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Abstract

Resistance factors for pile groups are typically derived using empirical methods that do not directly account for system
redundancy and overlook the correlation between individual piles, which are inherently influenced by the spatial variability
of soils. While rigorous three-dimensional (3D) random finite difference (RFD) or random finite element (RFE) analyses
could potentially address these issues, they are constrained by significant computational demands. Therefore, this paper
proposes a deep learning-based approach for calibrating resistance factors for pile groups with individual pile load tests.
Specifically, a surrogate model based on a convolutional neural network (CNN) is proposed, which is trained and validated
using the database generated by RFD analyses. The trained model is further used to derive pile resistances in spatially
variable soils. Finally, the resistance factors are calibrated by counting and conditional probability based on the outcomes
of load test results. The proposed approach is demonstrated using a pile group example. Results show that the proposed
approach effectively captures the impacts of load test results and their corresponding locations, as well as the spatial
variability of soil properties, on resistance factors.

Keywords Convolutional neural network (CNN) - Pile groups - Pile load tests - Random finite difference analysis -
Resistance factors

1 Introduction

In the load and resistance factor design (LRFD), resistance
factors are employed to address uncertainties associated
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with the pile resistance predictions. These uncertainties
arise from variabilities in geotechnical properties, mea-
surement errors in laboratory or field tests, transformation
uncertainties between design parameters and test results,
and uncertainties inherent in design models [7, 27, 34, 40].
Pile load tests yield a more precise evaluation of pile
resistances. Consequently, integrating load tests into the
design process can significantly reduce uncertainties of pile
resistances, thereby enabling the application of higher
resistance factors in designs. For example, the Australian
Standard for Piling-Design and Installation [33] specifies
that resistance factors range from 0.4 to 0.9, depending on
the percentage of piles tested via static load tests, and from
0.4 to 0.8 for piles tested through dynamic load tests.
However, the determination of these resistance factors
predominantly relies on engineering judgement [11].
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Several studies have been carried out to calibrate
resistance factors for single piles based on load test results
[42, 47]. Park, et al. [25] evaluated resistance factors for
pipe piles based on proof load tests, suggesting that load
tests could lead to higher resistance factors. Zhang, et al.
[45] implemented a Bayesian approach to calibrate resis-
tance factors of H-piles using proof load tests, incorporat-
ing the consideration of site variabilities and design
methods. In contrast, the determination of resistance fac-
tors for pile groups mainly depends on empirical approa-
ches. Paikowsky [24] noted that pile groups typically
demonstrate higher reliability than individual piles due to
system redundancy. Accordingly, previous studies
[2, 4, 18] commonly recommended a reliability index of
2.0 to 2.5 for individual piles to attain a target reliability
index of 3 for the whole pile group. However, this
empirical approach does not directly account for system
redundancy. Furthermore, it assumes that resistances of
individual piles within the group are perfectly correlated
[41]. Yet, such relationships should inherently be influ-
enced by the spatial variability of soils [23].

The calibration of resistance factors for pile groups, based
on individual pile load tests, necessitates the consideration of
complex pile—soil—pile interaction and the correlations among
individual piles. This calibration requires rigorous three-di-
mensional (3D) random finite difference (RFD) or random
finite element (RFE) analyses, when accounting for the spatial
variability of soils. However, these analyses are computa-
tionally intensive, as the 3D numerical analysis must be
repeated numerous times to evaluate the reliability of pile
groups. Moreover, the process of calibrating resistance factors
necessitates multiple reliability evaluations to achieve a target
reliability index, which further escalates computational costs.
To address the challenge of computational demand in relia-
bility analysis involving spatially variable soils, various sur-
rogate modelling techniques have been proposed. For
example, Jiang, et al. [14] and Jiang and Huang [16] intro-
duced multiple stochastic response surface methods as sur-
rogate models to map the relationship between the factor of
safety of slopes and spatial variability of soil properties. Yi,
et al. [39] and Khorramian, et al. [17] employed Kriging as
surrogate models for evaluating the reliability of pile foun-
dations in spatially variable soils. Nonetheless, these models
may experience reduced efficiency and accuracy when deal-
ing with high-dimensional random fields [15], underscoring
the need for a robust surrogate model suitable for complex 3D
random field problems.

Advanced machine learning algorithms, such as convo-
lutional neural network (CNN), have demonstrated particu-
larly effective in handling high-dimensional data and
constructing precise regression models for scenarios
involving random fields [35, 38]. For instance, Wang and
Goh [37] employed CNN to replace the RFE model for
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predicting the probability of slope failures, highlighting the
model’s computational efficiency and accuracy. Addition-
ally, Wang, et al. [36] utilized three deep learning approa-
ches, including CNN, to evaluate the time-dependent
reliability of reservoir slopes, demonstrating that CNN per-
formed the best in the Bazimen landslide case study. Fur-
thermore, Wu, et al. [38] developed a CNN-based surrogate
model to predict wall deflection induced by braced excava-
tion in spatially variable soils, while Zhang, et al. [43]
applied CNN to analyse tunnel performance in spatially
variable soils. Despite these advances, the application of
CNN for 3D pile group reliability analyses in spatially
variable soils, as well as the integration of CNN models into
the LRFD framework for calibrating resistance factors,
remains unexplored.

In this paper, a CNN-based approach is proposed to cal-
ibrate resistance factors for pile groups with load test results.
Initially, a proper number of RFD simulations are conducted,
which are used to train a proposed CNN model. Subse-
quently, the accuracy of this model is validated, and it is
employed as a surrogate model to determine resistances for
individual piles and pile groups, based on a given random
field of soil properties. The trained model facilitates the
efficient execution of numerous simulations, allowing for the
direct determination of failure probabilities for individual
piles and the pile group through counting. Consequently, the
calibration of resistance factors is straightforward, enabling
the adjustment of these factors to achieve a target reliability
index (or probability of failure). Additionally, when load
tests are conducted on individual piles, the probability of
failure for the pile group is calculated using conditional
probability, leading to the recalibration of the resistance
factors to achieve the desired reliability index. The structure
of the paper is organized as follows: Sect. 2 presents the
methodology, providing a detailed description of the pro-
posed approach. Section 3 demonstrates the proposed
approach using a 3 x 3 pile group under vertical loads in
spatially variable soils, and the accuracy of the proposed
CNN model is validated. Building upon this, Sect. 4 explores
the influence of various factors on the calibrated resistance
factors, including load test results and their corresponding
locations, spatial variability of soil properties, test chains and
measurement errors. Section 5 summarizes the major find-
ings of the study.

2 Methodology

2.1 Calibration of resistance factors based
on individual proof load tests within LRFD

In LRFD, the resistance and load factors are used to
address the uncertainties associated with resistance and
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loads, respectively. When considering only dead and live
loads, the design equation for pile groups is defined as [3]:

®$Ren = 7pQpn + 71.01n (1)

where ¢, yp and 7y, represent the resistance factor, dead
load factor and live load factor, respectively. Op, and Qp,
are the nominal dead load and nominal live load, respec-
tively. Rgy, is the nominal pile group resistance, which is
usually determined by the group efficiency and the sum-
mation of individual pile resistances [28]. As noted by
Zhang, et al. [46], the group efficiency is a random variable
when pile groups are located in spatially variable soils.
Therefore, the mean group efficiency, #,, is utilized to
calculate the nominal pile group resistance:

N
Regn =1, Z Rin (2)
i=1

where R;, represents the nominal resistance of the ith pile.
In this paper, Rj, is defined as the mean individual pile
resistance; thus, R, = Rijn = ... = Rnn-

The limit state function, g, is established as the condi-
tion where the pile group resistance equals the sum of loads
transferred from the superstructure:

§=R;—0Op—-0L=0 (3)

where R,, Op and Oy denote the pile group resistance, dead
load and live load, respectively. However, the actual loads
transferred from the superstructures are generally unknown
and are typically estimated as [2]:

Op = ZpQOpn QL = /1.01a 4)
where Jp and Ap, are the dead and live load bias factors,
respectively.

By substituting Eqgs. (1), (2) and (4) into Eq. (3), the
limit state function for pile groups is derived as follows:
__Re
 ONIR,

where N is the number of piles within the group. x is the
ratio of dead to live load, k=Qpy,/Ovx-

In Eq. (5), load factors are specified according to dif-
ferent limit states as outlined by AASHTO [3]. If the
Strength 1 limit state is considered, yp =1.25 and
v = 1.75. K typically ranges from 2 to 5 across various
superstructures, but it has a minimal impact on resistance
factors [1]. Thus, k¥ = 2 is considered in this study. For
foundation designs, /p and Ap are assumed to follow a
lognormal distribution. Their mean (i.e. u;  and p, ) and
standard deviations (i.e. ¢;, and o; ) are derived from
Paikowsky [24]. Consequently, a critical task in calibrating
resistance factors is determining R,. Furthermore, when
proof load tests are conducted on individual piles within

8 X (ypk + 1) — (4pK +4L) =0 (5)

the group, the corresponding individual pile resistances,
R =(Ry, R,, ..., Ry), are crucial in assessing whether the
tested piles fail or not.

This paper describes the use of a trained CNN model to
generate a large dataset (e.g. one million) for R, and
R =(Ry, Ry, ..., Ry). Initially, a limited number of RFD
simulations are conducted to create the training database,
with the specifics of the RFD analysis detailed in Sect. 2.2.
This database is then employed to train CNN models, the
architecture of which is outlined in Sect. 2.3. The model
inputs are the random fields of soil properties, 0, while the
outputs include R =(R;, R,, ..., Ry) and R,. Following
this, the trained CNN model is applied to calculate the
resistances of individual piles and the pile group using the
designated random fields of soil properties. After that, the
trained CNN model is utilized to derive
R =(Ri, Ry, ..., Ry) and R, with the given random fields
of soil properties.

Without conducting load tests, the probability of failure
for the pile group, P(F,), is calculated as follows:

1 <

P(Fy) :]TTZI[S(Q% 0;) <0 (6)

J=1

where Nt represents the total number of simulations. I(-) is
the indicator function, which is assigned a value of 1 when
the specified condition in the bracket is satisfied. g((j)o, 9j)
denotes the limit state function corresponding to the jth
random field of soil properties, 0;, given a trial resistance
factor, ¢,.

The reliability index of the pile group is determined as:
p= —(I)’I(P(Fg)), where @' is the inverse cumulative
distribution function of the standard normal distribution.
The trial resistance factor, ¢, is then adjusted to achieve a
target reliability index, fgr. In this study, the bisection
method is utilized to iteratively adjust ¢, until
B = Bor| <0.0L.

With load tests conducted on individual piles, it is
assumed that the proof test load is T, and the measurement
error is &. Generally, ¢ is assumed to follow a normal dis-
tribution with a mean of zero, u, =0 and a standard
deviation of ¢,. For simplification, it is assumed that o,
exhibits a proportional relationship with the corresponding
measurements, denoted as g, = aT. The value of a depends
on the specific load test techniques used and the method
employed to interpret the test results. If the load test is
conducted on the ith pile, the probability that the pile fails
to pass the test is as follows:

PF) = 5D 1R(0) <T ] ™)
=1
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where R; (Oj) represents the resistance of the ith pile cor-
responding to the jth random field of soil properties, 0;.

Based on Eq. (7), the probability that the pile passes the
test is:

P(F;) =1 - P(F)) (8)

Given that the proof load test is conducted on the ith
pile, and the pile fails, the probability that the pile group
fails is denoted as P(F,|F;), which is obtained using con-
ditional probability:

P(FyNF;)

P(Fg|Fi) = P(Fi)

©)
where P(F, N F;) is the probability that both the ith pile
and the pile group fail, which can be obtained as follows:

P(Fy O F) =S IR(0) <T — 5. 5. 6)<0]

M =1
(10)

Based on the proof load test result that the ith pile failed,
the reliability index of the pile group is determined as:
B =—® ' (P(Fy|F;)). Finally, the trial resistance factor,
¢, is adjusted to achieve a target reliability index, fgr.

2.2 Pile resistances in spatially variable soils
using RFD analysis

The resistances of individual piles and pile groups in spa-
tially variable soils are assessed through RFD analysis,
which combines random field theory with FD analysis. The
RFD analysis comprises two main components: the gen-
eration of random fields of soil properties and the FD
analysis of pile resistances.

Random field theory has been utilized to explicitly
model the spatial variability of soils, enhancing the prob-
abilistic analysis and reliability-based design of geotech-
nical structures [8, 10, 17]. In the context of pile
foundations in undrained clay, pile resistances are pri-
marily influenced by the undrained shear strength, c,
[22, 30]. Consequently, this paper assumes ¢, as a random
field while maintaining other parameters (e.g. shear mod-
ulus) as constants. Using random field theory, a 3D spa-
tially distributed ¢, is characterized by specified statistical
parameters, including mean, u, , coefficient of variation,
COV,,, and spatial correlation length, ®. The soil spatial
variability displays anisotropic spatial variability, with the
horizontal correlation length, @y, is generally much higher
than the vertical correlation length, ®,. Therefore, an
anisotropic random field is adopted and generated using the
open-source toolbox *GSTools’ [20].

@ Springer

The FLAC 3D software [13] is employed to determine
the resistances for both individual piles and pile groups. To
obtain the individual pile resistances, a FD model with the
interested pile is first constructed (i.e. Fig. 1a), where the
soil is modelled using the Mohr—Coulomb failure criteria
and the pile is represented by an inbuild linear structural
element with interface properties. Then, the random field of
¢y is mapped into soil elements. Subsequently, a dis-
placement-controlled vertical load is applied to generate a
load—displacement curve. The individual pile resistance is
determined using the ISSMFE criterion [12], which cor-
responds to the displacement of piles which is 10% of the
pile diameter. Owing to the variation in soils surrounding
individual piles, the individual pile analyses need to be
repeated for N times to obtain R =(R;, Ry, ..., Ry). For
pile group resistance, R,, a FD model of the pile group is
first constructed in the same random field of ¢, (i.e.
Fig. 1b), followed by the application of a displacement-
controlled vertical load. For simplicity, the pile group is
considered freestanding, and the pile cap is assumed to be
rigid, not undergoing rotation under vertical loads.
Thereby, the pile cap does not need to be modelled in the
pile group model, and all the individual piles undergo the
same displacement under vertical loads. The total load
acting on the pile group is calculated as the sum of the
loads on individual piles [48]. The same failure criterion
[12] utilized for individual piles is applied to determine R,.
A detailed description of the pile resistance analysis using
RFD analysis can be found in Zhang, et al. [46].

2.3 Proposed CNN model

Conventional CNN is generally used to process images
composed of pixels. Each pixel features three channels
corresponding to the primary colours: red, green and blue,
with each pixel thus described by three intensity values for
these channels. Therefore, the CNN receives this pixel data
from the image to be processed. When adapting CNN for
processing random fields, the discretized soil elements in
FD models serve a role analogous to that of pixels in image
processing. In this analogy, the random field of soil prop-
erties is equivalent to the channel, and the magnitude of the
soil property for each soil element is similar to the channel
intensity of a pixel in conventional image processing.
Typically, a CNN model comprises six major components:
the input layer, convolution layer, pooling layer, activation
layer, fully connected layer and output layer. These layers
facilitate the construction of diverse architectures tailored
to specific problems. The architecture of the CNN model
used in this paper is depicted in Fig. 2, while the details of
layers and parameters are summarized in Table 1. This
configuration was established through a trial-and-error
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(a) single pile

Undrained shear strength (Pa)
4.5000E+04
4.2500E+04
4.0000E+04
3.7500E+04
3.5000E+04
3.2500E+04
3.0000E+04
2.7500E+04
2.5000E+04
2.2500E+04
2.0000E+04
1.7500E+04
1.5000E+04
1.2500E+04
1.0000E+04
7.5000E+03
5.0000E+03

(b) pile group

Fig. 1 FD model of single piles and pile groups in spatially variable soils

methodology, informed by previously proposed architec-
ture designs [6, 35]. Key layers in the proposed CNN
model are elaborated as follows.

Input layer: the input layer contains the relevant soil
property information essential for model construction. In
this study, the soil medium is modelled as a cuboid of
dimensions 30 m x 30 m x 20 m, which is discretized
using cubic elements with a uniform side length of 1 m.
Since only the undrained shear strength, c,, is treated as
random fields, the number of channels is one. Therefore,
the input layer comprises a size of 30 x 30 x 20 x 1,
where ‘30 x 30 x 20’ represents the size of the soil
domain in FD models, while ‘1’ denotes the random field
of cy.

3D convolution layer: a 3D convolution layer applies
sliding cuboidal convolution filters to extract features from
the 3D input. Specifically, the 3D filter moves over the
input 3D random field of ¢,, computing the dot product of

3D Convolution
Batch Normalization
RelLU

Filter: 2x2x2@32
Stride: 1x1x1

PoolSize: 2x2x2
Stride: 2x2x2

.
LA %
. o
» o

3D Convolution
Batch Normalization
RelLU

Filter: 2x2x2@32
Stride: 1x1x1

Input: 30x30x20x1

Fig. 2 Architecture of the proposed CNN model

3D Average Pooling

the weights with the input and then adding a bias term.
These weights and biases are trained to capture salient
features from the input. In the 3D convolution layer, the
stride, padding, filter size, and number of filters are com-
mon hyperparameters that need to be defined. Stride rep-
resents the step size that filters move each time, while
padding means adding extra borders of the layer input. A
stride size of 1 x 1 x 1 is selected, while a zero padding is
chosen to maintain the spatial dimensions of the output.
The filter configuration is determined as 2 x 2 x 2@32,
which means the filter size is 2 x 2 x 2 and the number of
filters is 32. In the proposed CNN model, each 3D con-
volution layer is followed by a batch normalization layer,
which enhances training stability and accelerates network
training.

Activation layer: the activation layer is utilized to
enhance the nonlinear characterization capability of mod-
els. Different activation functions are available, such as the

- Output: 10x1
Ry

. .
. .
. *

VNN

3D Convolution
Batch Normalization

3D Average Pooling
PoolSize: 2x2x2
Stride: 2x2x2

3D Convolution
Batch Normalization

RelLU RelLU
Filter: 2x2x2@32 Filter: 2x2x2@32
Stride: 1x1x1 Stride: 1x1x1
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Table 1 Details of layers and parameters of the CNN model

Layer Filter Stride Pooling Output size

3D Convolution 2 x2x2@32 I x1x1 - 29 x 29 x 19 x 32
+ batch normalization + ReL.U

3D Convolution 2 x2x2@32 I x1x1 - 28 x 28 x 18 x 32
+ batch normalization 4+ ReLLU

3D Average pooling - - 2x2x2 14 x 14 x 9 x 32
3D Convolution 2 x2x2@32 I x1x1 - 13 x 13 x 8 x 32
+ batch normalization + ReLU

3D Average pooling - - 2x2x2 6 x6 x4 x32
3D Convolution 2 x2x2@32 I x1x1 - 5x5x3x32

+ batch normalization + ReL.U

3D Convolution 2 x2x2@32 I x1x1 - 4 x4 x2x32

+ batch normalization + ReLU

Fully connected -

1 x 10

rectified linear unit (ReLU), f(x) = max(0,x), tanh func-
tion,  f(x) =tanh(x), and  sigmoid  function,
f(x) =1/(1 + e™). A distinctive feature of the ReLU is its
unbounded output for positive inputs, unlike the bounded
outputs of sigmoid and tanh functions. Additionally, the
gradients of the ReLU are either zero or one, which sig-
nificantly accelerates computational processes compared to
sigmoidal functions [6]. Furthermore, the ReLU demon-
strates superior convergence properties in stochastic gra-
dient descent (SGD) algorithms, surpassing both sigmoid
and tanh functions in this regard [26, 29]. Therefore, the
ReLU is adopted in this study.

Pooling layer: the fundamental concept behind pooling
layers is downsampling, which effectively reduces the
spatial dimensions of data. There are two principal types of
pooling: max pooling and average pooling. Max pooling
selects the maximum value from each subarray, whereas
average pooling computes the mean value. Average pool-
ing layers are adopted instead of max pooling layers, as the
pile resistances are primarily governed by the overall soil
properties along the pile depth rather than extreme value
for specific locations. In this model, the average pooling
operation is selected with a pooling size of 2 x 2 x 2 and
stride of 2 x 2 x 2.

Fully connected layer: a fully connected layer is adopted
at the end of the proposed CNN model, where all neurons
in one layer are connected with every neuron in the sub-
sequent layer. The fully connected layer processes the
flattened tensor received from the preceding hidden layer,
transforming these inputs into the desired outputs. For this
specific application, the layer outputs vectors correspond-
ing to individual pile resistances and the pile group
resistance.
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2.4 Procedure of the proposed approach

The procedure of the proposed approach is summarized as
follows:

Step 1. Generate random fields of ¢, based on specified
statistical parameters, via random field theory.

Step 2: Map the values of ¢, to the individual pile and
pile group models. Compute individual pile resistances and
pile group resistance, according to Sect. 2.2.

Step 3: Repeat steps 1 and 2 for N, times to generate the
training database.

Step 4: Divide the database generated in Step 3 into
training and validation datasets. Utilize these datasets to
train the proposed CNN model, as described in Sect. 2.3.
The CNN model is designed to learn the mapping rela-
tionship between the input soil properties and the output
pile resistances.

Step 5: Generate additional Ny random fields of c,.
These random fields are then used as inputs for the trained
CNN model, to derive Nt sets of values for
R :(Rl7 Rz, ey RN) and Rg.

Step 6: In cases where load tests have not been con-
ducted, the resistance factor is calibrated using Eq. (6) and
the methodology outlined in Sect. 2.1.

Step 7: In cases where load tests have been conducted,
the resistance factor is calibrated following Eqgs. (7) to (10)
and the methodology described in Sect. 2.1.

3 Example

To demonstrate the proposed approach, a 3 x 3 pile group
subjected to vertical loads in undrained clay is utilized. The
pile length (L) is 10.5 m, with 10 m embedded in clay. The
pile diameter (D) is 1.0 m while the pile spacing (d) is 3 m.
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The elastic modulus (Ep) 1is determined to be
2.2 x 107 kPa, and the Poisson ratio is set at 0.3. For the
soil medium, only the undrained shear strength, c,, is
treated as a random variable, with a mean value
U, = 20 kPa. The general range of COV,, was 10%-55%
[27], and COV,, = 50% is adopted for probabilistic anal-
yses. Moreover, an anisotropic spatial correlation length is
adopted [27] with the horizontal correlation length,
®; = 40 m, significantly exceeding the horizontal corre-
lation length, ®, = 5m. The values of shear modulus, G,
and bulk modulus, K, are determined as 1.3 x 10° kPa and
6.0 x 10° kPa, respectively, following Bowles [5].

For training the proposed CNN model, an initial set of
1000 RFD simulations is conducted following Sect. 2.2, to
generate the individual pile resistance and the pile group
resistance. The initial dataset of 1000 samples is then
divided into training and validation datasets with a ratio of
80:20 [44] to train and validate the proposed CNN model.
Once the CNN model is trained, an additional 5000 random
fields of soil properties are generated, and corresponding
random finite difference (RFD) analyses are performed to
obtain the true resistance factors. These true resistance
factors are then compared with the resistance factors cali-
brated using the pile resistances predicted by the trained
CNN model. This comparison is conducted to further
evaluate the accuracy and reliability of the proposed deep
learning-based approach for calibration purposes. The
configurable hyperparameters of the CNN model utilized in
this study are detailed in Table 2. The stochastic gradient
descent (SGD) algorithm [21] is employed to optimize the
filter weights and biases during model training. The accu-
racy of the CNN model is quantitatively assessed using the
root mean square error (RMSE) and mean absolute per-
centage error (MAPE), which are defined in Egs. (11) and
(12), respectively.

RMSE = ,/%i(ﬁ—yi)z (11)

n

MAPE = lz

=

Y =i

x 100% (12)
Yi

where y and y; are the values predicted by the CNN model
and calculated by RFD analyses, respectively.

Table 2 Configurable hyperparameters of the CNN

3.1 Validation of FDM

To validate the FD models, a deterministic analysis is
performed with the mean undrained shear strength and
COV,, = 0. The results from this deterministic analysis are
then compared with those derived from empirical static
formulas as proposed by Poulos and Davis [28].

According to Poulos and Davis [28], for piles in clays,
the individual pile resistance, R, is calculated using the
following formula:

L
R:/ Uc,odz + ApcyN, (13)
0

where U is the pile perimeter, o is the undrained pile—soil
adhesion factor, N, is the bearing capacity factor.

To calculate the pile group resistance, Ry, the following
empirical relationship is suggested by Poulos and Davis
[28]:

1 1 1
R R (14)

Rg = B,L,cuN. + 2(B, + L,)Lc, (15)

where Rp is the bearing capacity for block failure of the
group; ¢, is the average undrained shear strength. For a
3 x 3 pile group considered herein, L, = B, = 2d + D.

The undrained pile—soil adhesion factor, «, varies con-
siderably with many factors, such as the types of piles, the
soil conditions and the pile installation methods [28]. The
typical relationship between o and ¢, for driven piles has
been reported by McClelland [19]. It is generally accepted
that o = 1 for soft clays (e.g. ¢, <24 kPa). The value of the
bearing capacity factor, N, has been proposed by
Skempton [32]. When calculating R, the value of N, is
limited to a maximum value of 9 for the pile length larger
than four times of the pile diameter [9]. When calculating
Rg, the value of N, is a function of L, /B, and L/B,, and the
curve is provided in Poulos and Davis [28].

Based on Egs. (13) to (15), the individual pile resistance
and pile group resistance are 770 kN and 6168 kN,
respectively. These values are comparable to the results
obtained from FLAC3D, which are 776 kN for the indi-
vidual pile resistance and 6623 kN for pile group resis-
tance, respectively, validating the adopted FD models.

Learning rate Maximum epoch Minimum batch size

Data shuffle L2-regularization Validation frequency

0.01 500 64

Every epoch 0.0001 50
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3.2 Accuracy of the CNN model

This subsection evaluates the accuracy of the CNN model
trained by different sample sizes (e.g. 100, 200, ..., and
1000 samples). For example, Fig. 3a indicates 100 samples
are utilized for training the CNN model, which means that
80 samples are utilized for training and 20 samples are
employed for validation during the training process. The
trained CNN model is subsequently adopted to predict the
individual pile resistances and pile group resistance using
the 5000 random fields in the testing dataset. Figure 3
shows the CNN-predicted centre pile resistance (i.e. pile 5)
and the corresponding RFD-calculated resistances, which
demonstrates that data points become more closely aligned
with the 1:1 line as the number of training samples
increases, indicating enhanced predictive performance of
the CNN model. The RMSE, MAPE, and coefficient of
determination (RZ) are calculated for each sample size and
depicted in Fig. 3. A decreasing trend in RMSE and MAPE
and an increasing trend in R* values are observed as the
training sample size increases. Specifically, RMSE and
MAPE decrease from 1.7 x 10° N and 13.1% with 100
samples to 3.6 x 10* N and 3.6% with 1000 samples,
respectively. Conversely, the R* rises from 0.718 to 0.985
as the sample size increases from 100 to 1000. These trends
suggest that larger training datasets enable the CNN model
to learn more comprehensive features associated with the
spatial variation of the random properties, resulting in
improved prediction accuracy.

3x10°
(a) 100 samples (b) 200 samples
gzxm“
5 A
.B' " . m;f ° 25 S - gag )
>, 1X10 r # RMSE=1.7x10 . = RMSE=8.3x10
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Fig. 3 RFD versus CNN for centre pile (pile 5) resistance with
different sample sizes
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Fig. 4 Boxplot comparison of pile resistances across different sample
sizes for individual piles and the pile group

Figure 4 displays a boxplot comparison of pile resis-
tances across different sample sizes for individual piles and
the pile group. Results illustrate that as the number of
training samples increases from 50 to 1000, both the mean
and median values of the CNN-predicted/RFD-calculated
ratios gradually converge towards 1. Simultaneously, the
standard deviation (SD) of the ratio, which serves as an
indicator of estimation uncertainty, also decreases with an
increase in sample size.

The accuracy of the proposed CNN model is further
evaluated by comparing the real resistance factors with
those calibrated using the trained CNN model. Specifically,
for the pile group to achieve a target reliability index of
2.33, without conducting load tests on individual piles, the
real resistance factor and the calibrated resistance factor
based on the trained CNN model are 0.73 and 0.72,
respectively. When one proof load test is conducted on pile
1 that passes, the real and the one calibrated using the CNN
model increase to 1.03 and 1.05, respectively. Conversely,
if one proof load test is conducted on pile 1 that fails, the
real and the one calibrated using the CNN model decrease
to 0.67 and 0.66, respectively. The good agreement
between these resistance factors demonstrates the accuracy
and reliability of the proposed CNN model.

3.3 Important soil zones detected by the CNN
model

The local soils surrounding piles play a more critical role in
determining pile resistance than the broader soil domain.
While this study uses the entire soil domain as input fea-
tures, the CNN model effectively captures the significant
influence of the local soils surrounding the pile. This is
demonstrated through the application of the Saliency Maps
technique [31], which calculates the gradients of the output
pile resistance with respect to the input soil properties and
visualizes the relative importance of different regions
based on these gradients. Areas with higher gradient
magnitudes are interpreted as having a greater influence on
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the model’s predictions, thereby identifying the critical
regions of soil properties that most significantly affect the
prediction of pile capacities. Figure 5 illustrates gradient
maps across various depths, revealing that the soils within
or surrounding the pile group area contribute more sub-
stantially to the predicted pile resistances compared to soils
located farther from the pile group.

4 Results

4.1 Effect of the test results and corresponding
test locations

This subsection assesses the impact of load test results and
their corresponding test locations on the calibrated resis-
tance factors. The measurement error is assumed to be
g, = 0.1 T. For demonstration purposes, it is assumed that
three pile load tests are performed on piles 1, 5, and 9, with
a variety of resulting outcomes being observed and anal-
ysed. It is noted that when one test fails among three tests,

(a) Depth of Im
30

15

30

15

Fig. 5 Gradient maps at various depths

and the failed pile would be either pile 1, pile 5 or pile 9,
the symmetry of the pile group implies that the results for
piles 1 and 9 are identical. Consequently, two distinct
resistance factors are derived when one test fails among
three tests.

Figure 6 presents the impact of load test locations on
resistance factors. Specifically, if only one pile failed
among three load tests, the failure of pile 5 results in a
lower resistance factor compared to failures in pile 1 or pile
9. This is attributed to the central position of pile 5, which
holds more critical information regarding the reliability of
the pile group. As such, a failure at the central location
suggests a higher likelihood that the entire pile group might
fail, thereby necessitating a lower resistance factor to meet
the target reliability index [46].

It is observed from Fig. 6 that resistance factors gener-
ally decrease as the number of failed tests increases, as also
noted by Zhang, et al. [45]. For comparative purposes, the
resistance factor without load tests is also included in
Fig. 6, indicating that only when all three piles fail in the
tests does the resistance factor fall below that obtained

(b) Depth of S5m
30
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O Outside surface of the pile group

N

Increasing Gradient ——
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Fig. 6 Resistance factors with different test results and test locations

without conducting load tests. This observation under-
scores the significant potential of load tests to yield higher
resistance factors, potentially reducing pile construction
costs.

4.2 Effect of the horizontal correlation length

This subsection evaluates the influence of the horizontal
correlation length, ®y, on the calibrated resistance factors.
Again, it is assumed that the measurement error is
o, = 0.1 T. Four different values of ®, are considered,
specifically 5 m, 10 m, 20 m and 40 m, while @, is fixed
at 5 m. Figure 7 illustrates the calibrated resistance factors
for various values of ®;, under different load test scenarios.
In particular, Fig. 7a presents cases where all tested piles
yield identical test results (i.e. all fail or all pass) and cases
where no tests are conducted. In contrast, Fig. 7b depicts
cases where tested piles yield different test results (i.e.
some piles pass while others fail). In these figures, the

1.17(a) Consistent observations
1.04 /-//'//.
/.
m L |
097 T —=—1F
&0 5 —=— PSP —=— IF5F
: 1P5P9P 1F5F9F
Y, | = No Tests

0.7

0.6A T T T — —
0 10 20 30 40

0, (m)

notation ‘F’ means the tested pile fails the test while the
notation ‘P’ represents the tested pile passes the test. The
prefix number identifies the specific pile tested. For
example, ‘1PSF’ indicates that load tests were conducted
on pile 1 and pile 5, with pile 1 passing and pile 5 failing.

In Fig. 7a, when no tests are conducted, resistance fac-
tors decrease as ®y, increases. This decrease occurs because
a larger ®y leads to greater similarity in soil properties
around individual piles, causing the resistances of indi-
vidual piles more likely to be uniformly high or low. As a
result, the pile group system exhibits lower overall relia-
bility, necessitating a lower resistance factor to achieve the
target reliability index. In contrast, when @y, is small, the
resistances of individual piles are less dependent on each
other. In this scenario, weaker piles can be compensated by
stronger ones, enhancing the overall reliability of the pile
group, and thereby allowing for a higher resistance factor.
Similarly, when all tested piles either pass or fail, the
untested piles are more likely to exhibit similar outcomes
as Oy, increases, enabling the adoption of higher or lower
resistance factors, respectively.

In Fig. 7b, when the tested piles yield different test
results (i.e. some piles pass while others fail), the resistance
factors exhibit a non-monotonic trend. Specifically, the
resistance factors initially decrease and subsequently
increase, which aligns with observations reported in [46].
For instance, when two load tests are conducted on Pile 1
and Pile 5, where Pile 1 passes the proof test and Pile 5
fails, the resistance factor decreases from 0.88 to 0.85 as
®, increases from 5 to 20 m. However, as ©®; further
increases to 40 m, the resistance factor increases to 0.89.

4.3 Effect of the coefficient of variation
This subsection investigates the influence of the coefficient

of variation of undrained shear strength, COV,, on the
calibrated resistance factors. It is assumed that the

1.01(b) Inconsistent observations
:7777;77'.;;;;;;;;.;;;—,—;;;;;:;;;;,,;;,,,;;;l
0.94 n .
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Fig. 7 Resistance factors as a function of ®}, and test results: a consistent observations and b inconsistent observations
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measurement error is o, = 0.1 7, while ®, = 40m and
®, = 5m. Figure 8 illustrates the variation in resistance
factors for different values of COV,, under various test
scenarios. Results indicate that resistance factors decrease
as COV,, increases, regardless of the number of tests or
their corresponding outcomes. For example, when one load
test is conducted on Pile 1 and passes, the resistance factor
decreases from 0.96 to 0.90 as COV,, increases from 20 to
100%. Similarly, when three load tests are conducted on
Pile 1, Pile 5 and Pile 9, with Pile 1 passing while Pile 5
and Pile 9 fail, the resistance factor decreases from 0.91 to
0.79. This trend is primarily attributed to the increase in
COV,,, which leads to greater variability in individual pile
resistances. Consequently, the reliability of the pile group
system decreases, necessitating a lower resistance factor to
achieve the target reliability index.

4.4 Effect of the test chains

This subsection examines the effect of test chains on the
calibrated resistance factors. It is assumed that @, = 40 m
and ®, =5 m. Additionally, two distinct measurement
errors (i.e. 0, = 0.1 T and o, = 0.3 T) are considered to
represent varying levels of accuracy in testing approaches.
Figure 9 illustrates resistance factors as a function of test
chain configurations and measurement errors. As shown in
Fig. 9, resistance factors vary significantly across different
test chains. Specifically, for g, = 0.1 T, conducting one
load test on pile 1 that passes results in increased resistance
factors compared to scenarios without load tests (i.e.
¢ = 0.66). Performing a subsequent test on pile 5 that fails
slightly reduces the resistance factors. However, if the
second test on pile 5 also passes, the resistance factor
increases further. In cases where the two tests have been
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e 7 —
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0.9 — :
- -
I £
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Fig. 8 Resistance factors with various COV,
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Fig. 9 Resistance factors with various test chains and measurement
errors

conducted with both passing, a third test on pile 9 that fails
leads to a slight reduction in the resistance factor. Never-
theless, the resistance factor remains higher than the value
obtained when only one load test is conducted on pile 1 that
passes. Similarly, in cases where two tests have been
conducted with pile 1 passing and pile 5 failing, a third test
on pile 9 that passes results in the increase in resistance
factors, surpassing the value obtained from only one load
test conducted on pile 1 that passes. These observations
highlight the critical role of load tests in reducing the
uncertainty associated with pile resistance.

Additionally, Fig. 9 indicates that lower measurement
errors yield higher resistance factors for a given chain. This
trend is attributed to the higher accuracy of the testing
method, which enhances confidence in the results, thereby
justifying the use of higher resistance factors.

5 Conclusions

This paper proposes a CNN-based approach to calibrate
resistance factors for pile groups with individual pile load
tests. A novel CNN model is developed and demonstrated
to accurately substitute the computationally demanding
RFD analyses of pile groups. By employing the trained
CNN model, a comprehensive dataset of individual pile
resistances and pile group resistances in spatially variable
soils is generated. Subsequently, resistance factors are
calibrated to achieve a specified reliability index through
direct counting and the application of conditional proba-
bility based on the outcomes of individual pile load tests.
To validate the proposed approach, a pile group is anal-
ysed, and the key findings are summarized as follows:
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(1) The proposed CNN-based approach effectively cap-
tures the impact of load test locations on resistance
factors. Specifically, the failure of the central pile
results in a lower resistance factor compared to
failure at the corner piles, whereas the success of the
central pile yields a higher resistance factor than a
similar outcome at the corner piles.

(2) The effect of horizontal spatial correlation length on
calibrated resistance factors is dependent on load test
outcomes. When all tested piles pass, resistance
factors increase as the horizontal spatial correlation
length increases. Conversely, when all tested piles
fail, resistance factors decrease as the correlation
length increases. Additionally, when multiple load
tests yield mixed results (i.e. some piles pass while
others fail), there exists a critical spatial correlation
length, typically between 10 and 20 m, correspond-
ing to the lowest resistance factors.

(3) The coefficient of variation of soil properties and the
measurement error in load tests exhibit a similar
effect on the calibrated resistance factors. Specifi-
cally, resistance factors decrease as either the
coefficient of variation of soil properties or the
measurement eIror increases.
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