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Abstract
Resistance factors for pile groups are typically derived using empirical methods that do not directly account for system

redundancy and overlook the correlation between individual piles, which are inherently influenced by the spatial variability

of soils. While rigorous three-dimensional (3D) random finite difference (RFD) or random finite element (RFE) analyses

could potentially address these issues, they are constrained by significant computational demands. Therefore, this paper

proposes a deep learning-based approach for calibrating resistance factors for pile groups with individual pile load tests.

Specifically, a surrogate model based on a convolutional neural network (CNN) is proposed, which is trained and validated

using the database generated by RFD analyses. The trained model is further used to derive pile resistances in spatially

variable soils. Finally, the resistance factors are calibrated by counting and conditional probability based on the outcomes

of load test results. The proposed approach is demonstrated using a pile group example. Results show that the proposed

approach effectively captures the impacts of load test results and their corresponding locations, as well as the spatial

variability of soil properties, on resistance factors.

Keywords Convolutional neural network (CNN) � Pile groups � Pile load tests � Random finite difference analysis �
Resistance factors

1 Introduction

In the load and resistance factor design (LRFD), resistance

factors are employed to address uncertainties associated

with the pile resistance predictions. These uncertainties

arise from variabilities in geotechnical properties, mea-

surement errors in laboratory or field tests, transformation

uncertainties between design parameters and test results,

and uncertainties inherent in design models [7, 27, 34, 40].

Pile load tests yield a more precise evaluation of pile

resistances. Consequently, integrating load tests into the

design process can significantly reduce uncertainties of pile

resistances, thereby enabling the application of higher

resistance factors in designs. For example, the Australian

Standard for Piling-Design and Installation [33] specifies

that resistance factors range from 0.4 to 0.9, depending on

the percentage of piles tested via static load tests, and from

0.4 to 0.8 for piles tested through dynamic load tests.

However, the determination of these resistance factors

predominantly relies on engineering judgement [11].
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Several studies have been carried out to calibrate

resistance factors for single piles based on load test results

[42, 47]. Park, et al. [25] evaluated resistance factors for

pipe piles based on proof load tests, suggesting that load

tests could lead to higher resistance factors. Zhang, et al.

[45] implemented a Bayesian approach to calibrate resis-

tance factors of H-piles using proof load tests, incorporat-

ing the consideration of site variabilities and design

methods. In contrast, the determination of resistance fac-

tors for pile groups mainly depends on empirical approa-

ches. Paikowsky [24] noted that pile groups typically

demonstrate higher reliability than individual piles due to

system redundancy. Accordingly, previous studies

[2, 4, 18] commonly recommended a reliability index of

2.0 to 2.5 for individual piles to attain a target reliability

index of 3 for the whole pile group. However, this

empirical approach does not directly account for system

redundancy. Furthermore, it assumes that resistances of

individual piles within the group are perfectly correlated

[41]. Yet, such relationships should inherently be influ-

enced by the spatial variability of soils [23].

The calibration of resistance factors for pile groups, based

on individual pile load tests, necessitates the consideration of

complex pile–soil–pile interaction and the correlations among

individual piles. This calibration requires rigorous three-di-

mensional (3D) random finite difference (RFD) or random

finite element (RFE) analyses, when accounting for the spatial

variability of soils. However, these analyses are computa-

tionally intensive, as the 3D numerical analysis must be

repeated numerous times to evaluate the reliability of pile

groups.Moreover, the process of calibrating resistance factors

necessitatesmultiple reliability evaluations to achieve a target

reliability index, which further escalates computational costs.

To address the challenge of computational demand in relia-

bility analysis involving spatially variable soils, various sur-

rogate modelling techniques have been proposed. For

example, Jiang, et al. [14] and Jiang and Huang [16] intro-

duced multiple stochastic response surface methods as sur-

rogate models to map the relationship between the factor of

safety of slopes and spatial variability of soil properties. Yi,

et al. [39] and Khorramian, et al. [17] employed Kriging as

surrogate models for evaluating the reliability of pile foun-

dations in spatially variable soils. Nonetheless, these models

may experience reduced efficiency and accuracy when deal-

ing with high-dimensional random fields [15], underscoring

the need for a robust surrogate model suitable for complex 3D

random field problems.

Advanced machine learning algorithms, such as convo-

lutional neural network (CNN), have demonstrated particu-

larly effective in handling high-dimensional data and

constructing precise regression models for scenarios

involving random fields [35, 38]. For instance, Wang and

Goh [37] employed CNN to replace the RFE model for

predicting the probability of slope failures, highlighting the

model’s computational efficiency and accuracy. Addition-

ally, Wang, et al. [36] utilized three deep learning approa-

ches, including CNN, to evaluate the time-dependent

reliability of reservoir slopes, demonstrating that CNN per-

formed the best in the Bazimen landslide case study. Fur-

thermore, Wu, et al. [38] developed a CNN-based surrogate

model to predict wall deflection induced by braced excava-

tion in spatially variable soils, while Zhang, et al. [43]

applied CNN to analyse tunnel performance in spatially

variable soils. Despite these advances, the application of

CNN for 3D pile group reliability analyses in spatially

variable soils, as well as the integration of CNN models into

the LRFD framework for calibrating resistance factors,

remains unexplored.

In this paper, a CNN-based approach is proposed to cal-

ibrate resistance factors for pile groups with load test results.

Initially, a proper number of RFD simulations are conducted,

which are used to train a proposed CNN model. Subse-

quently, the accuracy of this model is validated, and it is

employed as a surrogate model to determine resistances for

individual piles and pile groups, based on a given random

field of soil properties. The trained model facilitates the

efficient execution of numerous simulations, allowing for the

direct determination of failure probabilities for individual

piles and the pile group through counting. Consequently, the

calibration of resistance factors is straightforward, enabling

the adjustment of these factors to achieve a target reliability

index (or probability of failure). Additionally, when load

tests are conducted on individual piles, the probability of

failure for the pile group is calculated using conditional

probability, leading to the recalibration of the resistance

factors to achieve the desired reliability index. The structure

of the paper is organized as follows: Sect. 2 presents the

methodology, providing a detailed description of the pro-

posed approach. Section 3 demonstrates the proposed

approach using a 3 9 3 pile group under vertical loads in

spatially variable soils, and the accuracy of the proposed

CNNmodel is validated. Building upon this, Sect. 4 explores

the influence of various factors on the calibrated resistance

factors, including load test results and their corresponding

locations, spatial variability of soil properties, test chains and

measurement errors. Section 5 summarizes the major find-

ings of the study.

2 Methodology

2.1 Calibration of resistance factors based
on individual proof load tests within LRFD

In LRFD, the resistance and load factors are used to

address the uncertainties associated with resistance and
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loads, respectively. When considering only dead and live

loads, the design equation for pile groups is defined as [3]:

/Rgn ¼ cDQDn þ cLQLn ð1Þ

where /, cD and cL represent the resistance factor, dead

load factor and live load factor, respectively. QDn and QLn

are the nominal dead load and nominal live load, respec-

tively. Rgn is the nominal pile group resistance, which is

usually determined by the group efficiency and the sum-

mation of individual pile resistances [28]. As noted by

Zhang, et al. [46], the group efficiency is a random variable

when pile groups are located in spatially variable soils.

Therefore, the mean group efficiency, gn, is utilized to

calculate the nominal pile group resistance:

Rgn ¼ gn
XN

i¼1

Rin ð2Þ

where Rin represents the nominal resistance of the ith pile.

In this paper, Rin is defined as the mean individual pile

resistance; thus, Rn ¼ R1n ¼ : : : ¼ RNn.

The limit state function, g, is established as the condi-

tion where the pile group resistance equals the sum of loads

transferred from the superstructure:

g ¼ Rg � QD � QL ¼ 0 ð3Þ

where Rg, QD and QL denote the pile group resistance, dead

load and live load, respectively. However, the actual loads

transferred from the superstructures are generally unknown

and are typically estimated as [2]:

QD ¼ kDQDn QL ¼ kLQLn ð4Þ

where kD and kL are the dead and live load bias factors,

respectively.

By substituting Eqs. (1), (2) and (4) into Eq. (3), the

limit state function for pile groups is derived as follows:

g ¼ Rg

/NgnRn

� cDjþ cLð Þ � kDjþ kLð Þ ¼ 0 ð5Þ

where N is the number of piles within the group. j is the

ratio of dead to live load, j¼QDn=QLn.

In Eq. (5), load factors are specified according to dif-

ferent limit states as outlined by AASHTO [3]. If the

Strength I limit state is considered, cD ¼ 1:25 and

cL ¼ 1:75. j typically ranges from 2 to 5 across various

superstructures, but it has a minimal impact on resistance

factors [1]. Thus, j ¼ 2 is considered in this study. For

foundation designs, kD and kL are assumed to follow a

lognormal distribution. Their mean (i.e. lkD and lkL ) and
standard deviations (i.e. rkD and rkL ) are derived from

Paikowsky [24]. Consequently, a critical task in calibrating

resistance factors is determining Rg. Furthermore, when

proof load tests are conducted on individual piles within

the group, the corresponding individual pile resistances,

R ¼ R1; R2; ::: ; RNð Þ, are crucial in assessing whether the

tested piles fail or not.

This paper describes the use of a trained CNN model to

generate a large dataset (e.g. one million) for Rg and

R ¼ R1; R2; ::: ; RNð Þ. Initially, a limited number of RFD

simulations are conducted to create the training database,

with the specifics of the RFD analysis detailed in Sect. 2.2.

This database is then employed to train CNN models, the

architecture of which is outlined in Sect. 2.3. The model

inputs are the random fields of soil properties, h, while the

outputs include R ¼ R1; R2; ::: ; RNð Þ and Rg. Following

this, the trained CNN model is applied to calculate the

resistances of individual piles and the pile group using the

designated random fields of soil properties. After that, the

trained CNN model is utilized to derive

R ¼ R1; R2; ::: ; RNð Þ and Rg with the given random fields

of soil properties.

Without conducting load tests, the probability of failure

for the pile group, P Fg

� �
, is calculated as follows:

P Fg

� �
¼ 1

NT

XNT

j¼1

I g /0; hj
� �

\0
� �

ð6Þ

where NT represents the total number of simulations. I �ð Þ is
the indicator function, which is assigned a value of 1 when

the specified condition in the bracket is satisfied. g /0; hj
� �

denotes the limit state function corresponding to the jth

random field of soil properties, hj, given a trial resistance

factor, /0.

The reliability index of the pile group is determined as:

b ¼ �U�1 P Fg

� �� �
, where U�1 is the inverse cumulative

distribution function of the standard normal distribution.

The trial resistance factor, /0, is then adjusted to achieve a

target reliability index, bGT. In this study, the bisection

method is utilized to iteratively adjust /0 until

b� bGTj j � 0:01.

With load tests conducted on individual piles, it is

assumed that the proof test load is T , and the measurement

error is e. Generally, e is assumed to follow a normal dis-

tribution with a mean of zero, le ¼ 0 and a standard

deviation of re. For simplification, it is assumed that re
exhibits a proportional relationship with the corresponding

measurements, denoted as re ¼ aT . The value of a depends

on the specific load test techniques used and the method

employed to interpret the test results. If the load test is

conducted on the ith pile, the probability that the pile fails

to pass the test is as follows:

P Fið Þ ¼ 1

NT

XNT

j¼1

I Ri hj
� �

\T � e
� �

ð7Þ
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where Ri hj
� �

represents the resistance of the ith pile cor-

responding to the jth random field of soil properties, hj.
Based on Eq. (7), the probability that the pile passes the

test is:

P Fi

� �
¼ 1� P Fið Þ ð8Þ

Given that the proof load test is conducted on the ith

pile, and the pile fails, the probability that the pile group

fails is denoted as P Fg Fij
� �

, which is obtained using con-

ditional probability:

P Fg Fij
� �

¼
P Fg \ Fi

� �

P Fið Þ ð9Þ

where P Fg \ Fi

� �
is the probability that both the ith pile

and the pile group fail, which can be obtained as follows:

P Fg \ Fi

� �
¼ 1

NT

XNT

j¼1

I Ri hj
� �

\T � e; g /0; hj
� �

\0
� �

ð10Þ

Based on the proof load test result that the ith pile failed,

the reliability index of the pile group is determined as:

b ¼ �U�1 P Fg Fij
� �� �

. Finally, the trial resistance factor,

/0, is adjusted to achieve a target reliability index, bGT.

2.2 Pile resistances in spatially variable soils
using RFD analysis

The resistances of individual piles and pile groups in spa-

tially variable soils are assessed through RFD analysis,

which combines random field theory with FD analysis. The

RFD analysis comprises two main components: the gen-

eration of random fields of soil properties and the FD

analysis of pile resistances.

Random field theory has been utilized to explicitly

model the spatial variability of soils, enhancing the prob-

abilistic analysis and reliability-based design of geotech-

nical structures [8, 10, 17]. In the context of pile

foundations in undrained clay, pile resistances are pri-

marily influenced by the undrained shear strength, cu,

[22, 30]. Consequently, this paper assumes cu as a random

field while maintaining other parameters (e.g. shear mod-

ulus) as constants. Using random field theory, a 3D spa-

tially distributed cu is characterized by specified statistical

parameters, including mean, lcu , coefficient of variation,

COVcu , and spatial correlation length, H. The soil spatial

variability displays anisotropic spatial variability, with the

horizontal correlation length, Hh, is generally much higher

than the vertical correlation length, Hv. Therefore, an

anisotropic random field is adopted and generated using the

open-source toolbox ’GSTools’ [20].

The FLAC 3D software [13] is employed to determine

the resistances for both individual piles and pile groups. To

obtain the individual pile resistances, a FD model with the

interested pile is first constructed (i.e. Fig. 1a), where the

soil is modelled using the Mohr–Coulomb failure criteria

and the pile is represented by an inbuild linear structural

element with interface properties. Then, the random field of

cu is mapped into soil elements. Subsequently, a dis-

placement-controlled vertical load is applied to generate a

load–displacement curve. The individual pile resistance is

determined using the ISSMFE criterion [12], which cor-

responds to the displacement of piles which is 10% of the

pile diameter. Owing to the variation in soils surrounding

individual piles, the individual pile analyses need to be

repeated for N times to obtain R ¼ R1; R2; ::: ; RNð Þ. For
pile group resistance, Rg, a FD model of the pile group is

first constructed in the same random field of cu (i.e.

Fig. 1b), followed by the application of a displacement-

controlled vertical load. For simplicity, the pile group is

considered freestanding, and the pile cap is assumed to be

rigid, not undergoing rotation under vertical loads.

Thereby, the pile cap does not need to be modelled in the

pile group model, and all the individual piles undergo the

same displacement under vertical loads. The total load

acting on the pile group is calculated as the sum of the

loads on individual piles [48]. The same failure criterion

[12] utilized for individual piles is applied to determine Rg.

A detailed description of the pile resistance analysis using

RFD analysis can be found in Zhang, et al. [46].

2.3 Proposed CNN model

Conventional CNN is generally used to process images

composed of pixels. Each pixel features three channels

corresponding to the primary colours: red, green and blue,

with each pixel thus described by three intensity values for

these channels. Therefore, the CNN receives this pixel data

from the image to be processed. When adapting CNN for

processing random fields, the discretized soil elements in

FD models serve a role analogous to that of pixels in image

processing. In this analogy, the random field of soil prop-

erties is equivalent to the channel, and the magnitude of the

soil property for each soil element is similar to the channel

intensity of a pixel in conventional image processing.

Typically, a CNN model comprises six major components:

the input layer, convolution layer, pooling layer, activation

layer, fully connected layer and output layer. These layers

facilitate the construction of diverse architectures tailored

to specific problems. The architecture of the CNN model

used in this paper is depicted in Fig. 2, while the details of

layers and parameters are summarized in Table 1. This

configuration was established through a trial-and-error
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methodology, informed by previously proposed architec-

ture designs [6, 35]. Key layers in the proposed CNN

model are elaborated as follows.

Input layer: the input layer contains the relevant soil

property information essential for model construction. In

this study, the soil medium is modelled as a cuboid of

dimensions 30 m 9 30 m 9 20 m, which is discretized

using cubic elements with a uniform side length of 1 m.

Since only the undrained shear strength, cu, is treated as

random fields, the number of channels is one. Therefore,

the input layer comprises a size of 30 9 30 9 20 9 1,

where ‘30 9 30 9 20’ represents the size of the soil

domain in FD models, while ‘1’ denotes the random field

of cu.

3D convolution layer: a 3D convolution layer applies

sliding cuboidal convolution filters to extract features from

the 3D input. Specifically, the 3D filter moves over the

input 3D random field of cu, computing the dot product of

the weights with the input and then adding a bias term.

These weights and biases are trained to capture salient

features from the input. In the 3D convolution layer, the

stride, padding, filter size, and number of filters are com-

mon hyperparameters that need to be defined. Stride rep-

resents the step size that filters move each time, while

padding means adding extra borders of the layer input. A

stride size of 1 9 1 9 1 is selected, while a zero padding is

chosen to maintain the spatial dimensions of the output.

The filter configuration is determined as 2 9 2 9 2@32,

which means the filter size is 2 9 2 9 2 and the number of

filters is 32. In the proposed CNN model, each 3D con-

volution layer is followed by a batch normalization layer,

which enhances training stability and accelerates network

training.

Activation layer: the activation layer is utilized to

enhance the nonlinear characterization capability of mod-

els. Different activation functions are available, such as the

Fig. 1 FD model of single piles and pile groups in spatially variable soils

Fig. 2 Architecture of the proposed CNN model
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rectified linear unit (ReLU), f xð Þ ¼ max 0; xð Þ, tanh func-

tion, f xð Þ ¼ tanh xð Þ, and sigmoid function,

f xð Þ ¼ 1= 1þ e�xð Þ. A distinctive feature of the ReLU is its

unbounded output for positive inputs, unlike the bounded

outputs of sigmoid and tanh functions. Additionally, the

gradients of the ReLU are either zero or one, which sig-

nificantly accelerates computational processes compared to

sigmoidal functions [6]. Furthermore, the ReLU demon-

strates superior convergence properties in stochastic gra-

dient descent (SGD) algorithms, surpassing both sigmoid

and tanh functions in this regard [26, 29]. Therefore, the

ReLU is adopted in this study.

Pooling layer: the fundamental concept behind pooling

layers is downsampling, which effectively reduces the

spatial dimensions of data. There are two principal types of

pooling: max pooling and average pooling. Max pooling

selects the maximum value from each subarray, whereas

average pooling computes the mean value. Average pool-

ing layers are adopted instead of max pooling layers, as the

pile resistances are primarily governed by the overall soil

properties along the pile depth rather than extreme value

for specific locations. In this model, the average pooling

operation is selected with a pooling size of 2 9 2 9 2 and

stride of 2 9 2 9 2.

Fully connected layer: a fully connected layer is adopted

at the end of the proposed CNN model, where all neurons

in one layer are connected with every neuron in the sub-

sequent layer. The fully connected layer processes the

flattened tensor received from the preceding hidden layer,

transforming these inputs into the desired outputs. For this

specific application, the layer outputs vectors correspond-

ing to individual pile resistances and the pile group

resistance.

2.4 Procedure of the proposed approach

The procedure of the proposed approach is summarized as

follows:

Step 1: Generate random fields of cu based on specified

statistical parameters, via random field theory.

Step 2: Map the values of cu to the individual pile and

pile group models. Compute individual pile resistances and

pile group resistance, according to Sect. 2.2.

Step 3: Repeat steps 1 and 2 for N1 times to generate the

training database.

Step 4: Divide the database generated in Step 3 into

training and validation datasets. Utilize these datasets to

train the proposed CNN model, as described in Sect. 2.3.

The CNN model is designed to learn the mapping rela-

tionship between the input soil properties and the output

pile resistances.

Step 5: Generate additional NT random fields of cu.

These random fields are then used as inputs for the trained

CNN model, to derive NT sets of values for

R ¼ R1; R2; ::: ; RNð Þ and Rg.

Step 6: In cases where load tests have not been con-

ducted, the resistance factor is calibrated using Eq. (6) and

the methodology outlined in Sect. 2.1.

Step 7: In cases where load tests have been conducted,

the resistance factor is calibrated following Eqs. (7) to (10)

and the methodology described in Sect. 2.1.

3 Example

To demonstrate the proposed approach, a 3 9 3 pile group

subjected to vertical loads in undrained clay is utilized. The

pile length (L) is 10.5 m, with 10 m embedded in clay. The

pile diameter (D) is 1.0 m while the pile spacing (d) is 3 m.

Table 1 Details of layers and parameters of the CNN model

Layer Filter Stride Pooling Output size

3D Convolution

? batch normalization ? ReLU

2 9 2 9 2@32 1 9 1 9 1 – 29 9 29 9 19 9 32

3D Convolution

? batch normalization ? ReLU

2 9 2 9 2@32 1 9 1 9 1 – 28 9 28 9 18 9 32

3D Average pooling – – 2 9 2 9 2 14 9 14 9 9 9 32

3D Convolution

? batch normalization ? ReLU

2 9 2 9 2@32 1 9 1 9 1 – 13 9 13 9 8 9 32

3D Average pooling – – 2 9 2 9 2 6 9 6 9 4 9 32

3D Convolution

? batch normalization ? ReLU

2 9 2 9 2@32 1 9 1 9 1 – 5 9 5 9 3 9 32

3D Convolution

? batch normalization ? ReLU

2 9 2 9 2@32 1 9 1 9 1 – 4 9 4 9 2 9 32

Fully connected – – – 1 9 10
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The elastic modulus (EP) is determined to be

2.2 9 107 kPa, and the Poisson ratio is set at 0.3. For the

soil medium, only the undrained shear strength, cu, is

treated as a random variable, with a mean value

lcu ¼ 20 kPa. The general range of COVcu was 10%–55%

[27], and COVcu ¼ 50% is adopted for probabilistic anal-

yses. Moreover, an anisotropic spatial correlation length is

adopted [27] with the horizontal correlation length,

Hh ¼ 40 m, significantly exceeding the horizontal corre-

lation length, Hv ¼ 5 m. The values of shear modulus, G,

and bulk modulus, K, are determined as 1.3 9 103 kPa and

6.0 9 103 kPa, respectively, following Bowles [5].

For training the proposed CNN model, an initial set of

1000 RFD simulations is conducted following Sect. 2.2, to

generate the individual pile resistance and the pile group

resistance. The initial dataset of 1000 samples is then

divided into training and validation datasets with a ratio of

80:20 [44] to train and validate the proposed CNN model.

Once the CNN model is trained, an additional 5000 random

fields of soil properties are generated, and corresponding

random finite difference (RFD) analyses are performed to

obtain the true resistance factors. These true resistance

factors are then compared with the resistance factors cali-

brated using the pile resistances predicted by the trained

CNN model. This comparison is conducted to further

evaluate the accuracy and reliability of the proposed deep

learning-based approach for calibration purposes. The

configurable hyperparameters of the CNN model utilized in

this study are detailed in Table 2. The stochastic gradient

descent (SGD) algorithm [21] is employed to optimize the

filter weights and biases during model training. The accu-

racy of the CNN model is quantitatively assessed using the

root mean square error (RMSE) and mean absolute per-

centage error (MAPE), which are defined in Eqs. (11) and

(12), respectively.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ŷ� yið Þ2
s

ð11Þ

MAPE ¼ 1

n

Xn

i¼1

ŷ� yi
yi

����

����� 100% ð12Þ

where ŷ and yi are the values predicted by the CNN model

and calculated by RFD analyses, respectively.

3.1 Validation of FDM

To validate the FD models, a deterministic analysis is

performed with the mean undrained shear strength and

COVcu ¼ 0. The results from this deterministic analysis are

then compared with those derived from empirical static

formulas as proposed by Poulos and Davis [28].

According to Poulos and Davis [28], for piles in clays,

the individual pile resistance, R, is calculated using the

following formula:

R ¼
Z L

0

Ucuadzþ AbcuNc ð13Þ

where U is the pile perimeter, a is the undrained pile–soil

adhesion factor, Nc is the bearing capacity factor.

To calculate the pile group resistance, Rg, the following

empirical relationship is suggested by Poulos and Davis

[28]:

1

R2
g

¼ 1

n2R2
þ 1

R2
B

ð14Þ

RB ¼ BrLrcuNc þ 2ðBr þ LrÞLcu ð15Þ

where RB is the bearing capacity for block failure of the

group; cu is the average undrained shear strength. For a

3 9 3 pile group considered herein, Lr ¼ Br ¼ 2d þ D.

The undrained pile–soil adhesion factor, a, varies con-

siderably with many factors, such as the types of piles, the

soil conditions and the pile installation methods [28]. The

typical relationship between a and cu for driven piles has

been reported by McClelland [19]. It is generally accepted

that a ¼ 1 for soft clays (e.g. cu � 24 kPa). The value of the

bearing capacity factor, Nc, has been proposed by

Skempton [32]. When calculating R, the value of Nc is

limited to a maximum value of 9 for the pile length larger

than four times of the pile diameter [9]. When calculating

RB, the value of Nc is a function of Lr=Br and L=Br, and the

curve is provided in Poulos and Davis [28].

Based on Eqs. (13) to (15), the individual pile resistance

and pile group resistance are 770 kN and 6168 kN,

respectively. These values are comparable to the results

obtained from FLAC3D, which are 776 kN for the indi-

vidual pile resistance and 6623 kN for pile group resis-

tance, respectively, validating the adopted FD models.

Table 2 Configurable hyperparameters of the CNN

Learning rate Maximum epoch Minimum batch size Data shuffle L2-regularization Validation frequency

0.01 500 64 Every epoch 0.0001 50
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3.2 Accuracy of the CNN model

This subsection evaluates the accuracy of the CNN model

trained by different sample sizes (e.g. 100, 200, …, and

1000 samples). For example, Fig. 3a indicates 100 samples

are utilized for training the CNN model, which means that

80 samples are utilized for training and 20 samples are

employed for validation during the training process. The

trained CNN model is subsequently adopted to predict the

individual pile resistances and pile group resistance using

the 5000 random fields in the testing dataset. Figure 3

shows the CNN-predicted centre pile resistance (i.e. pile 5)

and the corresponding RFD-calculated resistances, which

demonstrates that data points become more closely aligned

with the 1:1 line as the number of training samples

increases, indicating enhanced predictive performance of

the CNN model. The RMSE, MAPE, and coefficient of

determination (R2) are calculated for each sample size and

depicted in Fig. 3. A decreasing trend in RMSE and MAPE

and an increasing trend in R2 values are observed as the

training sample size increases. Specifically, RMSE and

MAPE decrease from 1.7 9 106 N and 13.1% with 100

samples to 3.6 9 104 N and 3.6% with 1000 samples,

respectively. Conversely, the R2 rises from 0.718 to 0.985

as the sample size increases from 100 to 1000. These trends

suggest that larger training datasets enable the CNN model

to learn more comprehensive features associated with the

spatial variation of the random properties, resulting in

improved prediction accuracy.

Figure 4 displays a boxplot comparison of pile resis-

tances across different sample sizes for individual piles and

the pile group. Results illustrate that as the number of

training samples increases from 50 to 1000, both the mean

and median values of the CNN-predicted/RFD-calculated

ratios gradually converge towards 1. Simultaneously, the

standard deviation (SD) of the ratio, which serves as an

indicator of estimation uncertainty, also decreases with an

increase in sample size.

The accuracy of the proposed CNN model is further

evaluated by comparing the real resistance factors with

those calibrated using the trained CNN model. Specifically,

for the pile group to achieve a target reliability index of

2.33, without conducting load tests on individual piles, the

real resistance factor and the calibrated resistance factor

based on the trained CNN model are 0.73 and 0.72,

respectively. When one proof load test is conducted on pile

1 that passes, the real and the one calibrated using the CNN

model increase to 1.03 and 1.05, respectively. Conversely,

if one proof load test is conducted on pile 1 that fails, the

real and the one calibrated using the CNN model decrease

to 0.67 and 0.66, respectively. The good agreement

between these resistance factors demonstrates the accuracy

and reliability of the proposed CNN model.

3.3 Important soil zones detected by the CNN
model

The local soils surrounding piles play a more critical role in

determining pile resistance than the broader soil domain.

While this study uses the entire soil domain as input fea-

tures, the CNN model effectively captures the significant

influence of the local soils surrounding the pile. This is

demonstrated through the application of the Saliency Maps

technique [31], which calculates the gradients of the output

pile resistance with respect to the input soil properties and

visualizes the relative importance of different regions

based on these gradients. Areas with higher gradient

magnitudes are interpreted as having a greater influence on
Fig. 3 RFD versus CNN for centre pile (pile 5) resistance with

different sample sizes

Fig. 4 Boxplot comparison of pile resistances across different sample

sizes for individual piles and the pile group
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the model’s predictions, thereby identifying the critical

regions of soil properties that most significantly affect the

prediction of pile capacities. Figure 5 illustrates gradient

maps across various depths, revealing that the soils within

or surrounding the pile group area contribute more sub-

stantially to the predicted pile resistances compared to soils

located farther from the pile group.

4 Results

4.1 Effect of the test results and corresponding
test locations

This subsection assesses the impact of load test results and

their corresponding test locations on the calibrated resis-

tance factors. The measurement error is assumed to be

re ¼ 0:1 T . For demonstration purposes, it is assumed that

three pile load tests are performed on piles 1, 5, and 9, with

a variety of resulting outcomes being observed and anal-

ysed. It is noted that when one test fails among three tests,

and the failed pile would be either pile 1, pile 5 or pile 9,

the symmetry of the pile group implies that the results for

piles 1 and 9 are identical. Consequently, two distinct

resistance factors are derived when one test fails among

three tests.

Figure 6 presents the impact of load test locations on

resistance factors. Specifically, if only one pile failed

among three load tests, the failure of pile 5 results in a

lower resistance factor compared to failures in pile 1 or pile

9. This is attributed to the central position of pile 5, which

holds more critical information regarding the reliability of

the pile group. As such, a failure at the central location

suggests a higher likelihood that the entire pile group might

fail, thereby necessitating a lower resistance factor to meet

the target reliability index [46].

It is observed from Fig. 6 that resistance factors gener-

ally decrease as the number of failed tests increases, as also

noted by Zhang, et al. [45]. For comparative purposes, the

resistance factor without load tests is also included in

Fig. 6, indicating that only when all three piles fail in the

tests does the resistance factor fall below that obtained

Fig. 5 Gradient maps at various depths
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without conducting load tests. This observation under-

scores the significant potential of load tests to yield higher

resistance factors, potentially reducing pile construction

costs.

4.2 Effect of the horizontal correlation length

This subsection evaluates the influence of the horizontal

correlation length, Hh, on the calibrated resistance factors.

Again, it is assumed that the measurement error is

re ¼ 0:1 T . Four different values of Hh are considered,

specifically 5 m, 10 m, 20 m and 40 m, while Hv is fixed

at 5 m. Figure 7 illustrates the calibrated resistance factors

for various values of Hh under different load test scenarios.

In particular, Fig. 7a presents cases where all tested piles

yield identical test results (i.e. all fail or all pass) and cases

where no tests are conducted. In contrast, Fig. 7b depicts

cases where tested piles yield different test results (i.e.

some piles pass while others fail). In these figures, the

notation ‘F’ means the tested pile fails the test while the

notation ‘P’ represents the tested pile passes the test. The

prefix number identifies the specific pile tested. For

example, ‘1P5F’ indicates that load tests were conducted

on pile 1 and pile 5, with pile 1 passing and pile 5 failing.

In Fig. 7a, when no tests are conducted, resistance fac-

tors decrease asHh increases. This decrease occurs because

a larger Hh leads to greater similarity in soil properties

around individual piles, causing the resistances of indi-

vidual piles more likely to be uniformly high or low. As a

result, the pile group system exhibits lower overall relia-

bility, necessitating a lower resistance factor to achieve the

target reliability index. In contrast, when Hh is small, the

resistances of individual piles are less dependent on each

other. In this scenario, weaker piles can be compensated by

stronger ones, enhancing the overall reliability of the pile

group, and thereby allowing for a higher resistance factor.

Similarly, when all tested piles either pass or fail, the

untested piles are more likely to exhibit similar outcomes

as Hh increases, enabling the adoption of higher or lower

resistance factors, respectively.

In Fig. 7b, when the tested piles yield different test

results (i.e. some piles pass while others fail), the resistance

factors exhibit a non-monotonic trend. Specifically, the

resistance factors initially decrease and subsequently

increase, which aligns with observations reported in [46].

For instance, when two load tests are conducted on Pile 1

and Pile 5, where Pile 1 passes the proof test and Pile 5

fails, the resistance factor decreases from 0.88 to 0.85 as

Hh increases from 5 to 20 m. However, as Hh further

increases to 40 m, the resistance factor increases to 0.89.

4.3 Effect of the coefficient of variation

This subsection investigates the influence of the coefficient

of variation of undrained shear strength, COVcu , on the

calibrated resistance factors. It is assumed that the

Fig. 6 Resistance factors with different test results and test locations

Fig. 7 Resistance factors as a function of Hh and test results: a consistent observations and b inconsistent observations
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measurement error is re ¼ 0:1 T , while Hh ¼ 40m and

Hv ¼ 5m. Figure 8 illustrates the variation in resistance

factors for different values of COVcu under various test

scenarios. Results indicate that resistance factors decrease

as COVcu increases, regardless of the number of tests or

their corresponding outcomes. For example, when one load

test is conducted on Pile 1 and passes, the resistance factor

decreases from 0.96 to 0.90 as COVcu increases from 20 to

100%. Similarly, when three load tests are conducted on

Pile 1, Pile 5 and Pile 9, with Pile 1 passing while Pile 5

and Pile 9 fail, the resistance factor decreases from 0.91 to

0.79. This trend is primarily attributed to the increase in

COVcu , which leads to greater variability in individual pile

resistances. Consequently, the reliability of the pile group

system decreases, necessitating a lower resistance factor to

achieve the target reliability index.

4.4 Effect of the test chains

This subsection examines the effect of test chains on the

calibrated resistance factors. It is assumed that Hh ¼ 40 m

and Hv ¼ 5 m. Additionally, two distinct measurement

errors (i.e. re ¼ 0:1 T and re ¼ 0:3 T) are considered to

represent varying levels of accuracy in testing approaches.

Figure 9 illustrates resistance factors as a function of test

chain configurations and measurement errors. As shown in

Fig. 9, resistance factors vary significantly across different

test chains. Specifically, for re ¼ 0:1 T , conducting one

load test on pile 1 that passes results in increased resistance

factors compared to scenarios without load tests (i.e.

/ ¼ 0:66). Performing a subsequent test on pile 5 that fails

slightly reduces the resistance factors. However, if the

second test on pile 5 also passes, the resistance factor

increases further. In cases where the two tests have been

conducted with both passing, a third test on pile 9 that fails

leads to a slight reduction in the resistance factor. Never-

theless, the resistance factor remains higher than the value

obtained when only one load test is conducted on pile 1 that

passes. Similarly, in cases where two tests have been

conducted with pile 1 passing and pile 5 failing, a third test

on pile 9 that passes results in the increase in resistance

factors, surpassing the value obtained from only one load

test conducted on pile 1 that passes. These observations

highlight the critical role of load tests in reducing the

uncertainty associated with pile resistance.

Additionally, Fig. 9 indicates that lower measurement

errors yield higher resistance factors for a given chain. This

trend is attributed to the higher accuracy of the testing

method, which enhances confidence in the results, thereby

justifying the use of higher resistance factors.

5 Conclusions

This paper proposes a CNN-based approach to calibrate

resistance factors for pile groups with individual pile load

tests. A novel CNN model is developed and demonstrated

to accurately substitute the computationally demanding

RFD analyses of pile groups. By employing the trained

CNN model, a comprehensive dataset of individual pile

resistances and pile group resistances in spatially variable

soils is generated. Subsequently, resistance factors are

calibrated to achieve a specified reliability index through

direct counting and the application of conditional proba-

bility based on the outcomes of individual pile load tests.

To validate the proposed approach, a pile group is anal-

ysed, and the key findings are summarized as follows:

Fig. 8 Resistance factors with various COVcu

Fig. 9 Resistance factors with various test chains and measurement

errors
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(1) The proposed CNN-based approach effectively cap-

tures the impact of load test locations on resistance

factors. Specifically, the failure of the central pile

results in a lower resistance factor compared to

failure at the corner piles, whereas the success of the

central pile yields a higher resistance factor than a

similar outcome at the corner piles.

(2) The effect of horizontal spatial correlation length on

calibrated resistance factors is dependent on load test

outcomes. When all tested piles pass, resistance

factors increase as the horizontal spatial correlation

length increases. Conversely, when all tested piles

fail, resistance factors decrease as the correlation

length increases. Additionally, when multiple load

tests yield mixed results (i.e. some piles pass while

others fail), there exists a critical spatial correlation

length, typically between 10 and 20 m, correspond-

ing to the lowest resistance factors.

(3) The coefficient of variation of soil properties and the

measurement error in load tests exhibit a similar

effect on the calibrated resistance factors. Specifi-

cally, resistance factors decrease as either the

coefficient of variation of soil properties or the

measurement error increases.
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