The University of Southampton
University of Southampton Institutional Repository

ArgRAG: explainable retrieval augmented generation using quantitative bipolar argumentation

ArgRAG: explainable retrieval augmented generation using quantitative bipolar argumentation
ArgRAG: explainable retrieval augmented generation using quantitative bipolar argumentation
Retrieval-Augmented Generation (RAG) enhances large language models by incorporating external knowledge, yet suffers from critical limitations in high-stakes domains—namely, sensitivity to noisy or contradictory evidence and opaque, stochastic decision-making. We propose \textsc{ArgRAG}, an explainable, and contestable alternative that replaces black-box reasoning with structured inference using a Quantitative Bipolar Argumentation Framework (QBAF). \textsc{ArgRAG} constructs a QBAF from retrieved documents and performs deterministic reasoning under gradual semantics. This allows faithfully explanaining and contesting decisions. Evaluated on two fact verification benchmarks, PubHealth and RAGuard, \textsc{ArgRAG} achieves strong accuracy while significantly improving transparency.
Zhu, Yuqicheng
e2164ad8-3ba3-4dd5-9a6f-81f253f938c6
Potyka, Nico
a8a29aeb-d747-4ac0-9c76-b093b4d3bb67
Hernandez, Daniel
39723173-ccff-4015-b506-cec5aec76936
He, Yuan
711f457b-3752-4225-be8f-ad3479c9e92e
Ding, Zifeng
dc0164ad-e69e-4044-8ccc-26f5ba92d03e
Xiong, Bo
d8c3ce0a-07ac-43f8-bd67-f230c6cbc1ec
Zhou, Dongzhuoran
70dce554-441a-4632-aacc-3ad29610deff
Kharlamov, Evgenyi
5a522384-6a70-4f2c-ab5a-6b95c1944b32
Staab, Steffen
bf48d51b-bd11-4d58-8e1c-4e6e03b30c49
Zhu, Yuqicheng
e2164ad8-3ba3-4dd5-9a6f-81f253f938c6
Potyka, Nico
a8a29aeb-d747-4ac0-9c76-b093b4d3bb67
Hernandez, Daniel
39723173-ccff-4015-b506-cec5aec76936
He, Yuan
711f457b-3752-4225-be8f-ad3479c9e92e
Ding, Zifeng
dc0164ad-e69e-4044-8ccc-26f5ba92d03e
Xiong, Bo
d8c3ce0a-07ac-43f8-bd67-f230c6cbc1ec
Zhou, Dongzhuoran
70dce554-441a-4632-aacc-3ad29610deff
Kharlamov, Evgenyi
5a522384-6a70-4f2c-ab5a-6b95c1944b32
Staab, Steffen
bf48d51b-bd11-4d58-8e1c-4e6e03b30c49

Zhu, Yuqicheng, Potyka, Nico, Hernandez, Daniel, He, Yuan, Ding, Zifeng, Xiong, Bo, Zhou, Dongzhuoran, Kharlamov, Evgenyi and Staab, Steffen (2025) ArgRAG: explainable retrieval augmented generation using quantitative bipolar argumentation. 19th International Conference on Neurosymbolic Learning and Reasoning, , Santa Cruz, United States. 08 - 10 Sep 2025. 22 pp .

Record type: Conference or Workshop Item (Paper)

Abstract

Retrieval-Augmented Generation (RAG) enhances large language models by incorporating external knowledge, yet suffers from critical limitations in high-stakes domains—namely, sensitivity to noisy or contradictory evidence and opaque, stochastic decision-making. We propose \textsc{ArgRAG}, an explainable, and contestable alternative that replaces black-box reasoning with structured inference using a Quantitative Bipolar Argumentation Framework (QBAF). \textsc{ArgRAG} constructs a QBAF from retrieved documents and performs deterministic reasoning under gradual semantics. This allows faithfully explanaining and contesting decisions. Evaluated on two fact verification benchmarks, PubHealth and RAGuard, \textsc{ArgRAG} achieves strong accuracy while significantly improving transparency.

Text
4_ArgRAG_Explainable_Retrieval - Version of Record
Available under License Creative Commons Attribution.
Download (3MB)

More information

Published date: 29 August 2025
Venue - Dates: 19th International Conference on Neurosymbolic Learning and Reasoning, , Santa Cruz, United States, 2025-09-08 - 2025-09-10

Identifiers

Local EPrints ID: 506503
URI: http://eprints.soton.ac.uk/id/eprint/506503
PURE UUID: 3a4988bd-7f70-4f48-97af-f8912df9a40a
ORCID for Steffen Staab: ORCID iD orcid.org/0000-0002-0780-4154

Catalogue record

Date deposited: 10 Nov 2025 17:56
Last modified: 11 Nov 2025 02:46

Export record

Contributors

Author: Yuqicheng Zhu
Author: Nico Potyka
Author: Daniel Hernandez
Author: Yuan He
Author: Zifeng Ding
Author: Bo Xiong
Author: Dongzhuoran Zhou
Author: Evgenyi Kharlamov
Author: Steffen Staab ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×