ArgRAG: explainable retrieval augmented generation using quantitative bipolar argumentation
ArgRAG: explainable retrieval augmented generation using quantitative bipolar argumentation
Retrieval-Augmented Generation (RAG) enhances large language models by incorporating external knowledge, yet suffers from critical limitations in high-stakes domains—namely, sensitivity to noisy or contradictory evidence and opaque, stochastic decision-making. We propose \textsc{ArgRAG}, an explainable, and contestable alternative that replaces black-box reasoning with structured inference using a Quantitative Bipolar Argumentation Framework (QBAF). \textsc{ArgRAG} constructs a QBAF from retrieved documents and performs deterministic reasoning under gradual semantics. This allows faithfully explanaining and contesting decisions. Evaluated on two fact verification benchmarks, PubHealth and RAGuard, \textsc{ArgRAG} achieves strong accuracy while significantly improving transparency.
Zhu, Yuqicheng
e2164ad8-3ba3-4dd5-9a6f-81f253f938c6
Potyka, Nico
a8a29aeb-d747-4ac0-9c76-b093b4d3bb67
Hernandez, Daniel
39723173-ccff-4015-b506-cec5aec76936
He, Yuan
711f457b-3752-4225-be8f-ad3479c9e92e
Ding, Zifeng
dc0164ad-e69e-4044-8ccc-26f5ba92d03e
Xiong, Bo
d8c3ce0a-07ac-43f8-bd67-f230c6cbc1ec
Zhou, Dongzhuoran
70dce554-441a-4632-aacc-3ad29610deff
Kharlamov, Evgenyi
5a522384-6a70-4f2c-ab5a-6b95c1944b32
Staab, Steffen
bf48d51b-bd11-4d58-8e1c-4e6e03b30c49
29 August 2025
Zhu, Yuqicheng
e2164ad8-3ba3-4dd5-9a6f-81f253f938c6
Potyka, Nico
a8a29aeb-d747-4ac0-9c76-b093b4d3bb67
Hernandez, Daniel
39723173-ccff-4015-b506-cec5aec76936
He, Yuan
711f457b-3752-4225-be8f-ad3479c9e92e
Ding, Zifeng
dc0164ad-e69e-4044-8ccc-26f5ba92d03e
Xiong, Bo
d8c3ce0a-07ac-43f8-bd67-f230c6cbc1ec
Zhou, Dongzhuoran
70dce554-441a-4632-aacc-3ad29610deff
Kharlamov, Evgenyi
5a522384-6a70-4f2c-ab5a-6b95c1944b32
Staab, Steffen
bf48d51b-bd11-4d58-8e1c-4e6e03b30c49
Zhu, Yuqicheng, Potyka, Nico, Hernandez, Daniel, He, Yuan, Ding, Zifeng, Xiong, Bo, Zhou, Dongzhuoran, Kharlamov, Evgenyi and Staab, Steffen
(2025)
ArgRAG: explainable retrieval augmented generation using quantitative bipolar argumentation.
19th International Conference on Neurosymbolic Learning and Reasoning, , Santa Cruz, United States.
08 - 10 Sep 2025.
22 pp
.
Record type:
Conference or Workshop Item
(Paper)
Abstract
Retrieval-Augmented Generation (RAG) enhances large language models by incorporating external knowledge, yet suffers from critical limitations in high-stakes domains—namely, sensitivity to noisy or contradictory evidence and opaque, stochastic decision-making. We propose \textsc{ArgRAG}, an explainable, and contestable alternative that replaces black-box reasoning with structured inference using a Quantitative Bipolar Argumentation Framework (QBAF). \textsc{ArgRAG} constructs a QBAF from retrieved documents and performs deterministic reasoning under gradual semantics. This allows faithfully explanaining and contesting decisions. Evaluated on two fact verification benchmarks, PubHealth and RAGuard, \textsc{ArgRAG} achieves strong accuracy while significantly improving transparency.
Text
4_ArgRAG_Explainable_Retrieval
- Version of Record
More information
Published date: 29 August 2025
Venue - Dates:
19th International Conference on Neurosymbolic Learning and Reasoning, , Santa Cruz, United States, 2025-09-08 - 2025-09-10
Identifiers
Local EPrints ID: 506503
URI: http://eprints.soton.ac.uk/id/eprint/506503
PURE UUID: 3a4988bd-7f70-4f48-97af-f8912df9a40a
Catalogue record
Date deposited: 10 Nov 2025 17:56
Last modified: 11 Nov 2025 02:46
Export record
Contributors
Author:
Yuqicheng Zhu
Author:
Nico Potyka
Author:
Daniel Hernandez
Author:
Yuan He
Author:
Zifeng Ding
Author:
Bo Xiong
Author:
Dongzhuoran Zhou
Author:
Evgenyi Kharlamov
Author:
Steffen Staab
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics