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Conditioning, the central operation in Bayesian statistics, is formalised by
the notion of disintegration of measures. However, due to the implicit nature
of their definition, constructing disintegrations is often difficult. A folklore
result in machine learning conflates the construction of a disintegration with
the restriction of probability density functions onto the subset of events that
are consistent with a given observation. We provide a comprehensive set of
mathematical tools which can be used to construct disintegrations and apply
these to find densities of disintegrations on differentiable manifolds. Using
our results, we provide a disturbingly simple example in which the restricted
density and the disintegration density drastically disagree. Motivated by
applications in approximate Bayesian inference and Bayesian inverse problems,
we further study the modes of disintegrations. We show that the recently
introduced notion of a “conditional mode” does not coincide in general with
the modes of the conditional measure obtained through disintegration, but
rather the modes of the restricted measure. We also discuss the implications
of the discrepancy between the two measures in practice, advocating for the
utility of both approaches depending on the modelling context.
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1. Introduction

The construction of conditional distributions is central to statistics and probabilistic
machine learning. On discrete event spaces, these can often be constructed directly, by
applying the definition of conditional probability. However, this construction breaks down
in case the event to be conditioned on has probability zero, which is virtually always the
case on continuous event spaces. In this case, the construction is more involved, and many
texts focus solely on the setting where a Lebesgue density is available or, more generally,
where the conditional is dominated by, and thus has a density with-respect-to, the base
measure. However, recent works have generated a profusion of examples in which this
familiar construction is no longer valid, primarily due to conditionals being defined on a
submanifold of the support of the measure. Some examples include:

• Bayesian deep learning in which reparameterisation invariances often lead to
complex multimodalities in posterior measures (e.g. Wiese et al. [2023], Laurent
et al. [2024]), potentially mitigated by restricting a prior to a submanifold to limit
these invariances,

• Directional statistics [Mardia and Jupp, 1999] where learning problems are defined
on manifolds such as the Stiefel manifold of orthonormal frames, a submanifold of
Rd×k,

• Probabilistic numerics [Cockayne et al., 2019] which utilises noise-free observa-
tions of an unknown, resulting in posteriors concentrated on submanifolds.

There is therefore a growing need to be able to characterise conditional distributions on a
more intrinsic, measure-theoretic level than by using densities.

In modern probability theory, conditioning is formalised as disintegration. A disintegration
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of a measure µ on X along a map h : X → Y is defined as the almost-surely1 unique
family of distributions {µh( · | y)}y∈Y that satisfies the law of total probability. Existence
and almost-sure uniqueness of disintegrations is provided by disintegration theorems
which have been available under mild conditions since at least Dellacherie and Meyer
[1978]; see Chang and Pollard [1997] for a more recent exposition. However proofs are
typically abstract and, crucially, non-constructive outside of conjugate settings, such as
with Gaussian µ and linear h. This paper provides, to our knowledge, the first general
set of results for constructing disintegrations.

Transferring intuition from the density setting, a “folklore” result in machine learning
conflates disintegration of a distribution with restriction of the distribution to the subman-
ifold on which the conditional is supported. For examples of this see e.g. [Bishop, 2006,
Figure 2.18], which describes the von Mises distribution as being obtained by “considering
a two-dimensional Gaussian distribution [...] and conditioning on the unit circle”. In
fact this is a restriction rather than a conditional, and our novel results highlight that
these can differ dramatically. In Figure 1 we provide a (disturbingly) simple example
related to this distribution in which restriction and disintegration result in radically
different distributions. This example takes an ambient standard Gaussian measure on
R2 (Figure 1a) and contrasts restricting (Figure 1c) and disintegrating (Figure 1d) the
measure on successively larger ellipses; see Example 2.1 for more detail. The colour
maps on contours in Figures 1c and 1d depict appropriate densities for the restriction
or disintegration, respectively. Notably, for smaller ellipses, the mass concentrates at
different poles between the two approaches.

A special case of our characterisation result on Rd is reproduced below:

Theorem 1.1. Let µ be a Borel probability measure on Rd that has a density dµ
dλ w.r.t. the

Lebesgue measure λ on Rd. Let h : Rd → Rn such that µ-almost all points x ∈ Rd are C1

regular (see Definition A.8). Then there exists a version of the disintegration µh with
probability densities2

dµh( · | y)
dλh−1({y})

(x) ∝ dµ

dλ
(x) ·

∣∣∣det(Dh(x)|ker(Dh(x))⊥

)∣∣∣−1

for all C1 regular values y ∈ Rn, where λh−1({y}) is the restricted Lebesgue measure to the
fiber h−1({y}) (see Definition 2.13).

Theorem 1.1 shows that the disintegration density differs from the restriction density by
a corrective factor depending on the Jacobian of h. See Theorem 2.14 for further details.
In the case where h is linear, this Jacobian is constant, and we hence recover the classical
proportionality formula for densities dµh( · | y)

/
dλh−1({y}) ∝ dµ/dλ .

To demonstrate the importance of our results we focus on the problem of mode computa-
tion, i.e., computation of maximum a-posteriori (MAP) points in Bayesian computation.

1Specifically, h⋆µ-almost surely; see Definition 2.2 and Theorem 2.4.
2The densities are with respect to the restriction λh−1({y}) of the Lebesgue measure to the observation

fiber h−1({y}) (see Definition 2.13).
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Figure 1: Conditioning a standard Gaussian prior µ on observations made through the
quadratic observation operator h(x) = x2

1
a2

+
x2
2

b2
with a = 1 and b = 1

2 . In machine
learning folklore, the corresponding conditional distribution is constructed by
first restricting the prior’s density dµ

dλ to the observation fiber h−1({y}), which
is then renormalized w.r.t. the canonical volume measure on the fiber. However,
in general, the law of total probability fails to hold for this restricted measure.
Our main result, Theorem 2.14, shows that an additional corrective factor of
∥∇h(x)∥−1

2 needs to be multiplied into this restricted density to obtain the
density of the true conditional distribution, which is defined implicitly through
the notion of a disintegration. Intuitively speaking, this is due to the fact that,
for the law of total probability to hold, the predictive probability mass has to be
distributed between fewer fibers where the fibers lie less dense, which is the case
if ∥∇h(x)∥2 is small (see plots above). The plots show a stark disagreement
between the restricted and disintegration densities. Notably the modes of the
measures differ maximally. See Example 2.1 for details.

MAP estimation summarises a distribution with a single, representative estimate that
can be interpreted informally as a “point of maximal probability”. This is particularly
significant in Bayesian inference. In many practical settings sampling from a full posterior
is computationally expensive and a point estimate is sufficient for decision-making or
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further modelling. MAP estimates are also of central use in many posterior approximation
settings, where an approximation to the posterior is often constructed to have the same
mode as the true posterior.

Modes are traditionally defined as maximisers of a Lebesgue density, or more generally,
as centers that supremise a particular ratio of open metric balls compared to other
candidate centers as the radius of the balls tends to zero. The aforementioned difficulties
in characterising disintegrations have led some works to propose that MAP points be
computed by constraining this maximisation problem to the submanifold on which the
conditional is supported—in other words, computing modal points of the restricted
measure rather than the disintegrated measure—often resulting in a computationally
tractable procedure. We refer to such points as restricted modes, and our work highlights
that restricted modes can differ drastically from modes of a disintegration. To give some
specific examples of this practice:

• Chen et al. [2024, Definition 3] defines a conditional mode precisely as above
to construct samplers for Gaussian processes conditioned on a particular class
of nonlinear, noise-free observations. In fact, this computes a restricted mode,
potentially meaning that the posterior approximation techniques they propose
approximate the restriction rather than the conditional or, in the worst case, do
not approximate either distribution.

• Cinquin et al. [2024] propose a Laplace approximation for Bayesian neural networks
which computes the MAP estimate of the network weights under a function-space
prior that is restricted to the set of functions representable by the neural network.

• Tronarp et al. [2021, Section 3] defines the MAP estimator of a probabilistic ODE
solver again as above, resulting in similar potential pitfalls to Chen et al. [2024].

A special case of our novel result Theorem 3.5, as it applies on Rd, is reproduced below,
to highlight that modes of a disintegration meaningfully differ from restricted modes in a
way that depends on the observation operator h.

Theorem 1.2. Let µ be a Borel probability measure on Rd that has a continuous density
dµ
dλ w.r.t. the Lebesgue measure λ on Rd. Let h : Rd → Rn such that µ-almost all points
x ∈ Rd are C1 regular (see Definition A.8). Then there is a version of the disintegration
µh whose weak modes are given by

argmin
x∈Rd

− log
dµ

dλ
(x) + log

∣∣∣detDh(x)|ker(Dh(x))⊥

∣∣∣
s.t. h(x) = y

for all C1 regular values y ∈ Rn.

The proof can be found in Section 3. Restricted modes are obtained by dropping the
log det term in Theorem 1.2, and so only coincide with modes of the disintegration in
settings where this term is constant, such as for linear h.
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Figure 1b graphically illustrates the severe impact this can have by contrasting densities
on a particular ellipse in the wider setting of Figure 1. Disintegration and restriction
show almost opposite modes in this setting.

1.1. Related Work

Disintegrations Disintegrations have received limited attention in the literature. Tjur
[1975] and Tjur [1980, Chapter 9] each developed disintegrations (also referred to as
decompositions) and studied their existence, almost-sure uniqueness and continuity
properties under an assumption of a continuous observation operator h and completely
regular X,Y. Dellacherie and Meyer [1978] provided existence results under weaker
assumptions (only requiring h to be measurable, but with a separability assumption on
Y). Chang and Pollard [1997] advocate for disintegrations as the prototype for rigorous
conditional distributions, rather than relying on intuition derived from taking limits of
conditionals derived in more “well-behaved” settings.

Diaconis et al. [2013] obtain a related formula to our construction of disintegrations, in
the special case of Euclidean spaces. Instead of constructing disintegrations from the
ground up, they apply the co-area formula. Other recent works include Possobon and
Rodrigues [2022], which studies the regularity of the disintegration map as a function of
the observation. Cockayne et al. [2019] propose a sampling routine which, under some
assumptions, approximately samples a disintegration. However these assumptions are
difficult to verify.

Modes Recent years have seen a surge in research into the theoretical definition of
modal points of distributions, enabling a departure from the familiar notion of a MAP
point as the maximiser of a Lebesgue density. The modern, more general view was initially
conceived by Dashti et al. [2013], who proposed to seek points that maximise the limit
of a ratio of small ball probabilities with different candidate centers, tractably realised
through the connection to an Onsager-Machlup functional. They studied the properties
of MAP points in separable Hilbert spaces for distributions dominated by a Gaussian
reference measure. The MAP estimator of Dashti et al. [2013] was termed a strong MAP
estimator by Helin and Burger [2015], who introduced the idea of a weak MAP estimator,
weakening the definition by comparing balls centered at a candidate MAP point to shifted
balls, where shifts are limited to a topologically dense subset. Lie and Sullivan [2018]
showed that these two definitions are in fact equivalent under an additional uniformity
condition on the measure.

In more recent works, Clason et al. [2019] introduced the idea of a generalised mode that
studies ball ratios in a more general asymptotic sense, studying the limiting ball ratio
along sequences of points approaching candidate MAP points. This prompted Klebanov
et al. [2025] to note the similarity of the three existing mode definitions and generate
and study a family of feasible alternative definitions by constructing a grammar from
mathematical symbols in the definitions. Of the 282 “grammatically correct” definitions
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generated, ten were deemed meaningful in terms of satisfying some natural properties to
expect of such definitions. Ayanbayev et al. [2022] studies Γ-convergence of global weak
modes and demonstrates some of the difficulties extending this approach to strong modes.
Lambley [2023] studies strong modes of Bayesian posterior measures in Banach spaces,
under Gaussian priors, and demonstrates their equivalence with other notions of modes.

Specifically studying MAP points in the setting of this paper (i.e. when the support of the
conditional measure has no prior mass) has received much less attention. As discussed
above both Chen et al. [2024] and Tronarp et al. [2021] construct what we call restricted
modes in pursuit of the MAP of a disintegration. Chen et al. [2021] and Cinquin et al.
[2024] adopt a similar approach.

1.2. Contributions

The main contributions of our work are as follows:

• We prove several intermediate important properties of disintegrations, leading to
a formula for the density of a disintegration on a Riemannian manifold X, with-
respect-to the volume measure on the fibers h−1({y}).

• We characterise modes of disintegrations and of (Riemannian) restricted measures,
highlighting their disagreement in general.

• We illustrate numerically the potentially large extent of disagreement between the
two notions of modes on a simple toy problem, that is nevertheless representative
of contemporary applications.

1.3. Structure of the Paper

The rest of the paper proceeds as follows. In Section 2 we introduce disintegrations and
prove several intermediate results leading to our constructive definition of disintegrations
on Riemannian manifolds in Section 2.2. Section 3 focuses on how these ideas pertain
to the computation of modes of disintegrations, with Section 3.1 proving disagreement
of restricted modes and disintegration modes and Section 3.2 providing a more explicit
characterisation of failure modes in Rd. We conclude with some discussion on the
implications of these results in Section 4.

2. Constructive Disintegration

We begin by introducing transition and Markov kernels, which are fundamental to the
definition of a disintegration. Let (X,AX) and (Y,AY) be measurable spaces.

Definition 2.1 (Transition Kernel). A function κ( · | · ) : AX × Y → [0,∞] is called a
transition kernel from Y to X if
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(i) κ( · | y) is a measure on (X,AX) for all y ∈ Y, and

(ii) κ(X | · ) is AY-B ([0,∞])-measurable for all X ∈ AX.

If κ( · | y) is a probability measure for all y ∈ Y, then κ is called a Markov kernel.

We extend measure-theoretic operations like pushforwards f⋆κ, integrals κ(f, y) and fκ,
as well as Radon-Nikodym derivatives dκ

dν to transition kernels.

Next we introduce disintegrations as Markov kernels satisfying certain regularity properties.
To this end, let µ be a measure on (X,AX) and h : X → Y a AX-AY-measurable function.

Definition 2.2 (Disintegration). A disintegration of µ with respect to h is a transition
kernel µh( · | · ) from Y to X such that

(i) µh
(
X \ h−1({y})

∣∣ y) = 0,

(ii) µ(X) =
∫
Y µh(X | y)h⋆µ(dy) for any X ∈ AX.

If µ is a probability measure, then the elements of the disintegration are sometimes
referred to as regular conditional probability measures. In this case, (ii) is equivalent to
the law of total probability when conditioning on events of nonzero probability.

Remark 2.1. By the monotone convergence theorem, Definition 2.2(ii) is equivalent to
µ(f) =

∫
Y µh(f | y)h⋆µ(dy) for any non-negative measurable f .

For the remainder of Section 2, we will always work under the following set of assumptions:

Assumption 2.3.

(i) X is a metrizable topological space equipped with its Borel σ-algebra, i.e. AX = B(X).
(ii) AY is countably generated and contains all singleton sets {y}.
(iii) µ is a σ-finite Radon measure on X and its pushforward h⋆µ is also σ-finite.

Remark 2.2. The assumption that h⋆µ is a σ-finite measure is non-trivial; for example
the projection of the Lebesgue measure on R2 onto a coordinate axis is not σ-finite.

Under Assumption 2.3, one can prove existence and uniqueness (up to h⋆µ null sets) of
the disintegration. As discussed in Section 1, various forms of this result exist under
different and potentially more general assumptions. The version we introduce is from
Chang and Pollard [1997].

Theorem 2.4 (Disintegration Theorem; see Chang and Pollard, 1997, Theorem 1).
There exists a h⋆µ-almost everywhere uniquely defined disintegration µh, i.e., the function
y 7→ µh( · | y) is h⋆µ-almost everywhere uniquely determined.
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Remark 2.3. Chang and Pollard [1997] allow for disintegrating µ with respect to a different
measure than h⋆µ. For simplicity and clarity, we focus in this paper exclusively on the
standard case of disintegrating µ with respect to its pushforward, though our results can
be extended to the more general case.

When thinking of conditioning, most practitioners will first think of Bayes’ rule. To argue
that disintegrations provide a rigorous way of conditioning measures more generally, it
is crucial to show that, under some assumptions, Bayes’ theorem can be recovered from
Definition 2.2. This is the focus of our first result; a statement of Bayes’ theorem purely
in terms of disintegrations.

In the next theorem we think of X = W×Z, where W should be thought as the parameter
space, Z the data space, and µ the joint (probability) measure over W× Z. Hence πW⋆µ
is the prior, πW⋆(µ

πZ( · | z)) is the posterior given data z ∈ Z, and πZ⋆(µ
πW( · | w)) is the

likelihood at parameter w ∈ W.

The above exposition makes it clear that we must disintegrate µ with respect to both
the coordinate projections πZ and πW. Hence, we require W and Z to each serve the role
of both X and Y in Definition 2.2, and hence to satisfy the assumptions on both spaces
from (Assumption 2.3). We phrase these succinctly in the following theorem:

Theorem 2.5 (Bayes’ Theorem). Suppose that both W and Z are metrizable separable
topological spaces equipped with their Borel σ-algebra, that X = W× Z, and that µ is a
finite Radon measure on X. Further suppose that there is a σ-finite measure ν on Z such
that πZ⋆(µπW( · | w)) ≪ ν for πW⋆µ-almost all w. Then

d(πW⋆(µ
πZ( · | z)))

d(πW⋆µ)
(w) =

d(πZ⋆(µ
πW( · | w)))/dν (z)

d(πZ⋆µ)/dν (z)

where the right-hand-side is well-defined for πZ⋆µ-almost every z.

Proof. We will show

µπZ
(
dz′ × dw′ ∣∣ z) = d(πZ⋆(µ

πW( · | w′)))/dν (z)

d(πZ⋆µ)/dν (z)
πW⋆µ(dw

′)δz(dz
′)

where δz is the Dirac measure at z. Clearly, the right-hand-side is supported on π−1
Z ({z}) =

{z} ×W, so it satisfies Definition 2.2(i). Now for Z ⊂ Z and W ⊂ W measurable, define

Z̃ := Z ∩ {z ∈ Z : d(πZ⋆µ)/dν (z) ̸= 0}.

Now ν is absolutely continuous with respect to πZ⋆µ when restricted to Z̃ with

dν

d(πZ⋆µ)
(z) =

(
d(πZ⋆µ)

dν
(z)

)−1

.

Then ∫
Z

(∫
W

d(πZ⋆(µ
πW( · | w)))/dν (z)

d(πZ⋆µ)/dν (z)
πW⋆µ(dw)

)
· δz(Z)πZ⋆µ(dz)

9



=

∫
Z̃

∫
W

d(πZ⋆(µ
πW( · | w)))/dν (z)

d(πZ⋆µ)/dν (z)
πW⋆µ(dw)πZ⋆µ(dz)

=

∫
W

∫
Z̃

d(πZ⋆(µ
πW( · | w)))/dν (z)

d(πZ⋆µ)/dν (z)
πZ⋆µ(dz)πW⋆µ(dw)

=

∫
W

∫
Z̃

d(πZ⋆(µ
πW( · | w)))
dν

(z)
dν

d(πZ⋆µ)
(z)πZ⋆µ(dz)πW⋆µ(dw)

=

∫
W

∫
Z̃

d(πZ⋆(µ
πW( · | w)))
dν

(z)ν(dz)πW⋆µ(dw)

=

∫
W

πZ⋆(µ
πW( · | w))(Z̃)πW⋆µ(dw)

=

∫
W

µπW
(
W× Z̃

∣∣∣ w)πW⋆µ(dw)

=

∫
W
µπW

(
W × Z̃

∣∣∣ w)πW⋆µ(dw)

= µ(W × Z̃)

= µ(W × Z),

where the first and last equality hold because πZ⋆µ(Z \ Z̃) = 0, and second equality holds
by Fubini’s theorem.

The sets of the form W × Z ∈ AX are stable under finite intersections and generate
AX = AW ⊗ AZ, so we have shown that our expression satisfies Definition 2.2(ii), and
hence is indeed the disintegration µπZ( · | z). The theorem then follows by projecting onto
W.

2.1. Disintegration Building Blocks

Because of the almost everywhere nature of Theorem 2.4, all equalities in this section are
meant h⋆µ-almost everywhere.

In this subsection we establish six scaffolding results about disintegrations that are of
independent interest. We will later demonstrate in Section 2.2 how they can be combined
to give, under certain regularity assumptions, an explicit formula for disintegrations
on manifolds in Theorem 2.14. We anticipate that other results further characterising
disintegrations can be obtained from these lemmas.

The results are, we believe, quite intuitive and straightforward to explain narratively, so
we summarise them briefly here. Lemma 2.6 provides the most elementary building block,
showing that disintegrations under the identity map yield Dirac measures. Lemma 2.7 gives
an expression for the disintegration of a product measure with respect to a coordinate map
in terms of the product of the disintegration. Lemma 2.8 shows that the disintegration
of the pushforward is the pushforward of the disintegration. Lemma 2.9 shows that
the disintegration of a measure dominated by some base measure is dominated by the
disintegration of the base measure, and its density is a renormalization of the prior
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density. Lemma 2.10 shows that the disintegration of a measure restricted to some set
is the renormalization of the restriction of the disintegration of the measure. Finally,
Proposition 2.11 shows that disintegrations are invariant to composition of the observation
map with a bijection.

Lemma 2.6 (Disintegration w.r.t. the Identity). If Y = X and h : X → Y is the identity
map, then

µh( · | y) = δy

the Dirac measure at y.

Proof. µh( · | y) is supported on h−1({y}) = {y}. Since µh( · | y) is a probability measure,
we necessarily have µh( · | y) = δy. We check: for X ⊂ X measurable,∫

Y
δy(X)h⋆µ(dy) =

∫
X
1X(x)µ(dx) =

∫
X
µ(dx) = µ(X)

as required.

In the next lemma X1,X2 are under the same assumptions as X (Assumption 2.3(i)),
and µ1, µ2 are under the same assumptions as µ (Assumption 2.3(iii)) but on X1,X2

respectively.

Lemma 2.7 (Disintegration of Product Measure). Suppose X = X1 × X2, µ = µ1 × µ2,
and that µ2 is finite. Let h1 : X1 → Y, and h = h1 ◦ π1 : X → Y, (x1, x2) 7→ h1(x1). Then,
for y ∈ Y,

µ2(X2)µ
h( · | y) = µh1

1 ( · | y)× µ2.

Proof. Property (i) in Definition 2.2 for µh follows from the corresponding property of
µh1
1 :

(µh1
1 ( · | y)× µ2)(X \ h−1({y})) = µh1

1

(
X1 \ h−1

1 ({y})
∣∣ y) · µ2(X2) = 0.

Now for X1 ⊂ X1, X2 ⊂ X2 measurable∫
Y
(µh1

1 ( · | y)× µ2)(X1 ×X2)h⋆µ(dy) =

∫
X1

µh1
1 (X1 | y) · µ2(X2)h⋆µ(dy)

= µ2(X2)

∫
X1

µh1
1 (X1 | y)h⋆µ(dy)

= µ2(X2)µ2(X2)

∫
X1

µh1
1 (X1 | y)h1⋆µ1(dy)

= µ2(X2)µ1(X1)µ2(X2)

= µ2(X2)µ(X1 ×X2).

where we used h⋆µ = µ2(X2)h1⋆µ1. The sets of the form X1 ×X2 ∈ AX are stable under
finite intersections and generate AX = AX1 ⊗ AX2 , so this is enough to conclude the
proof.
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Remark 2.4. It is important that µ2 is a finite measure in order for π1⋆µ and hence h⋆µ
to be σ-finite.

In the following lemma X̃ is under the same assumptions as X (Assumption 2.3(i)).

Lemma 2.8 (Disintegration of Pushforward Measure). Let f : X → X̃, g : X̃ → Y be
measurable maps such that h = g ◦ f . Then, for y ∈ Y,

(f⋆µ)
g( · | y) = f⋆(µ

h( · | y)).

Proof. First checking (i) in Definition 2.2, we have

f⋆(µ
h( · | y))(X̃ \ g−1({y})) = µh

(
f−1

(
X̃ \ g−1({y})

) ∣∣∣ y)
= µh

(
X \

(
f−1 ◦ g−1

)
({y})

∣∣ y)
= µh

(
X \ h−1({y})

∣∣ y)
= 0.

Moreover, for X ⊂ X measurable,∫
Y
f⋆(µ

h( · | y))(X)g⋆(f⋆µ)(dy) =

∫
Y
µh

(
f−1(X)

∣∣ y)h⋆µ(dy) = µ(f−1(X)) = f⋆µ(X).

In the next lemma ν is under the same assumptions as µ (Assumption 2.3(iii)).

Lemma 2.9 (Disintegration of Dominated Measure). Suppose µ ≪ ν. Then for y ∈ Y,
µh( · | y) is absolutely continuous with respect to νh( · | y) and

dµh( · | y)
dνh( · | y)

=
dµ/dν

νh(dµ/dν | y)

where νh(dµ/dν | y) > 0 h⋆µ-almost everywhere.

Proof. Property (i) in Definition 2.2 for µh follows from the corresponding property of
νh. It remains to show property (ii). Note that for Y ⊂ Y measurable∫

Y
νh

(
dµ

dν

∣∣∣∣ y)h⋆ν(dy) = ∫
Y
1Y (y) · νh

(
dµ

dν

∣∣∣∣ y)h⋆ν(dy)
=

∫
Y
νh

(
1h−1(Y ) ·

dµ

dν

∣∣∣∣ y)h⋆ν(dy)
= ν

(
1h−1(Y ) ·

dµ

dν

)
= µ(h−1(Y ))
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= h⋆µ(Y ),

so
d(h⋆µ)

d(h⋆ν)
(y) = νh

(
dµ

dν

∣∣∣∣ y).
Now letting Y := {y ∈ Y : νh(dµ/dν | y) = 0}, we have

h⋆µ(Y ) =

∫
Y
νh

(
dµ

dν

∣∣∣∣ y)h⋆ν(dy) = 0

so νh(dµ/dν | y) > 0 h⋆µ-almost everywhere.

Thus, for X ⊂ X measurable,∫
Y
νh

(
dµ

dν

∣∣∣∣ y)µh(X | y)h⋆ν(dy) =
∫
Y
µh(X | y)h⋆µ(dy)

= µ(X)

= ν

(
1X · dµ

dν

)
=

∫
Y
νh

(
1X · dµ

dν

∣∣∣∣ y)h⋆ν(dy)
=

∫
Y

∫
X

dµ

dν
(x)νh(dx | y)h⋆ν(dy)

and hence
νh

(
dµ

dν

∣∣∣∣ y)µh( · | y) = dµ

dν
νh( · | y)

is the unique disintegration of µ with respect to h⋆ν (see Chang and Pollard [1997,
Theorem 1]).

Lemma 2.10 (Disintegration of Restricted Measure). Let X ⊂ X be measurable. Then,
for y ∈ Y,

µh( · | y)
∣∣∣
X

= µh(X | y)(µ|X)h( · | y).

Proof. Let ν be the measure on X defined by ν := µ( · ∩X). Then ν ≪ µ with dν
dµ = 1X .

Thus, applying Lemma 2.9, we obtain for any measurable X ′ ⊂ X

µh(X | y)νh
(
X ′ ∣∣ y) = µh(1X | y)νh

(
X ′ ∣∣ y) = ∫

X′
1X(x)µh(dx | y) = µh

(
X ′ ∩X

∣∣ y).
The result then follows by restricting the measures to X and noting that since ν|X = µ|X
we have νh( · | y)

∣∣
X

= (ν|X)h( · | y) = (µ|X)h( · | y).

We have now established all the lemmas required for our main result (Theorem 2.14)
in the following subsection. We will nevertheless prove an additional result that will
be of interest in the upcoming discussion. Here Ỹ is under the same assumptions as Y
(Assumption 2.3(ii)).
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Proposition 2.11 (Disintegration w.r.t. Equivalent Observations). Let f : Y → Ỹ be an
isomorphism of measure spaces. Then

µh( · | y) = µf◦h( · | f(y)).

Proof. Property (i) in Definition 2.2 follows from the fact that

h−1({y}) = (f ◦ h)−1({f(y)}).

Now for X ⊂ X measurable, by (measure-theoretic) change of variables,∫
Y
µf◦h(X | f(y))h⋆µ(dy) =

∫
Ỹ
µf◦h(X | ỹ)(f ◦ h)⋆(dỹ) = µ(X).

2.2. Construction of Disintegrations on Manifolds

We begin by stating some additional assumptions on manifold structure of X that are
required for our main result in Section 2, Theorem 2.14. For readers unfamiliar with the
differential geometry used in this section, Appendix A provides a concise summary of the
relevant definitions and results.

Assumption 2.12.

(i) Let X be a d-dimensional Ck manifold. Assume that µ is absolutely continuous
with respect to a volume measure on X.

(ii) Let Y = Rn for some n ∈ N, and h : X → Y such that the points in X are µ-almost
everywhere Ck regular w.r.t. h.

A Ck regular point w.r.t. h is a point x ∈ X around which h is Ck and the derivative of h
is surjective (Definition A.8). By the preimage theorem (Theorem A.9), Assumption 2.12
ensures in particular that h−1({y}) is a (d−n)-dimensional Ck submanifold of X for h⋆µ-
almost every y. We will use this to construct the disintegration h⋆µ-almost everywhere,
on these manifolds.

There is no canonical way to restrict an ambient measure or volume form from X to the
generally lower dimensional fiber h−1({y}) directly3. However, if we we equip X with
a Riemannian metric then we obtain a Riemannian volume measure ωX, and there is a
canonical restriction of this metric. The restricted Riemannian metric on h−1({y}) then
induces a Riemannian volume measure ωh−1({y}) on h−1({y}). This construction allows
us more generally to restrict the measure µ, as we will see in the next definition.

3Even when the pushforward of the volume measure h⋆ωX is σ-finite and we can disintegrate ωX, such
disintegration cannot be interpreted as a canonical restriction to the fiber, since we will see the
disintegration depends on h through more than just the fiber h−1({y}) (Remark 2.8).
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Remark 2.5. In Assumption 2.12(i), by a volume measure we mean a measure induced by a
d-form (Definition A.6). All such volume measures are absolutely continuous with respect
to any Riemannian volume measure ωX (Definition A.12), thus we could equivalently
assume in Assumption 2.12(i) that µ is absolutely continuous with respect to ωX.

Definition 2.13 (Riemannian Restricted Measure). Suppose X is a Ck Riemannian
manifold, X̃ a Ck (k ≥ 1) Riemannian submanifold of X and µ is absolutely continuous
with respect to ωX. Then the Riemannian restricted measure µX̃ is the measure given by
µX̃ := dµ

dωX
ωX̃.

Remark 2.6. Note the different notation used for a measure that has been restricted
in a measure-theoretic sense, as in Lemma 2.10, i.e. µ|X̃, compared to the Riemannian
restricted measure from Definition 2.13, i.e. µX̃. The two are generally distinct. In
particular, whenever dim X̃ < dimX, if µ is absolutely continuous with respect to a
volume measure on X then µ|X̃ is a zero measure, so not a useful notion of restriction for
the purposes of subsequent results.

For y ∈ Y, µh( · | y) is a probability measure supported on h−1({y}). This could lead one
to ask whether disintegrations µh( · | y) correspond to renormalizations of Riemannian
restricted measures µh−1({y}), under Assumption 2.12. Perhaps surprisingly they do not.
Riemannian restricted measures depend on the choice of Riemannian metric while, by
definition, disintegrations do not.

Next we state and prove Theorem 2.14, our main result for this section. The theorem
gives an explicit expression for disintegrations under Assumption 2.12, showing that they
differ from renormalized Riemannian restricted measures by a determinant-like term.
This term quantifies how dense fibers lie locally along directions orthogonal to the fiber.
Intuitively speaking, regions in which the fibers lie less dense need to be equipped with
higher disintegration density for the law of total probability (Definition 2.2(ii)) to hold.
For more concrete, visual intuition, see Figure 1 and Example 2.1.

Theorem 2.14. Under Assumption 2.12 with k = 1, equip X with a Riemannian metric
and denote by ωX the corresponding volume measure on X. Then µh( · | y) is absolutely
continuous with respect to the Riemannian volume measure ωh−1({y}) on the Riemannian
submanifold h−1({y}) and

dµh( · | y)
dωh−1({y})

(x) ∝ dµ

dωX
(x) ·

∣∣∣ωker(Dh(x))⊥(x)[∇h(x)]
∣∣∣−1

.

Proof. Let y ∈ Rn a C1 regular value of h and x ∈ h−1({y}). By the implicit function
theorem (Theorem A.9) there are bounded neighbourhoods U of x in X, V of y in Y = Rn,
W of 0 in Rd−n and a C1 diffeomorphism φ : U → V ×W such that πV ◦ φ = h, where
πV : V × W → V is the projection. Let λV×W , λV , λW be the Lebesgue measures
on V × W , V and W respectively. Then, by Equation (A.4), the pushforward of the
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Riemannian volume measure on U through the chart is given by4

φ⋆ωU =
∣∣ωU [∇φ ◦ φ−1]

∣∣−1
λV×W =

∣∣ωU [∇φ ◦ φ−1]
∣∣−1

(λV × λW ).

So, disintegrating this measure

(φ⋆ωU )
πV ( · | y) ∝

∣∣ωU [∇φ ◦ φ−1]
∣∣−1

λπV
V×W ( · | y) (Lemma 2.9)

∝
∣∣ωU [∇φ ◦ φ−1]

∣∣−1
(λidV

V ( · | y)× λW ) (Lemma 2.7)

=
∣∣ωU [∇φ ◦ φ−1]

∣∣−1
(δy × λW ) (Lemma 2.6)

hence

µ|hU ( · | y) ∝
dµ

dωU
ωh
U ( · | y) (Lemma 2.9)

=
dµ

dωU
φ−1
⋆ ((φ⋆ωU )

πV ( · | y)) (Lemma 2.8)

∝ dµ

dωU
|ωU [∇φ]|−1φ−1

⋆ (δy × λW ).

We also have, by Equation (A.4), the pushforward Riemannian volume measure on
submanifold h−1({y}) ∩ U of U is given by

φ⋆ωh−1({y})∩U =
∣∣ωh−1({y})∩U [∇φ|ker(Dh) ◦ φ−1]

∣∣−1
(δy × λW )

where we used that Txh
−1({y}) ∩ U = ker(Dh(x)). So

ωh−1({y})∩U =
∣∣ωh−1({y})∩U [∇φ|ker(Dh)]

∣∣−1
φ−1
⋆ (δy × λW ).

Thus we see that µ|hU ( · | y) ≪ ωh−1({y})∩U and, by Equation (A.3),

dµ|hU ( · | y)
dωh−1({y})∩U

∝ dµ

dωU

∣∣∣∣ωh−1({y})∩U [∇φ|ker(Dh)]

ωU [∇φ]

∣∣∣∣
=

dµ

dωU

∣∣∣∣∣ ωh−1({y})∩U [∇φ|ker(Dh)]

ωh−1({y})∩U [∇φ|ker(Dh)] · ωker(Dh)⊥ [∇φ|ker(Dh)⊥ ]

∣∣∣∣∣
=

dµ

dωU

∣∣∣ωker(Dh)⊥ [∇φ|ker(Dh)⊥ ]
∣∣∣−1

.

x ∈ h−1({y}) was arbitrary, and U was chosen as a neighbourhood of x. Moreover
ωh−1({y})

∣∣
U
= ωh−1({y})∩U , and by Lemma 2.10 µh( · | y)

∣∣
U
∝ µ|hU ( · | y). Thus, patching

together open sets U we get

dµh( · | y)
dωh−1({y})

∝ dµ

dωX
·
∣∣∣ωker(Dh)⊥ [∇h]

∣∣∣−1
.

4We abstract away the manifold variable in the notation of this proof, e.g. ωU [∇φ ◦ φ−1] stands for the
function z 7→ ωU (z)[∇φ(φ−1(z))]
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In the case X = Rd, with the standard Euclidean metric we get ωRd = λ the Lebesgue
measure, and the restricted volume form term involves the determinant of the Jacobian
of h, restricted to the orthogonal complement of its kernel. This observation yields the
special case X = Rd result from the introduction (Theorem 1.1).

Remark 2.7. In Theorem 2.14, the disintegration does not depend on the choice of
Riemannian metric. Instead, the Riemannian metric provides a way to constructively
represent the disintegration. We endow X with a Riemannian geometry only to provide a
reference measure, ωh−1({y}), with-respect-to which we can then construct a density for
the disintegration. Note that Riemannian metric can always be constructed on any Ck

manifold with k ≥ 1 (Remark A.1).

Particularly pertinent for Section 3 is that if X has a metric structure, that structure
need not have any relationship with the Riemannian distance function implied by the
Riemannian metric chosen.

Remark 2.8. Theorem 2.14 shows that, for fixed y ∈ Y, µh( · | y) does not merely depend
on h through h−1({y}), but also on the behaviour of h in a neighbourhood of y, through
its gradient. However, comparing this with Proposition 2.11, we see that it is not the
values of h that affect the disintegration; Proposition 2.11 rather shows that µh( · | y) only
depends on h through the family of fibers {h−1({y′})}y′∈Y with distinguished element
h−1({y}).

Example 2.1. Consider a standard Gaussian prior µ = N (0, I) on X = R2. Suppose we
wish to condition on an exact observation y ∈ Y = R≥0 made through the quadratic
observation operator h(x) =

x2
1

a2
+

x2
2

b2
with a = 1 and b = 1

2 . In this case the observation
fibers h−1({y}) are centered, axis-aligned ellipses with width 2a

√
y and height 2b√y. The

above is visualized in Figure 1a. In the Figure, we choose a uniformly spaced grid of
observations y ∈ Y to visualize different regular conditional distributions simultaneously.
In this setting, Assumption 2.12 is fulfilled (for k = ∞), which means that we can construct
both the restricted measures µh−1({y}) from Definition 2.13 as well as the version of the
disintegration from Theorem 2.14 (or, more specifically, Theorem 1.1), which we visualize
in Figures 1c and 1d, respectively. In these plots, every fiber uses its own independent
color map, which means that colors are not comparable between fibers. We can observe a
stark contrast between the restriction densities and the disintegration densities along the
fibers closest to the origin.

This is due to the corrective term involving the volume form in Theorem 2.14: Here, by
Theorem 1.1, this term simplifies to ∥∇h(x)∥−1

2 . We have

∥∇h(x)∥−1
2 =

1

2

√
x21
a4

+
x22
b4

−1

=
a

2

√
x21
a2

+
x22
b2

· a
2

b2

−1

≤ a

2

√
x21
a2

+
x22
b2

−1

=
a

2
√
y
,

since a2

b2
≥ 1. By an analogous argument, ∥∇h(x)∥−1

2 ≥ b
2
√
y , where equalities are attained

at the intersections with the respective half-axes of the ellipse. This means that the
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corrective term is larger if y is small, i.e., for fibers that are closer to the origin. Moreover,
the corrective term varies in strength by a factor of a

b between the poles of the ellipse.

Since the observations in Figure 1 are uniformly spaced, the relative magnitude of this
term can also be read off the plot from the “density” of the fibers in the normal direction,
as formalised by the inverse-magnitude of the gradient in that direction. Intuitively
speaking, the corrective factor accounts for the fact that the law of total probability
encoded in Definition 2.2(ii) still requires the predictive probability mass to be distributed
locally between fibers, even if those fibers lie less dense. This explains the discrepancy
between the restriction and disintegration densities. For a more direct comparison of the
densities, we also single out an observation at y = 1.01 and parameterize the corresponding
elliptical fiber curve by arc length starting at the point and velocity vector marked in
red in Figures 1c and 1d. Figure 1b show the densities along this fiber curve. Note
that, due to the arclength parameterization, no additional change of variables is needed.
Remarkably, this panel also shows that the modes of the restriction and disintegration
densities are maximally distant.

3. Modes of Disintegrations

For probability measures µ on Euclidean spaces that have a density dµ
dλ with respect to the

Lebesgue measure λ, the modes are defined as the maximizers of said density. However,
neither the restricted measures nor the elements of the disintegrations constructed in
Section 2.2 have densities with respect to λ in general, as they are supported on lower
dimensional fibers. Luckily, there are generalizations of this notion of mode, which
measure the local accumulation of probability mass by comparing the probability of
metric balls in the small noise limit. We first recap the relevant definitions of and key
results about these generalized notions of modes below.

For the remainder of the article, X will be a metric space and µ a locally finite measure
on the Borel σ-algebra of X.

Definition 3.1 (Modes). A point x⋆ ∈ supp(µ) ⊂ X is called a

(i) weak mode of µ if

lim sup
r↓0

µ(Br (x))

µ(Br (x⋆))
≤ 1

for all x ∈ X, and a

(ii) strong mode of µ if

lim sup
r↓0

supx∈X µ(Br (x))

µ(Br (x⋆))
≤ 1.

The definitions above are due to Dashti et al. [2013, Definition 3.1], Helin and Burger
[2015, Definition 4], and, in the form presented here, Ayanbayev et al. [2022, Definition
3.6 and 3.7]. However, all of the above only define modes of probability measures, so we

18



restate definitions and results here (often without proof) if they also hold in our more
general setting of locally finite measures.

The following result motivates the naming of weak and strong modes.

Proposition 3.2 (Ayanbayev et al., 2022, Proposition 3.9). Every strong mode x ∈ X of
µ is a weak mode of µ.

Just as for modes defined via Lebesgue densities, weak modes can be characterized as the
solutions of optimization problems. However the objective function of these optimization
problems needs to be defined only using properties of the measure µ. These objective
functions are given by Onsager-Machlup functionals, as in the next definition.

Definition 3.3 (Onsager-Machlup Functional; see Ayanbayev et al., 2022, Definition
3.1). Let Eµ ⊂ supp(µ) ⊂ X be non-empty. A function Iµ : Eµ → R is called an
Onsager-Machlup (OM) functional for µ if

lim
r↓0

µ(Br (x1))

µ(Br (x2))
= exp(Iµ(x2)− Iµ(x1))

for all x1, x2 ∈ Eµ. An OM functional is called exhaustive if

lim
r↓0

µ(Br (x1))

µ(Br (x2))
= 0

for all x1 ∈ X \ Eµ and x2 ∈ Eµ.

As noted by Ayanbayev et al. [2022], the exhaustiveness property ensures that the domain
of definition of the OM function is in some sense “maximal”. Lemma C.1 is sometimes
useful to verify exhaustiveness of an OM functional.

The weak modes of the measure µ can be characterized as the solutions to a minimization
problem whose objective function is given by the OM functional. Intuitively speaking,
the OM functional takes the role of a negative log Legesgue density.

Theorem 3.4 (Ayanbayev et al., 2022, Proposition 4.1). If Iµ : Eµ → R is an exhaustive
OM functional for µ, then x⋆ is a weak mode of µ if and only if

x⋆ ∈ argmin
x∈Eµ

Iµ(x).

We will now make use of Theorem 2.14 to characterize the modes of the disintegration µh

by constructing exhaustive OM functionals.

Remark 3.1. Our characterisation is complicated by the fact that a disintegration is only
h⋆µ-almost-surely unique; in other words, there are (typically infinitely-many) versions
of a disintegration that differ on h⋆µ-null sets. To simplify terminology we focus on
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the specific version of the disintegration constructed in Theorem 2.14, and say that
a function is an (exhaustive) OM functional for the disintegration µh( · | y) if it is an
(exhaustive) OM functional for the version from Theorem 2.14, which is well-defined
under Assumption 2.12 if y is a regular value of h. Note that, under this assumption, the
non-regular values of h form a h⋆µ-null set. This ensures that the functions given below
are still (exhaustive) OM functionals for h⋆µ-almost all y ∈ Y in all other versions of the
disintegration.

The general mode theory presented thus far only required X to be a metric space. However,
we will now work under Assumption 2.12 in order for Theorem 2.14 to hold. This assumes
in particular that X is a manifold, and we implicitly require that the manifold topology
coincides with the metric space topology. As mentioned in Remark 2.7, we do not generally
require the Riemannian distance function (see Theorem A.14) to coincide with the metric
space structure. This gives us the flexibility to study non-Riemannian metric space
structures, for example the one induced by ℓp norms in Section 3.2. We will later study
the special case where the metric space structure coincides with the Riemannian distance
function (Proposition 3.9 and Corollary 3.10).

Theorem 3.5. Under Assumption 2.12 with k = 1, equip X with a Riemannian metric.
Assume that y ∈ Y is a regular value and that the Riemannian restricted measure µh−1({y})
admits an OM functional Iµh−1({y})

: Eµh−1({y})
→ R. Then the disintegration µh( · | y)

admits an OM functional Iµh( · |y) : Eµh( · |y) → R, with Eµh( · |y) := Eµh−1({y})
, and

Iµh( · |y)(x) := Iµh−1({y})
(x) + log

∣∣∣ωker(Dh(x))⊥(x)[∇h(x)]
∣∣∣.

Furthermore if Iµh−1({y})
is exhaustive then Iµh( · |y) is exhaustive.

Proof. By Theorem 2.14, the disintegration µh( · | y) can be constructed as

µh(dx | y) ∝
∣∣∣ωker(Dh(x))⊥(x)[∇h(x)]

∣∣∣−1
µh−1({y})(dx).

The function
X → R>0, x 7→

∣∣∣ωker(Dh(x))⊥(x)[∇h(x)]
∣∣∣−1

is continuous. Hence, the result follows by Lemma C.2.

One might wonder whether the OM functional of the Riemannian restricted measure,
Iµh−1({y})

(x), is given by − log dµ
dωX

. This fails to hold for general metrics on X and, perhaps
surprisingly, even for non-Euclidean normed spaces X, as we will show in Section 3.2.
However, in the following we show that this is indeed the case if the metric on X is induced
by the Riemannian metric used to define ωX and under mild regularity assumptions on X,
dµ
dωX

and h.

Note that since volume measures on manifolds are locally finite, we can discuss OM
functionals IωX and Iωh−1({y})

for the Riemannian volume measures ωX and ωh−1({y})
respectively.
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Assumption 3.6. µ is absolutely continuous with respect to a volume measure on the
manifold X, with continuous Radon-Nikodym derivative.

When X is equipped with a Riemannian metric, Assumption 3.6 implies that µ is absolutely
continuous with respect to ωX (Remark 2.5) and dµ

dωX
is continuous.

Corollary 3.7. Under Assumption 2.12 with k = 1 and Assumption 3.6, assume that
y ∈ Y is a regular value and ωh−1({y}) admits an OM functional Iωh−1({y})

: Eωh−1({y})
→ R.

Then the disintegration µh( · | y) admits an OM functional Iµh( · |y) : Eµh( · |y) → R with
Eµh( · |y) := Eµh−1({y})

∩ supp◦( dµ
dωX

)5 and

Iµh( · |y)(x) := Iωh−1({y})
(x)− log

dµ

dωX
(x) + log

∣∣∣ωker(Dh(x))⊥(x)[∇h(x)]
∣∣∣.

If, additionally, Iωh−1({y})
is exhaustive then Iµh( · |y) is exhaustive.

Proof. The Radon-Nikodym derivative dµ
dωX

is continuous and hence, by Lemma C.2,

Iµh−1({y})
= Iωh−1({y})

− log
dµ

dωX

is an OM functional for µh−1({y}). and Iµh−1({y})
is exhaustive if Iωh−1({y})

is. The claim
then follows by Theorem 3.5.

Next we establish that, when the metric on X is compatible with the Riemannian geometry,
the OM functional is constant.

Assumption 3.8.

(i) X is a d-dimensional C2 Riemannian manifold which, as a metric space, is equipped
with the Riemannian distance metric.

(ii) Y = Rn for some n ∈ N, and h : X → Y such that the points in X are µ-almost
everywhere C2 regular w.r.t. h.

Proposition 3.9 (Riemannian Onsager-Machlup Functionals of Volume Measures).

(i) Under Assumption 3.8(i), any constant function IωX : X → R is an exhaustive OM
functional for the Riemannian volume measure ωX, and,

(ii) under Assumption 3.8, if y ∈ Y is a regular value, any constant function
Iωh−1({y})

: Eωh−1({y})
→ R with Eωh−1({y})

= h−1({y}) ⊂ X is an exhaustive OM
functional for ωh−1({y}).

5We define supp◦(f) := {x ∈ X : f(x) > 0}.
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Proof. Note that by Proposition B.1, the Riemannian volume of Riemannian balls is to
first order

ωX(B
X
r (x)) = Vdr

d + o(rd)

as r ↓ 0, where Vd is the volume of the d-dimensional Euclidean ball. Thus we have for
x1, x2 ∈ X,

µ(Br(x1))

µ(Br(x2))
=

Vdr
d + o(rd)

Vdrd + o(rd)
=

Vd + o(1)

Vd + o(1)

r↓0−−→ 1

which concludes the proof of (i).

For (ii), if x ̸∈ h−1({y}) then ωh−1({y})(B
X
r (x)) = 0 for all r small enough. If x ∈ h−1({y}),

we have by Proposition B.2

ωh−1({y})(B
X
r (x)) = Vd−nr

d−n + o(rd−n)

as r ↓ 0, and the proof of (ii) follows as for (i).

Note that combining Assumption 3.6 and Assumption 3.8 amounts to Assumption 2.12
with additional regularity requirements. These results lead to a concrete characterization
of OM functionals of disintegrations:

Corollary 3.10. Under Assumptions 3.6 and 3.8, additionally assume that y ∈ Y is a
regular value. Then µh( · | y) admits an exhaustive OM functional Iµh( · |y) : Eµh( · |y) → R
with Eµh( · |y) := h−1({y}) ∩ supp◦( dµ

dωX
) and

Iµh( · |y)(x) := − log
dµ

dωX
(x) + log

∣∣∣ωker(Dh(x))⊥(x)[∇h(x)]
∣∣∣.

Proof. This follows directly from Corollary 3.7 and Proposition 3.9(ii).

By Theorem 3.4, this leads to a characterization of weak modes of the disintegration
µh( · | y) as the solutions of the constrained optimization problem

min
x∈X

− log
dµ

dωX
(x) + log

∣∣∣ωker(Dh(x))⊥(x)[∇h(x)]
∣∣∣,

s.t. h(x) = y.

Theorem 1.2 in the introduction is a simplified version of this result in Rd.

This result shows that the maximizers of the disintegration densities in Figure 1b are
indeed the weak modes of the disintegration when equipping the ambient space with the
Euclidean metric.
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3.1. Restricted Modes Disagree with Modes of Disintegrations

Chen et al. [2024, Definition 3] define a variant of a mode on a fibre by restricting the
search space for a strong mode from Definition 3.1 to the fibre. Below we generalize their
definition to the setting of metric spaces and provide a weak version of the definition in
order to study their relationship to weak and strong modes of disintegrations. We will
demonstrate that in general these modes differ from the modes of disintegrations and, for
this reason, refer to these modes as “restricted modes” rather than conditional modes as
in Chen et al. [2024].

Definition 3.11 (Restricted Modes). Let y ∈ supp(h⋆µ). A point x⋆ ∈ h−1({y}) ∩
supp(µ) ⊂ X is called a

(i) weak h−1({y})-restricted mode of µ if

lim sup
r↓0

µ(Br (x))

µ(Br (x⋆))
≤ 1

for all x ∈ h−1({y}), and a

(ii) strong h−1({y})-restricted mode of µ if

lim sup
r↓0

supx∈h−1({y}) µ(Br (x))

µ(Br (x⋆))
≤ 1.

As for regular weak and strong modes, we start by justifying the “weak” and “strong”
attributes in the naming of restricted modes.

Proposition 3.12. Every strong h−1({y})-restricted mode x ∈ h−1({y}) is also a weak
h−1({y})-restricted mode.

Proof. We adapt the proof of Lemma 3.9 in Ayanbayev et al. [2022].

Let x⋆ ∈ h−1({y}) ∩ supp(µ) be a strong h−1({y})-restricted mode of µ. For all x ∈
h−1({y}), we have

lim sup
r↓0

µ(Br (x))

µ(Br (x⋆))
≤ lim sup

r↓0

supx′∈h−1({y}) µ(Br (x
′))

µ(Br (x⋆))
≤ 1,

since x⋆ is a strong restricted mode of µ. Hence, x⋆ is a weak restricted mode of µ.

Just as for weak modes, weak restricted modes can be characterized as the minimizers of
exhaustive OM functionals. However, for weak restricted modes, we can slightly weaken
the notion of exhaustiveness:

Definition 3.13. An Onsager-Machlup functional Iµ : Eµ → R for µ is called h−1({y})-
exhaustive if

lim
r↓0

µ(Br (x1))

µ(Br (x2))
= 0

for all x2 ∈ Eµ ∩ h−1({y}) and x1 ∈ h−1({y}) \ Eµ.
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We next prove the natural result that weak h−1({y})-restricted modes are minimisers of
h−1({y})-exhaustive OM functionals.

Proposition 3.14. Let Iµ : Eµ → R be an h−1({y})-exhaustive Onsager-Machlup func-
tional for µ. Then x⋆ is a weak h−1({y})-restricted mode of µ if and only if

x⋆ ∈ argmin
x∈h−1({y})

Iµ(x).

Proof. We adapt the proof of Proposition 4.1 in Ayanbayev et al. [2022].

Let x ∈ h−1({y})∩Eµ. Then, by the definition of an h−1({y})-exhaustive OM functional,
we have

lim sup
r↓0

µ(Br (x
′))

µ(Br (x))
= lim

r↓0

µ(Br (x
′))

µ(Br (x))
=

{
exp(Iµ(x)− Iµ(x

′)) if x′ ∈ Eµ,
0 otherwise,

for all x′ ∈ h−1({y}). Hence, x is a weak h−1({y})-restricted mode of µ if and only if
exp(Iµ(x)− Iµ(x

′)) ≤ 1 for all x′ ∈ h−1({y}), or, equivalently, Iµ(x) ≤ Iµ(x
′) for all

x′ ∈ h−1({y}).
Now let x ∈ h−1({y}) \ Eµ. Since Iµ(x) = +∞, it remains to show that x is not a weak
h−1({y})-restricted mode of µ. Suppose for the sake of contradiction that this is the case.
By definition, we then have x ∈ supp(µ). Pick x′ ∈ h−1({y}) ∩ Eµ ⊂ supp(µ). Then
µ(Br(x′))
µ(Br(x))

> 0 for every r > 0, and hence

1 ≥ lim sup
r↓0

µ(Br (x
′))

µ(Br (x))
=

(
lim inf

r↓0

µ(Br (x))

µ(Br (x′))

)−1

,

which is equivalent to

lim inf
r↓0

µ(Br (x))

µ(Br (x′))
≥ 1.

This contradicts the h−1({y})-exhaustiveness of the OM functional. We conclude that
h−1({y}) \ Eµ does not contain any weak h−1({y})-restricted modes of µ.

Using some of the assumptions and results from the previous sections, we can build
h−1({y})-exhaustive OM functionals for µ:

Corollary 3.15. Under Assumptions 3.6 and 3.8, if y ∈ Y is a regular value, the function
.− log dµ

dωX
|h−1({y}) is

(i) an h−1({y})-exhaustive OM functional for µ, and,

(ii) an exhaustive OM functional for µh−1({y}).

Proof. Since − log dµ
dωX

is continuous, (i) follows from Proposition 3.9(i), and (ii) follows
from Proposition 3.9(ii), by the same argument as in the proof of Theorem 3.5.

24



Corollary 3.15 together with Theorem 3.4 and Proposition 3.14 imply that, under As-
sumptions 3.6 and 3.8, restricted modes correspond to modes of the Riemannian restricted
measure, not of the disintegration. This explains our choice to rename this notion of
mode from “conditional mode” to “restricted mode”.

In Figure 1 and Example 2.1 we have seen that weak restricted modes and weak modes of
the disintegration can disagree catastrophically, even in finite-dimensional Hilbert spaces.

3.2. Failure Modes in Normed Spaces

Many of the results above apply when the metric on X coincides with the Riemannian
distance function. If the underlying space X is a vector space, then this is the case when
X is equipped with an inner product that generates a norm and a metric on the space.
However, especially in probabilistic numerical methods, it is often more natural to work
instead in a normed space whose norm is not generated by an inner product. For instance,
when approximating strong solutions to partial differential equations, it is common to
choose X to be a Hölder space with the appropriate norm.

It is now natural to ask whether a change in norm affects the results on weak modes of
disintegrations and restricted measures above. Below we will show that this is indeed the
case. It is well-known that Onsanger-Machlup functionals have a strong dependence on
the metric used to define them [see e.g., Ayanbayev et al., 2022, Example B.4]. However,
perhaps counterintuitively, in our setting the differing behaviour of the weak modes under
different norms only arises after disintegrating or restricting, leaving the prior’s modes
unaffected.

In this subsection X = Rd is a normed space. Write λ for the Lebesgue measure on Rd.
The standard Euclidean inner product on Rd can be viewed as a Riemannian metric,
with Riemannian volume form λ. Thus, under Assumption 2.12, we have a canonical
restriction λh−1({y}) of λ to the fiber h−1({y}) ⊂ Rd. We will start by providing a version
of Proposition 3.9 in normed spaces.

Proposition 3.16 (Onsager-Machlup Functionals of the Lebesgue Measure in Normed
Spaces).

(i) Any constant function Iλ : Rd → R is an exhaustive OM functional for λ, and,

(ii) under Assumption 2.12 with k = 2, if y ∈ Y is a regular value then λh−1({y}) admits
an exhaustive OM functional

Iλh−1({y})
: Eλh−1({y})

→ R, x 7→ − log Vd−n(x)

where Eλh−1({y})
= h−1({y}) ⊂ X and Vd−n(x) is the (d − n)-dimensional volume

of BX
1 (0) ∩ ker(Dh(x)) in ker(Dh(x)) ⊂ Rd.

Proof. (i) is a consequence of the translation invariance of λ and of the metric (induced
by the norm) on Rd.
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For (ii), if x ̸∈ h−1({y}) then λh−1({y})(B
Rd

r (x)) = 0 for all r small enough. If x ∈ h−1({y}),
we have by Proposition B.3

λh−1({y})(B
Rd

r (x)) = Vd−n(x)r
d−n + o(rd−n)

as r ↓ 0, and the proof of (ii) follows as the proof of Proposition 3.9.

Proposition 3.16(i) implies that the OM functional of µ, and hence its modes, do not
depend on the norm on Rd. However, surprisingly, Proposition 3.16(ii) implies that the
OM functional and the modes of µh( · | y) does depend on the norm. Intuitively, this is
because the balls BX

r (0) are not necessarily isotropic, and so the OM functional depends
on the orientation of the fibre with respect to the balls.

Combining Proposition 3.16 with Corollary 3.7, we obtain the explicit characterization of
the OM functional of the disintegration in normed spaces:

Corollary 3.17. Let X = Rd a normed space, and suppose Assumption 2.12(ii) holds with
k = 2, as well as Assumption 3.6. If y ∈ Y is a regular value, then µh( · | y) admits an
exhaustive OM functional Iµh( · |y) : Eµh( · |y) → R with Eµh( · |y) := h−1({y}) ∩ supp◦(dµdλ)
and

Iµh( · |y)(x) := − log Vd−n(x)− log
dµ

dλ
(x) + log

∣∣∣detDh(x)|ker(Dh(x))⊥

∣∣∣,
where Vd−n(0) is the (d− n)-dimensional volume of BX

1 (0) ∩ ker(Dh(x)) in ker(Dh(x)) ⊂
Rd.

The counterintuitive behaviour of the OM functionals with respect to a change in norm
is illustrated in Figure 2. Here varying the value of p among ℓp norms on R2 leads to
different locations and numbers of minimizers, and minima of certain OM functionals
become local maxima in others.

4. Discussion

This work has pointed out multiple troubling discrepancies between disintegrations and
restrictions of measures, with a particular focus on their modes. Whether restricted modes
or disintegration modes are the object of interest is problem-specific. The dividing line
between the two approaches is whether the law of total probability is obeyed. Consequently,
the paradigm selected hinges on the relevance of said law in a given application. If all
potential outcomes y of the predictive distribution h⋆µ are equally valid measurements,
the disintegration approach seems more natural. For instance, this is the case in most of
Bayesian statistics.

However for some downstream applications, only one “observation” is relevant or even
semantically meaningful, and therefore a restriction rather than a disintegration may be
preferred. This is the case for the Laplace approximation under function-space priors
proposed by Cinquin et al. [2024], and one could argue also for certain probabilistic
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(a) Riemannian Restricted Measure

0 1 2 3 4 5

(b) Disintegration

Figure 2: Onsager-Machlup functionals of the restriction and disintegration in Example 2.1
and Figure 1b with respect to different ℓp norms. The bottom (blue) lines
correspond to p = 1, the central (black) lines correspond to p = 2, and the top
(salmon) lines correspond to p = ∞. The remaining values interpolate atan-
uniformly between these values. Each of these OM functionals can be shifted by
an arbitrary constant, so we spread them vertically for visualization purposes.
The change in norm leads to OM functionals with different minimizers, i.e.,
different weak modes of the distributions. For instance, for the disintegration,
the ℓ2 OM functional has two local minima, which correspond to local maxima
of the ℓ∞ OM functional. The latter admits four other local minima.

numerical methods, particularly those based on solution of ODEs (e.g. in the formalism of
Tronarp et al. [2019]) for which one specifies a residual, and it is not clear that setting said
residual to any other value than 0 is meaningful. In such cases there is no clear justification
for enforcing the law of total probability, as marginalising over all possible observations in
supp(h⋆µ) gives weight to these irrelevant observations. This suggests that, in such cases,
a potential generalisation of the restriction operation to more general settings (such as
infinite-dimensional vector spaces) is more appropriate than disintegration.
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Appendix

A. Differential Geometry Background

Here we include the necessary background in differential and Riemannian geometry. For
a more complete exposition to this background, we refer to Gallot et al. [2004].

Let X be a d-dimensional Ck manifold, with k ≥ 1.

Definition A.1 (Vector Bundle). For l ∈ N0, a l-vector bundle over X is a Ck-manifold E
with a Ck map π : E → X such that for each x ∈ X, π−1({x}) = Ex is a l-dimensional real
vector space, and there exists an open neighbourhood U of x in X and a diffeomorphism
φ : π−1(U) → U × Rl such that the following diagram commutes

π−1(U) U × Rl

U

φ

π
πU

where πU : U × Rl → U is the projection onto U , and φ|Ex : Ex → {x} × Rl is a linear
isomorphism.

A vector bundle should be thought of as attaching a vector space at each point of the
manifold. For instance the tangent bundle TX and the cotangent bundle T⋆X are vector
bundles over X.

Definition A.2 (Section). A section s of a vector bundle E over X, is a Ck map s : X → E
such that π ◦ s = idX. We write Γ(E) for the space of sections over E.

This means s(x) is a ‘vector’ at x. For example, given f : X → R we have Df ∈ Γ(T⋆X).

Definition A.3 (Tensor). For (p, q) ∈ N2
0, a (p, q)-tensor α(x) at x ∈ X is a multilinear

map
α : T⋆

xX× · · · × T⋆
xX︸ ︷︷ ︸

p times

×TxX× · · · × TxX︸ ︷︷ ︸
q times

→ R,

i.e. for each 1 ≤ j ≤ p and w1, . . . , wp, w
′
j ∈ T⋆

xX, v1, . . . , vq,∈ TxX, aj , bj ∈ R,

α(x)[w1, . . . , ajwj+bjw
′
j , . . . , vq] = ajα(x)[w1, . . . , wj , . . . , vq]+bjα(x)[w1, . . . , w

′
j , . . . , vq]

and similarly in the vj arguments. Note that we can also view a (p, q) tensor as an element
α(x) ∈ TxX⊗ · · · ⊗ TxX︸ ︷︷ ︸

p times

⊗T⋆
xX⊗ · · · ⊗ T⋆

xX︸ ︷︷ ︸
q times

=: (TxX)⊗p ⊗ (T⋆
xX)⊗q.

This provides a natural definition of a (p, q)-tensor field α as an element α ∈ Γ((TxX)⊗p⊗
(T⋆

xX)⊗q). For x ∈ X, α(x) is thought of as a multilinear map as above.
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Definition A.4 (Pullback). If Y is another Ck manifold and f : X → Y is a Ck map, we
can pullback a (0, q)-tensor α(f(x)) at f(x) ∈ Y to obtain a (0, q)-tensor f⋆α(x) at x ∈ X
given by

f⋆α(x)[v1, . . . , vq] := α(f(x))[Df(x)[v1], . . . ,Df(x)[vq]]

for v1, . . . , vq ∈ TxX.
If f is a injective then using the above construction we have a well-defined notion of a
pullback of a (0, q)-tensor field α on Y to a (0, q)-tensor field f⋆α on X.

Definition A.5 (Differential Form). For q ∈ N0, a q-form is a (0, q)-tensor field which is
antisymmetric, i.e. for each 1 ≤ j < q, x ∈ X and v1, . . . , vq ∈ TxX,

ω(x)[v1, . . . , vj , vj+1, . . . , vq] = −ω(x)[v1, . . . , vj+1, vj , . . . , vq].

Definition A.6 (Volume Measure). Any d-form ω defines a volume measure on X which,
by abuse of notation, we also denote by ω. This is the unique measure such that, for
any chart φ : U → V , where U ⊂ X, V ⊂ Rd, φ⋆(ω|U ) ≪ λV the Lebesgue measure on V ,
with

dφ⋆(ω|U )
dλV

(z) =
∣∣φ−1⋆ω(z)[e1, . . . , ed]

∣∣ (A.1)

where e1, . . . , ed ∈ Rd are the standard unit vectors.

Definition A.7 (Orientability). X is orientable if it admits a nowhere vanishing d-form.

Definition A.8 (Regular Point/Value). Let f : X → Y be a set-theoretic map between
manifolds. x ∈ X is a regular point of f if f is Ck in a neighbourhood of x and
Df(x) : TxX → Tf(x)Y is surjective. y ∈ Y is a regular value of f if each x ∈ f−1({y}) is
a regular point.

Theorem A.9 (Implicit Function/Preimage Theorem). Let f : X → Y be a set-theoretic
map between manifolds. Write n := dimY. If x ∈ X is a regular point of f , then there
exists neighbourhoods U of x in X, V of y in Y, W ⊂ Rd−n and a Ck diffeomorphism
φ : U → V ×W such that πV ◦ φ = f , where πV : V ×W → V is the projection

Moreover, if y ∈ Y is a regular value of f , then f−1({y}) is a Ck submanifold of X.

A.1. Riemannian Geometry

Definition A.10 (Riemannian Metric). A Riemannian metric g is a (0, 2)-tensor field
which is positive definite, i.e. for each x ∈ X and each v ∈ TxX \ {0}, g(x)[v, v] > 0. It
defines an inner product, and hence a norm ∥ · ∥, on each tangent space.

Remark A.1. A Riemannian metric can be constructed on any Ck manifold with k ≥ 1.
This can be done by choosing an inner product in each coordinate patch and smoothly
“sticking” them together with a partition of unity.
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In the remainder of this appendix, X is a d-dimensional Ck Riemannian manifold equipped
with a Riemannian metric g.

Definition A.11 (Gradient). For a Ck map f : X → Rn, we define its gradient ∇f ∈
Γ((TX)n) as, for each 1 ≤ j ≤ n and x ∈ X, ∇f(x)j is the unique vector in TxX such that

g(∇f(x)j , ·) = πj ◦Df(x)

where πj : Rn → R is the projection onto the jth coordinate.

Definition A.12 (Riemannian Volume Form). If X is orientable then it has, up-to-sign, a
canonical volume form ωX called the Riemannian volume form. It is the unique, up-to-sign,
d-form such that for each x ∈ X and orthonormal basis v1, . . . , vd ∈ TxX,

|ωX(x)[v1, . . . , vd]| = 1. (A.2)

Without assuming orientability, X still admits, up-to-sign, a canonical volume form
in each coordinate patch. Thus the absolute value of the Riemannian volume form is
still well-defined globally. Abusing notation, we write it |ωX|. Moreover, the induced
Riemannian volume measure ωX (see Definition A.6) is also well-defined in general.

If Y and Z are Riemannian submanifolds of X, x ∈ Y ∩ Z and (TxY)⊥ = TxZ, then for
v1, . . . , vn ∈ TxY, vn+1, . . . , vd ∈ TxX, we have

|ωX(x)[v1, . . . , vd]| = |ωY(x)[v1, . . . , vn] · ωZ(x)[πZ(vn+1), . . . , πZ(vd)]| (A.3)

where πZ : TxX → TxZ is the orthogonal projection.

Moreover, given a chart φ : U → V , where U ⊂ X, V ⊂ Rd, for each x ∈ U choose an
orthonormal basis v1(x), . . . , vd(x) ∈ TxX. Write M(x) for the matrix representation of
Dφ(x) with respect to the basis v1(x), . . . , vd(x) and the standard basis of Rd, e1, . . . , ed.
Then the Riemannian volume measure pushed through the chart satisfies by Equation (A.1)

dφ⋆ωU

dλV
(z) =

∣∣φ−1⋆ωU (z)[e1, . . . , em]
∣∣

=
∣∣ωU (φ

−1(z))[Dφ−1(z)[e1], . . . ,Dφ−1(z)[em]]
∣∣

=
∣∣det(M(φ−1(z))−1

)∣∣
=

∣∣∣∣det(M(φ−1(z))⊤
)−1

∣∣∣∣
=

∣∣ωU (φ
−1(z))[∇φ(φ−1(z))]

∣∣−1
.

(A.4)

Definition A.13 (Riemannian Tangent Volume). For each x ∈ X, TxX has a canonical
Riemannian tangent volume measure λ, given by identifying an orthonormal basis of TxX
with the unit vectors of Rd to obtain an isomorphism TxX ∼= Rd, and taking the Lebesgue
measure on Rd.
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Theorem A.14 (Distance Function). X is a metric space when equipped with the distance
function

dX(x, x′) = inf{L(γ) : γ : [0, 1] → X a Ck curve s.t. γ(0) = x, γ(1) = x′}

for x, x′ ∈ X, where

L(γ) =

∫ 1

0
∥γ′(t)∥dt.

Theorem A.15 (Exponential Map). Assuming k ≥ 2, for each x ∈ X there is a Ck−1 map
expXx : V → X defined in a neighbourhood V ⊂ TxX of 0 such that DexpXx (0) : TxX → TxX
is the identity and dX(x, expXx v) = ∥v∥ for all v ∈ V . expXx is called the (Riemannian)
exponential map at x ∈ X.

B. Riemannian Volume of Small Balls

In this appendix X is a d-dimensional C2 Riemannian manifold equipped with a Rie-
mannian metric g. Write the metric ball BX

r (x) = {x′ ∈ X : d(x, x′) < r}. We study
the asymptotics of the volume of balls ωX(B

X
r (x)) and ωX̃(B

X
r (x)) as r ↓ 0, for X̃ a

submanifold of X.

Proposition B.1 (Volume of Riemannian Balls). We have for x ∈ X

ωX(B
X
r (x)) = Vdr

d + o(rd)

as r ↓ 0, where Vd is the volume of the d-dimensional unit Euclidean ball.

Proof. expXx is a diffeomorphism from a neighbourhood V ⊂ TxX of 0 to a neighbourhood
U ⊂ X of x in X. So we can invert it on U , yielding a chart expXx |−1

V : U → V . By
Equation (A.1), for r small enough such that BX

r (0) ⊂ V and v1, . . . , vd ∈ TxX an
orthonormal basis,

ωX(Br(x)) =

∫
Br(x)

∣∣∣expXx |⋆V ωX(v)[v1, . . . , vd]
∣∣∣λ(dv)

=
∣∣∣ωX(x)[D expXx (x)[v1], . . . ,DexpXx (x)[vd]]

∣∣∣Vdr
d + o(rd)

= |ωX(x)[v1, . . . , vd]|︸ ︷︷ ︸
=1 (Equation (A.2))

Vdr
d + o(rd)

= Vdr
d + o(rd)

as r ↓ 0, where λ is the Riemannian tangent volume measure (Definition A.13).
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Proposition B.2 (Volume of Ambient Riemannian Balls). Let X̃ be a d̃-dimensional C2

Riemannian submanifold of X. Then for x ∈ X̃,

ωX̃(B
X
r (x)) = Vd̃r

d̃ + o(rd̃)

as r ↓ 0, where Vd̃ is the volume of the d̃-dimensional unit Euclidean ball.

Proof. expX̃x is a diffeomorphism from a neighbourhood V ⊂ TxX̃ of 0 to a neighbourhood
U ⊂ X̃ of x in X̃. So we can invert it on U .

For r > 0, it is clear that BX̃
r (x) ⊂ BX

r (x). Now the Riemannian distance function dX̃(x, ·)
to x on X̃ is given for x′ ∈ U by

dX̃(x, x′) =
∥∥∥expX̃x |−1

V (x′)
∥∥∥.

Since the derivative of the exponential map at the origin of the tangent space is the
identity, we have by Taylor’s theorem, for expXx (v) ∈ U

dX̃(x, expXx (v)) =
∥∥∥expX̃x |−1

V (expXx (v))
∥∥∥ = ∥v + o(∥v∥)∥ = ∥v∥+ o(∥v∥)

as v → 0. So BX
r (x) ⊂ BX̃

r+o(r)(x) as r ↓ 0. Now by Proposition B.1

ωX̃(B
X̃
r (x)) = Vd̃r

d̃ + o(rd̃)

as r ↓ 0. Hence

Vd̃r
d̃ + o(rd̃) = ωX̃(B

X̃
r (x))

≤ ωX̃(B
X
r (x))

≤ ωX̃(B
X̃
r+o(r)(x))

= Vd̃(r + o(r))d̃ + o(rd̃)

= Vd̃r
d̃ + o(rd̃)

as r ↓ 0, i.e.
ωX̃(B

X
r (x)) = Vd̃r

d̃ + o(rd̃)

as r ↓ 0.

The next proposition is of a similar flavour to Proposition B.2, but the ambient space is a
normed space.

Proposition B.3 (Volume of Ambient Normed Balls). Let Rd be a normed space and
X̃ ⊂ Rd a d̃-dimensional embedded C2 manifold equipped with some Riemannian metric.
Then for x ∈ X̃,

ωX̃(B
Rd

r (x)) = Vd̃(x)r
d̃ + o(rd̃)

as r ↓ 0 where Vd̃(x) is the Riemannian tangent volume of BRd

1 (0)∩TxX̃, which in general
depends on x, where we view TxX̃ as a linear subspace of Rd.
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Proof. We write ∥ · ∥Rd for the ambient norm in Rd ⊃ TxX̃. expX̃x is a diffeomorphism
from a neighbourhood V ⊂ TxX̃ of 0 to a neighbourhood U ⊂ X̃ of x in X̃. So we can
invert it on U . Then for x′ ∈ BRd

r (0) ∩ U ⊂ X̃ we have by Taylor’s theorem∥∥∥expX̃x |−1
V (x′)

∥∥∥
Rd

=
∥∥x′ − x+ o(∥x′ − x∥Rd)

∥∥
Rd = ∥x′ − x∥Rd + o(∥x′ − x∥Rd)

as x′ → x. Hence

expX̃x (B
Rd

r−o(r)(0) ∩ TxX̃) ⊂ BRd

r (x) ∩ X̃ ⊂ expX̃x (B
Rd

r+o(r)(0) ∩ TxX̃)

as r ↓ 0. So similarly to the proof of Proposition B.1, BRd

r (x)∩X̃ ⊂ expX̃x (B
Rd

r+o(r)(0)∩TxX̃)
implies

ωX̃(B
Rd

r (x)) ≤
∫
BRd

r+o(r)
(0)∩TxX̃

∣∣∣expXx |⋆V ωX(v)[v1, . . . , vd]
∣∣∣λ(dv)

= Vd̃(x)(r + o(r))d̃ + o(rd̃)

= Vd̃(x)r
d̃ + o(rd̃)

as r ↓ 0. Similarly the inclusion expX̃x (B
Rd

r−o(r)(0) ∩ TxX̃) ⊂ BRd

r (x) ∩ X̃ yields the reverse
inequality

ωX̃(B
Rd

r (x)) ≥ Vd̃(x)r
d̃ + o(rd̃)

as r ↓ 0, which concludes the proof.

C. Modes Lemmas

Lemma C.1 (Ayanbayev et al., 2022, Lemma B.1(a)). An OM functional Iµ : Eµ → R is
exhaustive if and only if there is x2 ∈ Eµ such that

lim
r↓0

µ(Br (x1))

µ(Br (x2))
= 0

for all x1 ∈ X \ Eµ.

Lemma C.2. Let X be locally compact and let f : X → R≥0 be continuous. Define the
measure ν(dx) := f(x)µ(dx). If Iµ : Eµ → R is an OM functional for µ such that Eµ and
supp◦(f) := {x ∈ X : f(x) > 0} have a non-empty intersection, then

Iν : Eν → R, x 7→ Iµ(x)− log f(x)

with Eν := Eµ ∩ supp◦(f) is an OM functional for ν. If Iµ is exhaustive, then Iν is
exhaustive as well.

Proof. Since f is continuous and X is locally compact, f is locally uniformly continuous
by the Heine-Cantor theorem. With this, the statement can be proven analogously to
Lemma B.8 of Ayanbayev et al. [2022].
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