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MATHEMATICAL MODELLING OF EVAPORATION MECHANISMS AND

INSTABILITIES IN CRYOGENIC LIQUIDS

by Angeli Elizabeth Thomas

In this thesis we propose a model for laminar natural convection within a mixture of

two cryogenic fluids with preferential evaporation.

This full model was developed after a number of smaller models of the behaviour

of the surface of the fluid had been examined. Throughout we make careful compar-

ison between our analytical and computational work and existing experimental and

theoretical results.

The coupled differential equations for the main model were solved using an explicit

upwind scheme for the vorticity-transport, temperature and concentration equations

and the multigrid method for the Poisson equation. From plots of the evolution of the

system, it is found that convection becomes stronger when preferential evaporation is

included.

This new model demonstrates how to include preferential evaporation, and can be

applied to other fluid systems.
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Chapter 1

Introduction

Demand for cryogenic fluids such as oxygen, nitrogen and natural gas is increasing with

applications in power generation, medicine, refrigeration and chemical processes.

These fluids are normally stored and transported in their liquid state, owing to the

smaller volumes involved. Storage containers may be unpressurised or pressurised to

a maximum value set by a relief valve or a bursting disc. The liquid will therefore be

stored at around 200K below ambient temperature, and, despite using a high level of

insulation, heat leak will be inevitable. In an unpressurised container it is quite normal

for the liquid to become superheated due to a lack of suitable nucleation sites. The

level of superheat which is reached depends on the nucleation sites present and may

reach several degrees.

These liquids are potentially hazardous in terms of causing cold burns and of causing

and aiding combustion (liquid natural gas, termed LNG and liquid oxygen, termed

LOX). They may also lead to suffocation (LIN). Another hazard involved in storing

liquid cryogens is the uncontrolled, almost explosive, release of the superheat energy.

Problems are also associated with liquid mixtures due to the possible formation of

stratified layers and the consequences of the rapid destruction of these layers. This is

termed rollover.

Rollover may occur when a cryogenic fluid is added to a partially-filled storage vessel

containing fluid of a different density. This is a particular problem for LNG since

its composition of methane, heavier hydrocarbons, nitrogen and some lighter gases,

can vary considerably. For example, Libyan LNG may consist of 65% methane, 25%

ethane and 10% propane or higher hydrocarbons whilst pipeline gas in the North-East
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of the U.S.A. may be composed of up to 95% methane (Shi, 1990). Furthermore, the

composition of the fluid may alter whilst it is in the tank due to preferential evaporation,

a process which we will consider in more detail later.

If the lighter fluid is added on top of the denser fluid, they will not mix and two

stratified layers will result, as shown in Figure 1.1. A convection circulation pattern

will be established in each layer with heat entering from the surroundings into both

layers. The interface between the layers possesses a steep density gradient and acts

as a barrier, preventing the lower layer from reaching the liquid/vapour surface. The

lower layer is able to release only a small amount of heat through conduction to the

upper layer and this causes a build-up of superheat in the lower fluid. The density

of the lower layer thus decreases. In contrast, although the upper layer receives heat

from the surroundings and the bottom layer, it is able to lose a substantial amount

of heat through evaporation at the surface causing the temperature of the upper layer

to increase less quickly than the lower layer. In addition, evaporation of the lighter

hydrocarbons may occur which increases the density of the upper layer. Therefore

the densities of the two layers become progressively closer until they are equal. At

this point, the layers mix, allowing the highly superheated liquid in the lower layer to

reach the surface. This is accompanied by both a sudden release of heat and a sharp

increase in the surface evaporation rate, termed enhanced vapour generation (EVG),

which can lead to overpressurisation problems in the storage tank and/or the loss of

large quantities of fluid.

For LNG containing nitrogen the added problem of spontaneous stratification of the

liquid arises. This is due to the preferential evaporation of nitrogen, rather than the

lighter component, methane, due to nitrogen's lower saturation temperature. This

causes an immediate low density fraction to float on the bulk liquid creating two strat-

ified layers. After rollover, the mixed fluid may still contain enough nitrogen for auto-

stratification and for the whole process to be repeated. Fortunately however, most

sources of LNG contain less than 3% nitrogen.

Some preventative measures have been developed to stop rollover occurring. These

include adding the new liquid by top or bottom loading, depending on whether it

is more or less dense than the fluid in the container at the time of loading (Drake,

1976). This should, in theory, encourage mixing, although cases have been reported of

incomplete mixing after the correct choice of load point. Since a lowering in the rate of
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Figure 1.1: A schematic diagram of a typical LNG storage tank containing two stratified

layers. The arrows mark the direction of the heat flux.



generation of vapour is a characteristic of stratification, a reduction of the cumulative

vapour release to 90% of that expected during tank loading is taken as a warning

of stratification and guidelines on the handling of cryogenic liquids suggest that tank

loading should be ceased if there is a reduction to 70% of that expected. Limiting the

range of composition of LNG added to the tank or using a mechanical device to mix

the liquids in the tank may also help.

These measures may not, however, always be enough to prevent rollover, so storage

tanks are fitted with adequate venting and other vapour handling equipment which

is designed to cope with the maximum amount of vapour that might be generated

(MacKenzie, 1986). Density, temperature and vapour generation sensors may also

used to scan the liquid and enable layering to be detected.

Understanding evaporation is essential to follow the convection process within the

liquid and rollover and this will be our main concern in this thesis. Heat flux through

the sides and bottom of vessels cause the temperature of the liquid to increase and

lead to convection within the liquid. Whilst boiling is not generally experienced under

most storage conditions, the liquid will evaporate at the top free surface. If the storage

container is closed with a finite vapour space, evaporation will increase the pressure

in the vapour space and therefore increase the saturation temperature, suppressing

evaporation. With small vapour spaces, a small amount of evaporation will cause a

large increase in pressure and therefore in the saturation conditions; evaporation will

drop markedly with the result that the entire bulk of the liquid will be isothermal

at the saturation temperature. With a large head space or with an open vessel, the

pressure increase will be small or zero. Heat leak will increase the temperature within

the bulk of the liquid, with the top surface, which is maintained at the saturation

temperature, losing heat by evaporation. The situation considered throughout this

thesis is the unpressurised case.

The conditions become further complicated when the liquid is a mixture with differ-

ent densities and saturation temperatures. Preferential evaporation is the evaporation

of one component of a mixture in preference to the other. The more volatile compo-

nent may be less dense than the other, causing the formation of a denser, unstable

surface layer; alternatively it may be heavier, causing a lighter surface layer. Prefer-

ential evaporation changes the liquid composition and therefore will drive convection

due to buoyancy effects.



The main aims of our work are

1. To discover the important variables affecting evaporation in superheated liquids

and their influence on the process;

2. To gain a physical understanding of the effects of evaporation on a low temper-

ature fluid;

3. To model the development of preferential evaporation, which occurs in mixtures

of cryogenic fluids and see whether this effect is significant in rollover.

1.1 Literature Review

In this section, we will discuss previous work on rollover and evaporation in low-

temperature mixtures and give details of a particular rollover incident. The available

literature falls into two categories and will be discussed in the following order:

1. Details of a rollover incident;

2. Experimental and theoretical models of rollover and evaporation firstly from the

University of Southampton and secondly those reported in published literature.

1.1.1 The La Spezia rollover incident

Sarsten(1972) reported the La Spezia rollover incident, which occurred on 21 August

1971, in the Esso designed LNG terminal in La Spezia, Italy. It began 18 hours after

a tank containing LNG was topped up with LNG cargo which had travelled from

Marsa El Brega, Libya. This cargo spent more than a month at the La Spezia harbour

where it became hotter and denser than when it was first loaded into the ship, due to

the continued evaporation of light components. The storage tank had a side entering

bottom nozzle so that when the heavier, hotter cargo was transferred to the tank, it

stayed at the bottom. The less dense, colder fluid already in the storage tank was

displaced upwards with only minimal mixing with the off-loaded cargo. The static

pressure of the initial fluid in the tank suppressed vaporisation of the higher vapour

pressure cargo in the tank bottom. After about 18 hours the storage tank experienced

a sudden increase in pressure causing a discharge from the tank safety valves. These



valves discharged LNG vapour for approximately one and a quarter hours and the vent

released vapour at high rates for about three and a quarter hours. The data of the mass

of vapour lost throughout this event and in the aftermath was recorded. Although this

is not the only case of rollover to have occurred, it is the biggest one reported.

1.1.2 Experimental and theoretical models of rollover and evap-

oration

We will begin this subsection by describing thermal overfill, termed TO, a concept

first introduced by Maher and Van Gelder(1972) to explain boil-off variations in the

isobaric storage of cryogenic liquids. TO (J) was defined by Beduz et a/.(1984) as the

sum, taken over all the elements of the stored liquid, of the excess enthalpy (H — HQ)

(JmoP1) of the stored liquid in relation to the value Ho (Jmol"1) defined for the surface

of a homogeneous liquid in thermodynamic equilibrium (at To (K)) with its saturated

vapour at a prescribed pressure PQ (Pa). Mathematically,

where n is the total number of elements of the stored liquid. The rate of change of TO

is the net difference between the total heat flux into the stored liquid and the surface

vaporisation,

where fn is the vapour flowrate (kgs"1), Q is the rate of heat input (W) and L is the

latent heat of vaporisation (Jkg~x) of the liquid.

If the rate at which heat is removed is less than that at which heat enters, the right-

hand side of equation (1.1) is positive and thermal energy is accumulated in the liquid.

A build-up of this energy over a period of time is likely to cause a hazardous situation

and can be used to explain the build-up of superheat prior to rollover.

Also in this paper, micro-thermometer studies were carried out on mixtures of liquid

nitrogen, LIN and liquid oxygen, LOX, in order to study surface evaporation. Similar

experiments were later performed by Atkinson-Barr(1989) and these will be described

in more detail later in this subsection. Briefly, these studies were performed in a double-

walled glass dewar surrounded by a bath of LIN to minimise uncontrolled heat leaks

and the heat leak was controlled with a uniform heat flux electrical heater mounted



in the vacuum space around the inner wall. From this, it was shown that cryogenic

liquids become superheated in storage. For a set heat leak, the bulk temperature and

the evaporation rate increase to a steady level where the heat lost through evaporation

balances the heat leak. The bulk temperature is uniform to within ±0.1K throughout

the liquid, apart from the boundary layer region at the wall and near the surface.

The temperature drop from the bulk temperature to the surface temperature occurs

over a distance of less than lmm close to the surface. This layer, sometimes termed

a conduction layer, contains a steep temperature gradient of lOOO-SOOOKm"1, which

provides a large thermal impedance for heat transfer at the surface.

Micro-thermometer studies on LIN, LOX, liquid argon termed LAr, liquid methane

(LCH4) and LNG were also carried out by Agbabi et al. (1990) to again study the surface

evaporation. Results showed that if the thin surface layer separating the interface from

the bulk superheated liquid is penetrated by the bulk liquid, due to any agitation at

the surface, the molecular evaporative impedance is lowered. This destroys the delicate

impedance mechanism and the instability causes a rise in the evaporation rate, shown

to be as much as 30-fold. The overall impedance equation was obtained for surface

evaporation for LIN as

i

AT = (Tb - To) = rh(~-j + 440 +*T) (1.2)

where AT is the temperature difference (K) between the bulk liquid (Tb), measured

at a depth of 5mm or more below the surface, and the surface saturation temperature

(To), m is the surface mass flux (kgm~2s~1), a is the evaporation coefficient and where

the impedance terms represent contributions from

I. Molecular evaporation including impurity effects;

II. The thermal conduction layer;

III. The intermediate layer.

Although equation (1.2) is over simplistic, in that the thickness of the layers are as-

sumed to be invariant with heat flux, it enabled the authors to consider the relative

importance of the three impedance contributions.

Under equilibrium, the evaporation is largely controlled by impedance term II of the

thermal conduction layer which is 30 times greater than the sum of impedance terms I

7



and III and a relatively large bulk liquid superheat is required to drive the evaporation.

However, if there are impurities at the surface, which reduce the evaporation coefficient

by an order of 102, impedance term I dominates. In Chapter 3, we shall neglect the

effect of surface impurities and attempt to find a similar analytical relationship between

the rate of mass flux through evaporation and temperature.

Beduz and Scurlock(1994) also examined the surface evaporation and provided more

details of the three previously described mechanisms within 5-10mm of the surface

which control evaporation: molecular evaporation at the surface, thermal conduction in

a thin layer 100-500/^m thick with a steep temperature gradient and vortex convection

lines in the liquid with axes parallel to the surface. Rollover arises when the three

mechanisms are disturbed by bulk liquid motion and/or mono-molecular surface layers

of impurities. The lower thick layer, known as the intermittent surface convection

layer, between the superheated bulk layer and the thermal conduction layer is said to

contain the mechanism whereby superheated bulk liquid is carried into the thermally

conducting surface layer from which latent heat and evaporative mass transfer takes

place. We shall investigate the conduction layer described in these studies in Chapter 3.

Figure 1.2, obtained from Beduz and Scurlock (1994) illustrates the morphology of

surface layers during evaporation.

Vapour

Thermal
Conduction
Layer

t i t
T

Intermittent
Convection
Layer

Superheated bulk
liquid

Tc

-AT

Figure 1.2: Morphology of surface layers during evaporation reproduced from Beduz

and Scurlock(1994).

We will now describe the experimental investigations performed by Agbabi(1987),



which will be used to compare the results from our models in Chapter 2. A number of

studies were carried out using a two-layered system to reproduce, on a smaller scale,

the mixing stages in an initially poorly mixed LNG tank. These experiments were

conducted with LIN and LOX mixtures to form the two stratified layers.

To allow flow visualisation during an experimental run, a vacuum insulated glass

vessel was constructed. Two semi-transparent metal oxide coatings were formed on

the outside of the inner jacket of the dewar to serve as electrical heaters, and temper-

ature profiles were measured using copper-constantan (an alloy of copper and nickel)

thermocouples. A concentration probe was constructed which extracted liquid, vapor-

ised it and measured the concentration continuously. The flowrate of the evaporated

liquid was measured using a flowmeter connected to the dewar outlet. The equipment

is shown in Figure 1.3.

Two layers of different composition were formed in the dewar. A constant heat

input was applied to the top and bottom layers and temperature, concentration and

flowrate plots were obtained from data recorded at 2 minute intervals up to the point of

rollover when the layers mixed, with a consequent increase in flowrate. This procedure

was performed for various concentrations and with different heat fluxes applied to the

layers in the system.

The experiments showed that the peak flowrate at the point of rollover is a function

of the initial difference in the densities of the layers. This is reasonable since the

greater the initial density difference conditions, the longer the time taken for the layers

to reach the same density, giving the bottom layer more opportunity to build up a

larger thermal overfill which is released through evaporation. A mass flux equation

was derived empirically to estimate the variations in flowrate based on the bulk fluid

superheat. This, however, does not apply to transient flowrate behaviour which is a

function of the heat input into the vessel as well. The mass flux correlation cannot

predict the peak flowrates observed in incidents like the one at La Spezia based on a

reasonable bulk fluid superheat value. The only way that an extremely high flowrate

can be produced is by destroying the surface thermal resistance layer, which can be

done by either assuming flash evaporation or boundary layer penetration from the

bottom to the top layer surface.

Experimental simulations to study the liquid/vapour interface have been reported

by Atkinson-Barr(1989). Initially, micro-thermometer studies were carried out on



To DVSI

5 DUB
diaoeter stainless
steel capill iary.

a: constant temperature source

b: rotary pump

c: oxygen analyser sensor head

d: oxygen analyser meter display

e: mixture vaporising chamber

Figure 1.3: Temperature and oxygen concentration measurement apparatus reproduced

from Agbabi(1987).
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liquids such as LIN, LOX, LAr and LNG, in a double-walled bath which was sur-

rounded by a second LIN/LOX bath. The micro-thermometer consisted of a 25/rni

copper/constantan thermocouple which was fixed rigidly with respect to the dewar

and positioned such that it was initially below the surface. As the liquid level fell by

evaporation, the micro-thermometer measured the temperature in the thin conduction

layer, at the surface and finally in the vapour.

Thermal fluctuations ('spikes') with a frequency of 1-2 per second and a range of

heights up to ±0.5K were found to dominate the profile of the plot. The significance of

these profiles will be discussed in more detail in section 4.2. The thermal conduction

region was also observed in the plot.

Schlieren visualisations of the liquid/vapour interface were also carried out in the

aforementioned thesis, to give a qualitative interpretation of the structures seen in the

temperature scans. Schlieren visualisation is a method which provides an image of the

horizontal gradient of the density field in a horizontal slice. These images showed that

at all evaporation rates, the single most pervasive thermal structure in the fluid appears

to be the streamer. Streamers can be thought of as long circulating loops which move

cold liquid to the bulk and allow hot liquid to rise. The frequency of these streamers

appeared to be linearly proportional to the evaporation rate.

Finally in this work, Atkinson-Barr performed flow visualisation experiments on

mixtures of LAr and LIN at the liquid/vapour and more particularly, the liquid/liquid

interface. Since the image could not be seen clearly in photographs, the experiments

were videoed. At the start of the experiment, it was observed that the heat flux into

the vessel was very small and convective motions were not evident in either the upper

or lower layers. As heat was applied into the base of the vessel, convective circulation

developed in the lower layer and a small distortion was seen at the interface. The core,

which formed a downward flow, stayed in general near the centre of the vessel.

As the temperature of the lower layer increased, the interface between the two lay-

ers developed an oscillatory form with the greatest disturbances near the wall where

boundary layer flow was evident. Plumes in the lower layer entrained fluid from the

upper layer and returned under their own buoyancy causing the liquid/liquid interface

to move upwards slightly. This is termed penetrative convection. As the experiment

progressed, the wave motions in the interfacial region grew in amplitude and after

about two hours, convection in the upper layer became apparent. This motion devel-
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oped strongly causing the interfacial level to fall slightly as liquid from the lower layer

was entrained into the upper layer. The boil-off mass flux increased sharply at this

stage and its peak occurred whilst the layers were clearly visible. This is not in agree-

ment with the theoretical models of Chatterjee and Geist(1972) and Germeles(1975)

(described later) which show the peak mass flux occurring at the same time as the

destruction of the layers.

The movement of the interface grew in amplitude and in wavelength and the inter-

face displayed oscillations of a large amplitude, comparable to the depth of the liquid.

The disappearance of the interface was not evident until about four hours after the ex-

periment had started, at which time the boil-off reached an equilibrium, at an elevated

level from that associated with similar heating in an unstratified fluid. This experiment

showed that rollover begins with convection in both layers, followed by waves on the

liquid/liquid interface and finally a migration of this interface.

Shi(1990) formed models of rollover for fluid in two types of vessels. The first was

for that in a rectangular vessel which required Cartesian coordinates and the second

used cylindrical polar coordinates to describe flow in a cylindrical storage vessel. Two

basic assumptions were made about the flow medium:

1. The fluid is Newtonian;

2. The fluid is incompressible.

The Boussinesq approximation was also assumed. This states that if density variations

are small, they may be neglected in so far as they affect inertia but must be retained

in the buoyancy terms. A model for two-dimensional homogeneous flows, termed the

one-component model, was then constructed, the governing differential equations being

the two-dimensional Navier-Stokes equations,

( d2u 82u\du

dw
~dt +

du
dx

dw
U~dx +

du
W~dz~

dw
WJz

1
~Po

1

Ai

dp
Yx
dp
~dz

d2w d2w

h +

the energy equation (in conservative form),

dT_ djuT) d{wT) _ fd2T d2T
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and the continuity equation,
du dw
dx dz

Here u(x,z,t) is the horizontal velocity component (ms"1), w(x,z,t) is the vertical

velocity component (ms"1), p0 is the density in a reference state of hydrostatic equi-

librium (kgm~3), p(x, z,t) is the pressure (Pa), u is the kinematic viscosity (m2s~1), g

is the gravitational acceleration (ms"2), /3T is the thermal expansion coefficient (K -1),

T(x, z,t) is the temperature (K) and K, is the thermal diffusivity (m2s~x) of the fluid.

Two assumptions were made about the the liquid surface in order to propose bound-

ary conditions at the surface. Firstly, the surface was considered non-evaporating (i.e.

not moving); secondly it was assumed to be stress free, i.e. a free surface. Though

these assumptions are not strictly valid, they greatly simplify the computation. It was

argued that although there will be continuous evaporation of liquid at the surface in

the storage of cryogenic liquids since heat leak is inevitable, for well insulated tanks

the daily loss of liquid is trivial (order of 0.5%) compared with the whole content. The

second assumption was based upon the fact that for cryogenic liquids, the vapours have

a much lower viscosity than the liquids. Furthermore, the temperature at the surface

was fixed at the saturation temperature.

The governing equations were non-dimensionalised and discretised before being solved

numerically for temperature and density. This model was expanded to deal with het-

erogeneous flows, which are flows containing two (or more) miscible components. For

simplicity, only two-component flows were considered where the major constituent is

referred to as the solvent and the other the solute. The behaviour of the solute was

included by the addition of the equation

dS_ d{uS) d{wS) _ fd2S d2S\
dt + dx + dz ~as [dx2 + dz2)

where S(x, z, t) is the concentration (kgm~3) of the solute and as is the diffusivity

(m2s"1) of the solute in the solvent. Since the surface was considered to be non-

evaporating, it was assumed that the composition of the liquid remained unchanged at

all times so preferential evaporation, which has a greater effect the greater the difference

between the saturation temperatures of the solvent and the solute, was not included

in the problem. Further, there was assumed to be no exchange of the solute between

the liquid and the walls. Therefore

dS
dn
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was taken to hold at all four boundaries, where n is the direction normal to the bound-

ary.

These equations were solved initially in Cartesian coordinates, for a two-layer system

of LIN, with LOX as the solute. They were then adapted for cylindrical polar coordi-

nates. The numerical results showed that the mixing process of two initially stratified

layers is characterised by two continuing processes: steady downward penetration by

the core flow into the convective loop in the upper layer and the process of entrainment

whereby higher density liquid is entrained and mixed into the upper layer. These two

processes work together until, eventually, the lower layer is completely mixed into the

upper layer and the whole liquid became one single layer.

Also in this work, flow visualisation experiments were conducted in a cylindrical

double-walled glass dewar in order to qualitatively verify these predictions. Ideally,

LIN and LOX should have been used as the testing liquids since these were the fluids

in which the numerical simulations were performed. However, this experiment de-

manded controllable uniform wall heating. To meet this requirement for this mixture

was not easy. Instead, Freon 11 and Freon 113 were chosen. These fluids have a higher

saturation temperature, making them less volatile and easier to handle at room temper-

ature. The observations from these experiments agreed with the predictions from the

numerical model, showing that the merging of the two stratified layers is characterised

first by a gradual descent of the interface level as a result of the entrainment mixing

at the interface facilitated on the core flow as it impinges on a density interface, and

then by a rapid mixing of the layers. The main conclusion of Shi's thesis was that in

a two-layer system of cryogenic liquids under atmospheric pressure, the free surface is

almost isothermal, unlike the quasi-adiabatic liquid-liquid interface. So the buoyancy-

induced convective flows in the two layers are distinctly different. Due to the cooling

action of the isothermal surface, a strong core exists in the upper layer whereas high

fluid velocities are confined to the boundary layer in the lower layer. This work will

be used as a foundation for our work in chapter 5 involving preferential evaporation in

mixtures of cryogenic fluids.

Table 1.1 lists the cryogenic liquids which will be used in our models, along with

approximate values of Tsat, the saturation temperature (K), p\, the density (kgm~3)

in liquid form at the saturation temperature and L, the latent heat of vaporisation

(Jkg"1) at the saturation temperature.
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Cryogenic Liquid

Nitrogen (LIN)

Oxygen (LOX)

Argon (LAr)

Methane (CH4)

Tsat (K)

77.4

90.2

87.3

112

P\ (kgm 3)

808

1140

1400

425

L (kJkg-1)

199

213

158

512

Table 1.1: Approximate Values of Thermo-Physical Properties of Cryogenic Fluids

There has been some previous interest in the evaporation of mixtures. A report by

Beduz and Scurlock(1996) described experimental investigations into, amongst other

things, the relationship between the evaporation rate of both pure LIN and mixtures

of LIN, including LIN/LOX and LIN/LA mixtures, and the temperature difference

between the bulk fluid and the surface. From this, it was found that the evaporation

mass flux at a fixed superheat is some 30-50% greater for mixtures than for pure LIN.

This is thought to be associated with the more intense convection which occurs as

a result of the two additive components on the local density. More recently, Keary

et al. (1998) investigated concentration changes in liquid air evaporating in an open

dewar. Their results implied the existence of a surface layer which was richer in LOX

due to the preferential evaporation of LIN. These results were obtained in a long (1-

1.7m long), narrow (70mm diameter) double-walled glass dewar using temperature and

concentration probes which could be moved up and down. The work showed a non-

linear relationship between the evaporative mass flux and the concentration difference

between the surface and the bulk of the liquid.

There have been several other experimental and theoretical investigations of rollover.

For example, Nakano et al. (1982) conducted studies on the mixing of stratified lay-

ers using mixtures of Freon-11 and Freon-113 since their saturation temperatures are

around room temperature, making them easier to handle. After the stratified layers

were formed, heat was applied to the tank to initiate rollover. It was noted that for

fluid in a tank which was heated from the bottom, rapid mixing patterns could be ob-

served. However, when the tank was heated from the side, boundary layer penetration

patterns could be seen. These formed because of the gradual penetration of upward

convective flows along the wall and into the upper layer. Peak evaporation flowrates

were not observed for either of these methods of heating the tank but were found to

be present when the tank was heated from both the side and bottom.
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Sugawara et al. (1983) performed various tests including one which used a full size

LNG tank. LNG from two different sources was used to simulate the stratification in

the tank and the temperature and density of the layers were measured. A mixed layer

was found to exist between the upper and lower layers caused by a mixing effect due to

the addition of cargo at the vessel bottom. In this 'intermediate layer', a temperature

gradient was observed. However the density profile proved impossible to measure. The

thickness of the layer gradually decreased with time because of the convective flows in

the upper and lower layers and a sharp interface was formed. Initially, the interface

descended gradually, but just before rollover, it descended more rapidly. Finally the

upper and lower layers were mixed. Whilst the intermediate layer was present, the

rate at which the mixture evaporated was small but this increased significantly shortly

after the layer disappeared.

Experiments with liquid petroleum gas (LPG) performed by Morrison and Richard-

son(1990) provided a good qualitative description of the development of stratified layers

with time. In brief, the results confirmed the presence of an initially stationary inter-

face with heat/mass exchanges akin to double-diffusive convection between the layers.

However interface migration dominated in the later stages when penetrative convection

was seen to exist. As fluid was removed from the lower layer, the interface between the

two layers moved perceptibly upward and their relative densities decreased.

The Kelvin-Helmholtz instability mechanism (see Milne-Thomson, 1968, for more

details) may be used to explain the instability in the interface between stratified layers

in storage containers. This instability affects the interface between two layers of inviscid

fluids of different densities and perhaps velocities. Modelling the pressure at the surface

with Bernoulli's equation for unsteady potential flow and examining the stability of this

interface suggests that the system will become unstable if

Pi +P2

where pi and p<i are the densities (kgm~3) of the upper and lower layer respectively, U

is the convective velocity difference (ms"1) between the two layers, g is gravity (ms~2)

and a is the surface tension (Nm"1) between the two fluids.

Gravity and surface tension therefore play a stabilising role; the larger g or a, the

larger U would need to be before the instability occurs. In the absence of surface

tension, a, there will be instability for any U, however small. This equation also

indicates that when the two densities, which are variables, become equal, the instability
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comes into existence. This agrees with the concept of rollover which occurs when the

densities of the upper and lower layers become equal.

Hashemi and Wesson(1971) formed the following equation for the rate of evaporation,

rh

where C\ is a dimensionless constant, k is the thermal conductivity (Wm^K" 1) , A is

the latent heat of vaporisation (Jkg"1), /3 is the coefficient of thermal expansion (K -1),

g is the acceleration due to gravity (ms""1), a is the thermal diffusivity (m2s~1), v is

the kinematic viscosity (m2s-1) and AT is the temperature difference between the bulk

of the liquid and the surface (K). C\ can be obtained from data on the fluid which is

being modelled.

By comparing the theoretical evaporation rate for water to that found experimentally,

the authors concluded that surface evaporation is essentially controlled by heat trans-

fer through the liquid boundary layer rather than mass transfer through the gaseous

boundary layer over the free surface.

Chatterjee and Geist(1972) examined the effects of stratification on boil-off rates in

LNG tanks. A mathematical model of rollover, with n homogeneous layers of LNG

of given heights and physical properties, at a constant tank pressure, was proposed.

The model included double-diffusive convection, the behaviour of fluids in which there

are gradients of two properties with different diffusivities, to describe the interfacial

transportation of heat and methane. The differential equations produced to model

the process were solved numerically as an initial value problem. For a set of initial

conditions and tank properties, the temperature, composition and densities of each

layer and the boil-off rates were calculated at finite time intervals. When two adjacent

layers had insignificantly small compositional differences they were considered mixed

and the number of layers was decreased one by one until only one layer remained.

For three widely different and well-known cases, the mathematical model predicted

with satisfactory accuracy both the time required to reach maximum boil-off rates and

the magnitudes of these peaks. However, the accuracy was limited by uncertainties

in the interfacial heat and mass transfer coefficients incorporated in the model and

by the assumption that density differences always lead to complete stratification, thus

neglecting the effects of mixing that always occur to some extent during filling. Also,

the differential equations formed in this paper were for a tank containing many different
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layers. Multi-layers have never been shown to exist in real storage containers so we

may only take qualitative results for a two-layer system.

Germeles(1975) formulated a similar model to Chatterjee and Geist(1976) to de-

scribe rollover, considering two mixtures of LNG with slightly different compositions

of methane (the solvent) and other solutes (impurities) and/or different temperatures

T\ and T2, and corresponding densities pi and pi. This was simplified to a fictitious

two-component mixture representing LNG compounds. Differential equations were

then formed to describe the conservation of energy and solute material for a number

of adjacent convection layers, known as cells. The Hashemi-Wesson model(1971) was

used for the computation of boil-off of the solvent and the solute was assumed not to

evaporate. In the model, when any two adjacent cells reached density equilibration

within a specified small difference, they were assumed to be mixed and were trans-

formed into a single cell of average characteristics. The final rollover of the tank took

place when the last two cells were mixed, and the entire tank became one single cell.

A computer program was written which, given the number of cells, the cell thicknesses

and the initial values of the temperatures and concentrations for each cell, integrated

the conservation equations of the model forward in time. The computed time histories

of boil-off mass flux, temperature, concentration and density for each cell were plotted.

The results of this model were compared to the data from the La Spezia rollover inci-

dent (Sarsten, 1972), in which rollover actually occurred in an LNG storage tank, and

were shown to give reasonable predictions. This model is slightly more realistic than

the Chatterjee and Geist model, because unlike in the latter, it does not assume that

there is equimolar counter-diffusion across the interfaces and therefore that the number

of moles in each layer is constant until mixing occurs. The transport coefficients used

in both models, however, were for salt solutions rather than for LNG mixtures and the

model could again only give qualitative results for a two-layer system.

Chatterjee and Geist(1976) extended this model to incorporate the presence of ni-

trogen. This required various alterations to their former model including:

1. LNG was treated as a mixture of nitrogen, methane and ethane, rather than a

two-component mixture of methane and ethane;

2. The original model assumed that the boil-off vapour from the top layer was pure

methane. In the new model, the boil-off vapour was taken to be a mixture

of nitrogen, methane and ethane and the model incorporated a detailed flash
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calculation to calculate the boil-off rate.

Computer simulations were carried out using the model, to improve understanding of

the factors that influence the intensity and duration of this type of rollover. They

indicated that with 1-3% nitrogen, the peak fiowrate associated with rollover will be

about 2-3 times the normal boil-off rate.

A computer program ('ROLLO') was developed by Heestand et al.(1983). For given

initial temperatures and compositions, ROLLO computes the evolution of stratified

LNG by numerically solving a set of differential equations, which are formed with the

conditions of material and energy balance between the N liquid strata with stationary

interfaces. A modified Hashemi-Wesson(1971) model, which assumed that the vapour

evolved is in thermodynamic equilibrium with an arbitrarily thin film of liquid on the

surface, was used to describe the weathering of the stored LNG. However no spatial

dimensions were used in each strata so the effects of weathering were assumed to be

converted immediately, maintaining a uniform liquid composition throughout the top

layer.

In chapter 5, we consider the natural convection of concentration and temperature in

mixtures of cryogenic fluids with preferential evaporation and double-diffusive convec-

tion. A review of the developments and applications in double-diffusive convection was

given by Huppert and Turner(1981). This type of convection was first associated with

salt fingers, which are long narrow convection cells that are set up when warm salty

water lies above cold fresh water. Renardy and Schmitt(1996) explored the influence

of non-linear profiles of salinity, as might arise due to surface evaporation, on the linear

stability problem in a salt-fingering regime. The asymmetry observed experimentally

in the salt fingers has been attributed to evaporation due to a dry atmosphere leading

to a salty layer at the top with the salinity varying little over the rest of the fluid. A

model was constructed of double-diffusive convection with a sharp, non-linear concen-

tration gradient applied at the upper boundary, to model the surface evaporation of

the solute. This gradient was found to drive a motion that was confined to a depth

of a few boundary layers. No significant motion was found lower in the layer. The

instability which operated in the boundary was stabilised by the temperature gradient

in the bulk.

Sevelder and Petit(1989) studied the natural convection caused by combined heat

and mass transfer on a single layer of LNG in a two-dimensional square closed cavity

19



with insulated, horizontal walls. This LNG was assumed to be composed of methane,

taken as the solvent, and ethane, as the diffusing species. The steady-state equations

for the problem were formed and solved numerically for thermal and solutal Rayleigh

numbers of 5.5 x 103 and —1.3 x 105 respectively. Various boundary conditions were

applied on the two vertical walls, including the case of uniform temperatures and molar

fractions, where the thermal buoyancy force counteracts the compositional buoyancy

force. The computed streamlines were shown to be similar to those obtained for natural

convection due to heat transfer only, with an upward flow induced along the hot side

wall and fluid descending down the opposite wall. The effects of evaporation were not

considered in this model.

A more recent paper by Nishimura et al. (1998) investigated the effect of a buoyancy

ratio, N, on the flow structure of a binary mixture gas in a rectangular enclosure,

subject to opposing horizontal thermal and compositional buoyancy. The buoyancy

ratio, N = /3c(ch — CI)//?T(21 — Tc) where J3Q is the compositional expansion coefficient,

Ch is the high concentration, c\ is the low concentration, (3? is the thermal expansion

coefficient, T^ is the hot wall temperature and Tc is the cold wall temperature. The un-

steady problem was solved numerically using a finite element model and predicted that

oscillatory double-diffusive convection occurs for a certain range of buoyancy ratios.

In this section we have concentrated on previous work which we feel to be closely

related to our studies. There are a number of other papers which also consider various

phenomena in multi-component fluid systems which are of less relevance.

Turner(1965) performed experiments to examine the stability of cold fresh water

resting on top of hot salty water with a sharp density interface between them. Both the

heat transfer and the ratio of the rates of turbulent transport of salt and heat were found

to depend systematically on the ratio of the density difference due to salinity differences

to the density difference due to temperature differences between the layers. Bose

and Palmer(1983) used linear hydrodynamic stability theory to examine the extent to

which key mass-transfer properties affect the interfacial stability of a binary mixture

evaporating under vacuum. Results indicated that the stability criteria for interfacial

convection were extremely sensitive to the difference in volatility between the two

components. Lin et al. (1990) carried out a detailed numerical study to investigate

transient natural convection in a binary mixture in a square enclosure with temperature

and concentration fixed on both opposing walls. The effects of the buoyancy ratio were
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found to be significant on the flow pattern and heat and mass transfer. Kamakura

and Ozoe(l993) examined the evolution of the concentration distribution for double-

diffusive natural convection within a fluid heated and cooled from opposing walls and

with an initially linear concentration gradient. Multi-layered roll cells separated by

sharp interfaces were observed numerically. Bates and Morrison(1997) modelled the

evolution of stratified liquid natural gas in storage tanks from formation to breakdown,

due to rollover. The behaviour of the fluid was described in two phases, the first of

which followed the model proposed by Heestand et al. (1983) and the second which

modelled the migrating interface. The results compared well with experimental data.

1.2 Thesis Layout

A simple model, dependent only on time, for the rate of increase in temperature of two

stratified layers of cryogenic fluids up to the point of rollover is proposed and solved in

Section 2.1. The effects of evaporation are included in Section 2.2 and the results are

compared with two specific experimental cases studied by Agbabi(1987). We discuss

the important variables in this initial model in Section 2.3.

The rate at which a one-component fluid evaporates is discussed in Chapter 3. A

model is proposed which examines the thin conduction region at the surface observed

in experiments (e.g. Beduz et al., 1984), assuming that away from the surface, the

temperature of the fluid is uniform. The Stefan condition is applied at the surface to

describe the rate at which the surface moves downward. In 3.1.3, we find a similarity

solution which satisfies the equations of the model. Since we require one mass flux rate

to describe the process over all time, to make a direct comparison to experimental work,

we examine the stability of the solution in order to see whether it is capable of damping

out small perturbations to which any physical system is subjected. A time-dependent

mass flux rate is calculated in 3.1.3. We then examine the long-term behaviour of the

fluid by examining a travelling wave solution. A more realistic boundary condition is

proposed for the model in 3.1.5, such that the temperature of the bulk of fluid remains

a fixed distance from the moving surface. The long-term behaviour of the fluid is

again examined using a travelling wave solution. With knowledge of the thickness of

the conduction region, we obtain a mass flux rate which is independent of time. The

result agrees qualitatively with previous experimental correlations. In Section 3.2, we
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propose a model for a two-component liquid with evaporation of only one component

at the surface.

We obtain numerical predictions of the thickness of the conduction region in Chap-

ter 4. This model is constructed using the assumption made in previous studies; this

considers the unstable temperature gradient close to the surface and proposes a Benard-

type instability criterion for the thickness of the surface layer, characterised by a criti-

cal Rayleigh number, above which convection is initiated. Equations are formed which

model convective instability in the surface layer with Couette flow at the lower bound-

ary to describe the effect of convection in a cell in the bulk of the liquid on the con-

duction region. Numerical results obtained with the model suggest that the minimum

thickness of the layer is larger than that observed in experiments. In Section 4.2, we

construct a simple model to investigate the theory that thermal fluctuations, observed

close to the surface of cryogenic fluids, particularly mixtures (Atkinson-Barr, 1989),

could be due to micro-convection eddies, which replenish the fluid lost at the surface.

The comparison between our estimated frequency and experimental results supports

such a theory.

Finally in Chapter 5, we propose what we believe to be the first model to include

preferential evaporation with laminar natural convection within a mixture of two cryo-

genic fluids, in a square vessel. We begin this work by constructing a model for the

laminar natural convection within a one-component fluid in Section 5.1. The equations

from this model are discretised by an upwind scheme and solved numerically, with the

Poisson equation being solved using the multigrid method, described in 5.2.5. After

carefully validating our code with previous results for one and two-component flows,

we derive a new term for the preferential evaporation of the mixture in Section 5.6.

The equations used in the model are solved numerically to obtain the first plots of the

evolution of this type of evaporation.
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Chapter 2

Temperature Models For Rollover

In this chapter, we will examine the bulk temperature in a two layer system, up to

the onset of rollover. The results will be compared to the experimental work of Ag-

babi(1987), described in detail in Section 1.1, in which rollover is observed using two

different LIN/LOX mixtures to form the two layers and applying different heat fluxes

to the upper and lower layers. Although we shall only propose and solve elementary

mathematical models in this section, we shall see that they give initial qualitative

results of the behaviour of the system.

2.1 Initial Time Dependent Model

2.1.1 Description of the initial mathematical model

We begin by constructing a model to describe rollover which has no space dimensions

and only time dependency. The vessel used in the work of Agbabi(1987) is depicted in

Figure 2.1, showing the heat flux in and out of the system. For the initial model, we

shall assume that there are bulk heating sources in both layers of the fluid which heat up

the particles individually, rather than model the problem with external heaters around

the cylinder, as performed experimentally. In this way we can avoid introducing any

space dimensions to the problem. The vessel is otherwise assumed to be well insulated

and all other heat transfer between the system and the surroundings is ignored. The

lower layer, therefore, gains heat from the bulk heater and releases some of this heat

by conduction to the upper layer. In this initial model, evaporation is neglected since
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it is assumed to be insignificant. So, the upper layer simply gains heat, both from the

bulk heater and from the lower layer by conduction.

top

bot

top

bot

Figure 2.1: Diagram depicting vessel used experimentally by Agbabi(1987), illustrating

the heat gain/loss from the system. The arrows indicate the direction of the heat flow.

Suppose Qtop and %ot are the thermal powers per unit area (Wm~2) applied to the

top and bottom wall heaters respectively. These values are required to find the powers

of the bulk heaters in both layers. Let Ttov(t) and T\>ot(t) be the temperatures (K) of

the top and bottom layers respectively which are dependent on time, t. This leads to

two equations:

(2.1)

(2.2)Pbot{t)cbotfhot{t) = f2{i) - /3(t)

where fi(t) and /2(i) are the heating powers per unit volume (Wm 3) due to the

bulk heater and so are dependent on qtop and b̂ot respectively and /3(i) represents the

thermal power per unit volume (Wm"3) transferred through the layers by conduction;

Ptop(*) and Pbot(^) are the time-dependent densities (kgm~3) and ctop and Cbot are the
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specific heat capacities (Jkg lK l) of the upper and lower layers respectively.

Heat entering top layer per unit time = Heat flux per unit area into vessel

xArea in contact with heater

where a is the radius (m) of the cylinder, and htop is the height (m) of the top layer.

So the heat entering the top layer per unit time per unit volume = gtop71~Q top

ira2htQp

Therefore, we have found one of the terms in equation (2.1), namely:

i(t) — . (2.3)
The term /2(t) in equation (2.2) is found similarly to be:

f2(t) = ^ i . (2.4)

The thermal conductivity equation gives,

j = fc(rbot(t)-rtop(t))
i

where Jv is the heat flux (Wm"2) between the two layers, k is the thermal conductivity

(Wm -1K~1), assumed to be equal for the two fluids and I (m) is the thickness of the

interface seen to exist between the two layers obtained from experimental data. This

interface exists to prevent the lower layer from penetrating through to the surface and

so by its very nature has a steep temperature gradient. We can estimate its thickness

from the experimental data of temperature profiles through the vessel and it is found

to be about 2cm.

It is assumed that the thermal conductivity does not vary significantly with con-

centration. This is reasonable for small differences in concentration since the ther-

mal conductivity of LIN is 0.1396Wm~1K~1 and the thermal conductivity of LOX is

0.1514Wm-1K-1.

Using equation (2.5), the thermal power per unit volume transferred from the lower

layer to the upper layer is found to be:
surface area in contact with both layers

v volume of interface layer

k{Tbot(t)-Ttop(t))
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Using equation 2.3, 2.4 and 2.6 in equation 2.1 and 2.2 yields the following differential

equations for Ttop(t) and Tbot(t):

The densities, piop(t) and Pbot(*), c an be expressed as functions of temperature for a

constant pressure of 1 atmosphere, using experimental data (Younglove, 1982). Thus

we have two differential equations in two unknowns, namely Ttop(t) and T^ot(t).

Equations (2.7) and (2.8) are solved numerically, for the temperatures of the upper

and lower layers, Ttop(i) and Tbot(t) and these results are compared to experimental

results for two specific cases performed by Agbabi(1987).

2.1.2 Properties of mixtures for two specific cases

For our work, we select two specific cases from Agbabi(1987) to compare with our

numerical results. Case (1) is the simplest case of heat only entering the lower layer

and case (2) has fairly similar heat fluxes entering the two layers. Table 2.1 shows the

properties of the mixtures for these two cases where Ltop and Z/bot are the latent heat

of vaporisation of the fluid in the top and bottom layers respectively and CtOpLOX, and

CbotLOX are the initial percentage concentrations of LOX in the upper and lower layers

respectively. Ctop
LIN and CbotLIN> the initial percentage concentrations of LIN in the

upper and lower layers respectively, can be found using Ctop
LIN = 1 — CtOpLOX and

Cbot
LIN = 1 — CbotLOX- Figure 2.2 shows the graph of density against temperature at

a constant pressure of 1 atmosphere obtained for LIN and LOX where the crosses and

circles mark the actual values given in the experimental data (Younglove, 1982) and

the straight lines represent the best fit line through the points. From these, we find

the following linear relationships between density and temperature for both fluids:

pLIN = -3.80T +1106.2

and PLOX = -4.59T + 1556.0

where pLIN and pLc>x a r e ^e densities (kgm~3) and T is the temperature (K) of the

fluid.
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Case

<?toP ( Jmin"^ ' 2 )

%ot (3mm~lm'2)

a (m)

ctop (Jkg-^- 1)

cbot (Jkg^K-1)

LtoP (Jkg-1)

Lbot (Jkg^1)

k (Jmin-^-^^1)

l(m)

rtop(O) (K)

Tbot(O) (K)

Aop(t) (kgm-3)

Pbot(*) (kgm^3)

C t o p
L O X (%)

C b o t
L O X (%)

1

0

67.1x 60

0.0325

2xlO3

2xlO3

2xlO5

2xlO5

O.lx 60

0.02

77.40

77.60

-3.8lT top(t) + 1114.4

-3.84Tbot(t) +1127.3

1.8

4.7

2

9.9x 60

16.8x 60

0.0325

2xlO3

2xlO3

2xlO5

2xlO5

O.lx 60

0.02

77.50

77.50

-3.81T top(t) +1111.1

-3.81Tbot(t) + 1114.7

1.1

1.85

Table 2.1: Properties of mixtures in upper and lower layers for two specific experimental

cases.
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The densities of the upper and lower layers, ptop{t) and Pbot(^) respectively, are

assumed to be linear combinations of the densities of LIN and LOX, based on the

concentration of the fluid in each layer.

2.1.3 Results of the initial model

The coupled differential equations (2.7) and (2.8) are solved numerically using a simple

Runge-Kutta routine with adaptive stepsize control (Smith, 1965) for the two cases.

The bulk temperatures in the upper and lower layers for the two cases are compared to

those found experimentally and are shown in Figures 2.3 and 2.4 respectively. Although

experimental evidence shows that rollover is initiated by increased convective mixing,

we will examine the use of a simple 'equal density' criterion for predicting the onset of

rollover. Thus although we do not have any experimental data with which to compare

the density, we find the densities of the upper and lower layers for the two cases

and these are shown in Figures 2.5 and 2.6 respectively. The time measurements are

calculated in minutes to allow for an easier comparison with the experimental work.

Figure 2.3 shows that the numerical solution of the temperature for the upper layer

initially agrees well with experimental data but after approximately 4 minutes starts to

increase more rapidly than the measured temperature suggests. The numerical solution

of the temperature for the lower layer immediately increases at a faster rate than the

experimental result and, after 20 minutes, there is a temperature difference of almost

2K between the two values. Figure 2.4 shows that the predicted temperatures for

both the upper and lower layers, for case (2), immediately increase at a much faster

rate than the experimental results and after 30 minutes there is approximately a 0.7K

difference in both layers. Although this does not sound very much, this difference in

temperature causes a change in the density. Assuming that rollover occurs when the

two layers become an equal density, this density difference could mean the difference

between rollover occurring or not.

The numerical results for the density of both the top and bottom layers are shown

in Figure 2.5 for case (1) and in Figure 2.6 for case (2). Initially the density of the

lower layer is higher than that of the upper layer for both cases. However we see

that in Figure 2.5, the density of the lower layer decreases quite rapidly whilst that

of the upper layer only decreases slowly and at the end of the run, there is only a

lkgm"3 (0.1%) density difference. However, although the density of the lower layer
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Figure 2.3: Comparison between the numerical solutions of the bulk temperatures of

the upper and lower layers and those found experimentally for case (1).
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Figure 2.4: Comparison between the numerical solutions of the bulk temperatures of

the upper and lower layers and those found experimentally for case (2).
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is decreasing more rapidly than that of the upper layer in Figure 2.6, there is still a

2.5kgm~3 (0.3%) density difference after 20 minutes. In both cases, the system is still

bottom heavy at the end of the run by which time it appears that the penetrative

convection was becoming dominant in Agbabi's experiments.

830

Numerical solution for the density of the upper layer
Numerical solution for the density of the lower layer

10 12
Time (minutes)

14 16 18

Figure 2.5: Numerical solutions of the bulk densities of the upper and lower layers for

case (1).
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Figure 2.6: Numerical solutions of the bulk densities of the upper and lower layers for

case (2).
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2.1.4 Discussion of results obtained from initial model

The assumption of an adiabatic upper surface, neglecting heat loss through evaporation

can be used to explain some of the difference between the numerical and experimental

solutions for the upper layer in both cases. Its effect, however, would be greater on

case (2) than on case (1) since more fluid evaporates in case (2), due to the greater

superheat of the upper layer which drives evaporation. This inaccuracy will directly

affect the density of the layers and shall be addressed in the next section.

2.2 The Inclusion of Evaporation

2.2.1 Basic model including evaporation

Evaporation cools the upper layer and therefore neglecting the effects of evaporation

causes the temperature of the upper layer to increase too rapidly as we saw from our

previous results. In this section, evaporation will be included to study the effect of

this phenomena on the temperature. The mass flux equation, given below, which was

obtained experimentally for LIN by Agbabi(1987) will be included in the model

m = 2.88 x l<r3ATL 6

where fn is the mass flux (kgm~2s~x) caused by evaporation and AT = Ttop(i) —

Tsat is the difference in temperature (K) between the upper layer and the saturation

temperature, for our cases 77.36K.

We may then form new differential equations for Ttop(t) and Tbot(^) by introducing

the mass flux equation to the previous set of differential equations.

2.2.2 Results of the model with the inclusion of evaporation

We will now find f^t), an additional term on the right hand side of equation (2.7)

which represents evaporation in the differential equation for the upper layer.

Heat flux out of the surface = Mass flux out of surface

x Latent heat of vaporisation

= mL

34



where L is the latent heat of vaporisation (Jkg"1) for the fluid.

Then the heat leaving per unit time = Heat flux out of surface

x Area of surface

bo the heat entering the top surface per unit time per unit volume =
•Ka~htop

Although the height of the upper layer will change over time as the fluid evaporates, we

shall assume that this change is small enough to be neglected, such that htop = 0.13m

for both cases. So we have found the new term in the differential equation for the

upper layer, namely:

' 'top

Thus we obtain the following ordinary differential equations:

P t o p ( v c t o p ° ft(t)c'

60 x mL

Tbo t(t) = — °' - -—7——7j(r b o t ( t ) - T t o p(t)).
P ( i ) C a P ( * j C '

The steady-state solution of the problem can be found by solving

2<?toP k QOxmL
+ — : — U b - i j - T - -—topPtop^top

CLIICI ~~ ,rj \-L bot -*-topy

PbotCbota Pbotcbot'

which gives the temperature of the upper layer to be

\ aX
rp I ^ V i t p p I •*DOW'HOP I rp

Itop - \ -T f +Jsat

and the temperature of the lower layer to be

On I2 (In < ~ \U ^ V l -6
AQhntl* U7ton "2qhotl j ^

J- bot = ; r S - ? - r -I sat
a« [ aA J

where

A = 60 x 2.88 x 10~3L.
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The steady state solutions for case (1) are

Ttop = 78.32K

Tbot = 86.58K

and for case (2) are

Ttop = 77.90K

Tbot = 82.04K

Both the temperature of the upper and lower layers are higher for case (1) than for

case (2). Although there is an absence of heat entering from the side of the vessel into

the upper layer for the former case, the high heat flux into the lower layer must have

a fairly significant effect on the temperature in the upper.

The new differential equations are again solved numerically for Ttop(t) and TbOt(t)

and the results are shown in Figures 2.7 and 2.8, with the experimental results super-

imposed for cases (1) and (2) respectively. Figure 2.7 shows the numerical solution

of temperature for case (1). The rate of increase of the numerical solution of tem-

perature for the lower layer has not changed noticeably. However, the temperature of

the upper layer is far more accurate than that in Figure 2.3 for the 20 minute run.

Similarly, although the accuracy of the numerical solution of the temperature of the

lower layer for case (2), shown in Figure 2.8, has increased slightly, the main difference

from Figure 2.4 is in the temperature of the upper layer which is now far closer to the

temperature found experimentally.

The numerical results for the density of both the top and bottom layers are shown

in Figures 2.9 and 2.10 for cases (1) and (2) respectively. The plot for case (1) shows

that the density of the upper and lower layers are equal at the end of the 20 minute

run, due to the slower rate of decrease of the density of the upper layer. Although the

numerical solution for the density of the lower layer in case (2) has changed slightly, the

more significant change in density is in the upper layer which again has a slower rate

of decrease than that obtained using the original model, leaving less than a 0.5kgm~3

(0.06%) difference.
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Figure 2.7: Comparison between the numerical solutions of the bulk temperatures of

the upper and lower layers with the inclusion of evaporation, and those found experi-

mentally for case (1).
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Figure 2.8: Comparison between the numerical solutions of the bulk temperatures of

the upper and lower layers with the inclusion of evaporation, and those found experi-

mentally for case (2).
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2.2.3 Discussion of results with evaporation

The predictions obtained using the model with evaporation are far more accurate than

those found previously. However, the lower layer is still hotter than the experiments

suggest. This is largely due to the simple relationship of heat transfer between the

layers. The temperature of the upper layer in turn should increase more rapidly because

it should gain more heat from the lower layer but this will cause a higher temperature

difference between the upper layer and the saturation temperature which will then

increase the heat lost at the surface by evaporation.

2.3 Conclusions of Temperature Models for Rollover

In this chapter, we proposed and solved a simple mathematical model which examined

the rate of increase of the bulk temperatures in two layers, due to heat entering the

vessel and heat transfer by conduction between the layers. We found that the results

were too high and included a term for the heat loss at the surface through evaporation

in Section 2.2. The final model gave temperatures for the upper layer fairly close

to those found experimentally, with all the numerical solutions for the temperature

predicting the experimental data to within 1.5K for the run. With the 'equal density'

theory, our numerical solutions for the densities of both layers at the end of the run

time would suggest that rollover is just about to occur in case (1) but has not yet

occurred in case (2). However, experimental results suggest that the rollover process

has begun before this point in both cases thus indicating that 'rollover' is controlled

by penetrative convection rather than a simple 'equal density' criterion.

Our model assumed that the concentrations in the two layers remain constant. How-

ever, concentration measurements over time for the two cases obtained by Agbabi(1987)

show that the concentration of LOX in the lower layer decreases over time and that

in the upper layer increases. This is due to entrainment of fluid from the lower layer

to the upper layer and preferential evaporation of LIN at the surface leaving enriched

LOX fluid. Changes in concentration will cause changes in density which were not in-

cluded in our model. These effects will further increase the density of the upper layer,

promoting a rollover situation.

Finally, the only method of heat transfer between the layers was assumed to be

conduction. However, flow visualisation experiments by Atkinson-Barr(1989) have de-
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scribed the interface developing an oscillatory form suggesting that heat is also trans-

ferred by convection. More detailed predictions of the processes involved could therefore

be obtained by developing a model which included natural convection.
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Chapter 3

Analytical Models Of Evaporation

In this chapter, we shall start by examining the 'very thin' surface region of the fluid

more closely. The behaviour of this part of the fluid is likely to have a significant

influence on evaporation and vice versa. Unlike in Chapter 2, where we considered the

behaviour of two layers of fluid, here we will consider a single layer only.

This fluid is present in both its liquid and its gaseous form due to evaporation

across a moving boundary. We shall determine the position of this moving boundary

as part of the solution of the temperature distribution. Such problems are known as

Stefan Problems (see Tayler, 1986, for more details). The stability of the solution

will be assessed. Once the position of the moving boundary has been calculated, a

mathematical equation for the mass flux at the surface can be found, which may be

compared to that predicted from experimental data.

Having found the mass flux at the surface for a single fluid, we shall develop our

work to model the behaviour of a two component fluid.

3.1 The Stefan Model

Experiments, such as Atkinson et al. (1984), show that cryogenic fluids, when stored

in clean vessels, with a minimal number of nucleation sites, become superheated. This

means that Tbuik > ^sat! where Tbuik is the temperature (K) of the bulk liquid under-

neath the surface layer and Tsat is the saturation temperature (K) of the fluid at the

evaporating surface. This liquid surface is described from experimental studies using

a combination of Schlieren flow visualisation and temperature measurements using a
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micro-thermocouple (25/zm thick) by Beduz and Scurlock (1994) as being controlled

by three delicate mechanisms within 5-10mm of the surface: molecular evaporation at

the surface, thermal conduction in a thin liquid region 100-500/^m thick with a steep

temperature gradient and vortex convection lines in the liquid which form a radial

pattern parallel to the surface.

In this section, we shall construct a model to describe the time and position de-

pendent temperature distribution in the thermal conduction part of a one-component

fluid. A Stefan condition will be imposed on the boundary. Using this model, we

will evaluate the mass flux at the surface which will be compared to that estimated

experimentally.

3.1.1 The One-Dimensional Stefan Condition

We begin by describing a simple example of a one-dimensional Stefan problem, that

of melting ice, shown in Figure 3.1, in order to show the general method which will

be used. The ice is at a temperature of 0°C on its boundary surface, x = s(t). A

heat flux, —kwdTw/dx, enters the shaded element in the diagram from the water phase

and a heat flux, —kidT-Jdx escapes into the ice, where kw is the thermal conductivity

(Wm-'K"1) of the water, Tw(x,i) is the temperature (K) of the water, k{ is the thermal

conductivity (Wm^K"1) of the ice, and Ti(x,t) is the temperature (K) of the ice.

Heat WATER

x=s(t)

Figure 3.1: A simple example of the use of the Stefan condition - the problem of heat

entering ice reproduced from Tayler(1986).

The heat flux absorbed by the shaded element

= -kwdTw/dx - (-h

= kdTJdx - kwdTw/dx. (3-1)
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This heat is used to melt the ice.

But the heat used to melt the ice contained per unit area = p\Xs(t) (3.2)

where p; is the density (kgm~3) of the ice and A is the latent heat of fusion (Jkg^1).

So equating equations (3.1) and (3.2) gives

PiXs{t) = k- k w
wdx dx

and thus finally

P\Xs(t) =
dT

x,t)
dx

J X=S"

This is known as the one-dimensional Stefan condition.
By an obvious generalization, the three-dimensional Stefan condition may be given as

,+ dF
\-kVT]° .VF = pA—-

dt

where

F(x,y,z,t) = x - s(y,z,t).

and s(y,z,t) is now the surface.

3.1.2 The Basic Unsteady, Stefan Problem

Now that we have derived the Stefan condition, we will apply the one-dimensional case

to the problem of the conduction region of a liquid evaporating into freely convecting

vapour above. Unlike general problems posed in this field, the boundary conditions

in our situation are unclear. We shall discuss these in a moment but first we shall

describe the flow in the two states.

In the vapour

We shall assume that the temperature in the vapour is uniform initially, at the sat-

uration temperature of the fluid, Tsat. If we further assume that the pressure in the

vapour remains constant, then Tsat does not change and the vapour may be assumed

to remain at this temperature. Therefore we have

Tvp(x, t) = isat

where Tvp(x,t) is the temperature (K) of the vapour.
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In the thin conduction layer

Since there is no convection in this part of the fluid, the diffusion equation may be

used to describe the temperature:

dTx{x,t) ^d2Tx(x,t)
P\C\ ^7 = K\ — ,

at ox2

where p\ is the density (kgm~3) of the liquid, c\ is the specific heat capacity (Jkg-^K"1)

of the liquid, k\ is the thermal conductivity (Wm~1K~1) of the liquid and T\(x,t) is the

temperature (K) of the liquid.

So

dt Kx dx*

where K\ = k\/(p\C\) is the thermal diffusivity (m2s~1) of the fluid.

Initial and Boundary conditions

We shall now discuss the initial and boundary conditions for the liquid phase. At the

surface, the liquid is at a fixed temperature, known as the saturation temperature.

Ti(s(t),t)=Tsat, fo r t>0 .

An initial condition is placed on the surface

s(0) = 0.

We know that below the thin conduction region, convection exists which maintains

the bulk of the liquid at the uniform and constant temperature, Tbuik- However it is

unclear if

1. the bulk temperature is fixed far away from the evaporating surface, such that

T|(-oo,t) = Tbulk

2. the bulk temperature remains a certain fixed distance from the moving surface,

such that
Ti(s(i)-d,t)=Tb u l k

where d is the thickness of the conduction region.
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We shall consider boundary condition 1 in 3.1.3 and 3.1.4 and boundary condition 2

in 3.1.5. Finally, we have the Stefan condition at the boundary:

(x,t) . dTx{x,t)'(

x-s(t)

where L is the latent heat of vaporisation (Jkg ) of the liquid and fcvp is the thermal

conductivity (Wm^K"1) of the fluid. But Tvp = Tsat so

dTx(x,t)
PxLs - kv

ox ,t,
i=s(t)

3.1.3 Similarity solution

Examining the diffusion equation, it is evident that a similarity solution exists (Dewynne

et a/., 1989). Suppose T{(x,t) - Tsat = F(TJ) where r) = x/(2v
/t) and s(t) =

where (3 is a positive constant. Then r\ < 0 since x < 0.

We have

r t) _rf-3/2

d2Tx{x,t)
1 dx2

K l r?nt N

So the diffusion equation becomes

Now let G{rj) = F'{rj). Then we can solve for G{rj) to find that

Therefore

F(-q)= Aexp(-T]2/Kl)dr) +B
Jo

with the following initial and boundary conditions:

F(-oo) = Tbuik - T3at (3.3)

and F{-0) = 0. (3.4)
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From equation (3.3)
I~KK\

B = Tbuik - Tsat + A

and so

F{r}) = A exp — Wfy + Tbulk - Tsat + A-
JO \ K\ J

Also from equation (3.4),

where the error function erf(ju) is defined by

2 ft1

erf(/i) = -7= / exp(-£2Wt
V7T^0

Thus

F(V) = Tbulk - Tsat - J

So we obtain the following temperature distribution

I-̂  bulk -^satj /1
( 1

Now from the Stefan condition,

~h 2(Tbulk - Tsat) / (-2/3>/t)2

exp —
y/t 2y/t 0 ()

Therefore, the temperature in the thin conduction layer is described by

where
k - Tsat) exp(-/32/«0 (3.5)

and the complementary error function erfc(//) is defined by

erfc(^) = 1 — erf(/i).

The similarity solution used to find the temperature is valid only when the transcen-

dental equation for (3 has a real solution. Let us suppose that A = P/y/K\. Then since

P > 0, A must be a positive constant.

Equation (3.5) would then become

Aerfc(A) = - ^ e ^ 2 (3.6)
V71"

48



where St is the Stefan number defined as

^t = -p(-tbulk ~ -isatj

> 0 for superheated liquids.

Suppose

Then if there exists a A for which /(A) = 0, a solution for ,8 exists and so the similarity

solution is valid.

Now

St
/(0) = -

< 0 for superheated liquids.

So if there is a A for which /(A) > 0, then the function must be zero at some point. We

can see that the optimal way to search for a solution is to solve the problem graphically,

finding the value of the function at its stationary points and inspecting the gradient of

/(A) over the domain.

/'(A) = ^
re

= 0 at a stationary point.

So we shall divide the problem into three cases which are dependent on the Stefan

number.

When St>l:

T h e c o n s t r a i n t is t h a t

Aerfc(A) < - ^ 2

/7T/IT

and the stationary points can be found when

2A
erfc(A) = - ( S t - l ) - 7 = e -
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But erfc(A) > 0 and - (S t - l)2\e~x2/y/n < 0, for all A in the domain so the only

possible solution to this equation is when

erfc(A) = - (St - l)-j=e~x2

= 0.

Thus, the only stationary point is at A = oo when /(A) = 0. Also, /'(A) > 0 for all A in

the domain given, except at A = oo. With this A, the liquid would instantly evaporate.

Excluding this case, there is no solution of the transcendental equation with St>l.

When St=l:

The transcendental equation can be written as

Aerfc(A) = —=e~~x

'TV

and

/'(A) = erfc(A)

= 0 at a stationary point.

Then, again, the only stationary point of this function is at A = oo when /(A) = 0.

Also /'(A) > 0 for all A in the domain given, except at A = oo. So, similarly to the

previous case, excluding the case where all the fluid evaporates instantly, there is no

solution of the transcendental equation with St=l.

When St<l:

Since /(0) < 0 and /(A) is monotonically increasing, there is one and only one solution

of A. Figure 3.2 shows a graph of equation (3.7) with /(A) = 0.

From this analysis we see that there is only a solution to the transcendental equation

when St<l . The temperature distribution for the conduction layer is thus only valid

when St<l . For St> 1, the fluid will evaporate instantly. In fact, considering the

case for St>l , since cx =O(103)Jkg~1K~1 and L =O(105)Jkg~1, we would require

the difference between the temperature in the bulk of the fluid and the saturation

50



Figure 3.2: Graph of the Stefan number against A for /(A) = 0.

temperature to be 100K which would not be possible in practice as there are always

some nucleation sites, even in the cleanest of vessels, which would cause boiling. Since

^buik — TsaX is typically at most 10K for cryogenic fluids, St<l .

Before calculating an equation for the mass flux at the surface from this model, we

shall discuss the stability of the problem.

The stability of the similarity solution

In experiments (e.g. Beduz et a/., 1984), a single correlation is found to model the mass

flux over all time for each cryogenic fluid. To obtain a similar theoretical equation for

the mass flux, we require our solutions of the temperature distribution and the position

of the surface to be stable.

The stability of the similarity solution used to find the temperature distribution and

the position of the surface for 0 < St < 1 is discussed next, to see whether the model is

capable of damping out small perturbations to which any physical system is subjected.

This stability analysis can be directly compared to that of the temperature of a melting

solid, as discussed by Chadam and Ortoleva(1983) and Strain(1988).

51



Chadam and Ortoleva(1983) made a change of variables such that the form of the

equations in the stability proof were similar to those treated by Rubinstein(1982),

whereby they were able to show that planar melting is asymptotically stable. Therefore

the temperature distribution and the position of the surface found is stable for the

problem.

Calculating a mass flux equation for the model found using a similarity

solution

Now that we know that the temperature distribution is stable for St<l, we shall return

to the original problem in order to calculate the mass flux at the surface for St<l. To

find this, we require /3, since the time-dependent position of the surface is determined

by

s(t) = -2/3t1/2. (3.8)

Assuming that A is small, which is justified if the storage vessel is well insulated (daily

loss of liquid would be approximately 0.5%), we may expand equation (3.6) as a series

such that, up to O(A2),

Solving this for (5 yields the solutions

( -1 + / l + 4St(St - 2)/TT)

2(St - 2)

and
( -1 - ^/l + 4St(St-2)/7r)

^2= 2 (S t -2)

Both these solutions for (3 in equation 3.8 give reasonable physical solutions for the

position of the surface.

So the two equations for the mass flux at the surface from this method are

m = — p\s

~ y/t' Vt

where px is the density of the fluid.

Unfortunately, this model does not predict the time-independent mass flux correlation

found experimentally. We are able, however to make an averaged comparison of the
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mass flux over a certain length of time. Given that we have two solutions for the mass

flux at the surface, we shall calculate two average mass fluxes over an hour, M\ and

M2.

Thus

3600 k

30

and

3600 Jo y/i
- Px@2

30 '

For LNG (assuming a high concentration of liquid methane), L ~ 5 x 105Jkg~1, p\ «

425kgm~3, Kx « 1.32 x 10~7m2s-1 and q w 3.45 x lO^kg^K- 1 . So, for a temperature

difference of 2K (a typical value in the experiments of Rebiai, 1985), we find that

Mi = —4.0 x 10~5kgm-2s""1

and

M2 = -0.0046kgm"2s~1.

The experimental equation for the mass flux for LNG is given (Beduz and Scurlock,

1995) as

m = -1.7 x 10-3(Tbulk - Tsat)kgm-2s-1

such that with the conditions stated above

m = -0.0034kgm-V1 .

This value compares well to the average mass flux, M2, found theoretically with /32.

Although our model agrees well with experiments, the form of the solution suggests

that we must consider the case t —>• 0. It may be better therefore to disregard t -> 0 and

look at the long-term behaviour of the fluid. We will therefore search for a travelling

wave solution to the problem next. This type of solution will also give a mass flux

equation which is independent of time so we will be able to make a direct comparison

with experimental data.
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3.1.4 Travelling wave solution

We will now search for a travelling wave solution to describe the long-term behaviour

of the temperature distribution and the position of the moving boundary in the thin

conduction region of the fluid. Suppose Tj — f(z) where z — x + Vt and s(t) = —Vt,

where V is the positive velocity (ms"1) of the wave. Substituting this into the diffusion

equation, we obtain

Integrating this, we find that

where A and B are constants of integration.

The boundary conditions applied on f(z) become

/(0) = Tsat, (3.9)

/ ( -oo ) = Tbulk, (3.10)

and the Stefan condition, - p\LV = k\f {z)\x=_Vt. (3.11)

Equation (3.10) gives

and, from equation (3.9), we obtain

B = Tsat -

Thus

f(z) = Tbuik — (Tbuik -

and so the temperature is described by

T i ( z , i ) = T b u l k - ( T b u l k - T

Substituting this into the Stefan condition (3.11), we get

-P.LV = - — (Tbulk - r sa t) exp (-(-Vt + Vt)

T L

•^sat —
C\
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But the Stefan number is defined by

St =
L

and so this travelling wave solution is only valid for the case St=l. Unfortunately the

mass flux cannot be determined for this model since we cannot obtain any information

about V, the speed with which the surface moves downward.

Although we are not generally interested in this Stefan number for our work (the

Stefan numbers of the cryogenic fluids which we are investigating are less than unity)

we will follow this work through and again examine the stability of the solution.

Examining the stability of the travelling wave solution

We will now examine the stability of the one-dimensional travelling wave solution for

the Stefan problem with the Stefan number, St=l, in order to see whether the solution,

found above, is valid when the problem is subjected to small perturbations of order e,

that exist in any physical system. Suppose

s(y, t) = -Vt + eeat sin ny

and

Tx{x,y,t) = TQ{x,t) + eTx(x,y,t)

= Thalk - (Tbulk - rsa t) exp (-(x + Vt)) + eae°t+p{x+vt) sin ny

where e < l and n > 0. If p < V/«i, the perturbations will remain small compared to

the undisturbed solutions for large (x + Vt).

The diffusion equation with the perturbations becomes

dT0{x,t) 5T1(x,y,t)_ (d2T0(x,t) , &Tx(x,y,t) ,
+£ di ~Kl{ d* +£ d* +£dt +£ di ~Kl{ dx* +£ dx* +£ dy*

and with the substitutions for To and 7\, we get

{ ~ Taat) )(V_

V2 (V
2"(T T )

( V2 (V
kx 2"(Tbulk - Tsat) exp ~{x + Vt)

+eap2eat+p{x+vt) sin ny - en2ae<Tt+p( I+Vt) sin ny } .
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So

a + pV = K\(p2 — n2). (3-12)

The boundary conditions for the problem are

To(-oo,t)+eTi(-oo,y,t) = Tbulk (3.13)

T0{s{y,t),t) + eTl{s{y,t),y,t) = Tsat (3.14)

and the Stefan condition [—&VT]J\V.F = —p\L~—- (3.15)

where F(x, y,t) = x — s(y, t) on x = s(y, t ) .

So from equation (3.13),

T!(-oo,y,t) = lim aecrt+p(l+v't) sin nyx—>—oo

= 0

and from equation (3.14),

- r s a t) exp [ — ee17* sin ny j + eaeat exp (epe0"* sin ny) sin ny = Tsat

from which we obtain

a =

But since the Stefan number is unity for this travelling wave solution,

(T T \ -

Ubulk ~ -^satj — T

L

Therefore
VL

a = .
K\C\

Finally from the Stefan condition (3.15), we get

P\L(-V + eaeat sin ny) = k\ < bulk ^ - e x p f—ee^ sin ny

+eapeat exp(epeat sin ny) sin ny }

which simplifies to

p\Lo = a + apfci. (o.lbj
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Substituting a from equation (3.12) into equation (3.16) yields,

P\L(K\(P2 - n2) — pV) = a + apk\.

Expanding this and simplifying gives,

(KIP - V)2 = K2n2.

Therefore

K\P — V = ±K[7T.

and so
V V

p = n since p < —.

Substituting this solution into equation (3.16) gives

a = -Vn.

Therefore

Ti{x,y,t) = r b u l k - (T b u l k -T s a t )exp(- (x + yt)
rL _^t ((V\f T / / \f \ \

+e e~Vnt exp (( n) (x + Vt) ) sin ny
K\Ci \\Ki J )

and

s(y, t) = - Vt + ee~Vnt sin ny.

So, since a is negative, if V > 0 as in the problem posed, any small disturbances will

decay with time and the plane phase-change surface can be considered to be stable.

Thus for a Stefan number of 1, there is a stable temperature distribution

Ti(z,t) = Tbuik - (Tbulk - Xsat)e
y(*+vt)/*>

and a stable equation for the position of the surface

s{y,t) = -Vt

The travelling wave solution gave the required form for the position of the surface

such that we could have made a qualitative comparison with experimental results.

However, the solution gave no information about the velocity of the surface since it

was removed from the problem. We will next examine the other possible boundary

condition, described in 3.1.2.
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3.1.5 The unsteady Stefan problem with a different boundary

condition

Although 3.1.3 and 3.1.4 have both produced reasonable models for the flow in the

fluid, we shall now discuss the possibility of a different boundary condition

Ti(s(t) -d,t) = Tbuik

which may be even more realistic. We shall again examine the long-term behaviour

of the fluid and therefore search for a travelling wave solution of the form T\ = f(rj)

where rj = x — At and s(i) = At, where A is the negative velocity (ms"1) of the wave.

The problem may be written as:

21(2*)

= hat

with boundary conditions:

the Stefan condition, p\Ls = k\

= T s a t , t>0 (3.17)

dTx{x,t)

where, as before, we shall assume that

71 j1

-Lvp — ̂  sat

The diffusion equation becomes

-Af'{v) =

and so

f(ri) = ae-Ari/Ki + 0

where a and (5 are constants of integration.

Therefore
(A \

Ti{x,t) =aexp (x - At)) + (3.

Using condition (3.17), we get

(3.18)
x=s(t)

and 7 i ( s ( t ) -d , i ) = Tbuik (3.19)
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So
(—A \

Ti(x, t) = a exp (x - At) I + Tsat - a.
V K\ J

and from the new boundary condition (3.19),

(Ad\
a exp I — I - a = Tbulk - Tsat.

So

~Tsat) / ( At AA\
\ GXp I [JO Jxt) I

I V K\ J
) — 1)

Finally, from the Stefan condition (3.18), we obtain

s = k
x=s(t)

which gives,

dx

-kA (Tbulk - Tsat)

K\ exp [Ad/K\) — 1

So

exp I — I — 1 = —St.

Therefore
Ad ( cx

— = In I 1 — -r(rb u l k -
K\ \ L

This solution is only valid if

l - T ( T b u l k - T s a t ) > 0

and so

S t < 1.

For our situation, St is calculated to be « 10"2. For small x, ln(l — x) may be written

as a series and so can be approximated to ln(l — x) « —x. With this we find that

dL

So

~"~'"' - Tsa t)t (3.20)
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Stability of the travelling wave solution for the problem with a different

boundary condition

We will now examine the stability of the one-dimensional travelling wave solution, in

order to see whether the new model is valid when the problem is subjected to small

perturbations, that exist in any physical system. Suppose

s(y, t) = At + eeCTt sin ny

and

(Tbulk — Tsat)
7 TT

where e <C 1 and n > 0. The diffusion equation with the perturbations becomes

dT0(x,t) , mjx^t) _ (d2T0(x,t) , PTijx^t) ,

and with the substitutions for To and T\, we get

A 2 (A
(T Tsat) exp (x ~ At)

V K
[Kf (exp(Ad/Ki) — 1)

+eap2eat+p{x-At) sinny - tn2aeat+v{x-At) sinny] .

So

a-pA = Kl{p2-n2). (3.21)

The boundary conditions for the problem are

T0(s(y,t)-d,t) + eTMy,t),y,t) = Tbulk (3.22)

= Tsat (3.23)
dF

where F(x,y,t) — x - s(y,t) on x = s(y,t).

dF
and the Stefan condition {-kVT^.VF = ~P\L-^ (3.24)

So from equation (3.22),

\ K\ )

'iexp(epe(Tt sinny) sinny =
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from which we find that

Inn rp \ A

no—pd v bulk -^sat/-** ^Ad/m io oc\

Also from equation (3.23),

^ . (Tbuik — Tga t) [ ( A t • \ iTsat + I exp I ee^smnyj - 1

+ eaeat exp Upeat sin ny j sin ny = Ts
s a t

from which we obtain

Equating equations (3.25) and (3.26) we find that

A
p=

and substituting this into equation (3.21), gives

a = —Kin2.

Therefore

— T "I
-*• sat /

and

s(y, t) = At + ee~Klll2t sin ny.

So, since a is negative, any small disturbances will decay with time and the plane

phase-change surface can be considered to be stable. Thus there is a stable temperature

distribution

and a stable position for the moving boundary

s(t) = At.
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Calculating an equation for the mass flux for the model with a different
boundary condition

Now that we have shown that the temperature distribution and the position of the

surface moves is stable, we may proceed to calculate the mass flux at the surface. The

mass flux is defined by

m = p\s.

So using (3.20) we find that

P\K\C\

™> = — - r j j - (T b u l k -Tsat)

= ~ "77 {J- bulk ~ -*sat)-
aL

According to Scurlock and Beduz(1994), for LIN, LOX, LAr and LNG the thickness

of the conduction layer, d ~ 100 — 500/im. For LNG, we know values of the thermal

conductivity and latent heat of vaporisation of the fluid, namely (assuming that they

are the properties of methane since methane is the main constituent of LNG), k =

0.19Wm~1K""1 and L — 5 x 105Jkg~\ Substituting these values into the equation,

with an average thickness of say, d = 300/^m, for the conducting layer gives

m = -1 .3 x 10-3(Tbulk - Tssat;

In fact with d = 224^m, the analytical result gives the equation found experimentally

for LNG (Beduz and Scurlock, 1995):

?7i = - 1 . 7 x 10-3(Tb u l k-T s a t) .

Therefore, with knowledge of the thickness of the conduction region, the mass flux rate

can be modelled mathematically and gives a good comparison with experimental data.

3.1.6 Discussion of the Stefan problem

In this section, we have explained and then applied the Stefan condition to the problem

of evaporation in cryogenic fluids. At first we considered the situation where the

temperature in the bulk of the fluid (assumed to be a uniform temperature due to

convection) is fixed at a point far below the surface. The temperature distribution
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was found initially using a similarity solution and then we examined the long-term

behaviour of the fluid using a travelling wave solution. We considered the stability of

both these results in order to assess whether there was a single solution for the mass

flux at the surface over time, as has been found experimentally. Both initial models

were proved to be stable. The mass flux found from the first model provided reasonable

results when compared with experimental results. Unfortunately, we could not find a

mass flux equation for the second model since it gave no information about the velocity

of the surface.

We then examined a similar model but with the convecting fluid remaining a fixed

distance from the surface where this distance is the thickness of the conduction region.

The equations in our model were modified and the problem was again solved using a

travelling wave solution for the long-term behaviour of the fluid. With an experimental

value for the thickness of the conduction region, a time-independent mass flux equation

was calculated which was compared to that calculated experimentally for LNG. The

results compared favourably. This work showed that the steady mass flux rate used in

rough calculations
m = ~uAT

can be applied to the moving boundary problem.

3.2 Model of Flow in a Mixture

We have so far proposed models, all with degrees of success, for the behaviour of one-

component fluid. However we have not yet included two-component flow for which

we could consider a two phase model. Although this work is beyond the scope of our

thesis, we shall discuss it briefly next.

3.2.1 Governing differential equations

We choose to examine a mixture of LIN and LOX, since the significant difference in

their saturation temperatures makes analysis easier. The fluids are governed by the

mass conservation equations

+ (Pidiui)x = 0 (3.27)

)t + (p2«2W2)x = 0 (3.28)
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where pi{x,t) is the density (kgm 3) of LOX, P2{x,t) is the density (kgm 3) of LIN,

U\(x, t) is the velocity (ms""1) of the LOX in the liquid, u2(x, t) is the velocity (ms"1) of

the LIN in the liquid, a\(x, t) is the volume fraction of LOX in the liquid and a2(x, t)

is the volume fraction of LIN in the liquid, such that

ay + a2 = l. (3.29)

The loss of fluid through evaporation will be included as a boundary condition at the

surface.

The temperature of the mixture may be described using the convection-diffusion

equation:

{(pxOLiCx + p2«2C2)T) t + (piOiiCi + P2(^2C2){aiu1 + a2u2)Tx = (/cTx)x (3.30)

where T(x, t) is the temperature (K) of the mixture, C\(x, t) is the specific heat capacity

(Jkg^K"1) of LOX, c2{x,t) is the specific heat capacity (Jkg^K"1) of LIN and k(x,t)

is the thermal conductivity(Wm~1K~1) of the mixture.

Note that we have four equations in five unknowns, where we have assumed that

the density, specific heat capacity and thermal conductivity of the mixture can be

calculated as linear combinations of those measurements of LIN and LOX weighted

with the fraction of each in the layer.

We must therefore infer another equation governing the flow. In fact, we form two

more equations for the flow which are dependent on one new variable:

ux = q-Dxaix (3.31)

u2 = q-D2a2x (3.32)

where q is the velocity (ms"1) that a single particle would travel at without any diffu-

sive forces acting on it, Dx is the mass diffusivity (rrr^s"1) of LOX in the mixture of

LIN/LOX and D2 is the mass diffusivity(m2s-1) of LIN in the mixture of LIN/LOX.

We now have six equations in six unknowns and may proceed to look at the initial

and boundary conditions.

64



3.2.2 Initial and boundary conditions

We will now discuss the initial and boundary conditions of the system of equations.

The initial values, i.e. at t=0, are taken to be

T = Tbuik

ai = 1/5, a2 = 4/5 \ (3.33)

s(0) = 0

Also at the surface, i.e. on x = s(t):

U\ = S

(3.34)

U\ = S

s) = -kTx

T = Tsat

where s(t) is the surface position (m) and L2 is the latent heat of vaporisation (Jkg l)

of LIN.

The first of these equations defines the LOX at the surface to be moving at the same

rate as the boundary moves down. This indicates that the LOX stays at the surface

and none of its molecules evaporate. The second condition is the Stefan condition for

LIN and as before, the saturation temperature is placed at the boundary.

Finally, as in 3.1.5, the bulk temperature is positioned a fixed distance from the

moving boundary surface, such that

T = Tbulk at x = s{t) - d. (3.35)

3.2.3 Discussion of the two component model

As stated at the beginning of this section, we shall not attempt to solve this model,

which would have shown us the development of a LOX enriched layer when all the LIN

at the surface had evaporated.

In this model, we have assumed that only LIN evaporated. Although a larger pro-

portion of LIN would evaporate, some LOX will always evaporate (see 4.2 for more

details). We cannot, at this stage, derive a condition for the preferential evaporation

at the surface. A further drawback with the model is that it also, similar to Section 3.1,

requires knowledge of the thickness of the conduction layer.
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3.3 Conclusions of the Analytical Models of Evap-

oration

In this chapter we obtained an equation for the mass flux of a single component super-

heated fluid in terms of the saturation temperature, the temperature in the bulk of the

fluid, the thickness of the conduction region and the thermal properties of the specific

fluid. Substituting estimates of the thickness of the conduction region, this equation

matched well with the empirical relationship for LNG found from experimental data.

To predict the mass flux through purely theoretical data, will require a theoretical

prediction for the thickness of the layer. This will be looked at in chapter 4.

We also briefly discussed a model for the flow in a mixture of two cryogenic fluids

in Section 3.2. However, we could not, at this stage, derive a boundary condition to

model the preferential evaporation at the surface. This subject will be considered in

Chapter 5.
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Chapter 4

Instabilities At The Surface

In this chapter we will discuss two instabilities that may occur at the surface of a

cryogenic fluid. The first is a thermal instability related to the conduction region of

the fluid. In Section 4.2, we focus on temperature fluctuations which have long been

noted near the surface of cryogenic liquid mixtures in experiments.

The subject of thermal instability has been of great interest since the beginning of the

century, when Benard(1900) first performed experiments to observe convection cells.

Such cells formed when a levelled metallic plate, maintained at a uniform temperature,

was placed lmm deep in a liquid with a free upper surface at a lower temperature. It

was observed, with various liquids, that the layer rapidly resolved itself into a number of

nearly identical regular convex polygonal cells, of, in general, 4 to 7 sides. The motion

in these cells consisted of fluid rising in the middle of the polygons and descending at

the common boundary between one cell and its neighbours.

Rayleigh(1916) first formulated the theory of the convective instability of a layer of

fluid between horizontal planes based on these experiments, by simplifying Benard's

experiments to two dimensions with an infinitely long strip and choosing relevant equa-

tions of motion and boundary conditions. From this, linear equations were derived for

the normal modes which showed that convection only occurs when the adverse tem-

perature gradient is so large that a dimensionless parameter, known as the Rayleigh

number, exceeds a certain critical value. The Rayleigh number is a characteristic ra-

tio between (i) the destabilising effects of buoyancy, which induces convection due to

a temperature difference, and (ii) the stabilising effects of diffusion and dissipation,

which attempt to make the temperature distribution more uniform.
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The primary aim of the work in our thesis is to understand the mechanisms control-

ling the evaporation of cryogenic fluids in storage and the effects of this evaporation on

the fluid. In Chapter 3 we showed that the evaporation rate is inversely proportional

to the thickness of the conduction layer and here we will try to find this thickness

theoretically. For simplicity, we consider the layer as a two-dimensional infinitely long

strip of fluid.

Rebiai(1985), Agbabi(1987) and Atkinson-Barr(1989) assumed that the thickness of

the thin surface layer in cryogenic fluids is restricted to its maximum by the critical

Rayleigh number, where Rac = gfcATdl/KV, with g, the acceleration due to gravity

(ms~2), Pr, the thermal expansion coefficient (K"1), AT, the temperature difference

between the upper and lower boundaries (K), K, the thermal diffusivity (m2s~1) and v,

the kinematic viscosity (m2s~1). The temperature and fluid properties were assumed

to be fixed. The thickness of the layer, d, (m) is increased until it reaches its critical

thickness at dc. For Rayleigh numbers greater than the critical value, instabilities begin

to occur and convection takes over as the primary form of heat transfer in the layer.

This 'critical thickness' hypothesis has become widely accepted by experimentalists.

Rebiai(1985) substituted the critical Rayleigh number for the maximum thickness of

the layer in the mass flux equation and obtain the modified mass flux equation:

1/3

where m* is defined in terms of the mass flux as

fa* = fnL I •

Here p is the density of the fluid (kgm~3), c is the specific heat capacity of the fluid

(Jkg^K^1) . Both m* and AT were measured experimentally and Rac was found using

a least squares fit across a number of experiments. The correlation was confirmed by

Atkinson-Barr(1989) for LIN, LOX and LAr, with the critical Rayleigh number for

LIN calculated to be 33, but was found not to apply to LNG and LCH4. Berg et

al. (1966) similarly obtained experimental values of the critical Rayleigh number of the

same order of magnitude as LIN, for other fluids such as n-Heptane and Methyl alcohol

by assuming that the critical Rayleigh number can be determined from the depth at

which convection begins to occur in the layer.

Howard(1966) described the convective flow in fluid with large Rayleigh numbers (of
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the order of 107) as intermittent and characterised the system by the following cyclic

process:

1. A thermal boundary layer is formed by diffusion.

2. The layer increases in thickness until, at a 'critical thickness' defined by the

critical Rayleigh number, instability sets in.

3. The layer is destroyed by convective flow.

4. The convection reduces in strength because liquid mixes and loses heat.

5. The thermal boundary layer reforms by conduction.

Naturally there is a characteristic period associated with this process and this was

investigated by Foster (1971) for the problem of two free surfaces with a Rayleigh

numbers of the order of 107. It was found that the periodicity was independent of the

depth of the fluid layer but dependent on the rate of cooling and the properties of the

fluid.

Experiments in superheated cryogenic fluids (see Chapter 1) have shown that the

liquid away from the surface is well mixed by convection. The effect of a horizontal

velocity below the conduction layer may be modelled by a shear. This is known as

Couette flow. Some calculations of the critical Rayleigh number in the presence of a

Couette flow have already been performed. Gallagher and Mercer(1965) investigated

the stability of plane Couette flow to small disturbances, for a two-dimensional model

of a fluid held between two flat plates, situated at y = ±1 in non-dimensionalised form,

which are held at constant temperatures To and 7\ and move with equal and opposite

velocities parallel to the z-axis. It was assumed that the disturbance velocities are

sufficiently small to allow the Navier-Stokes equations to be linearised and a similar

analysis was performed to that of earlier studies by Gallagher and Mercer(1962,1964),

in which the stability of Couette flow without a temperature gradient (leading to the

Orr-Sommerfield equation) was examined. For disturbances transverse to the flow in

the unperturbed state, i.e. causing longitudinal rolls, Gallagher and Mercer(1965)

showed that all fluids will become unstable at the same value of the Rayleigh number

irrespective of whether shear is present or not.

Deardorff(1965) examined a similar problem to that of Gallagher and Mercer(1965)

of flow between two horizontal plates but with only the upper plane moving with a
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constant shear velocity. The results agreed with those of the latter authors, that for

disturbances in a vertical plane transverse to the flow in the unperturbed state, the

stability criterion with shear becomes the same as that for pure convection. However,

this work also shows the stabilising effect of increasing the Reynolds and Prandtl num-

bers for disturbances in a vertical plane aligned in the direction of the unperturbed

flow.

More recently, interest has been shown in predicting the types of convection rolls

that form at the onset of instability. Clever and Busse(1992) examined the stability

of three-dimensional flows, again between two horizontal rigid plates, which arise from

wavy disturbances perpendicular to the axis of longitudinal rolls at Prandtl numbers of

order unity or less for fluid heated from below and subjected to a mean shear. Through

numerical computations of the stability of these disturbances, it was concluded that

at sufficiently low Reynolds numbers, the effect of shear on this type of convection

is minimal. The shear may even contribute to the efficiency of the heat transport

by delaying the onset of instabilities which usually tend to decrease the efficiency of

convection. The steady, wavy roll solutions are shown to be stable with respect to

disturbances which do not change the horizontal periodicity interval, for only a limited

range of Rayleigh numbers.

Yahata(1994) analytically examined the dominant pattern of convection rolls devel-

oping in the presence of a vertical thermal gradient and a horizontal Couette flow on a

fluid between two infinitely extended horizontal plates, near the onset of convection for

a small rate of shear. The amplitude equations are derived in order to study growth

competition between longitudinal rolls and transverse rolls whose axes are in the di-

rection parallel to and perpendicular to the Couette flow respectively. The results

indicate that the system is in the longitudinal roll state up to a numerically calculated

Rayleigh number, (Ra)Ts, (1803 for a Prandtl number of 0.7 and a Reynolds number

of 10), above which it is in a multiple steady state consisting of both longitudinal and

transverse roll states, the dominant state depending on the initial conditions. The nu-

merical calculations of (Ra)xs in this paper show that the Rayleigh number increases

with both increasing Prandtl number and Reynolds number.

In the first section, we shall calculate the critical Rayleigh number for a typical

cryogenic fluid, by forming a model describing the thin conduction layer, which lies

between the convective bulk fluid and the vapour surroundings. This will be used
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to investigate whether the working assumption is an accurate and useful model of the

conduction layer. Thus our model will consist of a layer of viscous fluid resting between

two free boundaries, with the surface maintained at the saturation temperature (below

the temperature of the bulk of the fluid) as the problem undertaken by Rayleigh(1916).

In order to describe the motion of a single convection cell, we shall take the lower layer

to be moving with a constant speed in the direction of the plane, as shown in Figure 4.1.

This problem is similar to that solved by Deardorff(1965) except that the lower rather

than the upper boundary will be moved horizontally and the two boundaries are free,

rather than rigid. This model will be solved numerically and the 'critical' thickness

compared to those found experimentally.

Vapour

Surface Layer

^ ^ Velocity, U

Bulk Layer

Figure 4.1: Diagram depicting shear effect caused by convection in the bulk liquid on

the surface layer.

Temperature fluctuations are seen as spikes in the temperature profile near the sur-

face and those found in a LIN/LOX mixture are shown in Figure 4.2, which has been

taken from a recent report, by Beduz and Scurlock(1996). The temperature profile

in the thin layer was measure using a micrometer made of 25/xm thermocouple wires.

The position of the thermocouple was fixed and the temperature measured as the liq-

uid surface moved downward due to evaporation. It suggested that the spikes seen

in the temperature profile may be due to micro-convection eddies generated by local

inversions accompanying liquid evaporation. Two types of thermal spikes were seen,

the larger ones being cold spikes and the smaller ones hot. The largest cold spikes

were seen adjacent to the thermal conduction region and are thought to correspond to

a downward moving element of a convection cell or closed loop which has the function

of carrying 'spent' evaporated and cooled liquid down into the bulk liquid. The hot

spikes bring superheated liquid up to the surface from the bulk as a heat source of

evaporation.
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: I

Figure 4.2: Typical temperature profile through the surface of a cryogenic mixture

reproduced from Beduz and Scurlock(1996).
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In Section 4.2, we shall verify the explanation for these spikes, by constructing a

simple model of micro-convection eddies for a LIN/LOX mixture. It will be assumed

that each micro-convection occurs when all the LIN has evaporated from the surface.

Thermal effects on the density will be ignored. The number density of these thermal

fluctuations will be calculated and compared to those observed experimentally.

4.1 Model of Convective Instability with Couette

Flow

We will now construct an analytical model to test the supposition derived empirically

from experiments that the thin surface layer is restricted to a certain thickness de-

termined by the critical Rayleigh number, by finding the critical Rayleigh number for

a heat-conducting fluid confined between two horizontal free or rigid boundaries, the

lower of which is moving in the direction of the plane. We will then examine the

behaviour of the fluid in this layer.

4.1.1 Governing differential equations

The equations of motion of a heat-conducting viscous fluid under the action of gravity

are well known. The continuity equation is used to express the conservation of mass:

where p is the density (kgm~3) of the liquid, and q-} is the component in the j-direction

of the vector q, which is the velocity (ms"1) of the fluid flow. The Navier-Stokes

equations describe the behaviour of the fluid:

where D/Dt = d/dt + q.V, g is the acceleration (ms~2) due to gravity, 5^ is the

Kronecker delta defined by 6i} = {1 if i=j, 0 if i 7̂  j} and ay is the stress tensor (Nm~2)

defined by
fdqi dq} 2dqk \ dqk

where p is the pressure (Nm~2) in the fluid, \i is the coefficient of dynamic viscosity

(kgm~1s~1) (assumed to be constant and independent of temperature) and A is the
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coefficient of the bulk viscosity (or second viscosity) (kgm ls l). Finally we have the

heat conduction equation:
DT

AT (4.3)
where T is the temperature (K) in the liquid, A is the Laplacian operator, given by

A = d2/ctojctej and K = k/pc is the thermal diffusivity (m2s^1) of the liquid where k is

the thermal conductivity (Wm^'K"1) and c is the specific heat capacity (Jkg^KT1)

of the liquid.

To these general equations of motion, we shall apply the Boussinesq approximation,

following Rayleigh(1916). This assumes that density variations are small compared to

the standard density and so may be neglected in so far as they affect inertia but must

be retained in the buoyancy terms. This is a reasonable assumption since the density

varies only minutely with pressure and temperature in cryogenic fluids. The equation

for the density variation which is to be used in the buoyancy term is:

where ptmik is the density (kgm~3) of the fluid at Tt,uik, the maintained temperature

(K) of the bottom plane and /3r is the constant coefficient of thermal expansion (K"1).

Typically /?T <C 1 and if, as in the experiments with cryogenic fluids, Tt,uik—T < 10K,

then (p—Pbuik)/Pbuik = Pr(Tbuik~T) <C 1. So the derivatives of density in the continuity

equation (4.1) are of order /3T and to leading order

as for an incompressible fluid. Then the stress tensor is given by

(dqi dqA

So, on treating p as a constant, Pbuik, in every term other than the buoyancy, the

Navier-Stokes equations (4.2) become

( 1 / 3 ( T T)5 + A (4.5)
D t dxi V P /

where u is the coefficient of kinematic viscosity (m2s~1).
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4.1.2 Linearising the governing differential equations

Suppose that the two horizontal planes are situated at z — 0 and z = d, and are at

temperatures (K) TbUik, as stated before, and Tsat respectively, where T^ik > Ts&t. In

the unperturbed state with the lower plane moving at a constant velocity U and the

upper plane maintained stationary, the velocity in the fluid is

The temperature in the unperturbed state, T0(z), must satisfy equation (4.3), so that

It follows that

bulk ^

Also, equation (4.5) gives

0 = - ^
Pbulk OZ

But since T = TQ(Z) in the basic state of motion, the basic hydrostatic pressure distri-

bution is simply
- Tsat) z2

where Pbuik is the pressure (Nm~2)of the fluid at the temperature Tbuik-

In this state, the fluid flows horizontally due to the shear movement of the lower plane

and conducts heat upwards as if it were a conducting solid. We shall now disturb the

system slightly to see the effects of adding a perturbation to the flow, by writing

q = (V(l-£),O,o)+£(:r,y,z,t)

T = Tbulk - aTz + f (x, y, z, t)
z2

P = -gPrPbuikar y + Pbuik +p(x,y,z,i)

where &T — (Tbuik ~~ Ts&l)/d and the variables q, T and p are assumed small. Lineari-

sation of equations (4.4), (4.5) and (4.3) then gives

P- = 0, (4.6)

dq} ( z\dqj Uw d ( p \ -
dt \ dj dx d dxi \Pbuik/

+ v&qu (4-7)

+ u(l^)^aTdw = «AT. (4.8)
dt \ d) dx
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4.1.3 Non-dimensionalisation of the governing equations

Next, we shall non-dimensionalise the equations in order to be able to compare the

important parameters in the problem. Scaling distances with the height of the fluid, d,

time and velocity with the thermal diffusivity K, and d, pressure with the density at a

temperature of Tbuik, Pbuik, together with K and d, and temperature with T/(ard), the

dimensionless form for all variables may be obtained:

x* = x/d , t* = Kt/d2 , q* = dq/K, 1

p* = d2p/(PhalkK
2) , T* = f/fad) J

Substituting the dimensionless variables into equations (4.6), (4.7) and (4.8) and rear-

ranging gives

^ " \ . < 4 1 0 )

, (4.11)
dT* dT*
_ + P e ( 1 _ , . )__„ , - = A T - , (4.12)

where the Peclet number, showing which of the convection and the conduction is the

more dominant method of heat transfer, is denned by

Pe = RePr.

The Rayleigh number, which measures the buoyancy of the fluid against the stabilising

effects of thermal conductivity and viscosity, is given by

„ _ £/MTbuik - Tsat)d
3

xla — ,

the Prandtl number, showing the relative measure of the rates of viscosity and thermal

diffusivity, is defined by

K

and the Reynolds number, which gives an indication of the relative magnitudes of the

inertia and viscous terms by
Ud

Re = — .
v

For simplicity *'s will not henceforth be shown in non-dimensional quantities.
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4.1.4 Boundary conditions

To solve this set of differential equations, we now need to consider the boundary con-

ditions. Here, conditions for both rigid and free boundaries will be discussed since

initially we shall model the problem between two rigid planes in order to validate our

work with that of Deardorff(1965). The conditions are discussed in more detail by

Drazin and Reid (1981).

Boundary conditions at a rigid surface

For a rigid surface the no-slip condition may be applied, giving (in non-dimensionalised

form):

u = v = w - 0. (4.13)

The first two of these conditions together with equation (4.10) imply that

£ = «• <«4»
Also, since the temperature is assumed fixed at both boundaries there are no pertur-

bations of temperature at the planes. Thus

T = 0. (4.15)

Boundary conditions at a free surface

The normal component of the velocity must again vanish on the surface giving (in

non-dimensionalised form):

w = 0.

Since a free surface behaves as a rigid surface with tangential slip but without any tan-

gential stress, we have the following non-dimensionalised condition on the free surface:

tfxz = tfyz = 0, (4.16)

and since the isotropic term —pSij has no transverse components, the condition (4.16)

now reduces to

a n d *£ + * = o (4.18)
ay az
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Since w vanishes (for all x and y) on the bounding surface, it follows from equa-

tions (4.17) and (4.18) that

oz az
and together with the equation (4.10), this gives

0 (4-20)

Note that we require a further boundary condition for both types of boundaries and

this will be found later.

4.1.5 Simplification of the main equations

We shall now obtain, by elimination, an equation for the vertical component of velocity,

w, alone. Taking the curl of equation (4.11) gives

f
where

Taking the curl of equation (4.21) gives,

-PrA25i = RaPr [AT5i3-—— , (4.22)

and on taking the z-component, the result is

—Aw + Pe(l - z)^-Aw -
at ox

where
a2 a2

This gives

( P 7 ^ + Re(1 ~ z)lL ~ A ) Aw = RaAlT- (423)

We shall now find the final boundary condition required to solve for w. Substituting

equation (4.15) into (4.23) gives the boundary condition:
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From equation (4.12)

So finally

( I " A + ̂  " *>|) (wit + W -')£ - ^ *» = aaAim (4.25)
This is identical to the sixth-order differential equation for the evolution of purely

gravitational instabilities as given, for example by Acheson(1992), except for the two

appearances of the operator Pe(l — z)d/dx which arise from the presence of the Couette

flow. We shall now search for wave type solutions of the form

w = w(z) exp [i (axx + ayy — axPect)] (4-26)

where ax is the non-dimensionalised wavenumber in the rr-direction, ay is the non-

dimensionalised wavenumber in the transverse y-direction and c = cv + icx is the non-

dimensionalised complex wave speed.

If c\ > 0 the flow is unstable and the disturbance grows exponentially with time; if

C[ < 0 the flow is stable and any small disturbance damps out. Upon substitution of

equation (4.26) into (4.25), the determining equation for w(z) becomes

I (iaxPe (c - (1 - z)) + ^ - a2
x - aA UaxRe (c - (1 - z)) + ^

)} w = 0 (4.27)

The complete set of boundary conditions for a rigid surface are:

w = 0, (4.28)

f = 0, (4.29)
dz

T = 0 (4.30)

0, (4.31)

and the complete set of boundary conditions for a free surface are:

w = 0. (4.32)

T = 0 (4.34)

and —^ = 0. (4.35)
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4.1.6 Numerical procedure

We shall initially consider the problem with two rigid boundaries in order to validate

our code with the results of Deardorff(1965). Following his discretisation, we divide

the distance between the horizontal surfaces into n + 1 intervals. Equation (4.27) and

the three boundary conditions for w can be split into real and imaginary parts, with

w = wT + iwi and written in finite difference form. Space-centred finite-difference

formulations are used in the representation of the derivatives of the real and imaginary

parts of w. So, the derivatives of tur(j), for example, would be as follows:

dz ~ 2dz

and
d2wr(j) = wr() + 1) - 2wr(j)

=

dz2 dz2

The finite difference formulation of equation (4.27) may be applied at each of the n

interior grid points and, similarly, the boundary conditions at each of the boundary

grid points. To minimise errors introduced by setting up the finite difference scheme we

designed an automated procedure in Maple to produce the finite difference scheme (and

boundary conditions), simplify and then output optimised Fortran code to evaluate

it. The finite difference representation of equation (4.27) consists of several hundred

terms of coefficients, which becomes more than a hundred lines of Fortran code. The

length of the Fortran code is partly due to the optimised Fortran output from Maple,

which (for efficiency) attempts to collect together common terms to be pre-computed.

This automated procedure also allowed for minor corrections to the equations to be

converted into Fortran code in a single easy step.

The finite difference scheme representation yields a matrix, A, representing a system

of 2n + 12 linear, homogeneous equations for which a non-trivial solution exists only if

the characteristic determinant vanishes. Since we want to find the critical thickness of

the thin layer, our task will be to find the minimum Rayleigh number such that this

determinant vanishes:

Minimise Ra subject to | A(Ra, ax) | = 0 (4.36)

Since | A |> 0 from the finite difference form of equation (4.27), we can also consider

this to be 'minimise Ra and | A(Ra, ax) |'.
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The eigenvalues c; are set to zero to provide the case of neutral stability, and we

choose to seek solutions for which cr = 0.5 such that the disturbances move with the

same velocity as the fluid midway between the horizontal plates in the basic state. We

shall look at transverse rolls so ay = 0. Note that longitudinal rolls (ax = 0) will result

in the simple thermal instability problem with no shear.

Initially a simple Matlab program (which actually used C code generated by our

automated Maple method) was written to plot the determinant as a function of ax and

Ra, for small n (about 10). Although we will not use this to solve (4.36), it is crucial

to plot the objective function and constraints if possible before attempting to design

or choose an efficient algorithm to perform the minimisation.

The surface plots of log(| A |) as a function of ax and Ra using n — 50,60 shown

in Figures 4.3 - 4.6 were produced in Matlab using output from the Fortran code.

The closer the determinant is to zero, the darker the grey is in the plots. As can be

seen, the surface is fairly flat except for a parabola in the middle of the plot where

the determinant quickly decreases to zero. Along this parabola, a minimum Rayleigh

number may be found. By comparing Figures 4.4 and 4.6 we can see that this parabola

shifts to the right with increasing grid points.

From Figures 4.3 - 4.6 it is now immediately clear that the naive solution of 4.36 using

a black box or library minimisation routine is almost guaranteed to fail spectacularly

due to the small region over which | A | = 0 (note that these figures show log(| A |)).

A quick check using the simplex method confirmed this.

However, for a fixed value of ax (within a range empirically found to be between

0 and 6), we know that there will be a value of Ra for which | A |= 0. Once this is

found, we can contour around the valley keeping | A |= 0 to find the minimum value

of Ra. The plots also reveal that the valley in which | A \= 0 is roughly parabolic in

shape. We can exploit this in designing our minimisation routine. By fitting a parabola

through any 3 points in the valley, we should be able to take a single step which takes

us (very nearly) to the minimum.

These observations led us to use Brent's algorithm which consists of a slow-but-sure

golden section search which will switch over to exploit the parabolic structure when

possible.

We now describe each of these components (based on Press et al., 1992):

1. Golden Section Search. Given at each stage, a bracketing triplet of points, the
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Figure 4.3: Surface plot of the log of the determinant (det) as ax and Ra vary with

Pr=0.0, Re=200 and n=50.
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Figure 4.4: Plan view of Figure 4.3.
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Figure 4.5: Surface plot of the log of the determinant (det) as ax and Ra vary with

Pr=0.0, Re=200 and n=60.
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next point to be tried is that which is a fraction 0.38197 into the larger of the

two intervals (measuring from the central point of the triplet). If the bracketing

triplet is not initially in the golden ratio, the procedure of choosing successive

points at the golden mean point of the larger segment will quickly converge

you to the proper, self-replicating ratios. The golden section search guarantees

that each new function evaluation will (after self-replicating ratios have been

achieved) bracket the minimum to an interval just 0.61803 times the size of the

preceding interval. The fractions used are those of the so-called golden mean or

golden section (whose supposedly aesthetic properties date back to the ancient

Pythagoreans).

2. Inverse parabolic interpolation. The formula for the abscissa x that is the mini-

mum of a parabola through three points f{a), f(b) and f(c) is

r . x

22\(b- a){f(b) - /(c)] - (b - c)[f(b) - f(a)] ) " ^6I)

In Figure 4.7 we demonstrate how this can be used to locate a minimum in a

parabola efficiently.

3. Brent's Method. Brent's method combines 1 and 2 as follows. At any particular

stage the method keeps track of six function points (not necessarily all distinct)

a, b, u, v, w and x, denned as follows: the minimum is bracketed between a and b;

x is the point with the very least function value found so far (or the most recent

one in the case of a tie); w is the point with the second least function value; v is

the previous value of w; u is the point at which the function was evaluated most

recently. Also appearing in the algorithm is the point xm, the midpoint between

a and b; however the function is not evaluated there. Parabolic interpolation is

attempted, fitting through the points x, v and w. To be acceptable, the parabolic

step must (i) fall within the bounding interval (a, b), and (ii) imply a movement

from the best current value x that is less than half the movement of the step before

last. This second criterion insures that the parabolic steps are actually converging

to something, rather than, say, bouncing around in some non-convergent limit

cycle. In the worst possible case, where the parabolic steps are acceptable but

useless, the method will approximately alternate between parabolic steps and

golden sections, converging in due course by virtue of the latter. The reason for

comparing to the step before last seems essentially heuristic: experience shows
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parabola through (?) Q) Q)

Figure 4.7: Convergence to a minimum by inverse parabolic interpolation taken from

Press et al. (1992). A parabola (dashed line) is drawn through the three original points

1,2,3 on the given function (solid line). The function is evaluated at the parabola's

minimum, 4, which replaces point 3. A new parabola (dotted line) is drawn through

points 1,4,2. The minimum of this parabola is at 5, which is close to the minimum of

the function.
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that it is better not to punish the algorithm for a single bad step if it can make

it up on the next one.

Our procedure performs the minimisation of Ra subject to | A |= 0 by employing two

one-dimensional minimisations which use Brent's method. The first ensures that the

constraint is satisfied and the second minimises Ra:

1. Choose three initial values of ax which bracket the minimum (e.g. 0. 3.14, 6);

2. Find the corresponding value(s) of Ra for which | A |= 0 using a one-dimensional

minimisation of | A | at fixed ax (remember | A |> 0 so minimisation of | A | is

equivalent to ensuring that the constraint is satisfied);

3. Based on our value(s) of Ra for each ax, perform a one-dimensional minimisation

of Ra over ax;

4. Using the new value of ax repeat from 2 and stop once the value of Ra does not

change significantly between iterations.

We chose n = 100 and repeated the computation for various values of Re and Pr and

for the cases of two free boundaries and one rigid/one free boundary. The procedure

converges within a few iterations in (almost) all cases. Graphs showing the critical

Rayleigh number against Reynolds numbers are shown in Figures 4.8 - 4.10 for various

boundaries on the upper and lower boundary of the fluid and for three Prandtl numbers,

including that of LIN.

4.1.7 Numerical results for the critical Rayleigh number

Validation

The graphs of the critical Rayleigh number against the Reynolds number for the case

of fluid between two rigid surfaces with a shear movement at the lower boundary are

identical to those of Deardorff(1965) with a moving upper layer for Pr=0.0 and 0.71.

Thus the problem is symmetrical whether the upper or lower layer is in motion. This

can be seen more clearly by comparing equation (4.27) to the equation that we would

have obtained had the lower layer been moving, given by Deardorff(1965) as:

d2
 2 2 \, ^ d 2 2 W . _ , .

iaxPe (c - z) + ^ 2 ~ ax - ay I l^xRe (c - z) —
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Figure 4.8: Graph of the critical Rayleigh number against the Reynolds Number for

Pr=0.0, for various boundary conditions on the upper and lower boundary of the fluid.

89



14000

12000 -

20 40 60 80 100 120
Reynolds Number (Re)

Figure 4.9: Graph of the critical Rayleigh number against the Reynolds number for

Pr=0.71 (air), for various boundary conditions on the upper and lower boundary of

the fluid.
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Figure 4.10: Graph of the critical Rayleigh number against the Reynolds Number for

Pr=2.32 (LIN), for various boundary conditions on the upper and lower boundary of

the fluid.
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2)\w = 0V^2 x v
The only difference between our equation (4.27) and the equation above is that (c - z)

is replaced by (c — (1 — z)) in our equation and so the problem is symmetrical whether

the upper or lower boundary be moving. In contrast to Deardorff, our procedure yielded

at least 6 figures of accuracy and worked without manual intervention for each of the

cases considered.

Estimating the critical thickness of the layer

The thin surface layer at the top of cryogenic fluids may be assumed to lie between

two free surfaces since it has a deep layer of fluid underneath and vapour above. The

stabilising effect of shear, however, is seen to become increasingly strong with increas-

ing Pr for all boundary conditions, i.e. the critical Rayleigh number increases with

increasing Re and Pr. Note that the point at Re=200 in Figure 4.9 where the plots for

the rigid-rigid and rigid-free boundaries meet represents a cross-over of the two plots,

similar to Figure 4.8 at Re~170. The case of two free boundaries can be seen to have

the lowest critical Rayleigh number for all Reynolds numbers at all Prandtl numbers,

of all three boundary conditions, except above a Reynolds number of 125, for Pr=0.0,

when the Rayleigh number becomes the highest of all three conditions.

In order to find the minimum 'critical' thickness of the surface layer, we must obtain

the smallest critical Rayleigh number for the condition of two free boundaries. For

this it can be seen that we must assume that the fluid below this layer is stationary

and so neglect the effect of convection on the lower boundary. The critical Rayleigh

number, Rac, for LIN, with a Prandtl number of 2.32, is then 657.5. So with this

Rac, the thickness of the layer is restricted to a maximum of 300/im if the temperature

gradient of the conduction region is 7.IK. Although such temperature gradients are

possible in cryogenic fluids, it is more usual to find a temperature gradient of IK

in the conduction region. This suggests that the minimum 'critical' thickness of the

layer is 578//m, almost a factor of three larger than the maximum thickness of the

layer observed from experiments. Also in our calculations, we have neglected the

shear effect at the lower boundary caused by convection which increases this thickness.

Thus, although we have obtained the correct order of magnitude for the thickness of

the region, the critical Rayleigh number obtained from these calculations suggests that
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it could in principle be substantially larger and so the model in which the thickness of

the layer is restricted to a maximum of approximately 200/zm by the critical Rayleigh

number is not supported. In conclusion: although the thickness of the surface layer

could be constrained to that found from the critical Rayleigh number there must be

some other property of the fluid which further restricts its thickness to that observed

experimentally.

4.1.8 Predicted velocity and temperature profiles above the

critical Rayleigh number

As stated previously, although the critical Rayleigh number cannot be used to predict

the thickness of the surface region, the theory has not been disproved. Therefore, we

shall now examine the temperature and velocity profiles through a cross-sectional depth

of the fluid at a Rayleigh number which exceeds the critical value in order to examine

the behaviour of the surface layer above our theoretical 'critical' thickness and to study

whether this layer possesses any special features at the surface which can explain the

conduction layer seen to exist. Naturally, below the critical Rayleigh number, the

velocities and temperature profiles will follow the basic steady state solutions.

Numerical results of the velocity and temperature profiles above the critical
Rayleigh number

Again, the specific problem that we will consider shall be that of a layer of LIN with

a Prandtl number of 2.32, resting between two free boundaries, the lower of which is

moving in the axis parallel to the plane. We shall choose an average velocity for the

shear such that the Reynolds number is 100. The critical Rayleigh number for this sit-

uation is found, using the previous calculations, to be Rac = 10796 so we shall choose

a Rayleigh number greater than this critical value for which the characteristic determi-

nant of equation (4.27) is zero, Ra = 17038. Equation (4.27) can be solved numerically

in its matrix form, using inverse iteration, for the case of two free boundaries to give

a component of the perturbation of the vertical velocity, w, as an eigenvector with an

unknown constant. The basic idea behind inverse iteration is quite simple. Suppose y

is the solution of the linear system

(A-Tl).y = b (4.38)
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where 6 = 0 and r is close to some eigenvalue A of A. Then the solution y will be close

to the eigenvector corresponding to A. The procedure can be iterated by replacing b

with y and solving for a new y, which will.be even closer to the true eigenvector. We

stop when successive iterates are sufficiently close together. Note that the solution of

the singular equation (4.38) for y can be found stably using the LU method (Press

et al., 1992), so long as successive iterates are renormalised. The advantage of using

LU decomposition (over, say, Gaussian elimination) is that once the decomposition

is computed, successive solutions for new right hand vectors only require a simple

backsubstitution. Since the determinant of A is zero, we will pick the eigenvalue r = 0.

From the calculations, the non-dimensionalised vertical velocity can then be found

using:

w = -R {(wr + iw[) exp[i(axx + ayy - axcTtPe)}}

= {wT cos(axx — axcTtPe) — W[ sin(o;xx — axcTtPe)} ,

since we shall consider transverse rolls (ay = 0). The unknown constant in the eigen-

vector w is resolved by picking the length of the eigenvector such that the perturbation

makes a discernible effect on the basic steady state and such that the solution for the

temperature found with these results is physically reasonable.

Similarly, solutions for temperature are sought for which

T = f(z) exp [i (axx + ayy — axctPe)}

where f = TV + iT\. Equation (4.12) may then be split into real and imaginary parts,

written in finite difference form, as before, and applied on the n interior grid points

with the boundary condition on temperature, (4.34) at both x — 0 and 1. Using

the calculated values of w it is possible to solve this matrix equation numerically

using the LU-decomposition method to give the (2n + 4) eigenvector component of

the perturbation of temperature, T. From this, the non-dimensionalised temperature

could be found using

f = T° - z + JR {(Tr + iTi) cxp[i{axx + ayy - axcrtPe)]}
[lQ — JsatJ

T
0 - z + {Tr cos(axx - axcTtPe) — TJ sin(axx — axcriPe)} .(To - Tsat)

The temperature profiles through the cross-sectional depth of the liquid at four fixed

points in the fluid are shown in Figures 4.11 - 4.16 for non-dimensionalised times
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between t — 0.0 and t = 1.0 where z — 1 represents the free surface. Our first

observation from the temperature profiles is that, as expected from the wave-type

solution used, the temperature follows a pattern with period t = 1 i.e. the profiles at

t = 0.0 and t = 1.0 are the same. Also, though the shape of the temperature profile

changes throughout the time of each period, there is always a section in the profile

where the temperature remains fairly constant, although the actual position of this

section alters. This is the convective part of the fluid. At some time steps we also

observe a section of the profile at the surface of the layer where the temperature varies

greatly over a small depth. This section, however, is not consistent at all time steps or

at all positions and so cannot be interpreted as the conduction layer at the top of the

fluid.

Finally from equation (4.22) with i=l , we can obtain an equation for the horizontal

velocity, u:

82T4 R P
8T

-PrV4u = -RaPr——. (4.39)
dxoz

Solutions are sought for the horizontal velocity with the same form as before, such that

u = u(z) exp [i (axx + ayy — axc£Pe)]

where u = ur + iu\. Again, equation (4.39) can be split into real and imaginary parts,

written in finite difference form and applied on the n interior grid points with the

conditions u = | j = 0 on both boundaries. Using the calculated values of w and 8 it is

possible to solve this matrix equation numerically using the LU-decomposition method

to give the eigenvector component of the perturbation of the horizontal velocity, u.

The non-dimensionalised horizontal velocity can then be found using:

u = Pe(l — z) + Pe {uT cos(ax:r — axcrtPe) — u; sin(axa; — axcrtPe)} .

So velocity profiles of the fluid through a cross-section can be plotted using arrows, at

fixed times, where at a point (xo,zo), the angle the arrow makes with the horizontal

is tan"1 (w(xo,zo)/u(xo,zQ)) and the length of the arrow is ^u2(x0,z0) +v)2(x0,z0).

These profiles are shown in Figures 4.17 - 4.20. Similarly to the temperature, the

velocity profile is shown to have a period of 1. We have shown fewer time steps for the

graphs of the velocity as they do not vary much. However we do note that the fluid
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appears to rise slightly at one time step and then fall slightly at the next (this can be

seen more clearly by examining the arrows near the surface). Thus the velocity profile

follows a wave solution.

T:x=0

0 0.2 0.4 0.6 0.8 1

T:x=0.66667

T:x=0.33333

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8 1

Figure 4.11: Temperature profile through a cross-section at four fixed points of the

fluid at t=0.0.

4.1.9 Discussion of thermal instability

In this section, we modelled the thin conduction region between two free surfaces.

We modelled the effect of one convecting cell by adding a shear flow to the lower

boundary. The critical Rayleigh number was calculated for this problem and from this,

the maximum thickness of the layer was found. This model, however, suggested that
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Figure 4.12: Temperature profile through a cross-section at four fixed points of the

fluid at t=0.2.
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Figure 4.13: Temperature profile through a cross-section at four fixed points of the

fluid at t=0.4.
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Figure 4.14: Temperature profile through a cross-section at four fixed points of the

fluid at t=0.6.
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Figure 4.15: Temperature profile through a cross-section at four fixed points of the

fluid at t=0.8.
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Figure 4.16: Temperature profile through a cross-section at four fixed points of the

fluid at t=1.0.
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Figure 4.17: Velocity profile at t=0.0. The length and direction of the arrows represent

the magnitude and direction of the velocity respectively.
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Figure 4.18: Velocity profile at t=0.4.
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Figure 4.19: Velocity profile at t=0.8.
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Figure 4.20: Velocity profile at t=1.0.
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the layer could be three times larger than that observed experimentally and therefore

does not corroborate the theory that the conduction layer thickness is determined by

the working assumption.

We proceeded to examine the same layer with a supercritical Rayleigh number,

so that convection existed, in order to see whether the conduction layer could then

be observed in the fluid and to examine the temperature profile. Although a large

temperature gradient could be seen in the profile at certain time periods, this was not

consistent throughout. Also a stationary layer at the top of the fluid could not be

observed. Therefore we conclude that with this model, we are neither able to support

the working assumption nor observe a region near the surface with properties similar

to those described for the conduction layer.

4.2 Micro Convection Eddies near the Surface

In this section we shall test the second conjecture given at the beginning of the chapter,

namely that the temperature fluctuations observed at the surface of cryogenic mixtures

are due to micro-convection eddies. This will be done by constructing a simple ana-

lytical model of micro-convection eddies for a LIN/LOX mixture. We will ignore any

thermal effects on the density which are known to cause this rollover and assume that

each micro-convection event occurs when all the LIN has evaporated from the surface.

Thermal fluctuations observed to a lesser extent in pure LIN suggest that this assump-

tion is not strictly true. However, we shall prove that the concentration change in

mixtures has a far greater effect on the density at the surface. The frequency of these

thermal fluctuations will be calculated and compared to those observed experimentally.

Thermal fluctuations in a LIN/LOX mixture

For our calculations, we shall consider a LIN/LOX mixture with only LIN evaporating.

This is a reasonable assumption since the surface is at its saturation temperature,

assumed a constant. This temperature is between the boiling points of LIN, at 77.4K

and LOX, at 90.2K. Thus the LIN in the mixture will evaporate far more readily than

the LOX although some LOX will evaporate by virtue of the Maxwellian distribution

(see Figure 4.21). This distribution is calculated using statistical mechanics and shows

that at any temperature, some molecules of LOX will have a great enough speed to

106



evaporate out of the mixture. This small fraction can, however, be ignored to a first

approximation. To begin the mathematical model, we shall consider a tank, initially

] V c / s m

lower temperature

higher temperature

-1
c I m s

cm

Figure 4.21: The Maxwellian distribution. N is defined so that Nc5c is the number of

molecules with speeds between c and (c + 5c) at a particular temperature. ccrit is the

critical velocity for a particle to escape from the surface of the liquid.

of volume Vo (m3), containing 20% LOX and 80% LIN, the same values as those used

in the experiments performed by Beduz and Scurlock(1996). Suppose / is the rate at

which the volume leaves the system (m3s~1) through evaporation and that there is no

other means of fluid loss. Q(t) will be taken as the mass of nitrogen (kg) in the tank at

any one time. Then the time taken for all the LIN to evaporate from the thin surface

layer, up to the stage when it is replenished from below, is the time between each spike

in the temperature profile. We shall calculate and compare our results to experimental

data, which suggests that the frequency of these thermal fluctuations is 1-2 per second.

So, in order to find the time taken for this process to occur, we need to find the rate

of change of LIN and then integrate this between the initial mass of LIN in the tank

and the mass of LIN in the tank when the molecules in the thin surface layer have

evaporated.
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The volume of the fluid (LIN and LOX) in the tank at any one time = VQ - ft.

So the density of nitrogen in the tank at any one time = —
Vo-ft

Now the rate of change of Q with time, —~-^- = rate at which LIN enters the tank
at

(= 0) — rate at which it

leaves the system.
So

m = ̂ wif (440)
dt V0-ft

J [ '
At t = 0, Q = a, where a = 4pLiNV0/5 is the mass (kg) of the LIN in the whole tank

initially.

So integrating equation (4.40):
[» dQ _ ^ - /

Ja Q ~ k Vo - f t *
where b — a — 4Adphm/5 is the mass (kg) of the LIN in the tank when all the LIN has

evaporated from the thin surface layer, with A = yrr2, as the surface area (m2) of the

mixture in contact with the vapour, r being the radius (m) of the cylinder and d being

the depth (m) of the thin surface layer, gives

with ho as the initial height (m) of the mixture in the tank so Vo = irr2h0.

Note that here the quantity evaporating is calculated as the rate of change of volume

(m3s~1). In experiments and previous models, we have considered the mass flux lost

though evaporation (kgm~2s~1). We find that the rate at which volume leaves the

system is

/=£=d (4-42)

where rh is the mass flux (kgm~2s~1) and pg is the density (kgm~3) of nitrogen gas.

So the time between each spike in the temperature profile is

t = 5J4 (4.43)
4m
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To find a numerical value of the time, we need to calculate the mass flux through evap-

oration. Atkinson-Barr(1989) finds the modified mass flux for LIN, m*, experimentally

as:
rn* = (l)(1/3)JTi.o85 ( 4 4 4 )

with the modified mass flux defined by

rh* = mL( V
 3 -) (4.45)

where 5T = Tbuik - Tsat, is the difference in temperature (K) between the bulk and

the surface layers; L is the latent heat of vaporisation (Jkg^1); v is the kinematic

viscosity (m2s~1); K — k/pu^c is the thermal diffusivity (m2s^1) of LIN, k is the

thermal conductivity (Wm^K"1) , p is the density (kgm~3) of LIN and c is the specific

heat capacity (Jkg^K"""1); g is the acceleration (ms~2) due to gravity and /3T is the

thermal expansion coefficient (K - 1) .

For LIN:

L = 199 x 105Jkg~\ v = 1.943 x l O ^ m V 1 , K = 6.03 x l O ^ m V 1 , g = 9.81ms-2,

fir = 5.63 x l O - ^ " 1 , PLIN = 808kgm~3 and c = 2.051 x 103Jkg"1K"1.

Substituting this data into equations (4.44) and (4.45), yields

m = 2.6119 x 10-3(5T1085kgm"2s-1

Also pg = 1.18kgnT3, d = 200/im and 5T = 0.21K.

Substituting this into equation (4.43), we find that:

t = 0.61s

This agrees with experimental data that these thermal fluctuations have a frequency

of 1-2 per second (refer to Figure 4.2).

4.2.1 Discussion of temperature fluctuations

This simple calculation to find the time taken for each thermal fluctuations agrees

with experimental data. This is not enough to prove beyond doubt the conjecture that

the temperature fluctuations observed at the surface of cryogenic mixtures are due to

micro-convection eddies which replenish the proportion of LIN at the surface is correct.

However, it does support the theory.
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4.3 Conclusions of the Instabilities at the Surface

In the first section of this chapter we discussed the approximation made in previous

experimental studies that the thickness of the conduction layer observed at the surface

of cryogenic fluids is due to the restriction made by the critical Rayleigh number, above

which the fluid in the layer will start convecting. We set up an analytical model for

the Benard convection in the conduction region of the fluid, which we solved compu-

tationally (validating it in a simple case against existing work). We then showed that

although this theory gives the correct order of magnitude, it would allow the thickness

to be a factor of three larger than seen to exist and therefore this approximation could

not be justified in our model. Although this approximation may still hold, in that the

thickness can never exceed such a thickness, there must be some other property of the

fluid which restricts the thickness to that seen experimentally. At this stage, therefore,

we are unable to theoretically predict the thickness of the layer which appears to be an

important factor in the evaporation rate. We shall return to this subject in Chapter 5.

In the second section we constructed a simple model which supported the theory that

the thermal fluctuations seen to exist at the surface are due to micro-convection eddies

which replenish the LIN lost through evaporation. Thus the surface may be considered

to 'rollover' with the rest of the fluid frequently. This model, however, neglects the

heat entering the system from the side walls. This flux of heat, and the isothermal

condition at the surface of the fluid would lead to density differences particularly at

the surface and this could be another factor which induces micro-convection.
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Chapter 5

Numerical Modelling Of An

Evaporative Mixture

In this chapter, we will numerically analyse the behaviour of mixtures of cryogenic fluids

in a two-dimensional rectangular vessel with natural convection and evaporation.

A number of investigations have been carried out on convection of Newtonian fluids

in such vessels. De Vahl Davis(1968) examined the behaviour of a one-component fluid

in a rectangular cavity, insulated on its horizontal boundaries and with the side walls

at temperatures of Tc and Th respectively, for values of the Rayleigh number up to

2 x 10° (in a square cavity), above which flow becomes turbulent. The equations were

written in finite difference form, with forward differences used for time derivatives and

second-order central differences for all space derivatives. The resulting finite difference

approximations were solved by an alternating-direction implicit algorithm. It was found

that high Prandtl numbers exert a stabilising influence on the numerical solution. De

Vahl Davis(1983) later published benchmark solutions to this problem. This was closely

followed by the work of Markatos and Pericleous(1984) who studied the same problem

and included benchmark solutions for turbulent flow.

More recently, papers have been written which include the effects of a concentration

gradient added to the classical problem, causing double-diffusive convection. Gebhart

and Pera(1971) were amongst the first to numerically study double-diffusion for cases of

vertical laminar fluid motion along surfaces and in plumes. Their work focused on the

influence of non-dimensional parameters relevant to the process, namely the Prandtl

number and the Schmidt number, defined as the ratio of the kinematic viscosity to the
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molecular diffusivity, on the heat and mass transport. A fundamental study of the scale

analysis relative to heat and mass transport processes within cavities, subjected to hor-

izontal temperature and concentration gradients, was given by Bejan(1985). Beghein

et al. (1992) considered steady-state double-diffusion in a square cavity filled with air.

The temperature conditions used by De Vahl Davies(1968), were placed on the bound-

aries and either augmenting or opposing concentration buoyancy forces were added.

The upper and lower horizontal walls were both adiabatic and impermeable as before.

The numerical procedure was based on the SIMPLER algorithm. The effects of varying

the solutal Rayleigh number on the concentration and temperature flows were shown.

Shi(1990) modelled convection and rollover in mixtures of nitrogen and oxygen in

a two layer system with each layer having a different concentration. This system was

contained within a rectangular vessel that was subjected to a uniform heat flux through

the two vertical walls. Again all sides of the box were assumed to be impermeable

and the base to be insulated, but here the top free surface of the fluid was assumed

to be isothermal, at the saturation temperature. The predicted concentration and

temperature distributions throughout the process was examined.

No previous studies of double-diffusive convection consider the effects of preferential

evaporation at the surface. This constitutes a major omission in the case of Shi's

model, in that preferential evaporation of LIN would leave an enriched and therefore

heavier layer at the surface. In this chapter, we will derive an expression for the rate

of evaporation of the solute and include this term in a model for the double-diffusive

convection of one layer of a fluid in a vessel similar to that described by Shi, in order

to understand the effects of this process. The way in which to include this process in

a model of rollover is then examined.

5.1 One-Component Model in Cartesian Coordi-

nates

5.1.1 Construction of problem and basic assumptions

We will initially develop our code to model the same problem as De Vahl Davis(1968,

1983) and use his published results to validate our code. This problem considers a

square vessel containing a one-component fluid, insulated on the horizontal boundaries
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and with the vertical walls y = 0 and y = d at temperatures Tc and Th respectively. The

no-slip boundary condition applies at all four wall boundaries. The thermal-induced

convective flows in a plane including the two walls at fixed temperatures are of interest,

and assuming the cavity is infinite in the perpendicular direction, these flows may be

regarded as two-dimensional. The solution domain is shown in Figure 5.1. In order to

z

T=T
c

(T>T)
h c

T = T
h

7=0
z

d

Figure 5.1: Solution domain for problem studied by De Vahl Davis(1968,1983).

model the flow, some basic assumptions are made about the fluid.

1. It is Newtonian.

2. It is incompressible.

3. We will also use the Boussinesq approximation, which states that if density vari-

ations are small, they can be neglected in so far as they affect inertia but must be

retained in the buoyancy terms. The rigorous proof of this assumption is given

in Acheson(1992).
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5.1.2 Governing differential equations

The Navier-Stokes equations which describe Newtonian, incompressible fluid are

du du du 1 dp (d2u d2u\ .
1 • ' ' • x (5.1)dt dx dz pdx \dx2

''dw dw dw\ dp (d2w d2w ,
. . . . . . . \ F . I . 1 ^ ^

and the conservation of mass is

du dw
d-x + Jz~ = ^ ( °- 3 )

Finally the energy equation (ignoring viscous dissipation) in conservative form is

dT_ d(uT) d(wT) _ (&T_ d2T\
dt dx dz \ dx2 dz2 J

where u(x,z,t) is the horizontal component of the velocity (ms"1), w(x, z,t) is the

vertical component of the velocity (ms"1), p is the density of the fluid (kgm~3), p(x, z, t)

is the pressure (Pa), v is the kinematic viscosity (assumed constant) (m2s -1), \x is the

dynamic viscosity (kgm^s^1), g is the acceleration due to gravity (ms~2), T is the

temperature (K) and K is the thermal diffusivity (m2s -1). Applying the Boussinesq

approximation, p = po(l - (3T(T — To)), where p0 is the density (kgm~3) when T = T0,

To is the temperature (K) in a reference state of hydrostatic equilibrium and (3T is the

thermal expansion coefficient (K"1), to equation (5.2), gives

dw dw dw 1 dp (d2w d2w\ n ._ _,, . ,
-K7 + u— + w— = — + v -r-j + 7-r + gpT{T - To). (5.5)
dt dx dz po dz \ dx2 dz2 J

Note that there are four dependent variables in the problem: the velocity components

u and w, the pressure p, and the temperature T. The pressure may be eliminated by

cross-differentiating equations (5.1) and (5.5) to give the vorticity-transport equation:
*" d{ur]) p d(wri) _,,(d2r) _ d2ri\ _Q dT

( 5 ' 7 )

where r\ is the vorticity, denned as

dw du

The velocity components, u and w, may also be expressed as derivatives of the stream

function, ip,
dip dtp
dz dx
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Substituting the above expressions into equation (5.7), gives the Poisson equation

d2ip _

dz2dx2 dz2

Thus a new set of differential equations, the so-called vorticity-stream formulation, is

formed:

dr] dif)dri dipdr] (d2r] d2rj\ dT , N

+ = v { + i)9P 5-8
dt dz dx dx dz \dx2 dz2 J dx

dT ctydTdV>dT fd2T
~dt + ~dz~~dx~ ~ Jx~~dz~ ~ K

d2i) d2i)

Note that the problem has been reduced to three differential equations in three un-

knowns.

5.1.3 Non-dimensionalising the governing equations

The problem may now be converted to non-dimensionalised form in order to give an

easy comparison of the important parameters in the problem. Scaling using the ther-

mal diffusivity, K and the height/width of box, d, together with T — Tc/(Th — Tc) for

temperature, the dimensionless form of all variables may be obtained:

x = x/d , z = z/d , i= t/(d2/K) , ? = (T - Tc)/(Th - Tc) 1

u — u/(K,/d) , w = w/(K,/d) , ip = IJ}/K , f\ = rj/{K/d2). J

Substituting the dimensionless variables into equations (5.8) and (5.9) and rearranging,

gives (dropping the over-bars)

(5-12)

a* • a a a a - I a 2 ' a 2 J (5-13)

L/(/ C//O \J\XJ \JJL> ISJ& \ KJJL/ t/-O /

where Pr = V/K is the Prandtl number and RaT is the thermal Rayleigh number defined
as

R a _gf3T{Th-Tc)d?
KU

The form of the Poisson equation, (5.10), remains unchanged.
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5.1.4 Boundary and initial conditions

By initially modelling the problem described, it will be possible to validate the re-

sults of our numerical code with benchmark solutions (De Vahl Davis, 1983, Markatos

and Pericleous, 1984). The published benchmark solutions for two-dimension natural

convection are obtained for the steady state case.

De Vahl Davis(1983) considers a two dimensional flow of a Boussinesq fluid with

a Prandtl number of 0.71 (air) in an upright square cavity with the following non-

dimensionalised boundary conditions:

At x = 0:

u = 0 , w = 0 , -0 = 0 , T = 0

At x = 1:

u = 0 , w = 0 , ^ = 0 , T = l

At z = 0:
dT

u = 0 , w = 0 , ip = 0 , — = 0
oz

At z = 1:
dT

u = 0 , w = 0 , ^ = 0 , TT- = 0
az

The non-dimensionalised initial conditions are:

u = 0 , w = 0 , -0 = 0 , T = 0

This problem will be solved for velocities and temperature at two Rayleigh numbers

and compared with the benchmark solutions.

5.2 Numerical Procedure

5.2.1 Discretisation method

Now that we have a set of differential equations with suitable boundary conditions, we

need to use a discretisation method to transform the equations into a set of algebraic

equations which may then be solved using an established numerical method.

Here we opt for an explicit scheme whereby a general variable is expressed explicitly

in terms of quantities which are known at the beginning of the time step. Although a

stability criteria will be required which will restrict the size of the time step, we feel
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that the advantage of the computational simplicity of an explicit scheme is more than

justification for its use.

The most straightforward approach would be to choose a Forward Time Centred

Space (FTCS) representation, as shown in Figure 5.2. The discretisation for a general

variable, £(i,l), where i is the number of spatial points on a grid of length d, and 1 is

the number of time points, would be as follows:

M = {(i + L Q f l i u ) central difference (5 ,5)
ox LOX

and ? | M = « . + U ) 2 « i !) + {(•-1,1) c e n t r a , d i f f e r e n c e

ox1 (ox)2

where 6x is the length step such that \5x — d, and 5t is the time step.

t orl

o
i
i
i
i

x orj

Figure 5.2: Representation of the Forward Time Centred Space (FTCS) differencing

scheme reproduced from Press et al. (1992). In this and subsequent figures, the open

circle is the new point at which the solution is desired; filled circles are known points

whose function values are used in calculating the new point; the solid lines connect

points that are used to calculate spatial derivatives; the dashed lines connect points

that are used to calculate time derivatives.

Stability analysis, however, quickly uncovers the instability of applying central dif-

ferences to the convection term.

Instead, we will choose an upwind scheme (Morton &, Myers, 1994). This uses a

forward time step and central differences for the second order derivatives, as with

the FTCS scheme, but applies either forward or backward differences for the first

derivatives depending on the upstream direction, as follows for a general variable,
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if 0,
(5.17)

This representation is shown in Figure 5.3. The advantage of this method is the

'fidelity' (Press et ai, 1992) of this scheme to the underlying physics. The numerical

stability of this scheme as applied to our problem is discussed in a later subsection.

t orl

9

i

u

9
U

x orj

Figure 5.3: Representation of upwind scheme reproduced from Press et al.(1992). The

upper scheme is stable when the advection constant u is negative, as shown; the lower

scheme is stable when the advection constant u is positive, also as shown.

5.2.2 General differential equation

The vorticity and temperature equations (5.12) and (5.13) may both be fitted into the

form of the following general differential equation, where 0 is a general scalar variable:

36 d(u6) d(w6) ( d26 d26\

dt ox dz \dx2 dz2 J

where 6 = T, F = 1, So = 0 for the temperature equation and 6 = rj, F = Pr,

So = — PrRaidT/dx for the vorticity equation.

With the velocity substituted by the stream function and using the conservation of

mass, this general equation can be written as:

dt dz dx dx dz I dx2 dz2 I
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Using the upwind scheme described in the last subsection, the general differential equa-

tion can then be discretised as

+

5t dz dx dx dz

(6z)* )
(5.19)

where dip(i,i,\)/dx,dip(i,i,\)/dz,d(t)(i,i,l)/dx and d<f>(i,j,\)/dz, may be discretised in

the same way as equation (5.17). Similarly, the elliptic Poisson equation may be

discretised to give

{5z)2

(5-20)

5.2.3 Stability criterion

As explained before, a stability criterion is required when the system is discretised

using an explicit scheme. This will give the maximum time step permitted for the

numerical scheme to remain accurate. We will look here at the stability of the general

equation (5.18). Suppose that 9 is an approximate solution to the general equation,

regarding it as an equation for 4> with u, w and So known. Then it would satisfy the

equation:

a (Mi , j , ) ( , j , ) )
ddt dx dz

If an exact solution, x(iJ>0 w a s known to exist, the following equation would be

satisfied:

9Ki,j,l)x(J,))
ddt dx dz

and so the numerical error would be ^ ( i j . l ) = 6>(i,j,l) - xCiJ,1)) which would satisfy

the equation given by (5.21) - (5.22)

a(M(i,j,i)E(i,j,i)) a(^(i,j,i)E(i,j,i)) ^ ( i j . i )
d d \ dx*dt dx dz
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which eliminates the source term from the stability problem. So we are now concerned

with the stability of the general equation with So = 0.

We shall use von Neumann (also known as Fourier) stability analysis. This analysis

is local and we imagine that the coefficients of the difference equations are varying

so slowly that they can be considered constant in space and time. In that case, the

independent solutions, or eigenmodes, of the difference equations are all of the form

where A; is a real spatial wave number (which may take any value) and A = X(k) is a

complex number which depends on k. Since we are dealing with a grid aspect ratio of

one and will use the same size length step in both the x and z directions, this may be

re-written as

<f>(i,i,l)=XleIhAx^ (5.23)

The key fact is that the time dependence of a single eigenmode is nothing more than

successive integer powers of the complex number A. Therefore the difference equations

are unstable (have exponentially growing modes) if | X(k) |> 1 for some k. The number

X(k) is called the amplification factor at a given wave number k.

To find X(k), we simply substitute (5.23) back into the discretised form of (5.18)

(with So = 0), assuming that the velocity is constant and u,w > 0. Dividing by

0(i,j,l), we get

A = 1 - aAx{u + w)(l- e~IkAx ) + 2Ta(eIkAx - 2 + e~IkAx )

where a = At/Ax2. Now

e
IkAx = cos(A;Ax) + Isin(kAx).

So

A| = (l -4aAx{u + w)sin2(/3)(l - a Ax (u + w)) + 16T a sin2 {j3)

(4rasin2(/3) - l ) + 32a2TAx{u + w) s i ) 1 / 2

where
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As mentioned above, for the equation to remain stable | A |< 1. Since a > 0 this may

be simplified to

a< -
Ax{u + w)

and so
Ax2

At < -; r.

This procedure is similarly repeated for different combinations of positive and negative

components of velocity and, combined, gives the following constraint (Roache, 1976)

on the time step:
AT 2

(5.24)
u + \w \)

Thus the time step is restricted by the most tightly constrained differential equation,

be it the vorticity, or the temperature equation. The Poisson equation does not require

a stability criteria because it is not dependent on time.

5.2.4 Outline of the solution procedure

The solution procedure is a time-marching one. Following a set of initial values for

each variable, the final solution is achieved by using the time-marching technique. In

each time step the equations are solved in the following way:

1. Determine the time step using equation 5.24.

2. Using a central difference scheme, calculate the velocity from the stream function

distribution to find the direction of the components of the velocity.

3. Transform these into an upwind scheme (forward or backward depending on the

sign of the velocity component) for use in the equations.

4. Solve the temperature equation (5.12) explicitly for the new time step using the

previous step's data.

5. Calculate the source term, So — gfirdT/dx, in the vorticity equation, using the

temperature solution from the old time step.

6. Solve the vorticity equation for the new time step explicitly.

7. Solve the Poisson equation to obtain the stream function distribution.
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The process is repeated until a steady state is reached. This is judged to be achieved

when the stream function between two consecutive time steps is less than 10~4. Ex-

perimental evidence (Elder, 1968) indicates that provided the Rayleigh number is less

than 108, the convection may be assumed to be laminar. In the case of high Rayleigh

numbers (greater than 107 — 108) flow may become turbulent and so it may be difficult

to reach a steady state.

5.2.5 Solution of the discretised Poisson equation - the multi-

grid method

We will solve the differential equation (5.10) using the multigrid method as imple-

mented in Press et al. (1992). The method was first introduced in the 1970s by

Brandt(1977) and is O(N) in the number of grid points used, compared to standard

relaxation methods which are typically O(iV2) or O(iV(3/2)). The key idea is to intro-

duce a hierarchy of grids. Methods such as Gauss-Seidel relaxation (Stoer and Bulirsch,

1993) tend to stall, since they do not attenuate smooth error modes. However a smooth

error mode on a fine grid looks less smooth on a coarser grid and will be attenuated by

further Gauss-Seidel iterations. The values on the coarser grid are then fed back onto

the fine grid and by alternating between fine and coarse grids, the system relaxes more

quickly. For further details of the application of multigrid methods to the solution

of differential equation see Biggs(1988), Hackbusch(1985), Wesseling(1992), or Zwill-

inger(1997). Standard grid refinement is used to determine that, for Rayleigh numbers

of the order of 103 — 107, the solution is sufficiently accurate when 128 points are used.

The coarse grid solution is derived by Gauss-Seidel relaxation.

The multigrid method can be understood by considering the simplest case of a two-

grid method (based on Press et al., 1992). Suppose we are trying to solve the linear

elliptic problem

Cu = f (5.25)

where C is some linear elliptic operator and / is the source term. Discretising equa-

tion (5.25) on a uniform grid with mesh size h, the resulting linear algebraic equations

may be written as

Chuh = fh. (5.26)

Let Uh. denote some approximate solution to equation (5.26). We will use uh to denote
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the exact solution to the difference equations (5.26). Then the error in Uh or the

correction is

Vh = Uh - Uh.

The residual or defect is

4 = Chuh - fh. (5.27)

Since Ch is linear, the error satisfies

C<hVh = ~ 4 - (5.28)

At this point we need to make an approximation to Ch in order to find vh. The classical

iteration methods, such as Jacobi or Gauss-Seidel, do this by finding, at each stage, an

approximate solution of the equation

Chvh = - 4

where Ch is a 'simpler' operator than Ch and 4 has been modified. For example, Ch,

is the diagonal part of Ch for Jacobi iteration, or the lower triangle for Gauss-Seidel

iteration. The next approximation is generated by

Now, let us consider, as an alternative, a completely different type of approximation to

Ch, one in which we 'coarsify' rather than 'simplify'. That is, we form some appropriate

approximation CH of Ch on a coarser grid with mesh size H (we will take H = 2h).

The residual equation (5.28) is now approximated by

CHvH = -dH. (5.29)

Since CH has smaller dimensions, this equation will be easier to solve than equa-

tion (5.28). To define the defect dn on the coarse grid, we need a restriction operator

3? that restricts 4 to the coarse grid:

dH = K4- (5.30)

The restriction operator is also called the fine-to-coarse operator or the injection oper-

ator. Once we have a solution VH to equation (5.29), we need a prolongation operator

p that prolongates or interpolates the correction to the fine grid:

Vh = pvH. (5.31)
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The prolongation operator is also called the coarse-to-fine operator or the interpolation

operator. Both K and p are chosen to be linear operators. Finally the approximation

Uh can be updated:
— new ~ i ~ / f rt,-i\

uh = Uh + Vh (5.32)

One step of this coarse-grid correction scheme is thus:

Coarse-grid correction

1. Compute the defect on the fine grid from equation (5.27).

2. Restrict the defect by equation (5.30).

3. Solve equation (5.29) exactly on the coarse grid for the correction.

4. Interpolate the correction to the fine grid by equation (5.31).

5. Compute the next approximation by equation (5.32).

We will now examine the advantages and disadvantages of relaxation and the coarse-

grid correction scheme. Consider the error v^ expanded into a discrete Fourier series.

We shall call the components in the lower half of the frequency spectrum the smooth

components and the high-frequency components the nonsmooth components. Relax-

ation becomes very slowly convergent in the limit h —>• 0, i.e., when there are a large

number of mesh points. The reason turns out to be that the smooth components are

only slightly reduced in amplitude on each iteration. However, many relaxation meth-

ods reduce the amplitude of nonsmooth components by large factors on each iteration:

they are good smoothing operators.

For instance a Gauss-Seidel iteration attenuates oscillatory components much faster,

and this means that the contribution of the latter is almost eliminated after only a few

iterations. The non-oscillatory terms, however, are left and they account for the slower

rate of attenuation in the asymptotic regime. In other words the Gauss-Seidel scheme

is a 'smoother': its effect after a few iterations is to filter out high frequencies from the

'signal' (Iserles, 1996).

For the two-grid iteration, on the other hand, components of the error with wave-

lengths < 2H are not even representable on the coarse grid and so cannot be reduced

to zero on this grid. But it is exactly these high-frequency components that can be
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reduced by relaxation on the fine grid. This leads us to combine the ideas of relaxation

and coarse-grid correction:

Two-grid iteration

1. Pre-smoothing: Compute Uh by applying vx > 0 steps of a relaxation method to

2. Coarse-grid correction: As above, using Uh to give u£ew.

3. Post-smoothing: Compute u£ew by applying u2 > 0 steps of the relaxation method

to u£ew .

It is only a short step from the above two-grid method to a multigrid method. Instead

of solving the coarse-grid defect equation (5.29) exactly, we can get an approximate

solution of it by introducing an even coarser grid and using the two-grid iteration

method. If the convergence factor of the two-grid method is small enough, we will

need only a few steps of this iteration to obtain a good enough approximate solution.

We denote the number of such iterations by 7. Obviously we can apply this idea

recursively down to some coarsest grid. There the solution is found easily, for example

by direct matrix inversion or by iterating the relaxation scheme to convergence.

One iteration of a multigrid method, from finest grid to coarser grids and back to

finest grid again, is called a cycle. The exact structure of a cycle depends on the value

of 7, the number of two-grid iterations at each intermediate stage. The case 7 = 1 is

called a V-cycle, while 7 = 2 is called a W-cycle (see Figure 5.2.5). These are the most

important cases in practice.

So far we have described multigrid as an iterative scheme, where one starts with

some initial guess on the finest grid and carries out enough cycles (V-cycles, W-cycles,

. . . ) to achieve convergence. This is the simplest way to use multigrid: simply apply

enough cycles until some appropriate convergence criterion is met. However, efficiency

can be improved by using the Full Multigrid Algorithm (FMG), also known as the

nested iteration.

Instead of starting with an arbitrary approximation on the finest grid (e.q., uh = 0),

the first approximation is obtained by interpolating from a coarse-grid solution:

Uh = puH (5.33)
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3-Brid

E E

Y=l •^=2

Figure 5.4: Structure of multigrid cycles reproduced from Press et a/.(1992). S de-

notes smoothing, while E denotes exact solution on the coarsest grid. Each descend-

ing line, \ , denotes restriction (!ft) and each ascending line, / , denotes prolongation

(p). The finest grid is at the top level of each diagram. For the V-cycles (7 = 1)

the E step is replaced by one 2-grid iteration each time the number of grid levels is

increased by one. For the W-cycles (7 = 2), each E step gets replaced by two 2-grid

iterations.



The coarse-grid solution itself is found by a similar FMG process from even coarser

grids. At the coarsest level, you start with the exact solution. Rather than proceed as

in Figure 5.2.5, FMG gets to its solution by a series of increasingly tall 'N's', each taller

one probing a finer grid (see Figure 5.2.5). Note that p in equation (5.33) need not be
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the same p used in the multigrid cycles. It should be at least of the same order as the

127



discretisation C^, but sometimes a higher-order operator leads to greater efficiency.

Usually only a couple of multigrid cycles are used at each level. We use 7 = 2

throughout and apply one Gauss-Seidel smoothing iteration to each grid.

The simplest multigrid iteration (cycle) needs the right-hand side / only at the finest

level. FMG needs / at all levels. If the boundary conditions are homogeneous, you can

use fH = 3?/h. Note that the FMG algorithm produces the solution on all levels.

5.2.6 Validation of code for thermal induced convection

Table 5.1 shows a comparison between numerical solutions from the present model and

that found from De Vahl Davis(1983) who used uniform meshes of 11x11 and 41 x 41

for Rayleigh numbers of 103 and 104 and finer meshes up to 81x81 for higher Rayleigh

numbers. For our work, for Rayleigh numbers up to 105, a 64x64 uniform grid is found

adequate. However, at R&T — 105, a finer grid of 128x128 is needed for the system

to reach a steady state. As can be seen, all results are accurate to within 5% of the

benchmark solutions.

B.M.

P.M.

e(%)

B.M.

P.M.

<%)

B.M.

P.M.

c(%)

V'mid

1.174

1.210

3.1

5.071

5.213

2.8

9.111

9.284

1.9

^max

Rax

-

-

-

RaT

-

-

-

RaT =

9.612

9.804

2.0

Umax Wmax

= 103 (64x64)

3.649

3.740

2.5

3.697

3.773

2.1

- 104 (64x64)

16.178

16.594

2.6

19.617

19.776

0.8

= 105 (128x128)

34.73

35.58

2.4

68.59

68.39

0.3

Nu

1.118

1.069

4.6

2.243

2.172

3.2

4.519

4.474

1.0

Table 5.1: Comparison of present model (P.M.) to benchmark solutions(B.M.).

A comparison between the contour maps and the isotherms obtained from our code
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and those by De Vahl Davis(1968) is shown for the two cases: Rax = 1.2 x 104 and 5 x

104 in Figures 5.6 and 5.7 respectively. The small differences could be due to the contour

plotting routine. Also there is some evidence that the steady state has not quite been

attained. However, overall they agree well. The development of the motion may be

seen in the contour maps whilst the isotherms show the distortion of the temperature

distribution from that of conduction alone showing a fairly constant temperature in

the bulk of the fluid and sharp temperature gradients near the two side walls.

(i) (ii)

(iii)

Figure 5.6: (i) Contour map from De Vahl Davis(1968), (ii) contour map obtained from

our numerical code, (ii) isotherm plot from De Vahl Davis(1968) and (iv) isotherm plot

obtained from our numerical code for Pr = 103 and Ra = 1.2 x 104.
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(i)

(iii)

Figure 5.7: (i) Contour map from De Vahl Davis(1968), (ii) contour map obtained from

our numerical code, (ii) isotherm plot from De Vahl Davis(1968) and (iv) isotherm plot

obtained from our numerical code for Pr = 103 and Ra = 5 x 104.
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5.3 Two-Component Model in Cartesian Coordi-

nates

We have so far developed the one component model. This model will now be ex-

panded to deal with heterogeneous flows where the fluid contains more than one misci-

ble component. Here for simplicity, only two-component flows will be considered, but

multi-component systems can be dealt with in just the same manner. We refer to the

major constituent in the vessel as the 'solvent' whilst the other will be referred to as

the 'solute'. We will again apply the Boussinesq approximation requiring the density

variations due to composition as well as temperature differences to be small.

5.3.1 Modifications for the two-component model

In order to incorporate the solute, there are only two modifications required in the

mathematical formulation of the problem. Firstly, a differential equation for the solute

concentration and appropriate boundary conditions must be included and secondly,

the vorticity equation, (5.8), must take into account the buoyancy force resulting from

the horizontal gradient of the solute.

Differential equation for the solute

The differential equation governing the behaviour of the solute is

where C is the concentration of the solute and D is the diffusivity of the solute in the

solvent (m2s~1).

Scaling the concentration using C = (C — Cc)/(Ch — Cc), where Ch is the higher

concentration of the two fixed concentrations on the two side walls and Cc is the lower

concentration on the other side wall, and using the scales in (5.11), we can readily

non-dimensionalise equation (5.34), giving (dropping the over-bars)

dC d{uC) diwCl _ l
dt + fa + dz Le{da* + )

where Le, the Lewis number is the ratio of the thermal diffusivity to the molecular

diffusivity and is defined by Le = K/D. Note that this is identical with the result
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of assuming that F = 1/Le and So = 0 in the general differential equation (5.18).

Therefore, the stability criteria for this equation is the same as that used for the

temperature and vorticity equations.

Boundary and initial conditions for the solute

Initially we shall validate this modification to our model by using it to model the

problem described by Beghein et al. (1992) of steady-state thermosolutal convection in

a square cavity subject to horizontal temperature and concentration gradients.

The physical model is a square two-dimensional cavity, whose upper and lower hor-

izontal walls are adiabatic and impermeable; the vertical walls are maintained at dif-

ferent temperatures and concentrations in order to generate fluid motion, as shown in

Figure 5.8.

T= C= 0
z z

T =

C = C or
h

1 <c
h> CJ

T=TC

C=C or C
h

T= C- 0
z z

d

Figure 5.8: Solution domain for problem studied by Beghein et al.(1992).

Thus the boundary conditions remain the same as in the previous section but with

the addition of the following boundary conditions for the concentration on the four

walls:
dC
—— = 0 at z — 0 and d.
dz

With the opposing flow (working in the opposing direction to temperature)

C = Ch at x = 0 and C = Cc at x = d
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or the aiding flow (working in the same direction as temperature)

C = Cc at x = 0 and C = Ch at x = d.

Thus the non-dimensionalised boundary conditions are

dc
dz ~

C =

C =

0

1

0

at

at

at

z =

x =

x -

0

0

1

and 1

or 1

or 0.and

The initial conditions remain the same as in the previous section but with the addi-

tional condition:

C = 0 at t = 0

Vorticity transportation equation

Owing to the presence of the solute, equation (5.8) must be rewritten as

drj chpdji di>dri (d^n cPrA &T dC
dt + dzdx dxdz ~ " \ J

where (3$ is the solutal expansion coefficient. Normalising the above equation, using

the same scales as before (dropping the over-bars) yields

&q d±dv_ _ d±dv _ P r (!tl ^l\ _ prRa ?L _ P r R a ^£
dt dz dx dx dz \dx2 dz2) dx dx

where Ras = gfis(Ch — Cc)d
3/(uK.) is the Rayleigh solutal number and RaT is the

thermal Rayleigh number as defined before. This can again be fitted into the general

equation (5.18) with T = Pr and So - -PrRaTdT/dx - PrRa sdC/3z. The two new

equations are discretised in the same way as before.

5.3.2 Solution procedure

Since values for the solute are required to determine the source term in the modified

vorticity equation, the differential equation for the solute is solved before equation (5.8).

The problem is now complete and the procedure is repeated until a steady state is

reached which is judged in the same way as for the previous section.
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5.3.3 Validation of code for double-diffusive convection

Figure 5.9 shows a comparison between the streamlines, isotherms and isopleths of

concentration from Beghein et al. (1992) and those obtained from our numerical results,

for the case:

Le = 1 , Rax = 107 , Ras = 106 , opposing flows.

Note that the box around the plots does not represent the walls of the vessel. Also,

when plotting contour maps, small changes in the distribution or in the chosen contour

values can make a significant difference to the resulting plot. Differences in the location

of a contour line in regions with few contour lines can easily occur.

With a lower solutal Rayleigh number than thermal Rayleigh number, the convec-

tion for the above case is thermally dominated and the flow is clockwise. The Lewis

number of unity means that the diffusion of concentration is the same as the diffusion

of temperature. As a result, the isopleths of concentration and temperature should be

similar. This is not the case for our plots of the isopleths of concentration and temper-

ature, which are slightly asymmetrical. This may be due to the flow not quite having

attained a steady state. Thus our results do not quite agree with those obtained from

Beghein et al. (1992).

Figure 5.10 shows a comparison between the streamlines and isotherms from Beghein

et al.(1992) and those obtained from our numerical results, for the case:

Le = 1 , Rax = 107 , Ras = 5 x 107 , opposing flows.

The flow is shown to be very similar to the latter case.

Figure 5.11 shows the isopleth of concentration for the case when

Le = 5 , Rax = 107 , Ras = 106 , opposing flows.

With this Lewis number, the major mass transfer process is mass diffusion rather than

the process being dominated by thermal diffusion. We can see that the fingers on

either side of the vessel are present in both plots. Away from the boundary detailed

agreement is not so good in regions with weaker convection. The other plots compare

well, allowing us to proceed with our studies.
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(i)

(iii)

(v)

Figure 5.9: (i) Streamlines from Beghein et a/.(1992), (ii) streamlines obtained from

our numerical code, (ii) isotherms from Beghein et a/.(1992),(iv) isotherms obtained

from our numerical code, (v) isopleths of concentration from Beghein et al. (1992) and

(vi) isopleths of concentration obtained from our numerical code, for Le = 1, Rax =

107, Ras = 106.
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(i)

(iii) (iv)

Figure 5.10: (i) Streamlines from Beghein et a/.(1992), (ii) streamlines obtained from

our numerical code, (iii) isotherms from Beghein et al. (1992) and (iv) isotherms ob-

tained from our numerical code, for Le = 1, RaT = 107, Ras = 5xl0 r .
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(i)

Figure 5.11: (i) Isopleths of concentration from Beghein et a/.(1992) and (ii) isopleths

of concentration obtained from our numerical code, for Le = 5, Rax = 107, Ras = 106.

5.4 Rollover Model

We will now adapt the code to follow the work of Shi(1990) in which a numerical model

of rollover with a LIN/LOX mixture is studied. Our results for this problem can be

compared with those of Shi before developing the model further to include preferential

evaporation. Shi considers two layers of cryogenic fluid with a free top surface contained

in a square vessel subjected to a uniform heat flux along two opposing vertical walls as

shown in Figure 5.12. Since experiments show that the temperature variation within

stored cryogenic fluids is usually less than ten degrees Kelvin, the change in fluid density

caused would be less than five per cent. Therefore the Bousinessq approximation may

still be used.

5.4.1 Governing differential equations

Although the governing equations remain the same as in the previous section, the

temperature is scaled by T — Tsat = Tqd/k, where q is the wall heat flux (Wm~2)

and Tsat is the saturation temperature (K). All other variables are non-dimensionalised

in the same way as before. This only alters the thermal Rayleigh number which is

replaced by the modified thermal Rayleigh number, defined as follows:

knv
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I I :

7 = qd/k
1=

C= 0
X

Figure 5.12: Solution domain for problem studied by Shi(1990).

5.4.2 Boundary and initial conditions

Shi(1990) argues that the liquid surface can be considered as non-evaporating, i.e.

stationary, since the vessels are well insulated, such that the daily loss of liquid (of the

order of 0.5%) may be neglected. Therefore

Also

w = 0

holds at all four boundaries, where n is the direction normal to the boundary. The

base of the vessel is considered to be adiabatic, whilst the surface, under atmospheric

pressure, is taken to be isothermal, at the saturation temperature. The side walls are

heated giving the temperature gradient as

-f- at x - 0
k

q
— at x = d
k

and —— =

dx
dT
—
ox

The surface is considered to be stress free, i.e. a free surface, which dictates that

there are no external forces acting on the surface. This means that the gradient of the

horizontal velocity is zero at the surface. From the definition of vorticity and stream

function, it follows that the vorticity and stream function are zero and constant at the

surface. All walls have the no-slip boundary condition implying that the components
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of velocity, u and w, are zero and the stream function, ip, is a constant, ift is set as

zero at all four boundaries. These conditions on T, C and ip at the boundaries are

non-dimensionalised to give:

At x = 0:

u = 0
dx

At x = 1:

At z = 0:

dx

u = 0 ==> —— =

dT
~dx

dT
dx

dT
~dx~

- 1 ,

= 0 ,

dC
~dx'

dC
dx

dC
Ih ~

r
= I

= 0;

= 0;

At z = 1:

du n d2ip , _
—- = 0 ==> — - = 0 , tu = 0 , -0 = 0 , T = 0 ,
az az2 az

Note that these conditions are symmetrical about x = 0.5. Shi(1990) utilises this

symmetry and applies the following boundary conditions at x = 0:

_ dip _ dw _ . _ dT _ dC _
dz dx ' dx dx

and solves the equations for half the vessel (from x = 0 to x = 0.5). This will give

accurate predictions if the heat flux is low enough to maintain laminar convection.

However, we will solve the problem for the full vessel in order to clearly observe any

instability to the symmetry, which may be indicative of the flow becoming turbulent.

The numerical simulations are performed on a LIN/LOX two-layer system. All

variables are initially set to zero except the concentration of LOX. The profile of this is

stepwise across the interface; the concentration is zero in the upper layer of the vessel

and the fluid is assumed to have a concentration of C^ in the bottom layer. The depth

of the two layers are equal. Thus the non-dimensionalised initial conditions are:

u — , w — , ip — , — , — — 2 ' ~ 2'

All that is left to complete the problem is the specification of the boundary conditions

on the vorticity, r\.
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Figure 5.13: Diagram depicting the cavity flow in the vessel which is used to calculate

the wall vorticity.

The wall vorticity may be derived using the Taylor expansion (Chow, 1983). Let

us consider an arbitrary grid point (n+l,j) on the right-hand wall of the cavity. Our

aim is to calculate the vorticity at this point based on the local velocity and on the

information of ip at four neighbouring grid points marked in Figure 5.13. We assume

the following form for vorticity at (n+1 j)

dx2 dz2

dx

Substituting from the Taylor's series expansions,

(5.36)

\ / \ /
where h is the width of each square mesh, and retaining only terms up to O(h2),
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equation (5.36) becomes

dx*

The constants a; are determined by equating the coefficients of like terms on the two

sides of this equation. Substitution of these values into (5.36) gives

f/(n + 1, j) = ^ (-V>(n, j - 1) + ^ ( n , j) - ^(n, j + 1) - - ^ ( n - 1, j)

where the second boundary condition of tp, i.e. tpx = 0, is employed. By analogy we

can write down the expressions for vorticity at the bottom and the left wall as

-j) = ^ (-V'l1 J - 1) + ^ ( 1 , j) - ^ ( 1 , j + 1) - | ^ ( 2 , j)

r?(i, 0) = — - ^ ( i - 1 , 1 ) + -^ ( i , 1) - V(i + 1 ,1 ) - o V>(i, 2)
h2 \ 3 3

The vorticity on the top surface can be found from the boundary conditions on the

stream function to be

7?(i,m + 1) = 0.

The problem is now complete. The equations and boundary conditions are discretised

and solved in the same way as previously.

5.5 Properties of Liquid Nitrogen and Liquid Oxy-

gen

Table 5.2 lists the properties of LIN and LOX, which we will use in our modelling.

Tsat denotes the saturation temperature. For mixtures of fluids, we assume that the

properties are linear combinations of the initial concentrations of each fluid.
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p(atTsat)(kgm-3)

ctkJkg^K"1)
^(Wm^K-1)
KfmV1)

LlkJkg"1)

u(m2s~l)

Pr

LIN

807.3

2.051

0.1396

8.43xlO~8

199.3

5.77xlO~3

1.957xlO~7

2.32

LOX

1141.0

1.695

0.1514

7.83xlO~8

213

4.2xlO~3

1.665xlO~7

2.13

Table 5.2: Comparison of properties of LIN and LOX.

5.5.1 Validation of code for rollover model

The code was run for the same conditions as used by Shi(1990), with Le= 31.25,

Pr=2.32, RaT = l x l 0 7 a n d R a s = - 3 x 106 until a preset time. Figures 5.14, 5.15, 5.16,

5.17 and 5.18 show reasonable comparisons between the temperature, concentration

and stream function obtained from our numerical code and those from the work of

Shi(1990) at the non-dimensionalised times t - 0.005, t = 0.01, t = 0.02, t = 0.04 and

t = 0.06 respectively. Note that the box around the plots, again, does not represent

the sides of the vessel and that the aspect ratio for our plots differs from that of Shi's

because our results were obtained for the complete cavity whereas Shi modelled only

one half of the cavity.

At t = 0.005, the stream function contour shows temperature driven convective

loops (rising at the sides and descending in a central plume) in both the upper and

lower layers. The upward boundary layer flow in the lower layer is unable to overcome

the density difference at the interface and so it spreads inwardly after impinging on

the interface. It is evident that more heat is retained in the lower layer than in the

upper layer which means that more heat is removed at the surface than is replenished

from the lower layer showing poor heat transfer between the layers. The concentration

contour spreads out on both sides of the interface through diffusion. At t = 0.01,

a dramatic reduction in the number of streamlines in the lower layer is observed,

reflecting a decrease in the velocity field. This is due to the substantial decrease in

the temperature gradient in the lower layer, making the buoyancy force, which induces
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convection, much smaller, i.e. the lower layer is mostly isothermal. There is evidence

at this stage that some oxygen rich liquid from the lower layer becomes entrained in

the upper layer's convective flow.

The convective loop becomes increasingly stronger in the upper layer at £ = 0.02 due

to a new buoyant force, resulting from the concentration gradient across the core of the

interface. In contrast, the lower layer is almost uniform in its temperature distribution.

The concentration contour shows that more solute is swept away at the interface by the

increasingly stronger convective current in the upper layer. At £ = 0.04, the core flow in

the upper layer starts to penetrate downward, where it entrains heavier liquid from the

interface into the upper layer, before spreading out. The concentration contour pattern

in the upper layer closely follows that of the stream function, suggesting that the mixing

is mainly due to advection. The steady downward movement of the interface, due to

the entrainment mentioned before, is observed at £ = 0.06. The temperature of both

layers increases, the lower layer at a higher rate than the upper, leading to a greater

temperature difference between the layers.

At the non-dimensionalised time £ = 0.1, the results of our code, shown in Fig-

ure 5.19, suggest that the flow becomes asymmetrical and continues to be asymmet-

rical for the remainder of the numerical run. We believe that the flow has started

to become turbulent at this stage. The condition used at the centre of the vessel by

Shi(1990) forces his solution to remain symmetrical and this may alter the time until

the onset of turbulence. Thus we can only say that our model is valid up until the

non-dimensionalised time, t=0.6, after which the flow loses symmetry which may be

a sign of turbulence, such that the governing equations no longer apply to the fluid.

However the results up to this stage satisfy us that the numerical code is correct. Fur-

ther numerical tests (not shown) suggest that the Rayleigh number for which the flow

becomes unstable is greater for one-component flows (around 108).

5.6 Preferential Evaporation Model

The mathematical modelling of double-diffusive convection is a comparatively recent

development in the field of convection. A review of the developments and applications

in double-diffusive convection is given by Huppert and Turner (1981). This type of

convection was first associated with salt fingers, long narrow convection cells that are
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Temperature Concentration Stream Function

1.0

0.0
0.0 0.5(0.0) (i) 0.5(0.0) 0.5

Temperature Concentration Stream Function
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0.0 1.0(0.0) (ii) 1.0(0.0) 1.0

Figure 5.14: (i) Isotherms, isopleths of concentration and contour map from Shi(1990),

(ii) isotherms, isopleths of concentration and contour map obtained from our numerical

code at non-dimensionalised time, £=0.005.
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Temperature Concentration Stream Function

1.0
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0.0 0.0(0.5) (i) 0.0(0.5) 0.5

Temperature Concentration Stream Function

1.0(0.0) (ii) 1.0(0.0) 1.0

Figure 5.15: (i) Isotherms, isopleths of concentration and contour map from Shi(1990),

(ii) isotherms, isopleths of concentration and contour map obtained from our numerical

code at non-dimensionalised time, t—0.01.
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Temperature Concentration Stream Function

0.0 0.5(0.0) (i) 0.5(0.0) 0.5

Temperature Concentration Stream Function

1.0

0.0
0.0 1.0(0.0) (ii) 1.0(0.0)

Figure 5.16: (i) Isotherms, isopleths of concentration and contour map from Shi(1990),

(ii) isotherms, isopleths of concentration and contour map obtained from our numerical

code at non-dimensionalised time, £=0.2.
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Temperature Concentration Stream Function

1.0
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0.0 0.0(0.5) (i) 0.0(0.5) 0.5

Temperature Concentration Stream Function

1.0(0.0) (ii) 1.0(0.0) 1.0

Figure 5.17: (i) Isotherms, isopleths of concentration and contour map from Shi(1990),

(ii) isotherms, isopleths of concentration and contour map obtained from our numerical

code at non-dimensionalised time, £=0.04.
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Figure 5.18: (i) Isotherms, isopleths of concentration and contour map from Shi(1990),

(ii) isotherms, isopleths of concentration and contour map obtained from our numerical

code at non-dimensionalised time, £=0.06.
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Temperature Concentration Stream Function
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Figure 5.19: (i) Isotherms, isopleths of concentration and contour map from Shi(1990),

(ii) isotherms, isopleths of concentration and contour map obtained from our numerical

code at non-dimensionalised time, £=0.10.
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set up when warm salt water lies above cold fresh water. Renardy and Schmitt(1996)

explore the influence of non-linear profiles of salinity, as might arise due to surface

evaporation, on the linear stability problem in a salt-fingering regime. Asymmetry is

observed experimentally in the salt fingers and is attributed to evaporation due to a dry

atmosphere leading to a salty layer at the top with the salinity varying little over the

rest of the fluid. A model is constructed of double-diffusive convection with a sharp,

non-linear concentration gradient applied at the upper boundary, to model the surface

evaporation of the solute. This gradient is found to drive a motion that is confined

to a depth of a few boundary layers. No significant motion is found lower in the

layer. The instability which operates in the boundary is stabilised by the temperature

gradient in the bulk. However no previous work has considered the effects of preferential

evaporation on the concentration in the fluid.

Preferential evaporation will result in the surface becoming richer in the less volatile

phase. This will have an effect on the subsequent convection patterns in the fluid. We

shall include this whilst still using Shi's assumption that evaporation rates in a well

insulated tank are low, in order to justify a constant volume of liquid and a stationary

interface in the model.

5.6.1 Modifications for the evaporation model

There are two possible ways of adding evaporation to our model: either by changing

the concentration boundary condition at the surface or by adding a source term to the

main differential equation for the solute, (5.34). We choose to add the source term

to the main differential equation as this will be the simplest change to make to the

numerical code.

Differential equation for solute with evaporation

The differential equation governing the behaviour of the solute (5.34) remains the same

as before except at the surface where a source term is added to represent the increase or

decrease in solute concentration through evaporation. Our present boundary condition

assumes no loss of liquid at the surface (since w = 0 at the surface) so the source term,

•S'evap, at the surface will represent the true concentration change through the evapora-

tive mass loss at the surface. The molecular diffusion through the surface is negligible
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due to the high interfacial impedance. The concentration of the evaporated fluid, Cvap,

is in equilibrium with that of the well-mixed vapour. An experimental correlation be-

tween the concentration in the vapour, Cvap, based on the concentration at the surface

is found using data from Barron(1985). A graph displaying this relationship is shown

in Figure 5.21. The following equation for the relationship between the concentration

at the surface and that in the vapour may be obtained by fitting an exponential curve

to the graph:

^ m + 1)).

Our implementation of the surface condition will give a surface concentration which

varies with x, so we shall take an average concentration at the surface in order to

calculate the vapour concentration at that time.

Now let us examine equation (5.34) more closely:

dC_ d{uC) d(wC) _ fd2C d2C\
dt + dx + dz \ dx2 + dz2)

The only term that will be lost by using the incorrect vertical velocity at the surface

is wdC/dz, so let us say that

dC
SWap = wtrue(i, m + 1) — ( i , m + 1) (5.37)

where u>true is the true velocity (ms-1) at the surface, i.e. the velocity of the mass

flux lost through the surface and C is the concentration at the surface. By assuming

that the vessel is always maintained at atmospheric pressure and that the liquid is in

equilibrium with the vapour at the vapour/liquid interface, it is possible to eliminate

the need to consider partial pressures.

We shall use the finite volume method to examine the source term in more detail.

Suppose we consider one element at the surface as shown in Figure 5.20 where Cs

is the concentration entering the element from below with velocity ws and Cn is the

concentration leaving the element from the top with velocity wn. Since the source term

only exists at the surface, we will need to use the average change in concentration per

unit time over the height of the box. So

wtrue fdC5 J df
J
dz

(Cv a p-C(i,m

dz
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dz

w C

Figure 5.20: An element at the surface of the fluid.

Now we need to find an equation for ^ true(i,ni+ 1). The mass flux per unit area

(kgm~2s~1) of the total liquid leaving the system, out of the surface, can be found

using the Stefan condition:

m~I~dz~
since the temperature gradient in the vapour phase is negligible.

k dT
So the volume flux per unit area of liquid evaporating = ———(i, m + 1)

pL dz
= w t rUe(i,m+1).

Thus the main differential equation for the solute at the surface is

dC , d(uC) , d(wC) , c _ (&C_ cPC\
dt

where
C -

e v a p " dz dz
Let us consider the source term for a moment. If we have a pure LIN liquid, i.e. C = 0,

then the vapour concentration, Cvap = 0. So the source term is eliminated from the

problem and the concentration remains unchanged. Similarly with a pure LOX liquid,

i.e. C = 1, then the vapour concentration, Cvap = 1 so the source term is zero and

the concentration remains unchanged. Finally, if the vapour concentration is equal to

the liquid concentration then the liquid is in equilibrium and so there is no change in

concentration again. If there is no evaporation, m = 0 and there is no effect on the

fluid.
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Figure 5.21: Graph showing the relationship between the concentration at the surface

of the liquid and the concentration of the vapour where the crosses mark the data

points and the line is the best fit line through those points.
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5.6.2 Normalisation of the concentration equation

Assuming that the surface of the liquid is in equilibrium with the vapour, the saturation

temperature at which the surface is maintained, Tsat(x), is a function of the concen-

tration of the fluid at the surface. So, instead, the temperature is non-dimensionalised

in all equations by T = (T - Tsat
init)fc/(<?<i), where Tsat

imt is the initial saturation tem-

perature at the surface, calculated from the uniform initial concentration in the fluid.

Non-dimensionalising the concentration equation with this and the same dimensional

terms as before for the other variables, the equation becomes (dropping the over-bars)

dC d(uC) d(wC) _ 1
+ + + bdt + d^ + dz + b™p Le

where
c gd flr(i,m + l)(Cvap-C(i,m + l)

pL,K OZ dz

None of the other equations are altered by this change in scales.

5.6.3 Boundary and initial conditions

As mentioned before, changing the boundary conditions is avoided by adding a source

term for evaporation in the main solute equation and so they remain the same as in

the previous section.

The data for the correlation for the saturation temperature based on the concentra-

tion for a mixture of LIN and LOX was again found from Barron(1985) and is shown

in Figure 5.22. We are only interested in mixtures with concentrations of below 60%

LOX and it is possible to fit a straight line to this part of the graph such that

Tsat(i) = -9-78(1 - C(i, m + 1)) + 86.71.

This is non-dimensionalised and replaces the fixed saturation temperature at the sur-

face. Thus the non-dimensionalised saturation temperature is given by:

T(i, m + 1) = (-9.78(1 - C(i, m + 1)) + 86.71 - Tsa t
in i t)-^.

All other boundary conditions remain the same.

The initial conditions for the problem are set as

xjj = O , 77 = 0 , T = 0 , C = 0.2.
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Figure 5.22: Graph showing relationship between the saturation temperature and the

concentration where the crosses mark the data points and the line is the best fit line

through those points.
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5.6.4 Solution procedure

The gradient of the temperature, normal to the surface, is initially set to zero and

both the initial vapour concentration and the initial saturation temperature are found

from the initial concentration in the fluid. The new equation (5.38) for the surface of

the system is solved immediately after the main concentration equation for the rest of

the fluid is solved. At the end of each time step, the current gradient of temperature

normal to the surface, across the top is found, and an average vapour concentration

is calculated which is used in equation (5.38) for the next time step. The saturation

temperature is updated using the concentration across the surface. The rest of the

solution procedure remains the same.

5.6.5 Results of the preferential evaporation model

The program is solved for a single layer in a square vessel with a height and width, d,

of 0.025m. Although this is a fairly small vessel it allows us to have a heat flux of a

reasonable magnitude entering the fluid and still maintain laminar convection so that

the governing equations are still valid. A grid of size 128x128 is found sufficiently fine

to observe the conduction layer, each step of the grid measuring 195^imxl95/im. We

shall take the heat flux, q to be 5Wm~2. The thermal conductivity, thermal diffusivity,

thermal expansion coefficient and kinematic viscosity are set by taking linear combina-

tions of the properties of nitrogen and oxygen based on the initial concentration, giving

the thermal Rayleigh number, Rax = 5 x 107. Now to calculate the solutal Rayleigh

number, we require the solutal expansion coefficient, defined as

Ps pdC'

By taking p as the initial density of the mixture, we find that j3s = 0.38. Assuming

that

Ch-Cc = C{t = 0) - Cvap(i = 0)

the solutal Rayleigh number is Ras = —5.2 x 107. From the properties of the fluid, we

also find that the Prandtl number is Pr= 2.32 and the Lewis number is Le= 30.77 (i.e.

the flow is dominated by thermal rather than molecular diffusion).

Figures 5.23 - 5.29 show the evolution of the flow with preferential evaporation at

the surface at non-dimensionalised times t = 0.1,0.5,0.91.3,1.7,2.1 and 2.3. Note
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again that the box around the plots do not represent the sides of the vessel. At the

non-dimensionalised times, £=0.5 (64 mins), 1.7 (3.6 hours) and 2.3 (4.9 hours), each

graph has three contours, which are labelled. Since the number of contours needs to

be restricted for the clarity of the graphs to be unaffected, the labelling has not been

included in the graphs for all time steps so the strength of the pattern can be judged

by the number of contours in all the other time steps.
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At time, t = 0.1 (13 mins), the preferential evaporation has already affected the

fluid, leaving an enriched layer of LOX at the surface. Due to the heat flux on the

side walls, the fluid rises at the sides of the vessels to the top surface, where it cools

and, due to the preferential evaporation, becomes richer in oxygen. Both processes

cause the density of the fluid to increase and a strong downward plume develops at the

centre of the cavity. The concentration contours follow the same pattern as the stream

function, suggesting that the concentration is distributed through advection.

At the next time step, t = 0.5 (64 mins), we see the central plume of denser fluid

developing in strength with a sink at the centre of the bottom boundary. We note

in this figure that the temperature and concentration differences are only of the order

10~2 and 10~3 respectively but that this is enough to induce convective loops.

The increase in the number of stream function and concentration contours indicates

an increase in strength of the convection at t = 0.9 (1.9 hours). This flow entrains the

denser fluid, which was seen earlier to be resting at the bottom of the vessel, into the

bulk of the fluid. The denser central plume, however, is still noticeable. The convection

continues to increase in strength over time with enriched LOX fluid continuously being

drawn to the centre of the bottom of the vessel at t = 1.3 (2.75 hours) and distributed

through advection at t = 1.7 (4 hours). The shear force of this convection dominates

the temperature distribution. At the end of the run, at time t = 2.3 (approximately 5

hours), shown in Figure 5.29, we see that the concentration has increased by 0.01 at

the top surface and the temperature by 0.12 at the side walls.

The evolution of the average surface saturation temperature and the average tem-

perature of the bulk of the fluid over time, are shown in Figure 5.30. Although both

increase with time, due to the heat flux and preferential evaporation, they do so with

the same gradient, such that the surface temperature is, as expected, always approx-

imately 0.02K less than the bulk temperature. Figure 5.31 shows the relationship

between the average surface concentration and the concentration of the bulk of the

fluid. Again both concentrations increase with the same gradient, with the surface

always having a higher concentration of LOX. The total mass flux over time is shown

in Figure 5.32. It is noted that the mass flux increases initially with a very sharp

gradient, as convection is initiated but then the system reaches an equilibrium state

with a constant mass flux.

In previous chapters, we have seen the importance of the thin conduction layer at the
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Figure 5.24: Isopleths of concentration, contour maps and isotherms for double-

diffusive convection with preferential evaporation at non-dimensionalised time, £=0.5

(64 mins).
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Figure 5.25: Isopleths of concentration, contour maps and isotherms for double-

diffusive convection with preferential evaporation at non-dimensionalised time, i=0.9

(1.9 hours).
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Figure 5.26: Isopleths of concentration, contour maps and isotherms for double-

diffusive convection with preferential evaporation at non-dimensionalised time, £=1.3

(2.75 hours).
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Figure 5.27: Isopleths of concentration, contour maps and isotherms for double-

diffusive convection with preferential evaporation at non-dimensionalised time, t=1.7

(4 hours).
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Figure 5.28: Isopleths of concentration, contour maps and isotherms for double-

diffusive convection with preferential evaporation at non-dimensionalised time, £=2.1

(4.4 hours).
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Figure 5.29: Isopleths of concentration, contour maps and isotherms for double-

diffusive convection with preferential evaporation at non-dimensionalised time, £=2.3

(4.9 hours).
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Figure 5.30: Graph showing the average temperature of the bulk of the fluid and the

average temperature at the surface of the fluid over time.
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average concentration at the surface of the fluid over time.
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surface of the fluid. Here, we will evaluate this thickness from plots of the temperature

distribution down the depth of the vessel, and these are shown in Figures 5.33 - 5.35 for

non-dimensional times, £ =0.5 (64 mins), 1.7 (4 hours) and 2.3 (4.9 hours) respectively.

These distribution are only shown for half of the vessel, the other half being symmet-

rical. At x = 0.0031m, close to the side wall, the temperature increases sharply as we

enter the fluid from the surface, from the saturation temperature which is a function

of the concentration at the surface, to a temperature, T^ot, which is close to the tem-

perature of the side walls. It then steadily decreases to a fairly uniform temperature

approximately equal to Tbuik- The fluid in the centre of the vessel is affected by the

central plume preventing the conduction layer from being observed, since the cooler

fluid is convected down along this line. Finally we have a plot of the temperature

distribution a quarter of the way in from the wall (at x = 0.0063m). Although this,

too, can be see to be slightly affected by the hot temperature of the walls, due to the

size of the vessel, this appears to be the distribution which is least influenced by effects

other than those caused by the layer. Although the temperature in the bulk of the

fluid and the saturation temperature both increase as time progresses, the temperature

distribution maintains the same shape. The temperature profile through the vessel at

x=0.0063m, for the non-dimensionalised times £=0.5, £=1.7 and £=2.3 are shown in

Figure 5.36.

We will use data from the final time step to calculate the thickness of the conduction

layer. Let us assume that the thickness of the conduction layer, dcrit, is defined from

the surface of the fluid to the point where the temperature is Test, where Test = Tsat +

.99(Tbuik — Tsat). Due to the size of the vessel, it is difficult to find part of the fluid

whose temperature distribution is completely unaffected by the heated boundary layer

near the side walls, the cold central plume or the centre of the convection cell. We will

examine the temperature distribution at x = 0.0031m, where the fluid is more than

the boundary layer away from the side wall. From Figure 5.30 we find that at £ = 2.3,

Tbuik = 79.00K and Tsat = 78.98K and so we find that Test = 79.00K. There are two

points where T = Test along the distribution since it is influenced by the temperature

at the wall. However we shall assume that the end of the layer is defined by the first

point at which it reaches Test. Thus the thickness of the conduction layer is found to

be approximately 400/zm. This fits experimental results (Scurlock and Beduz, 1994),

which suggests that the conduction layer has a thickness of 100-500/im.

With this conduction layer and with the temperature difference, Tbuik — Tsat = 0.02K,
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Figure 5.33: Graph showing the temperature distribution down the depth of the vessel

at x=0.0031m, x=0.0063m and x=0.0125m at non-dimensionalised time, £=0.5.
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found from Figure 5.30, we find that the critical Rayleigh number for this region is

n g ( h { T b i v — Tt)dci
Kac =

= 3.28.

Atkinson-Barr(1989) found the critical Rayleigh number calculated from experimental

data to be 33 for LIN and 25 for LOX. However, this data is for pure liquids and our

studies are with mixtures. The only critical Rayleigh numbers for mixtures that we

have are those for LNG and liquid methane, LCH4, which are found in the same work

to be 4 and 5 respectively. These values are much lower than those with pure liquids

and agree well with our numerical results. Thus we can finally substantiate the working

assumption described in Chapter 4.

5.7 Rollover with Preferential Evaporation

We are now able to include preferential evaporation in the model of evaporation. It

would be useful if we could compare our results to the work of, say, Agbabi(1987).

However his experiments are performed in cylindrical dewars and our model is only

valid for a square vessel. Therefore in order to make a reasonable comparison we will

need to ensure that the rate of increase of the bulk temperature is the same for both

vessels. We will begin by examining a simplified model of the effect of the heat flux

on the fluid in the cylindrical dewar. Now the heat flux which enters the vessel either

acts to heat the bulk of the fluid or to evaporate the fluid at the surface so

= pcV + kATc —
at oz ,

s=surface

where qc is the heat flux (Wm~2) entering the dewar, Asc is the area (m2) of the side

walls in contact with the heater, ATc is the surface area (m2) at the top of the fluid,

T is the temperature (K) of the fluid, T^ik is the average temperature (K) of the bulk

fluid, p is the density (kgm~3), c is the specific heat capacity (Jkg~1K~1) and k is the

thermal conductivity (Wm~1K~1) of the fluid. Therefore
dTb kATc

QcAsc = PCATch-— -\ — (ibulk - isatj
at 0

where h is half the height of the vessel (assuming that the stratified layers are equal in

height), 5 is the depth (m) of the conduction layer and Tsat is the saturation temperature
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Figure 5.34: Graph showing the temperature distribution down the depth of the vessel
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(K) at the surface of the fluid. This gives the first order differential equation

dTbulk k ^ __ qcASc k
<•«, r r , 1 bu lk — • . i" c » •* sa t •

at opc/i pen AT c open

Solving this, using the initial condition that

2"t>uik — ^sat a t £ = 0,

gives
QcAscS ( f k \ \

Therefore the temperature of the fluid in our square vessel will increase at the same

rate as the fluid in the experiments, as long as h in the exponential, and the ratio of

qcASc/ATc in the multiplier, remain the same for both vessels.

Now the square vessel has two layers of equal height, h, so the surface area (m2) at

the top of this vessel must be given by

ATs = 4h2

and the surface area (m2) in contact with the heater around two side walls is

ASs = 8h2.

Thus the heat flux into the square vessel must be

2/i

a

Since h > d for the cylindrical dewar used, the heat flux must be larger in our numerical

work than in the experiments for it to have the same effect on the fluid. Unfortunately

even the experiment with the lowest value of the heat flux, gives a Rayleigh number of

O(10u) which is too high for laminar convection to be maintained. Also, as mentioned

before, the same h must be used in our code as in the experimental work. The resolution

of the grid must be high, in order to observe the conduction layer at the surface. We

do not have the computational power to solve this problem within a reasonable time

but believe it would be possible to do so using parallel computers if the code were

developed further to include turbulence.
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5.8 Conclusions from Numerical Modelling an Evap-

orative Mixture

In this chapter, we started by solving the equations of a one-component model in

Cartesian coordinates to model the convection patterns in a vessel with one side wall

maintained at a temperature below that of the other. The results were found to

agree well with De Vahl Davis(1968,1983), showing the distortion of the temperature

distribution by the convection driven flows, giving a fairly constant temperature in the

bulk of the fluid and sharp temperature gradients near the two side walls.

We then expanded the model to deal with heterogeneous flows by including a solute

into the problem. The numerical code was validated with the work of Beghein et

al. (1992) in which steady-state thermosolutal convection in a square cavity filled with

air and subjected to horizontal temperature and concentration gradients, is studied.

The results agreed and showed that if the solutal Rayleigh number is less than the

thermal Rayleigh number, convection is thermally dominated.

We then adapted the code to follow the work of Shi(1990), which numerically models

rollover with a LIN/LOX mixture. The results agreed up until the non-dimensionalised

time t = 0.1 (over half the total time) when the flow in our model became non-

symmetric. This was not observed in Shi's predictions due to the assumption of sym-

metry, however, the excellent agreement up to this stage satisfied our validation exer-

cise.

Finally in this chapter, we proposed a term in the main equation for concentration

to model preferential evaporation. This term used the relationship for liquid and

vapour concentrations at equilibrium from published experimental data to obtain the

concentration of the liquid removed given the concentration at the fluid surface. With

this, we were able to study the effect of evaporation on the fluid. The total mass flux

was found to reach an equilibrium over time.

Further to Chapter 4, we also found the thickness of the conduction layer, which

compares well to experimental work by Beduz and Scurlock(1994). Moreover the crit-

ical Rayleigh number found using this thickness agreed well with the experimental

calculated critical Rayleigh number (Atkinson-Barr, 1989) for various mixtures. Thus,

the working assumption used by experimentalists could finally be substantiated.

Although our work has only been developed for a small vessel, in order to have a
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heat flux of a reasonable magnitude and still maintain laminar convection, this is the

first work that examines such types of evaporation on mixtures.
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Chapter 6

Discussion

In this thesis we have constructed and solved (both analytically and computation-

ally) new models for the phenomena which occur in superheated cryogenic fluids. In

Chapter 2, we proposed and solved a simple model, dependent only on time, for two

stratified layers in a dewar, in order to understand rollover. The model examined the

increase in temperature of both layers due to heat leak in through the sides of the

dewar and a small effect of heat loss/gain through conduction between the layers. This

was further developed in Section 2.2 by the addition of a term for the heat loss at the

surface through evaporation. The final model provides us with a good understanding

of temperature up to the point at which rollover occurs, where the model no longer

applies, suggesting that other effects begin to influence the system.

In the storage of cryogenic fluids, heat leak from the surroundings is impossible to

avoid, since the saturation temperatures of the fluids are generally over 200K below

room temperature. When the storage containers are clean, with few nucleation sites,

the heat leak may cause the fluids to become superheated. Experiments (e.g. Atkinson-

Barr, 1989) show that there is a high temperature gradient over a small depth at the

surface of these superheated fluids, with the surface evaporating at the saturation

temperature. The vertical velocity over this depth is close to zero since the vertical

velocity at the surface is zero. This in turn suggests that the only important type of

heat transfer is conduction.

In Chapter 3 we modelled this thin 'conduction layer' using the Stefan condition at

the surface to describe the loss of fluid through evaporation. A travelling wave was

found as a solution and we obtained a temperature dependent evaporation rate which,

177



using knowledge of the thickness of the conduction layer (found experimentally to be

between 100-500//m), compared well to the experimental correlation for LNG (Rebiai,

1985). The main drawback of this model is that the evaporation rate is dependent on

the thickness of the conduction region in the fluid which we only know approximately

through experiments and which may vary from fluid to fluid.

We also proposed a model to describe the flow in a LIN/LOX mixture using the

volume fractions of each liquid, in Chapter 3. The Stefan condition was placed at the

surface but our model assumed that only LIN evaporated. Although a larger proportion

of LIN does evaporate, the distribution of the kinetic energy of individual molecules,

given in Section 4.2, suggests that there will always be some LOX evaporating. Since we

were not able to derive a boundary condition which correctly modelled this evaporation,

we decided not to pursue the model at this stage. However, it would be useful, as further

work, to compare numerical solutions obtained from this model, to those obtained in

Chapter 5.

We obtained a numerical prediction for the thickness of the conduction layer in Chap-

ter 4. This model was constructed using the assumption made in previous experimental

studies that the thickness of the conduction layer is restricted by a Benard-type insta-

bility criterion, characterised by a critical Rayleigh number. Equations were formed

which modelled convective instability in the surface layer with Couette flow at the bot-

tom boundary to describe the convection of a cell below on the conduction region. The

finite difference equations were formed using an automated procedure and we validated

our results against other cases in the literature.

We then went on to investigate the effect of previously unstudied boundary conditions

on the top and bottom surface of the fluid. Numerical results obtained with the model

suggested that the minimum thickness of the layer would be three times as large as that

observed in experiments. So, although the conjecture that the conduction layer must be

less than that evaluated from the critical Rayleigh number may be true, our model did

not predict the thickness of the layer to be the same as that observed experimentally.

Thus there must either be a different limiting mechanism which restricts the thickness

of the layer or our assessment of this layer without the full inclusion of the rest of the

fluid does not provide us with a complete picture of the problem. Also in this chapter,

we constructed a simple model to investigate the theory that thermal fluctuations

observed at the surface of cryogenic fluids, particularly mixtures, could be due to
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micro-convection eddies, which replenish the fluid lost at the surface. The comparison

between our estimated frequency and experimental results supported such a theory.

Finally, in Chapter 5, we proposed a model for laminar natural convection within

a mixture of two cryogenic fluids, in a square vessel with preferential evaporation at

the surface. To our knowledge, this is the first time that preferential evaporation

has been included. We began this work by constructing a model for the laminar

natural convection within a one-component fluid. The equations from this model were

discretised by an upwind scheme and solved numerically, with the Poisson equation

being solved using the multigrid method.

An important aspect of setting up and solving a new model is ensuring that it

reproduces results from the literature in simple limiting cases. We carefully validated

our code in three independent ways:

1. with benchmark results of laminar convection with a one-component fluid;

2. against published results from a model of double-diffusive convection within a

two-component liquid;

3. against the results of Shi(1990) for a two layer system, up to and including

rollover.

Finally we derived a new term for the preferential evaporation of the mixture which

was added as a source term to the equation describing the concentration at the surface.

The equations used in the model were solved numerically to obtain the first plots of

the evolution of this type of evaporation. It was found that convection became stronger

when preferential evaporation was included in the model, with both a concentrated

surface layer and a concentrated central plume carrying the denser fluid to the bottom

of the vessel. It was also noted that the concentration of both the bulk of the fluid and

the surface increased with time with a uniform difference between the two. Further,

by examining the temperature profiles near the surface, we were able to estimate a

thickness for the conduction layer which agreed well with experimental data (Scurlock

and Beduz, 1994). We were not able to observe the micro-convection eddies described in

Section 4.2 but this was presumably because we had a very low temperature difference

to keep the flow laminar.

The results are extremely encouraging, allowing convection to be investigated and
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the effect of preferential evaporation on the bulk of the fluid to be studied. Our method

of including preferential evaporation is stable and robust.

At present we require further experimental results to examine the distribution of

concentration in mixtures of cryogenic fluids under the conditions modelled, to deter-

mine the accuracy of our model. It would also be interesting to compare the flow in

vessels with different aspect ratios, which could be done by allowing the height and

width of the vessel to vary independently in the computation.

Much of the previous experimental work has focused on the process of rollover in-

volving Rayleigh numbers greater than 1011, which is in the range of turbulent flow.

An important development to this work would be to include turbulence in the model.

This would allow simulations to be carried out with higher heat fluxes and in vessels

with larger dimensions. It is expected that such work would be considerably more

computationally intensive requiring more computing power and memory, suggesting

the use of parallel computing.

The preferential evaporation condition could be developed further to model a closed

container where the pressure is allowed to vary. By including the variations of sat-

uration temperature with pressure into the model, predictions could be obtained for

closed containers with differing vapour spaces.
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