experiment Pipeline for the sampling-based data reduction methods: URS, CC, LogCore and SigCore. Only CC uses the
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(b) Experiment Pipeline for the Full method, where no data reduction is performed.

Fig. 2. A diagram showing one iteration of our experiment pipeline, differentiating the cases where we train a LR classifier using data reduction methods (2a) and
the case where we do not apply any data reduction (2b). Since CC is a data-driven reduction method, a portion of the available data that does not overlap with the

training set is used to train a baseline model to compute non-conformity scores.

3.3.2. Computing a conformal summary

Algorithm 1 describes the computations that a conformal compres-
sor performs to summarise a dataset D. The calculations can be broken
down as follows:

¢ Calculate non-conformity scores for all examples in the dataset.

— assuming a trained ML model is available, i.e. in our case, we
assume a fully trained LR classifier, we inscribe it within the CP
framework in the inductive setting, as detailed in Section 2.2.1.
Crucially, this trained LR model has not seen the input dataset D
as part of its training. D, then, can be considered as a calibration
set for the ICP.

- Compute the non-conformity score o; for each example z; € D
using the non-conformity measure A, as defined in Eq. (13) (line
2).

¢ Use the non-conformity scores to define an importance sampling dis-
tribution over the examples in D (lines 3-5). An example with high

non-conformity score has better chances of getting chosen as repre-
sentative than a point with a low non-conformity®.

e Sample M points without replacement (lines 7-13). The resulting set
C is the conformal summary for the given input dataset D.

Through this methodology, we aim to create a compressed dataset
that not only preserves the predictive qualities of the original dataset but
also retains essential information for making valid inferences. A confor-
mal compressor, hence, serves as a data-driven alternative to coresets
for reducing dataset size. As previously mentioned, CC is the first ap-
proach that utilises the machinery of conformal prediction to tackle the
limitations of coresets discussed earlier in this section.

3 Itis not uncommon to instantiate CP using conformity scores, rather than non-
conformity ones. If that is the case, for the non-conformity measure in Eq. (13),
we suggest concentrating the sampling distribution on the s; = —«; conformity
scores.
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Fig. 3. Comparison of the classification accuracy, over 10 runs, of URS, CC, Full, SigCore and LogCore across the three datasets. The central line in each box indicates
the median. The bottom and top of the box indicate the 25th and 75th percentiles respectively. The small circles denote the outliers. The sample size M used by all

sampling methods is 1 % of the training set.

Algorithm 1: Conformal Compressors (CC).

Input: Dataset to be compressed D = {z; = (x;,y,)} l]i iy trained
LR model available via function f., sample size M < N
Output: Conformal Summary C C D, |C| =M
1 fori=1to N do
2 L & = A, fg:(x;)) // From Eq. (13)

_ 1 N i
3 i« ﬁzizl @; // aggregate non-conformity scores for

normalisation
4 fori=1to N do
5 L pi = %‘ // define importance sampling distribution

6 C—@;,R<{l1,....,N}
7 fort=1to M do

// sample M points without replacement
8 Z « EjeR D
9 foreach j € R do
10 | a4 <p/Z
11 i ~ Categorical({q;} eg)
12 C < CU{(x;,y)}
13 R < R\ {i}
14 return C

In the following section, we will detail our experimental results to il-
lustrate the first empirical results on conformal compressors over public
datasets, and we will benchmark it against strong baselines for sampling
methods.

Table 1
The three datasets used in our experiments are Cover-
type, News20 and KDD-CUP 2010.

Dataset Examples Features
News20 19,996 1,355,191
Covertype 581,012 54
KDD-CUP 2010 8,918,054 20,216,830

4. Empirical evaluations

Having outlined our approach, this section presents our experimen-
tal results. Conformal compressors will be benchmarked against Uni-
form Random Sampling, which is the most standard test for data ap-
proximation techniques, i.e. see Huggins et al. [19], Riquelme-Granada
et al. [27], and Riquelme-Granada et al. [5]. Additionally, we include
two recent coreset constructions for Logistic Regression proposed by
Tolochinksy et al. in Tolochinksy et al. [20]: the logistic coreset and the
Sigmoid coreset, both of which are strong coreset construction methods
that use importance sampling.

We evaluated the methods using the datasets detailed in Table 1.
All the datasets are public and can be downloaded from https://www.
csie.ntu.edu.tw/~cjlin/libsvm/. The Covertype dataset ([28]) contains
cartographic features and the labels correspond to different forest cover
types; KDD-CUP 2010 ([29]) is a massive dataset generated for an ed-
ucational data mining competition; finally, based on 20,000 messages
taken from 20 newsgroups, News-20 was generated in Keerthi and De-
Coste [30] for experiments that needed both high data size and dimen-
sionality.
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Fig. 4. Comparison of the accuracy scores across various sample sizes for URS, CC, Full, SigCore and LogCore across the three datasets. Remarkably, for Covertype
dataset, CC outperforms even the Full method. CC is also much more predictable and performant than the rest of the sampling methods.

Our experiments focus on evaluating how effectively conformal com-
pressors generate small proxy datasets by leveraging CP principles and
comparing their performance against strong sampling alternatives.

We will shed light on the following key research questions:

¢ Do Conformal Compressors provide improvements in learning
performance compared to Uniform Random Sampling and Core-
sets? This question will help establish whether small conformal sum-
maries can maintain or enhance predictive performance.

e Are Conformal Compressors computationally feasible? This
question will allow us to analyse whether the method is too demand-
ing in terms of computing time.

4.1. Evaluation procedure

We define five methods for our empirical evaluations: Uniform Ran-
dom Sampling (URS), Conformal Compressors (CC), Logistic Coreset (Log-
Core), Sigmoid Coreset (SigCore) and Full, which involves not applying
any sampling mechanism, i.e. using the entire input data for training
a LR classifier. We remind the reader that URS acts as a form of core-
set and serves as a baseline to gauge the effectiveness of more sophis-
ticated data approximation techniques. Also, we shall refer to the set
{URS, CC, LogCore, SigCore} as sampling methods when describing steps
common to all of them. The main goal of the experiments is to assess
the extent to which the predictive power of an LR classifier is retained
when it is trained on a summary of the training dataset instead of the
full dataset. In particular, we measure how the conformal summaries
we compute compare with other well-known data reduction techniques
with respect to standard ML metrics, each of which we will define later
in Section 4. All sampling methods require a sample size, M, for pro-
ducing a summary of the data. We consider values of 1 %, 3 %, 5%, 10 %,

15%, and 20 %; i.e., M is a percentage of the training dataset D. For the
Full method, we do not apply any data reduction. This method is useful
for effectively measuring the loss in predictive performance incurred by
sampling methods.

We now describe the evaluation protocol, which is depicted in Fig. 2.

We split all available data into three parts: (1) a portion to be used
for simulating a pre-trained model that conformal compressors need,
(2) atraining set, and (3) a test set. Since a trained model is necessary

to instantiate CP, part (1) is fundamental for providing function f«

to CC as input (see Algorithm 1). Part (2) is the training set, which

we refer to in our notation as D. This is the data that we wish to
effectively summarise for the efficient learning of an LR classifier.

We use part (3) to assess the predictive performance of the LR clas-

sifiers trained either on all of D (Full method) or on a summary of it

(sampling methods).

e For CC, we train an LR model* on the data portion (1) to simulate
a pre-existing trained model that we use in Algorithm 1. In reality,
assuming the existence of such a model can be regarded as a rea-
sonable assumption, given how integral methods such as transfer
learning [31] or domain adoption [32] are to modern ML pipelines.

e For all sampling methods, we compute summaries of size M % of the
training set following their respective procedures (Fig. 2a). The Full
method utilises the complete training set (Fig. 2b).

e We train an LR classifier on each data summary (sampling methods)

and on D (Full method), performing 20-fold cross-validation.

Each resulting LR model makes predictions over the test set.

4 Note that this model should not be confused with the one trained on the
data summaries or the full dataset in Fig. 2.
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Fig. 5. Comparison of the F1 Score, over 10 runs, of URS, CC, Full, SigCore and LogCore across the three datasets. The central line in each box indicates the median.
The bottom and top of the box denote the 25th and 75th percentiles, respectively, while the small circles represent the outliers. The sample size M used by all sampling

methods is 1 % of the training set.

We repeat the above steps 10 times for each sample size M €
{1,3,5,10,15,20}% of D for the sampling methods.

4.2. Metrics

We outline the evaluation criteria used to assess the performance of
the five methodologies described:

e Classification Accuracy: This measure is defined as the percent-

age of correctly classified test examples and is commonly used as a

baseline metric for measuring performance in a supervised-learning

setting.

F1 Score: This score represents the harmonic average of precision

and recall [33], computed as F; := 2%, where P is precision and

Risrecall [33]. A higher F1 score indicates better classification per-

formance.

e Compression Time: This metric refers to the total time, in sec-
onds, taken to generate the compressed dataset using each sampling
method. It is of particular importance for CC, LogCore, and SigCore,
as these are more intricate compression techniques. It is much less
relevant for URS, since it is, by definition, the quickest approach for
summarising data. It is completely irrelevant for the Full method, as
it does not perform any data compression. For the sake of fairness,
even though it is reasonable to assume that a pre-trained model can
be used to instantiate CC, we consider as part of CC’s compression
time the training of a LR model using 5-fold cross-validation.

4.3. Accuracy results

The results displayed in Fig. 3 highlight the performance trends ob-
served for the five methods across the three public datasets. The box

plots illustrate the distribution of classification accuracy scores for each
method, with the central line indicating the median value, while the
edges of the boxes represent the 25th and 75th percentiles, respectively.
Outliers are denoted by small circles.

From the figure, we observe that CC generates summaries that not
only perform better than URS and the two coreset methods in most
cases but also demonstrate greater reliability in terms of the variance
it induces. Remarkably, CC achieves even higher accuracy than the Full
method, despite only using 1 % of the full dataset. One possible explana-
tion for this phenomenon is that by concentrating the sampling mech-
anism on the non-conformity scores, conformal compressors effectively
remove examples that could lead the optimiser to become stuck in mis-
leading local minima. This claim is based on intuition and has yet to
be verified. However, it is not unusual to see some coresets improving
the outcomes of machine learning algorithms (cf. Huggins et al.[19],
Feldman and Langberg[23], Munteanu et al. [18]), which makes it in-
teresting considering that conformal compressors are not coresets. Fur-
ther, this observation can lead us to ask the research question whether
the theory of CP can be used with theoretical arguments for coreset con-
structions to dote CC with strong compression guarantees.

Fig. 4 presents the mean accuracy scores across increasing sample
sizes. This representation provides insight into how the accuracy of the
sampling methods evolves as the size of the data representation changes,
confirming the reliability and robustness of the proposed CC methodol-
ogy, as it is in most cases lower bounded by URS. This behaviour is
characteristic of sampling mechanisms that effectively detect meaning-
ful patterns in the input data. The two coreset methods, quite surpris-
ingly, underperform against CC and URS. They do improve with larger
sample sizes; however, their performance, as measured by our standard
machine learning metrics, is significantly inferior to that of conformal
COmpressors.
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Fig. 6. Comparison of the F1 scores across various sample sizes for URS, CC, Full, SigCore and LogCore across the three datasets. Notably, for the Covertype dataset,
CC outperforms even the Full method and reliably approximates its performance while being lower-bounded by URS, and even by the coreset algorithms, in most

cases.

Additionally, the CC lines exhibit much more tractability than those
of the other sampling methods, which can occasionally appear spiky.

4.4. F1 Score results

The results for the F1 Score across the three datasets are illustrated in
Fig. 5. This metric provides a comprehensive view of the performance,
balancing the contributions of precision and recall.

In general, the Full data approach demonstrates greater stability for
the F1 Score, followed closely by CC, which also outperforms Full for
the Covertype dataset. In contrast, the sampling methods show a sig-
nificant decline in performance for the KDD dataset, potentially due to
the imbalances present in this competition-grade dataset. Similar to the
accuracy results, as shown in Fig. 6, CC displays a much more stable
line when compared to URS and the coresets, which shows promising
generalisation for different data. Notice that coresets here behave quite
unpredictably, showing higher F1 scores for smaller sample sizes and
then decreasing dramatically. It is clear that the KDD data is partic-
ularly challenging for these methods. Conformal compressors, on the
other hand, behave quite closely to Full, virtually matching its predic-
tive performance when the sample size is 20 %.

4.5. Compression time results

The compression time results, displayed in Fig. 7, highlight the com-
putational efficiency of the various sampling methods in producing com-
pressed datasets. URS, given its simplicity, demonstrates the shortest
compression time, while the more sophisticated methods, CC, LogCore,
and SigCore, show increased computational demands. For Covertype,
CC costs 7x the time of the two coreset methods. A similar observation

10

can be made about News20. For KDD, however, both coreset methods
become more expensive than instantiating a conformal compressor.

It is important to consider that the plots in Fig. 7 assume a fixed
sample size of 1% for the sampling methods. If we look at Fig. 8, we
can see the dependency between the methods’ computational efficiency
and the sample size parameter M. CC, just like URS and Full, is in-
variant with respect to M. SigCore and LogCore, on the other hand,
exhibit increased computational times as the sample size M increases.
This trend highlights the additional complexity involved in construct-
ing coresets (see Tolochinksy et al. [20], Algorithm 1) compared to CC.
Overall, while CC incurs a higher computational cost for smaller data, it
scales much better than the coresets for the more challenging datasets,
demonstrating its potential and viability for large-scale learning
tasks.

5. Coresets in the literature

The technique of coresets was born in the field of computational
geometry as a systematic approach for approximating the optimal solu-
tion for shape-fitting problems such as the Minimum Enclosing Ball (MEB)
Agarwal and Sharathkumar [34], Badoiu and Clarkson [35], Badoiu and
Clarkson [36], Munteanu et al. [37] and Directional Width (DW) Agarwal
et al. [38], Chan [39]. In machine learning, coresets have mainly been
studied in the context of unsupervised learning Feldman et al. [15], Har-
Peled and Mazumdar [40], Bachem et al. [22], Zhang et al. [41], Acker-
mann et al. [42] to devise fast approximation and streaming algorithms
for computationally intractable problems, e.g., clustering.

Incursions in the supervised learning area are much more recent.
Reddi et al. [25] explored coresets for the problem of Empirical Risk Min-
imisation, central to statistical learning theory. Specifically, for the Logis-
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tic and Hinge loss functions, they proposed an iterative gradient-based
coreset algorithm by exploiting the following observation: at each itera-
tion of the optimisation process, only a small set of points are important,
i.e., those that contribute the most to the objective function. Thus, they
showed that the problem can be solved over this compact set of points,
obtaining a provably good solution. One interesting observation made
by Reddi et al. is that the process of computing the well-known gradi-
ent descent algorithm can be seen as an instantiation of their frame-
work, where the coreset consists of the gradients computed at each
iteration.

Huggins et al. [19] proposed a coreset algorithm assuming very sim-
ilar supervised learning settings but from a Bayesian perspective, i.e.,
Bayesian Logistic Regression. They proved that, by approximating (up
to a multiplicative factor) the log-likelihood of the observations using a
weighted subset of the data, one can obtain a coreset with high prob-
ability. More recently, Campbell [43] has developed general lower and
upper bounds for coresets in the Bayesian setting. Munteanu et al. [18]
also focused on logistic regression, demonstrating that the impossibil-
ity of designing a sub-linear streaming algorithm for logistic regression
implies that logistic regression admits no sub-linear coreset construc-
tion. Aligned with these two works, Braverman et al. [44] proposed a
novel method that uses the sensitivity approach in a streaming setting
to compress unbounded data streams into positively-weighted coresets.
Their approximation guarantees, however, only hold for the problem
of Least-Mean-Squares (LMS). Other problems that have more recently
been studied through the lens of coresets include decision trees [45],
time series [46], and a proliferation of works on deep neural networks
[47-50].

Finally, the intersection between coresets and conformal prediction
is an emerging area of research, with considerable potential for new
discoveries. Gao et al. [51] propose a coreset to approximate Euclidean
balls based on confident sets. They demonstrate how their theoretical
results can be applied to CP in high-dimensional prediction sets. Zhang
et al. [52] consider the problem of Label Distribution Learning and pro-
pose a learning model capable of deriving closed-form expressions for
the label distribution mean, variance, and covariance conditional on a
given sample. They show how their method can effectively quantify la-
bel distribution uncertainty and further illustrate that this information
can be calibrated using conformal prediction. Additionally, they study
the application of their method in a coreset-based active learning set-
ting. However, none of these works can be compared to our work as they
do not use CP to derive an importance sampling distribution, a classical
approach in coresets, leveraging the non-conformity information of the
data sample to be compressed.

6. Conclusion and future work

In this work, we introduced the method of Conformal Compressors,
which, to the best of our knowledge, is the first data compression ap-
proach that employs conformal information to approximate data.

Our results demonstrate that conformal compressors consistently
outperform uniform sampling and two competitive coreset constructions
across multiple public datasets, showcasing enhanced predictive perfor-
mance while maintaining a high degree of reliability. Notably, confor-
mal compressors achieve results comparable to the Full method while
utilising only a fraction of the dataset, illustrating their effectiveness in
generating small proxy datasets. We are particularly interested in fur-
ther studying this phenomenon. Additionally, our findings indicate that
conformal compressors provide greater stability in performance across
varying sample sizes, which could be promising for addressing the gen-
eralisation issues that coresets exhibit.

This work marks a step forward in developing the line of research
initiated in Riquelme-Granada et al.[2], demonstrating the potential
of integrating conformal prediction with data compression techniques.
Looking ahead, future work will explore the generalisation of confor-
mal compressors across various machine learning models. Additionally,
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we aim to investigate the use of the p-values from conformal predic-
tion as informative elements in the compression process, which could
refine the ideas presented thus far. Lastly, we plan to define appro-
priate weights for data points in the conformal summaries, akin to
coresets.
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