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 A B S T R A C T

An artificial neural network (ANN) is combined with gradient descent to form a model-free iterative learning 
control (ILC) approach than can be applied to a wide range of nonlinear discrete-time systems. The ANN is 
recursively trained on the entire set of past data collected from the system and uses a passivity condition 
to determine when the ANN can be used to compute the next ILC update, or if an identification test is 
needed. Convergence properties are established alongside design selections that ensure the passivity condition 
is fulfilled. By minimising the reliance on identification tests, this methodology is substantially faster than 
existing model-free ILC algorithms. It is tested on a key stroke rehabilitation problem using functional electrical 
stimulation (FES) for hand/wrist tracking. Experimental results using the new ILC approach with eight 
participants show that three hand/wrist references can be tracked using an average of 56% fewer experimental 
inputs compared with the most accurate previous approach. As the first approach to combine ILC and machine 
learning in upper limb rehabilitation, the results demonstrate how their combination addresses their individual 
deficiencies.
1. Introduction

Stroke is a leading cause of death and disability worldwide (Feigin 
et al., 2022) and is the result of a loss of blood flow in regions of the 
brain. Approximately 70% of stroke survivors experience upper limb 
dysfunction, and only a small fraction fully recover (Eraifej, Clark, 
France, Desando, & Moore, 2017). In 2022, the global cost of stroke 
was $891 billion, and the economic impact will continue rising without 
strong prevention, healthcare, and rehabilitation strategies (Saposnik 
et al., 2022).

Rehabilitation consists of the patient repeatedly performing a func-
tional task, such as reaching to push a switch or grasp an object. 
The sensory feedback they receive (proprioceptive, haptic, and visual) 
then helps them to re-learn lost movement via neuroplasticity. Early, 
intensive functionally-oriented therapy can deliver a long-lasting im-
provement to motor function (Ballester et al., 2022), and the 2023 
stroke clinical guidelines recommend patients receive at least 3 hours 
per day (Intercollegiate Stroke Working Party; London, 2023). However 
current provision consists of mainly manual assistance from a therapist 
for only half an hour, three times per week (Stockley, Peel, Jarvis, 
& Connell, 2019). Therefore, rehabilitation technologies are urgently 
needed to deliver the high doses of therapy required.

Functional electrical stimulation (FES) is the most widely used reha-
bilitation technology, and involves placing electrode pads on the skin 
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through which electrical impulses are applied to artificially stimulate 
the underlying muscles (Hughes et al., 2014). If adequately controlled, 
FES enables patients to practice movements and relearn their lost 
sensorimotor function. FES has substantial clinical evidence (Eraifej 
et al., 2017) and is strongly recommended by the UK National Clinical 
Stroke Guidelines (Crow & Smith, 2023).

Commercial FES systems use large electrode pads, with stimulation 
delivered using pre-set openloop profiles. This means they cannot pre-
cisely activate the numerous upper limb and forearm muscles essential 
for dexterous arm and hand motion (Marquez-Chin, Kapadia-Desai, & 
Kalsi-Ryan, 2021). To overcome this problem, FES electrode arrays 
have recently emerged and comprise multiple electrode pads arranged 
in a single structure. Recent examples are low cost, washable, and can 
even be integrated in everyday clothing (Yang et al., 2018). However, 
their control is still challenging due to the large number of muscles in 
the forearm, their sensitivity to array positioning, the complexity of the 
tendon network and coupled musculoskeletal dynamics, and day-to-day 
variation in physiological response to stimulation.

The majority of controllers for FES arrays manually select electrode 
pads based on visual assessment of the resulting movements (Bijelić, 
Popović-Bijelić, Jorgovanović, Bojanić, & Popović, 2004), or measure-
ment of joint angle deviation (O’Dwyer, O’Keeffe, Coote, & Lyons, 
https://doi.org/10.1016/j.ejcon.2025.101404
Received 13 April 2025; Received in revised form 27 August 2025; Accepted 19 Oc
vailable online 22 October 2025 
947-3580/© 2025 The Authors. Published by Elsevier Ltd on behalf of European
 http://creativecommons.org/licenses/by/4.0/ ). 
tober 2025

 Control Association. This is an open access article under the CC BY license 

https://www.sciencedirect.com/journal/european-journal-of-control
https://www.sciencedirect.com/journal/european-journal-of-control
https://orcid.org/0009-0009-9121-9588
https://orcid.org/0000-0003-0305-9246
mailto:xs1a12@soton.ac.uk
mailto:cf@ecs.soton.ac.uk
https://doi.org/10.1016/j.ejcon.2025.101404
https://doi.org/10.1016/j.ejcon.2025.101404
http://creativecommons.org/licenses/by/4.0/


X. Sun and C.T. Freeman European Journal of Control 86 (2025) 101404 
2006). This process has been automated by stimulating each array 
pad in turn to find the one producing most force (Popović & Popović, 
2009; Schill, Rupp, Pylatiuk, Schulz, & Reischl, 2009), taking 10 min. 
Later modifications used combinations of electrodes (Hoffmann, Dein-
hofer, & Keller, 2012), the muscle twitch response (Malešević et al., 
2012), points specified by therapists (Popović-Maneski et al., 2013), 
and electromyography (De Marchis, Santos Monteiro, Simon-Martinez, 
Conforto, & Gharabaghi, 2016; Maneski et al., 2016) to reduce the 
search time. However, the resulting movement was still crude, and took 
several minutes.

1.1. FES array control approaches

Few model-based feedback approaches have been used due to the 
difficulty in modelling and identifying the complex, high dimensional 
system dynamics. The exception is ILC, which has a long history of 
use in FES based rehabilitation (Freeman, 2016). ILC uses data from 
previous attempts of a repeated tracking task to update the control 
signal applied in the current attempt. This matches the rehabilitation 
process exactly, and this connection has led to ILC being used in 
multiple clinical studies with stroke patients (Freeman, 2016).

When applied to FES arrays, ILC has delivered higher accuracy than 
all other approaches (Freeman, 2014; Yang et al., 2018), (mean joint 
error < 5◦ for pointing, pinch and open hand movements). However, 
the absence of a reliable model meant it required identification tests 
to be performed between each ILC update. It therefore took 10 min to 
track each hand gesture, and it must be repeated when the FES array 
is moved. This is still too long for clinical or home use. To reduce this 
time, Sun and Freeman (2024b) developed an ILC algorithm that used 
a piecewise mapping model which was recursively updated to replace 
the identification procedure. However it required that experimental 
data points had been collected in every segment of the mapping do-
main, meaning that a large amount of data was needed for multiple 
stimulation channels.

Aside from ILC, few advanced control approaches have been applied 
to FES arrays. An exception is (Imatz-Ojanguren, Irigoyen, Valencia-
Blanco, & Keller, 2016), in which a recurrent fuzzy artificial neural 
network (ANN) was trained to map between a 16 element FES array and 
the resulting wrist/finger angles. Experimental results showed accu-
racy of over 60%. However, the training data (comprising randomised 
pulses) were uncomfortable to patients and could only capture simple 
movements. Data were also collected by an instrumented glove which 
cannot be worn by most patients. The training took 45 min and would 
need repeating for each treatment session.

1.2. Artificial neural network-based ILC

An obvious route is to harness the ability of machine learning 
to learn complex dynamics, while retaining the ability of ILC to use 
minimum data, retain precise control of inputs, embed implicit inter-
pretability, and benefit from rigorous theoretical convergence proper-
ties.

Integrating ILC and ANNs has not been applied to FES arrays, but 
has been proposed by several authors. In Wang and Chien (2012) 
an adaptive neural ILC update employed an output recurrent NN to 
estimate plant nonlinearities via online learning, but required full state 
measurements and stability conditions that are difficult to guarantee 
in practical applications. A similar approach in Chen and Wen (2020) 
proposed a neural-network-enhanced ILC method that approximated 
inverse system dynamics via offline learning. Similarly, Liu, Wang, and 
Chi (2015) used a radial basis function neural network to represent 
nonlinear plant dynamics in an adaptive ILC scheme. However, all these 
methods required high-dimensional, dense datasets, are not designed 
for multiple task generalisation, and lack theoretical guarantees on 
convergence or robustness.
2 
A closely related field is that of optimization-based data-driven ILC. 
While many such approaches assume linear dynamics (He et al., 2022; 
Soleimani, Sedigh, & Nikoofard, 2025; Tian et al., 2025; Zhang & Zou, 
2024), others have been developed for nonlinear systems. Several of 
these employ extra experiments to generate the update signals used by 
each ILC update (Huo, Freeman, & Liu, 2020; Lee, Cheng, Yuan, & Tsao, 
2025; Lee, Rai, & Tsao, 2022), however the additional experiments 
quickly become prohibitively time-consuming for MIMO systems. Other 
data-driven schemes adaptively update a parameterised model of the 
nonlinear system (Chi, Hou, Huang, & Jin, 2015; Chi, Hou, Jin, & 
Huang, 2018; Chi, Li, Lin, & Huang, 2024; Zhu & Hou, 2014), which 
is often combined with dynamic linearisation to simplify the control 
action that is subsequently applied. While successful in many cases, lim-
itations have been pointed out by several authors (He et al., 2022; Hu 
et al., 2024; Huang & Huang, 2024; Xu, Meng, & Wang, 2024): the dy-
namics are typically required to be SISO; performance is often sensitive 
to initial parameter selection; to avoid slow convergence historical data 
is needed to pre-train the model; tuning parameters/weights can be 
challenging; and learning multiple references has not been considered. 
A further limitation is a lack of transparency: e.g. there is no simply test 
to decide whether more training data are needed to smooth transients 
(which may be problematic in applications involving human subjects).

1.3. Contributions

The current paper introduces a neural ILC framework that combines 
the capability of ANNs to learn complex dynamics with the rigorous 
performance guarantees of model-free ILC. It is the first combination of 
ILC and machine learning for FES control, and addresses the limitations 
of prior attempts to combine these methods. It builds on the ILC 
approach of Sun and Freeman (2024b), but significantly reduces the 
amount of data required by exchanging piecewise linear mappings for 
ANN structures. These provide greater efficiency, while guaranteeing 
convergence to minimal error. Furthermore, we provide transparent 
convergence conditions that inform ANN design and learning gain 
selection, extending previous machine-learning-based FES control ap-
proaches with theoretical assurances. Initial results appeared in Sun 
and Freeman (2024a) but did not include full proofs, hardware devel-
opment, implementation, or practical validation results. To summarise, 
the contributions of this paper are:

• It develops the first framework combining ILC and ANNs to be 
applied to FES based rehabilitation, with results confirming a 
significant reduction in the amount of data required to achieve 
hand and wrist gestures compared with all previous controllers.

• It is the first combined ILC and ANN framework to support track-
ing of multiple reference trajectories. It also introduces theoretical 
performance guarantees to significantly reduce the amount of 
data required for ANN training compared to existing methods 
combining ILC and ANNs.

• Experimental results with eight participants demonstrate that its 
matches the best existing hand and wrist tracking performance, 
while using 56% fewer experimental tests than previous ILC 
schemes.

• Experiments employ low-cost control and sensing suitable for 
home deployment with patients. This is the only example of using 
3D depth cameras for FES tracking control, and demonstrates 
feasibility.

The next section introduces the problem description.

2. Problem description

A general form of 𝑚-input, 𝑝-output nonlinear discrete-time system 
is considered, and is defined by
𝑥(𝑡 + 1) = 𝑓 𝑥(𝑡), 𝑢(𝑡) , 𝑥(0) = 𝑥 ,
( ) 0
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𝑦(𝑡) = ℎ (𝑥(𝑡)) , 𝑡 = 0, 1,… , 𝑁 − 1 (1)

where, 𝑥(𝑡) ∈ R𝑞 is the state, 𝑢(𝑡) ∈ R𝑚 is the input, 𝑦(𝑡) ∈ R𝑝 is the 
output and 𝑡 is the sample index. 

Assumption 1. The vector functions 𝑓 (⋅) and ℎ(⋅) are continuously 
differentiable with respect to their arguments.

This assumption and the general form (1) is common in ILC lit-
erature (Huo et al., 2020; Lin, Owens, & Hätönen, 2006), and also 
encompasses a wide range of biomechanical systems used to design re-
habilitation and assistive technologies (Freeman, 2016; Freeman et al., 
2009). The fundamental tenet of ILC is that the system repeatedly 
performs a tracking task over a fixed time duration of 𝑁 samples. Each 
attempt is termed a trial and is denoted by adding a subscript 𝑘 ∈ N+
to each signal in (1). A second fundamental assumption is: 

Assumption 2. The system resets to identical initial conditions between 
each trial, i.e. 𝑥𝑘(0) = 𝑥0.

This is used in the vast majority of ILC research and is usually trivial 
to satisfy for industrial processes. However, it may be more difficult 
in other domains, especially those involving humans. The effect of 
non-identical initialisation has therefore been studied in many papers, 
including (Owens, Freeman, & Chu, 2014).

Given its fixed trial duration, it is standard practice in ILC to 
compactly represent the system using the super-vectors
𝒖 =

[

𝑢(0)⊤, 𝑢(1)⊤, … 𝑢(𝑁 − 1)⊤
]⊤ ∈ R𝑚𝑁 , (2)

𝒚 =
[

𝑦(1)⊤, 𝑦(2)⊤, … 𝑦(𝑁)⊤
]⊤ ∈ R𝑝𝑁 , (3)

𝒓 =
[

𝑟(1)⊤, 𝑟(2)⊤, … 𝑟(𝑁)⊤
]⊤ ∈ R𝑝𝑁 . (4)

This enables dynamics (1) to be expressed as the vector mapping 𝒚 =
𝒈(𝒖) ∶ R𝑚𝑁 → R𝑝𝑁  where 𝒈(𝒖) = [𝑔1(𝒖)⊤, … 𝑔𝑁 (𝒖)⊤]⊤ has the 
𝑡 = 1,…𝑁 elements
𝑔𝑡(𝑥(0), 𝑢(0),… 𝑢(𝑡 − 1)) = ℎ(𝑥(𝑡))

= ℎ(𝑓 (𝑥(𝑡 − 1), 𝑢(𝑡 − 1))),

= ℎ(𝑓 (𝑓 (𝑥(𝑡 − 2), 𝑢(𝑡 − 2)), 𝑢(𝑡 − 1))),

⋮

= ℎ(𝑓 (𝑓 (⋯ 𝑓 (𝑥(0), 𝑢(0)),… , 𝑢(𝑡 − 2)), 𝑢(𝑡 − 1))).

Although in conventional ILC the system output 𝒚𝑘 tracks a sin-
gle reference trajectory, for successful rehabilitation the patient must 
practice a range of tasks in a single treatment session. They attempt 
each task multiple times, with a therapist moving their arm back to a 
starting position (Freeman, 2016). Once they have completed each task 
adequately well (as determined by the therapist), they then move on to 
the next.

The control objective is therefore to track each reference using the 
minimum number of ILC attempts. Since perfect tracking is infeasible 
in practice, a prescribed upper limit on the tracking error will be used. 
Enforcing a minimum number of ILC trials means that the optimum 
assistance is found rapidly which maximises the patient benefit. In 
practice, the number of attempts of each task will be decided by the 
therapist and is typically between eight and ten.

No information about the system is available since the stimulated 
arm dynamics are highly dependent on set-up and physiological condi-
tions that vary widely between sessions, and identification tests are not 
possible. However all data collected while attempting to track previous 
tasks can be used to track the next reference trajectory.

This gives rise to the following control objective:

Definition 1 (ILC Multi-Reference Tracking Objective).  Define a set of 𝑛
reference trajectories,  = {𝑟1, 𝑟2,… , 𝑟𝑛}. For each 𝒓𝑖 ∈  in turn, the 
ILC algorithm must compute a sequence of control inputs, {𝒖 }
𝑘 𝑘=0,1,…

3 
that will converge to the solution 𝒖∗𝑖  which minimises the tracking 
error, i.e.
lim
𝑘→∞

𝒖𝑘 = 𝒖∗𝑖 , 𝒖∗𝑖 ∶= argmin
𝒖

𝐽𝑖(𝒖),

𝐽𝑖(𝒖) = ‖

‖

𝒓𝑖 − 𝒈(𝒖)‖
‖

2 (5)

The ILC algorithm has no knowledge of system dynamics (1), but has 
access to all input–output data measured when tracking the preceding 
references 𝒓1,… 𝒓𝑖−1.

The minimum number of trials required to track 𝒓𝑖 with an accuracy 
of 𝛿 is defined by 
𝑘𝑖,𝛿 ∶= min{𝑘 ∶ |

|

𝐽𝑖(𝒖𝑘) − 𝐽𝑖(𝒖∗)|| < 𝛿}. (6)

and the aim is to minimise the total number of trials needed to track 
all references with an accuracy of 𝛿, i.e. 

min 𝑘𝛿 , 𝑘𝛿 ∶=
𝑛
∑

𝑖=1
𝑘𝑖,𝛿 . (7)

3. ILC application

The performance of the most common ILC approach used in FES-
based rehabilitation, see for example (Freeman, 2014; Lin et al., 2006; 
Yang et al., 2018), is now analysed. This class of ILC has been suc-
cessfully applied in several upper limb clinical studies with stroke 
patients (Freeman, 2016). The algorithm is intended to track one 
reference, 𝒓𝑖, using the update form 

𝒖𝑘+1 = 𝒖𝑘 + 𝐿(𝒓𝑖 − 𝒚𝑘) (8)

where 𝒚𝑘 = 𝒈(𝒖𝑘) is generated by performing an experiment, and 
𝐿 ∈ R𝑝𝑁×𝑚𝑁  is a learning operator that is designed based on the system 
dynamics 𝒈. When it was applied to FES electrode arrays (Freeman, 
2014), the choice 
𝐿 = 𝛾(𝒈′(𝒖𝑘))⊤, (9)

was made, where 𝛾 is a positive scalar. Update (9) has a simple 
interpretation: it is the gradient based iterative minimisation of 𝐽𝑖(𝑢) =
‖𝒓𝑖 − 𝒈(𝒖)‖2, which has desirable properties including convergence to 
minimal error and monotonic error norm reduction. Although there are 
many alternatives including inverse (Lin et al., 2006) and norm-optimal 
ILC, gradient ILC’s superior robustness margins have made it the most 
popular model-based approach used in rehabilitation (Freeman, 2016). 
Computing 𝐿 requires knowledge of the local system model computed 
about each new ILC signal, given by 

𝒈′(𝒖𝑘) ∶=
𝛿𝒈(𝒖)
𝛿𝒖

|

|

|

|𝒖=𝒖𝑘
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛿𝑔1(𝒖)
𝛿𝑢1

|

|

|

|𝒖=𝒖𝑘
⋯ 𝛿𝑔1(𝒖)

𝛿𝑢𝑚

|

|

|

|𝒖=𝒖𝑘
⋮ ⋱ ⋮

𝛿𝑔𝑝(𝒖)
𝛿𝑢1

|

|

|

|𝒖=𝒖𝑘
⋯

𝛿𝑔𝑝(𝒖)
𝛿𝑢𝑚

|

|

|

|𝒖=𝒖𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(10)

∈ R𝑚𝑁×𝑝𝑁 . In Freeman (2014) and Yang et al. (2018) it was assumed 
𝒈(𝒖𝑘) was unknown and must be identified experimentally. The authors 
proposed finding 𝒈′(𝒖𝑘) by solving the identification problem 
𝒈′(𝒖𝑘) = argmin

𝑋
𝐽 (𝑋), 𝐽 (𝑋) = ‖𝛥𝒚 −𝑋𝛥𝒖‖2 (11)

where 𝑋 ∈ R𝑝𝑁×𝑚𝑁  with (𝛥𝒖, 𝛥𝒚) chosen to sufficiently excite the 
system dynamics about (𝒖𝑘, 𝒚𝑘). Here 𝛥𝒖 = 𝒖−𝒖𝑘, 𝛥𝒚 = 𝒚−𝒈(𝒖𝑘) are the 
deviation from the operating point and (𝒖, 𝒚) are the experimental input 
and output signals. Algorithm 1 summarises the overall procedure. Here 
an inner loop has been added to track each reference from set , with 
the inner learning process starting from the same initial input 𝒖0 for 
each 𝒓𝑖 ∈ . Algorithm 1 corresponds to the approach that was applied 
to FES arrays in Freeman (2014), Ward et al. (2020) and Yang et al. 
(2018). In these studies, three references were tracked, and an initial 
input of 𝒖 = 𝟎 was used for each one. 
0
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Algorithm 1 Standard ILC for multiple references
Require: Reference 𝒓𝑖 ∈ , accuracy margin 𝛿
for 𝑖 = 1 ∶ 𝑛 do 
Set 𝑘 = 0. Select starting input, 𝒖0, for reference 𝒓𝑖. 
while |

|

𝐽𝑖(𝒖𝑘) − 𝐽𝑖(𝒖∗)|| < 𝛿 do 
Apply 𝒖𝑘 experimentally, record 𝒚𝑘 = 𝒈(𝒖𝑘). 
Identify 𝒈′(𝒖𝑘) experimentally by applying input 𝒖 and solving 
(11). 
Compute new ILC update using (8). 
𝑘 = 𝑘 + 1

end while
end for

3.1. Convergence results

The need for repeated identification tests means that standard ILC 
requires many experiments to be performed. To quantify this, the 
relationship between the number of tests and the resulting accuracy 
(i.e. parameters 𝑘, 𝛿 in (6)) is now derived. ILC update (9) will be 
focused upon, due to its mathematical tractability. However, no ILC 
convergence conditions exist for (9), so they are now derived. The next 
result also bounds the number of ILC trials required to track the entire 
set of 𝑛 references, .

Theorem 1. Suppose function 𝒈(𝒖) is differentiable and for each 𝒓𝑖 ∈  the 
error norm 𝐽𝑖(𝒖) ∶= ‖𝒓𝑖 − 𝒈(𝒖)‖2 has a Lipschitz continuous gradient with 
constant 𝐿 > 0. Suppose ILC update (9) is applied to track all references 
in  each time starting from the same initial input 𝒖0. Then Algorithm 1 
using ILC update (9) yields an error norm sequence {‖𝒓𝑖 − 𝒚𝑘‖2}𝑘=0,1,…
that converges to a local minimum provided the learning gain is chosen to 
satisfy 
0 < 𝛾 < 4∕𝐿. (12)

If 𝐽𝑖(𝒖) is also convex, this is a global minimum. An upper bound on the 
number of trials needed to satisfy (6), (7) is 

𝑘𝛿 ≤
𝑛
∑

𝑖=1

‖𝒖0 − 𝒖∗𝑖 ‖
2

2𝛾𝛿
. (13)

Proof. Follows from Theorem 1 and 2 in Sun and Freeman (2024b). □

Theorem  1 confirms that (9) can be used to solve the ILC multi-
reference tracking objective of Definition  1, under mild assumptions 
matching (Lin et al., 2006). However it also confirms the prohibitively 
large number of trials required by current ILC approaches, since Algo-
rithm 1 may take ∑𝑛

𝑖=1
‖𝒖0−𝒖∗𝑖 ‖

2

2𝛾𝛿  trials to track all references and 𝛿 is 
likely to be small. Clearly choosing 𝒖0 close to the optimal value 𝒖∗𝑖  for 
each reference directly reduces the number of trials required, however 
there is no way of achieving this in the absence of model information. 
This is addressed in the next section.

4. Artificial neural network based ILC

In Algorithm 1, the identification of 𝒈′(𝒖𝑘) must be repeated for each 
new trial and reference trajectory. This process is too time-consuming 
for applications such as stroke rehabilitation. While Algorithm 1 gen-
erates substantial data as it is applied to 𝑛 references, a natural idea is 
to use these data to reduce the number of identification tests needed. 
This will done by fitting an ANN to the collected input–output data, and 
using it to replace the identification of 𝒈′(𝒖𝑘) within each update. The 
ANN will also be used to compute an optimal starting input for each 
new reference. In this way, applying ILC to the current reference helps 
speed up the learning of future references since the data generated 
increases the accuracy of the ANN model.
4 
Fig. 1. Feed forward ANN structure with 𝑀 hidden layers.

Consider a feed-forward ANN structure with 𝑀 hidden layers, 
where the 𝑖th layer has 𝑀𝑖 neurons, followed by an output function, as 
shown in Fig.  1. This can be expressed by the general vector mapping 
form 
𝒚̂ = 𝒈̄(𝒖,𝜽) ∶ (R𝑚𝑁 × R𝑣) → R𝑝𝑁 , (14)

where parameter vector 𝜽 ∈ R𝑣 contains the ANN weights and biases. 
This simple form is chosen as it leads to a transparent convergent 
condition that is underpinned by theory.

Suppose a set of existing input–output data have been stored from 
running previous experiments and are denoted {𝒖𝑖, 𝒚𝑖}𝑖=1,2,…. These 
may have been generated by applying ILC to track previous references 
and it may also include data produced by applying ILC to track the 
current reference. Then back propagation training methods can be 
applied to compute the optimal vector 𝜽 by minimising a suitable 
function of the fitting error, e.g. 
𝜽̂ ∶= min

𝜽

∑

𝑖
‖𝒚𝑖 − 𝒈̄(𝒖𝑖,𝜽)‖2. (15)

When new experimental data become available, the ANN model pa-
rameters can be updated using efficient recursive forms. If the form 
𝒈̄(𝒖,𝜽) is sufficiently accurate, it can be used in (8)–(10) to replace 
the identification step in Algorithm 1. The next result quantifies the 
necessary accuracy. 

Theorem 2. Suppose an ANN structure 𝒈̄(𝒖,𝜽) is chosen to approximate 
the system dynamics 𝒈(𝒖). Let 𝒈(𝒖), 𝐽𝑖(𝒖) satisfy the conditions of Theorem 
1. If 
𝒈′(𝒖)⊤𝒈̄′(𝒖,𝜽) ≻ 0 (16)

then the ANN based ILC gradient update 
𝒖𝑘+1 = 𝒖𝑘 + 𝛾𝑘(𝒈̄′(𝒖𝑘,𝜽))⊤(𝒓𝑖 − 𝒚𝑘) (17)

applied to the system 𝒈(𝒖) converges to the minimum error norm provided 
the ILC gain is chosen to satisfy 

0 < 𝛾𝑘 <
2𝒆⊤𝑘 𝒈

′(𝒖𝑘)(𝒈̄′(𝒖𝑘,𝜽))⊤𝒆𝑘
𝐿‖𝐽 ′

𝑖 (𝒖𝑘,𝜽)‖2
(18)

where 𝐿 is the Lipschitz constant and 𝒆𝑘 = 𝒓− 𝒈(𝒖𝑘). If 𝐽𝑖(𝒖) is convex, this 
is the global minimum error norm.

Proof. Lipschitz continuity guarantees that

𝐽𝑖(𝒖𝑘+1) ≤ 𝐽𝑖(𝒖𝑘) + 𝐽 ′
𝑖 (𝒖𝑘)

⊤(𝒖𝑘+1 − 𝒖𝑘) + ‖𝒖𝑘+1 − 𝒖𝑘‖2
𝐿
2

and substituting 𝐽 ′
𝑖 (𝒖𝑘,𝜽) ∶= −2𝒈̄′(𝒖𝑘,𝜽)⊤(𝒓𝑖 − 𝒈(𝒖𝑘)) in the ANN based 

ILC update yields 
𝒖 = 𝒖 + 2𝛾(𝒈̄′(𝒖 ,𝜽))⊤(𝒓 − 𝒈(𝒖 )). (19)
𝑘+1 𝑘 𝑘 𝑖 𝑘
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It then follows that
𝐽𝑖(𝒖𝑘+1) ≤ 𝐽𝑖(𝒖𝑘) + 𝐽 ′

𝑖 (𝒖𝑘)
⊤(𝒖𝑘 − 𝛾𝐽 ′

𝑖 (𝒖𝑘,𝜽) − 𝒖𝑘)

+ ‖𝒖𝑘 − 𝛾𝐽 ′
𝑖 (𝒖𝑘,𝜽) − 𝒖𝑘‖2𝐿∕2

= 𝐽𝑖(𝒖𝑘) − 𝛾𝐽 ′
𝑖 (𝒖𝑘)

⊤𝐽 ′
𝑖 (𝒖𝑘,𝜽) + 𝛾2‖𝐽 ′

𝑖 (𝒖𝑘,𝜽)‖
2𝐿∕2.

The term 𝐽 ′
𝑖 (𝒖𝑘)

⊤𝐽 ′
𝑖 (𝒖𝑘,𝜽)

= 4(𝒓𝑖 − 𝒈(𝒖𝑘))⊤𝒈′(𝒖𝑘)(𝒈̄′(𝒖𝑘,𝜽))⊤(𝒓𝑖 − 𝒈(𝒖𝑘)) (20)

is strictly positive if assumption (29) holds, i.e. 
𝒈′(𝒖𝑘)𝒈̄′(𝒖𝑘,𝜽)⊤ ≻ 0, ∀𝒖𝑘 ≠ 𝒖∗. (21)

Next denote 𝑎𝑘 ∶= 𝐽 ′
𝑖 (𝒖𝑘)

⊤𝐽 ′
𝑖 (𝒖𝑘,𝜽) and select 

0 < 𝛾 <
2𝑎𝑘

𝐿‖𝐽 ′
𝑖 (𝒖𝑘,𝜽)‖2

(22)

so that the previous inequality becomes 𝐽𝑖(𝒖𝑘+1)

𝐽𝑖(𝒖𝑘+1) ≤ 𝐽𝑖(𝒖𝑘) − 𝛾
(

𝐽 ′
𝑖 (𝒖𝑘)

⊤𝐽 ′
𝑖 (𝒖𝑘,𝜽)

− 𝛾‖𝐽 ′
𝑖 (𝒖𝑘,𝜽)‖

2 𝐿
2

)

< 𝐽𝑖(𝒖𝑘). (23)

It is always possible to select 𝛾 =
𝑎𝑘

𝐿‖𝐽 ′
𝑖 (𝒖𝑘,𝜽)‖2

, then 

𝐽𝑖(𝒖𝑘+1) < 𝐽𝑖(𝒖𝑘) − 𝛾
𝑎𝑘
2
. (24)

Since 𝑎𝑘 > 0 ∀ 𝒓𝑖 − 𝒈(𝒖𝑘) ≠ 0, (24) implies a reduction in tracking error 
norm with each trial of gradient ILC until the optimal value is attained, 
i.e. 𝐽𝑖(𝒖𝑘) = 𝐽𝑖(𝒖∗) = 0. □

Theorem  2 provides a simple condition on the ANN form 𝒈̄(𝒖𝑘,𝜽)
which allows it to replace the true system 𝒈(𝒖𝑘). This thereby removes 
the requirement to perform any identification tests on trial 𝑘. Theorem 
2 means that Algorithm 1 can be replaced by Algorithm 2 which in-
cludes a test to establish whether condition (21) holds. This minimises 
the number of identification tests, and therefore the overall time taken 
to track all reference trajectories. 

Although (18) stipulates a condition on ILC gain 𝛾 which depends on 
knowledge of the true system, a sufficiently small fixed 𝛾 can always be 
chosen to satisfy (18) without requiring system knowledge. However, 
since the overall aim is to maximise convergence speed, a larger 𝛾 can 
be chosen and reduced if the sequence of inputs starts to diverge. Also 
note that a low value of 𝛾 is not overly detrimental as it will satisfy 
the passivity condition in Algorithm 2 more often and therefore avoid 
frequent experimental identification tests.

It should also be noted that the term 𝒈′(𝒖)⊤𝒈̄′(𝒖,𝜽) ≻ 0 is only 
required to hold for a convex set containing 𝒖𝑘 and 𝒖𝑘+1. Although 
𝒈(𝒖) is not known, the condition has practical use since it instructs 
the designer to add more granularity to the ANN mapping in locations 
where its gradient may deviate from the true system. The next results 
illustrate this, and also show advantages in using a simple ANN form 
for the model 𝒈̄(𝒖,𝜽).

Theorem 3. Let the system dynamics 𝒚 = 𝒈(𝒖) comprise a monotonic 
function of each variable, i.e. 
∀𝒙, 𝒚 ∈ dom(𝑔), ⟨(𝒈(𝒙) − 𝒈(𝒚)), (𝒙 − 𝒚)⟩ > 0 (27)

in the case that it is increasing, or 
∀𝒙, 𝒚 ∈ dom(𝑔), ⟨(𝒈(𝒙) − 𝒈(𝒚)), (𝒙 − 𝒚)⟩ < 0 (28)

in the case it is decreasing. Then a feed-forward neural network 𝒚̂ =
𝒈̄(𝒖,𝜽) trained to minimise (26) on a set of 𝑄 > 𝑚 previous plant signals 
{𝒖𝑖, 𝒚𝑖}𝑖=1,…,𝑄, satisfies 

𝒈′(𝒖)⊤𝒈̄′(𝒖,𝜽) ≻ 0. (29)
5 
Algorithm 2 ANN based ILC
Require: Reference set , accuracy margin 𝛿, ANN structure 𝒈̄(𝒖,𝜽)
for 𝑖 = 1 ∶ 𝑛 do 
Set 𝑘 = 0. Select an optimal starting input, 𝒖0, for reference 𝒓𝑖 as 

𝒖0 ∶= min
𝒖

‖𝒓𝑖 − 𝒈̄(𝒖, 𝜽̂)‖2 (25)

while |
|

𝐽𝑖(𝒖𝑘) − 𝐽𝑖(𝒖∗)|| < 𝛿 do 
Apply 𝒖𝑘 experimentally, record 𝒚𝑘 = 𝒈(𝒖𝑘). 
Fit ANN parameter vector 𝜽 to all previous experimental data 
{𝒖𝑖, 𝒚𝑖} (e.g. generated from applying ILC to previous trials and 
references) by solving 

𝜽̂ ∶= min
𝜽

∑

𝑖
‖𝒚𝑖 − 𝒈̄(𝒖𝑖,𝜽)‖2. (26)

via back propagation. This can be done recursively by retraining 
the model on only the new data. 
if 𝒈′(𝒖𝑘)⊤𝒈̄′(𝒖𝑘, 𝜽̂) ≻ 0 holds then 
Use the ANN to compute the ILC update (17)

else 
Identify 𝒈′(𝒖𝑘) experimentally by applying sufficiently excit-
ing input 𝒖 and solving (11). 
Compute new ILC update using (8).

end if
𝑘 = 𝑘 + 1

end while
end for

Proof. Consider a neural network with a single hidden layer, which has 
the form 

𝒚̂ = 𝑊2𝜎(𝑊1𝒖 + 𝒃1) + 𝒃2 (30)

where 𝑊1, 𝑊2 contain the weights, and 𝒃1, 𝒃2 are bias terms (Gal, 
2016). Assuming a rectified linear form for element-wise nonlinearity 
𝜎(⋅), this simplifies to

𝒚̂ = 𝑊2𝑊1𝒖 +𝑊2𝒃1 + 𝒃2 (31)

= 𝑊 𝒖 + 𝒄 (32)

where 𝒖 ∈ R𝑚𝑁×1, 𝒚 ∈ R𝑝𝑁×1, 𝑊 ∈ R𝑝𝑁×𝑚𝑁  and 𝒄 ∈ R𝑝𝑁×1. This is also 
the resulting form for any number of hidden layers. Assume a Euclidean 
loss function, which corresponds to 

𝐽 (𝜽) ∶= 1
𝑄

𝑄
∑

𝑖=1
‖𝒚𝑖 − 𝒚̂𝑖(𝒖𝑖,𝜽)‖2. (33)

Training the network via back propagation is then equivalent to solving 

min
𝜽

𝐽 (𝜽) = min
𝑊 ,𝒄

‖

‖

‖

‖

‖

⎡

⎢

⎢

⎣

𝒚⊤1
⋮
𝒚⊤𝑄

⎤

⎥

⎥

⎦

⏟⏞⏟⏞⏟
𝑌

−
⎡

⎢

⎢

⎣

1 𝒖⊤1
⋮ ⋮
1 𝒖⊤𝑄

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑋

[

𝒄⊤
𝑊 ⊤

]

⏟⏞⏞⏟⏞⏞⏟
𝜽

‖

‖

‖

‖

‖

2

(34)

with solution 𝜽∗ = (𝑋⊤𝑋)−1𝑋⊤𝑌 = 𝑋†𝑌 . This can be equivalently 
expressed using the block matrix pseudoinverse 
[

(𝑃⟂
𝐵𝐴)†

(𝑃⟂
𝐴𝐵)†

]

𝑌 (35)

with 𝐴 =
⎡

⎢

⎢

⎣

1
⋮
1

⎤

⎥

⎥

⎦

∈ R𝑄×1, 𝐵 =
⎡

⎢

⎢

⎣

𝒖⊤1
⋮
𝒖⊤𝑄

⎤

⎥

⎥

⎦

∈ R𝑄×𝑚𝑁 . Here 𝑃⟂
𝐴 ∈ R𝑄×𝑄

and 𝑃⟂ ∈ R𝑄×𝑄 are the orthogonal projection matrices onto 𝐴 and 𝐵
𝐵
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respectively. Hence the optimal 𝑊 , termed 𝑊 ∗, is
𝑊 ∗ = ((𝑃⟂

𝐴𝐵)†𝑌 )⊤

= 𝑌 ⊤(𝐵⊤(𝑃⟂
𝐴 )⊤)†

= 𝑌 ⊤(𝐵⊤𝑃⟂
𝐴 )†

=
[

𝒚1 ⋯ 𝒚𝑄
]

(

[

𝒖1 ⋯ 𝒖𝑄
]

𝑃⟂
[ 1

⋮
1

]

)†

.

Here 𝑃⟂
𝐴 = 𝐼 − 𝐴(𝐴⊤𝐴)−1𝐴⊤ so that 

𝑃⟂
[ 1

⋮
1

]

=
⎡

⎢

⎢

⎣

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

1
⋮
1

⎤

⎥

⎥

⎦

×

⎛

⎜

⎜

⎝

[

1 ⋯ 1
]

⎡

⎢

⎢

⎣

1
⋮
1

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

−1
[

1 ⋯ 1
]

=
⎡

⎢

⎢

⎣

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

⎤

⎥

⎥

⎦

1
𝑄

=

⎡

⎢

⎢

⎢

⎣

(1 − 1
𝑄 ) ⋯ − 1

𝑄
⋮ ⋱ ⋮

− 1
𝑄 ⋯ (1 − 1

𝑄 )

⎤

⎥

⎥

⎥

⎦

.

(36)

It follows that 
𝑊 ∗ =

[

𝒚1 ⋯ 𝒚𝑄
]

×

⎛

⎜

⎜

⎜

⎝

[

𝒖1 ⋯ 𝒖𝑄
]

⎡

⎢

⎢

⎢

⎣

(1 − 1
𝑄 ) ⋯ − 1

𝑄
⋮ ⋱ ⋮

− 1
𝑄 ⋯ (1 − 1

𝑄 )

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

†

=

[

𝒚1 ⋯ 𝒚𝑄
]

𝑁
∑𝑄

𝑗=1
∑𝑄

𝑖=1(𝒖𝑗 − 𝒖𝑖)⊤(𝒖𝑗 − 𝒖𝑖)
[

∑𝑄
𝑖=1(𝒖1 − 𝒖𝑖),

∑𝑄
𝑖=1(𝒖2 − 𝒖𝑖), ⋯

∑𝑄
𝑖=1(𝒖𝑄 − 𝒖𝑖)

]⊤

=

∑𝑄
𝑖=1

∑𝑄
𝑗=1(𝒚𝑖 − 𝒚𝑗 )(𝒖𝑖 − 𝒖𝑗 )⊤

𝑄
∑𝑄

𝑗=1
∑𝑄

𝑖=1(𝒖𝑗 − 𝒖𝑖)⊤(𝒖𝑗 − 𝒖𝑖)

(37)

Since the true plant 𝒚 = 𝒈(𝒖) is a monotonic function of each variable, 
it follows that 

∀𝒙, 𝒚 ⟨(𝒈(𝒙) − 𝒈(𝒚)), (𝒙 − 𝒚)⟩ > 0 (38)

in the case that it is increasing, or 

∀𝒙, 𝒚 ⟨(𝒈(𝒙) − 𝒈(𝒚)), (𝒙 − 𝒚)⟩ < 0 (39)

in the case it is decreasing. These correspond to

∀𝒖𝑖, 𝒖𝑗 (𝒈(𝒖𝑖) − 𝒈(𝒖𝑗 ))(𝒖𝑖 − 𝒖𝑗 )⊤ > 0

⇔ (𝒚𝑖 − 𝒚𝑗 )(𝒖𝑖 − 𝒖𝑗 )⊤ > 0 (40)

or

∀𝒖𝑖, 𝒖𝑗 (𝒈(𝒖𝑖) − 𝒈(𝒖𝑗 ))(𝒖𝑖 − 𝒖𝑗 )⊤ < 0

⇔ (𝒚𝑖 − 𝒚𝑗 )(𝒖𝑖 − 𝒖𝑗 )⊤ < 0 (41)

respectively. From (37) it follows directly that 

(𝒈̄′(𝒖,𝜽))𝑖,𝑗 = (𝑊 ∗)𝑖,𝑗 > 0 (42)

and 

(𝒈̄′(𝒖,𝜽)) = (𝑊 ∗) < 0 (43)
𝑖,𝑗 𝑖,𝑗

6 
hold respectively for every pair {𝑖, 𝑗}. The property that 𝒚 = 𝒈(𝒖) is a 
monotonic, (27) or (28), also means that 
(

𝜕𝒈𝑖(𝒖)
𝜕𝒖𝑗

)

𝑖,𝑗
> 0 (44)

in the case that it is increasing, or 
(

𝜕𝒈𝑖(𝒖)
𝜕𝒖𝑗

)

𝑖,𝑗
< 0 (45)

in the case it is decreasing. Therefore the gradient matrix 

(

𝒈′(𝒖)⊤
)

𝑖,𝑗 =

⎛

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

𝜕𝒈1(𝒖)
𝜕𝒖1

⋯
𝜕𝒈𝑝(𝒖)
𝜕𝒖1

⋮ ⋱ ⋮
𝜕𝒈1(𝒖)
𝜕𝒖𝑚

⋯
𝜕𝒈𝑝(𝒖)
𝜕𝒖𝑚

⎤

⎥

⎥

⎥

⎦

⊤
⎞

⎟

⎟

⎟

⎟

⎠𝑖,𝑗

> 0 (46)

or 

(

𝒈′(𝒖)⊤
)

𝑖,𝑗 =

⎛

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

𝜕𝒈1(𝒖)
𝜕𝒖1

⋯
𝜕𝒈𝑝(𝒖)
𝜕𝒖1

⋮ ⋱ ⋮
𝜕𝒈1(𝒖)
𝜕𝒖𝑚

⋯
𝜕𝒈𝑝(𝒖)
𝜕𝒖𝑚

⎤

⎥

⎥

⎥

⎦

⊤
⎞

⎟

⎟

⎟

⎟

⎠𝑖,𝑗

< 0 (47)

respectively. In both cases it then follows that (29) holds since the 
product of two commuting positive (or negative) operators is a positive 
operator, i.e. 

⎡

⎢

⎢

⎢

⎣

𝜕𝒈1(𝒖)
𝜕𝒖1

⋯
𝜕𝒈𝑝(𝒖)
𝜕𝒖1

⋮ ⋱ ⋮
𝜕𝒈1(𝒖)
𝜕𝒖𝑚

⋯
𝜕𝒈𝑝(𝒖)
𝜕𝒖𝑚

⎤

⎥

⎥

⎥

⎦

⊤

𝑊 ∗ ≻ 0. □ (48)

Theorem 4. Suppose ANN based ILC is applied to track all references in 
the set  under the conditions of Theorem  2. Then an upper bound on the 
total number of trials required to meet the accuracy metrics (𝑘𝛿 , 𝛿) in (6), 
(7) is

𝑘𝛿 ≤
1
𝛿

𝑛
∑

𝑖=1

{

‖𝒖0 − 𝒖∗𝑖 ‖
2

2𝛾
+

𝛾
2

∞
∑

𝑗=0

(

𝐽 ′
𝑖 (𝒖𝑗 ,𝜽)

− 𝐽 ′
𝑖 (𝒖𝑗 )

)⊤𝐽 ′
𝑖 (𝒖𝑗 ,𝜽)

}

(49)

Proof. Since 𝐽𝑖 is convex, it is possible to write
𝐽𝑖(𝒖∗) ≥ 𝐽𝑖(𝒖) + 𝐽 ′

𝑖 (𝒖)
⊤(𝒖∗ − 𝒖) (50)

𝐽𝑖(𝒖) ≤ 𝐽𝑖(𝒖∗) + 𝐽 ′
𝑖 (𝒖)

⊤(𝒖 − 𝒖∗). (51)

Substituting this into (24) yields

𝐽𝑖(𝒖𝑘+1) − 𝐽𝑖(𝒖∗) ≤
1
2𝛾

(

2𝛾𝐽 ′
𝑖 (𝒖𝑘)

⊤(𝒖𝑘 − 𝒖∗) − 𝛾2𝑎𝑘

− ‖𝒖𝑘 − 𝒖∗‖2 + ‖𝒖𝑘 − 𝒖∗‖2
)

.

Now note that
(𝒖𝑘 − 𝒖∗ − 𝛾𝐽 ′

𝑖 (𝒖𝑘,𝜽))
⊤(𝒖𝑘 − 𝒖∗ − 𝛾𝐽 ′

𝑖 (𝒖𝑘,𝜽))

= ‖𝒖𝑘 − 𝒖∗‖2 − 2𝛾𝐽 ′
𝑖 (𝒖𝑘,𝜽)

⊤(𝒖𝑘 − 𝒖∗)

+ 𝛾2𝐽 ′
𝑖 (𝒖𝑘,𝜽)

⊤𝐽 ′
𝑖 (𝒖𝑘,𝜽)

so that
𝐽𝑖(𝒖𝑘+1) − 𝐽𝑖(𝒖∗) ≤

1
2𝛾

(

‖𝒖𝑘 − 𝒖∗‖2 − ‖𝒖𝑘+1 − 𝒖∗‖2

− 𝛾2
(

𝐽 ′
𝑖 (𝒖𝑘) − 𝐽 ′

𝑖 (𝒖𝑘,𝜽)
)⊤𝐽 ′

𝑖 (𝒖𝑘,𝜽)
)

. (52)

Summing over iterations produces
𝑘
∑

𝑗=0

(

𝐽𝑖(𝒖𝑗+1) − 𝐽𝑖(𝒖∗)
)

≤
𝑘
∑ 1

2𝛾

(

‖𝒖𝑗 − 𝒖∗‖2 − ‖𝒖𝑗+1 − 𝒖∗‖2 − 𝛾2
(

𝐽 ′
𝑖 (𝒖𝑗 )
𝑗=0
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Fig. 2. FES array stimulation of wrist extensors using 2 FES input channels.

− 𝐽 ′
𝑖 (𝒖𝑗 ,𝜽)

)⊤𝐽 ′
𝑖 (𝒖𝑗 ,𝜽)

)

≤ 𝛾
2

𝑘
∑

𝑗=0

(

𝐽 ′
𝑖 (𝒖𝑗 ,𝜽) − 𝐽 ′

𝑖 (𝒖𝑗 )
)⊤𝐽 ′

𝑖 (𝒖𝑗 ,𝜽)

+ 1
2𝛾

‖𝒖0 − 𝒖∗‖2

since 𝐽𝑖 decreases on every iteration, it can be concluded

𝐽𝑖(𝒖𝑘+1) − 𝐽𝑖(𝒖∗) ≤
1
𝑘

𝑘
∑

𝑗=0

(

𝐽𝑖(𝒖𝑗+1) − 𝐽𝑖(𝒖∗)
)

≤ 𝛾
2𝑘

𝑘
∑

𝑗=0

(

𝐽 ′
𝑖 (𝒖𝑗 ,𝜽) − 𝐽 ′

𝑖 (𝒖𝑗 )
)⊤𝐽 ′

𝑖 (𝒖𝑗 ,𝜽)

+
‖𝒖0 − 𝒖∗‖2

2𝛾𝑘
(53)

The summation term in (53) reduces as 𝒈̄(𝒖,𝜽) more closely approxi-
mates the true system 𝒈(𝒖), and attains a finite value when 𝑘 → ∞. 
Hence taking the limit and rearranging gives the bound (49). □

Theorem  4 therefore quantifies how the number of trials required 
for convergence depends on the accuracy of the model. Since model 
fitting improves as more experimental data are generated, it follows 
that new references are tracked progressively faster.

5. Numerical results

The ANN based ILC approach is now evaluated on a rehabili-
tation problem, in which FES is applied to an electrode array in 
order to produce a set of four hand gestures. The model is based 
on Theodorou, Todorov, and Valero-Cuevas (2011) and comprises a 3-
link wrist and hand representation, including radius, metacarpal and 
phalangeal bones. The FES array elements are chosen to stimulate 
Flexor Digitorum Profundus and Extensor Communis muscles (𝑢1, 𝑢2
respectively). The resultant force is transmitted via a longitudinally 
symmetric tendon rhombus network (with 5 active and 3 passive 
tendons) which actuates the wrist and metacarpal-phalangeal joints 
(𝑦1, 𝑦2 respectively, in degrees). This 𝑚 = 2, 𝑝 = 2 system accurately 
models the response to FES, and the clinical aim is to achieve functional 
gestures such as ‘open hand’, ‘pointing’ or ‘pinching’. This matches the 
set-up used with patients in previous studies (Freeman, 2014, 2016; 
Ward et al., 2020). As in these studies, 𝑁 = 1 is chosen together with 
a large sample time, since the purpose is to track the final gesture 
position. A set of 𝑛 = 4 references is chosen to provide varied training, 
given by 𝒓1 = [10, 50]⊤, 𝒓4 = [70, 70]⊤, 𝒓3 = [20, 10]⊤ and 𝒓4 = [30, 50]⊤

(see Fig.  2).
7 
Fig. 3. Convergence of tracking error norm using standard ILC.

Fig. 4. Convergence of tracking error norm using ANN based ILC.

5.1. Standard gradient ILC

First standard gradient ILC is applied using Algorithm 1 and a 
stopping criterion of 𝛿 = 0.25 and initial input 𝒖0 = [0, 0]⊤. The error 
norm results are shown in Fig.  3. In total 34 ILC trials are required, 
each requiring 3 separate tests to perform. If applied experimentally, 
this equates to 102 tests in total. This is clearly too many for a typical 
therapy session.

5.2. Artificial neural network based ILC

ANN based ILC is next applied using Algorithm 2 and the same 
stopping criterion. Here 𝒈̄(𝒖,𝜽) is chosen as an 𝑀 = 1 layer, 𝑀1 neuron 
ANN with a back-propagation training function that minimises the 
MSE. Different 𝑀1 values are used in order to compare their ability to 
fit the known data points and also extrapolate to predict unknown data 
points. The simulations were performed using the ‘feedforward-
net’ feedforward neural network structure from the Matlab Deep 
Learning Toolbox (Matlab R2024a).

Fig.  4 shows the error norm results with 𝑀 = 1 hidden layers 
and 𝑀1 = 4 neurons. Here a total of 24 ILC trials are required, 
however, only 9 of these required identification of a new model, with 
the remainder using ANN model update (17) to generate the next 
update step. This means only 42 experimental inputs would be needed 
in practice to track all references. Compared with standard ILC’s 102 
overall inputs, the improvement is 59%.

Table  1 shows the accuracy using different numbers of neurons and 
it is clear that only four are sufficient to fit the data in this application. 
More than ten neurons overfits the data. To illustrate how this is 
achieved, 𝒈̄(𝒖, 𝜽̂) is shown in Fig.  5 immediately after completing 𝒓1
tracking. 

6. Experimental results

The hardware used consists of a tracking sensor, user interface 
software running on a laptop, a control unit, a 24 channel FES electrode 
array sleeve and FES electronics. The components are shown in Fig. 
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Table 1
The accuracy of ANN with different number of neurons 𝑀1.
 Neurons, 
𝑀1

𝑟1 𝑟2 𝑟3 𝑟4 Ident’n 
trials

Overall 
inputs

Improvement 
Percentage

 

 1 9 9 3 2 13 49 52%  
 2 13 10 3 2 12 52 49%  
 4 12 3 6 3 9 42 59%  
 6 12 11 2 4 12 53 48%  
 10 16 14 2 4 10 56 45%  
 20 20 17 9 7 15 83 19%  
 100 20 20 20 5 21 107 −5%  

Fig. 5. Plots of 𝒚1 = 𝒈̄1(𝒖, 𝜽̂) and 𝒚2 = 𝒈̄2(𝒖, 𝜽̂) with all points {𝒖𝑘, 𝒚𝑘} after 
completing 𝒓1.

Fig. 6. Upper limb stroke rehabilitation hardware.

6. The sensor (Stereo IR 170 camera, UltraLeap) is a next-generation 
optical hand tracking module with a 170 × 170◦ field of view, which 
collects the positional data of the hand and wrist, and is then processed 
by the user interface to generate angle data. This is sent to the control 
unit (Raspberry Pi 4) via wireless transmission, which runs the real-
time controller (at 40 Hz). The controller computes the voltage pulse 
train applied to each element of the 24 channel electrode array. Here, 
the frequency and amplitude of each pulse train are fixed, and the 
pulse width of each pulse train is the controlled variable (0–100 μs). 
The sensor provides 12 joint angles, however only those corresponding 
to wrist flexion/extension and the index finger metacarpal-phalangeal 
joint flexion/extension are used. This matches the set-up of Section 5.

Since the Deep Learning Toolbox is not supported by the Raspberry 
Pi Simulink toolbox in Matlab R2024a, the ANN was re-implemented 
using basic functions as a back propagation neural network. A sigmoid 
was selected as the activation function of the hidden layer, and a linear 
function as the activation function of the output layer. The learning rate 
was 0.1 and 1000 training episodes were used.

The simulation tests are now repeated experimentally in a study 
with eight unimpaired participants (University of Southampton Ethics 
No. 72855). These participants will be denoted P1, P2, …, P8 and their 
details are shown in Table  2. 

The experimental setup is shown in Fig.  7. The electrode array 
was first positioned on the forearm of the participant’s dominant arm. 
8 
Table 2
Participant demographic information.
 No. Age Gender Test arm 
 P1 36 M right  
 P2 21 F right  
 P3 46 F right  
 P4 45 M left  
 P5 31 M right  
 P6 55 F right  
 P7 36 M right  
 P8 37 F right  

Fig. 7. Electrode array, stimulator and Stereo IR 170 camera.

Two stimulation sites were selected from the array, to correspond with 
activating the Flexor Digitorum Profundus and Extensor Communis 
muscles. Then a 100 μs FES signal was applied to each of the two 
channels in turn. While stimulated, the voltage amplitude was slowly 
increased until a comfortable limit was reached. The pulsewidth was 
then reset to 0 μs and the amplitude was then fixed for each channel in 
all remaining tests.

Three reference gestures which include open hand, pointing, and 
pitch gestures, were used: open hand (with wrist and index finger 
extended), pinch (with wrist extended and index finger flexed), and 
horizontal pointing (with wrist partially extended and index finger fully 
extended). These are denoted 𝒓1, 𝒓2 and 𝒓3 respectively. The values 
for participant P1 are 𝒓1 = [−33.5, 22.2]⊤, 𝒓2 = [33.6,−2.5]⊤ and 𝒓3 =
[−40.4, 22.6]⊤ with unit in degrees, and a positive value corresponding 
to flexion for each angle.

Following this, the standard ILC and ANN based ILC algorithms 
introduced in Sections 3 and 4 were applied. During each test, the 
participant was instructed to apply no voluntary effort, and they were 
not shown the reference movement. Note that omitting voluntary effort 
in the controller design has been assumed in all clinical trials using 
ILC (Freeman, Exell, Meadmore, Hallewell, & Hughes, 2015). This is be-
cause patients are typically highly impaired with significant weakness 
and so their voluntary input is minimal starting rehabilitation. Instead, 
their voluntary effort is treated as an external disturbance. A time of 
ten seconds was added between trials so that the participant’s hand 
naturally returned to the same starting condition under the effect of 
gravity and zero applied stimulation.

As in the previous ILC applications of Freeman (2014) and Yang 
et al. (2018), 𝑁 = 1 was selected and the stimulation inputs were 
smoothly applied to each array element using a ramp signal of three 
seconds duration. The resulting hand gesture was measured.

In the previous section, the stopping criteria |𝐽𝑖(𝒖𝑘) − 𝐽𝑖(𝒖∗)| < 𝛿
was used. During experiments, the value 𝐽𝑖(𝒖∗) is not known, and so it 
is assumed that perfect tracking is possible, 𝐽𝑖(𝒖∗) = 0. This corresponds 
to the stopping criteria |

|

𝐽𝑖(𝒖𝑘) − 𝐽𝑖(𝒖∗)|| = ‖𝒆𝑘‖2 < 𝛿. A value of 𝛿 = 5
was selected as it corresponds to accurate tracking (i.e. joint angle error 
norm less than 

√

5 degrees) that is considered practically achievable. 
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Fig. 8. Convergence of tracking error norm using standard ILC with 𝛾 = 2 for 
P1, (experimental results).

Fig. 9. Convergence of tracking error norm using standard ILC with 𝛾 = 10
for P1, (experimental results).

The minimum number of trials to achieve this criteria will be termed 
the ‘total trials’, however the experiments will still be continued for ten 
trials in order to determine whether the level of error is maintained.

6.1. Standard ILC

First, standard ILC was applied as described in Algorithm 1 of 
Section 3. Two system gains were used for all participants: 𝛾 = 10 and 
𝛾 = 2. Results for participant P1 are shown in Fig.  8 for 𝛾 = 2. These 
confirm convergence to a low level of error for all three references.

Further convergence results for participant P1 are shown in Fig.  9 
using 𝛾 = 10. These demonstrate slightly faster convergence with high 
accuracy maintained over the ten trials.

For each reference, the number of trials required to meet the stop-
ping criteria is listed in Table  3 for all participants. The total number 
of trials requiring identification, termed ‘identification trials’, is also 
shown, together with the total number of inputs (i.e. 3 inputs for each 
identification trial and 1 input for each of the remaining trials). Since 
this is standard ILC, all trials require identification. In almost all cases 
the increased ILC gain increases the convergence speed, however a 
large number of experiments is always required. 

6.2. Artificial neural network based ILC

As in Section 5.2, Algorithm 2 was next applied with the same 
parameters as the standard ILC method. ANN parameter choices 𝑀 =
1,𝑀1 = 1 and 𝑀 = 1,𝑀1 = 4 were tested for all participants.

The error norm results for participant P1 using ANN based ILC with 
𝛾 = 2 and 𝑀1 = 1 are shown in Fig.  10. The convergence speed of 
ANN based ILC is faster than standard ILC, since the later references 
start from a smaller initial error norm due to the use of the fitted 
model 𝒈̄(𝒖, 𝜽̂). A total of 13 ILC trials are required, however, only 10 
of these require the identification of a new model, with the remainder 
using parameterised model update (17) to generate the next update 
step. This led to only 33 experimental inputs being needed to track all 
9 
Fig. 10. Convergence of tracking error norm using ANN based ILC with 𝛾 = 2
and 𝑀1 = 1 for P1, (experimental results).

Fig. 11. Participant P1 results with 𝛾 = 2. Plots of 𝒚1 = 𝒈̄1(𝒖, 𝜽̂) and 𝒚2 =
𝒈̄2(𝒖, 𝜽̂) with all ILC points {𝒖𝑘, 𝒚𝑘} after completing 𝒓1, (experimental results).

Fig. 12. Convergence of tracking error norm using ANN based ILC with 𝛾 = 10, 
𝑀1 = 1 for P1, (experimental results).

three references. This equates to (60 − 33)∕60 = 45% fewer experiments 
compared to Standard ILC. To show how this was achieved, the fitted 
model 𝒈̄(𝒖, 𝜽̂) is shown in Fig.  11 immediately after completing tracking 
of 𝒓1. 

Results using 𝛾 = 10, 𝑀1 = 1 are shown in Fig.  12 for participant P1. 
These show even faster convergence with only 20 experimental inputs.

The sequence of FES inputs applied is shown in Fig.  13 for 𝛾 = 2, 
and Fig.  14 for 𝛾 = 10. 

For each reference, the overall total number of experimental inputs 
is listed in Table  4 for all participants. In all cases there is significant 
improvement in terms of a reduced number of experiments required to 
achieve the three gestures. 

The average improvement over all participants is (55.5 − 24.6)/55.5 
= 56%, meaning that the total test time is less than half.

7. Conclusions

An ANN based ILC approach has been developed to reduce the 
experimental overhead required by existing model-free/data-driven ILC 
approaches. This uses all prior data to fit an ANN model which is 
used to construct the next ILC update. Conditions for convergence to 
minimal error are derived which inform model design, minimising the 
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Table 3
Total trials required by Standard ILC for all participants. Average number of inputs: 68.2 for 𝛾 = 2, 55.5 for 
𝛾 = 10.

 
Participant

 Trials Test 
𝛾 𝑟1 𝑟2 𝑟3 Ident’n trials Overall inputs 

 P1 2 4 7 9 20 60  
 10 5 4 5 14 42  
 P2 2 7 7 10 24 72  
 10 6 4 7 17 51  
 P3 2 8 5 10 23 69  
 10 7 3 10 20 60  
 P4 2 5 6 10 21 63  
 10 10 4 10 24 72  
 P5 2 10 9 10 29 87  
 10 5 10 10 25 75  
 P6 2 10 6 10 26 78  
 10 4 3 8 15 45  
 P7 2 6 5 9 20 60  
 10 4 4 8 16 48  
 P8 2 5 5 9 19 57  
 10 4 5 8 17 51  
Table 4
Total trials required by ANN based function ILC for all participants. Improvement denotes the fraction of required inputs compared 
with standard ILC. Average number of inputs: 26.7 for 𝑀1 = 1, 𝛾 = 2, 24.6 for 𝑀1 = 1, 𝛾 = 10, 35.6 for 𝑀1 = 4, 𝛾 = 2, 25.6 for 
𝑀1 = 4, 𝛾 = 10.

 
Participant

 Trials  Test 
𝑀1 𝛾 𝑟1 𝑟2 𝑟3 Ident’n trials Overall inputs Improvement 

 P1 1 2 5 3 5 10 33 45%  
 1 10 4 5 1 5 20 52%  
 4 2 5 5 10 16 52 13%  
 4 10 4 3 2 5 19 55%  
 P2 1 2 4 4 3 4 19 74%  
 1 10 6 3 1 7 24 53%  
 4 2 5 8 3 13 42 42%  
 4 10 4 4 3 4 19 63%  
 P3 1 2 4 3 3 9 28 59%  
 1 10 3 2 3 5 18 70%  
 4 2 4 6 4 11 36 48%  
 4 10 5 8 1 5 24 60%  
 P4 1 2 4 8 7 4 27 57%  
 1 10 4 2 1 4 15 79%  
 4 2 8 3 6 8 33 48%  
 4 10 5 5 1 5 21 71%  
 P5 1 2 5 5 1 7 25 71%  
 1 10 6 3 10 16 51 32%  
 4 2 10 5 10 10 45 48%  
 4 10 10 3 4 10 37 51%  
 P6 1 2 6 10 1 12 41 47%  
 1 10 5 4 8 5 27 40%  
 4 2 7 6 1 7 28 64%  
 4 10 6 3 8 9 35 22%  
 P7 1 2 4 4 2 4 18 70%  
 1 10 5 2 6 5 23 52%  
 4 2 4 4 6 6 24 60%  
 4 10 6 3 3 6 24 50%  
 P8 1 2 5 3 4 6 23 59%  
 1 10 4 4 2 5 19 63%  
 4 2 5 4 5 6 25 56%  
 4 10 5 2 6 8 26 49%  
number of identification tests while preserving convergence. The frame-
work is demonstrated on a key biomedical control problem, where it 
is shown that it reduces the experiments required to a number that 
is clinically feasible (from 55.5 to 24.6 on average). This opens up 
the possibility of translating effective FES based therapy to clinics and 
10 
patients’ own homes. Future work will evaluate the approach with 
stroke participants.

It has been assumed that the ANN used to fit the measured data is of 
a generic form that does not embed any knowledge of the underlying 
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Fig. 13. Participant P1 results with 𝛾 = 2, showing stimulation input signals, 
where ▵ denotes ILC updates requiring experimental identification step, (ex-
perimental results).

Fig. 14. Participant P1 results with 𝛾 = 10 showing stimulation input signals, 
where ▵ denotes ILC updates requiring experimental identification step, (ex-
perimental results).

system. While this is convenient for most applications, it is also pos-
sible to use the same model 𝒈̄(𝒖,𝜽) to capture a parameterised model, 
for example musculoskeletal dynamics capturing stimulated hand and 
wrist dynamics (Soska, 2014). In this case 𝜽 contains the unknown 
parameters, and its small dimension may lead to faster convergence. 
The possible benefits of this approach will be evaluated in the future 
study with stroke participants.

Technical development will also focus on incorporating automatic 
step size adaptation schemes to further optimise the trade-off between 
convergence speed and robustness.
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