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ARTICLE INFO ABSTRACT

Recommended by T. Parisini An artificial neural network (ANN) is combined with gradient descent to form a model-free iterative learning
control (ILC) approach than can be applied to a wide range of nonlinear discrete-time systems. The ANN is
recursively trained on the entire set of past data collected from the system and uses a passivity condition
to determine when the ANN can be used to compute the next ILC update, or if an identification test is
needed. Convergence properties are established alongside design selections that ensure the passivity condition
is fulfilled. By minimising the reliance on identification tests, this methodology is substantially faster than
existing model-free ILC algorithms. It is tested on a key stroke rehabilitation problem using functional electrical
stimulation (FES) for hand/wrist tracking. Experimental results using the new ILC approach with eight
participants show that three hand/wrist references can be tracked using an average of 56% fewer experimental
inputs compared with the most accurate previous approach. As the first approach to combine ILC and machine
learning in upper limb rehabilitation, the results demonstrate how their combination addresses their individual
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deficiencies.

1. Introduction

Stroke is a leading cause of death and disability worldwide (Feigin
et al., 2022) and is the result of a loss of blood flow in regions of the
brain. Approximately 70% of stroke survivors experience upper limb
dysfunction, and only a small fraction fully recover (Eraifej, Clark,
France, Desando, & Moore, 2017). In 2022, the global cost of stroke
was $891 billion, and the economic impact will continue rising without
strong prevention, healthcare, and rehabilitation strategies (Saposnik
et al., 2022).

Rehabilitation consists of the patient repeatedly performing a func-
tional task, such as reaching to push a switch or grasp an object.
The sensory feedback they receive (proprioceptive, haptic, and visual)
then helps them to re-learn lost movement via neuroplasticity. Early,
intensive functionally-oriented therapy can deliver a long-lasting im-
provement to motor function (Ballester et al., 2022), and the 2023
stroke clinical guidelines recommend patients receive at least 3 hours
per day (Intercollegiate Stroke Working Party; London, 2023). However
current provision consists of mainly manual assistance from a therapist
for only half an hour, three times per week (Stockley, Peel, Jarvis,
& Connell, 2019). Therefore, rehabilitation technologies are urgently
needed to deliver the high doses of therapy required.

Functional electrical stimulation (FES) is the most widely used reha-
bilitation technology, and involves placing electrode pads on the skin
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through which electrical impulses are applied to artificially stimulate
the underlying muscles (Hughes et al., 2014). If adequately controlled,
FES enables patients to practice movements and relearn their lost
sensorimotor function. FES has substantial clinical evidence (Eraifej
et al., 2017) and is strongly recommended by the UK National Clinical
Stroke Guidelines (Crow & Smith, 2023).

Commercial FES systems use large electrode pads, with stimulation
delivered using pre-set openloop profiles. This means they cannot pre-
cisely activate the numerous upper limb and forearm muscles essential
for dexterous arm and hand motion (Marquez-Chin, Kapadia-Desai, &
Kalsi-Ryan, 2021). To overcome this problem, FES electrode arrays
have recently emerged and comprise multiple electrode pads arranged
in a single structure. Recent examples are low cost, washable, and can
even be integrated in everyday clothing (Yang et al., 2018). However,
their control is still challenging due to the large number of muscles in
the forearm, their sensitivity to array positioning, the complexity of the
tendon network and coupled musculoskeletal dynamics, and day-to-day
variation in physiological response to stimulation.

The majority of controllers for FES arrays manually select electrode
pads based on visual assessment of the resulting movements (Bijelic,
Popovic¢-Bijeli¢, Jorgovanovi¢, Bojani¢, & Popovi¢, 2004), or measure-
ment of joint angle deviation (O’Dwyer, O’Keeffe, Coote, & Lyons,
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2006). This process has been automated by stimulating each array
pad in turn to find the one producing most force (Popovi¢ & Popovic,
2009; Schill, Rupp, Pylatiuk, Schulz, & Reischl, 2009), taking 10 min.
Later modifications used combinations of electrodes (Hoffmann, Dein-
hofer, & Keller, 2012), the muscle twitch response (Malesevi¢ et al.,
2012), points specified by therapists (Popovi¢-Maneski et al., 2013),
and electromyography (De Marchis, Santos Monteiro, Simon-Martinez,
Conforto, & Gharabaghi, 2016; Maneski et al., 2016) to reduce the
search time. However, the resulting movement was still crude, and took
several minutes.

1.1. FES array control approaches

Few model-based feedback approaches have been used due to the
difficulty in modelling and identifying the complex, high dimensional
system dynamics. The exception is ILC, which has a long history of
use in FES based rehabilitation (Freeman, 2016). ILC uses data from
previous attempts of a repeated tracking task to update the control
signal applied in the current attempt. This matches the rehabilitation
process exactly, and this connection has led to ILC being used in
multiple clinical studies with stroke patients (Freeman, 2016).

When applied to FES arrays, ILC has delivered higher accuracy than
all other approaches (Freeman, 2014; Yang et al., 2018), (mean joint
error < 5° for pointing, pinch and open hand movements). However,
the absence of a reliable model meant it required identification tests
to be performed between each ILC update. It therefore took 10 min to
track each hand gesture, and it must be repeated when the FES array
is moved. This is still too long for clinical or home use. To reduce this
time, Sun and Freeman (2024b) developed an ILC algorithm that used
a piecewise mapping model which was recursively updated to replace
the identification procedure. However it required that experimental
data points had been collected in every segment of the mapping do-
main, meaning that a large amount of data was needed for multiple
stimulation channels.

Aside from ILC, few advanced control approaches have been applied
to FES arrays. An exception is (Imatz-Ojanguren, Irigoyen, Valencia-
Blanco, & Keller, 2016), in which a recurrent fuzzy artificial neural
network (ANN) was trained to map between a 16 element FES array and
the resulting wrist/finger angles. Experimental results showed accu-
racy of over 60%. However, the training data (comprising randomised
pulses) were uncomfortable to patients and could only capture simple
movements. Data were also collected by an instrumented glove which
cannot be worn by most patients. The training took 45 min and would
need repeating for each treatment session.

1.2. Artificial neural network-based ILC

An obvious route is to harness the ability of machine learning
to learn complex dynamics, while retaining the ability of ILC to use
minimum data, retain precise control of inputs, embed implicit inter-
pretability, and benefit from rigorous theoretical convergence proper-
ties.

Integrating ILC and ANNs has not been applied to FES arrays, but
has been proposed by several authors. In Wang and Chien (2012)
an adaptive neural ILC update employed an output recurrent NN to
estimate plant nonlinearities via online learning, but required full state
measurements and stability conditions that are difficult to guarantee
in practical applications. A similar approach in Chen and Wen (2020)
proposed a neural-network-enhanced ILC method that approximated
inverse system dynamics via offline learning. Similarly, Liu, Wang, and
Chi (2015) used a radial basis function neural network to represent
nonlinear plant dynamics in an adaptive ILC scheme. However, all these
methods required high-dimensional, dense datasets, are not designed
for multiple task generalisation, and lack theoretical guarantees on
convergence or robustness.
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A closely related field is that of optimization-based data-driven ILC.
While many such approaches assume linear dynamics (He et al., 2022;
Soleimani, Sedigh, & Nikoofard, 2025; Tian et al., 2025; Zhang & Zou,
2024), others have been developed for nonlinear systems. Several of
these employ extra experiments to generate the update signals used by
each ILC update (Huo, Freeman, & Liu, 2020; Lee, Cheng, Yuan, & Tsao,
2025; Lee, Rai, & Tsao, 2022), however the additional experiments
quickly become prohibitively time-consuming for MIMO systems. Other
data-driven schemes adaptively update a parameterised model of the
nonlinear system (Chi, Hou, Huang, & Jin, 2015; Chi, Hou, Jin, &
Huang, 2018; Chi, Li, Lin, & Huang, 2024; Zhu & Hou, 2014), which
is often combined with dynamic linearisation to simplify the control
action that is subsequently applied. While successful in many cases, lim-
itations have been pointed out by several authors (He et al., 2022; Hu
et al., 2024; Huang & Huang, 2024; Xu, Meng, & Wang, 2024): the dy-
namics are typically required to be SISO; performance is often sensitive
to initial parameter selection; to avoid slow convergence historical data
is needed to pre-train the model; tuning parameters/weights can be
challenging; and learning multiple references has not been considered.
A further limitation is a lack of transparency: e.g. there is no simply test
to decide whether more training data are needed to smooth transients
(which may be problematic in applications involving human subjects).

1.3. Contributions

The current paper introduces a neural ILC framework that combines
the capability of ANNs to learn complex dynamics with the rigorous
performance guarantees of model-free ILC. It is the first combination of
ILC and machine learning for FES control, and addresses the limitations
of prior attempts to combine these methods. It builds on the ILC
approach of Sun and Freeman (2024b), but significantly reduces the
amount of data required by exchanging piecewise linear mappings for
ANN structures. These provide greater efficiency, while guaranteeing
convergence to minimal error. Furthermore, we provide transparent
convergence conditions that inform ANN design and learning gain
selection, extending previous machine-learning-based FES control ap-
proaches with theoretical assurances. Initial results appeared in Sun
and Freeman (2024a) but did not include full proofs, hardware devel-
opment, implementation, or practical validation results. To summarise,
the contributions of this paper are:

« It develops the first framework combining ILC and ANNs to be
applied to FES based rehabilitation, with results confirming a
significant reduction in the amount of data required to achieve
hand and wrist gestures compared with all previous controllers.

It is the first combined ILC and ANN framework to support track-
ing of multiple reference trajectories. It also introduces theoretical
performance guarantees to significantly reduce the amount of
data required for ANN training compared to existing methods
combining ILC and ANNs.

Experimental results with eight participants demonstrate that its
matches the best existing hand and wrist tracking performance,
while using 56% fewer experimental tests than previous ILC
schemes.

Experiments employ low-cost control and sensing suitable for
home deployment with patients. This is the only example of using
3D depth cameras for FES tracking control, and demonstrates
feasibility.

The next section introduces the problem description.
2. Problem description

A general form of m-input, p-output nonlinear discrete-time system
is considered, and is defined by

x(t+ 1) = fx@,u@®), x©0)=x,
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y(@) = h(x®), 1=0,1,...,N -1 '6))

where, x(f) € RY is the state, u(r) € R” is the input, y(r) € R? is the
output and ¢ is the sample index.

Assumption 1. The vector functions f(-) and A(-) are continuously
differentiable with respect to their arguments.

This assumption and the general form (1) is common in ILC lit-
erature (Huo et al., 2020; Lin, Owens, & Hitonen, 2006), and also
encompasses a wide range of biomechanical systems used to design re-
habilitation and assistive technologies (Freeman, 2016; Freeman et al.,
2009). The fundamental tenet of ILC is that the system repeatedly
performs a tracking task over a fixed time duration of N samples. Each
attempt is termed a trial and is denoted by adding a subscript k € N
to each signal in (1). A second fundamental assumption is:

Assumption 2. The system resets to identical initial conditions between
each trial, i.e. x;(0) = x.

This is used in the vast majority of ILC research and is usually trivial
to satisfy for industrial processes. However, it may be more difficult
in other domains, especially those involving humans. The effect of
non-identical initialisation has therefore been studied in many papers,
including (Owens, Freeman, & Chu, 2014).

Given its fixed trial duration, it is standard practice in ILC to
compactly represent the system using the super-vectors

u=[uOT, wn)T, uN -7 | e RN, @
y=[ 0. »T. )T T e RN, ®)
r=[ 7, T, HN)T T e RN, 4)

This enables dynamics (1) to be expressed as the vector mapping y =
gw) : R"™ — RPN where gw) = [g®)7, gvy@T]T has the
t=1,... N elements

&(x(0), u(0), ... u(t — 1)) = h(x(1))
= h(f(x(t = D), u(t — 1)),
= h(f(f(x(t = 2),u(t — 2)),u(t — 1)),

= h(f(f (- £(x(0), u(0)), ..., u(t — D)), u(t — 1))).

Although in conventional ILC the system output y, tracks a sin-
gle reference trajectory, for successful rehabilitation the patient must
practice a range of tasks in a single treatment session. They attempt
each task multiple times, with a therapist moving their arm back to a
starting position (Freeman, 2016). Once they have completed each task
adequately well (as determined by the therapist), they then move on to
the next.

The control objective is therefore to track each reference using the
minimum number of ILC attempts. Since perfect tracking is infeasible
in practice, a prescribed upper limit on the tracking error will be used.
Enforcing a minimum number of ILC trials means that the optimum
assistance is found rapidly which maximises the patient benefit. In
practice, the number of attempts of each task will be decided by the
therapist and is typically between eight and ten.

No information about the system is available since the stimulated
arm dynamics are highly dependent on set-up and physiological condi-
tions that vary widely between sessions, and identification tests are not
possible. However all data collected while attempting to track previous
tasks can be used to track the next reference trajectory.

This gives rise to the following control objective:

Definition 1 (ILC Multi-Reference Tracking Objective). Define a set of n
reference trajectories, R = {r|,r,,...,r,}. For each r; € R in turn, the
ILC algorithm must compute a sequence of control inputs, {u;},_¢ ;. .
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that will converge to the solution u which minimises the tracking
error, i.e.

lim u; = u,

u 1= argmin J;(u),
k—oco ! u

Jw) = ||r; — g (5)

The ILC algorithm has no knowledge of system dynamics (1), but has
access to all input-output data measured when tracking the preceding
references ry,...r;_;.

The minimum number of trials required to track r; with an accuracy
of 6 is defined by

k;s :=min{k : |J;(u,) — J;(u")| < 6}. 6)

and the aim is to minimise the total number of trials needed to track
all references with an accuracy of 4, i.e.

n
minkg, kg = Zki’é. (7)
i=1

3. ILC application

The performance of the most common ILC approach used in FES-
based rehabilitation, see for example (Freeman, 2014; Lin et al., 2006;
Yang et al., 2018), is now analysed. This class of ILC has been suc-
cessfully applied in several upper limb clinical studies with stroke
patients (Freeman, 2016). The algorithm is intended to track one
reference, r;, using the update form

U =u + Lr; = yp) (€)]

where y, = g(u,) is generated by performing an experiment, and
L € RPNXmN g g learning operator that is designed based on the system
dynamics g. When it was applied to FES electrode arrays (Freeman,
2014), the choice

L=y W), 9)

was made, where y is a positive scalar. Update (9) has a simple
interpretation: it is the gradient based iterative minimisation of J;(u) =
lr; — g@)||?>, which has desirable properties including convergence to
minimal error and monotonic error norm reduction. Although there are
many alternatives including inverse (Lin et al., 2006) and norm-optimal
ILC, gradient ILC’s superior robustness margins have made it the most
popular model-based approach used in rehabilitation (Freeman, 2016).
Computing L requires knowledge of the local system model computed
about each new ILC signal, given by

08 (w) 58 (u)
sgw) e o e
gy = s | = : H (10$)
U=ty 5g,(w) 5g,(u)
ouy _ Sty _
u—uk u—uk

€ R™N*PN In Freeman (2014) and Yang et al. (2018) it was assumed
g(u;,) was unknown and must be identified experimentally. The authors
proposed finding g’(u,) by solving the identification problem

gy =argminJ(X), J(X) = |4y - X du]]® an

where X € RPVX"N with (4u, Ay) chosen to sufficiently excite the
system dynamics about (u,, y,). Here Au = u—u,, Ay = y—g(u,) are the
deviation from the operating point and (u, y) are the experimental input
and output signals. Algorithm 1 summarises the overall procedure. Here
an inner loop has been added to track each reference from set R, with
the inner learning process starting from the same initial input u, for
each r; € R. Algorithm 1 corresponds to the approach that was applied
to FES arrays in Freeman (2014), Ward et al. (2020) and Yang et al.
(2018). In these studies, three references were tracked, and an initial
input of u, = 0 was used for each one.
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Algorithm 1 Standard ILC for multiple references

Require: Reference r; € R, accuracy margin 6
fori=1:ndo
Set k = 0. Select starting input, u,, for reference r;.
while |J;(u;) - J;(u*)| < & do
Apply u; experimentally, record y, = g(u,).
Identify g’(u,) experimentally by applying input u and solving
an.
Compute new ILC update using (8).
k=k+1
end while
end for

3.1. Convergence results

The need for repeated identification tests means that standard ILC
requires many experiments to be performed. To quantify this, the
relationship between the number of tests and the resulting accuracy
(i.e. parameters k, § in (6)) is now derived. ILC update (9) will be
focused upon, due to its mathematical tractability. However, no ILC
convergence conditions exist for (9), so they are now derived. The next
result also bounds the number of ILC trials required to track the entire
set of n references, R.

Theorem 1. Suppose function g(u) is differentiable and for each r; € R the
error norm J,(u) := ||r; — gW)||* has a Lipschitz continuous gradient with
constant L > 0. Suppose ILC update (9) is applied to track all references
in R each time starting from the same initial input u,. Then Algorithm 1
using ILC update (9) yields an error norm sequence {|lr; — y;|1*};=o.1. .
that converges to a local minimum provided the learning gain is chosen to
satisfy

0<y<4/L. (12)

If J;(u) is also convex, this is a global minimum. An upper bound on the
number of trials needed to satisfy (6), (7) is

n * (12
llug —uyl|
ey o ul as)
~ 2y6

Proof. Follows from Theorem 1 and 2 in Sun and Freeman (2024b). [

Theorem 1 confirms that (9) can be used to solve the ILC multi-
reference tracking objective of Definition 1, under mild assumptions
matching (Lin et al., 2006). However it also confirms the prohibitively
large number of trials requirgdzby current ILC approaches, since Algo-
rithm 1 may take »_, % trials to track all references and 6 is
likely to be small. Clearly choosing u close to the optimal value u; for
each reference directly reduces the number of trials required, however
there is no way of achieving this in the absence of model information.
This is addressed in the next section.

4. Artificial neural network based ILC

In Algorithm 1, the identification of g’(u,) must be repeated for each
new trial and reference trajectory. This process is too time-consuming
for applications such as stroke rehabilitation. While Algorithm 1 gen-
erates substantial data as it is applied to n references, a natural idea is
to use these data to reduce the number of identification tests needed.
This will done by fitting an ANN to the collected input-output data, and
using it to replace the identification of g’(u;) within each update. The
ANN will also be used to compute an optimal starting input for each
new reference. In this way, applying ILC to the current reference helps
speed up the learning of future references since the data generated
increases the accuracy of the ANN model.
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Output layer

Layer M

Layer 1 A
Hidden layer M

Fig. 1. Feed forward ANN structure with M hidden layers.

Consider a feed-forward ANN structure with M hidden layers,
where the ith layer has M; neurons, followed by an output function, as
shown in Fig. 1. This can be expressed by the general vector mapping
form

¥=8w0) : R™ xR") - RN, a4

where parameter vector 6 € R” contains the ANN weights and biases.
This simple form is chosen as it leads to a transparent convergent
condition that is underpinned by theory.

Suppose a set of existing input—output data have been stored from
running previous experiments and are denoted {u;,y;};_;, . These
may have been generated by applying ILC to track previous references
and it may also include data produced by applying ILC to track the
current reference. Then back propagation training methods can be
applied to compute the optimal vector & by minimising a suitable
function of the fitting error, e.g.

0:= ngnZ ly; — &(u;. O)I1*. s

When new experimental data become available, the ANN model pa-
rameters can be updated using efficient recursive forms. If the form
g(u, 0) is sufficiently accurate, it can be used in (8)-(10) to replace
the identification step in Algorithm 1. The next result quantifies the
necessary accuracy.

Theorem 2. Suppose an ANN structure g(u, 6) is chosen to approximate
the system dynamics g(u). Let g(u), J;(u) satisfy the conditions of Theorem

1. If

gwg .6 >0 (16)
then the ANN based ILC gradient update

Uiyt = U+ 7@ W, 0) (i = yi0) a7

applied to the system g(u) converges to the minimum error norm provided
the ILC gain is chosen to satisfy

ZeIg’(uk)(g'(uk, 0))"e,
L|\J{ (uy. )12

0<y < (18)

where L is the Lipschitz constant and e, = r — g(u,). If J,(u) is convex, this
is the global minimum error norm.

Proof. Lipschitz continuity guarantees that
L
T ) < T i) + T @) Wy = ) + g = el

and substituting J_,.’ (uy,0) := —28'(u;,0)"(r; — g(u,)) in the ANN based
ILC update yields

Uy = U + 27(8 (ug, 0) (r; — g(wy)). 19)
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It then follows that
Tigyy) < Jiw) + T/ () (g — v Ty, 0) — wy)
+ Il — yJ] (. 6) - w|I*L/2

= Jiw) — v )T (uy, 0) + 7| (g, O)1* L /2.
The term J/(u,)" J) (uy, 6)
=4(r; — gw) g W )(E (. 0) (r; — gwy)) (20)
is strictly positive if assumption (29) holds, i.e.
g W)E . 0)" >0,

Next denote a; := J/(u;)" J!(uy,6) and select

Vuy # u*. 2n

<y < —2% (22)
V< ———
LIJ{(ui, 011
so that the previous inequality becomes J;(u; )
T < 3,0 = 7 (9] @) 7wy 0)
- ) L
AL
< J,(uy). (23)
It is always possible to select y = _la—k, then
L||J] (uy. O)1I?
a,
Ti(ugyy) < Ji(uy) —y = (24)

2
Since a; > 0V r; — g(u;) # 0, (24) implies a reduction in tracking error
norm with each trial of gradient ILC until the optimal value is attained,
ie J(u)=J@w)=0 [

Theorem 2 provides a simple condition on the ANN form g(u,, 0)
which allows it to replace the true system g(u,). This thereby removes
the requirement to perform any identification tests on trial k. Theorem
2 means that Algorithm 1 can be replaced by Algorithm 2 which in-
cludes a test to establish whether condition (21) holds. This minimises
the number of identification tests, and therefore the overall time taken
to track all reference trajectories.

Although (18) stipulates a condition on ILC gain y which depends on
knowledge of the true system, a sufficiently small fixed y can always be
chosen to satisfy (18) without requiring system knowledge. However,
since the overall aim is to maximise convergence speed, a larger y can
be chosen and reduced if the sequence of inputs starts to diverge. Also
note that a low value of y is not overly detrimental as it will satisfy
the passivity condition in Algorithm 2 more often and therefore avoid
frequent experimental identification tests.

It should also be noted that the term g’(u)"g’(u,0) > 0 is only
required to hold for a convex set containing u, and u, ;. Although
g(u) is not known, the condition has practical use since it instructs
the designer to add more granularity to the ANN mapping in locations
where its gradient may deviate from the true system. The next results
illustrate this, and also show advantages in using a simple ANN form
for the model g(u, 6).

Theorem 3. Let the system dynamics y = g(u) comprise a monotonic
function of each variable, i.e.

vx,y € dom(g), ((g(x)—g(y).(x—y))>0 27)
in the case that it is increasing, or
Vx,y € dom(g), ((g(x) — &), (x—y)) <0 (28)

in the case it is decreasing. Then a feed-forward neural network y =
g(u, 0) trained to minimise (26) on a set of Q > m previous plant signals
{uiyiti=i,.. 0 satisfies

gw'g @0 > 0. (29)
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Algorithm 2 ANN based ILC
Require: Reference set R, accuracy margin §, ANN structure g(u, 0)
fori=1:ndo
Set k = 0. Select an optimal starting input, u, for reference r; as

uy = min |Ir; - g, O)]? (25)

while |J;(u;) - J;(u*)| < 6 do
Apply u, experimentally, record y, = g(u,).
Fit ANN parameter vector 0 to all previous experimental data
{u;,y;} (e.g. generated from applying ILC to previous trials and
references) by solving

Y — 5(u. 2
e.—m5n2||yi 2w, 0)|%. (26)

via back propagation. This can be done recursively by retraining

the model on only the new data.

if g’ (u,) "8 (u;, 6) > 0 holds then
Use the ANN to compute the ILC update (17)

else
Identify g'(u;) experimentally by applying sufficiently excit-
ing input u and solving (11).
Compute new ILC update using (8).

end if

k=k+1

end while
end for

Proof. Consider a neural network with a single hidden layer, which has
the form

y=Wo(Wu+by)+b (30)

where W;, W, contain the weights, and b,, b, are bias terms (Gal,

2016). Assuming a rectified linear form for element-wise nonlinearity

o(+), this simplifies to

§ = WaWiu+ Wyb, +b, &)
=Wu+c (32)

where u € R"NX1 |y e RPNX1 W/ € RPN>*N and ¢ € RPNX1, This is also
the resulting form for any number of hidden layers. Assume a Euclidean
loss function, which corresponds to

[9
10) = 5 X Iy = 51w 01 (33)

i=1

Training the network via back propagation is then equivalent to solving

T T 2
Vi L ou eT
inJ(6) = mi S I R 34
rrgn()%{fcl : D og [WT] 34)
Yo 0
—_—— N—— P4
Y X

with solution 8* = (XTX)"'XTY = X'Y. This can be equivalently
expressed using the block matrix pseudoinverse

Pyt
| G | (35)
A
1 ul
with A = e ROXI| B = € RN, Here Py € RO
1 ug

and Py € R2XC are the orthogonal projection matrices onto 4 and B
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respectively. Hence the optimal W, termed W*, is

W* =(PrB)'Y)T

=Y'BTPHH'
=Y"(B"Py)
+
=[y] yQ]<[u1 uQ]PJ‘1 >
|: 1 :|
Here P} = I — A(ATA)™' AT so that
1 . 0 1 ]
pt = : -« -] : |Ix
[ ! ] 0 1]
1
~ 1 —
[ 1 L] [1 -~ 1]
1] (36)
1 0 [ 1 1
_ s 1
0 1 | 1 1)@
1 1
(lia) -5
.1 . H .
-z 1=
It follows that
wW* = [ Y Yo ]x
1 1 f
1-3) )
[ ug ] 2 .
o -3
[y = yo |

i 37
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Since the true plant y = g(u) is a monotonic function of each variable,
it follows that

.
z:,Q=1(“Q —u;) ]

(u; - u,-)T(u/- —u;)

vx,y ((gx)—gy),(x-y))>0 (38)

in the case that it is increasing, or

Vx,y ((&(x)—g¥),(x-y) <0 (39)

in the case it is decreasing. These correspond to
Vugu; o (g(u;) — gu;)w; —uy)’ >0
& (i —y)u—u)’ >0 (40)
or
Vuu;  (g(u;) — gu))u; —u;)t <0
&y —y)u—u) <0 “4n

respectively. From (37) it follows directly that

(g’(u, 9)),;/' = (W*)[,/ >0 (42)
and
(g,(", 9)),‘,/ = (W*)[,/ <0 (43)
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hold respectively for every pair {i,j}. The property that y = g(u) is a
monotonic, (27) or (28), also means that

0g;(u
< g;( )) >0 (44)
o/
in the case that it is increasing, or
0g;(u
< 8;( )) <0 45)
ou; /g

in the case it is decreasing. Therefore the gradient matrix

[ oamw . g T

ouy duy
(fwh),,; = - >0 (46)
’ o . 98w
L ou, ou, | .
LJ

or

[ oamw . 9gw T

ouy duy
(fwh),,; = : . <0 (47)
’ ogw . 98w
L ouy, ou, |

ij

respectively. In both cases it then follows that (29) holds since the
product of two commuting positive (or negative) operators is a positive
operator, i.e.

w95 i
ou| ouy
: - : w*>0. O (48)
agy (u) . 0g,(u)
ouy, ou,,

Theorem 4. Suppose ANN based ILC is applied to track all references in
the set R under the conditions of Theorem 2. Then an upper bound on the
total number of trials required to meet the accuracy metrics (kg,5) in (6),
(7) is

1 [l —u||2 el
52{ : %E““

A RATCY (49)

Proof. Since J; is convex, it is possible to write
Ty > Jyw) + J] @) (" — ) (50)

Ji@ < J,w) + I @ - u). (51
Substituting this into (24) yields
B = 1) < 5= (29w g~ ') = oy

=l = 1P + g = ).
Now note that
(e — " = 7T (e, O) (wye — " — y.J] (uy., 0)
20 J) (. 0) T (uy — u*)
+ 72T (. 0)" J] (. 0)

2
= llu — | -

so that
1
Ji(uyeqy) — J[-(u*) < Z(”'Jk - u*||2 — gy — u*||2
- T -
= (I w0 = T, 0) " w, 0)). (52)

Summing over iterations produces
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Fig. 2. FES array stimulation of wrist extensors using 2 FES input channels.
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The summation term in (53) reduces as g(u, ) more closely approxi-
mates the true system g(u), and attains a finite value when k — co.
Hence taking the limit and rearranging gives the bound (49). [

Theorem 4 therefore quantifies how the number of trials required
for convergence depends on the accuracy of the model. Since model
fitting improves as more experimental data are generated, it follows
that new references are tracked progressively faster.

5. Numerical results

The ANN based ILC approach is now evaluated on a rehabili-
tation problem, in which FES is applied to an electrode array in
order to produce a set of four hand gestures. The model is based
on Theodorou, Todorov, and Valero-Cuevas (2011) and comprises a 3-
link wrist and hand representation, including radius, metacarpal and
phalangeal bones. The FES array elements are chosen to stimulate
Flexor Digitorum Profundus and Extensor Communis muscles (u;, u,
respectively). The resultant force is transmitted via a longitudinally
symmetric tendon rhombus network (with 5 active and 3 passive
tendons) which actuates the wrist and metacarpal-phalangeal joints
(v, y, respectively, in degrees). This m = 2, p = 2 system accurately
models the response to FES, and the clinical aim is to achieve functional
gestures such as ‘open hand’, ‘pointing’ or ‘pinching’. This matches the
set-up used with patients in previous studies (Freeman, 2014, 2016;
Ward et al., 2020). As in these studies, N = 1 is chosen together with
a large sample time, since the purpose is to track the final gesture
position. A set of n = 4 references is chosen to provide varied training,
given by r; = [10,50]7, ry = [70,70]7, r; = [20,10]" and r, = [30,50]"
(see Fig. 2).
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Fig. 3. Convergence of tracking error norm using standard ILC.
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Fig. 4. Convergence of tracking error norm using ANN based ILC.

5.1. Standard gradient ILC

First standard gradient ILC is applied using Algorithm 1 and a
stopping criterion of § = 0.25 and initial input u, = [0,0]7. The error
norm results are shown in Fig. 3. In total 34 ILC trials are required,
each requiring 3 separate tests to perform. If applied experimentally,
this equates to 102 tests in total. This is clearly too many for a typical
therapy session.

5.2. Artificial neural network based ILC

ANN based ILC is next applied using Algorithm 2 and the same
stopping criterion. Here g(u, 0) is chosen as an M = 1 layer, M, neuron
ANN with a back-propagation training function that minimises the
MSE. Different M, values are used in order to compare their ability to
fit the known data points and also extrapolate to predict unknown data
points. The simulations were performed using the ‘feedforward-
net’ feedforward neural network structure from the Matlab Deep
Learning Toolbox (Matlab R2024a).

Fig. 4 shows the error norm results with M = 1 hidden layers
and M, = 4 neurons. Here a total of 24 ILC trials are required,
however, only 9 of these required identification of a new model, with
the remainder using ANN model update (17) to generate the next
update step. This means only 42 experimental inputs would be needed
in practice to track all references. Compared with standard ILC’s 102
overall inputs, the improvement is 59%.

Table 1 shows the accuracy using different numbers of neurons and
it is clear that only four are sufficient to fit the data in this application.
More than ten neurons overfits the data. To illustrate how this is
achieved, g(u,0) is shown in Fig. 5 immediately after completing r,
tracking.

6. Experimental results
The hardware used consists of a tracking sensor, user interface

software running on a laptop, a control unit, a 24 channel FES electrode
array sleeve and FES electronics. The components are shown in Fig.
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Table 1 Table 2
The accuracy of ANN with different number of neurons M. Participant demographic information.
Neurons, r ry rs ry Ident’n Overall Improvement No. Age Gender Test arm
M, trials inputs Percentage P1 36 M right
1 9 9 3 2 13 49 52% P2 21 F right
2 13 10 3 2 12 52 49% P3 46 F right
4 12 3 6 3 9 42 59% P4 45 M left
6 12 11 2 4 12 53 48% P5 31 M right
10 16 14 2 4 10 56 45% P6 55 F right
20 20 17 9 7 15 83 19% pP7 36 M right
100 20 20 20 5 21 107 —5% P8 37 F right

gi(u)
g(u)

100

Fig. 5. Plots of y, = g,(u,0) and y, = &,(u,0) with all points {u,,y,} after
completing r,.

Laptop

Stereo IR170 camera

- Hand raw data

Angle data
! o
User Order ! _ 24-electrode sleeve

—
’
>

Stimulation current
,)) Control signal

Raspberry pi 3

FES electronics

Fig. 6. Upper limb stroke rehabilitation hardware.

6. The sensor (Stereo IR 170 camera, Ultraleap) is a next-generation
optical hand tracking module with a 170 x 170° field of view, which
collects the positional data of the hand and wrist, and is then processed
by the user interface to generate angle data. This is sent to the control
unit (Raspberry Pi 4) via wireless transmission, which runs the real-
time controller (at 40 Hz). The controller computes the voltage pulse
train applied to each element of the 24 channel electrode array. Here,
the frequency and amplitude of each pulse train are fixed, and the
pulse width of each pulse train is the controlled variable (0-100 ps).
The sensor provides 12 joint angles, however only those corresponding
to wrist flexion/extension and the index finger metacarpal-phalangeal
joint flexion/extension are used. This matches the set-up of Section 5.

Since the Deep Learning Toolbox is not supported by the Raspberry
Pi Simulink toolbox in Matlab R2024a, the ANN was re-implemented
using basic functions as a back propagation neural network. A sigmoid
was selected as the activation function of the hidden layer, and a linear
function as the activation function of the output layer. The learning rate
was 0.1 and 1000 training episodes were used.

The simulation tests are now repeated experimentally in a study
with eight unimpaired participants (University of Southampton Ethics
No. 72855). These participants will be denoted P1, P2, ..., P8 and their
details are shown in Table 2.

The experimental setup is shown in Fig. 7. The electrode array
was first positioned on the forearm of the participant’s dominant arm.

Fig. 7. Electrode array, stimulator and Stereo IR 170 camera.

Two stimulation sites were selected from the array, to correspond with
activating the Flexor Digitorum Profundus and Extensor Communis
muscles. Then a 100 ps FES signal was applied to each of the two
channels in turn. While stimulated, the voltage amplitude was slowly
increased until a comfortable limit was reached. The pulsewidth was
then reset to 0 ps and the amplitude was then fixed for each channel in
all remaining tests.

Three reference gestures which include open hand, pointing, and
pitch gestures, were used: open hand (with wrist and index finger
extended), pinch (with wrist extended and index finger flexed), and
horizontal pointing (with wrist partially extended and index finger fully
extended). These are denoted r,, r, and r; respectively. The values
for participant P1 are r; = [-33.5,22.2]7, r, = [33.6,—2.5]" and r; =
[-40.4,22.6]T with unit in degrees, and a positive value corresponding
to flexion for each angle.

Following this, the standard ILC and ANN based ILC algorithms
introduced in Sections 3 and 4 were applied. During each test, the
participant was instructed to apply no voluntary effort, and they were
not shown the reference movement. Note that omitting voluntary effort
in the controller design has been assumed in all clinical trials using
ILC (Freeman, Exell, Meadmore, Hallewell, & Hughes, 2015). This is be-
cause patients are typically highly impaired with significant weakness
and so their voluntary input is minimal starting rehabilitation. Instead,
their voluntary effort is treated as an external disturbance. A time of
ten seconds was added between trials so that the participant’s hand
naturally returned to the same starting condition under the effect of
gravity and zero applied stimulation.

As in the previous ILC applications of Freeman (2014) and Yang
et al. (2018), N = 1 was selected and the stimulation inputs were
smoothly applied to each array element using a ramp signal of three
seconds duration. The resulting hand gesture was measured.

In the previous section, the stopping criteria |J;(u,) — J;(u*)| < &
was used. During experiments, the value J;(u*) is not known, and so it
is assumed that perfect tracking is possible, J;(u*) = 0. This corresponds
to the stopping criteria |J;(u;) — J;u*)| = |le;||? < 6. A value of § =5
was selected as it corresponds to accurate tracking (i.e. joint angle error
norm less than \/g degrees) that is considered practically achievable.
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Fig. 8. Convergence of tracking error norm using standard ILC with y =2 for
P1, (experimental results).
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Fig. 9. Convergence of tracking error norm using standard ILC with y = 10
for P1, (experimental results).

The minimum number of trials to achieve this criteria will be termed
the ‘total trials’, however the experiments will still be continued for ten
trials in order to determine whether the level of error is maintained.

6.1. Standard ILC

First, standard ILC was applied as described in Algorithm 1 of
Section 3. Two system gains were used for all participants: y = 10 and
y = 2. Results for participant P1 are shown in Fig. 8 for y = 2. These
confirm convergence to a low level of error for all three references.

Further convergence results for participant P1 are shown in Fig. 9
using y = 10. These demonstrate slightly faster convergence with high
accuracy maintained over the ten trials.

For each reference, the number of trials required to meet the stop-
ping criteria is listed in Table 3 for all participants. The total number
of trials requiring identification, termed ‘identification trials’, is also
shown, together with the total number of inputs (i.e. 3 inputs for each
identification trial and 1 input for each of the remaining trials). Since
this is standard ILC, all trials require identification. In almost all cases
the increased ILC gain increases the convergence speed, however a
large number of experiments is always required.

6.2. Artificial neural network based ILC

As in Section 5.2, Algorithm 2 was next applied with the same
parameters as the standard ILC method. ANN parameter choices M =
I,M; =1and M =1, M, =4 were tested for all participants.

The error norm results for participant P1 using ANN based ILC with
y = 2 and M, = 1 are shown in Fig. 10. The convergence speed of
ANN based ILC is faster than standard ILC, since the later references
start from a smaller initial error norm due to the use of the fitted
model z(u,0). A total of 13 ILC trials are required, however, only 10
of these require the identification of a new model, with the remainder
using parameterised model update (17) to generate the next update
step. This led to only 33 experimental inputs being needed to track all
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Fig. 10. Convergence of tracking error norm using ANN based ILC with y =2
and M, =1 for P1, (experimental results).
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Fig. 11. Participant P1 results with y = 2. Plots of y, = g u,0) and y, =
&,(u, 0) with all ILC points {u,,y,} after completing r,, (experimental results).
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Fig. 12. Convergence of tracking error norm using ANN based ILC with y = 10,
M, =1 for P1, (experimental results).

three references. This equates to (60 —33)/60 = 45% fewer experiments
compared to Standard ILC. To show how this was achieved, the fitted
model g(u, 0) is shown in Fig. 11 immediately after completing tracking
of ry.

Results using y = 10, M| = 1 are shown in Fig. 12 for participant P1.
These show even faster convergence with only 20 experimental inputs.

The sequence of FES inputs applied is shown in Fig. 13 for y = 2,
and Fig. 14 for y = 10.

For each reference, the overall total number of experimental inputs
is listed in Table 4 for all participants. In all cases there is significant
improvement in terms of a reduced number of experiments required to
achieve the three gestures.

The average improvement over all participants is (55.5 — 24.6)/55.5
= 56%, meaning that the total test time is less than half.

7. Conclusions

An ANN based ILC approach has been developed to reduce the
experimental overhead required by existing model-free/data-driven ILC
approaches. This uses all prior data to fit an ANN model which is
used to construct the next ILC update. Conditions for convergence to
minimal error are derived which inform model design, minimising the
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Table 3

Total trials required by Standard ILC for all participants. Average number of inputs: 68.2 for y = 2, 55.5 for

y = 10.

Trials Test

y r ry ry Ident’n trials Overall inputs

Participant

P1 2 4 7 9 20 60
10 5 4 5 14 42

P2 2 7 7 10 24 72
10 6 4 7 17 51

P3 2 8 5 10 23 69
10 7 3 10 20 60

P4 2 5 6 10 21 63
10 10 4 10 24 72

P5 2 10 9 10 29 87
10 5 10 10 25 75

P6 2 10 6 10 26 78
10 4 3 8 15 45

pP7 2 6 5 9 20 60
10 4 4 8 16 48

P8 2 5 5 9 19 57
10 4 5 8 17 51

Table 4
Total trials required by ANN based function ILC for all participants. Improvement denotes the fraction of required inputs compared
with standard ILC. Average number of inputs: 26.7 for M| = 1,y = 2, 24.6 for M, = 1,y = 10, 35.6 for M, = 4,y = 2, 25.6 for

M, =4,y =10.
Test
M, y r r, ry Ident’n trials Overall inputs Improvement
Participant
P1 1 2 5 3 5 10 33 45%
1 10 4 5 1 5 20 52%
4 2 5 5 10 16 52 13%
4 10 4 3 2 5 19 55%
P2 1 2 4 4 3 4 19 74%
1 10 6 3 1 7 24 53%
4 2 5 8 3 13 42 42%
4 10 4 4 3 4 19 63%
P3 1 2 4 3 3 9 28 59%
1 10 3 2 3 5 18 70%
4 2 4 6 4 11 36 48%
4 10 5 8 1 5 24 60%
P4 1 2 4 8 7 4 27 57%
1 10 4 2 1 4 15 79%
4 2 8 3 6 8 33 48%
4 10 5 5 1 5 21 71%
P5 1 2 5 5 1 7 25 71%
1 10 6 3 10 16 51 32%
4 2 10 5 10 10 45 48%
4 10 10 3 4 10 37 51%
P6 1 2 6 10 1 12 41 47%
1 10 5 4 8 5 27 40%
4 2 7 6 1 7 28 64%
4 10 6 3 8 9 35 22%
P7 1 2 4 4 2 4 18 70%
1 10 5 2 6 5 23 52%
4 2 4 4 6 6 24 60%
4 10 6 3 3 6 24 50%
P8 1 2 5 3 4 6 23 59%
1 10 4 4 2 5 19 63%
4 2 5 4 5 6 25 56%
4 10 5 2 6 8 26 49%
number of identification tests while preserving convergence. The frame- patients’ own homes. Future work will evaluate the approach with
work is demonstrated on a key biomedical control problem, where it stroke participants.
is shown that it reduces the experiments required to a number that
is clinically feasible (from 55.5 to 24.6 on average). This opens up It has been assumed that the ANN used to fit the measured data is of

the possibility of translating effective FES based therapy to clinics and a generic form that does not embed any knowledge of the underlying

10
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Fig. 13. Participant P1 results with y = 2, showing stimulation input signals,
where A denotes ILC updates requiring experimental identification step, (ex-
perimental results).
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Fig. 14. Participant P1 results with y = 10 showing stimulation input signals,

where A denotes ILC updates requiring experimental identification step, (ex-
perimental results).

system. While this is convenient for most applications, it is also pos-
sible to use the same model g(u, 0) to capture a parameterised model,
for example musculoskeletal dynamics capturing stimulated hand and
wrist dynamics (Soska, 2014). In this case 0 contains the unknown
parameters, and its small dimension may lead to faster convergence.
The possible benefits of this approach will be evaluated in the future
study with stroke participants.

Technical development will also focus on incorporating automatic
step size adaptation schemes to further optimise the trade-off between
convergence speed and robustness.
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