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The chemical looping reverse water gas shift (CL-RWGS) catalytic process offers a promising approach for
decarbonizing energy-intensive industries. The CL-RWGS promotes the formation of surface oxygen vacancies in
the material, which are subsequently replenished by extracting oxygen from CO,, resulting in syngas production.
However, there remains a significant gap in the development of materials that not only exhibit redox activity but

Perovskite L N . . . e . .
Reverse water gas shift also enable in-situ carbonation, offering dual functionality for enhanced CO- utilization. This study introduces a
Syngas novel calcium- and manganese-doped LaNiOs perovskite, designed for integrated CO2 sorption and in-situ uti-

lization during CL-RWGS process. Comprehensive characterization confirmed the material’s crystalline struc-
ture, porosity, and successful incorporation of Ca and Mn dopants. Thermogravimetric analysis (TGA) across 700
—-900 °C revealed a peak oxygen storage capacity of 1.97 mmol O,/g and demonstrated excellent redox stability,
with less than 1 % performance loss over 17 cycles. RWGS experiments conducted in a packed bed reactor
demonstrated up to 57 % CO» to CO conversion at 900 °C, approaching the thermodynamic equilibrium value of
60 % under the same operating conditions. Moreover, an Ha/CO molar ratio of ~2.0, suitable for Fischer-Tropsch
synthesis, was achieved at 600 °C and 1.0 bar with a feed Hy/CO2 molar ratio of 1.0, attributed to CO, chem-
isorption via a carbonation-driven mechanism facilitated by the presence of CaO phase. These results suggest that
the calcium- and manganese-doped LaNiOs perovskite is a highly promising multi-functional material for
chemical looping-based CO; utilization technologies.

1. Introduction

Energy-intensive industries account for 10 Gt of global CO, emis-
sions annually and pose a significant challenge to achieving net-zero
emissions by 2050, primarily due to their dependence on high-
temperature processes and carbon-intensive feedstocks [1]. Carbon
Capture and Utilization (CCU) has emerged as a promising approach for
decarbonizing such sectors, however, its large-scale application remains
limited by the high energy requirements for CO, purification and the
risk of leakage during transportation [2].

Integrated Carbon Capture and Utilization (ICCU) provides a more
energy-efficient solution by combining CO, adsorption and catalytic

* Corresponding author.
E-mail address: s.z.abbas@soton.ac.uk (S.Z. Abbas).

https://doi.org/10.1016/j.jece.2025.119640

conversion within a singular process unit, thereby minimizing energy
losses and enhancing total process efficiency [3]. One of the most
promising approaches in ICCU involves the use of dual functional ma-
terials (DFMs), which typically combine CO; sorbents, such as Na-, K-,
Mg- and Ca-based oxides, with a CO5 conversion catalyst based on
transition metals, such as Ni, Cu, or Ru [4-6]. However, the effectiveness
and stability of DFMs in ICCU processes, such as CO5 methanation, dry
reforming of CHy, and Fischer-Tropsch synthesis (FTS), are often limited
by carbon deposition [7-9]. To address this challenge, integrating DFMs
with oxygen storage and release (OSR) materials has been proposed as
an effective strategy to mitigate carbon deposition and enhance CO,
conversion [10]. Among several approaches, chemical looping (CL) has
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emerged as a promising ICCU strategy due to its relatively low energy
requirements and economic viability. In a typical CL-based ICCU process
employing both OSR and DFM materials, CO is first adsorbed by the
sorbent and subsequently converted into syngas via CH4 reforming [11].
The OSR material facilitates lattice oxygen transfer for partial oxidation
of CH4 and is regenerated with air through an exothermic reaction,
providing the heat necessary for the endothermic reforming step [12].
Therefore, a single multifunctional material that combines redox capa-
bility with CO; sorption functionality could offer a more efficient and
technically robust CL-based ICCU process, enabling higher product pu-
rity within a single reactor.

In this context, perovskite materials have gained considerable
attention due to their wide range of applications in various advanced
technologies [13-15]. Particularly in CL processes, perovskites have
been recognized as promising OSR materials due to their structural
flexibility and redox tunability [16-18]. The generic formula of perov-
skite, ABOg, consists of an A-site occupied by alkali or alkaline earth
metal, and a B-site containing transition metal such as Ni, Cu, Fe, or Co
[19]. This structural versatility allows substitution at the A- and B- sites,
enabling the formation of oxygen vacancies that enhance OSR properties
during redox reactions. LaNiOs, a well-known perovskite, has been
extensively applied in ICCU applications, including CO5 methanation via
the Sabatier reaction [20], and as a DFM when integrated with CeOx for
CO4 adsorption and in-situ conversion [21,22]. It has also shown promise
in hybrid plasma-catalysis systems, such as dielectric barrier discharge
configurations [23]. In CL applications, LaNiOs is favoured for its high
selectivity and thermal stability, particularly in steam reforming of
ethanol for hydrogen production [24]. Various modifications of pristine
LaNiO3 with elements such as Ti, Cu, and Co have been explored to
further improve its performance in chemical looping combustion (CLC)
and partial oxidation reactions [25-27]. However, to the best of authors’
knowledge, no single perovskite material has been reported that
simultaneously exhibits both OSR and DFM functionalities. Further-
more, LaNiO3z-based materials have yet to be investigated within the
framework of chemical looping integrated with the reverse water gas
shift (CL-RWGS) reaction process. The RWGS process is a
well-established reaction pathway for converting CO, into CO, a key
intermediate for syngas production via Hy utilization [28,29]. The main
reactions involved in the three-step CL-RWGS process using perovskites
are summarized in Table 1. This three-step process offers several ad-
vantages as air oxidation fully regenerates the perovskite, preventing the
accumulation of oxygen vacancies and ensuring stable CO yield. Com-
plete re-oxidation also preserves the structural integrity of the perov-
skite by restoring its lattice structure and avoiding any phase
segregation [30]. Additionally, since air oxidation of perovskite is
exothermic [31], the heat released can be utilized in the subsequent
RWGS cycle, thus enhancing the overall energy efficiency of the process.
A detailed schematic illustration of CL-RWGS process in a packed bed
reactor is also presented in Fig. 1 involving a conventional ABOj3
perovskite, highlighting the air oxidation and RWGS stages.

In this study, LaNiO3 perovskite was co-doped with Ca and Mn to
assess its potential as a hybrid DFM-OSR material for ICCU applications.
The incorporation of Ca was intended to enhance CO5 sorption capacity
due to its high basicity and well-known affinity for CO5 [32]. Mn was

Table 1
Key chemical reactions in a three-step CL-RWGS process using perovskites.

Stage Reaction Reaction Nature of Reaction
steps
Air Oxidation ABO3., + ﬂoz - ABOs Exothermic
oxidation 2 (AHz9gx < 0)
RWGS Reduction ABOj3 + 6Hy — ABO35 Endothermic
+ 8H20 (AHzos x = 41.2kJ/
COy, splitting ABOs35 + (6-y) CO, — mol)

ABOs., + (8-y) CO

* y denotes partial oxygen storage (0 <y<d)
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Fig. 1. Schematic representation of CL-RWGS reaction process comprising of
air oxidation stage and RWGS stage.

introduced to promote the formation of oxygen vacancies and improve
structural stability by reducing sintering and carbon deposition [33].
Furthermore, Mn has been reported to enhance the dispersion of Ni
metal on the perovskite surface, thereby improving catalytic perfor-
mance [34].

2. Materials and methods
2.1. Synthesis of metal doped perovskite materials

Ca- and Mn-doped LaNiO3 perovskite samples (denoted as CLMN),
with varying dopant loadings (wt%), were synthesized using a two-step
procedure: (i) preparation of LaNiOs perovskite via the sol-gel method,
and (ii) doping of Ca and Mn onto the as-prepared LaNiOs using the
citrate method followed by calcination at 800 °C. To synthesize 5 g of
LaNiOs, 13.97 g of La (CH3COO)3-1.5 Ho0 (99.9 %, Thermo Scientific
Ltd., UK), 5.07 g of Ni (CH3COO),.4H50 (99 %, Thermo Scientific Ltd.,
UK), and 3.91 g of citric acid (99.8 %, Fischer Scientific Ltd., UK) were
dissolved in a mixed solvent of ethanol and water (4:1 v/v). The
resulting solution was sonicated for 1 h to ensure complete homogene-
ity, then stirred at 70 °C on a hot plate until a gel was formed. The gel
was dried at 120 °C for 24 h to remove water and promote poly-
esterification. The dried product was subsequently calcined at 800 °C
(ramp rate of 1 °C/min) for 24 h in a Carbolite® furnace, yielding a
black LaNiO3 powder.

In the second step, CaCOs3 (99 % purity, Acros Ltd., UK) was dis-
solved in acetic acid to form calcium acetate. The resulting solution was
added to a mixture containing Mn (CH3COO),.4H-0, citric acid, and the
as-prepared perovskite powder in deionized water. The quantities of Ca
and Mn precursors, along with citric acid (3.01 - 3.33 g), were adjusted
to achieve the desired dopant loadings of 5, 10, and 15 wt% for each
element. The mixture was sonicated for 1 h, followed by continuous
stirring at 90 °C for 3 h. After the solution thickened, it was dried at 120
°C for 24 h and subsequently calcined at 800 °C (ramp rate of 1 °C/ min)
for 24 h. This step facilitated the diffusion of Ca and Mn ions into the
LaNiOs lattice, promoting successful dopant substitution within the
perovskite structure [35]. The resulting samples were designated
CLMN-1 (Cao_15Lao.g5Mn0.05Nio.9503), CLMN-2 (Cao.zL—
aolgMnollNi()gOg), and CLMN-3 (Cao.zsLaojsMno.l5Ni048503) respec-
tively, corresponding to the theoretical Ca- and Mn loading levels.

2.2. Characterization of materials - crystallinity, texture and morphology

Powder X-ray diffraction (XRD) was used to examine the crystalline
structure of LaNiOs and all CLMN samples using a Bruker D2
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Diffractometer with Cu Ka radiation (A= 1.54 f\). The XRD data were
collected over diffraction angles (20) from 20 to 80° at a scan rate of 1.2°
/min. Surface morphology was analysed using a scanning electron mi-
croscope (SEM, Zeiss Gemini Sigma 500 VP, UK), with the samples
affixed to carbon adhesive tapes. Elemental distribution of CLMN sam-
ples was evaluated by energy dispersive X-ray spectroscopy (EDX). To
further quantify Ca and Mn concentrations in the CLMN samples,
inductively coupled plasma-optical emission spectrometry (ICP-OES,
Agilent 5800) was conducted. 12 mg of each sample was digested in10
mL of 0.5 M HNOs solution, filtered, and diluted to 1000 mL prior to
ICP-OES analysis. The BET specific surface area (mz/g) and cumulative
pore volume (cm®/g) were determined using Ny adsorption- desorption
isotherms at 77 K using Micromeritics II 3020 analyser. Before mea-
surements, 0.3 g of each sample was degassed under vacuum at 120 °C
for 4 h.

Transmission Electron Microscopy (TEM, Hitachi HT7700, 100 kV)
was employed to assess particle size distribution and agglomeration
following metal loading and calcination procedures. For TEM analysis,
fine powder samples were dispersed in ethanol (10 mL), and 5 pL of
suspension was deposited onto a carbon-coated grid and allowed to dry
prior to imaging.

2.3. Oxygen storage properties

The oxygen storage capacity and stability of Ca- and Mn-doped
LaNiO3 samples were evaluated by thermogravimetric analysis (TGA)
using a NETZSCH STA 449 F1 Jupiter analyser. TGA was performed to
assess the oxygen release behaviour and thermal stability of the mate-
rials for CL applications. 50 mg of each sample was placed in an alumina
crucible and subjected to consecutive reduction-oxidation cycles at
temperatures ranging from 700 to 900 °C in 50 °C intervals, with heating
rate of 10 °C/min. The reduction step was carried out using 4 Hy in Ny at
the total flowrate of 250 mL/min, while oxidation was conducted with
synthetic air at a flowrate of 200 mL/min. Reduction was maintained for
10 min, with the major weight loss occurring within the first 5 min, after
which the rate gradually decreased until stabilization [36]. Oxidation
was performed for 4 min, as OSR materials typically reoxidize within a
short time frame. Between each redox cycle, Ny gas was used to purge
the reactor to prevent direct contact between Hy and O, gases. Each
sample underwent 17 consecutive redox cycles, including two initial
activation cycles. The oxygen storage capacity for each reduction cycle
was calculated using Eq. 1:

m,

Ro(%) = 22— 100 m
0

where R, (wt.%) represents the oxygen storage capacity for each cycle,
and m, and m, are the masses of the sample before and after reduction,
respectively. Specific values of oxygen storage capacity (mmol O2/gosr)
were obtained by dividing R, by the molar mass of Oz (g/mol) and
multiplying by 1000. Prior to the redox experiments, a blank run was
performed using an empty crucible under identical conditions to record
any mass changes not related to the samples. Additionally, a pre-
oxidation step was carried out for each sample to remove volatile
components and moisture absorbed during synthesis [37].

2.4. Reactor setup for CL-RWGS and calcium looping experiments

The CL-RWGS and calcium looping (Cal) experiments were con-
ducted using a packed bed reactor setup, as described by Zaidi et al.
[38]. The reactor consisted of a quartz silica tube (LxODxWT: 550 mm
x 13 mm x2 mm) placed inside a Carbolite Gero® furnace. A total of
1.0 g of CLMN material (particle size: 310 — 720 pm) was loaded,
forming a bed length of ~3.5 cm. Quartz wool was packed at both ends
of the bed to hold CLMN material in place, ensuring uniform preheating
of feed gases and consistent radial gas distribution within the reaction
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zone [38]. The gas feed system included centrally supplied N», air, He
and Hy, along with CO3 and CO gas cylinders positioned near the setup.
Flow rates were controlled using Bronkhorst mass flow controllers. The
product gas composition was monitored using a Hiden Analytical
HPR-20 mass spectrometer. Helium gas was used as an inert balance gas
instead of Ny to avoid interference, as CO and N3 possess the same
mass-to-charge ratio (m/z = 28). A schematic of the experimental setup
is presented in Figure S1.

Before the experimental campaign, the mass spectrometer was cali-
brated using standard gas mixtures passed through the reactor at
ambient temperature. The recorded signals were used to normalize gas
concentrations during analysis. CaL tests were first conducted in the
packed bed reactor to assess the CO, sorption capacity of the material.
Carbonation was carried out at 600 °C using a gas mixture containing
20 vol% CO», 10 vol% He as a tracer gas, and 70 N5 at a constant gas
hourly space velocity (GHSV) of 5000 h™!. The introduction of He gas
alongside CO, served as a non-adsorbing internal standard, facilitating
precise measurement of CO, exposure during the carbonation step. The
appearance of He gas in the effluent stream marked the start of the
carbonation phase. Reaction time measurements started (t = 0) when
the He signal was first detected by mass spectrometer. The calcination
stage was performed at 900 °C in a pure Ny atmosphere to regenerate
CLMN material.

For the CL-RWGS experiments, the operating conditions are sum-
marized in Table 2. Prior to testing, the material was activated via redox
cycling between 600 — 900 °C using 20 H; and 10 O3 in He/N5 mixtures
for the reduction and oxidation steps, respectively. This activation step
promoted uniform distribution of transition metals within the perovskite
lattice and ensured reproducible performance. A GHSV of 5000 h™! was
maintained throughout the experiments to provide sufficient residence
time for gas—solid reactions under high temperature conditions [39,40].

3. Results and discussion
3.1. Characterization of perovskite materials

3.1.1. Morphological, elemental and surface texture analysis

The morphology of LaNiOs and CLMN samples was examined using
SEM, and the corresponding micrographs are presented in Fig. 2. As
shown in Fig. 2a-b, LaNiOj3 exhibits a rod-like morphology, whereas the
SEM images of CLMN-2 (Fig. 2c, d) show a granular structure, indicating
a notable morphological transformation upon Ca and Mn doping. This
transition from rod-like to granular morphology suggests that dopant
incorporation significantly influenced the crystal growth behaviour of
LaNiOs. Furthermore, higher magnification images indicate the pres-
ence of porous structures in both LaNiO3 and CLMN samples. This
morphological observation is further supported by nitrogen adsorption-
desorption isotherms obtained from BET analysis, as detailed in Section
S2 (Figure S2), confirming the mesoporous nature of the samples.

The extent of Ca and Mn incorporation in the CLMN samples was
evaluated using EDX and ICP-OES., with the results summarized in
Table 3. Both techniques confirmed successful doping of Ca and Mn,

Table 2
Experimental conditions during material activation and CL-RWGS processes.
Parameter Oxidation  Reduction RWGS
Temperature (°C) 600 - 900 600 - 900 600 - 900
H,/CO, molar ratio - - 0.75-1.3
Volumetric feed gas composition 0,=10 Hy =20 Hy = 20; 17.5;
(vol%) Ny =40 He =10 15
He =50 Ny =70 CO;3 = 15; 17.5;
20
He =65
Feed flow rate (sccm) 400 400 400

" Reduction refers to experimental conditions used during material activation.
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Fig. 2. SEM Images of a) Low magnified LaNiO3; b) High magnified LaNiO3; ¢) Low magnified CLMN-2 sample and d) High magnified CLMN-2 sample.

Table 3
ICP and EDX analysis of Ca and Mn content in CLMN samples.
Sample ID Ca (wt%) Mn (wt%)
Icp EDX ICP EDX
CLMN-1 7 % 7 % 11 % 12 %
CLMN-2 8 % 7 % 11.5% 13 %
CLMN-3 9 % 8% 12% 14 %

with concentrations increasing in the order CLMN-1 < CLMN-
2 <CLMN-3. Moreover, the differences in measured wt% values be-
tween ICP-OES and EDX analyses were minimal (ca. <2 %), indicating
good agreement between the methods and consistent dopant distribu-
tion across the samples.

Fig. 3 (a-d) presents the TEM micrographs of the LaNiO3 and CLMN
samples, highlighting changes in particle morphology and size distri-
bution. A distinct shift in particle size distribution was observed with
increasing Ca dopant concentration. While LaNiOs, CLMN-1 and CLMN-
2 exhibit hollow-like structures, CLMN-3, which contains the highest Ca
content, shows pronounced signs of sintering and particle agglomera-
tion, which also consistent with reduced SSA observed in BET mea-
surements. As shown in Table 4, the SSA increased from 8.4 m?/g for
LaNiOs to 9.8 m?/g and 12.1 m?/g for CLMN-1 and CLMN-2, respec-
tively. However, a further increase in Ca content led to a decrease in SSA
to 10.7 m?/g for CLMN-3. This behaviour aligns with the findings of
Yang et al. [41], who also observed increased particle agglomeration in
La-based material when Ca loading exceeded 10 wt%.

3.1.2. Powder X-ray diffraction (XRD) analysis

A comparison of XRD diffractograms of LaNiO3 and all CLMN sam-
ples is presented in Fig. 4. The XRD pattern of LaNiO3 exhibits charac-
teristic diffraction peaks at 26 = 23.0° (101), 32.5° (110), 47.3° (202)
and 58.5° (104), consistent with JCPDS File no. 330711 [42]. Addi-
tionally, diffraction peaks at 37.5° and 43.3°, corresponding to the (111)
and (200) planes of NiO, respectively, indicate the presence of B-site NiO
phases on the surface of LaNiO3. The XRD patterns of all CLMN samples

closely resemble that of LaNiOs, suggesting that no major secondary
phases were formed. However, a reduction in the intensity of
NiO-related peaks was observed in all CLMN samples, particularly at the
prominent reflections corresponding to the (110), (201), and (101)
planes. This reduction implies a decreased fraction of segregated NiO in
the doped materials.

The inset of Fig. 4 shows a shift of the (110) diffraction peak toward
lower 20 values, attributed to the substitution of Ca and Mn for La and Ni
in the A and B sites, respectively, within the perovskite lattice [43,44].
Ca®* (1.00 A) has a smaller ionic radius than La®* (1.032 A), while
Mn®* (0.645 A) is larger than Ni®* (0.56 A). These substitutions lead to
an overall expansion of crystal lattice (increased d-spacing), resulting in
the peak shift toward lower diffraction angles according to Bragg’s law
[45]. Moreover, weak diffraction peaks corresponding to CaO and
Mn;03 phases were detected at higher 20 values, likely due to the
relatively low dopant concentrations. A weak shoulder near the (110)
peak was observed in samples with lower Ca and Mn contents, indicating
incomplete incorporation of Mn into the Ni-containing lattice. This
suggests the presence of minor secondary phases and localized lattice
distortions [46]. In contrast, more uniform incorporation of Mn3" was
observed in the CLMN-3 sample, as confirmed by EDX mapping
(Figure S3a-f), which coincided with the disappearance of the shoulder
peak.

The primary crystallite size of LaNiOs and all CLMN samples was
estimated using the Debye-Scherrer equation, as described in Section S4
(Table S1). An increase in crystalline size was observed with higher
dopant concentrations, specifically, the crystallite size of CLMN-3 was
15 nm, compared to 10 nm for LaNiOs, suggesting structural modifica-
tions and lattice expansion due to Ca and Mn incorporation. Further-
more, the Goldschmidt tolerance factor (GTF) for LaNiO3 and all CLMN
samples ranged from 0.93 to 0.94 (Table S1), indicating the formation of
stable perovskite structures. The detailed methodology for calculating
GTF values is provided in Section S4.
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Fig. 3. TEM images of a) LaNiO3; b) CLMN-1; ¢) CLMN —2 and d) CLMN —3 samples.

Table 4
Specific surface area (SSA, m2/g) and pore volume (cms/g) of LaNiO3; and CLMN
samples.

Sample Surface area (m?/g) Specific pore volume (cm?/g)
LaNiO3 8.4 0.012
CLMN-1 9.8 0.012
CLMN-2 12.1 0.017
CLMN-3 10.7 0.014

* LaNiO3
% NiO
CLMN-2| v CaO

v Mny03

CLMN-3|

Intensity (a.u)
\
>
/

LN

LaNiO,

Intensity (a.u)

Fig. 4. Powder X-ray diffractograms of LaNiO3 and CLMN samples (Inset graph
shows a shift in diffraction peak at 110 plane).

3.2. Stability and oxygen storage capacity

As shown in Fig. 5a, all CLMN samples underwent 17 consecutive
high-temperature redox cycles, exhibiting minimal degradation
(<0.5 %) across the 700 — 900 °C range. This indicates strong structural
stability and suggests that CLMN materials are well-suited for OSR ap-
plications [47-49]. The oxygen storage capacity (mmol O2/gosr) of all
CLMN samples during successive redox cycles was calculated (Eq. 1) at
900, 850, 800, 750 and 700 °C, and results are reported in Fig. 5b.
Among all the samples, CLMN-2 exhibited the highest oxygen storage
capacity during H reduction, reaching 1.97 mmol O2/gosr (6.32 wt%).
An initial ~10 % decrease in oxygen storage capacity during the first
cycle at 900 °C was attributed to material activation during the initial
two cycles. Subsequently, only a slight reduction in oxygen storage ca-
pacity was observed for all CLMN samples over multiple cycles at
various temperatures, indicating good redox stability and recyclability.

At higher temperatures, all CLMN samples showed increased oxygen
storage capacity, likely due to thermal expansion enhancing atomic
interaction between A-site and B-site cations in the perovskite lattice,
thereby promoting release of lattice oxygen [50]. Additionally, the
increased porosity of Ni layers at elevated temperatures facilitated the
formation of porous NiO circular caps, improving contact between the
fuel gas and the B-site cations, which in turn enhanced lattice oxygen
transfer and overall oxygen storage capacity [51]. Notably, CLMN-2
consistently demonstrated higher oxygen storage capacity values than
CLMN-1 and CLMN-3 across all temperatures, likely due to its relatively
greater SSA and pore volume. The oxygen storage capacity of CLMN-2
was also compared with LaNiOs over the 700 — 900 °C range to
examine any trade-off due to Ca doping. Figure S4 shows that LaNiOs
exhibited lower oxygen storage capacity than CLMN-2 at 800-900 °C,
while both samples showed similar values at 700 and 750 °C. These
findings underscore the promising redox characteristics of CLMN-2,
justifying its selection for subsequent evaluation in a packed bed
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Fig. 5. TGA performance of each CLMN sample for various temperatures; Hy
= 3.6 vol%, O, = 16 vol%. a) cyclic stability and b) Oxygen storage capacity
comparison for all CLMN samples in the 700 — 900 °C range.

reactor setup.

3.3. Sorption and CL-RWGS experiments

3.3.1. Carbonation/calcination cycles

To evaluate the CO5 sorption performance of CLMN-2, five consec-
utive carbonation-calcination cycles were conducted in a packed bed
reactor loaded with 1.0 g of the CLMN-2 sample. The CO; breakthrough
curves for the initial five cycles are presented in Fig. 6a, with the first
cycle showing a distinct breakthrough time of ~40s. Based on the
carbon material balance, it was observed that CLMN-2 achieved a CO5
uptake of 2.4 mmolCOy/gosr during first cycle, yielding a 46 % of CO»
sorption efficiency. Fig. 6b shows the CO, sorption efficiency of CLMN-2
over all five cycles. A notable 28 % reduction in sorption efficiency was
observed between the first two cycles, indicating a diminished ability of
CLMN-2 for CO5 uptake and, consequently, a lower conversion of CaO to
CaCOg3. The CO4 sorption efficiency further dropped to 6 % in the third
cycle and remained consistent thereafter. This decline in sorption per-
formance during initial cycles is likely due to sintering, which may have
resulted from the growth of CaO particles and the formation of micro-
phases from metal oxides other than CaO [52]. The associated in-
crease in primary crystal size reduces the reactive surface area, thereby
limiting both the rate and extent of gas-solid carbonation reactions [53,
54]. A similar decreasing trend in CaO conversion during CaL operation
was reported by Abbas et al. [55], where CO2 sorption efficiency
decreased from 40 % in the first cycle to below 10 % by the fourth cycle.
Moreover, other studies have also reported a sharp decline in CO,
sorption capacity using CaO, emphasizing the need of adding structural
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Fig. 6. a) CO, breakthrough curves during carbonation cycles and b) CO,
sorption efficiency (%) of CLMN-2 at 600 °C, 1.0 bar, a total feed flow rate of
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promoters [56,57].

3.3.2. Material activation

A series of consecutive redox cycles were initially conducted to
activate the CLMN-2 sample. The activation process was carried out in
the same packed bed reactor used for subsequent evaluations. Redox
cycling was extended beyond the breakthrough point and continued
until a steady-state conversion profile was achieved, ensuring that the
material exhibited stable redox behaviour under cyclic operations. As
shown in Fig. 7a, the O breakthrough profiles across five consecutive
oxidation cycles at 800 °C and 1 bar (10 vol% Os in N3) were repro-
ducible. The O uptake duration was ~1 min per cycle, indicating that
the material had reached a stable operating state. No significant varia-
tion was observed in the outlet gas composition after the first cycle,
confirming successful activation of the material. Furthermore, the Hy
breakthrough time during the reduction step was similar to the Oy
breakthrough time during oxidation, as stoichiometric feed gases with a
molar O5:Hs ratio of 0.5 were used.

To evaluate the influence of temperature on the reduction perfor-
mance of CLMN-2, the reduction step was carried out over the temper-
ature range of 600 — 900 °C, while oxidation was consistently performed
at 800 °C. As shown in Fig. 7b, the highest oxygen uptake was achieved
at 900 °C. This enhancement is attributed to the thermal expansion and
oxygen release associated with the B-site of perovskite material, which
increases porosity and oxygen vacancies, thereby facilitating bulk oxy-
gen diffusion [58]. Additionally, the oxygen storage capacity measured
in the packed bed reactor showed a maximum 2.1 mmol Oy/gogr at 900
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°C, consistent with the TGA results (Fig. 5). The slightly higher oxygen
storage capacity observed in the reactor compared to TGA can be
attributed to differences in Hy concentration. 20 Hy was used in the
reactor under RWGS representative conditions, compared to 4 Hy in the
TGA setup due to safety constraints.

3.3.3. Reverse water-gas shift (RWGS) reaction experiments

Following the activation of CLMN-2, the RWGS reaction was carried
out under a range of operational parameters, outlined in Table 2. Fig. 8a
presents the molar composition of the outlet gas (dry basis) consisting of
unreacted CO,, CO and Hy during the RWGS step, performed at atmo-
spheric pressure and 900 °C with a feed gas comprising Hy/CO5 molar
ratio of 1.3. The product gas composition was recorded after reaching
steady state, yielding Ho/CO molar ratio of 1.25. Notably, no CH4 was
detected during the CL-RWGS process, indicating the absence of COy
methanation. This observation is consistent with the thermodynamic
understanding that the Sabatier reaction is favoured at temperatures
< 300 °C [59], which is well below the 600 — 900 °C range employed in
this study.

To elucidate the effects of temperature and feed gas composition on
the Hy/CO product molar ratio, RWGS experiments were conducted over
a range of Hy/CO3 molar ratio (0.75 — 1.3) and temperatures (600 — 900
°C). As shown in Fig. 8b, at a fixed Hy/CO2 molar ratio of 1.3, increasing
the reaction temperature from 600 to 900 °C decreased the Hy/CO
product molar ratio from 2.40 to 1.25. This trend is consistent with the
endothermic nature of the RWGS reaction, where higher temperatures
enhance CO generation by consuming more Hj, thereby lowering the
H5/CO molar ratio [60].

Besides temperature, the feed Hy/CO, molar ratio has a direct effect
on the product composition. At 600 °C, increasing the feed Hy/CO5
molar ratio from 0.75 to 1.3 increased the H,/CO molar ratio from 1.58
to 2.40. This occurs because a lower CO, concentration in the feed limits
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CO formation, resulting in excess unreacted Hy and thus a higher Hy/CO
ratio in the product gas. Based on these results, 1.0 feed molar ratio of
H,/CO; at 600 °C produced Hy/CO product molar ratio of ~2.0, which is
favourable for FTS [61]. Additionally, the CO/CO yield ratio was
evaluated over the same range of feed compositions and temperatures,
as illustrated in Fig. 8c. The data indicate that the highest CO yield was
achieved at 900 °C. Error bars in Fig. 8b,c represents the standard de-
viation from at least three independent measurements.

The experimentally obtained Hy/CO molar ratios and CO, conver-
sion efficiencies over the temperature range of 600 — 900 °C and Hy/CO4
molar feed ratios of 0.75 — 1.3 were compared with the equilibrium
values calculated using RGibbs reactor simulations performed in Aspen
PLUS® V14. The simulation conditions were aligned with the experi-
mental set-up conditions described in Table 2. It was observed that
although the Hy/CO molar ratio did not reach equilibrium values
throughout the experiments, the deviation from the equilibrium was
negligible at 900 °C. Notably, Hy/CO molar ratios approaching the
target value of ~2.0, considered optimal for FTS, were achieved at lower
temperatures, specifically at 600 °C and 700 °C for Hy/CO; feed molar
ratios of 1.0 and 1.3, respectively, as shown in Fig. 9a. The CO, to CO
conversion efficiency of CLMN-2 was evaluated. As shown in Fig. 9b, a
CO4, conversion of 57.4 % was obtained during RWGS operation at 900
°C, closely matching the equilibrium conversion of 60 % under the same
conditions (Hy/CO, molar ratio of 1.3). The CO, conversion of 57.4 %
achieved in this work surpasses the values reported in previous co-fed
CL-RWGS studies [62,63], thereby underscoring the promising poten-
tial of CLMIN-2. Even at 600 °C and Hy/CO- molar ratio of 1.0, ~86 % of
the predicted CO; conversion was achieved, with a corresponding molar
ratio of Hp/CO ~2.0. The presence of unconverted CO, suggests the
potential for integration of CO, capture upstream of the FTS step,
allowing its reuse within the CL-RWGS system [28]. Overall, these
findings highlight the favourable performance of CLMN-2 in the
CL-RWGS process, demonstrating its potential as a competitive material
for syngas production compared to conventional technologies.

3.3.4. Complete cycle of CL-RWGS

To evaluate the performance of CLMN-2 in the CL-RWGS process,
1.0 g of CLMN-2 was loaded into the packed bed reactor. Prior to the CL-
RWGS experiments, CLMN-2 was subjected to five successive redox
cycles at 600 °C under the operating conditions listed in Table 2 to
ensure reproducible performance. Between each cycle, He (200 sccm)
was used as a purge gas for ~120 s to remove residual gases in the lines.

Fig. 10 shows a complete cycle of CL-RWGS process using activated
CLMN-2. A mixture of CO, and H; (He gas to balance) with a molar ratio
of 1.3 was introduced into the reactor simultaneously, and this point was
designated as t = 0 for data acquisition. As shown in Fig. 10, neither CO4
nor Hy was detected at the reactor outlet during the initial ~90 s of the
complete cycle, indicating that CLMN-2 simultaneously facilitated CO,
absorption and reduction. Hy material balance showed that 7.22 mmol/
gosr of Hy was consumed during the initial reduction. Moreover, no CO
breakthrough curve was observed during this period, suggesting that the
RWGS reaction did not occur during the first ~120 s of the cycle. After
this time, the RWGS reaction was initiated, as syngas (CO and Hj) was
generated with Hy/CO molar ratio of 2.4, and 3.74 mmol/gogg of Hy was
consumed during the RWGS stage. This indicates that CaO predomi-
nantly facilitated the initial CO5 sorption, whereas oxygen vacancies
within the perovskite lattice contributed to the CO2 conversion during
the RWGS stage, leading to CO formation. After reaching steady state
reaction conditions, with CO5 to CO conversion reaching 35 % after
~240 s, feed gas was switched to only He for 120 s to remove residual
product gases, preparing the system for the next cycle. Once the outlet
gas composition confirmed the presence of He only, the oxidation phase
was initiated by introducing 200 sccm of diluted air (10 O3) to fully
regenerate CLMN-2 for subsequent CL-RWGS cycles. At this stage, Ny
and He were the primary gases detected at the reactor outlet. After 90 s
of introducing air, Oy breakthrough was observed, and the outlet
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composition stabilized after consuming 2.75 mmol/gosg of Oz to
regenerate CLMN-2. The air feed was then switched off, and He was used
to purge the reactor for 120 s. Following this, the furnace temperature
was increased to 900 °C to initiate the calcination step, aimed at
desorbing CO5 adsorbed by the material. As shown in Figure S5, CO, was
detected during calcination, confirming that CO5 had been adsorbed by
the material in the earlier stage. A comprehensive breakdown of the
reaction schemes involved and carbon balance in product gas during
each step for complete cycle is presented in Table 5. All equations used
for calculating carbon molar balance are also provided in section S7 of
SI (Egs. S3 - S9).

CO, was also detected at the reactor outlet during air oxidation,
suggesting carbon formation during the process, which was also
observed during the CL-RWGS at 700 °C. The carbon deposition at 600
and 700 °C can be attributed to the reverse Boudouard reaction (2CO —
CO3 + C), which is thermodynamically favoured at these temperatures.
The resulting carbon undergoes combustion in the presence of air,
releasing CO2 [64]. However, no evidence of carbon deposition was
observed at higher temperatures, likely due to the thermodynamics
favouring CO formation during the reduction phase. In addition, the
presence of Ni in the material is known to promote carbon formation
[65]. For CLMN-2, a carbon balance revealed that up to 0.35 mmol
CO2/gosr Was released during air oxidation stage, as shown in Table 5.
According to the stoichiometry of the carbon oxidation reaction (C + Oz

— COy), this CO4 release corresponds to 0.35 mmol of deposited carbon.
This indicates approximately 2.8 % of the total carbon fed was deposited
through reverse Boudouard reaction, which aligns with the values re-
ported in the literature [38,51]. The low carbon deposition underscores
the role of Mn in reducing carbon formation via its multi-valent redox
ability and improved oxygen storage capability [66].

These preliminary findings support the potential of CLMN-2 as a
multifunctional material for the CL-RWGS process, demonstrating its
ability to simultaneously facilitate reduction and CO; sorption. Further
research should focus on detailed investigation into the temperature
distribution within the packed bed reactor to gain deeper insight into the
system’s thermal behaviour and practical performance.

3.4. Post experimental characterization

Following multiple CL-RWGS cycles, the CLMN-2 sample was sub-
jected to post experimental characterization using XRD, SEM and BET
analysis evaluate changes in the crystallite structure, phase and
morphology compared to the fresh material. The XRD pattern of used
CLMN-2 revealed no significant change in crystallite structure after over
12 h of CL operation (Figure S6). However, slight broadening of multiple
peaks was observed, likely due to repeated redox cycling and exposure
to high temperature calcination at 900 °C. Partial segregation of the CaO
phase was also observed, which is thermodynamically favoured at high
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temperatures [67]. In addition, Williamson-Hall analysis (Figure S7) on
XRD data was performed to quantify the change in the lattice strain
between fresh and used CLMN-2 samples, as described in Section S8 (SI
file). The lattice strain increased from 0.0085 in the fresh sample to
0.0163 in the used sample as shown in Table S2 (SI file), representing an
approximate 92 % increase. This strain growth indicates the develop-
ment of microcracking, causing internal stress within the crystal lattice
[68,69]. Hence, a decline in CO4 sorption efficiency during initial cycles
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Table 5
Main reactions and carbon molar balance during complete cycle of CL-RWGS
process with in-situ carbonation involving CLMN-2.

Process Reaction Carbon material
balance in product
gas (mmol)

Carbonation CO,+'Ca0 — CaCO3 -

Reduction 8H, + Cag oLag.gMng 1Nig 903 — -

Cag 2Lag gMng,1Ni.903.5 + SH20

CO, splitting Cag oLag gMng 1Nip.903.5 + (8-*y) CO4 7.05 (excess CO5)

— Cag oLlag.gMng,1Nig 903, + (8-y) CO 4.26 (CO)
Air Oxidation Cap Lo sMno 1Nig 903, + % 05 > _
Cag 2Lag gMng.1Nip.903
Combustion of C + Oz - CO, 0.35
deposited
carbon
Calcination CaCO3; — CaO + CO, 0.65

iCao0 refers to the CaO phase in CLMN-2.
*y denotes partial oxygen storage (0 <y<$).

is observed as shown in Fig. 6b [70]. In addition, no new secondary NiO
phases were detected within the 20 range of 37.8-45.1°, confirming that
the bulk perovskite structure remained largely intact without any nickel
formation. Morphological analysis further supported these findings. As
shown in Fig. 11a-b, the used CLMN-2 sample retained its overall par-
ticle size and shape after experimentation, with no significant surface
degradation or structural deformation observed. However, a noticeable
change in surface roughness was apparent, suggesting decrease in
porosity was further corroborated by post experimental BET analysis. As
shown in Table S2, the SSA of CLMN-2 decreased from 12.1 m?/g to
0.44 m?/g after the experimental run. This substantial change in SSA is
attributed to the sintering of CaO phase within CLMN-2 during succes-
sive CalL cycles [57].

3.5. Environmental implications and future work

Compared to the conventional RWGS process, the CL-RWGS with
CLMN-2 material yields a more favourable molar ratio of Hy/CO that
aligns with the requirements of FTS. While comparing the experimental
molar ratio of Hy/CO with the conventional equilibrium values (Fig. 9a),
CL-RWGS achieved H5/CO molar ratio of ~2.0 at a molar feed ratio (Hy/
CO2) of 1.0, whereas the conventional equilibrium RWGS process re-
quires a molar feed ratio (Hy/CO3) of 1.3 to reach a similar syngas
composition. This indicates that the CL-RWGS using CLMN-2 produces
favourable syngas compositions (Hy/CO ~2.0) while consuming 23 %
less Hy. Given that producing Hy from water electrolysis and steam
methane reforming processes are energy-intensive [71-73], its lower
consumption in CL-RWGS by using CLMN-2 suggests reduction in energy
penalties as compared to conventional RWGS process. Thus, utilizing
CLMN-2 in CL-RWGS presents a promising reaction pathway to reduce
CO; emissions from heavy industries such as steel and iron production.
This process specifically targets COo-rich flue gases emitted by heavy
industries, which are significant contributors to global greenhouse gas
emissions. Incorporating in-situ CO» sorption further enhances the redox
performance of CLMN-2 during CL-RWGS. Since carbonation is
exothermic, the heat released can be integrated in the endothermic
initial reduction step, thereby increasing the reduction breakthrough
time and the oxygen storage capacity of CLMN-2. The high performance
of CLMN-2 in achieving an optimal H/CO molar ratio of 2.0 makes it
particularly advantageous for downstream FTS process, facilitating the
production of synthetic fuels. Furthermore, using CLMN-2 in ICCU ap-
plications can reduce energy intensity compared to conventional tech-
nologies that capture and convert CO; in separate steps. Therefore, the
approach presented in this study supports broader efforts to adopt
low-carbon technologies and meet net-zero emission targets. Future
research will focus on a comprehensive evaluation of CLMN based
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Fig. 11. SEM images of a) fresh CLMN —2 and b) aged CLMN-2 samples.

performance by simulating real flue gas composition to bridge the gap
between lab-scale results and practical retrofitting in energy-intensive
industries. Moreover, the calcination temperature will also be opti-
mized, particularly for large scale use of CLMN-2, since the heat released
during air oxidation can facilitate CO desorption without the need for
excessive external heating.

Furthermore, equilibrium limitations can be surpassed through
counter-current operations, as demonstrated in studies reporting CO5
conversions of up to 90 % [74,75]. This enhancement can be attributed
to consistent heat gradient throughout the reactor during interaction
between feed gases and OSR material [76]. Therefore, the performance
of CLMN based material in a counter current CL-RWGS setup will be
examined to further improve CO, conversion efficiency.

4. Conclusions

A novel Ca/Mn-doped LaNiO3 perovskite was synthesized and eval-
uated as multifunctional material with integrated oxygen storage and
release (OSR) and dual functional material (DFM) capabilities for ICCU
applications. Among the synthesized variants, Cag sLaggMng 1Nig9O3
(CLMN-2) exhibited highest performance, achieving an oxygen storage
capacity of 6.2 wt% (1.97 mmol O2/gosr) with negligible degradation
over 17 consecutive cycles. These results provided a basis for evaluating
the material under realistic conditions in a packed bed reactor. CLMN-2
demonstrated consistent redox behaviour and effective CO4 sorption at
600 °C. Under CL-RWGS conditions, it achieved a maximum CO5 to CO
conversion of 57.4 % was achieved at 900 °C and Hy/CO4 molar feed gas
ratio of 1.3, which corresponds to 95 % of equilibrium conversion. At
600 °C and Hy/CO2 molar ratio 1.0, a produced syngas stream with Hy/
CO molar ratio of 2.0 was obtained. These findings confirm the mate-
rial’s combined DFM and OSR functionalities and underscore its po-
tential for scalable syngas production. Future work will focus more on
extensive testing by integrating a range of feed gas composition and
residence time. In addition, the heat distribution within the reactor will
also be monitored to understand the effect of temperature fluctuations
on material’s activity, stability, and overall efficiency of the CL-RWGS
process.
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