PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

Erik Rosendahl Kjellgren, ^{1, a)} Karl Michael Ziems, ^{2, 3} Peter Reinholdt, ¹ Stephan P. A. Sauer, ⁴ Sonia Coriani, ³ and Jacob Kongsted ¹

¹⁾ Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.

²⁾School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom

³⁾Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark.

⁴⁾Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark.

We derive exact closed-form expressions for the matrix exponential of the anti-Hermitian spin-adapted singlet double excitation fermionic operators. These expressions enable the efficient implementation of such operators within unitary product state frameworks targeting conventional hardware, and allow for the implementation of ansätze that guarantee convergence to specific spin symmetries. Moreover, these exact closed-form expressions might also lay the groundwork for constructing spin-adapted circuits for quantum devices.

^{a)}Electronic mail: kjellgren@sdu.dk

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

With the advent of qu

With the advent of quantum computing for the use in computational quantum chemistry, the interest in unitary parameterizations for electronic wave functions has risen. Among these parameterizations are the hardware-efficient ansätze¹, qubit ansätze^{2,3}, qubit-excitation-based ansätze⁴⁻⁷ and fermionic excitation ansätze^{5,7-12}. The fermionic excitation ansätze are among the most chemically motivated ones, since they conserve the number of α and β electrons, ensure the anti-symmetry of the fermionic wave function, and produce an eigenfunction of the z-component of the total spin \hat{S}_z . These ansätze are based on generic fermionic excitation operators,

$$\hat{T}^{a_{\sigma}}_{i_{\sigma}} = \hat{a}^{\dagger}_{a_{\sigma}} \hat{a}_{i_{\sigma}} \tag{1}$$

$$\hat{T}^{a_{\sigma}b_{\tau}}_{i_{\sigma}j_{\tau}} = \hat{a}^{\dagger}_{a_{\sigma}}\hat{a}^{\dagger}_{b_{\tau}}\hat{a}_{j_{\tau}}\hat{a}_{i_{\sigma}} \tag{2}$$

$$\dots$$
 (3)

with the indices i, j, a, b referring to spatial orbital indices, and σ, τ to the electron spin. Throughout the work, it is assumed that i, j < a, b. The anti-Hermitian form of the fermionic operator is given as

$$\hat{G}_J = \hat{T}_J - \hat{T}_J^{\dagger} \tag{4}$$

with J being a compound index for the indices used in Eqs. (1)–(3). So, for instance $\hat{G}_{i\sigma}^{a\sigma} = \hat{T}_{i\sigma}^{a\sigma} - \hat{T}_{i\sigma}^{a\sigma\dagger}$. The anti-Hermitian form of the fermionic excitation operators gives rise to a unitary parameterization through a matrix exponentiation,

$$\hat{U}(\theta_J) = \exp\left(\theta_J \hat{G}_J\right) \tag{5}$$

where θ_J is a free real parameter. This anti-Hermitian form in Eq. (4) fulfills the polynomial relation,

$$\hat{G}_J^3 = -\hat{G}_J \tag{6}$$

this relationship can be used to write the matrix exponential $\exp\left(\theta\hat{G}_J\right)$ in a closed form,

$$\exp\left(\theta \hat{G}_J\right) = \hat{I} + \hat{G}_J \sin(\theta) + \hat{G}_J^2 (1 - \cos(\theta)) \tag{7}$$

The identity in Eq. (7) has been used in previous works^{13–17} as well as in an alternative formulation that performs a transformation of a fermionic operator¹⁸. Utilizing the closed

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

form in Eq. (7) enables efficient implementation of the unitary form of these fermionic operators and is utilized in codes such as TenCirChem¹⁹ and SlowQuant²⁰, as well as in recent works aiming for high-performance^{21,22} using an equivalent form¹⁴. In addition, it also enables efficient derivatives through the adjoint differentiation method²³. For fermionic operators, exact efficient quantum circuits are also known^{5,7,12}. A shortcoming of using generic fermionic operators to parametrize the wave function is that they are not guaranteed to produce wave functions that are eigenfunctions of the total spin angular momentum operator \hat{S}^2 . However, operators that produce wave functions that are eigenfunctions of \hat{S}^2 can be constructed and are called spin-adapted operators. Utilizing spin-adapted operators for the wave function parameterization is especially important for multi-state methods such as SS-VQE²⁴, MC-VQE²⁵, MORE-ADAPT-VQE²⁶, variance-VQE²⁷, and SA-VQE²⁸ since this allows targeting only states of a specific spin symmetry.

The spin-adapted (SA) singlet single excitation operator can be written as,

$$^{SA}\hat{T}_{ai} = \frac{1}{\sqrt{2}}\hat{E}_{ai} \tag{8}$$

with $\hat{E}_{ai} = \hat{a}^{\dagger}_{a_{\alpha}}\hat{a}_{i_{\alpha}} + \hat{a}^{\dagger}_{a_{\beta}}\hat{a}_{i_{\beta}} \equiv (\hat{T}^{a_{\alpha}}_{i_{\alpha}} + \hat{T}^{a_{\beta}}_{i_{\beta}})$. The corresponding anti-Hermitian spin-adapted singlet single excitation operator ${}^{SA}\hat{G}_{ai}$ takes the following form:

$$^{SA}\hat{G}_{ai} = ^{SA}\hat{T}_{ai} - ^{SA}\hat{T}_{ai}^{\dagger} = \frac{1}{\sqrt{2}} \left(\hat{G}_{i_{\alpha}}^{a_{\alpha}} + \hat{G}_{i_{\beta}}^{a_{\beta}} \right)$$
(9)

Using $\left[\hat{G}_{i_{\alpha}}^{a_{\alpha}}, \hat{G}_{i_{\beta}}^{a_{\beta}}\right] = 0$, allows us to write the matrix exponential in the form,

$$\exp\left(\theta^{\text{SA}}\hat{G}_{ai}\right) = \exp\left(\frac{\theta}{\sqrt{2}}\hat{G}_{i_{\alpha}}^{a_{\alpha}}\right) \exp\left(\frac{\theta}{\sqrt{2}}\hat{G}_{i_{\beta}}^{a_{\beta}}\right)$$

$$= \left\{\hat{I} + \hat{G}_{i_{\alpha}}^{a_{\alpha}} \sin\left(\frac{\theta}{\sqrt{2}}\right) + \hat{G}_{i_{\alpha}}^{a_{\alpha}2} \left(1 - \cos\left(\frac{\theta}{\sqrt{2}}\right)\right)\right\}$$

$$\times \left\{\hat{I} + \hat{G}_{i_{\beta}}^{a_{\beta}} \sin\left(\frac{\theta}{\sqrt{2}}\right) + \hat{G}_{i_{\beta}}^{a_{\beta}2} \left(1 - \cos\left(\frac{\theta}{\sqrt{2}}\right)\right)\right\}$$

$$(10)$$

Due to the form of Eq. (11), the spin-adapted singlet single excitation operators can utilize known circuits from the fermionic single excitation operators⁵ and lead to a parameter reduction compared to the generic form.

However, contrary to the spin-adapted anti-Hermitian singlet single fermionic excitation operators, the spin-adapted anti-Hermitian singlet double fermionic excitation operators do not decompose into commuting generic fermionic anti-Hermitian operators. Hence, a closedform expression for the matrix exponential of the spin-adapted singlet double excitation

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

operators does not take a simple product form similar to the matrix exponential of the spin-adapted singlet single excitation operator in Eq. (11), and an expression for the matrix exponential of the spin-adapted singlet double excitation operators is unknown to date. In the following section, we present exact closed-form expressions for the spin-adapted singlet double fermionic excitation operators. While completing this work, we became aware of the work of Magoulas and Evangelista²⁹, who derived the closed-form expression for the matrix exponential of the anti- Hermitian form of spin-adapted singlet double fermionic excitations.

II. SPIN-ADAPTED FERMIONIC DOUBLES

The spin-adapted singlet double fermionic excitation operators take the form, $^{30-32}$

$${}^{SA}\hat{T}_{aibj} = \frac{1}{2\sqrt{(1+\delta_{ab})(1+\delta_{ij})}} \left(\hat{E}_{ai}\hat{E}_{bj} + \hat{E}_{aj}\hat{E}_{bi}\right)$$
(12)

$$^{\text{SA}}\hat{T}'_{aibj} = \frac{(1 - \delta_{ab})(1 - \delta_{ij})}{2\sqrt{3}} \left(\hat{E}_{ai}\hat{E}_{bj} - \hat{E}_{aj}\hat{E}_{bi}\right)$$
(13)

with Eq. (12) stemming from the intermediate singlet coupling to the singlet double excitation, and Eq. (13) from the intermediate triplet coupling to the singlet double excitation. The intermediate spin-couplings are between the pairs i, j and a, b, with both pairs needing to form an intermediate coupling (singlet or triplet). This gives five different cases, since \hat{T}'_{aibj} is zero if any of the indices are equal,

$$^{SA}\hat{T}_{aiai} = \frac{1}{2}\hat{E}_{ai}\hat{E}_{ai} \tag{14}$$

$$^{SA}\hat{T}_{aiaj} = \frac{1}{\sqrt{2}}\hat{E}_{ai}\hat{E}_{aj} \tag{15}$$

$$^{\text{SA}}\hat{T}_{aibi} = \frac{1}{\sqrt{2}}\hat{E}_{ai}\hat{E}_{bi} \tag{16}$$

$$^{SA}\hat{T}_{aibj} = \frac{1}{2} \left(\hat{E}_{ai}\hat{E}_{bj} + \hat{E}_{aj}\hat{E}_{bi} \right)$$

$$\tag{17}$$

$$^{SA}\hat{T}'_{aibj} = \frac{1}{2\sqrt{3}} \left(\hat{E}_{ai}\hat{E}_{bj} - \hat{E}_{aj}\hat{E}_{bi} \right)$$
 (18)

Here, we implied that $a \neq b$ and $i \neq j$. In the following, we derive the closed form of the unitaries generated by the anti-Hermitian versions of Eqs. (14)–(18).

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

A. Case $SA\hat{G}_{aiai}$

This case reduces to a fermionic double excitation operator since $\hat{E}_{ai}\hat{E}_{ai} = 2\hat{T}^{a_{\beta}a_{\alpha}}_{i_{\beta}i_{\alpha}}$, yielding the anti-Hermitian form of Eq. (14) as,

$$^{\text{SA}}\hat{G}_{aiai} = \hat{G}^{a_{\alpha}a_{\beta}}_{i_{\alpha}i_{\beta}} \tag{19}$$

This already has the known exact closed-form discussed above (Eq. (7)),

$$\exp\left(\theta^{\text{SA}}\hat{G}_{aiai}\right) = \hat{I} + {}^{\text{SA}}\hat{G}_{aiai}\sin(\theta) + {}^{\text{SA}}\hat{G}_{aiai}^{2}(1 - \cos(\theta))$$
(20)

Thus, this specific case of spin-adapted singlet double excitations can also utilize known circuits for fermionic operators⁵, and is utilized in ansätze using (spin-adapted) singles and pair-doubles^{9–12}. For the remaining cases, Eqs. (15)–(18), no such reduction can be made.

B. Case ${}^{\mathrm{SA}}\hat{G}_{aiaj}$ and ${}^{\mathrm{SA}}\hat{G}_{aibi}$

These two cases are the anti-Hermitian versions of the spin-adapted fermionic double excitations operators in Eq. (15) and (16) where two indices match. They can be shown to share the following polynomial relation for powers of the excitation operator,

$$^{SA}\hat{G}_{aiaj}^{5} = A^{SA}\hat{G}_{aiaj} + B^{SA}\hat{G}_{aiaj}^{3}$$

$$(21)$$

with $A = -\frac{1}{2}$ and $B = -\frac{3}{2}$. The coefficients A and B were determined by minimization with SLSQP³³ using SciPy³⁴ together with SlowQuant²⁰. SymPy³⁵ was used as a symbolic backend to verify the equation. Code that performs the minimization and verification can be found in the supplementary information. As the polynomial relation is identical for both ${}^{SA}\hat{G}_{aiaj}$ and ${}^{SA}\hat{G}_{aibi}$, the derivation of the closed-form expression will be made only considering ${}^{SA}\hat{G}_{aiaj}$.

The exponential of an excitation operator can be expanded as

$$\exp\left(\theta^{\text{SA}}\hat{G}_{aiaj}\right) = \hat{I} + \sum_{k=1}^{\infty} \frac{\theta^k}{k!} \,^{\text{SA}}\hat{G}_{aiaj}^k \tag{22}$$

Given that Eq. (21) gives an expression for the fifth-order term as a combination of first and third-order terms, one can recast the matrix exponential in a polynomial form that truncates at the fourth power of ${}^{SA}\hat{G}_{aiaj}$,

$$\exp\left(\theta^{\text{SA}}\hat{G}_{aiaj}\right) = \hat{I} + \sum_{n=1}^{4} f_n\left(\theta\right)^{\text{SA}}\hat{G}_{aiaj}^n \tag{23}$$

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

where the expansion coefficients f_n are polynomial functions of the parameter θ . The explicit expression of $f_n(\theta)$ must be determined and arises from the combination of the $\frac{\theta^k}{k!}$, A, and B factors. Using Eq. (21), let us consider the decomposition of the first and third functions in Eq. (23),

$$f_1(\theta) = \theta + \frac{\theta^5}{5!}A + \frac{\theta^7}{7!}AB + \frac{\theta^9}{9!}(A^2 + AB^2) + \dots$$
 (24)

$$f_3(\theta) = \frac{\theta^3}{3!} + \frac{\theta^5}{5!}B + \frac{\theta^7}{7!}(A + B^2) + \frac{\theta^9}{9!}(2AB + B^3) + \dots$$
 (25)

It can be seen that the coefficients of the $\frac{\theta^k}{k!}$ terms are

$$K_1^{[1]} = A, \quad K_2^{[1]} = AB, \quad K_3^{[1]} = A^2 + AB^2, \quad \dots$$
 (26)

$$K_1^{[3]} = B, \quad K_2^{[3]} = A + B^2, \quad K_3^{[3]} = 2AB + B^3, \quad \dots$$
 (27)

Here, the superscript in square parentheses indicates which function the coefficients are associated with, that is $K_n^{[1]}$ is associated with f_1 and $K_n^{[3]}$ is associated with f_3 . By combining Eqs. (24)–(27), one obtains the following expressions for the functions,

$$f_1(\theta) = \theta + \sum_{n=1}^{\infty} \frac{\theta^{2n+3}}{(2n+3)!} K_n^{[1]}$$
 (28)

$$f_3(\theta) = \frac{\theta^3}{3!} + \sum_{n=1}^{\infty} \frac{\theta^{2n+3}}{(2n+3)!} K_n^{[3]}$$
 (29)

The coefficients in Eq. (26) and Eq. (27) can be seen to follow a recurrence relation,

$$K_n^{[1]} = AK_{n-1}^{[3]} (30)$$

$$K_n^{[3]} = BK_{n-1}^{[3]} + K_{n-1}^{[1]}$$
(31)

With the initial condition $K_1^{[1]} = A$ and $K_1^{[3]} = B$. It can be noted that the recurrence relations are linear, and a closed-form solution can be found from the eigenvalues of the matrix equation form of the recurrence relations,

$$\begin{bmatrix} K_n^{[1]} \\ K_n^{[3]} \end{bmatrix} = \begin{bmatrix} 0 & A \\ 1 & B \end{bmatrix} \begin{bmatrix} K_{n-1}^{[1]} \\ K_{n-1}^{[3]} \end{bmatrix}$$
(32)

We obtain the following solution,

$$K_n^{[1]} = A(c_1\lambda_1^{n-1} + c_2\lambda_2^{n-1}) \tag{33}$$

$$K_n^{[3]} = c_1 \lambda_1^n + c_2 \lambda_2^n \tag{34}$$

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

with λ_1 and λ_2 being the eigenvalues of the coefficient matrix in Eq. (32), and c_1 and c_2 being coefficients determined from the initial condition, found by solving,

$$\begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} A\lambda_1^0 & A\lambda_2^0 \\ \lambda_1^1 & \lambda_2^1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \rightarrow \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} A\lambda_1^0 & A\lambda_2^0 \\ \lambda_1^1 & \lambda_2^1 \end{bmatrix}^{-1} \begin{bmatrix} A \\ B \end{bmatrix}$$
(35)

The eigenvalues and coefficients are found to be $\lambda_1 = \frac{B-\sqrt{4A+B^2}}{2}$, $\lambda_2 = \frac{B+\sqrt{4A+B^2}}{2}$, $c_1 = \frac{1}{2} - \frac{B}{2\sqrt{4A+B^2}}$ and $c_2 = \frac{1}{2} + \frac{B}{2\sqrt{4A+B^2}}$. By inserting Eq. (33) into Eq. (28) and Eq. (34) into Eq. (29), the functions now take the following form,

$$f_1(\theta) = \theta + \sum_{n=1}^{\infty} \frac{\theta^{2n+3}}{(2n+3)!} \sum_{i=1}^{2} Ac_i \lambda_i^{n-1}$$
 (36)

$$f_3(\theta) = \frac{\theta^3}{3!} + \sum_{n=1}^{\infty} \frac{\theta^{2n+3}}{(2n+3)!} \sum_{i=1}^{2} c_i \lambda_i^n$$
 (37)

One can identify these sums to take the closed form,

$$\sum_{n=1}^{\infty} \frac{\theta^{2n+3}}{(2n+3)!} \lambda_i^{n-m} = \frac{1}{\lambda_i^{3/2+m}} \left(\sinh\left(\theta\sqrt{\lambda_i}\right) - \theta\sqrt{\lambda_i} - \frac{\left(\theta\sqrt{\lambda_i}\right)^3}{3!} \right)$$
(38)

with m = 1 for the f_1 case and m = 0 for the f_3 case. Inserting Eq. (38) into Eqs. (36) and (37) yields,

$$f_1(\theta) = \theta + \sum_{i=1}^{2} \frac{Ac_i}{\lambda_i^{5/2}} \left(\sinh\left(\theta\sqrt{\lambda_i}\right) - \theta\sqrt{\lambda_i} - \frac{\left(\theta\sqrt{\lambda_i}\right)^3}{3!} \right)$$
(39)

$$f_3(\theta) = \frac{\theta^3}{3!} + \sum_{i=1}^2 \frac{c_i}{\lambda_i^{3/2}} \left(\sinh\left(\theta\sqrt{\lambda_i}\right) - \theta\sqrt{\lambda_i} - \frac{\left(\theta\sqrt{\lambda_i}\right)^3}{3!} \right)$$
(40)

Since the eigenvalues λ_i are all negative, one can use that $\sinh(ix) = i\sin(x)$. Further inserting $\lambda_1 = \frac{B - \sqrt{4A + B^2}}{2}$, $\lambda_2 = \frac{B + \sqrt{4A + B^2}}{2}$, $c_1 = \frac{1}{2} - \frac{B}{2\sqrt{4A + B^2}}$, $c_2 = \frac{1}{2} + \frac{B}{2\sqrt{4A + B^2}}$, $A = -\frac{1}{2}$, and $B = -\frac{3}{2}$, these expressions reduce to,

$$f_1(\theta) = \sum_{i=1}^{2} k_i^{(1)} \sin(\theta S_i)$$
 (41)

$$f_3(\theta) = \sum_{i=1}^{2} k_i^{(3)} \sin(\theta S_i)$$
 (42)

with real coefficients S_i and $k_i^{(n)}$ given in Table I. As it can be noted, all powers in θ have canceled out.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

TABLE I. Values of coefficients in Eq. (45).

n	$k_n^{(1)}$	$k_n^{(3)}$	$k_n^{(2)}$	$k_n^{(4)}$	S_n
1	-1	-2	1	2	1
2	$2\sqrt{2}$	$2\sqrt{2}$	-4	-4	$\frac{\sqrt{2}}{2}$

Carrying out a similar derivation for the even terms in Eq. (23), we find

$$f_2(\theta) = \sum_{i=1}^{2} k_i^{(2)} (\cos(\theta S_i) - 1)$$
(43)

$$f_4(\theta) = \sum_{i=1}^{2} k_i^{(4)} (\cos(\theta S_i) - 1)$$
(44)

This yields the final closed-form expression for ${}^{\mathrm{SA}}\hat{G}_{aiaj}$ and ${}^{\mathrm{SA}}\hat{G}_{aibi}$,

$$\exp\left(\theta^{\text{SA}}\hat{G}_{aiaj}\right) = \hat{I} + \sum_{n=1}^{2} \left(k_n^{(1)} \, {}^{\text{SA}}\hat{G}_{aiaj} + k_n^{(3)} \, {}^{\text{SA}}\hat{G}_{aiaj}^3\right) \sin\left(\theta S_n\right) + \sum_{n=1}^{2} \left(k_n^{(2)} \, {}^{\text{SA}}\hat{G}_{aiaj}^2 + k_n^{(4)} \, {}^{\text{SA}}\hat{G}_{aiaj}^4\right) \left(\cos\left(\theta S_n\right) - 1\right)$$
(45)

An alternative route of deriving similar expressions has been proposed by Izmaylov et al.³⁶ Explicit expressions for the powers of ${}^{SA}\hat{G}_{aiaj}$ can be found in the work of Magoulas and Evangelista.²⁹ The closed-form expression for $\exp\left(\theta {}^{SA}\hat{G}_{aibi}\right)$ is identical to that of $\exp\left(\theta {}^{SA}\hat{G}_{aiaj}\right)$ but with ${}^{SA}\hat{G}_{aiaj}$ replaced by ${}^{SA}\hat{G}_{aibi}$.

C. Case ${}^{\mathrm{SA}}\hat{G}_{aibj}$

Now we turn to the anti-Hermitian version of Eq. (17), i.e., the case with four unique indices coming from the intermediate singlet coupling. Here, the polynomial relation becomes

$${}^{SA}\hat{G}^{9}_{aibj} = A {}^{SA}\hat{G}_{aibj} + B {}^{SA}\hat{G}^{3}_{aibj} + C {}^{SA}\hat{G}^{5}_{aibj} + D {}^{SA}\hat{G}^{7}_{aibj}$$
(46)

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

$$\exp\left(\theta^{\text{SA}}\hat{G}_{aibj}\right) = \hat{I} + \sum_{n=1}^{4} \left(k_n^{(1)} \, {}^{\text{SA}}\hat{G}_{aibj} + k_n^{(3)} \, {}^{\text{SA}}\hat{G}_{aibj}^3 + k_n^{(3)} \, {}^{\text{SA}}\hat{G}_{aibj}^3 + k_n^{(7)} \, {}^{\text{SA}}\hat{G}_{aibj}^7 \right) \sin\left(S_n\theta\right) + k_n^{(5)} \, {}^{\text{SA}}\hat{G}_{aibj}^2 + k_n^{(7)} \, {}^{\text{SA}}\hat{G}_{aibj}^7 + k_n^{(4)} \, {}^{\text{SA}}\hat{G}_{aibj}^4 + k_n^{(4)} \, {}^{\text{SA}}\hat{G}_{aibj}^4 + k_n^{(8)} \, {}^{\text{SA}}\hat{G}_{aibj}^8 + k_n^{(8)} \, {}^{\text{SA}}\hat{G}_{aibj}^8 \right) \left(\cos\left(S_n\theta\right) - 1\right)$$

with the coefficients given in Table II.

TABLE II. Values of coefficients in Eq. (47).

n	$k_n^{(1)}$	$k_n^{(3)}$	$k_n^{(5)}$	$k_n^{(7)}$	$k_n^{(2)}$	$k_n^{(4)}$	$k_n^{(6)}$	$k_n^{(8)}$	S_n
1	$\frac{2}{3}$	$\frac{13}{3}$	$\frac{22}{3}$	$\frac{8}{3}$	$-\frac{2}{3}$	$-\frac{13}{3}$	$-\frac{22}{3}$	$-\frac{8}{3}$	1
2	$-\frac{\sqrt{2}}{42}$	$-\frac{\sqrt{2}}{6}$	$-\frac{\sqrt{2}}{3}$	$-\frac{4\sqrt{2}}{21}$	$\frac{1}{42}$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{4}{21}$	$\sqrt{2}$
3	$-\frac{8\sqrt{2}}{3}$	$-\frac{44\sqrt{2}}{3}$	$-\frac{52\sqrt{2}}{3}$	$-\frac{16\sqrt{2}}{3}$	$\frac{16}{3}$	$\frac{88}{3}$	$\frac{104}{3}$	$\frac{32}{3}$	$\frac{\sqrt{2}}{2}$
4	$\frac{128}{21}$	$\frac{64}{3}$	$\frac{64}{3}$	$\frac{128}{21}$	$-\frac{256}{21}$	$-\frac{128}{3}$	$-\frac{128}{3}$	$-\frac{256}{21}$	$\frac{1}{2}$

D. Case $SA\hat{G}'_{aibi}$

The spin-adapted double that comes from the intermediate triplet excitation with four unique indices, Eq. (18), has the polynomial relation,

$${}^{SA}\hat{G}'^{11}_{aibj} = A {}^{SA}\hat{G}'_{aibj} + B {}^{SA}\hat{G}'^{3}_{aibj} + C {}^{SA}\hat{G}'^{5}_{aibj} + D {}^{SA}\hat{G}'^{7}_{aibj} + E {}^{SA}\hat{G}'^{9}_{aibj}$$
(48)

with $A = -\frac{1}{48}$, $B = -\frac{113}{288}$, $C = -\frac{587}{288}$, $D = -\frac{613}{144}$ and $E = -\frac{11}{3}$. The closed-form expression is obtained using the same procedure as above,

$$\exp\left(\theta^{\text{SA}}\hat{G}'_{aibj}\right) = \hat{I} + \sum_{n=1}^{5} \left(k_{n}^{(1)} \,^{\text{SA}}\hat{G}'_{aibj} + k_{n}^{(3)} \,^{\text{SA}}\hat{G}'^{3}_{aibj} + k_{n}^{(5)} \,^{\text{SA}}\hat{G}'^{5}_{aibj} \right) + k_{n}^{(7)} \,^{\text{SA}}\hat{G}'^{7}_{aibj} + k_{n}^{(9)} \,^{\text{SA}}\hat{G}'^{9}_{aibj} \right) \sin\left(S_{n}\theta\right) + \sum_{n=1}^{5} \left(k_{n}^{(2)} \,^{\text{SA}}\hat{G}'^{2}_{aibj} + k_{n}^{(4)} \,^{\text{SA}}\hat{G}'^{4}_{aibj} + k_{n}^{(6)} \,^{\text{SA}}\hat{G}'^{6}_{aibj} + k_{n}^{(8)} \,^{\text{SA}}\hat{G}'^{8}_{aibj} + k_{n}^{(10)} \,^{\text{SA}}\hat{G}'^{10}_{aibj}\right) \left(\cos\left(S_{n}\theta\right) - 1\right)$$

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

with the coefficients given in Table III.

TABLE III. Values of coefficients in Eq. (49).

n	$k_n^{(1)}$	$k_n^{(3)}$	$k_n^{(5)}$	$k_n^{(7)}$	$k_n^{(9)}$	$k_n^{(2)}$	$k_n^{(4)}$	$k_n^{(6)}$	$k_n^{(8)}$	$k_n^{(10)}$	S_n
1	$\frac{\sqrt{2}}{1150}$	$\frac{11\sqrt{2}}{690}$	$\frac{133\sqrt{2}}{1725}$	$\frac{16\sqrt{2}}{115}$	$\frac{48\sqrt{2}}{575}$	$-\frac{1}{1150}$	$-\frac{11}{690}$	$-\frac{133}{1725}$	$-\frac{16}{115}$	$-\frac{48}{575}$	$\sqrt{2}$
2	$\frac{8\sqrt{2}}{5}$	$\frac{404\sqrt{2}}{15}$	$\frac{308\sqrt{2}}{3}$	$\frac{608\sqrt{2}}{5}$	$\frac{192\sqrt{2}}{5}$	$-\frac{16}{5}$	$-\frac{808}{15}$	$-\frac{616}{3}$	$-\frac{1216}{5}$	$-\frac{384}{5}$	$\frac{\sqrt{2}}{2}$
3	$-\tfrac{54\sqrt{3}}{25}$	$-\frac{171\sqrt{3}}{5}$	$-\tfrac{2718\sqrt{3}}{25}$	$-\tfrac{576\sqrt{3}}{5}$	$-\tfrac{864\sqrt{3}}{25}$	$\frac{162}{25}$	$\frac{513}{5}$	$\frac{8154}{25}$	$\frac{1728}{5}$	$\frac{2592}{25}$	$\frac{\sqrt{3}}{3}$
4	$-\frac{16\sqrt{3}}{75}$	$-\frac{56\sqrt{3}}{15}$	$-\tfrac{1192\sqrt{3}}{75}$	$-\frac{112\sqrt{3}}{5}$	$-\tfrac{192\sqrt{3}}{25}$	$\frac{32}{75}$	$\frac{112}{15}$	$\frac{2384}{75}$	$\frac{224}{5}$	$\frac{384}{25}$	$\frac{\sqrt{3}}{2}$
5	$\frac{432\sqrt{3}}{115}$	$\frac{2952\sqrt{3}}{115}$	$\frac{1368\sqrt{3}}{23}$	$\frac{6192\sqrt{3}}{115}$	$\frac{1728\sqrt{3}}{115}$	$-\frac{2592}{115}$	$-\frac{17712}{115}$	$-\frac{8208}{23}$	$-\frac{37152}{115}$	$-\frac{10368}{115}$	$\frac{\sqrt{3}}{6}$

E. Wave function parameter reduction

The most prominent application of our finding is for fermionic excitation methods, such as fUCC^{17,37,38} and fermionic-ADAPT⁸ that can now be efficiently implemented in state vector simulators in a spin-adapted formalism that guarantees convergence to the correct spin symmetry. As using spin-adapted operators is equivalent to being in the space of configuration state functions instead of the space of determinants, the number of parameters is reduced accordingly. As an example, we here consider parameterization of a factorized unitary coupled cluster expansion to singles and doubles.

TABLE IV. Number of variational parameters using factorized unitary coupled cluster singles doubles and spin-adapted factorized unitary coupled cluster singles doubles for different system sizes. The top row is referring to the size of the active space in the notation (number of electrons, number of spatial orbitals).

	(2,2)	(4,4)	(6,6)	(8,8)	(10,10)	(12,12)	(14,14)	(16,16)
fUCCSD	3	26	117	360	875	1818	3381	5792
SA-fUCCSD	2	14	54	152	350	702	1274	2144

In Table IV, the number of variational parameters for different sizes for fUCCSD and SA-fUCCSD expansions can be seen. The reduction of the number of parameters becomes about 60% for the larger systems and goes towards a 66% reduction asymptotically. Another direct benefit of using spin-adapted operators is that the number of operators to measure

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

in an iteration of a fermionic-ADAPT will also be reduced, equivalent to the parameter reduction for a fUCCSD.

State vector implementation performance

In order to quantify the performance enhancement of the closed form expressions, the analytical expressions found in Eqs. (45), (47), and, (49) have been implemented and compared to the matrix exponentiation from SciPy³⁴, specifically the scipy.sparse.linalg.expm_multiply^{39,40} functionality. Both of the implementations avoid constructing the matrix form of the fermionic operators, and use SlowQuant²⁰ as a backend to calculate the matrix-free operator state vector product. The specific implementations can be seen in the supplementary information.

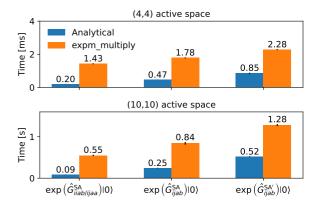


FIG. 1. The mean execution time of applying an operator to the state-vector, the black bars are +/- the standard deviation based on 100 runs. The test systems are a (4,4) active-space system and a (10,10) active-space system, where the state vector is initialised to all ones. The timings were performed on an 11th Gen Intel(R) Core(TM) i5-11600K 3.90GHz.

The execution speed of applying an anti-Hermitian spin-adapted excitation operator to a state vector has been tested for a small system, (4,4) active space, and a large system, (10,10) active space, using both the implementation based on the analytical expressions and an implementation based on SciPy. The timings can be seen in Fig. 1, with both system sizes showing the same trend. The analytical expressions give a speed-up of a factor of 6-7 for the operator utilizing Eq. (45), a factor of ~ 3.5 for the operator utilizing Eq. (47), and, a speed-up of a factor of ~ 2.5 for the operator utilizing Eq. (49), when compared to the im-

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

plementation using expm_multiply. Using the analytical expressions for the operators thus provides a significant speed-up when targeting classical hardware. Having the analytical expressions also allows for other types of implementations, like the tree-based implementation from Chen et al.¹⁴

III. CONCLUSION

In this work, exact closed-form expressions have been derived for unitary spin-adapted fermionic double excitation operators. We show that these closed form expressions can be utilized for an efficient implementation of these operators in unitary product state codes that target conventional hardware or state vector simulations for quantum emulation. Further, as spin-adapted operators strictly operate in the space of configuration state functions, an asymptotic parameter reduction of 66% can be obtained for the fUCCSD wave function. Moreover, our findings might also provide guidance about how to construct circuits for spin-adapted double excitation operators on quantum hardware. This will be part of future research.

IV. SUPPLEMENTARY MATERIAL

In the supplementary material we have provided code that determines the coefficients A, B, C, D, and, E for the Eqs. (21), (46), and, (48) in the file determining_the_coefficients.ipynb. Code that symbolically verifies the validity of Eqs. (21), (46), and, (48) in the file checking_eq_21_46_48.ipynb. An implementation of Eqs. (45), (47), and, (49), as well their corresponding expm_multipliy implementation, in the file timings.ipynb. At last the used version of SlowQuant is also provided.

ACKNOWLEDGMENTS

We acknowledge the support of the Novo Nordisk Foundation (NNF) for the focused research project "Hybrid Quantum Chemistry on Hybrid Quantum Computers" (grant number NNFSA220080996).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

DATA AVAILABILITY

The data that supports the findings of this study are available within the article and its supplementary material.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

REFERENCES

- ¹Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. *Nature*, 549(7671):242–246, September 2017.
- ²Ilya G Ryabinkin, Tzu-Ching Yen, Scott N Genin, and Artur F Izmaylov. Qubit coupled cluster method: A systematic approach to quantum chemistry on a quantum computer.

 J. Chem. Theory Comput., 14(12):6317–6326, December 2018.
- ³Ho Lun Tang, V O Shkolnikov, George S Barron, Harper R Grimsley, Nicholas J Mayhall, Edwin Barnes, and Sophia E Economou. Qubit-ADAPT-VQE: An adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor. *PRX quantum*, 2(2), April 2021.
- ⁴Y. S Yordanov, V. Armaos, C. H. W. Barnes, and D. R. M. Arvidsson-Shukur. Qubit-excitation-based adaptive variational quantum eigensolver. *Commun. Phys.*, 4(1):228, October 2021.
- ⁵Yordan S Yordanov, David R M Arvidsson-Shukur, and Crispin H W Barnes. Efficient quantum circuits for quantum computational chemistry. *Phys. Rev. A (Coll. Park.)*, 102(6), December 2020.
- ⁶Rongxin Xia and Sabre Kais. Qubit coupled cluster singles and doubles variational quantum eigensolver ansatz for electronic structure calculations. *Quantum Sci. Technol.*, 6(1):015001, January 2021.
- ⁷Ilias Magoulas and Francesco A Evangelista. CNOT-efficient circuits for arbitrary rank many-body fermionic and qubit excitations. *J. Chem. Theory Comput.*, 19(3):822–836, February 2023.
- ⁸Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall. An adaptive variational algorithm for exact molecular simulations on a quantum computer. *Nat. Commun.*, 10(1):3007, July 2019.
- ⁹Joonho Lee, William J. Huggins, Martin Head-Gordon, and K Birgitta Whaley. Generalized unitary coupled cluster wave functions for quantum computation. *J. Chem. Theory Comput.*, 15(1):311–324, January 2019.
- ¹⁰Hugh G. A. Burton. Accurate and gate-efficient quantum *Ansätze* for electronic states without adaptive optimization. *Phys. Rev. Res.*, 6(2):023300, June 2024.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

- ¹¹Hugh G A Burton, Daniel Marti-Dafcik, David P Tew, and David J Wales. Exact electronic states with shallow quantum circuits from global optimisation. *Npj Quantum Inf.*, 9(1):75, July 2023.
- ¹²Gian-Luca R Anselmetti, David Wierichs, Christian Gogolin, and Robert M Parrish. Local, expressive, quantum-number-preserving VQE ansätze for fermionic systems. New J. Phys., 23(11):113010, November 2021.
- ¹³ Jakob S. Kottmann, Abhinav Anand, and Alán Aspuru-Guzik. A feasible approach for automatically differentiable unitary coupled-cluster on quantum computers. *Chem. Sci.*, 12(10):3497–3508, January 2021.
- ¹⁴ Jia Chen, Hai-Ping Cheng, and James K Freericks. Quantum-inspired algorithm for the factorized form of unitary coupled cluster theory. *J. Chem. Theory Comput.*, 17(2):841–847, February 2021.
- ¹⁵Nicholas C. Rubin, Klaas Gunst, Alec White, Leon Freitag, Kyle Throssell, Garnet Kin-Lic Chan, Ryan Babbush, and Toru Shiozaki. The fermionic quantum emulator. *Quantum*, 5(568):568, October 2021.
- ¹⁶Maria-Andreea Filip and Alex J. W. Thom. A stochastic approach to unitary coupled cluster. *J. Chem. Phys.*, 153(21):214106, December 2020.
- ¹⁷Francesco A Evangelista, Garnet Kin-Lic Chan, and Gustavo E. Scuseria. Exact parameterization of fermionic wave functions via unitary coupled cluster theory. *J. Chem. Phys.*, 151(24):244112, December 2019.
- ¹⁸Francesco A Evangelista and Ilias Magoulas. Exact closed-form unitary transformations of fermionic operators. *Phys. Rev. A (Coll. Park.)*, 111(4), April 2025.
- ¹⁹Weitang Li, Jonathan Allcock, Lixue Cheng, Shi-Xin Zhang, Yu-Qin Chen, Jonathan P Mailoa, Zhigang Shuai, and Shengyu Zhang. TenCirChem: An efficient quantum computational chemistry package for the NISQ era. *J. Chem. Theory Comput.*, 19(13):3966–3981, July 2023.
- ²⁰E. Kjellgren and K. M. Ziems. SlowQuant. https://github.com/erikkjellgren/SlowQuant, 2025.
- ²¹J. Wayne Mullinax and Norm M. Tubman. Large-scale sparse wave function circuit simulator for applications with the variational quantum eigensolver. *J. Chem. Phys.*, 162(7):074114, February 2025.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

- ²²J Wayne Mullinax, Panagiotis G Anastasiou, Jeffrey Larson, Sophia E Economou, and Norm M Tubman. Classical preoptimization approach for ADAPT-VQE: Maximizing the potential of high-performance computing resources to improve quantum simulation of chemical applications. J. Chem. Theory Comput., 21(8):4006–4015, April 2025.
- ²³Tyson Jones and Julien Gacon. Efficient calculation of gradients in classical simulations of variational quantum algorithms. 2020.
- ²⁴Ken M Nakanishi, Kosuke Mitarai, and Keisuke Fujii. Subspace-search variational quantum eigensolver for excited states. Phys. Rev. Res., 1(3), October 2019.
- ²⁵Robert M. Parrish, Edward G. Hohenstein, Peter L. McMahon, and Todd J. Martínez. Quantum computation of electronic transitions using a variational quantum eigensolver. Phys. Rev. Lett., 122(23):230401, June 2019.
- ²⁶Harper R Grimsley and Francesco A Evangelista. Challenging excited states from adaptive quantum eigensolvers: subspace expansions vs. state-averaged strategies. Quantum Sci. Technol., 10(2):025003, April 2025.
- ²⁷Dan-Bo Zhang, Bin-Lin Chen, Zhan-Hao Yuan, and Tao Yin. Variational quantum eigensolvers by variance minimization. Chin. Phys. B, 31(12):120301, November 2022.
- ²⁸Saad Yalouz, Bruno Senjean, Jakob Günther, Francesco Buda, Thomas E O'Brien, and Lucas Visscher. A state-averaged orbital-optimized hybrid quantum-classical algorithm for a democratic description of ground and excited states. Quantum Sci. Technol., 6(2):024004, 2021.
- ²⁹Ilias Magoulas and Francesco A Evangelista. Closed-form expressions for unitaries of spinadapted fermionic operators. 2025.
- ³⁰J. Paldus, B. G. Adams, and J. Čížek. Application of graphical methods of spin algebras to limited CI approaches. I. Closed shell case. Int. J. Quantum Chem., 11(5):813-848, May 1977.
- ³¹Piotr Piecuch and Josef Paldus. Orthogonally spin-adapted coupled-cluster equations involving singly and doubly excited clusters. Comparison of different procedures for spinadaptation. Int. J. Quantum Chem., 36(4):429-453, October 1989.
- ³²Martin J. Packer, Erik K. Dalskov, Thomas Enevoldsen, Hans Jørgen Aa. Jensen, and Jens Oddershede. A new implementation of the second-order polarization propagator approximation (SOPPA): The excitation spectra of benzene and naphthalene. J. Chem. Phys., 105(14):5886–5900, October 1996.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0278717

- ³³Dieter Kraft. A software package for sequential quadratic programming. Forschungsbericht-Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, 1988.
- ³⁴Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods, 17:261–272, 2020.
- ³⁵Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shiyam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy: symbolic computing in python. Peer Comput. Sci., 3:e103, January 2017.
- ³⁶Artur F Izmaylov, Robert A Lang, and Tzu-Ching Yen. Analytic gradients in variational quantum algorithms: Algebraic extensions of the parameter-shift rule to general unitary transformations. Phys. Rev. A (Coll. Park.), 104(6), December 2021.
- ³⁷Jonathan Romero, Ryan Babbush, Jarrod R McClean, Cornelius Hempel, Peter J Love, and Alán Aspuru-Guzik. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Sci. Technol., 4(1):014008, October 2018.
- ³⁸ Jia Chen, Hai-Ping Cheng, and J K Freericks. Flexibility of the factorized form of the unitary coupled cluster ansatz. J. Chem. Phys., 156(4):044106, January 2022.
- ³⁹Nicholas J Higham and Awad H Al-Mohy. Computing matrix functions. Acta Numer., 19:159-208, May 2010.
- ⁴⁰Awad H Al-Mohy and Nicholas J Higham. Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput., 33(2):488–511, January 2011.