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We derive exact closed-form expressions for the matrix exponential of the anti-
Hermitian spin-adapted singlet double excitation fermionic operators. These expres-
sions enable the efficient implementation of such operators within unitary product
state frameworks targeting conventional hardware, and allow for the implementa-
tion of ansétze that guarantee convergence to specific spin symmetries. Moreover,
these exact closed-form expressions might also lay the groundwork for constructing

spin-adapted circuits for quantum devices.
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I. INTRODUCTION

With the advent of quantum computing for the use in computational quantum chem-
istry, the interest in unitary parameterizations for electronic wave functions has risen.
Among these parameterizations are the hardware-efficient ansitze!, qubit ansitze®?, qubit-
excitation-based ansitze* 7 and fermionic excitation ansitze>” 2. The fermionic excitation
ansatze are among the most chemically motivated ones, since they conserve the number of
a and [ electrons, ensure the anti-symmetry of the fermionic wave function, and produce an
eigenfunction of the z-component of the total spin S.. These ansitze are based on generic

fermionic excitation operators,

T = af,a, (1)
j\jii-(}i)—T = a’lo’ dzq— a]T a"la (2)

with the indices 7, j, a, b referring to spatial orbital indices, and o, 7 to the electron spin.
Throughout the work, it is assumed that i, j < a,b. The anti-Hermitian form of the fermionic
operator is given as

Gy=T; 1T} (4)
with J being a compound index for the indices used in Eqgs. (1)—(3). So, for instance

Giy =T — Ti"T. The anti-Hermitian form of the fermionic excitation operators gives rise

to a unitary parameterization through a matrix exponentiation,
U(HJ) = exXp <0JGJ> (5)

where 6 is a free real parameter. This anti-Hermitian form in Eq. (4) fulfills the polynomial
relation,

GY=-G, (6)

this relationship can be used to write the matrix exponential exp (9@' J> in a closed form,

exp (96{,) = [+ Gysin(0) + G2(1 — cos(6)) (7)

13-17

The identity in Eq. (7) has been used in previous works as well as in an alternative

formulation that performs a transformation of a fermionic operator'®. Utilizing the closed



Publishing

AIP

N

form in Eq. (7) enables efficient implementation of the unitary form of these fermionic

t20

operators and is utilized in codes such as TenCirChem'® and SlowQuant?°, as well as in

21,22

recent works aiming for high-performance using an equivalent form!4. In addition, it

also enables efficient derivatives through the adjoint differentiation method??. For fermionic

5712 A shortcoming of using

operators, exact efficient quantum circuits are also known
generic fermionic operators to parametrize the wave function is that they are not guaranteed
to produce wave functions that are eigenfunctions of the total spin angular momentum
operator 52, However, operators that produce wave functions that are eigenfunctions of 52
can be constructed and are called spin-adapted operators. Utilizing spin-adapted operators
for the wave function parameterization is especially important for multi-state methods such
as SS-VQE?*, MC-VQE?, MORE-ADAPT-VQE?S, variance-VQE?", and SA-VQE?® since
this allows targeting only states of a specific spin symmetry.

The spin-adapted (SA) singlet single excitation operator can be written as,

SATai - Eai (8)

V2
with E,; = al a;, + &lﬁdiﬁ = (TZ‘Z‘* + T;;B). The corresponding anti-Hermitian spin-adapted

singlet single excitation operator SAG,: takes the following form:
A ~ ~ 1 ~ A
SAA  _ SA SAAT o ag
Gag = M =S, = — (G + G 9
V2 « 8 (9)
Using [CAT'?;, G’Zf ] = 0, allows us to write the matrix exponential in the form,
exp <9 SAG ) = exp (ié’l‘*) exp (ié%) (10)
ar \/§ T \/§ ,Lﬁ
{ecn((5) 6 (- (3) )
= ogin | — ; —cos | —
ia \/§ Lo \/§
X {f—l— G? sin (i> + G (1 — o8 (i>)} (11)
L] \/5 ] \/5

Due to the form of Eq. (11), the spin-adapted singlet single excitation operators can utilize
known circuits from the fermionic single excitation operators® and lead to a parameter
reduction compared to the generic form.

However, contrary to the spin-adapted anti-Hermitian singlet single fermionic excitation
operators, the spin-adapted anti-Hermitian singlet double fermionic excitation operators do
not decompose into commuting generic fermionic anti-Hermitian operators. Hence, a closed-

form expression for the matrix exponential of the spin-adapted singlet double excitation
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operators does not take a simple product form similar to the matrix exponential of the
spin-adapted singlet single excitation operator in Eq. (11), and an expression for the matrix
exponential of the spin-adapted singlet double excitation operators is unknown to date. In
the following section, we present exact closed-form expressions for the spin-adapted singlet
double fermionic excitation operators. While completing this work, we became aware of the
work of Magoulas and Evangelista?’, who derived the closed-form expression for the matrix

exponential of the anti- Hermitian form of spin-adapted singlet double fermionic excitations.

II. SPIN-ADAPTED FERMIONIC DOUBLES

The spin-adapted singlet double fermionic excitation operators take the form,3% 32

. 1 o
SA
Toiyi = (EME +EE> 12
Y2+ 0w) (1 + 6y) Y T (12
i 1= 60) (L—0y) (£ ~ = =
ATy = ( 2b)\/<§ ) (EaiEbj - Eaiji> (13)

with Eq. (12) stemming from the intermediate singlet coupling to the singlet double exci-
tation, and Eq. (13) from the intermediate triplet coupling to the singlet double excitation.
The intermediate spin-couplings are between the pairs ¢, j and a, b, with both pairs needing
to form an intermediate coupling (singlet or triplet). This gives five different cases, since
7

wibj 18 zero if any of the indices are equal,

N 1~ 4
SATaiai = §EaiEai (14)
“ 1 ~ -
SATaiaj - _2EaiEaj (15)
SAT e = LE Ey; (16)
albr \/§ al {2
« 1/~ - A A
sATm-b] =35 <Em; bj + Eaiji) (17)
N 1 A A A A
SA Ty = Wi (EaiEbj - Eaiji> (18)

Here, we implied that a # b and 7 # j. In the following, we derive the closed form of the

unitaries generated by the anti-Hermitian versions of Eqs. (14)—(18) .

4
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A. Case S2G ;i

. . . . . . ~ ~ aga .
This case reduces to a fermionic double excitation operator since F,;F,; = 2Tiﬁ‘za“, yield-

ing the anti-Hermitian form of Eq. (14) as,

SAG i = G127 (19)

lalg

This already has the known exact closed-form discussed above (Eq. (7)),

exp (6 SA@aiai) =]+ SAGaisin(0) + SAG2. (1 — cos(6)) (20)
Thus, this specific case of spin-adapted singlet double excitations can also utilize known
circuits for fermionic operators®, and is utilized in ansitze using (spin-adapted) singles and

pair-doubles® 2. For the remaining cases, Egs. (15)—(18), no such reduction can be made.

B. Case *G,,; and 52 G

These two cases are the anti-Hermitian versions of the spin-adapted fermionic double
excitations operators in Eq. (15) and (16) where two indices match. They can be shown to

share the following polynomial relation for powers of the excitation operator,

SA GE)

aiaj

= A 3Gy + B 2GS

aiaj

(21)

with A = —% and B = —%. The coefficients A and B were determined by minimization
with SLSQP?? using SciPy?** together with SlowQuant?. SymPy?® was used as a symbolic
backend to verify the equation. Code that performs the minimization and verification can
be found in the supplementary information. As the polynomial relation is identical for
both SAéaiaj and SAC;’M-M, the derivation of the closed-form expression will be made only
considering SAGMCLJ.

The exponential of an excitation operator can be expanded as
exXp (9 SAGaia]’) =171 + Z H SAGij (22)
k=1 "

Given that Eq. (21) gives an expression for the fifth-order term as a combination of first
and third-order terms, one can recast the matrix exponential in a polynomial form that

truncates at the fourth power of SAéaiaj,
4
exp <9 SAGAaz‘aj> =TI+ Z fn (6) SAGZiaj (23)
n=1

5
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where the expansion coefficients f,, are polynomial functions of the parameter 6. The explicit

expression of f, (#) must be determined and arises from the combination of the %, A, and

k"

B factors. Using Eq. (21), let us consider the decomposition of the first and third functions
in Eq. (23),

6° 07 69
f1(0) =46 + 5 A+ o —AB + — (A2 + AB?) + (24)
0) = 93 953 97 A B? 9 2AB B3 25

It can be seen that the coefficients of the ek_’; terms are

KM=a KklV=4aB, K=A4%+4B> . (26)

K =B, K¥=a4+B KP=24B+B* .. (27)

Here, the superscript in square parentheses indicates which function the coefficients are as-
sociated with, that is KW is associated with f1 and K2 is associated with f3. By combining
Eqgs. (24)—-(27), one obtains the following expressions for the functions,
o p2nts
f1(0) =0+ 2_:1 ETEE] KW (28)
63 = g2n+3

f3(0) = 5 + Z o] KB (29)

The coefficients in Eq. (26) and Eq. (27) can be seen to follow a recurrence relation,

KW= ARk (30)
KB = BB 4+ kI (31)

With the initial condition KP = A and KP} = B. It can be noted that the recurrence
relations are linear, and a closed-form solution can be found from the eigenvalues of the

matrix equation form of the recurrence relations,

Kl 04| |KM,
B i (32)
Ky 1 B| | K-,
We obtain the following solution,
KM = A\ + e\ ™) (33)
KBl = ¢/ N7+ o7 (34)
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with A; and Ay being the eigenvalues of the coefficient matrix in Eq. (32), and ¢; and ¢y
being coefficients determined from the initial condition, found by solving,

-1
A AN AN e o AN AN | A
= — = (35)
B )\% )\% Co Co /\% /\% B

_ B—V4A+B? )\2 _ B+V4A+B?
- 2 ’ - 2

The eigenvalues and coefficients are found to be \; , € =

5 — Zm and ¢; = 3 + 2\/@ By inserting Eq. (33) into Eq. (28) and Eq. (34) into

Eq. (29), the functions now take the following form,

o 9271—}—3 2

_ n—1
9+Z EE A X! (36)

03 > p2nt3 2

f3(9)=§+22n+3,2 e\ (37)

n=1

One can identify these sums to take the closed form,

02n+3

iQn—i—?)‘Z :X%T<Smh<8\/_>_9\/_ ¢ )) (38)

n=1

with m = 1 for the f; case and m = 0 for the f; case. Inserting Eq. (38) into Egs. (36) and
(37) yields,

h=0+3 (Smh (1/3) ~ovs - ) (39)
5 X5 (Smh (o) —ov - ) ) (40)

Since the eigenvalues \; are all negative, one can use that sinh(iz) = isin(x). Further

inserting)q:B_— VAALER | )y = BEAALEE ) :%—2\/45@, Cy = %—FQ—ﬁ,A:_%,
and B = —=, these expressions reduce to,
2
£(0) = kP sin (6S;) (41)
i=1
2
£3(0) =Yk sin (6S;) (42)
i=1

with real coefficients S; and k:z(") given in Table I. As it can be noted, all powers in 6 have

canceled out.
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TABLE I. Values of coefficients in Eq. (45).
n kD | S (B RSP 5,

1] —-1]-2]11]2
212v/2(2v/2| -4 | —4

Ie -

Carrying out a similar derivation for the even terms in Eq. (23), we find

f2(0) = Z kP (cos (0S;) — 1) (43)
f1(0) = Z kY (cos (05;) — 1) (44)

This yields the final closed-form expression for SAéaiaj and SA@aibi,

exp (0 SA@aiaj> =1+ Z <k:7(11) SAGaiaj + kfl?’) SAéziaj> sin (0S,,)

2
=1

n

£ (KD S D SAGL,,) (cos (08,) = 1) (45)

n=1

An alternative route of deriving similar expressions has been proposed by Izmaylov et
al.3¢ Explicit expressions for the powers of SA@aiaj can be found in the work of Magoulas

and Evangelista.?? The closed-form expression for exp (9 SA@aibi> is identical to that of

exp (0 SAéaiaj> but with SAéaiaj replaced by SACAJM-M.

C. Case SAGaibj

E’ Now we turn to the anti-Hermitian version of Eq. (17), i.e., the case with four unique in-
'ﬁ dices coming from the intermediate singlet coupling. Here, the polynomial relation becomes
o
=

SA A9 SA A SA A3 SA A5 SA AT
L Ging = A " Gy + B " Gy + C 70 Gy + D P Gy (46)

8
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with A = —}1, B = —%, C=—-2and D = —%. Following the same procedure as the

8
previous cases gives the closed-form expression as
4
exp (0 SAGmbj) =]+ Z <k§z1) SAGaz‘bj + /{?7(13) SAGiibj

n=1

R SAGE, 4 kD SAG'Z”M) sin (5,0)
4

i Z (k,(f) SAGR kff) SA

aibj aibj
n=1

aibj aibj

4 kO SAGS | g(8) SAGS ) (cos (Snf) — 1)

with the coefficients given in Table II.

TABLE II. Values of coefficients in Eq. (47).

1 3 5 7 2 4 6 8
| kRS | RD | D R D ED | KD S,
1l 2 1B | 2 8 | 2 |_13|_22|_8/|;
3 3 3 3 3 3 3 3
V2 V2 V2 42 | 1 1 1 4
20-G | -% | -% |- | @ |5 |35 |x|V2
3|_8V2|_44v2| 52v2| 16v2| 16 | 8 | 104 | 32 |V2
3 3 3 3 3 3 3 3 2
4| 128 | 64 | 64 | 128 |_256|_128|_ 128|_256| 1
21 3 3 21 21 3 3 21 2
SA Av
D. Case G,

(47)

The spin-adapted double that comes from the intermediate triplet excitation with four

unique indices, Eq. (18), has the polynomial relation,

SA A SA A SA A SA A SA AT SA A
Gizli%)j =A™G,, + B Gfibj +C Gfibj +D PGy, + E Gizgibj (48)
with A = —4—18, B = —%‘;, C = —%, D = —% and £ = —%. The closed-form expression
is obtained using the same procedure as above,
5
exp (9 SAGA:mbj) =1+ Z (kg) SAG:u'bj + kP SAéiz?)ibj + kP SAé:fibj (49)
n=1

o D SAGT, + kY SAGE, ) sin (S,0)
=
r—] 5
= . . .
2) SA A2 4) SA Av4 6) SA A6
:-.-u_.?. + Z <k7(7, ) Gaibj + k7(1 ) Gaibj + k7(1 ) Gaibj
L n=1
a R SAGE, + kO SAGAS ) (cos (S,0) — 1)

L.
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with the coefficients given in Table III.

TABLE III. Values of coefficients in Eq. (49).

1 3 5 7 9 2 4 6 8 10
I A B B I (I X N B S A B SO B X I AL O
1 V2 11v2 133v2 16v2 48v2 |1 11 |_ 133 | _ 16 | _ 48 \/5

1150 690 1725 115 575 1150 690 1725 115 575
9 8v2 | 4042 3082 608v2 | 1922 | 16 | 808 | 616 | 1216 | _ 384 |2

5 15 3 5 5 5 15 3 5 5 2
3 543 171V/3 | 2718V3| 5763 | 864v3| 162 513 8154 1728 2592 | /3

25 5 25 5 25 25 5 25 5 25 3
4 _16v3|  56v3 | 11923 |  112v3|  192v3| 32 112 2384 224 384 |3

75 15 75 5 25 75 15 75 5 25 2
5 432v/3 | 2952v3 | 1368v/3 | 6192v3 | 17283 | 2592 | 17712| 8208 | 37152 | 10368 | v/3

115 115 23 115 115 115 115 23 115 115 | 6

E. Wave function parameter reduction

The most prominent application of our finding is for fermionic excitation methods, such

as fUCCY3738 and fermionic-ADAPT® that can now be efficiently implemented in state

vector simulators in a spin-adapted formalism that guarantees convergence to the correct

spin symmetry. As using spin-adapted operators is equivalent to being in the space of

configuration state functions instead of the space of determinants, the number of parameters

is reduced accordingly. As an example, we here consider parameterization of a factorized

unitary coupled cluster expansion to singles and doubles.

TABLE IV. Number of variational parameters using factorized unitary coupled cluster singles

doubles and spin-adapted factorized unitary coupled cluster singles doubles for different system

sizes. The top row is referring to the size of the active space in the notation (number of electrons,

number of spatial orbitals).

(2.2)|(4,4)[(6,6)|(8.8)|(10,10) | (12,12) | (14,14) | (16, 16)
fuUCCSD 3 26 | 117 | 360 | 875 1818 | 3381 | 5792
SA-fUCCSD| 2 14 | 54 | 152 | 350 702 1274 | 2144

In Table IV, the number of variational parameters for different sizes for f{UCCSD and

SA-fUCCSD expansions can be seen. The reduction of the number of parameters becomes

about 60% for the larger systems and goes towards a 66% reduction asymptotically. Another

direct benefit of using spin-adapted operators is that the number of operators to measure

10
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in an iteration of a fermionic-ADAPT will also be reduced, equivalent to the parameter

reduction for a fUCCSD.

F. State vector implementation performance

In order to quantify the performance enhancement of the closed form expressions, the an-
alytical expressions found in Eqs. (45), (47), and, (49) have been implemented and compared
to the matrix exponentiation from SciPy3*, specifically the scipy.sparse.linalg.expmmultiply3?40
functionality. Both of the implementations avoid constructing the matrix form of the
fermionic operators, and use SlowQuant?® as a backend to calculate the matrix-free oper-

ator state vector product. The specific implementations can be seen in the supplementary

information.

(4,4) active space

IN

= B Analytical
£ s expm_multiply

2 .
o 1.4
£ 3
. 0.20

0

(10,10) active space
%, ]
()
£ 0 55
=
0. 9
0
EXp uab/uaa |0) exP Uab |0) exp uab |0)

FIG. 1. The mean execution time of applying an operator to the state-vector, the black bars are
+/- the standard deviation based on 100 runs. The test systems are a (4,4) active-space system
and a (10,10) active-space system, where the state vector is initialised to all ones. The timings

were performed on an 11th Gen Intel(R) Core(TM) i5-11600K 3.90GHz.

The execution speed of applying an anti-Hermitian spin-adapted excitation operator to
a state vector has been tested for a small system, (4,4) active space, and a large system,
(10,10) active space, using both the implementation based on the analytical expressions and
an implementation based on SciPy. The timings can be seen in Fig. 1, with both system
sizes showing the same trend. The analytical expressions give a speed-up of a factor of 6-7
for the operator utilizing Eq. (45), a factor of ~3.5 for the operator utilizing Eq. (47), and,
a speed-up of a factor of ~2.5 for the operator utilizing Eq. (49), when compared to the im-

11



AlP
f‘"&: Publishing

plementation using expm multiply. Using the analytical expressions for the operators thus
provides a significant speed-up when targeting classical hardware. Having the analytical ex-
pressions also allows for other types of implementations, like the tree-based implementation

from Chen et al.'4

III. CONCLUSION

In this work, exact closed-form expressions have been derived for unitary spin-adapted
fermionic double excitation operators. We show that these closed form expressions can be
utilized for an efficient implementation of these operators in unitary product state codes that
target conventional hardware or state vector simulations for quantum emulation. Further,
as spin-adapted operators strictly operate in the space of configuration state functions, an
asymptotic parameter reduction of 66% can be obtained for the fUCCSD wave function.
Moreover, our findings might also provide guidance about how to construct circuits for
spin-adapted double excitation operators on quantum hardware. This will be part of future

research.

IV. SUPPLEMENTARY MATERIAL

In the supplementary material we have provided code that determines the coefficients A,
B, C, D, and, E for the Egs. (21), (46), and, (48) in the file determining the coefficients
Code that symbolically verifies the validity of Egs. (21), (46), and, (48) in the file
checking eq 21 46 48.ipynb. An implementation of Eqs. (45), (47), and, (49), as well
their corresponding expm multipliy implementation, in the file timings.ipynb. At last

the used version of SlowQuant is also provided.
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