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P H Y S I C S

Creation of a black hole bomb instability in an 
electromagnetic system
M. Cromb1, M.C. Braidotti2, A. Vinante3, D. Faccio2, H. Ulbricht1*

The amplification and generation of electromagnetic radiation by a rotating metallic or lossy cylinder, first pro-
posed by Zel’dovich in the 1970s, is closely linked to quantum friction, energy extraction from rotating black 
holes, and runaway mechanisms such as black hole bombs. Although advances such as acoustic analogs of the 
Zel’dovich effect and the observation of negative resistance in low-frequency electromagnetic models have been 
reported, genuine positive signal gain, spontaneous emission of electromagnetic waves, and runaway amplifica-
tion have not previously been verified. Here, we provide the first experimental demonstration that a mechanically 
rotating metallic cylinder acts as an amplifier of a rotating electromagnetic field mode. Moreover, when combined 
with a low-loss resonator, the system becomes unstable and operates as a generator seeded only by noise. The 
exponential runaway amplification of spontaneously generated electromagnetic modes is observed, establishing 
the electromagnetic analog of the Press-Teukolsky black hole bomb and paving the way to experimental tests of 
quantum friction from vacuum fluctuations.

INTRODUCTION
In 1971, Yakov Zel’dovich predicted that an absorbing axially sym-
metric body rotating at rotational frequency f and scattering incident 
waves of angular momentum order m could somewhat counter-
intuitively amplify those waves if their frequency f satisfies (1)

This condition is equivalent to the rotational Doppler-shifted 
corotating mode frequency ( f− = f −mF ) becoming negative in the 
body’s rotating frame. While Zel’dovich considered the case of a 
metal cylinder scattering electromagnetic (EM) waves (2, 3), he em-
phasized that this amplification [also known as rotational superra-
diance (4)] is a general effect rooted in thermodynamics and should 
therefore hold true for any rotating absorber.

His prediction was directly inspired by the Penrose process, a 
means of extracting energy from the ultimate absorber: a rotating 
black hole. The rotating spacetime creates an ergoregion around the 
black hole horizon, where matter and waves can have negative en-
ergy. Penrose envisioned that an object scattering within this erg-
oregion could split into two and lose a negative energy component 
into the black hole, while the positive energy part escapes, having 
gained energy from the black hole rotation (5, 6). Black hole rota-
tional superradiance has been tested recently in analog systems in 
the laboratory (7–9), and these energy extraction processes have 
been proposed as part of a mechanism producing relativistic jets of 
quasars (10, 11).

This link between the Zel’dovich effect and black hole thermody-
namics holds also in the quantum realm. Zel’dovich predicted that a 
rotating absorber could spontaneously amplify EM fields out of the 
quantum vacuum (3), ceding its rotational energy and slowing down. 
This implication directly inspired (12) Hawking’s famous prediction 
that even without rotation, any black hole should slowly radiate its 

energy away (13, 14). However, this quantum vacuum rotational am-
plification is very weak and hence difficult to observe. For this reason, 
Zel’dovich speculated that forming a low-loss resonator by encircling 
the cylinder with a mirror could amplify this very weak signal (1, 2). 
This generation mechanism was detailed further in 1972 with Press 
and Teukolsky’s “black hole bomb” concept (11, 15, 16). A rotating 
black hole scatters and superradiantly amplifies the impinging modes 
that satisfy Eq. 1. Surrounding the black hole with a mirror will reflect 
scattered modes back toward the hole to be reamplified. If the mirror 
is sufficiently reflective, then the energy lost at the mirror can be 
smaller than the energy gained from the black hole. With this positive 
feedback, these amplified signals grow exponentially, and the system 
becomes unstable to any random noise seed. The field energy trapped 
by the mirror grows until it is either released through a controlled 
opening (another proposed power source) or, if unchecked, until the 
mirror can no longer take the pressure and explodes. A third mecha-
nism is also possible: Cardoso et al. (16) showed that the exponential 
amplification can also be switched off if the black hole loses too much 
angular momentum before the mirror explodes; at which point, the 
system is no longer unstable and the condition in Eq. 1 is no longer 
satisfied (16). The same instability conditions and behaviors can also 
occur with Zel’dovich’s EM cylinder case (16).

Amplification from a rotating absorber was successfully demon-
strated for acoustic waves (17, 18). For the case of EM waves, notwith-
standing the substantially more prohibitive experimental conditions, 
a recent work measured Zel’dovich amplification by showing that the 
rotation of a metallic cylinder induces a negative resistance in an EM 
circuit (indicating that amplification is occurring, even if losses still 
dominate the overall behavior) (19, 20).

In this work, we present an experimental study that relies on a 
rotating magnetic field generated by a three-phase stator with an 
internal spinning metallic cylinder. The three-phase arrangement 
allows us to generate a magnetic field on the internal cylinder that 
has a definite rotational direction. At the same time, the external 
circuit with the stator also acts as a reflector. Thus, the system satis-
fies the experimental conditions speculated by Zel’dovich for the 
observation of spontaneous generation and also the conditions out-
lined by Press et  al. (15) for black hole bombs. The experimental 

f < mF (1)
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conditions implemented show net amplification despite the internal 
losses of the circuitry. We also observe the spontaneous generation 
of waves, seeded only by background noise. This generation exhibits 
a runaway exponential growth, also known as self-oscillation, of the 
EM waves in analogy to a black hole bomb. Last, by modifying the 
operating conditions of the rotating cylinder, we also observe the re-
gime, described by Cardoso et al. (16), where this instability and the 
exponential amplification switch off due to loss of rotational energy 
in the cylinder.

RESULTS
Experimental setup
Figure 1A shows a visualization of the Zel’dovich amplification con-
dition, Eq. 1. There is no effect in the absence of the cylinder; an 
increased absorption if the cylinder rotates slower than the angular 
phase velocity of the rotating field mode, f∕m (purple arrow); am-
plification occurs only if the cylinder is rotating in the same direc-
tion and faster than f∕m . These three conditions are schematically 
shown in Fig. 1A as three different oscillating voltage amplitudes 
that we measure from our circuit.

Figure 1B shows a schematic overview of the experimental set-
up. A rotating magnetic field is generated by a three phase induction 
motor, consisting in a stator with three independent resistance-
inductance-capacitance (RLC) circuits (P1, P2, and P3). An alumin-
ium cylinder, spun by a brushless DC motor, is nested inside the 
stator, with only a small ~1-mm air gap separating it from the stator 
(for details on the experimental apparatus, see Methods). The mag-
netic field is rotated in time by ensuring that the three circuits are 
120° out of phase with respect to each other, and the relative sign of 
the phase shifts determine the direction in which the magnetic field 
rotates. The design of the coils determines the shape of the magnetic 
field lines and leads to a quadrupole rotating mode. This field is nu-
merically simulated and shown as an overlay in purple on the cylin-
der for a fixed time instant in Fig. 1B. The quadrupole rotating 
mode implies that we have a mode with orbital momentum m = 2, 
i.e., the field has a phase factor ∼ expi(mφ−ωt) with m = 2. Thus, the 

spatial pattern of the field completes half a rotation for every 2π cy-
cle of the sinusoidal current in the circuits, as illustrated in more 
detail for four different times across a half-cycle of the current 
in Fig. 2A.

In our experiment, each RLC circuit is also used to store EM en-
ergy at its resonant frequency, fres. This resonance acts as a lossy mir-
ror (analogue to the black hole bomb mirror) confining the EM 
radiation around the cylinder, thus increasing the interaction.

Figure 2B shows how the effective resistance and inductance of 
the cylinder in the rotating quadrupole mode (m = 2) is predicted by 
our model to change with cylinder rotation rate, F (model details are 
reported in Methods). When the cylinder is corotating with the 
mode (F > 0), we see a transition to negative resistance (i.e., loss tran-
sitions to gain) when F > f∕2 (we show curves for three different val-
ues of f). For F = f∕2 , the cylinder rotates at the same frequency of 
the field B, so it sees a stationary field. Consistently with this picture, 
the model predicts that the resistance induced by the cylinder will 
vanish. The model also predicts that the inductance changes with ro-
tation, and this changes the RLC resonant frequency accordingly. We 
note here that a negative resistance in the cylinder does not imply a 
net positive amplitude gain in the full system (e.g., in the circuits P1, 
P2, and P3), as these will always have an additional resistance and 
hence a loss term that needs to be overcome by the cylinder amplifi-
cation. We therefore purposely include a variable resistor Rvar in each 
circuit with which we can tune the RLC losses.

An important detail in the following is the operation regime of 
the motor driving the internal metallic cylinder. We choose two dif-
ferent measurement settings for the motor drive to observe two dis-
tinctly different regimes and better understand the energy exchange 
dynamics between the mechanically driven internal cylinder and 
the EM field in the stator: (i) a closed-loop setting, where we fix the 
motor rotation frequency F—this setting will allow us to observe net 
Zel’dovich amplification and reach the unstable black hole bomb re-
gime; (ii) an open-loop setting, which allows the motor rotation rate 
to change—in this case, we will observe wave generation and expo-
nential amplification from noise and then the switching off of the 
unstable regime due to loss of rotational energy in the cylinder.

A B

Fig. 1. Concept and schematic layout of experiment. (A) Diagram showing the Zel’dovich amplification condition. For a given input field, the measured output ampli-
tude depends on the presence of the (absorbing) metal cylinder and its rotation speed: With no cylinder, there is no effect; with the internal cylinder in place and rotating 
slower than the rotating EM field, the absorption is increased; if the cylinder rotates faster than the EM field, then amplification occurs. (B) Schematic overview of the full 
experiment. Three sets of external coils surround the internal aluminium cylinder. Each coil is driven by an RLC circuit (P1, P2, and P3) with a variable resistor that is used 
to tune the losses. We plot the numerically calculated magnetic field lines (at a given instant) in purple on the cylinder. Red and blue areas indicate north and south mag-
netic poles, respectively.

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 10, 2025



Cromb et al., Sci. Adv. 11, eadz4595 (2025)     5 November 2025

S c i e nc  e  A d v anc   e s  |  R e s e arc   h  A r t i c l e

3 of 9

Zel’dovich amplification and black hole instability threshold
We first set the cylinder motor at a fixed rotation speed in the closed-
loop configuration. We choose a relatively high value for the variable 
resistor Rvar ≈ 24 ohms (Table 1 in Methods) so as to ensure that over-
all, the total loss (circuit plus cylinder) dominates over the cylinder 
gain for all conditions. Figure 3A shows the voltage amplitude in 
circuit P2 as we vary the EM frequency f in the circuit (similar results 
are obtained in all three circuits). The various curves are for different 
rotation frequencies F of the cylinder, as indicated in the legend. A 
clear resonance is observed in the “no cylinder” case (black dotted 
curve)—this resonance arises, as discussed, from the RLC circuit and 
is determined by the choice of inductance and capacitance values. It is 
around this resonance that we have energy accumulation in the cir-
cuit, akin to energy accumulation in a cavity that enhances the inter-
action of the EM field with the cylinder. It is around this resonance 
that we focus our attention. We see variations in the resonant peak 
amplitude as a result of the cylinder rotation and different behaviour 
depending on the direction of the cylinder with respect to the rotat-
ing mode. The blue curves in Fig. 3A indicate the counter-rotating 
cases, which all exhibit lower maximum amplitudes compared to the 
no cylinder case (dotted curve), i.e., the presence of a counter-rotating 
cylinder causes loss. The red curves indicate the corotating cases and 
lead to reduced losses with very significant loss-reduction factors, i.e., 

>10× when Eq. 1 F > f ∕2 is satisfied, i.e., for F ≳ 600 Hz (see three 
highest peaks in Fig. 3A inset). Furthermore, the resonant peak fre-
quency also shifts with the cylinder rotation speed: The resonance 
frequency is minimum for ∣ f ∕2 − F∣ = 0 , when the cylinder is coro-
tating with the field or there is no cylinder (dotted curve) and in-
creases for ∣ f ∕2 − F∣ > 0 due to the additional cylinder inductance, 
as also discussed in Fig. 2B.

Figure  3B shows the measured total circuit resistance for all 
three P1, P2, and P3 circuits for varying cylinder rotation rates at a 
fixed circuit EM frequency of 1181 Hz. The solid black curve indi-
cates the numerical model fit (Eq.  18 in Methods) with Rcirc = 
129 ohms (Rcirc is the circuit resistance without the cylinder). The 
model fits the data well and the positive resistance values confirm 
that overall, the total system (cylinder plus circuit) is not amplifying. 
We note that the total resistance approaches zero around F = 680 Hz, 
indicating a nearly perfect cancellation of the circuit positive resis-
tance with the cylinder negative resistance. By decreasing the value 
of the variable resistors Rvar, we expect these curves to shift downward 
by the change in Rvar, ∆R. In this way, we can push the curve around 
F = 680 Hz into a region of total negative resistance, i.e., reaching ab-
solute gain. These measurements are also shown for all three circuits 
(red curves), overlaid with the ∆R-shifted numerical model (gray 
curve). As can be seen, the measurements do not actually continue 

Fig. 2. Rotating magnetic field and amplification conditions. (A) Numerically simulated field lines (purple) inside the coils for four different phase values of the P1 cur-
rent (P2 and P3 are retarded by −120° and −240°, respectively). The North Pole (indicated as a red shaded area) at the top coil rotates by one-fourth of a cycle when the 
circuit currents vary by one-half a cycle [i.e., the magnetic field spatially rotates at half the frequency ( f ∕2 ) of the current f]. The cylinder rotation only needs to outpace, 
e.g., a North Pole of the field to meet the amplification condition. (B) Theory: The graphs show the resistance and inductance of the internal cylinder only as a function of 
the rotation frequency of the internal metal cylinder for three different external quadrupole EM field rotation frequencies. A corotating cylinder will lead to a negative 
cylinder resistance (hence amplification) above the threshold F = f∕2 and increased resistance (hence increased losses) below this threshold.

Table 1. Input and component values for all three circuits. R0 is given at 20°C, but the coils heat up during the experiment, increasing the resistance (details 
in the Supplementary Materials). The temperature coefficient of resistance α for the copper wires is ≈0.004/°C.

Circuit C (nF) Vi (mV, RMS) R0 at 20°C (ohms) R
HR

var
 (ohms) R

LR

var
 (ohms) Phase (rad)

 P1 149.9 12.69 71.6 22.4 1.2 0.013

 P2 149.7 12.70 71.4 27 1.0 −2.0915

 P3 149.7 12.67 71.4 23.7 1.1 2.0975
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into the negative resistance region: Any attempts to perform the 
same measurements at cylinder rotations F > 640 Hz led to a run-
away amplification causing the circuit resistor to explode, a very elo-
quent hint that the black hole bomb regime has taken over.

The runaway behavior and explosions are a direct result of driv-
ing the motor with fixed rotation speed in the closed-loop configu-
ration, i.e., when the rotational energy is extracted from the cylinder, 
the feedback loop feeds new power into the motor to keep it at the 
same speed. Thus, the system can continuously draw increasing 
amounts of power from the cylinder motor to feed the increasing 
voltage and current in the circuits.

Noise amplification and self-limitation of the instability
The exponential trend of the instability can be measured by chang-
ing the measurement settings to the open-loop configuration while 
keeping Rvar at the low value to have a net total gain. The circuit can 
now only feed off the rotational energy of the cylinder for a limited 
time before slowing it down, and the cylinder rotation rate will then 
drop below the instability condition and the total resistance will re-
turn to positive values, switching off the instability before the resis-
tor explodes. Furthermore, we remove the circuit input signal, 
leaving only noise as a seed. The measurements in this regime are 
shown in Fig. 4. We set the cylinder to rotate at 643 Hz such that we 
are just inside the negative frequency region for our circuit (shaded 
area in Fig. 3B). Figure 4A shows the time trace of the voltage in 
circuit P2: Initially, we observe only the noise floor while the cylin-
der is rotating at a constant speed (see Fig. 4C). A growing signal, 
initially masked by the detection noise floor, appears after a few 

seconds as a result of amplification of the circuit noise. We measured 
the phase of the spontaneously generated field and find that it co-
rotates with the cylinder, as predicted for a signal generated through 
this black hole bomb instability (see the Supplementary Materials). 
The inset in Fig. 4A shows the circuit dynamics for a higher cylin-
der rotation (660 Hz) and so greater number of times there is an 
increase by a factor \it{e}, where we see the oscillation between sta-
ble and unstable dynamics due to the motor periodically slowing 
down as it loses mechanical energy to the circuit and then speeds up 
again as it falls below the exponential amplification frequency range. 
This regime represents the Cardoso et al. (16) prediction for black 
hole bomb instability for the Zel’dovich cylinder case.

We also see in Fig. 4B that the amplified signal shifts to lower 
frequency values before the amplification switches off. A decrease in 
cylinder rotation speed, observable in Fig. 4C, causes the resonance 
of the circuit to shift toward lower frequencies (see Fig. 5 and Meth-
ods). This process continues until the cylinder speed becomes too 
low and exits the instability condition (the total negative resistance 
region), and the signal dissipates away. Another interesting feature 
in Fig. 4A is the observation of an initial exponential growth rate 
that at later times becomes superexponential. This superexponential 
behavior corresponds to a nonlinear decrease of the total resistance 
R in Fig. 4D and signals a clear departure from the standard black 
hole bomb theory (1, 2, 15, 16). These nonlinearities of the system 
will be investigated in future research. Apart from the nonlinearities 
at high amplitude, the amount of total negative resistance in Fig. 4D 
of a few ohms (using Eq. 9 in Methods) is consistent with the predic-
tion of the numerical model shown in Fig. 3B.

A B

Fig. 3. Experimental results: Closed-loop motor settings. (A) Shows measured RMS voltage (Vo) for increasing EM wave frequency and for varying cylinder rotation 
rates (blue curves indicate counter-rotating and red curves indicate corotating). Also included is no cylinder case (black dotted line), which peaks at 0.0916 V. The colors 
show the directionality of the effect—for opposing directions of cylinder rotation (positive and negative F), the effect on the rotating mode in the circuit is different. Only 
the corotating cylinder (red) is able to amplify above the no cylinder peak, see Eq. 1. The inset shows the highest amplitude peaks, which are an order of magnitude above 
the no cylinder case. A peak gain factor of 17.6× is observed for the case of the cylinder rotating at 700 Hz. (B) Total resistance R in the three circuits P1, P2, and P3 for a 
fixed circuit frequency f = 1181 Hz and different cylinder rotation frequencies F. Purple dots are data for high resistance circuits, and red dots for low resistance circuits. 
The vertical line indicates the Zel’dovich threshold rotation, and the dotted horizontal line indicates the R

circ
= 131 Ω measured P1 resistance without cylinder (for the 

high resistance case). The numerical model fits to P1 high resistance data is also plotted (black solid line), with the coupling strength A and the constant resistance present 
without cylinder Rcirc as free fit parameters. We find Rcirc = 129 Ω , which matches the measured value well, and A = 0.397. The gray line is the fit offset by ΔR = −21.2 Ω 
for P1 ( ΔR = RLR

var
− RHR

var
 ), indicating the expected total resistance in the low resistance case. The shaded region indicates the range of cylinder frequencies where we expect 

to see a net exponential amplification of a f = 1181-Hz signal.
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DISCUSSION
The black hole laser, predicted by Jacobson et al. (21) as a way to am-
plify analog Hawking radiation, and Press and Teukolsky’s black hole 
bomb (15) are examples of black hole instabilities that are enhanced 
by the presence of a surrounding mirror that increases the mode den-
sity in the vicinity of the unstable region (11). The experiments pre-
sented here are a direct realization of the rotating absorber amplifier 
first proposed by Zel’dovich in 1971 and later developed by Press and 
Teukolsky into the concept of black hole bomb. In both of these cases, 
the amplifier is seeded by the quantum vacuum, and this amplifica-
tion of quantum fluctuations from a rotating absorber still remains to 
be observed experimentally. In this work, the amplifier is operated at 
room temperature and is therefore seeded by noise that dominates 
vacuum fluctuations by many orders of magnitude. Nevertheless, the 
physical ingredients are as proposed more than 50 years ago. The re-
sults show that extraction of rotational energy from an absorber with 
exponential amplification of EM waves can be observed at low fre-
quencies, where the conditions for negative energies (or negative re-
sistances) can be met. Furthermore, it also shows how this unstable 
regime can be switched on and off as predicted for the black hole 
bomb (16). A challenge for the future remains the observation of 
spontaneous EM wave generation and runaway amplification seeded 
from the vacuum. However, based on the results presented here, this 
now remains a purely technological (even if very hard) feat. As point-
ed out by Unruh, any quantum noise amplifier is “completely charac-
terized by the attributes of the system regarded as a classical amplifier 
and arises out of those classical amplification factors and the com-
mutation relations of quantum mechanics.” (22). A first necessary 
step, as shown in this work, therefore is the realization of said classical 
amplifiers; this work provides one possible technical solution and a 

route toward future experiments aimed at measuring vacuum ampli-
fication from rotation and related quantum friction effects.

METHODS
Experimental details
The setup is depicted in Fig. 1B. Our Zel’dovich cylinder is a 40-mm-
diameter solid aluminium conductive cylinder attached to a DC motor 
[Maxon ECXSP19L 2 pole brushless DC motor, 0- to 900-Hz rotation 
rate, as in our previous work (19)], which provides a controllable rota-
tion speed. This rotating absorber is surrounded by the stator of a three-
phase quadrupole induction motor (Panasonic M8MX25G4YGA). 
The air gap between the stator and cylinder is ≈1 mm. The stator con-
sists of three sets of four coils. Each set of four are wound in alternate 
directions between adjacent coils to create a quadrupole magnetic 
field when a current flows. If the sets are provided the same alternat-
ing current with a phase difference of 120°, then the total quadrupole 
field rotates. As visualized in Fig. 2A, the field rotates at half the fre-
quency of the AC, as when the current has progressed by 180° the field 
has only rotated by a quarter circle (90°). The rotating quadrupole 
field has the topological charge m = 2. A Hall probe was used to con-
firm the rotation direction for a given phase ordering of the coil sets.

Each set of coils was connected in series with a capacitor and 
resistors to form a resonant RLC circuit for each phase. The combi-
nation of a capacitor (which stores energy in an electric field) and 
inductive coils (storing energy in a magnetic field) allows energy to 
oscillate between them with a resonant frequency of

ωres = 2πfres =
1

√

LC
(2)

A B

C D

Fig. 4. Experimental results: Open-loop configuration. (A) Increase of the voltage measured over the 5-ohm resistors in the circuits, on a log scale, when the cylinder is 
set to rotate at F = +643 Hz and driven in the open-loop feedback configuration. No input signal is supplied to the circuits. We show the envelope of the signal measured 
in time, bandpass filtered to the 1100- to 1250-Hz band shown in (B). The inset shows the circuit evolution over an equal measurement time for the cylinder driven to 
F = +660 Hz, which grows more rapidly, evidencing the cyclical self-halting and amplifying behavior of the system. (B) Spectrogram of the measured signal (decibel taken 
with reference to max value), highlighting that the signal is seeded by the noise floor in a narrow band of frequencies that correspond to the most negative total resistance. 
(C) Measured cylinder rotation rate F over time, exhibiting a marked decrease in correspondence to the exponential growth of the circuit voltage; this is an evidence of the 
system converting mechanical rotational energy into EM energy. (D) Total resistance R extracted from the signal that is negative (in the initial linear region around −0.75 ohms) 
until the cylinder slows down sufficiently that the cylinder gain (negative resistance) is overcome by the circuit resistance, resulting in a positive total net resistance.
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While in the main paper frequencies f and F are used, in the 
methods section, the angular frequencies ω = 2πf and Ω = 2πF will 
be used for simpler expressions in the mathematical theory.

The total resistance in the circuit was controlled by a fixed 5-ohm 
resistor and a variable resistor Rvar. Each phase circuit input voltage 
was provided by one output of a Zurich Instruments (ZI) lock-in 
amplifier (HF2LI), which has its own internal resistance of ≈50 ohms. 
Connecting the ZI output across the 5-ohm resistor, it acts as a 
voltage divider producing an effective source input voltage Vi and 
lowered effective source impedance Ri  =  4.54 ohms (Fig.  6). The 
three-gang variable resistor was used to vary the total resistance in 
the circuits simultaneously. This controlled whether the system has 
low enough resistance for the cylinder rotation to take the circuit 
into a total negative resistance instability regime, without changing 
other elements in the circuits.

Circuit model
The effective RLC circuit for each phase as described in the previous 
section is represented in Fig. 6 and includes the stator coils (L0, R0, 
and RM), the field interacting with the cylinder (, ) in series with 

a capacitor (C), a fixed 5-ohm resistor and a variable resistor Rvar. 
Values for each phase are given in Table 1.

The circuit can be modeled in a simple way by a transfer function 
for complex output voltage Vo (measured over the coils) from com-
plex input voltage Vi (applied over the 5-ohm resistor)

The capacitor impedance ZC = 1∕(iωC) and the impedance of 
the coils and their interaction with the cylinder Zcoil+cyl = Zcc = 
R
cc
+ iωL

cc , where

Here, R0 is the ohmic resistance of the stator coil, RM accounts for 
any other effective resistance present without the cylinder, such as 
mutual resistance between circuits or from induced currents in sur-
roundings. L0 is the inductance of the coil without the cylinder, and 
  and   are the effective resistance and inductance contributed by 
the presence of the cylinder and its rotation, which is where the 
Zel’dovich effect appears.

Rearranging Eq. 3, Zcc can be extracted from our measurements 
of output voltage and known circuit values

The total resistance and inductance in the circuit can be found as

(R shown in Fig. 3B) and L shown in the Supplementary Materi-
als). When the cylinder is not present ( , = 0 ), the total resis-
tance of the circuit by itself is Rcirc = R0 + RM(ω) + Ri + Rvar , and 
the inductance of the circuit itself is L0. By comparing the data taken 
with and without the cylinder present, the extra contributions of the 
rotating cylinder (  = R − R

circ and  = L − L
0 ) are evident.

When the circuits are exponentially amplifying, there is no mea-
surable input signal provided, it is initially seeded by random noise, 

Vo =
Zcoil+cyl

Ri + Rvar + ZC + Zcoil+cyl

Vi (3)

Rcc = R0 + RM(ω) +(ω,Ω) (4)

Lcc = L0(ω) + (ω,Ω) (5)

Z
cc
=

(

Z
C
+ R

circ

)

V
o

V
i
− V

o

(6)

R =ℜ
[

Zcc

]

+ Ri + Rvar (7)

L = Lcc = ℑ
[

Zcc∕ω
]

(8)

A

B

Fig. 5. Experimental result: Circuit voltage amplitude and phase for varying cyl-
inder frequency as well as cylinder and circuit frequency. The high resistance P2 
amplitude (A) and phase (B) dataset for different frequencies and rotation speeds. 
The Zel’dovich amplification threshold F = f∕2 is indicated with a dashed line. The 
resonance peak changes in both frequency and amplitude with rotation speed.

Fig. 6. Circuit for each phase. When the ZI is connected as input signal, Ri =  
(50×5)

50+ 5
Ω = 4.54Ω ; otherwise, Ri = 5 ohms.
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and the frequency response Eq. 3 is no longer useful. Instead, we use 
the time domain expression of the voltage amplitude envelope func-
tion over time t, which for a standard RLC circuit is given by

Zel’dovich cylinder model
First, from the point of view of the cylinder, a varying magnetic field 
impinging on a conductor induces eddy current loops in the conduc-
tor, which causes a responsive magnetization of the cylinder (a re-
flected field) and dissipation of the field energy. This response of a 
material to an applied magnetic field is described by its complex mag-
netic susceptibility χ = χ� − iχ�� . In our case of a conductive alumini-
um cylinder, the dependence of the susceptibility on field frequency 
ω_ can be understood through the physics of penetration depth, δ

where σ is the electrical conductivity of aluminium (3.77 × 107 at 
20°C), μ  =  μ0μr, where μ0 is the vacuum permeability and 
μr = 1.000022 for the relative permeability of aluminium. The pen-
etration depth scales with frequency as 1∕

√

ω . An EM wavelength 
much smaller than the conducting cylinder dimensions cannot pen-
etrate very far, and interaction with the entire cylinder is restricted 
to a thin layer of eddy currents on the surface; at this extreme, the 
reflection is strong and the absorption is weak. An EM wavelength 
that is very large compared to the cylinder can pass through the en-
tire cylinder without much interaction, so both responses are weak 
at this extreme—same as the cylinder that is not present at all. When 
the wavelength is on the same order as the dimensions of the cylin-
der, the field penetrates far into the conductive cylinder without 
simply passing through, maximizing the absorption response.

When the cylinder is rotating at Ω, an external field of frequency 
ω with angular momentum m (with respect to the rotation axis) ap-
pears to have a rotationally Doppler-shifted frequency

in the rotating frame. One can imagine from Fig. 2A how a point on 
the cylinder surface, rotating around the centre, will experience a 
different field frequency due to the way it rotates and sweeps through 
the spatially and temporally varying field. The cylinder’s response 
function to a field with angular momentum changes correspond-
ingly with rotation thanks to that shifted frequency changing the 
effective penetration depth δ(ω_).

If the cylinder is corotating fast enough, ω_ can become negative. 
What happens to the response in that case? Zel’dovich argues (1–3) 
that to avoid breaking the second law of thermodynamics when 
conserving energy and angular momentum, when ω_ becomes neg-
ative, the absorption (proportional to χ�� ) also must flip sign, turn-
ing into amplification. This results in an odd-symmetric absorption 
response about ω_ = 0.

Looking at the amplification from the point of view of the RLC 
circuit, the eddy currents induced in the conductive cylinder will 
couple a magnetic flux Φrefl into the circuit. We can write the re-
flected flux as Φrefl = α(ω_)I, where I is the current applied to the 
circuits, and the complex flux response function is α = α′ – iα″. The 
response function α has to be evaluated at the field frequency ω_ 
seen by the cylinder in the rotating frame. However, the magnetic 

flux reflected into the circuit will oscillate in the laboratory frame at 
the applied frequency ω, so the associated voltage induced in the 
circuit is

From the complex flux response function α, we can define the 
resistance   and the inductance   generated by the presence of the 
cylinder as

To find analytical expression of α we note that from the defini-
tions of circuit inductance L and of α

Here, Φappl = LI is the self-magnetic flux applied by the current 
I. The fields Brefl

r
 and Bappl

r  are the radial components of the reflected 
and applied fields evaluated at the coil surface. We assume that the 
coils are shaped to be parallel (and very close) to the cylinder exter-
nal surface and neglect border effects from the finite length of the 
cylinder, so the fields can be assumed to be uniform across the 
coil area.

Now, the problem is how to calculate Brefl
r

∕B
appl
r  , which requires 

solving the Maxwell equations for the cylinder with proper bound-
ary conditions in the frame rotating with the cylinder. We use an 
analytical infinite cylinder model, generalizing the result derived in 
(19, 23) for a dipolar field (m = 1) to fields with arbitrary angular 
momentum m. A rotating field with cylindrical symmetry of order 
m features radial and azimuthal components rotating at ω_ with 
an angular dependence exp (−imφ) . In empty space, the solutions 
are of the form f (r)e−imφe−iω−t with radial functions f (r) ∝ rm−1 or 
f (r) ∝ r−m−1 . The first solution can be interpreted as the field ap-
plied by the coils Bappl (vanishing at r = 0 for m > 1), the second 
solution as the field reflected by the cylinder Brefl (vanishing at infin-
ity). Inside the metallic cylinder, the Maxwell equations take the 
form of the Bullard equations, and the radial part can be expressed 
in terms of Bessel functions (23). Using these solutions and applying 
the boundary conditions at the cylinder surface, after defining

we find

Here, Jm are Bessel functions of first kind and δ is the effective 
penetration depth in the rotating frame δ = 1∕

√

σμ(ω−mΩ) . Note 
that in the latter equation r is the radius at which the coils are lo-
cated, while a is the radius of the cylinder. In our setup, m  =  2, 
a = 0.020 m, and r = 0.021 m, so (a∕r)2m ≈ 0.8.

By plugging S in Eq. 15, we find α, and by means of Eq. 13, we find

V ∝ e−
Rt

2L (9)

δ =
1

√

σμω−
(10)

ω− = ω −mΩ (11)

V = iωΦrefl = iωα
(

ω−

)

I (12)

 =ℜ
[

V∕I
]

= ωα��
(

ω−

)

(13)

 =ℜ
[

Φ∕I
]

= α�
(

ω−

)

(14)

α

L
=

Φrefl

Φappl
≃

Brefl
r

B
appl
r

(15)

S =
Brefl
r

B
appl
r

(16)

S=
�

a

r

�2m

�

μ
r
+ 1

�

J
m

�
√

i a
δ

�

−
�

i

m2

a

δ
Jm−1

�
√

i a
δ

�

�

μ
r
− 1

�

J
m

�
√

i a
δ

�

+
�

i

m2

a

δ
Jm−1

�
√

i a
δ

� (17)
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where A is a constant of the order of 1 that can be used to take into 
account inaccuracies and border effects. We expect A < 1 since bor-
der effects imply a loss of efficiency. We have used Eq. 18 for the 
theoretical curves in Fig. 2B and the fitting curves in Fig. 3. In the 
latter case, we find an efficiency factor A = 0.397.

When the cylinder corotates at the same speed of the rotating 
field, ω_ = 0, the reflected field vanishes and S = 0. When the cylin-
der corotates faster than the rotating magnetic field, ω_ becomes 
negative, flipping the sign of ℑ[S] , thus changing the effective resis-
tance of the cylinder  from positive to negative. This counteracts 
the positive resistance of the coil and the rest of the circuit and, if the 
effect is sufficiently strong, can cause the total resistance of the 
whole system to become negative, allowing for an exponential am-
plification instability.

Experimental procedure: Stable regime
For the stable regime, the ZI HF2LI was used to supply the input 
signal (Vi at f) and measure the RMS (root mean square) output 
signal (Vo, at the input frequency f) amplitude and phase with re-
spect to the input reference. As the HF2LI models only have two 
outputs and two inputs each, two were used, and one locked into the 
other to always provide the three excitation voltages Vi at the same 
frequency with a fixed 120° phase difference between them. Only 
the HF2LI providing the initial oscillator reference could perform 
lock-in measurements of Vo at a reasonable speed, so while all three 
phases were always energised with Vi while taking data, only two 
phases Vo were measured at once. To get data from all phases, runs 
were repeated, swapping out one of the measured phases.

The dependency of the steady-state voltage output on both cir-
cuit frequency (f) and cylinder rotation frequency (F) was investi-
gated. The cylinder frequency was set and strictly maintained with 
closed-loop control by the controller for the maxon DC motor. The 
direction of cylinder rotation could also be chosen. For a set cylin-
der rotation speed (in the range 0 to 900 Hz) and also for the case of 
no cylinder present (to determine Rcirc and L0), voltage measure-
ments were taken, while the circuit frequency was swept, usually 
recording at 250 points from 600 to 2600 Hz. Figure 5 shows the 
measured Vo amplitude and phase for the three circuits as a function 
of f and F when Rvar has its higher value. These data were then ana-
lyzed using Eqs. 6 and 7 to extract R and L measurements.
Attenuated measurements
When the amplification was high, the resonance peaks would saturate 
the ZI’s 1-V (RMS) input range, which could lead to an underestimate 
of the output voltage. To avoid this, data at some rotation frequencies 

(667 to 800 Hz) were taken with the measurement probes on 10× at-
tenuation mode. However, it came with the issue that the recorded 
voltage was not an exact 0.1 multiple of the 1× recorded voltage, but 
the amplitude and phase depended on magnitude and frequency. 
Small corrections to the conversion were needed to incorporate these 
few data points with the normal 1× measurements dataset.

Data taken at the same cylinder rotation (667  and 800 Hz) in 
both 1× and 10× modes were used to fit modified conversion func-
tions for our amplitude and phase data

with values for each measurement channel shown in Table 2. The 
noise level for those measurements is also amplified, which becomes 
noticeable in the derived values at the tails of the resonance peaks 
where the amplitude is very low (fig. S5 for example).

Experimental procedure: Unstable regime
To investigate the unstable exponential amplification regime, no in-
put signal was required, so the input and outputs of the ZI were re-
moved, and the three phases were measured simultaneously with an 
oscilloscope (Tektronix, DPO2024B). When this voltage was mea-
sured over the coils, the oscilloscope would saturate (fig. S8), where-
as measuring over the 5-ohm resistor allowed the peak voltages at 
the turning point to be recorded fully (Fig. 4). The cylinder speed 
would be set by the DC motor control to be in the exponential am-
plification region. Here, an open loop control (24) was used to set a 
demand speed the system would try to achieve by sending a voltage 
proportional to the speed and the drawn motor current. This is a 
slower and less strict adjustment than the closed loop control, which 
uses the motor’s actual speed for feedback. The open-loop control 
allowed the motor speed to drop below the instability threshold 
when the cylinder was transferring large amounts of energy to the 
RLC circuit, which cut off the process, this limiting mechanism sav-
ing the RLC circuits from getting fried repeatedly under the more 
strict maintenance of the closed-loop control.

From the oscilloscope data, the spectrogram is generated directly 
from the data, with the size of the FFT block chosen to produce 
a spectrogram with reasonable trade off between time and frequen-
cy resolution. For other measurements, a Hilbert transform is 
used to extract the instantaneous amplitude, phase, and frequency 
of the signal. This extracts the peak voltage amplitude, not the RMS 
( Vpeak = Vrms

√

2 ). An optional butterworth bandpass filter can be 
used to filter away the noise outside the frequency region of the signal. 
The data are smoothed by averaging over time (e.g., from 12.5-kHz 
sample rate to 62.5 Hz). The regions of each channel, where it 

 = ωα��
(

ω−

)

= A ωL ℑ[S] (18)

 = α�
(

ω−

)

= A L ℜ[S] (19)

∣V ∣ =
(

v
1
+ v

2
f
)

∣V
10X

∣v3 (20)

ϕ = ϕ10X + p1 + p2f + p3f
2 (21)

Table 2. Values for attenuated measurement conversion corrections. 

Circuit v1 v2 (s) v3 p1(°) p2 (°s) p3 (°s2)

 P1 10.82 −4.039 × 10–4 0.9922 0.5954 −5.53 × 10–3 1.507 × 10–6

 P2 11.23 −5.069 × 10–4 0.9955 −4.186 0 0

 P3 11.42 −5.837 × 10–4 0.9971 3.788 −0.01007 2.494 × 10–6
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measures within its measurement range, are combined to make a 
single voltage envelope signal from the three channels. L is calculated 
from the frequency using Eq. 2 and then combined with the instanta-
neous amplitude exponent value to calculate R from Eq. 9.

Supplementary Materials
This PDF file includes:
Figs. S1 to S10
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