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ABSTRACT

We demonstrate the potential of Euclid ’s slitless spectroscopy to discover high-redshift (z > 5) quasars and their main
photometric contaminant, ultracool dwarfs. Sensitive infrared spectroscopy from space is able to efficiently identify both
populations, as demonstrated by Euclid Near-Infrared Spectrometer and Photometer Red Grism (NISP RGy) spectra of the
newly discovered z = 5.404 quasar EUCL J181530.01+652054.0, as well as several ultracool dwarfs in the Euclid Deep Field
North and the Euclid Early Release Observation field Abell 2764. The ultracool dwarfs were identified by cross-correlating
their spectra with templates. The quasar was identified by its strong and broad C 11] and Mg Il emission lines in the NISP
RG; 1206-1892 nm spectrum, and confirmed through optical spectroscopy from the Large Binocular Telescope. The NISP
Blue Grism (NISP BG;) 9261366 nm spectrum confirms C 1V and C 1] emission. NISP RG; can find bright quasars at
7z~ 5.5 and z 2 7, redshift ranges that are challenging for photometric selection due to contamination from ultracool dwarfs.
EUCL J181530.01+652054.0 is a high-excitation, broad absorption line quasar detected at 144 MHz by the LOw-Frequency
Array (L4 = 4.0 x 102 W Hz™'). The quasar has a bolometric luminosity of 3 x 10> L and is powered by a 3.4 x 10° Mg
black hole. The discovery of this bright quasar is noteworthy as fewer than one such object was expected in the ~20 deg? surveyed.
This finding highlights the potential and effectiveness of NISP spectroscopy in identifying rare, luminous high-redshift quasars,
previewing the census of these sources that Euclid’s slitless spectroscopy will deliver over about 14 000 deg? of the sky.

Key words: stars: brown dwarfs —stars: individual: EUCL J174429.80 4 672728.1, EUCL J002516.31-491618.5 —quasars:

individual: EUCL J181530.01 + 652054.0.

1 INTRODUCTION

Quasars are accreting supermassive black holes in the centres of
massive galaxies that can be studied in detail at large cosmological
distances, even within the first Gyr after the big bang. These distant
quasars provide important constraints on the formation and growth
of supermassive black holes, massive galaxies, the build-up of large-
scale structure, and the Universe’s last major phase transition, the
epoch of reionization (see Fan, Bafiados & Simcoe 2023, for a recent
review).

Quasars at z 2 5 have traditionally been identified from photo-
metric colour selections (e.g. Jiang et al. 2016; Matsuoka et al. 2019;
Belladitta et al. 2025) assisted by machine-learning and probabilistic
approaches (e.g. Mortlock et al. 2012; Wenzl et al. 2021; Byrne et al.
2024). Candidates are then confirmed through spectroscopic obser-
vations (e.g. Yang et al. 2024). The main challenges to identifying the
most distant quasars are (i) the rapid decline of their number density
atz > 5 (e.g. Matsuoka et al. 2023; Schindler et al. 2023); and (ii) the
similar colours of the more abundant late M and L and T brown dwarf
populations. Selection effects produce a lack of quasars at z ~ 5.5
and between z = 7.1 (Mortlock et al. 2011) and z = 7.5 (Bafiados
etal. 2018; Yang et al. 2020; Wang et al. 2021). The first gap is due to
the colours of z & 5.5 quasars being almost indistinguishable from
some M and L dwarfs, the most abundant stars in our Galaxy (see
e.g. fig. 1 in Bafiados et al. 2016 and Matsuoka et al. 2016). Most of
the z &~ 5.5 quasars known have been discovered through dedicated
campaigns to fill this gap (e.g. Yang et al. 2019). The second gap
centred at z &~ 7.3 is due to the photometric contamination of L and
T dwarfs (see e.g. Hewett et al. 2006; Lodieu et al. 2007; Mortlock
et al. 2009; Burningham et al. 2013 and fig. 2 in Fan et al. 2023).
Currently, there are more than 11000 spectroscopically confirmed
M6-M9, ~ 2200 L, and ~ 800 T ultracool dwarfs (Smart et al. 2019;
Best et al. 2024).

The next breakthrough for reionization-era quasar discoveries is
expected to come from the Euclid mission (Euclid Collaboration
2025d). The Euclid Wide Survey (EWS; Euclid Collaboration 2022a)
will cover about 14 000 deg® of extragalactic sky in the optical (I
filter; Euclid Collaboration 2025¢) and near-infrared (Yg, Jg, and

H filters; Euclid Collaboration 2022b, 2025b). The expected quasar
yields from Euclid photometric selection are discussed for z < 7 in
Euclid Collaboration (2025¢) and for z > 7 by Euclid Collaboration
(2019). Fig. 2 shows that photometric contamination of brown dwarfs
is also expected to be one of the main challenges for z > 5 quasar
identification using only Euclid photometry.

In addition to photometry, the Near-Infrared Spectrometer and
Photometer (NISP) on Euclid also provides grism slitless spec-
troscopy with a resolving power greater than 480 (for a 0”5 diameter
object) over the range 1206-1892 nm (referred to as the red grism;
RGg; Euclid Collaboration 2025b). The RGg data are available
throughout the entire EWS, while NISP also offers blue grism
spectroscopy (BGg) with a resolving power greater than 400 (for a
0”5 diameter object) over the range 926—1366 nm, exclusively in the
Euclid Deep Survey (EDS), covering approximately 60 deg® (Euclid
Collaboration 2025b, 2025d). Here, we discuss and demonstrate the
potential for discovering quasars (and their contaminants) directly
from NISP spectroscopy. Given the low number density of bright
quasars at z > 5, with only a few expected per 100 deg? (Matsuoka
et al. 2023; Schindler et al. 2023), we primarily focus on the
capabilities of the NISP RGg, which spans the largest area where
significant discoveries are anticipated. Fig. 1 shows the strongest
quasar emission lines that fall within the NISP grism wavelength
range as a function of redshift. When more than one strong emission
line is observed, the quasar nature and redshift can, in principle, be
obtained directly from the NISP spectrum.

This paper is structured as follows. We describe the Euclid data
used for this work in Section 2. In Section 3, we briefly discuss the dis-
covery potential for ultracool dwarfs. In Section 4, we introduce two
z & 5.5 quasar candidates identified with NISP RG;. We discuss the
properties of a newly discovered z = 5.4 quasar in Section 5. Finally,
in Section 6 we provide a summary and highlight additional science
cases enabled by NISP slitless spectra. Appendix A lists the ultracool
dwarf templates used in this work. Appendix B provides an example
of NISP RG; two-dimensional spectrograms. In Appendix C, we
show NISP BGg spectra of the z &~ 5.5 quasar candidates. We adopt
a standard, flat cosmological model with Hy = 70km s~' Mpc™!
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Figure 1. Quasar strong emission lines as a function of redshift within the NISP BGg and RGg bandpasses (Euclid Collaboration 2025b), as indicated at the top
of the figure. NISP BGg data will only be available in the EDS, while NISP RGg data will be present in the EWS. The vertical grey-shaded regions correspond
to wavelengths of strong telluric absorption, where ground-based telescopes are not sensitive. The horizontal red-shaded regions represent the redshift ranges
with at least two strong emission lines expected in the NISP RGg spectral bandpass, thereby providing the most reliable redshifts for ‘blind’ discoveries over

the entire EWS.

and 2, = 0.30. All Euclid magnitudes reported are from aperture
photometry in the AB system unless otherwise stated. All postage
stamps are oriented north up and east to the left.

2 DATA

In this paper, we use NISP RG; data from the phase verification
campaign in the Euclid Deep Field North (EDF-N; 20 deg? centred
on RA = 17"58™559 and Dec = +66°;01'04"7) and from the
Early Release Observations (ERO; Euclid Early Release Observa-
tions 2024) of the lensing cluster Abell 2764, centred on RA =
00" 22™ 5081 and Dec = —49°; 15'59”8 (Atek et al. 2025).

The EDF-N NISP RGg grism data were the first validated and
made available to the Euclid Consortium. Near the completion of
this work, the EDF-N NISP BG; grism data were made available to
the Euclid Consortium for validation. In Appendix C, we showcase
some of the first NISP BGg, spectra, and we note that these spectra
are not available in the first Euclid Quick Data Release (Q1; Euclid
Collaboration: Aussel et al. 2025). The data used here are from
one Reference Observing Sequence (ROS), equivalent to the depth
expected for the EWS. The NISP grism data have been fully
processed with the standard Euclid pipeline (see Section 7.5 in Euclid
Collaboration: Mellier et al. 2025). We use the merged catalogue
from the phase verification campaign (mer-pv) for coordinates,
photometry, and OBJECT - ID (for details, see section 7.4 in Euclid
Collaboration 2025d). The EDF-N also has dedicated deep radio
144 MHz observations (with central RMS noise of 32 uJy beam™")
from the LOw-Frequency Array (LOFAR; Bondi et al. 2024).

The grism data in the Abell 2764 field are from three ROS.
However, the ERO data have not been processed through the standard
Euclid pipeline. Indeed, only imaging data products have been
published so far, reduced with a custom-made pipeline (Cuillandre
et al. 2025). All magnitudes reported in this field are from the
catalogue presented in Weaver et al. (2025). To extract spectra,

MNRAS 542, 1088-1102 (2025)

we performed the following steps. We mosaiced the 16 individual
detectors, both for the direct and for the dispersed images, into
single images using the world coordinate system from the Hg-band
exposures. We derived ad-hoc trace equations for all four grism
settings using bright stars, mapping the (x,, y,) positions of the
start of the spectra and the spectral slope as a function of the (x;, y;)
positions of the objects in the direct image. Two-dimensional cut-outs
were extracted for each object. Spectra with the same grism-angle
combinations from different ROS were rectified, combined together
and background-subtracted. One-dimensional spectra were extracted
using a box-car extraction aperture of seven pixels. The wavelength
was calibrated against a handful of emission line objects with known
redshifts in the Abell 2764 field. Even though the variation of the
wavelength solution across the field has not been mapped in detail, the
above model proves sufficiently accurate for the current investigation
(see Section 3.1).

3 IDENTIFICATION OF ULTRACOOL DWARFS
WITH Euclid NISP GRISM

Our primary goal is to use NISP RG; data to identify quasars at
z~5.5and z 2 7 (Fig. 1). However, current estimates of the quasar
luminosity function (Matsuoka et al. 2023; Schindler et al. 2023)
suggest that there are fewer than 0.3 and 0.04 bright quasars (with
M50 < —25.5) in about 20 deg? at z ~ 5.5 and z > 7, respectively.
Consequently, the initial goal of this study was to examine the NISP
spectra of typical contaminants for high-redshift quasars, particularly
the far more numerous ultracool dwarfs.

Thus, in addition to the templates used to determine redshifts
through template fitting described in Section 7.5.2 of Euclid Col-
laboration (2025d), we include M-, L-, and T-dwarf templates from
the SpeX Prism Spectral Libraries (Burgasser 2014), which we list in
Appendix A. The main limitation of the present work is the restricted
number of templates used for classification. However, resampling the
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Figure 2. Top: (Bottom:) Iz — Yg (Yg — Jg) versus Jg — Hg diagram show-
ing the synthetic colours of the M-, L-, and T-dwarfs from the SpeX Prism
Library (small circles), as measured by Weaver et al. (2025). The triangles
represent ultracool dwarfs discussed in Mohandasan et al. (2025), with
spectral types indicated by the colour bar. The solid line represents the
colour track of the z = 6 quasar composite spectrum of Bafiados et al. (2016)
combined at rest-frame 1300 A with the average spectrum of Vanden Berk
et al. (2001). The hexagonal markers are plotted in steps of Az =0.5,
starting at z =5 at the bottom and finishing at z = 8 at the top. The
larger, labelled symbols represent the colours of the individual sources
discussed in this paper: the T3 dwarf EUCL J002516.31—-491618.5 (blue
star), the M6 dwarf EUCL J174429.80+672728.1 (grey star), the z = 5.4
quasar EUCL J181530.014-652054.0 (red circle), and the unidentified source
EUCL J180409.144-641335.3 (yellow square). These colour-colour diagrams
are for context, and we emphasize that Euclid photometry was not used to
identify these sources (except the T3 dwarf; see Section 3.1).

spectra, we find that our classification is robust within £1 spectral
type. Indeed, this experiment recovered known ultracool dwarfs in
the field and enabled the discovery and confirmation of 33 new ones
ranging from M7 to T1, which are presented in detail in Mohandasan
et al. (2025). In this paper, we will present examples of two new
ultracool dwarfs, which are not in the sample of Mohandasan et al.
(2025).

3.1 A new T3 dwarf in the ERO field Abell 2764

We selected EUCLJ002516.31—491618.5 as a potential high-
redshift quasar candidate based on a large Iz — Ys > 4 colour and
flat NISP colours (see Fig. 2 and the top panel of Fig. 3). We used
the photometry reported in the catalogue of Weaver et al. (2025)
(CATALOG ID = 373511).

The source EUCL J002516.31-491618.5 is the brightest and one
of the most promising z > 6 quasar candidates in the Abell 2764 field.
However, the chances of identifying a Y < 19 quasar at z > 6 in just
0.75 deg? are negligible (Matsuoka et al. 2023; Schindler et al. 2023).

1091

If this were indeed a quasar, it would be among the most luminous
sources ever reported in the early Universe (Wu et al. 2015; Fan et al.
2019). To confirm or refute this potentially remarkable serendipitous
discovery, we developed our own pipeline to extract the Euclid NISP
spectrum of these ERO data (see Section 2). Fig. 3 shows the extracted
spectrum, which clearly classifies the source as a brown dwarf. We
note that this object was photometrically identified as a T3 candidate
by dal Ponte et al. (2023). Resampling the spectrum reveals that the
best match template varies between T3 and T4, although visually,
neither template is a perfect match. The template of a T3 binary,
2MASSJ12095613—1004008 (Burgasser et al. 2004; Dupuy & Liu
2012), appears to be a visually better match (plotted in Fig. 3),
suggesting that it could also be a T binary.

3.2 A new M6 dwarf in the EDF-N

Object EUCL J174429.80+672728.1 (OBJECT-ID =
2661241859674578148) was first selected as a z &~ 5.6 quasar
candidate from the Pan-STARRS1 survey (Bafiados et al. 2023),
but rejected as a quasar after a follow-up observation with the
Multi-Object Double Spectrograph (MODS; Pogge et al. 2010) at the
Large Binocular Telescope (LBT). The LBT/MODS observations
were carried out in dual mode on 2017 April 21 and June 5. The red
grating G670L and a 1.2 arcsec slit were used for a total exposure
time of 1 h. We present the LBT spectrum for the first time here (the
bottom panel of Fig. 4).

The MODS spectrum was reduced with the open-source PYTHON-
based Spectroscopic Data Reduction Pipeline PYPEIT' (version
1.14.1; Prochaska et al. 2020). With that pipeline, we perform
image processing, including gain correction, bias subtraction, and flat
fielding. The extracted spectrum was flux-calibrated with a sensitivity
function derived from the observation of a spectroscopic standard
star. The spectra were then co-added and absolute flux calibrated to
match the /; magnitude.

Since this quasar candidate is located in the EDF-N, we analysed
the Euclid grism spectrum independently of the existing LBT
spectrum. The best-fitting template was an M6 dwarf, shown in
the middle panel of Fig. 4. The M6 dwarf template is relatively
featureless in the 1200-1900 nm regime. Notably, the same template
reproduces the optical features seen in the LBT spectrum (the bottom
panel of Fig. 4). By resampling the Euclid spectrum, we find that
approximately 95 per cent of the cases classify this source as an M6,
4 percent as an M7, and 1 percent as an M8 type. Euclid cut-outs
and photometry are shown in the top panel of Fig. 4.

4 IDENTIFICATION AND FOLLOW-UP
OBSERVATIONS OF z > 5 Euclid QUASAR
CANDIDATES

We added the quasar composite spectrum of Vanden Berk et al.
(2001) as part of the redshift template fitting of the Euclid pipeline in
order to be able to identify z > 5 quasars. In the EDF-N field, there
were only two sources for which the quasar template was the best
match and at an implied redshift where two strong emission lines
are expected in the NISP RG;; spectra (Fig. 1). This was a selection
based purely on the NISP RGg; spectra matched to templates; no
photometry or additional information was used. For completeness,
we show the NISP BG;, spectra of these sources in Appendix C.

Thttps://github.com/pypeit/Pypelt
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Figure 3. Top: Postage stamps of the T3 dwarf EUCL J002516.31—491618.5. The Euclid I, Y, Ji, and Hg images are 5 arcsec on a side. Bottom: NISP RGg
grism spectrum (black line and the uncertainties in green). The blue line shows a template of a T3 binary: 2MASS J12095613—1004008 (Burgasser et al. 2004;

Dupuy & Liu 2012).
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Figure 4. Top: Postage stamps of the M6 dwarf EUCL J174429.80+672728.1. The Euclid It, Yz, Jg, and Hg images are 5” on a side, while the LOFAR image
is 30 arcsec on a side. The LOFAR beam is shown in the lower left of its panel and the reported flux density corresponds to a 3 ¢ upper limit. Middle: NISP
RGg grism spectrum (black line; masked pixels are in grey, and the uncertainties in green). The blue line shows the best template fit, identifying this as an
M6 dwarf. Bottom: LBT/MODS optical spectrum (black line and uncertainties in green), confirming the Euclid classification. The spectral features are clearly
well-matched to the observed optical spectrum. The template corresponds to LHS 36 (also known as Wolf 359), originally published in Burgasser et al. (2008).

4.1 EUCL J181530.014+652054.0

The quasar template proved to be the best match to the source
EUCLJ181530.014+652054.0 (hereafter EUCL QSO J18154-6520;
OBJECT-ID = 2738750478653483354), implying a quasar at z =

MNRAS 542, 1088-1102 (2025)

5.40. The Euclid spectra, photometry, and cut-out images of EUCL
QSOJ1815+46520 are displayed in the top panel of Fig. 5. We
visually inspected the Euclid spectrum and found that the C 111] and
Mg 11 lines were robustly detected and could be well-fitted by single
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Figure 5. Top: Postage stamps of the z = 5.4 quasar EUCLJ181530.014-652054.0. The Euclid Ig, Yg, Jg, and Hg images are 5” on a side while the
LOFAR image is 30" on a side. The LOFAR beam is shown on the lower left of its panel. Middle: NISP grism RGg spectrum (black line; masked pixels
are in grey, and the uncertainties in green). The blue line shows the best-fitting power-law emission plus C 111] and Mg 1l broad emission lines, identifying
this as a quasar at zmgn = 5.404 £ 0.007. Bortom: LBT/MODS optical spectrum (black line and uncertainties in green), confirming the quasar nature of
EUCL J181530.014+-652054.0. The vertical dashed lines correspond to the expected position of the labelled emission lines based on the Mg II redshift. The

dashed rectangles indicate the Si IV and C 1v BAL regions shown in Fig. 7.

Gaussians (Fig. 5), with a Mg II-redshift of zyg y = 5.404 £ 0.007
(the age of the Universe was 1.04 Gyr at this redshift).

We observed EUCL QSO J18154-6520 with LBT/MODS on 2024
June 17. The observations were carried out in dual mode with the
red grating G670L, a slit of 1” width, and a total exposure time
of 15 min. The spectrum was reduced as described in Section 3.2
and is shown in the bottom panel of Fig. 5, confirming the quasar
nature of EUCL QSOJ18154-6520. The spectrum reveals a C v
line with an equivalent width of (13 & 0.4) A and blueshifted by
(2070 & 330) km s~! with respect to the Mg I line, consistent with
quasars displaying strong broad-line region outflows (e.g. Vietri et al.
2018; Rankine et al. 2020; Gillette & Hamann 2024). We measured
the rest-frame absolute magnitude at 1450 A directly from the LBT
spectrum, resulting in M 4590 = —25.52 +0.01.

4.2 EUCL J180409.14+641335.3

The  template  fitting of  EUCLJ180409.14+641335.3
(OBJECT-ID = 2710381121642264965), implied a quasar at
z = 5.37. The Euclid spectrum, cut-outs, and photometry are shown
in the top panel of Fig. 6.

The visual inspection of the spectrum is not as convincing as that
of EUCL QSO J18154-6520. The feature that is expected to be Mg 11
at z = 5.37 is broader than the quasar template and the existence of
C 1] is unclear (Fig. 6).

To come full circle on testing this quasar-discovery strategy, we ob-
tained follow-up optical spectroscopy with the Double Spectrograph
(DBSP; Oke & Gunn 1982) on the 5-m Hale telescope at Palomar
Observatory on 2024 July 10. We obtained three exposures of 1200 s

each using the 1.5 arcsec slit. The data were reduced analogously to
the LBT spectrum described in Section 3.2, but with the PYPEIT
version 1.16.0. The Palomar/DBSP spectrum (the bottom panel of
Fig. 6) does not show the sharp break expected at 0.77 um for a
z = 5.4 quasar (compare with the LBT spectrum in Fig. 5). Indeed,
the Palomar spectrum does not reveal any strong emission lines,
and is relatively featureless. This spectrum is not well reproduced
by any of the current templates used in the Euclid pipeline, and
finding the exact spectral classification is beyond the scope of this
work.

5 PHYSICAL PROPERTIES OF THE z =5.4 Euclid
QUASAR

5.1 Black hole mass

The Euclid spectrum of EUCL QSO J1815+6520 covers the broad
Mg 11 emission line (the middle panel of Fig. 5), which is one of
the most reliable tracers to derive single-epoch, black hole mass
measurements (e.g. Fan et al. 2023). It is not possible to study Mg 11
from the ground at z & 5.4 due to the low atmospheric transparency
at around 1800 nm (Fig. 1).

We use the relationship presented in Vestergaard & Osmer (2009)
to estimate the black hole mass from the full-width at half max-
imum of the Mg line [FWHM)p,; = (5138 £ 616)km s71] and
the luminosity at 3000 A [Lsg = (5.7 £ 0.2) x 10" L], yielding
Mgy = (3.04£0.7) x 10° M. Adopting a widely used bolometric
correction (Lgo = 5.15 L3go; see e.g. Mazzucchelli et al. 2023), we
find an Eddington ratio of Ly / Lgag = 0.3 £ 0.1. These properties
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Figure 6. Top: Postage stamps of the quasar candidate EUCL J180409.14+4-641335.3. The Euclid Ig, Yg, Jg, and Hg images are 5 arcsec on a side while the
LOFAR image is 30 arcsec on a side. The LOFAR beam is shown in the lower left of its panel and the reported flux density corresponds to a 3 o upper limit.
Middle: NISP RGg, grism spectrum (black line; masked pixels are in grey and the uncertainties in green). The dashed blue line shows the best-fitting template
corresponding to a quasar (Vanden Berk et al. 2001) redshifted to z = 5.37. Bottom: Palomar/DBSP optical spectrum (black line and uncertainties in green,
revealing a relatively flat spectrum, ruling out EUCL J180409.14+4-641335.3 being a z ~ 5.4 quasar.

are consistent with the bulk of the quasars studied at z 2 5 (e.g. Shen
et al. 2019; Lai et al. 2024).

5.2 BAL properties

The LBT spectrum of EUCL QSO J1815+6520 (the bottom panel of
Fig. 5) not only validates the Euclid discovery but also reveals strong
absorption features blueward of N v, SiIv, and C1v, classifying
this source as a high-excitation, broad absorption line (BAL) quasar.
The presence of BALs in quasar spectra indicates strong outflows,
launched from accretion discs, that can have velocities of up to 20
per cent of the speed of light (c; e.g. Rodriguez Hidalgo et al. 2020).
The exact fraction of BAL quasars is still debated, but it ranges from
10 to 50 per cent (Dai, Shankar & Sivakoff 2008; Allen et al. 2011;
Bischetti et al. 2022).

The N v BAL in EUCL QSOJ18154+6520 coincides with the
wavelengths absorbed by foreground neutral hydrogen in the inter-
galactic medium (Fig. 5). Thus, we cannot determine its velocity
structure confidently, and instead we focus on the SiIv and C 1v
BALs. We use the task continuumfit from the 1inetools
PYTHON package? to interactively fit the quasar continuum and then
normalize its flux. Fig. 7 shows the normalized spectra around
the BAL regions highlighted in Fig. 5. The detached and terminal
velocities quantify the minimum and maximum outflow velocities
of the gas traced by the BAL (Hall et al. 2002). To be conservative,
we measured the BAL minimum detached and terminal velocities

Zhttps://github.com/linetools
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from the 90 per cent level of the normalized spectrum. We obtained
the same range of velocity for both BALs, 0.015-0.041 c, indicating
that they originate from the same kinematic region (see Fig. 7). This
quasar has a C1v balnicity index (BI; Weymann et al. 1991) of
BI = 376671428 kms~!, indicating a powerful outflow (e.g. Bischetti
et al. 2022).

5.3 Radio properties

The quasar EUCL QSO J1815+6520 is well-detected in the LOFAR
144 MHz data shown in the top panel of Fig. 5. The source is outside
of the central circular 10 deg” region used to create the LOFAR-EDF-
N catalogue (Bondi et al. 2024). Thus, we measured the flux density
directly from the beam-corrected image.? The source is unresolved,
and we measure a peak flux density of (481 &£ 46) uJy. We note
that the radio data were not used for the selection of the quasar,
and that late M-dwarfs can also show comparable radio emission
(Gloudemans et al. 2023).

Radio-loudness in quasars is an observational parameter used
to quantify the power of synchrotron radiation with respect to
emission in the UV/optical regime coming from the accretion
disc. The radio-loudness is usually defined as the ratio of the
flux densities at rest-frame 5GHz and 2500 A or 4400 A. Here,
we use the former definition, Rys09, since rest-frame 2500 A is
covered by the Euclid spectrum, while for 4400 A we would need to
extrapolate. Since we only have a radio detection at 144 MHz, we

3https://lofar-surveys.org/deepfields_public_edfn.html
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Figure 7. Normalized LBT/MODS spectrum of EUCL QSO J1815+6520
zoomed-in on the BAL regions (see Fig. 5 and Section 5.2). The solid and
dashed horizontal lines correspond to 100 percent and 90 percent of the
normalized spectrum, respectively. The vertical dotted lines and the blue-
shaded region show that the SiIv (top) and C 1v (bottom) outflows have
velocities 0.015-0.041 c.

extrapolate to rest-frame 5 GHz assuming the median spectral index
o = —0.29 (in the convention f, ox v*), following Gloudemans
et al. (2021). We obtain a radio-loudness of R,500 = 9 & 1, which
places EUCL QSO J1815+6520 at the boundary between sources
classified as radio-quiet or radio-loud (Kellermann et al. 1989;
Jiang et al. 2007; but see also Calistro Rivera et al. 2024). The
uncertainty reported does not consider the uncertainty on the radio
extrapolation. The rest-frame 144 MHz specific radio luminosity
is Ligs = (4.0 4+ 0.4) x 102 WHz™!, similar to the bulk of z > 5
quasars detected with LOFAR (see e.g. Fig. 4 in Gloudemans
et al. 2021). If we assume a radio spectral index o = —0.7 in-
stead, the radio-loudness and 144 MHz specific radio luminosity
wouldbe Rysp0 = 4.6 £ 0.5and L4s = (8.6 £ 0.8) x 10 WHz™!,
respectively.

We can conclude that EUCL QSO J1815+4-6520 has an intermedi-
ate radio-loudness of Rys00 = 4—10 (depending on the radio spectral
index; see above). However, the radio emission might not only
come from synchrotron emission from the relativistic jet, because
the quasar also shows evidence of outflows through high excitation
BAL features (Section 5.2): As shown by Petley et al. (2022), BAL
quasars are more likely to be detected at 144 MHz than their non-
BAL counterparts, which suggests that shocks may cause part of
the radio emission due to the BAL outflows interacting with the
interstellar medium in their host galaxies. Additional radio detections
at other frequencies are required to interpret the radio properties of
this source.
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6 SUMMARY AND OUTLOOK

We have demonstrated that Euclid slitless infrared spectroscopy
is a powerful tool to identify quasars and to eliminate confusion
with ultracool dwarfs by cross-correlating NISP RGg spectra with
templates. The NISP RGg spectral coverage is particularly well-
matched to strong spectral features in L and T dwarfs (Fig. 3, and
Mohandasan et al. 2025), but it can also help with the classifications
for objects with less prominent spectral features in the 1206-
1892 nm spectral range, such as late M dwarfs (Fig. 4). Without the
spectroscopic information, the ultracool dwarfs discussed here could
mistakenly have been selected as high-redshift quasar candidates.
Similar but more distant (thus fainter) brown dwarfs could incorrectly
have been selected as high-redshift galaxies (e.g. Roberts-Borsani
et al. 2025). Atek et al. (2025) argue that requiring Iy — Yz > 3
reduces contamination by brown dwarfs. However, as shown in
Fig. 2, late L- and T-dwarfs with such a significant colour break
do exist and, therefore, brown dwarfs can still be a substantial
contaminant to the z > 6 galaxy candidates presented in Weaver
et al. (2025).

In this paper, we focus on the highest redshift quasars to explore
how efficiently Euclid can help to fill the quasar redshift gaps at
z~ 5.5 and z 2 7, where NISP RGg spectra allow us to identify
two emission lines (Fig. 1). In the future, we will combine the grism
data with photometric information (see Fig. 2). In that case, having
even only one (or zero) strong emission line in the NISP RGg, spectra
will help constrain the source redshift. Additionally, in the EDS, the
expanded wavelength coverage provided by the NISP BGg spectra
can be effectively utilized for the reliable identification of sources
(see Fig. 1 and Appendix C).

We have identified two sources in the EDF-N for which the best-
fitting template is the quasar composite spectrum from Vanden Berk
et al. (2001) at a redshift where two emission lines were expected.
This blind experiment already showcases the potential of Euclid for
new quasar discoveries. The most promising source, with clear de-
tections of the C 11] and Mg 11 lines, was confirmed as a quasar at the
expected z = 5.4 redshift with an optical follow-up spectrum (Fig. 5).
However, for the second candidate, no obvious emission lines were
detected in the Euclid spectrum or its follow-up, ground-based optical
spectrum. The lack of a strong Lyman break rules out a source
atz 2 3.5.

The confirmation of EUCL QSO J1815+4-6520 at z = 5.4 is note-
worthy, especially considering that we anticipated finding fewer
than one quasar of this kind in the surveyed area (Schindler et al.
2023). It is also important to point out that while Data Release
1 of the Dark Energy Spectroscopic Instrument (DESI) covered
the EDF-N region and discovered hundreds of new quasars (DESI
Collaboration 2025), they excluded follow-up of z ~5.4 —5.6
candidates due to a high expected contamination rate from M-
dwarfs (Yang et al. 2023). This emphasizes the potential of NISP
RGg to effectively identify rare sources that may not be easily
recognized through photometric methods. Across the entire EWS,
this technique could potentially reveal around 400 quasars at z & 5.5,
similar to EUCL QSO J18154-6520, as well as about 30 quasars at
z227.

A future improvement to a Euclid grism-based selection is to
include quasar templates with different spectral properties from
those used in this work (e.g. Temple, Hewett & Banerji 2021;
Euclid Collaboration 2024). This can result in discovering addi-
tional quasars with different dust reddening or weaker/stronger
emission lines than those of the average Vanden Berk et al.
quasar.
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As a final note, Euclid grism slitless spectroscopy will allow black
hole mass measurements for thousands of (known and new) quasars,
for which key emission lines such as C 1v, Mg 11, H 8, and H «, are
not visible from the ground (Fig. 1).
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APPENDIX A: ULTRACOOL DWARF
TEMPLATES

The spectral benchmarks used as templates in this work are listed in
Table Al.

Table Al1. Spectral benchmarks used as templates in this work.

Spectral Type Name Reference
M6 LHS 36 Burgasser et al. (2008)
M7 ITG2 Muench et al. (2007)
M8 KPNO6 Muench et al. (2007)
M9 KPNO12 Muench et al. (2007)
LO 2MASSJ12474944—1117551 Kirkpatrick et al. (2010)
L1 2MASSJ143130974-1436539 Sheppard & Cushing (2009)
L2 2MASSJ01415823—-4633574 Kirkpatrick et al. (2006)
L3 SDSSJ213352.72+101841.0 Chiu et al. (2006)
L4 2MASSJ03001631+4-2130205 Kirkpatrick et al. (2010)
L5 2MASSIJ1526140+4-204341 Burgasser et al. (2004)
L6 SDSSJ134203.11+4-134022.2 Chiu et al. (2006)
L7 2MASSJ21481628+4-4003593 Looper et al. (2008)
L8 2MASSJ10430758+-2225236 Siegler et al. (2007)
L9 SDSSJ213154.43—011939.3 Chiu et al. (2006)
TO GI337CD Burgasser et al. (2010)
T1 SDSSJ015141.69+-124429.6 Burgasser et al. (2004)
T2 2MASSJ15461461+4932114 Burgasser et al. (2010)
T3 SDSSJ153417.05+161546.1AB Chiu et al. (2006)
T4 2MASSJ10595219+3041498 Sheppard & Cushing (2009)
T5 2MASSJ18283572—4849046 Burgasser et al. (2004)
T6 2MASSJ16150413+1340079 Looper, Kirkpatrick & Burgasser (2007)
T7 2MASSJ00501994-3322402 Burgasser, Burrows & Kirkpatrick (2006b)
T8 2MASSJ09393548—2448279 Burgasser et al. (2006a)
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APPENDIX B: Euclid NISP RG; 2D
SPECTROGRAMS

Since this is one of the first publications including NISP RGg spectra
from an ERO program (Euclid Early Release Observations 2024;
Atek et al. 2025), we also provide in Fig. B1 the two-dimensional
spectrogram for the T dwarf discussed in Section 3.1. Note that these
two-dimensional data are not standard products of the Euclid pipeline
and were processed with a custom pipeline as described in Section
2.

1099

APPENDIX C: Euclid NISP BG; EARLY DATA
FOR z~ 5.5 CANDIDATES IN THE EDF-N

As noted in Section 2, the NISP BG;, data from the EDF-N was made
available during the final stages of this manuscript. Here, we present
the NISP BG; for the sources discussed in Section 4, showcasing
one of the first scientific demonstrations of NISP BGg data.

Fig. C1 shows all the available spectra for the quasar EUCL
QSO J18154-6520. The NISP BG; bridges the LBT/MODS and
NISP RGg spectra shown in Fig. 5, and the overlapping regions
are consistent with each other. From both Euclid NISP spectra, three
strong emission lines are identified at z = 5.4: C 1v, C 111], and Mg 1I.
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Figure B1. NISP two-dimensional spectrograms of EUCL J002516.31—491618.5. The one-dimensional extraction is shown in Fig. 3. Note that this source is
from the Abell 2766 ERO programme and, therefore, has three times more data than the sources from the EWS. Grey regions correspond to missing data.
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Figure C1. Spectra of the z = 5.4 quasar EUCL QSO J1815+4-6520. The LBT/MODS (black) and the NISP RGg, (red) spectra were shown in Fig. 5. The NISP
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BGg spectrum covers the wavelength range that connects the other two spectra. The uncertainties in the spectra are represented in lighter colours corresponding

to each spectrum.
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Figure C2. Spectra of the quasar candidate EUCL J180409.14+641335.3 (based solely on NISP RGg data). The Palomar/DBSP (black) and the NISP RGg
(red) spectra were shown in Fig. 6. The NISP BGg spectrum covers the wavelength range that connects the other two spectra. The uncertainties in the spectra
are represented in lighter colours corresponding to each spectrum. The orange line represents the best template identified by the Euclid pipeline, considering

both NISP BGg and RGg spectra, corresponding to a K-type star.

The C 1v BAL is evident in the NISP BGg spectrum and consistent
with the measurements from the LBT/MODS spectrum (Fig. 7).
Fig.C2 shows all the available spectra for the source
EUCL J180409.14+641335.3, which was ruled out to be a z &~ 5.5
quasar in Section 4.2. The NISP BGg, bridges the Palomar/DBSP and

MNRAS 542, 1088-1102 (2025)

NISP RGg, spectra shown in Fig. 6, and the overlapping regions are
consistent with each other. When analysing both the NISP BG¢ and
RG; data, the best template fit identified by the Euclid pipeline is
a K star, as depicted in orange in Fig. C2). The K star template
closely matches the overall shape of the spectra, including the
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A z = 5.4 quasar found by Euclid spectroscopy

Palomar/DBSP spectrum, which was not utilized for classification.
However, this template fails to account for the broad emission lines
observed in the NISP RGg spectrum at approximately 1200 and
1800 nm, which initially suggested a quasar classification. These
prominent features, which are broader than the spectral resolution,
are puzzling. Fortunately, this source is in the EDF-N, meaning that
multiple epochs will be available to verify if the features in this
spectrum are real.
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