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We derive exact closed-form expressions for the matrix exponential of the anti-

Hermitian spin-adapted singlet double excitation fermionic operators. These expres-

sions enable the efficient implementation of such operators within unitary product

state frameworks targeting conventional hardware, and allow for the implementa-

tion of ansätze that guarantee convergence to specific spin symmetries. Moreover,

these exact closed-form expressions might also lay the groundwork for constructing

spin-adapted circuits for quantum devices.
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I. INTRODUCTION

With the advent of quantum computing for the use in computational quantum chem-

istry, the interest in unitary parameterizations for electronic wave functions has risen.

Among these parameterizations are the hardware-efficient ansätze1, qubit ansätze2,3, qubit-

excitation-based ansätze4–7 and fermionic excitation ansätze5,7–12. The fermionic excitation

ansätze are among the most chemically motivated ones, since they conserve the number of

α and β electrons, ensure the anti-symmetry of the fermionic wave function, and produce an

eigenfunction of the z-component of the total spin Ŝz. These ansätze are based on generic

fermionic excitation operators,

T̂ aσ
iσ

= â†aσ âiσ (1)

T̂ aσbτ
iσjτ

= â†aσ â
†
bτ
âjτ âiσ (2)

... (3)

with the indices i, j, a, b referring to spatial orbital indices, and σ, τ to the electron spin.

Throughout the work, it is assumed that i, j < a, b. The anti-Hermitian form of the fermionic

operator is given as

ĜJ = T̂J − T̂ †
J (4)

with J being a compound index for the indices used in Eqs. (1)–(3). So, for instance

Ĝaσ
iσ = T̂ aσ

iσ
− T̂ aσ†

iσ
. The anti-Hermitian form of the fermionic excitation operators gives rise

to a unitary parameterization through a matrix exponentiation,

Û(θJ) = exp
(
θJĜJ

)
(5)

where θJ is a free real parameter. This anti-Hermitian form in Eq. (4) fulfills the polynomial

relation,

Ĝ3
J = −ĜJ (6)

this relationship can be used to write the matrix exponential exp
(
θĜJ

)
in a closed form,

exp
(
θĜJ

)
= Î + ĜJ sin(θ) + Ĝ2

J(1− cos(θ)) (7)

The identity in Eq. (7) has been used in previous works13–17 as well as in an alternative

formulation that performs a transformation of a fermionic operator18. Utilizing the closed
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form in Eq. (7) enables efficient implementation of the unitary form of these fermionic

operators and is utilized in codes such as TenCirChem19 and SlowQuant20, as well as in

recent works aiming for high-performance21,22 using an equivalent form14. In addition, it

also enables efficient derivatives through the adjoint differentiation method23. For fermionic

operators, exact efficient quantum circuits are also known5,7,12. A shortcoming of using

generic fermionic operators to parametrize the wave function is that they are not guaranteed

to produce wave functions that are eigenfunctions of the total spin angular momentum

operator Ŝ2. However, operators that produce wave functions that are eigenfunctions of Ŝ2

can be constructed and are called spin-adapted operators. Utilizing spin-adapted operators

for the wave function parameterization is especially important for multi-state methods such

as SS-VQE24, MC-VQE25, MORE-ADAPT-VQE26, variance-VQE27, and SA-VQE28 since

this allows targeting only states of a specific spin symmetry.

The spin-adapted (SA) singlet single excitation operator can be written as,

SAT̂ai =
1√
2
Êai (8)

with Êai = â†aα âiα + â†aβ âiβ ≡ (T̂ aα
iα

+ T̂
aβ
iβ
). The corresponding anti-Hermitian spin-adapted

singlet single excitation operator SAĜai takes the following form:

SAĜai =
SAT̂ai − SAT̂ †

ai =
1√
2

(
Ĝaα

iα
+ Ĝ

aβ
iβ

)
(9)

Using
[
Ĝaα

iα
, Ĝ

aβ
iβ

]
= 0, allows us to write the matrix exponential in the form,

exp
(
θ SAĜai

)
= exp

(
θ√
2
Ĝaα

iα

)
exp

(
θ√
2
Ĝ

aβ
iβ

)
(10)

=

{
Î + Ĝaα

iα
sin

(
θ√
2

)
+ Ĝaα2

iα

(
1− cos

(
θ√
2

))}
×
{
Î + Ĝ

aβ
iβ

sin

(
θ√
2

)
+ Ĝ

aβ2
iβ

(
1− cos

(
θ√
2

))}
(11)

Due to the form of Eq. (11), the spin-adapted singlet single excitation operators can utilize

known circuits from the fermionic single excitation operators5 and lead to a parameter

reduction compared to the generic form.

However, contrary to the spin-adapted anti-Hermitian singlet single fermionic excitation

operators, the spin-adapted anti-Hermitian singlet double fermionic excitation operators do

not decompose into commuting generic fermionic anti-Hermitian operators. Hence, a closed-

form expression for the matrix exponential of the spin-adapted singlet double excitation
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operators does not take a simple product form similar to the matrix exponential of the

spin-adapted singlet single excitation operator in Eq. (11), and an expression for the matrix

exponential of the spin-adapted singlet double excitation operators is unknown to date. In

the following section, we present exact closed-form expressions for the spin-adapted singlet

double fermionic excitation operators. While completing this work, we became aware of the

work of Magoulas and Evangelista29, who derived the closed-form expression for the matrix

exponential of the anti- Hermitian form of spin-adapted singlet double fermionic excitations.

II. SPIN-ADAPTED FERMIONIC DOUBLES

The spin-adapted singlet double fermionic excitation operators take the form,30–32

SAT̂aibj =
1

2
√

(1 + δab) (1 + δij)

(
ÊaiÊbj + ÊajÊbi

)
(12)

SAT̂ ′
aibj =

(1− δab) (1− δij)

2
√
3

(
ÊaiÊbj − ÊajÊbi

)
(13)

with Eq. (12) stemming from the intermediate singlet coupling to the singlet double exci-

tation, and Eq. (13) from the intermediate triplet coupling to the singlet double excitation.

The intermediate spin-couplings are between the pairs i, j and a, b, with both pairs needing

to form an intermediate coupling (singlet or triplet). This gives five different cases, since

T̂ ′
aibj is zero if any of the indices are equal,

SAT̂aiai =
1

2
ÊaiÊai (14)

SAT̂aiaj =
1√
2
ÊaiÊaj (15)

SAT̂aibi =
1√
2
ÊaiÊbi (16)

SAT̂aibj =
1

2

(
ÊaiÊbj + ÊajÊbi

)
(17)

SAT̂ ′
aibj =

1

2
√
3

(
ÊaiÊbj − ÊajÊbi

)
(18)

Here, we implied that a ̸= b and i ̸= j. In the following, we derive the closed form of the

unitaries generated by the anti-Hermitian versions of Eqs. (14)–(18) .
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A. Case SAĜaiai

This case reduces to a fermionic double excitation operator since ÊaiÊai = 2T̂
aβaα
iβiα

, yield-

ing the anti-Hermitian form of Eq. (14) as,

SAĜaiai = Ĝ
aαaβ
iαiβ

(19)

This already has the known exact closed-form discussed above (Eq. (7)),

exp
(
θ SAĜaiai

)
= Î + SAĜaiai sin(θ) +

SAĜ2
aiai(1− cos(θ)) (20)

Thus, this specific case of spin-adapted singlet double excitations can also utilize known

circuits for fermionic operators5, and is utilized in ansätze using (spin-adapted) singles and

pair-doubles9–12. For the remaining cases, Eqs. (15)–(18), no such reduction can be made.

B. Case SAĜaiaj and SAĜaibi

These two cases are the anti-Hermitian versions of the spin-adapted fermionic double

excitations operators in Eq. (15) and (16) where two indices match. They can be shown to

share the following polynomial relation for powers of the excitation operator,

SAĜ5
aiaj = A SAĜaiaj +B SAĜ3

aiaj (21)

with A = −1
2
and B = −3

2
. The coefficients A and B were determined by minimization

with SLSQP33 using SciPy34 together with SlowQuant20. SymPy35 was used as a symbolic

backend to verify the equation. Code that performs the minimization and verification can

be found in the supplementary information. As the polynomial relation is identical for

both SAĜaiaj and SAĜaibi, the derivation of the closed-form expression will be made only

considering SAĜaiaj.

The exponential of an excitation operator can be expanded as

exp
(
θ SAĜaiaj

)
= Î +

∞∑
k=1

θk

k!
SAĜk

aiaj (22)

Given that Eq. (21) gives an expression for the fifth-order term as a combination of first

and third-order terms, one can recast the matrix exponential in a polynomial form that

truncates at the fourth power of SAĜaiaj,

exp
(
θ SAĜaiaj

)
= Î +

4∑
n=1

fn (θ)
SAĜn

aiaj (23)
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where the expansion coefficients fn are polynomial functions of the parameter θ. The explicit

expression of fn (θ) must be determined and arises from the combination of the θk

k!
, A, and

B factors. Using Eq. (21), let us consider the decomposition of the first and third functions

in Eq. (23),

f1(θ) = θ +
θ5

5!
A+

θ7

7!
AB +

θ9

9!
(A2 + AB2) + ... (24)

f3(θ) =
θ3

3!
+

θ5

5!
B +

θ7

7!
(A+B2) +

θ9

9!
(2AB +B3) + ... (25)

It can be seen that the coefficients of the θk

k!
terms are

K
[1]
1 = A, K

[1]
2 = AB, K

[1]
3 = A2 + AB2, ... (26)

K
[3]
1 = B, K

[3]
2 = A+B2, K

[3]
3 = 2AB +B3, ... (27)

Here, the superscript in square parentheses indicates which function the coefficients are as-

sociated with, that is K
[1]
n is associated with f1 and K

[3]
n is associated with f3. By combining

Eqs. (24)–(27), one obtains the following expressions for the functions,

f1(θ) = θ +
∞∑
n=1

θ2n+3

(2n+ 3)!
K [1]

n (28)

f3(θ) =
θ3

3!
+

∞∑
n=1

θ2n+3

(2n+ 3)!
K [3]

n (29)

The coefficients in Eq. (26) and Eq. (27) can be seen to follow a recurrence relation,

K [1]
n = AK

[3]
n−1 (30)

K [3]
n = BK

[3]
n−1 +K

[1]
n−1 (31)

With the initial condition K
[1]
1 = A and K

[3]
1 = B. It can be noted that the recurrence

relations are linear, and a closed-form solution can be found from the eigenvalues of the

matrix equation form of the recurrence relations,K [1]
n

K
[3]
n

 =

0 A

1 B

K [1]
n−1

K
[3]
n−1

 (32)

We obtain the following solution,

K [1]
n = A(c1λ

n−1
1 + c2λ

n−1
2 ) (33)

K [3]
n = c1λ

n
1 + c2λ

n
2 (34)
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with λ1 and λ2 being the eigenvalues of the coefficient matrix in Eq. (32), and c1 and c2

being coefficients determined from the initial condition, found by solving,A
B

 =

Aλ0
1 Aλ0

2

λ1
1 λ1

2

c1
c2

→

c1
c2

 =

Aλ0
1 Aλ0

2

λ1
1 λ1

2

−1 A
B

 (35)

The eigenvalues and coefficients are found to be λ1 = B−
√
4A+B2

2
, λ2 = B+

√
4A+B2

2
, c1 =

1
2
− B

2
√
4A+B2 and c2 = 1

2
+ B

2
√
4A+B2 . By inserting Eq. (33) into Eq. (28) and Eq. (34) into

Eq. (29), the functions now take the following form,

f1(θ) = θ +
∞∑
n=1

θ2n+3

(2n+ 3)!

2∑
i=1

Aciλ
n−1
i (36)

f3(θ) =
θ3

3!
+

∞∑
n=1

θ2n+3

(2n+ 3)!

2∑
i=1

ciλ
n
i (37)

One can identify these sums to take the closed form,

∞∑
n=1

θ2n+3

(2n+ 3)!
λn−m
i =

1

λ
3/2+m
i

(
sinh

(
θ
√

λi

)
− θ
√

λi −
(
θ
√
λi

)3
3!

)
(38)

with m = 1 for the f1 case and m = 0 for the f3 case. Inserting Eq. (38) into Eqs. (36) and

(37) yields,

f1(θ) = θ +
2∑

i=1

Aci

λ
5/2
i

(
sinh

(
θ
√
λi

)
− θ
√

λi −
(
θ
√
λi

)3
3!

)
(39)

f3(θ) =
θ3

3!
+

2∑
i=1

ci

λ
3/2
i

(
sinh

(
θ
√

λi

)
− θ
√
λi −

(
θ
√
λi

)3
3!

)
(40)

Since the eigenvalues λi are all negative, one can use that sinh(ix) = i sin(x). Further

inserting λ1 = B−
√
4A+B2

2
, λ2 = B+

√
4A+B2

2
, c1 = 1

2
− B

2
√
4A+B2 , c2 = 1

2
+ B

2
√
4A+B2 , A = −1

2
,

and B = −3
2
, these expressions reduce to,

f1(θ) =
2∑

i=1

k
(1)
i sin (θSi) (41)

f3(θ) =
2∑

i=1

k
(3)
i sin (θSi) (42)

with real coefficients Si and k
(n)
i given in Table I. As it can be noted, all powers in θ have

canceled out.
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TABLE I. Values of coefficients in Eq. (45).

n k
(1)
n k

(3)
n k

(2)
n k

(4)
n Sn

1 −1 −2 1 2 1

2 2
√
2 2

√
2 −4 −4

√
2
2

Carrying out a similar derivation for the even terms in Eq. (23), we find

f2(θ) =
2∑

i=1

k
(2)
i (cos (θSi)− 1) (43)

f4(θ) =
2∑

i=1

k
(4)
i (cos (θSi)− 1) (44)

This yields the final closed-form expression for SAĜaiaj and
SAĜaibi,

exp
(
θ SAĜaiaj

)
= Î +

2∑
n=1

(
k(1)
n

SAĜaiaj + k(3)
n

SAĜ3
aiaj

)
sin (θSn)

+
2∑

n=1

(
k(2)
n

SAĜ2
aiaj + k(4)

n
SAĜ4

aiaj

)
(cos (θSn)− 1) (45)

An alternative route of deriving similar expressions has been proposed by Izmaylov et

al.36 Explicit expressions for the powers of SAĜaiaj can be found in the work of Magoulas

and Evangelista.29 The closed-form expression for exp
(
θ SAĜaibi

)
is identical to that of

exp
(
θ SAĜaiaj

)
but with SAĜaiaj replaced by SAĜaibi.

C. Case SAĜaibj

Now we turn to the anti-Hermitian version of Eq. (17), i.e., the case with four unique in-

dices coming from the intermediate singlet coupling. Here, the polynomial relation becomes

SAĜ9
aibj = A SAĜaibj +B SAĜ3

aibj + C SAĜ5
aibj +D SAĜ7

aibj (46)
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with A = −1
4
, B = −15

8
, C = −35

8
and D = −15

4
. Following the same procedure as the

previous cases gives the closed-form expression as

exp
(
θ SAĜaibj

)
= Î +

4∑
n=1

(
k(1)
n

SAĜaibj + k(3)
n

SAĜ3
aibj (47)

+ k(5)
n

SAĜ5
aibj + k(7)

n
SAĜ7

aibj

)
sin (Snθ)

+
4∑

n=1

(
k(2)
n

SAĜ2
aibj + k(4)

n
SAĜ4

aibj

+ k(6)
n

SAĜ6
aibj + k(8)

n
SAĜ8

aibj

)
(cos (Snθ)− 1)

with the coefficients given in Table II.

TABLE II. Values of coefficients in Eq. (47).

n k
(1)
n k

(3)
n k

(5)
n k

(7)
n k

(2)
n k

(4)
n k

(6)
n k

(8)
n Sn

1 2
3

13
3

22
3

8
3 -23 −13

3 −22
3 −8

3 1

2 −
√
2

42 −
√
2
6 −

√
2
3 −4

√
2

21
1
42

1
6

1
3

4
21

√
2

3 −8
√
2

3 −44
√
2

3 −52
√
2

3 −16
√
2

3
16
3

88
3

104
3

32
3

√
2
2

4 128
21

64
3

64
3

128
21 −256

21 −128
3 −128

3 −256
21

1
2

D. Case SAĜ′
aibj

The spin-adapted double that comes from the intermediate triplet excitation with four

unique indices, Eq. (18), has the polynomial relation,

SAĜ′11
aibj = A SAĜ′

aibj +B SAĜ′3
aibj + C SAĜ′5

aibj +D SAĜ′7
aibj + E SAĜ′9

aibj (48)

with A = − 1
48
, B = −113

288
, C = −587

288
, D = −613

144
and E = −11

3
. The closed-form expression

is obtained using the same procedure as above,

exp
(
θ SAĜ′

aibj

)
= Î +

5∑
n=1

(
k(1)
n

SAĜ′
aibj + k(3)

n
SAĜ′3

aibj + k(5)
n

SAĜ′5
aibj (49)

+ k(7)
n

SAĜ′7
aibj + k(9)

n
SAĜ′9

aibj

)
sin (Snθ)

+
5∑

n=1

(
k(2)
n

SAĜ′2
aibj + k(4)

n
SAĜ′4

aibj + k(6)
n

SAĜ′6
aibj

+ k(8)
n

SAĜ′8
aibj + k(10)

n
SAĜ′10

aibj

)
(cos (Snθ)− 1)
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with the coefficients given in Table III.

TABLE III. Values of coefficients in Eq. (49).

n k
(1)
n k

(3)
n k

(5)
n k

(7)
n k

(9)
n k

(2)
n k

(4)
n k

(6)
n k

(8)
n k

(10)
n Sn

1
√
2

1150
11

√
2

690
133

√
2

1725
16

√
2

115
48

√
2

575 − 1
1150 − 11

690 − 133
1725 − 16

115 − 48
575

√
2

2 8
√
2

5
404

√
2

15
308

√
2

3
608

√
2

5
192

√
2

5 −16
5 −808

15 −616
3 −1216

5 −384
5

√
2
2

3 −54
√
3

25 −171
√
3

5 −2718
√
3

25 −576
√
3

5 −864
√
3

25
162
25

513
5

8154
25

1728
5

2592
25

√
3
3

4 −16
√
3

75 −56
√
3

15 −1192
√
3

75 −112
√
3

5 −192
√
3

25
32
75

112
15

2384
75

224
5

384
25

√
3
2

5 432
√
3

115
2952

√
3

115
1368

√
3

23
6192

√
3

115
1728

√
3

115 −2592
115 −17712

115 −8208
23 −37152

115 −10368
115

√
3
6

E. Wave function parameter reduction

The most prominent application of our finding is for fermionic excitation methods, such

as fUCC17,37,38 and fermionic-ADAPT8 that can now be efficiently implemented in state

vector simulators in a spin-adapted formalism that guarantees convergence to the correct

spin symmetry. As using spin-adapted operators is equivalent to being in the space of

configuration state functions instead of the space of determinants, the number of parameters

is reduced accordingly. As an example, we here consider parameterization of a factorized

unitary coupled cluster expansion to singles and doubles.

TABLE IV. Number of variational parameters using factorized unitary coupled cluster singles

doubles and spin-adapted factorized unitary coupled cluster singles doubles for different system

sizes. The top row is referring to the size of the active space in the notation (number of electrons,

number of spatial orbitals).

(2,2) (4,4) (6,6) (8,8) (10,10) (12,12) (14,14) (16,16)

fUCCSD 3 26 117 360 875 1818 3381 5792

SA-fUCCSD 2 14 54 152 350 702 1274 2144

In Table IV, the number of variational parameters for different sizes for fUCCSD and

SA-fUCCSD expansions can be seen. The reduction of the number of parameters becomes

about 60% for the larger systems and goes towards a 66% reduction asymptotically. Another

direct benefit of using spin-adapted operators is that the number of operators to measure
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in an iteration of a fermionic-ADAPT will also be reduced, equivalent to the parameter

reduction for a fUCCSD.

F. State vector implementation performance

In order to quantify the performance enhancement of the closed form expressions, the an-

alytical expressions found in Eqs. (45), (47), and, (49) have been implemented and compared

to the matrix exponentiation from SciPy34, specifically the scipy.sparse.linalg.expm multiply39,40

functionality. Both of the implementations avoid constructing the matrix form of the

fermionic operators, and use SlowQuant20 as a backend to calculate the matrix-free oper-

ator state vector product. The specific implementations can be seen in the supplementary

information.

0

2

4

Ti
m

e 
[m

s]

0.20 0.47 0.85
1.43 1.78

2.28

(4,4) active space

Analytical
expm_multiply

exp (GSA
iiab/ijaa)|0 exp (GSA

ijab)|0 exp (GSA′
ijab)|0

0

1

Ti
m

e 
[s

]

0.09 0.25
0.520.55

0.84
1.28

(10,10) active space

FIG. 1. The mean execution time of applying an operator to the state-vector, the black bars are

+/- the standard deviation based on 100 runs. The test systems are a (4,4) active-space system

and a (10,10) active-space system, where the state vector is initialised to all ones. The timings

were performed on an 11th Gen Intel(R) Core(TM) i5-11600K 3.90GHz.

The execution speed of applying an anti-Hermitian spin-adapted excitation operator to

a state vector has been tested for a small system, (4,4) active space, and a large system,

(10,10) active space, using both the implementation based on the analytical expressions and

an implementation based on SciPy. The timings can be seen in Fig. 1, with both system

sizes showing the same trend. The analytical expressions give a speed-up of a factor of 6-7

for the operator utilizing Eq. (45), a factor of ∼3.5 for the operator utilizing Eq. (47), and,

a speed-up of a factor of ∼2.5 for the operator utilizing Eq. (49), when compared to the im-
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plementation using expm multiply. Using the analytical expressions for the operators thus

provides a significant speed-up when targeting classical hardware. Having the analytical ex-

pressions also allows for other types of implementations, like the tree-based implementation

from Chen et al.14

III. CONCLUSION

In this work, exact closed-form expressions have been derived for unitary spin-adapted

fermionic double excitation operators. We show that these closed form expressions can be

utilized for an efficient implementation of these operators in unitary product state codes that

target conventional hardware or state vector simulations for quantum emulation. Further,

as spin-adapted operators strictly operate in the space of configuration state functions, an

asymptotic parameter reduction of 66% can be obtained for the fUCCSD wave function.

Moreover, our findings might also provide guidance about how to construct circuits for

spin-adapted double excitation operators on quantum hardware. This will be part of future

research.

IV. SUPPLEMENTARY MATERIAL

In the supplementary material we have provided code that determines the coefficients A,

B, C,D, and, E for the Eqs. (21), (46), and, (48) in the file determining the coefficients.ipynb.

Code that symbolically verifies the validity of Eqs. (21), (46), and, (48) in the file

checking eq 21 46 48.ipynb. An implementation of Eqs. (45), (47), and, (49), as well

their corresponding expm multipliy implementation, in the file timings.ipynb. At last

the used version of SlowQuant is also provided.
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Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay May-

orov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
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Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert

Cimrman, and Anthony Scopatz. Sympy: symbolic computing in python. PeerJ Comput.

Sci., 3:e103, January 2017.

36Artur F Izmaylov, Robert A Lang, and Tzu-Ching Yen. Analytic gradients in variational

quantum algorithms: Algebraic extensions of the parameter-shift rule to general unitary

transformations. Phys. Rev. A (Coll. Park.), 104(6), December 2021.

37Jonathan Romero, Ryan Babbush, Jarrod R McClean, Cornelius Hempel, Peter J Love,

and Alán Aspuru-Guzik. Strategies for quantum computing molecular energies using the

unitary coupled cluster ansatz. Quantum Sci. Technol., 4(1):014008, October 2018.

38Jia Chen, Hai-Ping Cheng, and J K Freericks. Flexibility of the factorized form of the

unitary coupled cluster ansatz. J. Chem. Phys., 156(4):044106, January 2022.

39Nicholas J Higham and Awad H Al-Mohy. Computing matrix functions. Acta Numer.,

19:159–208, May 2010.

40Awad H Al-Mohy and Nicholas J Higham. Computing the action of the matrix exponential,

with an application to exponential integrators. SIAM J. Sci. Comput., 33(2):488–511,

January 2011.

17

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

02
78

71
7


