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Assessing synthetic difficulty in computational organic materials discovery

by Joshua Thomas Dickman

This thesis presents a study of computational organic materials discovery, focused on
the generation and assessment of small molecule aromatic fused ring systems. This
was accomplished through the use of MolBuilder, an evolutionary algorithm built to
efficiently navigate chemical space by guiding molecular generation according to
calculated properties; various methods to incorporate the assessment of synthetic
feasibility in generated molecules are demonstrated, in particular the use of

computational tools which estimate synthetic difficulty from molecular structure.
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Several molecular generation campaigns were conducted with MolBuilder, aiming to

optimize physical properties and incorporate a bias towards synthetically feasible

candidates for applications in organic semiconducting materials, by constructing

titness functions which optimize one or more objectives as part of the molecular

generation process. Top performing species sampled in this manner exhibit promising

calculated reorganisation energy values while maintaining low predicted synthetic

complexity, and could be suggested as targets for experimental work.
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Chapter 1

Introduction

1.1 Background and Motivations

The work described in this thesis can broadly be separated into three categories; the
use of a computational approach to materials discovery, how molecules can be
generated with programming and optimized in terms of desired properties, and how
synthetic difficulty can be estimated using computational tools given only information

on a molecular structure.

1.1.1 Discovering new materials

Materials discovery encompasses the broad range of work, searching for new
materials with promising properties for real-world applications, for example the class
of organic molecules which can be used as semiconducting materials in devices such
as organic light-emitting diodes (OLEDs) or organic field-effect transistors (OFETs),
and molecules which are able to form porous framework structures for applications in

gas-absorption or catalysis.
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Traditionally, the materials discovery process has been largely reliant on a
trial-and-error approach, where past knowledge of materials which exhibit promising
properties is exploited to determine the direction of future experimentation; for the
most part, this means that research often becomes restricted to small iterations of
known material classes, particularly due to the risk associated with exploring

completely new ideas.

1.1.2 Materials discovery aided by computation

Recent advancements in data-driven techniques, increases in computational power,
and an ever-growing base of knowledge found in the literature have increased the

feasibility of implementing computational tools into materials discovery processes.

Computational tools which were previously used to analyse and rationalise
experimental findings can also be used in a predictive manner, before any physical
experimentation takes place. The results of such analysis can guide the exploration of
potential material spaces towards candidates with promising calculated properties, or

be used to rank and prioritise species suggested to experimental chemists.

Through the use of a computational lab bench’, molecules can be constructed with
little to no cost, through the combination of molecular substructures, or the prediction

of outcomes given reaction and reagent combinations.

These processes may not always follow the rules of organic chemistry, or mirror the
actual outcomes of reactions, meaning that unrealistic or difficult-to-synthesise targets
can be generated; the occurrence of such cases can be mitigated through the careful
definition of rules when generating molecules, and by adding consideration of the

experimental synthesis process into the computational "toolbox’.
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1.1.3 Predicting synthetic difficulty

Computational exploration of a chemical space is an excellent step on the path to
material discovery, but experimental validation is vital; generated molecules need to
be synthesisable in a laboratory, both to be used as materials in the first place, and to
ensure that predicted properties are realistic. This means that any molecules
generated through computational engines must be checked to ensure that they are

chemically sound, and are accessible through feasible synthetic pathways.

Synthetic difficulty is an abstract and relatively subjective concept, describing a
molecule in terms of how easy or hard it may be to generate in a laboratory; this is not
a property that can be calculated through the simulation of molecular structure, or

assigned a definitive value.

Even scores from synthetic chemists can vastly differ when asked to assign synthetic
difficulties to a given species, as their often diverge due to differing experience and
skill sets; predictive methods, such as the work described by Bonnet (2012), that are
based on responses from a group of chemists have required the use of average scores,

due to a disparity in their opinions.

Capturing and considering all of the relevant factors of organic synthesis is a
monumental task; instead of trying to estimate scores which consider every aspect
contributing to easier or more difficult synthetic targets, many computational tools
look at different sets of factors to determine how synthetically feasible a given

molecule may be.

Synthetic difficulty scoring can be based on the molecular structure alone, through the
use of computational models trained with datasets of known molecules, or on
information pulled from computer-aided synthesis planning and databases of known
reactions such as Reaxys (https://www.reaxys.com/). By assessing the results of such
scoring functions during the materials discovery workflow, molecules generated
through computation can be suggested for further experimental work, with improved

confidence that they can actually be synthesised and studied in laboratory settings.


https://www.reaxys.com/
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1.2 Thesis overview

As stated at the start, this project can be split into three overall aims; the research and

work covered by this thesis aims to showcase the following:

¢ Improvements made to the Day Group CSPy code used as part of a larger
materials discovery workflow; in particular, the approaches to molecular
generation, and optimization of target properties through the use of molecular

modification operations within a genetic algorithm.

¢ Execution of organic materials discovery campaigns with MolBuilder, an
evolutionary algorithm designed to efficiently explore chemical space while

optimizing molecular and solid state properties.

¢ Implementations to add consideration of synthetic feasibility during chemical
explorations with MolBuilder, through the addition of synthetic difficulty
estimation methods which assess molecules discovered during materials

discovery campaigns, both during and after-the-fact.

With these changes to the code, and subsequent generated results, this thesis will aim

to answer the following research questions:

¢ How useful is the assessment of synthetic difficulty during material discovery

workflows, and what kind of information is gained from this analysis?

¢ Synthetic difficulty can be considered at several points within the materials

discovery process; at what point is it best to estimate and utilise these results?

¢ Different synthetic difficulty estimation tools look at seperate aspects of the
molecule, its predicted synthetic path, or its place in a wider reaction network of
reagents and products; which approach is the most effective for producing

synthetically feasible species?

¢ Can the limitations of narrow focus on synthetic difficulty reduction be
mitigated by considering other properties in a multi-objective optimization

approach?
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1.3 Thesis structure

Starting with a review of the literature, current computational approaches to synthetic
difficulty prediction will be described, both to provide context for this work, and to
begin an explanation of the theory behind these tools. Literature concerning the use of
computational tools within materials discovery process will be discussed, which
would place the results of this work in their wider context, along with some

discussion concerning the molecular classes targeted and their applications.

The approach to molecular generation and chemical space exploration will be
summarised in the context of past work, and literature produced by the Day Group,
providing an overview of the MolBuilder evolutionary algorithm and the theory it is
based on. Other approaches to molecular generation will be discussed, such as the
combination of known reagents and compatible reagents to produce libraries of
potential products; these topics will be brought together to describe their respective

places and use-cases within materials discovery workflows.

The theory supporting relevant computational tools, such as crystal structure
prediction and various property calculations, will be described to ensure that their use

within this work is justified.

This will lead into a discussion of the code that has been developed to implement
processes described by the theory; many changes have been made to MolBuilder,
allowing finer control over this evolutionary algorithm for molecular exploration.
These changes will be explained and justified, with a focus on how some new
functionality was designed to introduce biasing towards more synthetically feasible

molecules.

The research described in this thesis can be broken down into separate projects, each
of which takes a different approach to the consideration of synthetic difficulty, and
examines a different ‘type’ of chemical space. In these sections, the decisions made
regarding chemical space design and rationalisations behind them will be explained,

and the overall setup of these projects will be outlined.



6 Chapter 1. Introduction

Results found and analysis conducted during this project will be separated into
chapters according to the methodology used, ordered by the time at which each set of
experiments was conducted. The first section concerns the idea of "full chemical space
exploration’, where the goal is to generate all possible molecules within a defined
chemical space; this highlights the sheer number of species that are accessible even
through small sets of molecular building blocks, and the need for more efficient ways

to explore these spaces.

This will be followed by analysis of the results generated with a set of genetic
algorithms, which explored chemical spaces defined by sets of ring structures and side
groups, producing generations of molecules with iteratively better electron
reorganisation energies. More costly computational approaches will also be examined
where molecules with higher electron mobilities are targeted, showcasing the use of
large-scale CSP within evolutionary algorithms. The results from these experiments
will be further analysed in terms of synthetic difficulty, with multiple tools used to
estimate how easy or difficult generated molecules may be to synthesise in laboratory

settings.

A chapter will then discuss the optimization of estimated synthetic difficulty scores as
titness functions to be optimized by genetic algorithms, and how this impacts the

results of chemical space exploration.

The idea of 'multi-objective” genetic algorithms, which seek to optimize more than one
property, is then explored; this chapter focuses on bringing together promising
material properties and lower synthetic difficulty while exploring chemical space, and
the balance that needs to be found between objectives in multiple objective fitness

functions for optimization in genetic algorithms.

A final conclusions chapter will cover the main results and outline key findings, such
as how synthetic difficulty estimation with computational tools has impacted the
outcomes of genetic algorithms, and a comparison to results when these tools are used
as a post-hoc filter; potential avenues for future work will be discussed, particularly
tasks which will become feasible in the near future due to the current rapid increases

in computational power and resources.



Chapter 2

Literature Review

2.1 Computational molecular generation

There are several methods available for the creation of molecules through
computational settings in the literature; this work utilises both genetic algorithms and

reaction product enumeration to generate molecules.

2.1.1 Producing molecules with a genetic algorithm

Evolutionary algorithms (or genetic algorithms) use ideas from natural selection to
solve tasks, and are widely applied to problems in the cheminformatics field as noted
by Brown (2011); this type of approach was utilised as early as 1992, where genetic
algorithms were introduced as a method to calculate the ‘'minimum chemical distance’

between groups of molecules by Fontain (1992).

Genetic algorithms work well when applied to molecular generation tasks, for
example the work of Jensen (2019) in "travelling” chemical space to optimize logP
values in molecules whilst maintaining synthetic accessibility through computational
scoring; Tripp and Herndndez-Lobato (2023) highlight that these algorithms are
frequently able to outperform more complex, machine learning based approaches to

unconditional and single-objective optimization of molecular populations.
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MolBuilder is an evolutionary algorithm developed by Cheng et al. (2020) to search
defined chemical spaces by generating populations of candidate molecules with ideal
properties for a given material application. Development of this evolutionary
algorithm was handed over at the start of this project; the changes undertaken during
this time will be discussed in later chapters, such as modifications to the way in which

molecules are modified, and the implementation of synthetic difficulty consideration.

Populations of optimized molecules are generated with MolBuilder by executing the
four general steps in an evolutionary process: initialization, selection, genetic
operations and termination. As the algorithm progresses, “fitter” members of the
population will survive and proliferate, while "unfit’ members will "die off” and not

contribute to further generations.

Crossover + Mutations + Elitism
Preserve some top performers in
the next generation, and create the

rest using genetic operators

Setup Initialisation

Define fragments, Create an initial
mutations, target population of randomly
molecule size, etc. generated molecules

Selection
Evaluate the fitness of generations
each molecule completed?

Termination
Populations of
molecules outputted
with calculated fitness

FIGURE 2.1: Flowchart describing the evolutionary algorithm process for generating
molecules with optimized properties.

In the case of MolBuilder evolutionary algorithms, these four steps are applied to

generate, modify and optimize populations of molecules:

¢ Initiation: the user defines a starting set of molecular building blocks, which
determines what constructed molecules will be composed of; these are then used

to generate a random initial population of molecules.

¢ Selection: whenever a population is generated, each molecule is subjected to a

fitness function calculation, ranking the population by how promising predicted
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properties are; fitness functions can be any property accessible from the

molecular structure.

* Genetic operations: new populations are mostly generated through the use of
genetic operations, which take “parent’ molecules from the previous generation,

and combine fragments from each "parent’ to produce ’children’.

¢ Termination: Once the genetic algorithm has been run for a chosen number of
populations, the entire set of generations is outputted, along with any calculated

properties used in the fitness calculation.

"Genetic operations’ refers to the ways in which new ’child” molecules can be
generated based on molecules in previous populations, through crossovers of
fragments extracted from pairs of "parent” molecules, followed by a chance of
recombinations and mutations on each ’child’; these operations and their
implementations within MolBuilder are described fully in the theory framework and

code development chapters.

In an initial study of the method by Cheng et al. (2020), aza-substituted pentacene
species were targeted for use as organic semiconductors; reorganisation energies were
calculated with Gaussian(09 (Frisch et al.), and fitness functions based on this property

were used to bias the algorithm.

MolBuilder was able to generate promising candidate species with optimal calculated
reorganisation energies, which acted as a filter to extract top performing molecules
from the larger chemical space accessible; further, more expensive calculations were

performed only on the most promising subset of molecules.

2.1.2 Reaction-based approaches to molecular generation

Rather than generating molecules by combining fragments together in an arbitrary
way, there are several approaches which utilise reactions, encoded for use in
computational settings; these can then be applied to chosen molecules, producing

possible reaction products; Bradshaw et al. (2020) perfectly describe this approach to
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molecular generation, stating “it is not only important what to make, but crucially

how to make it”.

If molecules are constructed by iteratively applying known reactions, starting from
easy-to-obtain precursor species, then the molecular generation process effectively
captures and considers synthetic difficulty in-situ; Bradshaw et al. (2020) accomplish
this by automating the generation of directed acyclic graphs (DAGs) which represent

multi-step syntheses, through the use of a specialised deep-learning model.

In a similar publication, Schiirer et al. (2005) optimize so-called "vProtocols’, which
dynamically combine sequences of chemical transforms through the use of genetic
algorithms. These reaction sequences are evaluated by enumerating all potential

reaction products that each could produce with a given set of precursor molecules,

and calculating predicted properties for these reaction products.

Approaching molecular generation through the combination of reactions and reagents
was used by Patel et al. (2020) to produce a library of over one billion "readily
synthesisable” molecules, for use in drug discovery; 150,000 commercially available
molecular ‘building blocks” were combined with a variety of chemical transformation
steps, meaning that the generated molecules should have reliable synthetic pathways,

given access to the right reagents and equipment.

2.2 Synthetic difficulty

Computational methods are only one part of the materials discovery workflow; once
novel species have been identified, experimental chemists will want to synthesise
them. This can be a monumental task, especially when large collections of candidates

have been generated.

Estimation of synthetic difficulty can help bridge the gap between computational and
experimental chemists. Rather than suggesting a large set of candidates, many of
which could be unfeasible targets, species can be ranked by how difficult they are to

synthesise. The smaller, more accessible set of candidates can then be suggested to
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experimentalists for synthesis and analysis in laboratory settings, reducing material

costs, saving time, and accelerating the discovery process.

2.21 Estimating synthetic difficulty with computational tools

Many tools are available to predict 'scores’ regarding the synthetic difficulty of target
species, which focus on different aspects of molecules, or information extracted from

further analysis, which can influence how easy or difficult they may be to produce in

labs. Boda et al. (2007) suggest three general approaches to the prediction of synthetic
accessibility; these methods aren’t mutually exclusive, in fact a combination of

approaches can help to cover the shortcomings of each:

¢ Complexity-based methods: structures are examined using ‘complexity factors’
based on pre-existing data, such as the frequency of substructure appearances in
experimental databases. Scores are produced based on how complex the
substructures appearing in the target molecule are. Similarity to possible starting

materials and potential reaction pathways are not considered.

¢ Starting material-based methods: Building upon pure complexity-based
methods, similarity to starting materials can be considered by analysis of
frequently appearing substructures in a database of purchasable precursors.
While similarity to precursors can make some syntheses easier, information on
the synthetic route itself is not considered; connecting purchasable fragments or

modifying them to produce target molecules may not always be feasible.

* Retrosynthetic-based methods: Consideration of reaction pathways can be
achieved through computer-aided synthesis planning, where structures are
broken down into ‘retrons” which can be recombined by a known reaction. This
process is repeated until all retrons are available as precursors, or cannot be
broken down further. While retrosynthetic analysis can be costly and time

consuming, it is an obvious choice when investigating synthetic difficulty.
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Boda et al. (2007) constructed a scoring function with aspects of each 'category’,
incorporating molecular complexity (size, symmetry, branching, rings, unsaturation,
heteroatoms, stereochemistry), similarity to available precursors (identifying complex
substructures which can be purchased to reduce synthetic difficulty) and retrosythetic
reaction fitness (decomposing the target into smaller components, targeting common

‘retrons’).

Vorsilak et al. (2020) created a fragment-complexity based synthetic difficulty
estimation tool, SYBA, for the rapid classification of organic compounds as easy- or
hard-to-synthesize. Predictions of synthetic difficulty can be made by using molecular
complexity as a proxy; the appearance of fragments in the target molecule are
compared to frequencies of those substructures in both a database synthetically

accessible species, and a ‘synthetic” dataset of hard-to-synthesise species.

By making use of the Reaxys database, Coley et al. (2018) generate a reaction network,
and describe a method to predict synthetic difficulty based on the position of target
molecules within this network. These SCScores are likely to be lower in molecules
which are more similar to reagents than reaction products, implying less difficulty in
synthesis; if a molecule is similar to the product(s) of reactions, it likely requires a

reaction step to produce.

The ability to produce a feasible synthesis plan for a target molecule is a good
indication that it may be synthetically accessible, however this isn’t the only useful
information which can be obtained from retrosynthetic analysis: the number of steps,
yield of each step, and the availability of precursors can all be linked to synthetic
difficulty. Furthermore, if a given reaction results in a mixture of by-products,
separation and purification steps can increase difficulty in synthesis; the impact of
using reactions with multiple products should be considered. Many computational

retrosynthesis prediction tools already exist, based on a variety of algorithms/models.

One example is AiZynthFinder, a neural network-based retrosynthetic planning tool
produced by Genheden et al. (2020), which utilises a Monte Carlo tree search to
iteratively break down molecules into precursors. These precursors are compared

against databases of known reagents (e.g. the ZINC database), and synthetic
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pathways are constructed from a set of reaction templates (e.g. data from the US

Patent and Trademark Office, USPTO).

As suggested above, information on the number of reaction steps and in-stock
reagents can be used to build up some idea of a target molecules” synthetic difficulty.
AiZynthFinder includes a scoring function based on these values, where species with

short synthetic routes for which all reagents are available score highly.

2.2.2 Importance in materials discovery frameworks

When synthetic difficulty is not considered during molecular generation, candidates
may be too challenging to synthesise in the lab Gao and Coley (2020). During their
study of molecules which form porous materials in the solid state, Pulido et al. (2017)
discovered two promising candidates through the use of crystal structure prediction
and subsequent property predictions, labelled as T2 and P2; while T2 was
synthesisable, and exhibited good solid-state properties, time and resources were

spent in an effort to find a synthetic route to P2.

X
()

FIGURE 2.2: Two molecules, T2 and P2, discovered through computational efforts; one
synthesisable, and one not. Figure adapted from the work of Pulido et al. (2017).

The opposite case can also be problematic, as too much focus on synthetic difficulty
when generating molecules could lead to discovery campaigns getting "stuck” in

regions of chemical space with molecules that only have known, reliable synthetic
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pathways, or species that are too simple, likely already existing in databases of known

molecules.

While this may seem like a benefit at first, as all proposed molecules should be feasible
for experimental validation, there is a significant drawback; by limiting discovery to
species marked as synthetically accessible, the molecular generation algorithm is more
likely to propose known species. This result will appear for different reasons

dependant on the type of metric used.

2.2.3 When to consider synthetic difficulty

Synthetic difficulty can be assessed at multiple points within materials discovery

workflows, even when only considering the computational portion.

SYNTHETIC
DIFFICULTY
ESTIMATION

MOLECULAR PROPERTY
GENERATION EVALUATION

SYNTHETIC
MOLECULAR PROPERTY + DIFFICULTY

GENERATION EVALUTATION

e JOLECULAR o DSI\;NFTIHCEUTLITCY RO LI @©
GENERATION " cons1pERATION EVALUATION O)

FIGURE 2.3: Three approaches two implementing synthetic difficulty consideration
within the molecular generation process; based on Figure 1 from the work of Gao and
Coley (2020).

Evaluation of synthetic difficulty as a post-hoc filter (Figure 2.3 part a) is the simplest
approach, where molecules are generated without any consideration of syntheses;
instead, the entire set of generated molecules is passed through a final filtering step

after exploration is complete.



2.2. Synthetic difficulty 15

Heuristic biases can be implemented to guide molecular generation towards more
synthetically accessible species (Figure 2.3 part b), however typical rapid scoring
functions for synthetic accessibility such as SYBA focus on molecular complexity;
structurally complex candidates are not always synthetically complex, as steps to add
more complicated substructures can be feasible with a reasonable set of starting

materials and reactions.

Explicit constraints on the building blocks and molecular transformations of a
chemical space exploration campaign limits the proportion of the space that can be
assessed, but should produce more synthetically accessible candidates (Figure 2.3 part
c); this is analogous to the approach used by Patel et al. (2020), to produce the SAVI

library of 'readily synthesisable” molecules.

2.2.4 Benefits to the experimental chemists

Computational material discovery campaigns can result in a large set of potential
targets being suggested to experimental labs for synthesis; ranking the set of
molecules by predicted synthetic difficulty gives a guide to which molecules may be
‘easiest’ to generate in a laboratory. Anything that can be done to reduce the amount
of work in the experimental step of the material discovery process may result in saved

time, materials, and laboratory costs.

Alongside these savings, some approaches to synthetic difficulty prediction will
provide extra information and alternative approaches to the in-lab preparation of
candidate materials. In the case of tools such as AiZynthFinder Genheden et al. (2020),
predicted synthetic routes and required starting materials can be suggested alongside
the target molecular structure; even if the predicted pathway isn’t perfect, this
information may serve as a good ’starting point” for the experimental chemists’

approach to synthesis.
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2.3 Materials discovery

Materials discovery encompasses a range of fields, but can be boiled down to the
combination of materials science and “information sciences’; the power of
computational methods, particularly with ever-increasing access to large amounts of
data, can accelerate experimental processes and direct research towards materials with

given properties, filtering out candidates which aren’t fit for their desired purpose.

2.3.1 Experimental approach to materials discovery

Traditional materials discovery work generally relies on the exploitation of past
knowledge, where species known to perform well for given tasks are iteratively
modified in an attempt to improve their properties; without prior knowledge about
candidate materials, experimental attempts are more like ‘shots in the dark’, which
can be an unwanted risk due to the associated time and material costs required for

in-lab synthesis and analysis of candidate species.

Mroz et al. (2022) note that this issue compounds when the hypothetical size of the
design space is considered; for organic species alone, the number of potential
molecules is estimated to be between 102 and 10°°, which is far too many to examine.
As the amount of research completed in materials science increases, new knowledge
allows for further exploitation of ‘safe’, known material classes; however the inclusion

of computational methods can help accelerate the discovery process.

2.3.2 Benefits of the computational approach

Computation has traditionally been used to explain material properties and
structure-property relationships after experimentation. Mroz et al. (2022) describe the
use of computation to conduct rapid screening of vast numbers of materials,
predicting their properties and identifying promising candidates much faster than
traditional experimental methods; especially in comparison to the more traditional

‘trial and error” approach, as noted by Gu et al. (2019).
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Computational methods can significantly reduce the time and cost associated with
synthesising and characterizing materials in the laboratory; Keith et al. (2021) state
that thousands of molecules can be screened with computation in the same time it

would take for a single material to be synthesised and tested in-lab.

Despite the potential acceleration that computational approaches can provide, Mroz
et al. (2022) note that experimental researchers need to trust and rely on

computational predictions, particularly when exploring into novel material space; as
noted above, much of the "traditional approach’ to materials discovery is knowledge

based, and suggesting something completely novel can be met with hesitancy.

2.3.3 Considering synthesis and stability in materials discovery

As written by Oganov et al. (2019) in their review of the field, increasing availability of
computational resources and the development of reliable structure prediction
methods have been driving progress in materials discovery; many of the current
approaches, however, make no consideration of a system’s stability in the solid state,

or the presence of a viable synthetic route, according to Greenaway and Jelfs (2021).

In a letter to Nature Materials, Jansen and Schon (2004) describe this approach as
‘putting the cart before the horse’, stating that the landscape of a chemical system
should be explored for energetically stable regions before considering target physical
properties. A similar argument could be made for the synthetic route to candidate
materials; the set of molecules returned by a materials discovery campaign should all

be synthetically feasible, even if this eliminates a large proportion of candidates.
Montoya et al. (2020) frame materials discovery as an optimization problem, with
desired materials placed at minima/maxima of an arbitrary function:

materialx = argmin(Experiment(material))

Finding the ‘experiment’ function is no simple task, as in many cases the actual
behaviour a class of materials exhibits is highly complex; computational autonomous

materials discovery (CAMD) passes this problem to computational ‘research agents’,
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which apply their own logic and consider previously collected results to choose which
candidate materials to investigate. Feeding past results back into these decision
making “agents’ allows them to make use of heuristics, preventing excessive
re-sampling and promoting future hypotheses which move the experimental

‘campaign’ towards its target.

CAMD links computational discovery with the outside world via experiment-specific
application programming interfaces (APIs); the authors suggest density functional
theory (DFT) and molecular dynamics (MD) workflows as experiments, however due
to the program’s modular design, extension to real-life experiments (particularly
automated /robotic labs) should be feasible. This would involve computational
construction of experimental methods, or at the very least some consideration of

synthetic accessibility, which Montoya et al. do not discuss.

2.3.4 Molecular targets for materials applications

In this project, the majority of the work focuses on organic molecules which could be
used for semiconductor applications; side projects also consider a class of molecules
which could form porous organic frameworks, connected through hydrogen bonding

between rigid molecular units.

2.3.4.1 Small-molecule organic semiconductors

Organic molecules which exhibit promising properties as semiconducting materials
are candidates for use in various electronic applications, as noted by Chen et al. (2023),
such as organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs),

and as organic photovoltaic materials (OPVs) for solar cells.

In contrast to their inorganic counterparts, Quinn et al. (2017) highlight the tendency
of organic semiconductor materials to carry charges through a "hopping” mode, due to
larger intermolecular distances, more complex geometry of molecular units, and
higher levels of disorder in the solid state. These factors place higher importance on

the packing arrangements adopted by organic semiconductors; molecular units



2.3. Materials discovery 19

should fall into stable arrangements that allow for effective transport of charge
carriers, which can be boosted further through low energetic barriers to molecular

geometry reorganisation.

Moving from inorganic to organics also brings a higher level of design to materials
discovery, where small changes to the structure of molecular units can influence the
mobility of charge carriers in the solid state. Chu et al. (2018) describe their strategy of
using halogenation to enhance electron mobility; by varying the number and position
of chlorine and fluorine substituents on tetra-azapentacenes, reorganisation energies
can be lowered, and the crystalline packing arrangement can be influenced to promote

charge transport.

Cl N N Cl

Cl Cl

>i<
FIGURE 2.4: 4CIl-TAP, a chlorine-substituted azapentacene molecule discovered by
Chu et al. (2018) which exhibits remarkably high electron mobility values.
Through this approach, Chu et al. (2018) highlight the discovery of 4Cl-TAP
(Figure 2.4), which exhibited electron mobility values as high as 27.8 cm?V ~1s~1; this
value was attributed to a reduced molecular reorganization energy and more optimal

rt-stacking of the 4Cl-TAP molecular units, each resulting from chlorine substitution.
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2.3.4.2 Hydrogen-bonded organic frameworks (HOFs)

HOFs are potentially porous materials, comparable to other framework material
classes such as MOFs (metal-organic frameworks) and COFs (covalent-organic

frameworks).

Rigid organic molecular units with directional hydrogen-bonding capable motifs are
able to self-assemble through reversible hydrogen bonding interactions, forming
framework structures with open pores; the size and dimensionality of these pores can

be controlled through modification of the molecular units themselves.

Lin and Chen (2022) note high diversity in the potential applications of these
frameworks: gas storage in HOFs with large pore spaces, enantioselective separation
of mixtures through incorporation of chiral centres in HOF units, and use as
heterogeneous catalysts through post-synthetic modification of HOF frameworks to

include catalytic centers.

H 17 (T2E-a)

FIGURE 2.5: Diagram adapted from the HOF mini-review by Hisaki et al. (2019); ex-

amples of urea as a hydrogen bonding 'supramolecular synthon’, which appears in

T2’ (from the work of Pulido et al. (2017)), to form porous frameworks (experimen-
tally observed by Mastalerz and Oppel (2012)).

Research on this class of materials has gained momentum in the past decade, as noted
by Hisaki et al. (2019); heterocycles and urea motifs are highlighted as common
‘supramolecular synthons’, which provide directional hydrogen bonding and aid the

formation of rigid frameworks.
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Chapter 3

Theory Framework

This section will delve into the ideas and theory behind methods used in the project;
while the implementations of these concepts will not be explained here, points will be
closely linked with the following section, which will elaborate on the code developed

to execute this theory and generate results.

3.1 Computational handling of organic chemistry

Organic chemistry can be approached from a computational standpoint by encoding
molecular structures and manipulating them with code. There are many ways in
which molecules can be represented and stored, and unique analysis can be performed
in a computational context; furthermore, the potential outcomes of reactions can be

generated by converting reactive substructures into product substructures.

3.1.1 Storing and querying organic molecules

Molecules are frequently converted to and from different representations for storage
and use in computational workflows, where the structural information is translated
into one of several ‘languages’; these representations each have particular benefits and

downfalls, so choices must be made on the best type to use for different tasks.
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RDKit Molecule (or Mol) objects are at the heart of conversions between structure
representations and manipulation of molecules within this project; these Python
objects can be generated from, and converted to, the various representations utilised
in this work, with differing levels of information about the molecule in question

dependant on which representation is used.

SMILES (Simplified Molecular Input Line Entry System) is a commonly used
representation for storing molecules as text; symbols are used to describe atoms, and
their connectivity. A given molecule can be described with multiple SMILES strings,
where the same set of atoms and bonds can be described in different ways, so
canonicalisation of SMILES strings is vital to ensure no duplication of molecules in
sets; one ‘canonSMILES' is selected, and any SMILES representation a given molecule

can exhibit will be replaced by the chosen ‘canonSMILES’ instead.

clsccc?1

C#Cclccc2c(cl)clccceclclsccec2l C#HC O
=
O clcccccl

FIGURE 3.1: Showcasing the human-readability of SMILES strings - alkyne bonds are

easily noticed by presence of ‘#’, while aromatic rings and connectivity of atoms can be

noted by lowercase atom symbols, and numbers which specify which atoms connect
to which.

In this project molecules are mostly stored as SMILES, due to the balance it exhibits
between human-readable and computer-readable. 2D structure and connectivity is
preserved well on conversion to RDKit Mols, and SMILES strings can be examined "at
a glance’ to rapidly understand information about the stored molecules without fully
loading them and visualising a sketch; for example, it’s easy to see the presence of
aromatic heteroatoms, side groups, and certain bond types within molecules, as

shown in Figure 3.1.

SMARTS (SMiles ARbitrary Target Specification) is an extension to the SMILES
molecular entry ‘language’, built for sophisticated pattern matching of substructures
within molecules. Atom and bond types can be defined at different levels of

specificity, allowing flexibility to perform both vague and precise substructure
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matching; both cases have their uses, where less specific SMARTS patterns can be
used filter a dataset of molecules, selecting either two amine groups connected to two
adjacent carbon atoms, or a more specific pattern could be written to select only

ortho-dianiline substructures, where the carbon atoms must be aromatic.

Since these SMARTS strings are so flexible, they find many uses across the work

described in this thesis, including the identification and counting of ring structures
and side groups within generated molecules, filtering of datasets to remove species
with undesirable substructues, and their use in the reactionSMARTS strings, which
represent reactions as text by defining reacting centres with a SMARTS pattern, and

the outcome as a second SMARTS describing the result of the transformation.

InChI are unique text representations of molecules; as opposed to SMILES, which can
exhibit multiple representations for a given molecule, one InChl string always
corresponds to a single species. InChiKeys can be generated from InChl through
"hashing’ in a one-way conversion; InChIKeys cannot be converted back to other
representations, but find use in this project for the unique naming of output files and
folders, where representations such as SMILES and regular InChl contain “illegal

characters’ that cannot be used in the naming of files.

XYZ files store 3D molecular structures as a list of atomic types, and positions of
atoms in a Cartesian coordinate system; these are used for running calculations in
programs such as Gaussian09 (Frisch et al.) and Psi4 (Parrish et al. (2017)), where the
initial coordinates are a starting point for processes like molecular geometry
optimizations, leading to property calculations such as molecular reorganisation

energies and crystal structure prediction.

3.1.2 Molecular fingerprinting, similarity and diversity

Working with molecules in a computational setting allows for the similarity of species
to be evaluated and assigned a score, through the use of molecular ‘fingerprints’; these
fingerprints encode the structure of molecules, allowing for comparison between

species and a calculation of similarity scores, acting as a more defined metric rather
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than the "human approach’ of simply looking at two molecules, and subjectively

deciding how similar they are.

This work utilised "Morgan’ extended connectivity circular fingerprints, which can be

generated from molecular structures.

1. Circular 'neighbourhoods” around each atom are selected; e.g. the neighbouring

atoms, or those atoms plus their neighbours, and so on.

2. For each of these atomic neighbourhoods, a unique "sub-fingerprint” is
generated, which encodes the presence / lack of specific substructures. This can

be assigned a unique substructure ID.

3. A hash function and bit-vector mapping can be applied to each substructure ID;
the resulting bit vectors from these are used to determine which bits in the

‘overall’ Morgan fingerprint are set to 1, and which remain as zero.

4. Morgan fingerprints are generated at a fixed length; this can be changed, where
a larger fingerprint size allows for more unique substructures to be represented

(at the cost of more memory usage).

Once generated, these molecular fingerprints can then be compared with similarity
metrics such as Tanimoto similarity. Given the bit vector fingerprints of two
molecules, a Tanimoto measure of similarity can be calculated, where the intersection
(number of positions where both A and B have a 1) of bit vectors A and B is divided
by their union (total number of positions where either A or B has a 1); molecules

which share more "bits” are more similar, so score higher in this metric.

|AN B
|AUB|

TanimotoSim(A,B) = (3.1)
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Molecular similarity can be “flipped” to be used as a diversity measure (where
diversity = 1 — similarity), which becomes useful when looking at populations of
molecules generated with MolBuilder; a metric to determine "population diversity”
can be constructed using the average fingerprint diversity from all pairwise
comparisons of molecules in the set. This value is particularly useful when
populations of ‘random’ molecules are required; firstly to ensure that a set of many
populations are “at similar levels of diversity’, and secondly to confirm that the

molecules within each population are not too similar to one another.

3.1.3 Representing and applying reactions

Once molecules are loaded into RDKit, it is often desirable to perform modifications to
them, whether the idea is to predict the outcomes of reactions, or to attempt
transformations without 'real’ reaction equivalents. As mentioned in the discussion of
SMARTS notation, so-called reactionSMARTS strings allow for the encoding of
transformation patterns, following the syntax of molecular SMARTS to define reactant

and product substructures.

In a given reaction, only a subset of the atoms will actually be transferred, modified,
moved or reconnected; in many cases, the majority of the surrounding atoms can be
ignored, and changes are only made at the reaction centre. An obvious exception to
this in synthesis is the presence of additional substructures within a molecule which
can react in unintended ways; through the careful definition of highly specific reactant

patterns, this exception can often be mitigated.

Using reactionSMARTS, the transformations relating to 'real reactions’ can be encoded
as text, including changes to atom connectivity, ring formation/destruction, inclusion

of new atoms and removal of 'extra’ atoms.

Figure 3.2 outlines the structure of an exemplar reactionSMARTS pattern, and a
depiction of the reaction it corresponds to. The string representation can be split into

three sections, separated by ">":
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CC(=0)0.0CC>[H+] . [C1-] .0OCC>CC (=0)0cCcC
| J | J

Reactants Agents Product(s)

FIGURE 3.2: Simple example of a reaction mapped and represented using reactionS-
MARTS language

¢ The reactants, or molecular substructure(s) which get targeted / transformed by
the reaction. These can be numbered atoms, which allows for the definition of

their location in the products section.

¢ The agents, additional molecules/materials which need to be present, but aren’t
necessarily present in the reactants or products. ReactionSMARTS used in this

project don’t specify agents.

* The products, or resultant molecular substructures to be outputted by the
reaction; in cases where reagent atoms have been numbered, their connectivity
can be explicitly defined, through the matching of numbered atoms with the

reactant pattern, to allow for more complex operations such as ring formations.

Since reactionSMARTS encode only the reaction site to transformed, optionally
including neighbouring atoms to increase specificity of the target substructure, they
can be applied to any molecule with the corresponding reaction site, converting said
pattern to the product of the reaction. This flexibility must be used with caution, since
if the reagent pattern is too vague, it may apply to unexpected reaction sites; as an
example, a vague pattern intended to target ketones could also match the carbonyl of

an amide structure.

The reactionSMARTS language isn’t limited to realistic’ chemistry; as long as both the
reactant and product patterns follow SMARTS syntax, “unrealistic’ modifications can

be executed on molecules using frameworks such as RDKit. As discussed later on,
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molecular operations in the MolBuilder genetic algorithm utilise reactionSMARTS to
perform addition of molecular fragments, mutation of atoms into side groups, and the
fragmentation/recombination of one/multiple molecules. These operations don’t
correspond to ‘real organic chemistry’, but allow us to manipulate molecules in a way

that allows for interesting exploration and sampling of chemical space.

3.2 Using ideas from genetics to manipulate molecules

MolBuilder, the Day Group evolutionary algorithm built to efficiently explore
chemical spaces, pulls ideas from natural selection in order to optimize the
‘populations” of molecules it generates; at each iteration, top-performing members
according to the fitness function are either preserved, or modified with genetic
operations to produce the next generation of molecules via crossover operations. The
general idea stems from the theory of evolution, where the characteristics which make
top-performing populations members are preserved in new populations by
transferring them from parents to children; the general process undertaken by genetic

algorithms can be followed in the flowchart Figure 3.3.

Crossover + Mutations + Elitism
Preserve some top performers in
the next generation, and create the
rest using genetic operators

Setup Initialisation
Define fragments, Create an initial
mutations, target population of randomly

Selection
Evaluate the fitness of generations

: each molecule completed?
molecule size, etc. generated molecules

Termination
Populations of
molecules outputted
with calculated fitness

FIGURE 3.3: Flowchart depicting the general ideas behind genetic algorithms, and
how they can be used with a fitness function to produce optimized populations of
molecules
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The molecular modifications used in MolBuilder are referred to as ‘genetic operators’
due to the evolutionary nature of the algorithm; it’s useful to draw comparisons
between the workings of MolBuilder and the metaphor of generational changes to
populations, such as how the genetics of animals would change on an island over

time.

If molecules are thought of as "‘population members’, we can treat them as if they're
made up of ‘genes’, or molecular fragments; molecules which perform well according
to the fitness function are more likely to have good "genes’. It’s beneficial to keep said
‘genes’, or molecular fragments, in the populations as the algorithm progresses, as on
average, the population of molecules should exhibit better properties when more of

these good genes are present.

3.2.1 Genetic operations from a chemical standpoint

Genetic operations can be thought of in terms of the modification of molecules, as
outlined in Figure 3.4; in the case of MolBuilder, species are limited to fused ring
systems, so ‘genes’ correspond to the molecular fragments resulting from breaking
such fused ring systems along bonds shared between aromatic rings. Despite the
small number of operations, these can be combined to produce tens of millions of

molecules given a deceptively small set of molecular building blocks.

The "genetic’ idea is clearest when looking at the crossover operation, where two
"parent’ molecules are fragmented into a set of four fragments; these fragments can be
treated as genes, which are then swapped around and re-combined to produce ’child’
species. If the parent molecules are top-performing species selected from the previous
generation, the resulting ‘children’ carry aspects of their ‘parents’ structure,

potentially alongside more optimal properties.

The addition operation is the simplest of the genetic operations; this effectively adds a
new gene to a molecule, where the gene is a fragment either extracted from another
molecule, or chosen from a user-defined list of building blocks. This is useful as part

of the crossover operation, where two gene fragments need to be combined, and in
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cases where good genes are not yet present in the population, or where better genes

could be accessed via the addition of another fragment.

The mutation operation takes a molecule, and modifies it slightly through
transformation between atom types, or the addition of side groups; this is analogous
to the occurrence of random mutations in DNA. Mutations randomly occur when new
molecules get generated, and are useful to ‘push’ the genetic algorithm in directions
that aren’t necessarily optimal, but could lead to ‘better” populations further down the
line. Random mutations also help the algorithm avoid stagnation in the populations
of molecules, by performing 'nudges’ away from the current species, often resulting in

newly discovered population members.

Recombination is a similar operation to crossover, but utilises only one parent
molecule which is split into two genes and 'recombined” in a different configuration.
This is useful in cases where a molecule is already composed of good ‘genes’, but
rearrangement to an isomer could give different fitness values; this operation is
considered as an additional ‘mutation” operation, and has a random chance to be

applied to ‘child” molecules before they get placed into a new population.

3.2.2 Elitism and survival of the fittest

Elitism is a concept which allows genetic algorithms to preserve the best members of
previous generations when creating new populations, drawing on the idea of
‘survival of the fittest’; at each iteration, before creating ‘child” molecules to fill up a
new population, the best percentage of molecules from the current population

according to the calculated fitness function are carried over, without any modification.

This concept also applies when selecting the ‘parent” molecules from which new
“child” molecules are created. For each parent in a pair, a tournament selection process
decides between two members from the previous population; their relative fitness
values are compared and the better parent is selected in most cases, with a usually
small chance of the worse parent being selected instead. This is designed to match

cases in evolution where the fittest population members do not always get the chance
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X
Addition :j . ‘—
a

A(’clcccccl’, [’clc**ccl’], = ’clccc2ccccc2cl’

Y
Mutation —
P

M(’clcccccl’, [’[#6R1&H]’, °[#7R1&HO]’], []) = ’clccnccl’

Recombination ‘O — “O

R(’clccc2c(cl)ccc3c2cccc3’) = ’clccc2ecc3ccccc3cc2cl’

o Co

C(’clccc2ccccc2cl’, ’clcsc2clscc2’, [1, 5]) =
’clccc2c(cl)ccs2’ + *clccc2c(cl)ccs2’

Crossover

FIGURE 3.4: The molecular modification operations, or genetic operators, used within
MolBuilder to generate molecules

to reproduce, and parents with ‘less optimal genetics” are still able to pass their

characteristics on to the next population.

3.2.3 Exerting more control over genetic algorithms

Changes to the setup of a genetic algorithm play a significant role in what kind of
populations get produced, and how the evolution of these populations progresses; in

this work, certain parameters are chosen to implement design rules on the molecules
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to be constructed, and ensure a balance between chemical space exploration, where

new molecules are sampled, versus the exploitation of top-performing species.

This allows for the genetic algorithms to be tailored to the specific goals of the project,
including implicit consideration of synthetic difficulty through the choices of
molecular building blocks and limits on molecular size, and the selection of defined
initial molecule populations, meaning that several parallel genetic algorithms can be
initiated from the same starting point, while focusing on fitness functions considering

different properties.

3.2.4 Use in the context of materials discovery

The results of molecular generation through genetic algorithms can be considered as
the first step in a larger materials discovery process; by performing calculations of
desired physical properties as part of a fitness function to be optimized, populations
of promising candidates can be generated and passed to experimental chemists for

synthesis and analysis in a laboratory.

Providing results to aid experimental steps does not need to be the final contribution
from computational work; given the right framework, experimental results and
analysis can be fed back into the computational portion, and used to inform future
explorations. This would be particularly beneficial when considering
difficult-to-calculate physical properties; this joint experimental-computational
process would entail experimental chemists providing feedback to inform a
computational engine on which molecules exhibit promising properties, effectively

acting as a fitness evaluation in the "selection’ step of genetic algorithms.

3.3 Combining known reactions and precursors

Given a set of reactions and compatible precursors, a library of potential reaction

products can be generated by applying these reactions to supplied reagents, as
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described by Patel et al. (2020) in their production of a “synthetically accessible virtual

inventory’.

This approach would be useful in cases where a genetic algorithm is not necessary, for
example due to a relatively small set of molecules to explore; rather than optimizing
properties to direct exploration, all possible reaction outcomes could be generated,
and passed through post-hoc analysis of properties to identify the most promising

candidates before in-lab experimentation.

Reactions and precursors can be modelled within a computational context through
RDKit, and combined to predict potential products; for precursors which could be
converted to several products, perhaps due to multiple possible reactive targets, a
computational process can be executed to take note of all potential byproducts,
including the outcomes of a "partially complete’ reaction, where some reactive sites

are left untouched.

In terms of a collaboration with experimental teams, custom reaction product libraries
can be constructed based on the reagents available, and the reaction types that could
be performed. Rather than selecting a promising molecule, and requiring synthesis
before analysis can be conducted to determine if it exhibits the desired behaviour,
computational libraries of molecules ranked by their predicted properties can be used

to prioritise the most promising candidates for synthesis.

3.4 Molecular modelling and simulation of the solid state

3.41 Geometry optimization

3D molecular geometries are often required before physical properties such as
reorganisation energy, and the prediction of potential crystal structures, can take
place. When a molecule stored in text forms such as SMILES or InChl is loaded with
RDKit, it is initially generated with a set of 2D coordinates, which are used to draw
flat sketches of the molecule. Initial estimates of the 3D geometry can be made

through the use of a universal force-field optimization with RDKit.
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These estimates can then be fully optimized with density functional theory, where the
energy of a molecule in a defined geometry can be calculated based on the relative
positions of each atom; atomic positions are iteratively changed based on this
calculation, working to minimize the total energy and hence minimize strain between
atoms, eventually settling into an optimal geometry where each atom is "settled” as

much as possible.

3.4.2 Crystal structure prediction

Some physical properties cannot be calculated from molecular geometries alone, and
require information regarding the arrangement of molecular units in the solid state;
attempts to determine these arrangements can be made through crystal structure

prediction, or CSP.

The Day group maintains a Python-based crystal structure prediction software library
named CSPy, which handles the sampling of crystal energy landscapes, leading to
generation and minimization of possible crystal packing arrangements for a species

given its molecular structure.

Before generation of crystal structures can occur, the molecular geometry must be
optimized. In most cases, the conformation is assumed to be rigid after this point; a
flexible-molecule CSP approach has recently been under development, where multiple
molecular conformations are sampled alongside crystal packing parameters, at a

much higher computational cost.

Given the optimized molecular geometry, trial crystal structures are quasi-randomly
generated Case et al. (2016), adhering to restrictions on parameters set by the desired
crystalline space groups; these space groups determine the level of symmetry required
within crystal structures, according to symmetry operations such as translations,
rotations and reflections. Typically, the most common set of 10 - 25 space groups is

sampled.

There are several degrees of freedom to consider when sampling crystal structure

parameters, from the length and angle dimensions of the unit cell, to molecular



34 Chapter 3. Theory Framework

positions and orientations; sampling through a quasi-random Sobol sequence allows

for even sampling of these parameters.

Sampled structures are then checked for ‘clashes’ between molecules, and any unit
cells where this occurs are processed through use of the seperating axis theorem,
expanding the unit cell to remove any overlap between each molecular unit’s convex
hull; if this can be done without too much increase in the unit cell volume, the trial

structure is accepted and moves on to the next phase.

Acceptable trial structures are then lattice energy minimized, allowing the molecules
to “settle” into their optimal positions relative to one another; minimization is
performed through use of atomic multipoles within each molecule, generated from
the optimal gas-phase molecular geometry through distributed multipole analysis, up
to rank 6 (single point charges up to hexadecapoles). This process moves trial
structures around on the multi-dimensional landscape of lattice parameters, locating
local energy minima which indicate potential energetically stable packing
arrangements. The final set of energy-minimized predicted crystal structures can then
be visualised as an energy-density landscape, such as the plot of CSP results for
dibenzothiophene shown in 3.5.

DBZTHP structures (lowest 10 kj/mol)

spacegroup

e 4 —_
5
14 \
a6 5 /’
e 19
29
e 33 S CSD Match

128 130 132 134 136 138
density
FIGURE 3.5: Example CSP results for dibenzothiophene, from a collaborative study

with Villeneuve et al. (2022); plotting the energy and density of each generated crystal
structure give a good summary of the species’ crystal landscape.
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In cases where the species already exists, the generated crystal structures can be
compared to experimental data from sources like the Cambridge Structural Database
(CSD). Often the lowest energy structure on a generated crystal landscape will
correspond to the experimental structure, but as shown in Figure 3.5, this isn’t

guaranteed.

Such cases may be due to some inaccuracies in the force-field model used to perform
minimizations, or where experimentally observed packing arrangements are not the
product of thermodynamic processes; the lowest energy predicted crystal structure
should be thermodynamically stable, but experimental results may reveal a preference
for kinetic products in some systems, where a higher energy crystal forms perhaps

due to a large energy barrier ‘blocking’ the lowest energy arrangement from forming.

3.4.3 Charge carrier mobility

Molecules which exhibit high charge carrier mobilities are promising candidates for
use in organic semiconducting materials, where charges are able to flow between
molecules easily. Charge mobility has been considered in two ways during this
project; assessing election reorganisation energy through the use of molecular
geometry optimizations, and the determination of electron mobility through the

simulation of electron "hopping’ between molecules in predicted crystal structures.

Reorganisation energy describes the energy barrier to overcome during the process of
a charge carrier moving from one molecule to another. The size of this barrier is
determined by energy changes incurred through two processes; the geometry change
of a charged molecule releasing its charge and returning to a ground state, and the

geometry change of a neutral molecule receiving this charge.

Molecules with low reorganisation energies are targeted for use in semiconducting
materials, since the energy barrier between neutral and charged states is lower; in
particular, intramolecular reorganisation energies are a viable, relatively low-cost

property to predict when searching for candidate species to use in this application.
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In order to calculate the intramolecular electron reorganisation energy (A), the
energies of two molecular geometries at two different charge states (neutral and ionic)

are combined using the following equation to calculate a reorganisation energy value:
A= [E™(Ro) — (E°(Ro)] + [E°(R-) — (E™(R-)]

1. E~(Ro): Anion of the molecule, in the optimal geometry of the neutral form
2. E°(Ry): Neutral molecule in its optimal geometry
3. E9(R-): Neutral molecule, in the optimal geometry of the anionic form

4. E~(R_): Anion of the molecule in its optimal geometry

Electron mobility is predicted through the determination of charge hopping rates with
Marcus theory; assuming that an electron "hops’ from a charged donor molecule to a
neutral acceptor molecule sequentially, the rate at which such "hopping” occurs (k) can
be determined through a combination of the calculated reorganisation energy (1), an

electronic coupling term (V), and a chosen temperature (T):

VP [Tr —A
k= ket i, )

The electronic coupling term V describes how the electronic wave functions between

molecules overlap and interact with one another, and can be calculated at reduced cost
through the use of an atomic overlap model, fitted with 77-conjugated organic dimers
in mind as described by Gajdos et al. (2014); this models systems such as acenes and
arenes with sulphur, nitrogen and oxygen heteroatoms, which covers the classes of

species examined in this project.
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3.5 Synthetic difficulty estimation

The synthetic difficulty (or the inverse, referred to as synthetic accessibility or SA) of a
molecule is a measure of how easy or difficult-to-synthesise it is. It can be defined as a
metric, and estimated computationally, in multiple ways based on molecular structure

alone or a more in-depth retrosynthetic analysis.

3.5.1 Capturing the rules of organic chemistry in computational settings

Being able to store molecules/reactions and manipulate them is a brilliant step, but
when working with molecules in a computational context the rules dictating how
organic chemistry works aren’t enforced automatically; for instance, while generated
SMILES should generally be valid, and look like molecules, that doesn’t guarantee that
they are chemically feasible, let alone synthetically accessible. Prediction of synthetic
difficulty can be used as a way to check the validity of molecules generated by
algorithms, and act as a "sanity check’ by attempting to answer the question ”could

this molecule be made in a lab”.

There are several ways that the idea of "synthetic difficulty” can be interpreted, and
two chemists” opinions may differ even when given the same criteria; as mentioned in
the literature review, Bonnet (2012) note that when producing scores with a model
based on the opinions of a group of chemists, the average of responses had to be used

due to a variation in the scores assigned.

3.5.2 Synthetic difficulty scoring

Different views on synthetic difficulty can be considered when estimating scores, each
with benefits and drawbacks; as stated in previous sections, a combination of these
views could be created to extract the most information, and cover the shortcomings

that each approach has.
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3.5.2.1 Molecular complexity

One approach to the prediction of synthetic difficulty is the analysis of molecular
complexity, which can be constructed in many ways; while these methods aren’t
strictly related to synthetic accessibility, they can provide an estimate based on the

appearance of substructures common to sets of known molecules.

One such example produced by Ertl and Schuffenhauer (2009) is named SAScore,
producing scores based on fragment contributions from the PubChem database; by
assuming that molecules with high similarity to fragments in a representative set of
known molecules are more likely to have synthetic paths, and implementing
additional penalties for more complex structural features, the synthetic difficulty can
be estimated rapidly from molecular structure alone. These scores generally sit
between values of 1 and 10, with anything scoring above 6 considered to be

synthetically difficult.

Vorsilak et al. (2020) build upon the Ertl SAScore with their scoring method, SYBA
(SYnthetic Bayesian Accessibility), by basing fragment contributions on two
representative sets of molecules; an “easy-to-synthesise” set from the ZINC15 database,
and a "hard-to-synthesise’ set generated by the authors acting as negative samples.
These scores are based on the fragments appearing in the target molecule; the more
fragments from the target that appear in the "easy-to-synthesise” database, the higher
the score, and appearance of "difficult-to-synthesise” fragments lowers the score. In
this project, scores have ranged from -70 to 70; any molecule receiving a positive score

is deemed more likely to be “easier-to-synthesise’.

If molecular generation is biased too much by structural complexity measures such as
SYBA, the species generated may be composed solely with fragments which appear
often in the reference database used; species made up of these fragments will
outperform those with any fragments outside of those used as reference. The
likelihood of discovering novel species would likely drop as a result, where, for

example, genetic algorithms become "stuck’ in regions where the fragments are overly
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favoured; SYBA is one of the synthetic difficulty scoring approaches implemented as a

fitness function for use in genetic algorithms in this work.

3.5.2.2 Computer-aided synthesis planning

Rather than using molecular complexity as a proxy to synthetic difficulty, these
methods are based on the results of synthetic pathway predictions; this generally takes
longer than complexity-based approaches, but is closer to the retrosynthesis process
used by synthetic chemists to determine a reaction pathway to a target molecule.
Since scores are based on predicted pathways, the results should be examined closely
and taken more as suggestions, as predictive models are not perfect; as with any

data-driven model, the results can only be as good as the data used in training.

Computational prediction of synthetic pathways often struggles to see the bigger
picture, searching for the ‘best” synthetic step at each iteration; a reaction which these
tools may see as a step in the wrong direction” may lead to a more viable

intermediate, resulting in an easier synthetic route which is completely missed.

AiZynthFinder is an open-source tool produced by Genheden et al. (2020) for
retrosynthetic prediction, which can calculate synthetic difficulty scores based on the
synthetic paths it generates. Predictions are based on a Monte Carlo tree search
guided by a pre-trained neural network policy, iteratively breaking down the target
molecule based on a library of known reactions. The tree search continues until a set
number of reaction steps have been taken, a time-limit is hit, or a set of precursors

marked as purchasable are found.

The set of reactions available to the algorithm, and a database of ‘purchasable’
precursors, are defined before retrosynthetic analysis can begin; the defaults provided
by AiZynthFinder’s developers are the USPTO reactions (Lowe (2012)) and the ZINC
database of precursors (Sterling and Irwin (2015)), which can be swapped for

alternative sources if desired.

After retrosynthetic analysis has completed, the generated pathways can be

visualised. A given molecule may have had several pathways generated, so the
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FIGURE 3.6: Example synthetic pathway to an aza-substituted pentacene molecule,
predicted with AiZynthFinder

top-scoring pathway is selected by default. AiZynthFinder defines a default score to
predicted routes based on the number of reaction steps taken, and the availability of
precursors. Pathways with many steps, or with any precursors not present in the
database, achieve lower scores than those with fewer steps/all precursors available;
scores are mostly reliant on the fraction of discovered precursors which are marked as

"in stock’, with a small contribution from the number of reaction steps.

AiZynthScore = 0.95 * _n-in-stock_ + 0.05 * max_transforms
n_precursors

Over-biasing molecular generation with retrosynthetic-based synthetic difficulty tools
may lead to the algorithm getting trapped in regions of chemical space accessible with
reliable syntheses. Novel structures may require synthetic steps which are either not
present in the literature, or simply not considered by the synthetic difficulty metric.
Rather than implementing AiZynthFinder into the molecular generation process for
this project, it has been used as a post-hoc analysis tool to predict and score synthetic

pathways to molecules sampled with genetic algorithms.
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3.5.2.3 Reaction network-based scoring

Coley et al. (2018) use reaction data extracted from the Reaxys database to train a
neural network model in synthetic difficulty prediction, generating SCScores. The

model estimates synthetic complexity on the assumption that:

“On average, the products of published chemical reactions should be more

synthetically complex than their corresponding reactants”

For each reaction, an inequality constraint is applied to the chemicals present, stating
that reagent complexity should be lower than product complexity; this concept is
shown in Figure 3.7. Processing over 10 million syntheses from Reaxys this way
allows the model to estimate synthetic difficulty of unseen species informed by
historical trends in the database, in the context of known molecules used within

known reactions.

Coley et al. (2018) write that because synthetic complexity should be nonlinear with
respect to structure, simpler model architectures that may have enabled more
straightforward interpretations were not explored; this reinforces earlier points made
regarding the use of fragment-based molecular complexity scoring as a proxy for

synthetic difficulty.

Information on starting material availability is also learnt by the model; rather than
providing a stocklist, structures which tend to be present as reactants rather than
products are perceived as readily available. The authors state that this causes
discrepancies with previous synthetic difficulty scores to arise, since molecules

typically not considered precursors are labelled as such.

SCScore values range between 1 and 5, where molecules scoring highly are considered
to be synthetically complex, or more similar to the products of reactions than
reactants. This is one of the synthetic difficulty scoring approaches used in this project,

to be optimized during the generation of molecules with genetic algorithms.
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Increasing SCScore

FIGURE 3.7: Diagram from the work of Coley et al. (2018) to elaborate on the idea
which drives SCScores; as molecules become more similar to the "products’, deeper
into a reaction network, scores become larger.
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Chapter 4

Code Development

In order to execute the theory described in the last chapter, several existing
computational tools were implemented into, or used alongside, the Day Group’s code
base, CSPy; the code used to run MolBuilder also underwent significant development
over the course of this project. The implementation and use of computational methods
will be described in this chapter, which will elaborate on the work done to produce

results with these tools.

4.1 Working with molecules and reactions in Python

The Python library RDKit provides the base functionality for most of the
manipulation of molecules, conversion between and storage of various molecular
representations this project deals with. This section will discuss how this library and

others have been utilised to execute the theory discussed in the previous section.

4.1.1 Conversion between representations

The flexibilty of RDKit molecules shines through here; once a valid Mol object has
been created from one of many different representations, it can be manipulated using
RDKit functionality and/or converted to one of several other representations if

needed.
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FIGURE 4.1: Showcasing the ability to convert between molecule representations, with
RDKit Mol objects acting as a bridge between formats.

As shown in Figure 4.1, most conversions between formats are reversible, with the
only exceptions being InChIKeys and XYZ files; InChIKeys are generated by
performing irreversible hashing on the corresponding InChl, while XYZ files store
only the coordinates and types of each atom in a molecule, without any information
on bonding types and connectivity between them. The code in this project makes use
of several representations for different tasks, and the chosen representations changed

in some cases as the work progressed.

4.1.2 Defining building blocks

Molecular building blocks to be used in genetic algorithms were defined using
SMILES for the ring types, and SMARTS for the side group types. These were chosen
to make configurations more user friendly, as these representations are more
human-readable than others. SMILES worked well for the definition of ring types, as

single rings are relatively easy to define.

For the side group types, SMARTS made a better choice; as explained in a later
section, by using reactionSMARTS for genetic operators, defined mutation SMARTS
patterns could be appended to the end of a partial reactionSMARTS string, producing

the relevant "full’ mutation reaction on-the-fly.
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4.1.3 Storing molecules

At first, molecules were stored as InChl, making use of the behaviour that these
exhibit where one InChlI relates to only one molecule. This choice was changed to
SMILES strings when the approach to editing molecules was modified (described
later), and to make the inputs and outputs for MolBuilder consistent; building blocks
are supplied as SMILES, so it makes sense for the output molecule populations to be

stored as SMILES too.

Additionally, RDKit automatically "sanitizes” molecules when converting between the
Mol object and SMILES, ensuring that the bonding patterns make sense in the

generated SMILES output.

In order to ensure that SMILES can be checked against each other for uniqueness, the
RDKit function Chem. CanonSmiles () was utilised; a given molecule can have more
than one valid SMILES string, and this function will return the same SMILES for a

molecule given any valid options.

| Single SMILES reliably output |
$» C#Cclccc2c(cl)clccccclclsccc2l

’ Chem.CanonSmiles() |

clc(ccc2c3cesc3c3c(c21)cccc3)CHC

Chem.MolFromSmiles() ‘

| 2,159 valid SMILES possible |

v
- N ['clc(ccc2c3cesc3c3c(c2l)ccec3)C#HC',
O |Chem.MolToSm11es()| o 'C(#C)clcc2c(c3cesc3c3c2cccc3)ccl’,
—
-

g 'clc(C#C)cc2c3ccccc3c3scec3c2cl’,

O 'clsc2c(cl)clccc(C#C)cclclccccc2l’]

FIGURE 4.2: Utility of canonical SMILES generation to avoid duplicate molecules.

4.1.4 Ordering calculation files

For tasks where calculations were performed on larger sets of molecules, and required
structured directories to keep files organised, the InChIKey worked perfectly. In order
to access the relevant folder for a given molecule, the InChIKey can be generated

on-the-fly from other representations. There are very few cases, if any, where a regular

user of the software would require the reverse operation (i.e. taking a folder of results
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and finding the corresponding molecule), so the inability to convert back from

InChIKey to other formats would not be an issue.

4.1.5 Substructure searching and pattern matching

Given a fragment, or substructure, of a molecule, a SMARTS pattern can be written
and utilised with RDKit’s Mol.GetSubstructMatches () function to detect any
occurrences of that pattern within an RDKit molecule (Mol). There are many cases

where this functionality is useful within the project, mainly:

¢ Detecting substructures which should be excluded, such as rotatable bonds,

large side groups, etc.

¢ Counting the number of times a substructure, such as a ring or pair of rings,

appears within a molecule

¢ Screening a large set of molecules to find the subset which contain a reactive

center (such as ortho-dianiline).

4.1.6 ReactionSMARTS and RDKit reactions

As described in the theory chapter, reactions can also be encoded as text, using
reactionSMARTS. A typical reactionSMARTS string is shown in Figure 4.3, where
reactant patterns are on the left and product patterns are on the right, separated by
two ‘less than” symbols (>>). Only the reacting atoms need to be encoded, along with

connected atoms if relevant to the operation taking place.

As in Figure 4.3, reacting atoms can be labelled with numbers, which are tracked
between reactants and products; this allows for the defined movement of specific

atoms, and for operations such as connecting atoms or creating ring structures.

ReactionSMARTS can be used in conjunction with RDKit’s
AllChem.ReactionFromSmarts() to generate a Reaction object, which can then be

provided with compatible RDKit Mol objects to apply the reaction to a molecule with
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[c:1]-[*].[c:2]-[*] >> [c:1]-[c:2]

v

* c1 + *—C2

_ g OOQ - 80"
[c:1]

[c:1] [c:2] [c:2]

C1—C:2

FIGURE 4.3: Example usage of reactionSMARTS; two unconnected carbon atoms with
“attachment points’ can be labelled (carbon 1 and carbon 2), then attached, using care-
ful definition of the reactants and products in a reactionSMARTS string.

Reaction.RunReactants (). RunReactants() applies the reaction to the molecule(s) in

all possible ways, and returns a list of possible reaction outcomes.

As an example (see Figure 4.4), a fluorination 'reaction’ can be considered as
converting an aromatic carbon with hydrogen attached into an aromatic carbon with
fluorine attached; this can be encoded as reactionSMARTS and applied to pyridine
using RDKit. There are five possible carbon positions which match the "reactants’
portion of the reactionSMARTS string ([c&H1:1] = aromatic carbon with one
hydrogen), meaning that there are five products produced. Two of these products are
duplicates, as they can be related to other products via symmetry. This is dealt with by
conversion to a unique text representation such as InChl, and removal of duplicate
entries; leaving the three unique reaction outcomes, i.e. substitution at ortho, meta

and para positions.

ReactionSMARTS and RDKit’s reaction functionality form the basis of the new
molecular operations used in MolBuilder, which will be described in the following

section.
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= 1T ————— Cl— <\:/>’ @
\ /) [c&H1:1] >> [c&H@:1]-F _
s

’ RunReactants() I Q Q Q @ Q

Filter out
duplicates

FIGURE 4.4: Running reactions with RDKit - after running the reaction, all outcomes
including "duplicate’ products related by symmetry are returned. These outcomes can
be filtered by conversion to InChl, and checking for duplicated InChlI strings.

4.2 MolBuilder - an evolutionary algorithm for chemical space

As mentioned in earlier sections, MolBuilder is a genetic algorithm designed to
explore defined chemical spaces with a bias optimizing target properties via fitness
functions Cheng et al. (2020). Development of this software was taken over from a
previous group member (Chi Cheng) when the project started, aiming to make

changes and additions to increase the code’s readability and functionality.

MolBuilder is currently limited to working with systems of fused aromatic rings,
optionally including substituent side groups, which allows the exploration of a large
class of molecules covering many potential organic semiconductor species; by
restricting MolBuilder to these types of molecule, the variation in each genetic

operator’s targets is dramatically reduced.

4.2.1 Setting up a genetic algorithm and storing results

Before a genetic algorithm is started a configuration file is required, which instructs
MolBuilder on how the algorithm runs; this covers many settings, parameters, and the
types of ‘building blocks” which can be used to generate molecules. A selection of

important parameters are outlined in Table 4.1.

By setting up genetic algorithms in this manner, several ‘linked” MolBuilder runs can
be set up and run in parallel with ease; this is useful in cases where many different

starting populations are to be used with the same settings, as the initial set of
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Parameter Meaning Example Input
molecules Ring types [’clccccel’, ’clcenccl’, ’0=clccccol’]
mutations_1 | Side groups [’ [c:1]-F’, ’[c:1]1-C1’, ’[c:1]-C#C’]
generations | Initial population | [{0: [’Fclcncc2ncncc12’, ...13}]
Parameter Meaning Ex. Input
molsize Min/max ring count allowed [2, 5]
unique_ring_max Max unique ring types 3
unique_mutation_max Max unique side group types 2
total_generations Number of generations to run 50
population_size Population size 100
calculation_type Fitness function to use input
maximize Maximise fitness function or not | False
elitism_population_size | Number of elites to carry over 10
mutation_rate Chance of mutations occuring 0.05
tournament_win_rate Chance of picking "better parents” | 0.75
carrier Pick charge carrier (if needed) electron
method Pick DFT method (if needed) B3LYP
basis_set Pick basis set (if needed) 6-311G**

TABLE 4.1: Table describing some important parameters to be set by a configuration
file before running a MolBuilder genetic algorithm. An example configuration file can

be found in the appendix.

molecules can be changed by editing generations in a copy of the original

configuration file.

This format is also utilised to store the outputs of a genetic algorithm, namely the

generated populations and their calculated fitness scores, and is kept updated as the

algorithm progresses; if the total number of generations is not met when the algorithm

stops, for example due to a runtime limit, then it can be restarted using this file to

"pick up where it left off’. Storing results in this manner also preserves the original

settings, meaning the configuration and the resulting populations of molecules are

linked if either set of information is required for future use.

4.2.2 Defining building blocks

In previous iterations of the MolBuilder code, the building blocks used to construct

molecules had to be defined with attachment points, which dictated how a ring could

be attached to the current working molecule. This approach could be detrimental in
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cases where users did not define all possible ways that a given ring could be attached,

and leads to lengthy lists of building blocks if multiple ring types are to be used.

During this project an alternative approach was developed, named ’frags-in-situ’,
which avoids such issues by automating the selection of attachment points. Molecular
ring building blocks are defined as SMILES strings without any attachment points,
and get passed through the get_frag() function before use; Figure 4.5 shows how

this function works.

get_frag({ =)

fragment
at random

0] 0] 0] 0]
/ ——O0 / ——O0 / \_O > / ——O0
Generate _ N _ —
possible

fragments

FIGURE 4.5: The function used to generate fragments from a ring building block

Given an aromatic ring, the get_frag() function uses a reactionSMARTS string to
identify all aromatic carbon-carbon bonds, and convert one randomly selected option
into an attachment point. The function was written this way to avoid removal of
heteroatoms from aromatic heterocycles, which would modify the building block from

what was originally defined.

Generating the attachment points this way removes some steps in the setup of genetic
algorithms, making the task easier particularly for users unfamiliar with the code; but
it should be noted that there is a loss of control associated with this approach, since
attachment points are chosen at random. In order to provide options to users, the
‘original” approach where fragments are supplied with pre-defined attachment points

is also available.
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4.2.3 ReactionSMARTS for genetic operations

Previously, MolBuilder explicitly defined atom indices within a molecule to run

genetic operations using various RDKit functions:

¢ Identified target attachment points by substructure matching with SMARTS,
which were stored as atom indices, and marked within fragments using dummy

atoms;

e The RDKit.Chem.CombineMols () and Chem.RWMol () functions were used to

manually attach a fragment to the working molecule;

¢ Manual addition of bonds and removal of dummy atoms by exploration around

these atoms and their neighbours;

¢ This was followed by a check that the molecule was "‘chemically sound” with
Chem.SanitizeMol(), then double checked this clean-up by conversion to and

from SMILES;

¢ The RDKit Mol object was passed between operations.

4.2.3.1 Using RDKit reactions to modify molecules

As stated earlier, RDKit contains functionality to parse reactionSMARTS strings and
run reactions; by encoding the genetic operators as reactionSMARTS, the above steps
can be "skipped” and coded in a much neater, more human-readable manner.

CC(=0)0.0CC>[H+] . [C1l-] .0CC>CC (=0)0cCC
\ J | J

Reactants Agents Product(s)

FIGURE 4.6: Example reactionSMARTS string, encoding the ’start point’, ‘agents’
needed to facilitate the reaction, and the "end point’
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In the context of molecular operations such as the genetic operators required for

MolBuilder, reactionSMARTS strings can take the following form:
pattern_to_modify >> modified_pattern

Where pattern_to_modify refers to a SMARTS string identifying which part of the
molecule to target for changes, and modified_pattern is the intended result. These
patterns can contain atom-atom mapping information; if a given atom present in the
original molecule is also present in the desired output, it can be labelled to ensure it

stays in place.

[c:1]-[*].[c:2]-[*] >> [c:1]-[c:2]

* c1T + *—C2 — C1—C2

A
[c:1]

[c:1] [c:2] [c:2]

FIGURE 4.7: The importance of atom mapping in an exemplar single-point recombi-
nation

In the example shown by Figure 4.7, two fragments are combined at their attachment
points (labelled with —[«]), and the atoms neighbouring attachment points are
conserved in the final result. Atom mapping becomes more important when adding
fragments at more than one point in the target molecule; for two point addition
(addition along a bond as opposed to single atoms), atom mapping ensures that the

connectivity of the original molecule is maintained once the new fragment is added.
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As a more relevant example for this project, the reactionSMARTS string in Figure 4.8
effectively identifies two cyclic carbons bonded to one another using the pattern
[cH,CH1;r5, r6:1][cH,CH1;r5, r6:5], then replaces these atoms with aromatic
carbons ([c:1][c:2]) while adding the rest of the benzene fragment. The "reactant’

pattern can be broken down to explain its meaning:

* Must be in a 5-membered or 6-membered ring (r5, r6)

¢ May be aromatic or not, but must only be bonded to one hydrogen atom

(cH,CH1)

[cH,CH1;r5,r6:1][cH,CH1;r5,r6:2] >> c1c[c:1][c:2]ccl

N N N
X Y =
= | | =
= =2 =
N N N
FIGURE 4.8: Atom mapping in reactionSMARTS for an exemplar two-point addition

By replacing the original genetic operators with this reactionSMARTS based approach,
most of the "heavy lifting” in the molecular modification process can be handed to

RDK:it functions such as A11Chem.ReactionFromSmarts () and rxn.RunReactants().

In the above example (Figure 4.8), there are actually two possible results as the
fragment could be added at two positions: those marked 1,2 and those on the opposite
side of the ring. While the end result is the same for this example this is not always the
case, and as stated before RDKit outputs all possible outcomes, including duplicates,
so an additional duplicate filtering step should be used to ensure only unique

outcomes are considered.
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4.2.3.2 Fragmenting molecules and adding attachment points

Most genetic operations require a fragmentation step, and the selection of attachment
points on such fragments which dictate how they should be combined to form a new
molecule. This is handled with a pair of reactionSMARTS patterns, which target any
aromatic carbon-carbon bond shared between two rings. Two patterns were required
in order to accomplish this task; one to fragment along a bond shared between two
6-membered rings, and one to fragment the bond between a 6-membered ring and a

5-membered ring.

def fragmentation(smi):
break_2pt_6m = # Two point fragmentation SMARTS pattern 6M rings
break_2pt_bm = # Two point fragmentation SMARTS pattern 5M rings
# Generate RDKit Mol object
mol = Chem.MolFromSmiles (smi)
# Initialise the 6M ring fragmentation reaction, and run it
rxn = AllChem.ReactionFromSmarts (break_2pt_6m)
result_6 = rxn.RunReactants ((mol,))
# Initialise the 5M ring fragmentation reaction, and run it
rxn = AllChem.ReactionFromSmarts (break_2pt_5m)
result_5 = rxn.RunReactants ((mol,))
# Combine the outcomes from 6+6/5+6 fragmentations
result = result_6 + result_5
# Select one outcome pair at random, or flag no outcomes found.
outputl, output2 = choice(result) if len(result) > 0 else (False, False)
# Output fragments as SMILES, or flag no outcomes found
if outputl and output2:
return Chem.MolToSmiles (outputl), Chem.MolToSmiles (output?2)
else:

return False, False

LISTING 4.1: Function to fragment a molecule along an aromatic bond, and return two
fragments. One fragment retains “attachment points’, marking where it was originally

connected to the other fragment.
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Given a molecule to fragment, the fragmentation() function (Listing 4.1) uses these
reactionSMARTS patterns to perform all possible fragmentations, and selects one

resultant pair of molecular fragments to output.

fragmentation retention( [ ) :N )

Choose outcome at random,
N—uU U and replace all U atoms
I/ \ // \1 with attachment points
F t along an > /U + N Y
ragmen . \N___/
aromatic C-C bond, l N J

mark positions with N l
U atoms - -
*+ N
<\ /) <\ />
N

FIGURE 4.9: Diagram representing the function fragmentation_retention() on an
example molecule

There are two versions of this function; one returns both fragments with their original
fragmented bond position marked as attachment points (Figure 4.9), while the other
returns one fragment with attachment points, and one without (Figure 4.10). Both
variations of this function are utilised by different genetic operators, dependant on if

both sets of attachment points need to be conserved during the operation or not.

Choose outcome
at random

RN

Fragment along
an aromatic
C-C bond

N:

FIGURE 4.10: Diagram representing the function fragmentation() on an example
molecule
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4.2.3.3 Adding a ring to a molecule

The simplest genetic operator, addition of a ring/fragment to a molecule, takes
advantage of the reactionSMARTS syntax by starting with a partial reaction string
(Listing 4.2, rxn_string variable), which contains only the ‘reactants’, or target
molecular substructure; any pair of aromatically bonded carbon atoms, which are in a

single ring only, and have hydrogen atoms attached.

The fragment to be added (frag_smi) must have attachment points marked with
asterisks, which are converted into labelled carbon atoms. This modified fragment can
then be appended to the partial reactionSMARTS string, generating a full reaction
‘in-situ’; this 'reaction” can be described as targeting an aromatic CH-CH bond, and
converting that bond into a fused ring bond, shared between the working molecule

(smi_) and the fragment.

addition(( ) { )=

Generate fragments with
get_frag()

Choose a
fragment

Add fragment to at random 7 0 7 0 j 0
molecule at a free —0 —o0 —o0
aromatic C-C bond —

v

o 7 "\ o O~/

\ \ Choose outcome

~ X -~y at random R
o, o~/ \ 0, o
\ X \

FIGURE 4.11: Diagram representing the function addition() with an example
molecule and fragment pair

This reaction is then applied to the working molecule with RDKit’s reaction
functionality, returning all possible outcomes. After filtering out duplicate outcomes, a

single molecule is chosen at random to be outputted.
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def addition(smi_, frag_smi_):
# Partial reactionSMARTS string
rxn_string = ’[cH,CH1,CH2;r5,r6;R1:1][cH,CH1,CH2;r5,r6;R1:2]>>"
# Convert frag attachment points to labelled atoms
frag = smiles_fragment_to_rxn_smiles(frag_smi)
# Generate RDKit Mol object
mol = Chem.MolFromSmiles (smi)
# Generate the RDKit Reaction object
rxn = AllChem.ReactionFromSmarts (rxn_string + frag)
# Run the reaction on the working molecule
result = rxn.RunReactants ((mol,))
# Filter duplicate results out with conversion to CanonSMILES
smis = list(set([Chem.MolToSmiles(x[0], isomericSmiles=True)
for x in list(result)]))
# Select one of the unique outcomes at random and output it
output = choice(smis) if len(smis) > 0 else smi

return output

LISTING 4.2: Function to add a fragment to a molecule

The addition() function also appears in other genetic operators where any
molecule/fragment pair need to be combined; fragmentation(),
fragmentation_retention() and addition() are re-used as nested functions in
recombination(), crossover () and single_parent_crossover (), as described in the

following sections.
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4.2.3.4 Mutating molecules to add or remove side groups

Mutation operations also utilise the syntax of reactionSMARTS to allow flexibility in
the function, where a target substructure and intended mutation type are combined as

strings to form a full "reaction’.

def mutation(smi, mutation, targets):
mol = Chem.MolFromSmiles (smi)
# Pick a random group to target (aromatic CH for side group addition)
pattern = choice(targets)
# Create reactionSMARTS string from chosen pattern and mutation
mutation_string = pattern + ’>>’ + mutation
rxn = AllChem.ReactionFromSmarts (mutation_string)
# Run the reaction, and select a unique outcome at random to output
outcomes = [i[0] for i in rxn.RunReactants ((mol, ))]
filtered_outcomes = list(set ([Chem.MolToSmiles(x) for x in outcomes]))

return choice(filtered_outcomes)

LISTING 4.3: Function to perform ‘mutations’ on a molecule, adding side groups to a

molecule at aromatic CH positions, or removing side groups.

In order to add a side group, mutation() operates on any aromatic CH position on the
molecule with the SMARTS target [cH: 1], and performs a ‘reaction’ to convert it into
a mutation chosen at random from the list of options defined in the configuration

mutations_1.

To perform the reverse operation and remove a side group, mutation() will instead
target any side groups which matches the pattern chosen at random from targets,
and convert the chosen side group back into a C-H bond. This functionality is used in
‘smarter” mutation operations, where side groups currently present in the molecule

are detected.
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N\
mutation(

4 N
Random mutation at =
a free aromatic \ ~/> Choose outcome
Remove a mutation carbon atom Y, L at random
at random < 4) g

FIGURE 4.12: Diagram representing the mutation() function with an example

molecule. Random mutations are chosen from options defined in the configuration
file.

4.2.3.5 Creating molecules from building blocks

In order to generate a set of molecules to be used as the initial population for a genetic
algorithm run, the addition() and mutation() operations are required, along with a

few parameters set in the configuration file.

For each molecule to be generated, counts of rings and side groups are chosen at
random between limits set in the configuration; rings are combined one-by-one using
addition() until the chosen ring count is achieved, followed by side group addition

with the mutation() function.

In order to ensure avoidance of duplicate molecules within initial populations,
generated molecules are compared to the current population before being added, with
repeated species being discarded; the flowchart in Figure 4.13 outlines the process

undertaken to generate initial populations for use in MolBuilder genetic algorithms.

For the purposes of this project, initial populations were created outside of the genetic
algorithm run, to allow for repeat runs with different settings from the same starting
point. If needed, MolBuilder has the functionality to generate a random initial

population from the building blocks defined in the configuration file.
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Select ring count addition() of a mutation() with a
min <= N <= max random ring fragment random side group

Select first ring . Select mutation Check mutation
Check ring count
at random count N <= max count

Output Check population Add molecule Check molecule
population size to population not in population

FIGURE 4.13: Flowchart describing the process of generating a population of
molecules, given a set of ring types and side groups.

Only initial populations are generated in this manner; further populations are created
through the use of elitism, recombination, crossover and new mutations; additional
operators will be outlined in the next sections, followed by a description of the

approach used to create a new generation from the previous population.

4.2.3.6 Performing recombinations

The next genetic operator function, recombination(), takes a single molecule,
fragments it into two genes, and recombines them in a different configuration. This is
achieved with a combination of the functions fragmentation(), get_frag() and

addition().

recombination(

fragmentatlon(

&H

et fra
g g( addition()

Choose
random

° R ) % 1 fragment 2
/ ——0 / ——0 Q/ >:oJ & > / ——0

FIGURE 4.14: Diagram representing the function recombination() on an example
molecule
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When performing recombination, the attachment points on one fragment are

preserved, while the other fragment has a new attachment point selected at random.
New attachment points are selected for one of the fragments to allow more variation
in the possible outcomes of a given recombination operation, while preserving some

information from the other fragment.

4.2.3.7 Crossing over two parent molecules

In order to achieve crossover operations, two “parent” molecules must be fragmented,
the resultant genes get swapped, and the two ’child” molecules are generated by
recombining the fragments. In this case, addition() is not used, as attachment points
are retained for both fragments of each parent molecule through the use of the
function fragmentation_retention(); this choice was made to preserve more

information from each parent’s pair of genes.

crossover (1), )

fragmentation_retention(),
on both parent molecules

A 4

0 p—
— (" @(}.
‘ Swap fragments to get new gene pairs’
0 “---~‘HL
——0 N /, <\ ’D
Reattach fragments in both ‘gene
pairs’ to create children
v
N N
/\N/

FIGURE 4.15: Diagram representing the function crossover () with an example pair
of "parent’ molecules, producing two ’child” molecules.
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Instead, a specialised reactionSMARTS pattern is used which targets two sets of
attachment points, one on each fragment, and combines those positions while
converting them to aromatic carbon atoms shared between the two ring fragments.
Figure 4.16 shows a representation of this operation, with an example pair of
fragments.

"1 6

2 4 .
7 N\LE2 F e3e” \.,5//‘6 _— CA4—C5

*,

FIGURE 4.16: Diagram representing the specialised reactionSMARTS pattern used to
combine two fragments with preserved attachment points, including an example de-
picting the possible outcomes.

4.2.3.8 Creating the next generation of molecules

At each iteration of a MolBuilder run, a new population of molecules is generated
based on members of the previous population; the new population can be thought of
in two portions: a selection of elite, top performing molecules directly carried over
from the previous population without any modification, and the remainder created

from randomly chosen "parent’ molecules in the previous population.

The elite population is selected according to calculated fitness values for each
molecule; the previous population is ordered by their fitness, then the top N molecules
are chosen and added to the new population, where N is dictated by

elitism_population_size in the configuration file.

New molecules are then generated from pairs of molecules picked from the previous
generation using recombination(), crossover () and mutation(); these ‘parent’

molecules are chosen by a tournament selection process.
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Gene Gene
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crossover()
Chance of
Chance of
recombination()

FIGURE 4.17: Diagram showing the process by which two “child’ molecules are created
from two “parent” molecules.

To select each parent, two molecules are chosen at random from the previous
population, and their fitness values are compared. The configuration parameter
tournament_win_rate determines if the better parent is chosen; a random number is
uniformly sampled between 0 and 1, and if this is smaller than the defined

tournament win rate, the better parent is selected.

Once a pair of parent molecules are found, crossover () is applied to generate two
’child” molecules, after which mutation() and recombination() each have a chance
to be applied in turn, according to parameters chosen in the configuration (such as
mutation_rate); again, these rates are determined based on comparison between the
chosen value and a random number uniformly sampled between 0 and 1. This process

is shown in Figure 4.17.

4.2.4 Benefits to this approach

A significant benefit arising from these changes is the reduced quantity of code
needed to achieve the same goal; in fact, these operators are able to access a wider
variety of species. Previously, MolBuilder was only generating molecules with an even
number of mutations (i.e. only addition of even numbers of nitrogen heteroatoms was

possible), however with reactionSMARTS, odd-numbered mutations are accessible.
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Another benefit, particularly for users unfamiliar with the code base or programming
in general, is increased readability of the code. As each genetic operation is based
either on a reactionSMARTS pattern, or constructed with other genetic operator
functions, the steps which make up molecular generation in MolBuilder are much

easier to digest.

4.2.5 Improved control over design rules

Further functions have been added to MolBuilder in order to exert some more control
over the molecules that are generated, and ensure that the defined rules are being

followed, such as limits on how many unique ring and side group types are present.

4.2.5.1 Counting building blocks

Given a molecule generated during a MolBuilder run, the functions count_rings ()
and count_groups () provide analysis of the building blocks used, and how many of

each type are included.

These functions make use of the building block sets (molecules and mutations_1); for
each building block, substructure matching and counting is performed to detect how
many occurrences (if any) are present in the molecule. count_rings() and
count_groups () return a dictionary object, where keys correspond to the present

building block types, and values store the number of each type.

Due to the nature of SMARTS pattern matching, certain ring types may "overlap” with
one another, resulting in double counting or false detection; an example of this can be
found amongst the building blocks extracted for the OCELOT project, as shown in
Figure 4.18.

In order to solve this issue and allow for reliable counting of ring types within
generated molecules, the determine_overlap() function examines if any ring
building blocks appear as substructures within more specific building blocks (in the

case of Figure 4.18, ketone-containing rings are more specific), and stores them in a
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J— H —
N also matches: @:0 HN =——0
\ / _

FIGURE 4.18: Cases where two ring building block types can be detected by when
searching for another ring type, which appears as a substructure.

dictionary for use in count_rings (); when these are detected during ring counting, a
further substructure match is completed for the other possible ring types, and these

matches are taken into account before returning results.

count_rings () also avoids some pitfalls which RDKit’s ring counting functionality
suffers with, where cyclopentadiene rings aren’t always identified and counted.
Detection of these rings required a specific SMARTS pattern, shown below, since they
aren’t consistently marked as aromatic rings; in order to ensure detection, the pattern
matches a 5-carbon ring structure (ring bonds marked with @), where one of the

carbon atoms has two hydrogens attached ([#6&H2]).

cyclopentadiene_pattern = °’ [#6]@[#6]0[#6&H2] @ [#6]0[#6]°

Counting building blocks with count_rings () and count_groups () provides
information to MolBuilder when generating new populations of molecules,
particularly with the modified genetic operators described below. These functions are
also used as final checks for generated child molecules; there are cases where a
crossover operation can return molecules with more than the desired number of rings
or side groups, which must be discarded to ensure that the design rules set in the

configuration are followed.

4.2.5.2 Smarter mutations

More control can be exerted over the mutation operation in order to influence the
number, and type, of side groups present on a working molecule; this has been
implemented with the smart_mutations() function, which analyses the current

molecule with count_groups () and makes decisions based on the results.
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Smarter mutations have the ability to add or remove side groups from a molecule,
decided at random with a 50% chance of either option. If adding a side group is

selected, four outcomes are available.

Random choice (50/50)
Mutate, or remove group

Remove group at random.
If no groups present,
return the original
molecule

Perform a mutation
(based on groups present in molecule)

Too many
mutation types

Some groups, but

1D GRenpE not max allowed

Max groups

N mutation

types OK Pick a mutation type

and target from those
present in the

Add a group from all

A T . molecule. Replace the
options, with a bias ReETm e

target with the
mutation type.

Add a new group
from all mutation
options

towards already
present groups

1 molecule

FIGURE 4.19: Flowchart representing the process undertaken by ‘smarter” mutation
operations

The possible outcomes, also shown in Figure 4.19, are as follows:

1. Molecule currently has no side groups, in which case a new group is added at

random from those defined in the configuration;

2. Molecule has some side groups attached, but not the maximum number
allowed; in this case a new group is added, with a bias towards those already
present on the molecule, aiming to reduce synthetic complexity by lowering the

variation in building block types;

3. Molecule has the maximum number of side groups, and the number of side
group types does not exceed unique_mutations_max as defined in the

configuration; this molecule remains unchanged;

4. Molecule has the maximum number of side groups, and more types than the
unique_mutations_max limit; in this case, two present side group types are
selected, and one is converted to the other. This lowers the number of unique

side group types.
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Smarter mutations benefit from the flexibility of the base mutation () function, which
is able to target any valid SMARTS pattern and convert it into other compatible
SMARTS structures; this means that side group addition, conversion between side

group types and side group removal can all be handled with a single function.

4.2.5.3 Single parent crossover

Standard crossover operations require two parent molecules, which get fragmented
into four genes before swapping and recombination to produce children. An
alternative operation was developed to allow the production of two children using
only a single parent, using the function single_parent_crossover (). During any
crossover operation, there is a 25% chance of the single parent variation occurring,
where one of the parents is selected at random from the pair chosen through
tournament selection processes; this molecule is then fragmented into a pair of genes,

which each get ‘completed’ by ring additions to create new child molecules.

single_parent_crossover () operations will first analyse the latest population of
molecules, and implement a bias towards adding ring types which are already present
in the population often. In order to ensure that the limit on the number of unique ring
types is followed, there are two possible outcomes for each gene as outlined in

Figure 4.20.

Fragmentation is performed for this operation without any attachment point retention,
allowing new rings to be added at any valid position through the use of get_frag()

on the new ring, followed by addition() of this ring fragment to the gene.
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Fragment parent
into two genes

Count rings and Pick a ring count For each gene:
types present in for child molecules
each gene N_present < N <= Max

N ring types Maximum allowed
present < maximum ring types present

Add any ring type,

bias towards those

already present in
the population

Add a ring type
already present in
the gene

Add a ring of the chosen type,
check ring count, and output
new molecule if count = N

FIGURE 4.20: Flowchart representing the process undertaken during ’single parent
crossover’

For each gene, and after each ring addition during this process, there are two options:

1. The number of unique ring types is less than the limit set in the configuration by
unique_ring_max; any ring type can be added, biasing towards those more

common in the last population;

2. The maximum number of unique ring types is present in the molecule; in this
case, a ring type already present in the molecule is added, ensuring

unique_ring_max is not exceeded.

single_parent_crossover () allows for wider exploration of chemical space by
effectively combining each gene extracted from the parent with a new ‘gene’, which
has been constructed on the fly, using building blocks, while maintaining limits on the
variation in ring types set by the configuration; this means that crossover operations
are not limited to only the genes available via fragmentation of molecules in the

previous population.
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4.2.6 "Reverse-MolBuilder”

As MolBuilder requires a set of fragments and mutations defining the chemical space
it will explore, the ability to determine which building blocks are needed to generate a
given molecule would be beneficial. To this end, a ‘reverse MolBuilder” tool was
developed, which iteratively fragments the target molecule into a set of single rings

and mutation types.

Processing list
of molecules

Select a molecule
at random

fragmentation()

Add fused rings to Check ring counts
processing list of each fragment

Store single rings
(with any mutations)

Processing list
of rings (with
mutations)

Select a molecule Try to remove a
at random group at random

Store mutation No outcomes, meaning
type, add ring back Check outcomes no mutations - store
to processing list ring type

FIGURE 4.21: Overall process followed by the new Reverse MolBuilder tool; molecules
are iteratively fragmented, all ring/side group types needed to re-produce the species
with MolBuilder are identified if possible..

The script starts by iteratively performing fragmentation() to break apart fused ring
systems, returning single ring types with any present heteroatoms and acyclic

mutations. From here, acyclic mutations (such as methyl, halide and alkyl groups) are

identified, removed from the rings and stored.

ring types: Q @

side group types:

Cﬂ& C1—I

FIGURE 4.22: Example molecule fragmented with the reverse MolBuilder tool, along
with the outputted fragment and mutation types.
Reverse MolBuilder then returns a pair of lists containing the ring types and
mutations that would be required to build the original molecule. In cases where
MolBuilder would not be able to construct the molecule, perhaps due to unsupported

functionality (e.g. 7 membered rings, or single bonds/chains bridging between ring
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systems), the tool simply returns "False’ to indicate that the fragmentation was not

successful.

The reverse MolBuilder tool can be applied to a database of molecules, with the results
being collated to inform users on the frequency of fragment types appearing across
species in the set. This is used to extract building blocks from sets of known

molecules, for use in genetic algorithms.

4.3 Full chemical space exploration

Using the addition() and mutation() genetic operators from MolBuilder, a full
chemical space exploration campaign can be initiated given a set of fragments and
mutation types. This was previously accomplished by iterative random generation of

molecules:

¢ A ring type was chosen at random from the initial list of building blocks;

* Aring fragment was also chosen at random from the building blocks list, and
added to the molecule. Fragments were added this way until the desired

number of rings was found;

¢ A set of N mutations were performed, with the mutation type and target

position being chosen at random;

¢ The final generated molecule was then checked against a Python set containing
all novel species currently discovered; if not present, the new molecule was

added to the set.

While this approach is effective given a long enough runtime, dependence on two
random outcomes meant that the chance of discovering novel structures dropped as

exploration progressed, regardless of the computational resources available.
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4.3.1 Splitting molecular generation into steps

Rather than generating a molecular ‘backbone’ of rings and performing random
mutations all in one process, the chemical space exploration can optionally be split
into two steps; generating unmutated ‘backbone” molecules, then performing

mutations several times from each ‘backbone’.

As previously, in order to generate an unmutated molecule, a ring type is chosen at
random and ring fragments are added until the molecule reaches a desired number of
rings. There are two approaches that can be taken to performing mutations on
molecules, as shown in Figure 4.23; the choice of approach depends on how many
unmutated molecules could be generated with the provided ring building blocks and

desired range of ring counts.

Small number of potential backbones Large number of potential backbones

Create molecule Store if unique

Distribute backbones as separate jobs

Backbone 1 Backbone 2 Backbone 3

Create molecule Store if unique

Perform many sets of mutations

Mutated Mutated Mutated
backbone 1 backbone 2 backbone 3

Perform Perform Perform
mutations mutations mutations

Store if Store if Store if
unique unique unique

Combine results from separate jobs

FIGURE 4.23: Two workflows for exhaustive chemical space exploration, chosen de-
pendant on the number of potential unmutated molecular ‘backbones’

Store any unique outcomes

Although the two 'random’ steps in this process are still present in each approach, by
splitting them apart the possibility of novel hits is increased. Using the original
method, finding new molecules would depend on both finding the relevant molecular

"‘backbone’, then performing a set of mutations leading to a new outcome.
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With the newer approaches, the chances of hitting new molecules are increased:

¢ For small numbers of backbones, each unmutated species can be explored
independently of all others, meaning in order to discover a new outcome, only a

new set of mutations is needs to be trialled.

* When dealing with larger numbers of backbones, there are multiple chances for
a new set of mutations to be found after generating an unmutated species. If a
backbone has already been discovered, there are still multiple chances for a new

pattern of mutations to be trialled.

4.3.2 Parallelisation and distribution of CSE

The full chemical space exploration process can be parallelised and/or distributed to
increase the number of molecules discovered during a set period of time; the
molecular generation and mutation steps do not incur large computational costs, so
processors with N cores can be utilised to run N-1 molecular generation ‘'worker’
processes in parallel, alongside a single ‘master” process which collects generated

molecules and stores any unique discoveries.

In cases where the number of potential backbones is small, an initial step can be run to
generate these backbones, each of which can then be submitted as a separate job
focused solely on the mutation step; in these jobs, each worker will repeatedly
perform random sets of mutations on the original backbone molecule, and the master

process will receive mutated molecules and store any unique discoveries.

For spaces with a large number of backbones, where submitting separate jobs for each
potential backbone becomes unfeasible, workers will handle both the molecule
generation and mutation steps; at each iteration, a backbone is generated, and
multiple sets of mutations are applied. The unmutated molecule and any unique

mutation results are all sent to the master process, which stores any unique results.
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4.3.3 Reaction product enumeration

Libraries of potential reaction products can be generated given a set of desired
reaction types and available precursors; this task can be handled with MolBuilder

using the "reactor’ molecular generation approach.

When running the "reactor’ code, different arguments are supplied in the
configuration. Since molecules are constructed with reagent + reaction pairs, there is
no need to define individual ring and side group building block sets. Instead, a list of
reagents is supplied as SMILES, reaction types are supplied as reactionSMARTS in
reactions, and the reactive target SMARTS pattern found in each reagent is defined

under rxn_target. Examples of such parameters are shown in Table 4.2.

Parameter | Example Input

reagents [’Nclcccc(F)ciIN’, ’NclccnnclN’]

reactions [’[c:1](-N):[c:2] (-N)>N-C(=0)-N>[c:1]1[N&H1]-C(=0)-N[c:2]:1"]

rxn_target | ’ [c:1] ([N&H2]) : [c:2] ([N&H2])’

TABLE 4.2: Table describing modified configuration parameters to be set before ex-
ecuting reaction product enumeration with MolBuilder’s ‘reactor’ molecular genera-
tion functionality.

This approach to molecular generation also makes use of RDKit’s molecule and
reaction handling, alongside the ability to identify and count molecular substructures;

a function to run reactions with this framework is shown in Listing 4.4.

reaction() will apply the chosen reaction to the molecule repeatedly, until the
number of remaining reactive patterns (target) is equal to the chosen number of free
sites (free_targets); this allows the option for partial saturation of reactive positions
on the molecule, which is useful in cases where the chosen reactant has multiple

potential sites where the reaction could occur.
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def reaction(smi, reaction, target, free_targets):

# Generate RDKit Mol and Reaction

mol Chem.MolFromSmiles (smi)

Chem.ReactionFromSmarts (reaction)

rxn
# Perform reaction repeatedly
while True:
# Run the reaction on current molecule
outcomes = rxn.RunReactants ((mol, ))
# Convert random outcome to and from
# SMILES, sanitizing the molecule

mol = choice(outcomes) [0]

mol Chem.MolFromSmiles (Chem.MolToSmiles (mol))
# Check how many reactive substructures remain
n_targets = len(mol.GetSubstructMatches (Chem.MolFromSmarts (target)))
# Stop reacting if desired number of unreacted targets remain
if n_targets == free_targets:
break
# Otherwise, repeat the loop to run the reaction again,
# where mol is now the partially reacted molecule

return mol

# RDKit Mol converted back to SMILES outside of function

LISTING 4.4: The base function used in MolBuilder’s ‘reactor’ molecule generator,
which applies a defined reactionSMARTS to a molecular SMILES, returning a single

outcome chosen at random

In order to generate all possible outcomes from a combination of reagent + reaction,
the reaction() function is attempted multiple times, with a selected number of free
reaction targets to be left unreacted, as shown in Figure 4.24; this ensures that all
possible combinations of reacted and unreacted targets on the reagent are found,

including the completely unreacted reagent.
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if all reactions are done, move to next reagent

if x = 0, move
to next reaction

Store unreacted
reagent

Reagent
(x targets)

Reaction

N sites to leave
unreacted
(start at x - 1)

Run reaction(s) Store unique
on reagent reaction products

FIGURE 4.24: The workflow used to generate a full library of reaction outcomes, given
a list of reagents and reactions, including unreacted and partially reacted species.

4.4 Synthetic difficulty prediction

Three SD scoring approaches were chosen for implementation into, or use alongside

MolBuilder genetic algorithms; SYBA and SCScore were used to construct fitness

functions considering different aspects of synthetic difficulty, while AIZynthFinder

was used as a post-hoc analysis tool.

44.1 SYBA

SYBA is distributed as a Python package, and is readily accessible through the use of

Anaconda, dependant only on the presence of an RDKit installation in the same

environment.

from rdkit import Chem

from syba.syba import SybaClassifier

# Initiate the SYBA classifier

syba = SybaClassifier ()
syba.fitDefaultScore ()

# Run the prediction given a SMILES string

score = syba.predict(’Nclcccc(F)ciIN’)

LISTING 4.5: Utilising the SYBA classifier to predict a SYBA score from SMILES.
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SYBA scores can be can be calculated given either a molecular SMILES, or the
equivalent RDKit Mol object; for this project, SMILES is always provided to SYBA

when generating scores, as shown in Listing 4.5.

This package is distributed under a GNU General Public License, and is also available
to download through GitHub at https://github.com/lich-uct/syba. For the
prediction of SYBA scores in this work, the package was installed with Anaconda, in a

Python environment shared with the CSPy code base.

In order to be used as a fitness function during MolBuilder genetic algorithms,
calculation_type = SYBAis defined in configuration, with maximize=True, as larger
SYBA scores indicate classification as easier-to-synthesise. Given a newly generated
population of molecules, worker processes will receive individual SMILES strings for
each population member, initiate a SYBA classifier, predict the score and return this

result to the master process.

Since SybaClassifier objects require a fair amount of memory usage, if too many
instances are operating at once the entire process can fail due to a lack of required
memory; workers can be organised into ‘subgroups’, where one worker initiates a
SybaClassifier and predicts the score, while the rest are put on hold, avoiding such

issues.

4.4.2 SCScore

SCScore is accessible as a Python package through GitHub, at
https://github.com/connorcoley/scscore, and is distributed under an MIT
License. Within the package, three pre-trained models are available, which were
generated using 12 million reactions from the Reaxys database; the authors note that
there is little advantage to using different models. These models differ by the type of
Morgan fingerprints used as input; two use Boolean fingerprints of lengths either 1024

or 2048 bits, and the other uses an integer fingerprint of length 1024 bits.


https://github.com/lich-uct/syba
https://github.com/connorcoley/scscore
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SCScores are also calculated given a SMILES string, via the SCScorer () object, which
returns the input SMILES and the associated score; the basic code to achieve this is

shown in Listing 4.6.

from scscore_master.scscore_funcs import SCScorer
# Initiate the SCScore object

sc_scorer = SCScorer ()

# Load in weights from the pre-trained model
sc_scorer.restore(weight_path=None)

# Use the SCScorer to calculate a score

(smi_, result) = sc_scorer.get_score_from_smi(smi)

LISTING 4.6: Utilising SCScore to predict a SCScore from SMILES.

A lightweight version of SCScore was implemented into the CSPy code base,
containing only the predictive model trained on Boolean 1024 bit fingerprints, and a
modified version of the SCScorer class allowing for it to be imported and used as a

fitness function during MolBuilder genetic algorithms.

The memory requirements to calculate SCScores are lower than SYBA, and it does not
suffer the same issues when several SCScorer () objects are running in parallel; the
slowest step for this package is loading in pre-trained model weights, so each worker
process will initiate an SCScorer () at the start of a MolBuilder run, and when these
workers receive a SMILES string sc_scorer.get_score_from_smi (smi) is applied to

calculate the score.

4.4.3 AlZynthFinder

The retrosynthesis planning tool AiZynthFinder is available as a Python package,
installed either through GitHub or with Anaconda. Alongside the package a set of
files containing reagent stock lists extracted from the ZINC database, a pre-trained
expansion policy network of reaction templates based on reactions from the USPTO

dataset.
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AiZynthFinder operates by default with an artificial neural network policy (NNP)
guided Monte Carlo tree search (MCTS), recursively breaking down molecules into

purchasable precursors based on the library of reaction templates.

Given a target molecule (root node), reaction templates are shortlisted, and one is
simulated to split the molecule into a set of precursors (leaf node); these precursors are
then subjected to the same steps, if they’re not available as reagents in the stock list.
This process repeats until a defined number of steps have been applied (maximum

tree depth), or when all found precursors are purchasable.

At this point, the results of the simulated reaction pathway are propagated back up
the tree, updating each node with information about the quality of the route, which
helps to guide further searches; future explorations from the root node can use this
information to inform future decisions, with a chosen balance between exploring new

routes and exploiting routes which have previously shown good results.

The NNP predicts the outcomes of promising steps using its understanding of
chemical transformations learned from the dataset of reactions with which it was
trained; given a target molecule either as the root node or a leaf node, the probability
of potential precursors produced by reaction templates successfully reacting to
produce the target molecule is assessed, and used to inform decisions on which leaf
nodes to generate and explore.

SMILES [ Cetecec(cIN(CC(=ONe2cec(ce2

Options

Stocks Neural Poli full_uspto v
¥ Zinc Time (min) 2
mongodb_stock Max Iterations 100

Return first solved route

FIGURE 4.25: The Jupyter Notebook GUI available to run AiZynthFinder analysis
given a SMILES string.
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There are three ways to utilise AiZynthFinder to predict synthetic pathways to a

molecule:

1. A graphical user interface built with Jupyter Notebooks, shown in Figure 4.25;
this can be used to perform analysis on a single molecule, outputting any
precursors needed, the reaction steps used to combine those precursors and
produce the target molecule, and statistics found during the process including a

score calculated based on the synthetic route found.

2. A command-line interface; this is able to perform analysis on a batch of
molecules and store the generated search tree of possible reaction paths,
including information on the routes themselves, such as how many are marked
as ‘solved’ (reaching a set of precursors which are all "in stock” in the reagent list)

and the calculated scores for each route.

3. A Python interface, importable into other Python scripts; this allows for an
AiZynthFinder () object to be initiated, which can perform the tree search of
potential synthetic routes, build these routes, then calculate scores and statistics

in a more flexible manner.

For this project AiZynthFinder was only used to predict the synthetic routes of
molecules and generate scores outside of genetic algorithms, so the command-line
interface was chosen to run batches of molecules, generating reaction pathways and

associated scores.

aizynthcli --config config_file.yml --smiles batch_smiles.txt

Custom reagent databases can be used with the AiZynthFinder tool, and a custom
neural network policy model can also be trained given a database of reactions; for this
project the ZINC-based stock list and USPTO-trained neural network policy provided

by the authors were used.
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4.5 Property prediction

Within CSPy, there are functions which ‘"wrap around” external packages to handle
certain steps within the property prediction process, and of course in-house code to
execute crystal structure predictions; these were not developed by the author of this

thesis, but are worth discussing due to their importance in the work.

4.5.1 Geometry optimization

From the set of 2D coordinates defined upon loading a molecule from SMILES into
RDKit, an initial ‘rough” geometry can be generated, followed by a quick geometry
optimization using the universal force field (UFF), which is a general force field

applicable to a wide range of molecules (Rappé et al. (1992)). These 3D coordinates

can then be extracted from the RDKit Mol object, and stored as a . xyz file.

from rdkit.Chem import AllChem as Chem

# Load 2D molecule from SMILES, add implicit hydrogen atoms
mol_in = Chem.MolFromSmiles(smiles)

molecule = Chem.AddHs(mol_in)

# Generate initial 3D coordinates
Chem.EmbedMolecule (molecule)

# Optimize the 3D coordinates with UFF
Chem.UFFOptimizeMolecule (molecule)

# For each atom, extract [atomic_number, x, y, z]
coords = coordinates_from_rdkit_molecule(molecule)
# Write extracted coordinates to a ’.xyz’ file
coordinates_to_xyz_file(coords, xyz_file)

# ’.xyz’ file format:

# [Atom count]

# [Atom type, x, y, z] for each atom

LISTING 4.7: Generating 3D molecular geometries from SMILES strings with RDKit

UFF optimization.
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The coordinates found with RDKit UFF geometry optimization are used as a starting
point for higher-level geometry optimization with either Psi4 or Gaussian09; UFF
optimization is utilised as a pre-processing step as the generated coordinates may not
be fully accurate, but are generally closer to the optimal minimum energy conformer.
The more costly optimization at a higher level with Psi4 to reach a more optimum
accurate gas-phase conformer can often be accomplished in fewer iterations, if started

from a set of coordinates "pre-optimized” with UFFE.

The Day group’s CSPy code base contains subprocess functions for the submission of
Gaussian09 and Psi4 tasks, and the extraction of results from these tasks on
completion. For this project, Psi4 was favoured as it is available as an open-source
package, meaning users of the Day group code base can run these optimizations

without requiring licenses for external packages.

In most cases, the conformation is assumed to be rigid after this geometry
optimization process; there are cases where further optimizations are performed after
modification to the molecule, and where multiple potential conformers are generated

to trial different molecular geometries.

Geometry optimizations operate by repeatedly adjusting atomic positions and
calculating the single point energy of the atomic arrangement, and forces acting on
atoms, at each iteration, working to minimize the potential energy of the molecule; as
a result of this, whenever geometry optimization is run with Psi4, the final

single-point energy of the molecule is also available for use.

4.5.2 Crystal structure prediction

The Day group maintains CSPy, a Python-based crystal structure prediction (CSP)
software library which handles the sampling of crystal energy landscapes, leading to
generation and minimization of possible crystal packing arrangements for a species

given its molecular structure.

Before generation of crystal structures can occur, molecular geometries must be

determined, typically for the neutral molecule, with the geometry optimisation
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process outlined earlier. CSPy has recently been developed to allow for "flexible-CSP”,
where multiple molecular geometries are trialled, to simulate systems which could
form crystalline systems with molecular geometries other than those found with the

optimal coordinates calculated with an isolated molecule.

The optimized geometry [molecule] .xyz file is then subjected to distributed
multipole analysis with GDMA (Stone (1999)), using the command-line app cspy-dma
available within CSPy, which outputs the remaining set of files required to run crystal
structure prediction; [molecule] .mols defining the molecular axis, [molecule] .dma
containing the calculated multipoles, and [molecule] _rank0.dma defining molecular

charges.

Given the optimized molecular geometry, and results from distributed multipole
analysis, trial crystal structures are quasi-randomly generated using Sobol sequences
to select crystal lattice parameters and molecular positions/orientations, evenly
sampling the landscape of possible packing arrangements and unit cell dimensions.
Sampled crystal structures are then subjected to a clean-up step, attempting to remove

any collisions between molecules and reduce the unit cell volume.

These trial structures are then lattice energy minimized with DMACRYS (Price et al.
(2010)), allowing the molecules to "settle” into their optimal positions relative to one
another; the program iteratively adjusts molecule positions and orientations within
the crystal,using a quasi-Newton-Raphson optimizer, where intermolecular
interactions are calculated at each step to eventually produce crystal packing

arrangements with minimized lattice energies.

In cases where the species under investigation already exists, the generated crystal
structures can be compared to experimental data available from sources like the
Cambridge Structural Database (CSD); often the lowest energy structure on a
generated landscape will correspond to the experimental results, however this isn’t

always the case.



4.5.  Property prediction 83
Y
{ % NH Molecular
N diagram

Three-dimensional
molecular
structure

Many possible
close-packed,
low-energy
crystal structures

Density (gcm™3)

1.24 1.26 1.28 1.30 1.32
o * e )
'_o 3 Evaluation of
* 0 .
g 7® s 4 energies and
* .
S
2 R . properties
~ *
>
E‘) =77 . .o
]
c *
d’ *
8
*
P |
L}
-79 * *

FIGURE 4.26: The general approach used to generate landscapes of predicted crystal
structures, from an article by Day (2011).

4.5.3 Charge mobility calculations

As explained in the theory section, charge mobility in candidate molecular materials is
estimated in two ways; electron reorganisation energies determined through
comparison of molecular geometries in neutral and charged states, and electron
mobilities which consider both molecular reorganisation energy, and the rate at which

electrons can "hop” between molecular units in the solid state.

4.5.3.1 Reorganisation energy

In order to calculate electron reorganisation energy, the energies of two molecular
geometries at two different charge states (neutral and ionic) are combined; this means

that four molecular energy calculations need to be performed:
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1. E~(Ro): Anion of the molecule, in the optimal geometry of the neutral form
2. E%(Rp): Neutral molecule in its optimal geometry
3. E°(R_): Neutral molecule, in the optimal geometry of the anionic form

4. E~(R-): Anion of the molecule in its optimal geometry

The code inherited in CSPy to calculate reorganisation energies at the start of this
project used Gaussian(9; this was switched to use Psi4 through development by

another member of the Day Group, Jay Johal.

Starting from a SMILES or InChl, geometry optimization is performed with RDKit
and Psi4 on the uncharged form of the molecule, which produces both the optimized
ground-state coordinates and the associated energy value E°(R); the neutral
molecule optimized coordinates are then subjected to another geometry optimization
with charge introduced (in this case, an extra electron), which determines the anion’s

optimal geometry and associated energy value E~(R_).

A single-point energy calculation is performed on the optimized neutral molecule
coordinates, with an extra charge added, generating the energy value E~ (Ry); the
remaining energy value E°(R_) is then determined by running a final single-point
energy calculation using the optimized anion coordinates, with the molecular charge

set to zero.

(E™(Ro) — (E°(Ro)) + (E°(R-) — (E™(R-))

Once each of these values are calculated, a final step combines them according to the
equation defined below to generate an electron reorganisation energy value, which is
then stored as a calculated property. The outputs from tasks in this process are also
saved as each step completes; in cases where all four steps could not be completed,
this allows for the calculation to pick up where it left off, rather than requiring a full

restart.



4.5.  Property prediction 85

4.5.3.2 Electron mobility

Electron mobility calculations require the solid state packing arrangement, in order to
determine how easily electrons can "hop’ between molecular units; this prompted
development of ‘on-the-fly” crystal structure landscape prediction, from which
average electron mobilities can be calculated. Again, the development of code for this
task was completed and implemented into MolBuilder by Jay Johal, for use in genetic

algorithms.

As stated during the discussion of crystal structure prediction, a given molecule does
not necessarily adopt the lowest energy packing arrangement found on the predicted
crystal landscape; rather than assuming that the electron hopping rate can be
calculated with the lowest energy structure, it makes more sense to base the
calculation on average hopping rates across structures in low-energy regions of the

landscape.

Kernel density estimation is used to calculate average hopping rates across a crystal
landscape, with more weight placed on structures in more densely populated
low-energy regions; this allows the calculation of average hopping rates with a bias

towards more energetically favoured packing arrangements.
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Chapter 5

Projects basis and setup

5.1 Azapentacenes - testing space

Azapentacenes describes a group of molecules composed of 5 fused benzene rings,
with various levels of nitrogen heteroatom substitution. These have been the focus of
previous work within the Day Group, such as the publication from Cheng et al. (2020)
which entailed full exploration of the space, theoretically listing all possible nitrogen

atom substitutions and connectivities of five 6-membered aromatic rings.

5.1.1 Reason for working in this space

While changes were made to MolBuilder, this set of molecules was chosen to act as a
validation dataset. Since the total number of molecules and the top candidates in this
space had already been determined, new approaches to molecular generation could be
tested with the same molecular building blocks to ensure that the original set of
molecules could still be discovered, before moving on to different or more complex

molecular families.

Given that the chemical space is theoretically fully explored, distributions of
properties for the azapentacenes should be completely populated, and give insight

into what these results should look like when an entire space is described.
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As a relatively similar group of molecules, this space can also be used to test out
various synthetic difficulty calculations, and see how well they are able to partition a

set of molecules with similar appearances.

5.1.1.1 Past work

During previous studies of the azapentacenes within the Day Group, MolBuilder
genetic algorithms were set up in a slightly different manner; the set of building
blocks and mutations are shown in Figure 5.1.

molecules ['clececceel']

fragments

- C
= ['clc**kccl']
mutations 1 ['[#6R1&H] "', ' [#7R1&HO0]'] X ﬁ
mutations 2 = [] \\ /
* N

molsize = [5, 5]

FIGURE 5.1: Definitions of building blocks for the azapentacene chemical space in
older versions of MolBuilder.

The ’starting” molecular building block was defined as a simple benzene ring, from
which other molecules would be constructed. Molecular building blocks were defined
with attachment points (denoted with asterisks *), which dictated where they would

be added to molecules during construction.

Molecular size, or the number of rings required in constructed species, was defined by
the parameter ‘molsize’; in this case only 5-ring species were required. Alongside this
was a list of mutations, defining how atoms could be converted into ‘'mutated groups’;
in this case the conversion between aromatic carbons and aromatic nitrogen

heteroatoms.

By selective choice of building blocks, the only restriction placed on this exploration
was avoidance of fragment addition to cove, bay and fjord patterns within molecules
(as in Figure 5.2), which excludes the formation of pyrene substructures. This was

done by only providing a building block with two “attachment points’.
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fjord cove . bav

FIGURE 5.2: Illustration of fragment addition to coves, fjords and bays within a aro-
matic system. These types of additions were forbidden by the chemical space explo-
ration algorithm.

5.1.1.2 Past results of exhaustive and directed exploration

From previous chemical space exploration campaigns, it was determined that 68,064
azapentacene molecules were accessible through combinations of building blocks
using the MolBuilder genetic operations. The space was also expanded in a directed
manner using the evolutionary algorithm, identifying structural motifs with low
reorganisation energies and high electron affinities (Figure 5.3). This demonstrated the
efficiency of chemical space exploration with an evolutionary algorithm; rather than
performing calculations for every species, the large space can be searched to find
promising candidates while only requiring computation of reorganisation energies for

roughly 1% of the molecules.

40066

1A: 0.1346 2A:0.1351 3A: 0.1362 4A: 0.1364 5A: 0.1374
N
N\ ‘ P N/
‘OOO F N | | B |
| N O
6A: 0.1380 7A: 0.1386 8A: 0.1389 9A: 0.1394 10A: 0.1399

FIGURE 5.3: Promising azapentacene motifs identified during evolutionary chemical
space exploration Cheng et al. (2020), labelled with their fitness values of reorganisa-
tion energy (eV)
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5.1.2 Updated chemical space setup

As described in the code development section, building block definition and handling
was updated in order to make setup more flexible. For the generation of azapentacene
molecules, the set of building blocks is minimal, now requiring only a single ring type
(benzene) and single mutation (conversion of aromatic carbon to aromatic hydrogen);

all azapentacene molecules contain five rings, so the range of molsizes is also

minimal.
molecules = [’clcccccl’] # benzene only
mutations_1 = [’[n:1]’] # convert to N only
molsize = [6, B] # 5 rings only

LISTING 5.1: Building blocks and design rules required to generate azapentacene-type

molecules.

Azapentacene generation is the only case in this project which utilises mutation() to
convert between aromatic carbon and aromatic heteroatoms; as stated in the code
development chapter molecules are generated from the defined ring types before
mutations occur, and for the azapentacenes in particular there are a limited number of

potential unmutated molecules.

Qo0 CR0 oo ot

FIGURE 5.4: Illustration of using mutation() to convert random sets of aromatic CH
positions into nitrogen heteroatoms

For the repeated full exploration of this space, any number of mutations can be
performed on a molecule; and example of this is shown in Figure 5.4, following the

process outlined in Figure 4.23.
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5.2 OCELOT - organic semiconductors

The main portion of this project concerns the exploration of a chemical space
constructed with MolBuilder-compatible molecules from the OCELOT (Organic
Crystals in Electronic and Light-Oriented Technologies) archive, authored by Ai et al.
(2021).

The potential size of this space is orders of magnitude larger than the azapentacenes,
but aspects of the configuration can be carried over; explorations were still limited to
rigid aromatic fused ring systems, which could undergo mutations to allow the

addition of side groups rather than adding heteroatoms to rings.

5.2.1 Original Dataset

The original set of molecules used in this project were provided in the OCELOT
Chromophores v1 dataset, available at https://oscar.as.uky.edu/datasets/; this
contains, alongside a set of calculated descriptors, 25,251 SMILES strings and CSD

REFCODES for pi-conjugated systems in known, experimentally validated molecules.

TAQHOK KOGWEL DOVDAU KUZNAW CvQoP
_\ QQ \ g g_b ¢ O~ ! t’ M ,’:@;‘
GELDEI EDITOB QNQUY FUNVAN DAVRIE
CCCD 0 S0ge O
Vs N. L,
RAGPOH UCONUW HIFNIT DUZFUB FUTDIH

FIGURE 5.5: A selection of OCELOT experimental molecule pi-conjugated systems,
with their corresponding CSD REFCODES.
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5.2.1.1 Filtering the dataset

Starting from the original dataset, molecules were loaded into Python from their

respective SMILES strings with RDKit, and a series of filters were applied:

1. Molecules with any rotatable bonds, either between fused-ring systems, or as
part of side chains, were removed, ensuring no flexibility. This reduced the

number of molecules to 4,651;

2. Molecules containing rings of size larger than 10 atoms were removed, reducing

the molecule count to 4,427;

3. These were then passed through the 'reverse-MolBuilder” process, which
identifies any molecules which have atoms bridging between fused ring
systems, including any which hadn’t been marked as "rotatable’ by the initial

step; bringing the final list to 1,258 molecules.

5.2.1.2 Extracting and choosing building blocks

In order to generate molecules with MolBuilder, a set of ring and side group building
blocks are required. The 1,258 molecules remaining after filters were passed through
the 'reverse-MolBuilder” tool again, this time in order to extract the different ring and
side group types present and count the number of times each appears within the
dataset. A set of 186 unique ring types and 18 side group types were extracted by this
process, however simply using all of these building blocks would result in an

overwhelmingly large chemical space to explore.

In order to limit the potential explosion in chemical space size due to a large number
of potential building blocks, the ring and side group types were ranked by order of
occurrence within OCELOT molecules, with the most common subset being selected
for use for MolBuilder explorations. This decision was also made in an effort to
introduce bias towards more synthetically available structures, stemming from the
idea that common rings and side groups in a dataset of synthetically known molecules

should generally be easier to synthesise.



5.2. OCELOT - organic semiconductors 93

5.2.1.3 Final building block choices

This sequence of filters and choices resulted in a set of 12 ring types, and 5 rigid
mutation types, shown in Figure 5.6; it should be noted that bromine was originally
included as an additional mutation type, but was removed to avoid the need for more

costly calculations with the additional diffuse functions required.

o O OO O O
> -0 OO

c1— A N o N C—

FIGURE 5.6: The selection of building blocks and mutation types generated from the
filtered OCELOT experimental dataset.

5.2.2 Genetic algorithm setup

After extracting building blocks from the OCELOT dataset and realising the potential
size of the chemical space accessible with them, even after limiting to the most
common types, further analysis was performed on the filtered set of molecules; this
was done to inform additional design rules and modifications to the configuration

used in MolBuilder genetic algorithms.

5.2.2.1 Rules on molecular generation

Certain rules are defined in the configuration file submitted to MolBuilder explicitly,
while some are “implied” by the choices of building block types and the current
construction of the MolBuilder code; these “implied” rules are controlled by building

block choices, and how the building blocks can be combined.
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As an example, by defining only aromatic rings as the building block type, MolBuilder
is only able to create or destroy two-atom fused ring bonds; this means that molecular
generation before mutation steps is limited to rigid fused ring systems, without access

to fjord or bay-type ring additions, highlighted red in Figure 5.7

FIGURE 5.7: MolBuilder code is limited to 2-point addition, avoiding the formation of
certain fused ring structures (highlighted red), and ensuring only two-atom fused ring
bonds can be created (highlighted green)

Several rules are explicitly defined in the configuration, controlling factors such as
how many rings and unique ring types can be present in generated molecules,

through the use of parameters like molsize and unique_ring_max.

In order to match up with the original set of molecules when generating new species
in the surrounding chemical space, the distribution of ring sizes and frequencies of the
experimental set was investigated to inform choices on these rules. Analysis revealed

the statistics shown in Figure 5.8, where the majority of molecules in this set contain:

* 2 — 5 aromatic rings, with either two or three unique ring types present

¢ < 3rigid side groups attached, with either one or two unique side group types.

In order to replicate the general construction of molecules from the original OCELOT
set, these parameter ranges were chosen to be used in MolBuilder genetic algorithm
runs. The choices made here were also made as another way to implement bias
towards more synthetically accessible molecules; fewer variation in ring types could
result in fewer reaction types needed, and a lower ring count means less reaction steps

should be needed overall to synthesise a target molecule.



5.2. OCELOT - organic semiconductors 95

Analysis of the 1,258 OCELOT building block molecules

Ring counts Side group counts

Ring types Side group types

300

200 200

100 100

ol — 0

1 2 3 4 5 ] 1 2 3

FIGURE 5.8: Analysis of the OCELOT molecules from which building blocks were
extracted, used to inform design choices in MolBuilder genetic algorithms

At first, genetic algorithms with the OCELOT building blocks set to run for thirty
generations, but this was later extended to 50; as discussed in the analysis of results
chapters, convergence of the genetic algorithms was not clearly observed by
generation 30, so the jobs were extended, giving the GA more time to find local

minima.

5.2.2.2 Properties to optimize

Genetic algorithms were split into four optimization targets, distributed between local
machines and supercomputing resources according to the computational costs and

considerations associated with each fitness function.

The first calculation type, minimization of electron reorganisation energy, was carried
over from the azapentacenes work; a large number of reorganisation energies had
already been calculated, and the functionality to use this property as a fitness function
were already implemented within MolBuilder. Reorganisation energy genetic
algorithms were run on the University of Southampton IRIDIS5 high-performance

computing resource (Roe (2018)).
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A further physical property calculation, determining charge mobility, requires more
complex analysis with crystal structure predictions, which were feasible with this
space due to the avoidance of flexibility in generated molecules; while the
computational cost associated with CSP at this scale is large, it is reduced where
flexibility in molecular units does not need to be considered, and the reduced

sampling level implemented for use in genetic algorithms.

CSP-led genetic algorithms were performed on the UK National Supercomputing
Service, ARCHER?2, as part of a Grand Challenge project under the Materials

Chemistry Consortium.

Synthetic difficulty fitness functions were implemented into MolBuilder with the
SYBA and SCScore packages, which do not require intense calculations since
pre-trained models have been provided to predict their respective scores given only a

SMILES string

Genetic algorithms optimizing on these synthetic difficulty scores were run either on
local machines, or on IRIDIS5 to take advantage of wider parallelisation of worker
processes (local work is split across 6 cores, while IRIDIS5 nodes provide 40 cores

each).

Multi-objective fitness functions, combining reorganisation energy calculations with
predicted synthetic difficulty scores, were also run on IRIDIS5; at this point in the
project, lookup databases of calculated properties had been implemented within
MolBuilder, meaning any molecule which had been discovered by for example a

reorganisation energy GA could ’skip” it’s calculation and retrieve the property value.
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5.2.3 Selecting initial populations for genetic algorithms

Initial populations of molecules can be set with MolBuilder, and re-used in multiple
genetic algorithm runs to determine if repeat behaviour is observed under the same
conditions, and how the use of different fitness function impacts the “direction” in

which populations move as the algorithms progress.

A set of 36 initial populations were generated for this project, using the selected
building blocks or subsets of them to generate unique molecules. 20 of these
populations used all selected building block types, and were named "full populations’
1-20; the remaining 16 used four subsets of the selected building blocks, labelled as
‘reduced populations’ 1-16. An example of these populations is shown in Figure 5.16,

and all initial populations will be shown in the appendix.

5.2.3.1 Populations with all building blocks

Twenty "full’ populations were generated with the building blocks shown in

Figure 5.6, without any molecules shared between populations, ensuring that each
was unique and could be considered as separate starting points for genetic algorithm
runs. This was achieved through use of MolBuilder’s genetic operations addition()
and mutation(); using the method outlined in Figure 4.13, a set of 2000 unique

molecules was generated and subsequently partitioned into 20 separate populations.

To confirm that a good level of diversity is present both within each population and
between the initial populations, average and maximum pairwise Tanimoto fingerprint
similarity analysis was performed, comparing each molecule in one population to
each molecule in another. Heatmap plots of these results verify that populations are
relatively diverse, with a maximum average similarity below 20%, and only a few
instances where the maximum similarity between a given pair of molecules from

different populations is above 90%; these plots are shown in Figure 5.9.
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FIGURE 5.9: Heatmaps comparing the Tanimoto fingerprint similarity between 20 ini-
tial "full” populations constructed with the OCELOT building blocks

5.2.3.2 Populations with reduced building block sets

Four different subsets of the chosen OCELOT building blocks were selected for a

group of genetic algorithms which work in smaller portions of the overall chemical
space available to the full set; each of these four used the same subset of side group
building block types, where chlorine and alkyne groups have been removed due to

similarity to other side groups in the full set.

Cl—-+F (X C:lx C:1/§\N Cl—

Too similar Too similar
to fluorine to cyanide

Reduced set c1 = /%\ c1

of mutations C1 N

FIGURE 5.10: Three of the five chosen side group types were used in each type of
reduced OCELOT building block set.

The first four 'reduced’ populations were constructed as a ‘step up” from the original
azapentacenes work, with access to five- and six-membered rings, some of which have

defined nitrogen substitution patterns; this is the simplest of the OCELOT building

block sets, and the fragments used are shown in Figure 5.11.
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ODOOOL

FIGURE 5.11: Ring building blocks used to create and modify the first set of ‘reduced’
population molecules: aza-substituted ring systems.

As another step up in complexity, four ‘reduced” populations were run with the same
building blocks, plus two additional ring types which contain sulphur heteroatoms;
these are termed as explorations of the chemical space with aza- and thio- substituted

ring systems, using the building blocks shown in Figure 5.12.

ODOOOLOD

FIGURE 5.12: Ring building blocks used to create and modify the second set of 're-
duced’ population molecules: aza- and thio-substituted ring systems.

The next four populations were built with a subset of the OCELOT fragments which
contain carbonyl, ester and amide-type substructures; these populations are quite

different from the other 'reduced’ initial populations, as seen in Figure 5.15.

@ Q </ O):O 0 o ——0O </ NH):O HN o ——0O

FIGURE 5.13: Ring building blocks used to create and modify the third set of 'reduced’
population molecules: acenes with amide/ester-type rings.

The final and most complex "reduced’ building block set aims to capture the variety of
building block types by selecting the most common of each "pair” of similar rings; this
set will be named ’varied ring types’, and was chosen as an attempt to reduce the

potential size of the explorable chemical space while maintaining its variety.

OL~O~0O0

FIGURE 5.14: Ring building blocks used to create and modify the most complex set
of ‘reduced’” population molecules, attempting to capture the variety of ring OCELOT
fragments while working in a smaller space.
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The

16 'reduced’ initial populations were generated with the same approach as the full

populations, completed in four groups of 400 species, giving four populations of 100

molecules for each subset of building blocks that was chosen.

Again, with analysis of these populations by Tanimoto similarity, and heatmaps

showing only the average pairwise similarity are shown in Figure 5.15, a small level of

overlap between some populations built with different subsets of building blocks is

seen, with a a maximum of seven shared molecules; some molecules in these

populations are also found in the full populations.
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2)

e L

Varied ring types

Amide- and ester- rings

9

o
=
Average Tanimoto similarity
(Morgan Fingerprints, radius

5

[~

5 6 7 8 9 10 1 12 13 14 15 1§
Reduced population ID

FIGURE 5.15: Heatmaps comparing the Tanimoto fingerprint similarity between 16
initial 'reduced’ populations constructed with subsets of the OCELOT building blocks,
also separated by the type of subset used.
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FIGURE 5.16: 100 molecules generated for initial "full” population 1
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5.3 Combi-HOFs - porous frameworks

A side project in collaboration with ADAM
(https://cordis.europa.eu/project/id/856405), working towards the
Autonomous Discovery of Advanced Materials, utilised the ‘reactor” approach of
MolBuilder in the exploration and discovery of molecules which potentially

hydrogen-bonded frameworks (HOF).

This was achieved through the combination of reagents and functionalisation
reactions, in order to generate a library of candidates for analysis via computational

predictions and in-lab experimentation.

5.3.1 Combining cores and end groups

The molecular “cores’, selected to contain ortho-dianiline substructures, are treated as
‘reagents’ to be combined with functionalisation reactions, converting ortho-dianiline

groups into hydrogen-bonding capable ring structures.
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FIGURE 5.17: Given a core with reactive groups (in this case, ortho-dianiline), a set of
functionalisation reactions can be applied to generate reaction products.

5.3.2 Core molecules

In order to select a set of rigid molecular cores to be used in this project, 9,822
ortho-dianiline containing molecules were first extracted from Reaxys by Filip

Szczypinski, a collaborator from the ADAM team.


https://cordis.europa.eu/project/id/856405
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These were then subjected to a set of filters, aiming to find candidate cores which were
both compatible with MolBuilder and easier synthetic targets; the following criteria

were applied to remove molecules:
¢ Cores with any flexibility identified by RDKit’s
rdMolDescriptors.CalcNumRotatableBonds ().
¢ Cores with non-ring bridges between fused ring systems

¢ Cores with flexible groups attached which RDKit did not identify, such as
tertiary butyl.

¢ Cores with high molecular weight, any value above 400 units as calculated by

RDK:it

* Cores with atoms outside of FIT forcefield; only H, C, N, O, S, F and Cl were

permitted.

¢ Any remaining cores which do not contain an aromatic ortho-dianiline
substructure, this time detected through the use of SMARTS pattern matching

(c (- [N&H2]) : c (- [N&H21)).

This process left a set of 740 cores for use in the MolBuilder "reactor’ tool, a selection of

which are shown in Figure 5.18.
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FIGURE 5.18: Example molecular cores which fit the criteria applied, and were subse-
quently passed through computational ‘reactions’ to generate potential combi-HOFs
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5.3.3 Functionalisation reactions

Four functionalisation reactions were selected, which target ortho-dianiline groups
and convert them into hydrogen-bonding capable ring structures; these reactions are

shown in Figure 5.19.
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FIGURE 5.19: The four selected functionalisation reactions, which convert ortho-
dianiline groups into ring structures.

5.3.4 Generating a library of structures

Using the "reactor” molecular generation process outlined in the coding development
chapter (Figure 4.24), the selected cores and reactions were combined to produce a full
library of candidate combi-HOF molecules, including both fully and partially
‘saturated” products; 3,036 of these were fully rigid molecules, and 2,549 were left with

unreacted amine groups.

5.3.5 Next steps for the Combi-HOFs

This library of structures was subjected to further computational analysis by other
members of the Day Group, using predicted crystal structures to determine if any
low-energy packing arrangements of these molecules in the solid state exhibit
porosity; the library of candidates was also provided to an experimental team at the

University of Liverpool, for synthesis and characterisation.
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Chapter 6

Exhaustive chemical space

exploration

This section describes the results from initial full chemical space exploration

campaigns, after changes made during MolBuilder development.

6.1 Azapentacenes

The first of these campaigns was conducted using a class of aza-substituted pentacene
molecules, referred to as the azapentacenes in this work; the previous iteration of
MolBuilder was also used to run exhaustive exploration in this space, so was suitable

for use to confirm that all previously accessible species could still be generated.

6.1.1 Generating a class of similar molecules

In order to confirm that the new molecular generation approach could reproduce
previous datasets, a new full exploration was performed. The set of molecular
building blocks required to access this space is minimal, containing only one starting

molecule, one fragment type and a single mutation operation.
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FIGURE 6.1: A selection of azapentacene-type molecules generated using MolBuilder,
using the “frags-in-situ” approach to build an exhaustive list of unique species.

The definitions of these are shown in the project setup chapter, under Listing 5.1. As
described in previous sections, building blocks are combined using genetic operations
to produce molecules; in a full chemical space exploration campaign, molecules are

endlessly generated and checked against a ‘'master list” of unique discoveries.

In the case of exploring azapentacene chemical space, there are a limited number of
unmutated ‘'molecular backbones’” available given only one ring type, and a limit to
five-ring molecules. Further ring patterns, such as pyrene-type arrangements, were
excluded from this search through the limits on molecular operations available with
MolBuilder; as stated earlier, only ‘two-point additions’ of rings are used, meaning
additions to ‘cove’ and ’'bays’ are were forbidden (Figure 5.2). Exploration was split
up into twelve “sub-exploration campaigns’, each of which only searched for

molecules with a certain shape; these backbone shapes are shown in Figure 6.2.

Rate of discovery plots (such as in Figure 6.3) can be used to monitor the progress of
these campaigns, where convergence in the number of unique discoveries signals a
completed run. The backbones align into three groups where a similar number of
mutation patterns are discovered, as a result of the number of aromatic carbons
available for mutation; backbones 3 and 11 are of particular note, as due to their
symmetry they exhibit lower numbers of unique mutation patterns than other

backbones.

This new search revealed that the original azapentacene space from past work by

Cheng et al. (2020) only represented roughly half of the feasible molecules which
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FIGURE 6.2: The 12 molecular backbones which all azapentacene species in the space
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FIGURE 6.3: Discovery rate plot for the exploration campaigns of mutation patterns

for each carbon backbone in the azapentacene chemical space.

could be constructed with these building blocks. On further inspection, it was found

that the original MolBuilder code used in this work had an additional, unintended

limitation. Since the mutation operation was always performed in ‘pairs’, molecules

with an odd number of mutations could not be accessed.

In other words, an azapentacene-type molecule with, for example, 3 nitrogen

heteroatoms, would not be discovered in the original exploration campaigns. The

updated MolBuilder molecular generation code is able to perform single mutations,

avoiding this issue. As a result of this, the azapentacene chemical space is now

estimated to contain 135,744 species.
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6.1.2 Describing and separating a class of similar molecules

Issues arise when it comes to describing and categorising the azapentacenes, as the
composition of these molecules is very similar across the entire chemical space. Due to

the design rules imposed by the limited set of building blocks:

¢ Elemental composition is limited to carbon, nitrogen and hydrogen
¢ The number of aromatic rings is always five

* No side chains or additional functional groups are present

These factors make it more difficult to partition the azapentacenes space into smaller
sub-spaces for more focused analysis; This subsection focuses on the ways in which

large sets of molecules with similar compositions can be grouped.

6.1.2.1 Elemental composition

A simple metric to categorise azapentacene structures can be found in their empirical
formulae, particularly the amount of nitrogen present in the molecule. While this
doesn’t give as much information as a structural descriptor, the level of nitrogen
substitution is a rapid and easy-to-digest approach to clustering the azapentacene set.
Table 6.1 illustrates how many molecules fall into each category of nitrogen

substitution level.

Empirical Formula # Structures | Empirical Formula  # Structures

CopHis 12 C1aNsHs 24906
Cp1 Ny His 117 C13NoHs 16539
CooN>Hio 777 C12NioHa 8337
C1oN3Hi 3012 C11 N1 Hs 3012
C15NyHio 8337 C1oN1pHa 777
C17NsHy 16539 CoNisHy 117
C16NgHs 24906 CsNyg 12
C15N, Hy 28344

TABLE 6.1: Azapentacene structure counts after grouping by empirical formula;
equivalent to clustering by nitrogen substitution level.
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6.1.2.2 Molecular shapes and scaffolds

A key difference between azapentacene structures is the way in which aromatic rings
are combined, forming linear, bent and branched aromatic systems. This overall
molecular shape can be captured through the use of generic representations like

Murcko Scaffolds.

These scaffold representations, which can be considered equivalent to the ‘carbon
backbone” of a molecule, are generated by converting all atoms to carbon, and
removing any attached side groups; a single ‘backbone’ then describes all molecules

which share that molecular shape, regardless of the nitrogen substitution pattern.

The 135,744 azapentacene molecules can be neatly categorised under 12 scaffold types,
as shown in Figure 6.2. Given this information, general trends in molecular properties
and synthetic accessibility which arise from molecular shape could be determined, if
they exist. Partitioning the space like this also allows for batches of similarly shaped

molecules to be processed with further calculations.
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6.2 OCELOT - Organic Semiconductors

As with the azapentacenes, an attempt was made to exhaustively explore the chemical
space available given the selected set of building blocks; twelve ring types and five
mutation types, constructing molecules containing between two and five rings, and

up to two mutations.

o O OO O O
>~ OO

c1— A o N o N C—

FIGURE 6.4: The selection of building blocks and mutation types used to exhaustively
generate molecules ‘surrounding’ the OCELOT chemical space

This exploration was stopped after just under 13 million unique structures were
obtained under the chosen design rules; even at this point, the campaign showed little
sign of slowing down, indicating that the actual number of molecules, even with our
size limits and restricted ring types, exceeds this count by a long shot.

107 Exploration of chemical space with the OCELOT building blocks

(12,854,329 unigue molecules
L2 |from 104,155,517 attempts

1.0

0.8

N uniques

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 10
N attempts 18

FIGURE 6.5: Discovery rate plot for the exploration campaign using OCELOT building
blocks.
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The process also started to run into issues with updating and storing the "master list’
of unique discoveries; due to the large number of molecules, checking newly
generated species against this list became slower as the exploration progressed. A

selection of these discovered molecules is shown in Figure 6.6.
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FIGURE 6.6: A selection of molecules generated from the OCELOT building blocks
using the MolBuilder ‘frags-in-situ” approach to build an exhaustive list of unique
species.

6.2.1 Exploration using reduced building block sets

A second attempt at the exhaustive exploration of the OCELOT space was conducted
by running four separate processes, one for each ‘reduced’ building block set outlined

in the project setup chapter; the exploration progress plots are shown in Figure 6.7.

While these explorations did not reach a convergence in the number of unique
molecules either, they provide some insight into the relative sizes of each "reduced’
space, and how the size of the ‘'master list” of unique species impacts the number of

attempts at molecular generation that can be made.

These four explorations were all given the same amount of computational 'runtime’,
and the same amount of resources; as the number of building block types grows, more
unique molecules are discoverable early on in the search, but this also means the list of

molecules to check against for new discoveries grows and becomes harder to search.
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FIGURE 6.7: Discovery rate plot for exploration campaigns using the four ‘reduced’

sets of OCELOT building blocks.
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6.3 Conclusions on full chemical space exploration

This chapter has described full exploration of the azapentacene chemical space, and

the attempted full exploration of the ’'OCELOT’ chemical space.

A simple set of aza-substituted 6-membered aromatic ring building blocks leads to
135,744 possible five-ring molecules; increasing the number of building blocks
through to 12 common ring types and 5 side group ‘'mutations’ leads to an explosion
in chemical space size, which is too large to explore using the same methodology,

likely surpassing 13 million unique molecules.

Conducting these campaigns highlights the need to develop more efficient approaches
to chemical space explorations, where even limited sets of molecular building blocks
and restrictions on design rules lead to overwhelmingly large potential sets of

molecules to examine.

This leads on to the following chapters, discussing directed chemical space
exploration through the use of a genetic algorithm, where a fitness function is used to
optimize one or more properties and guide molecular generation towards species

which appear to exhibit more promising scores.
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Chapter 7

Molecular reorganisation energy

GAs

The first set of genetic algorithms performed with building blocks extracted from the

OCELOT dataset were set up to minimize molecular electron reorganisation energy.

This fitness function was chosen as a low energy barrier for changes in geometry on
gain/loss of an electron is a promising property for organic semiconducting
molecules. Reorganisation energy calculations have also been utilised in previous
MolBuilder molecular discovery campaigns, and showed success in the azapentacene
chemical space, so starting work in the OCELOT space with this calculation made
sense. The final dataset of molecules sampled can be found at

https://doi.org/10.5258/S0TON/D3745.

7.1 Behaviour of genetic algorithms

Before analysing the molecules sampled during the first portion of this project, it’s

worth discussing the behaviour of the genetic algorithms themselves.


https://doi.org/10.5258/SOTON/D3745
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7.1.1 General behaviour

As stated in earlier sections, the first 20 genetic algorithms were constructed to start
from 20 unique ‘initial populations’. There were no molecules shared between these
populations, so they should have the opportunity to explore different sections of the
available chemical space; this should increase the number of molecules that get
sampled, and could potentially highlight promising molecule types if multiple
‘isolated” GAs discover similar species, or their populations converge with each other

and discover similar classes of molecule.

Overall, nearly 29,000 unique molecules were sampled across the 20 reorganisation
energy genetic algorithms, less than 0.3% of the near 13 million molecules discovered

through undirected exploration using the same set of building blocks.

When examined separately, there is quite a variation in how many unique molecules
each genetic algorithm sampled; at either limit, runs initiated from initial populations

18 and 11 sampled 1,012 and 2354 molecules respectively.

This could be put down to the randomized aspects of molecular generation, where
run 11 was choosing’ more varied outcomes; lower sampling in run 18 could also be a
sign that starting from that initial population resulted in less need for exploration of
the chemical space, and the genetic algorithm was able to find promising candidates
without much variation of the molecules in its population.

Electron reorganisation energy GAs (20x Full population)

12000 Unique molecules sampled across 20 GAs per generation Unique molecules sampled by each of 20 GAs per generation
20000 ere GA 11
E 28000 E " areGAlT
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§ 20000 4§ 1500 > /,
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FIGURE 7.1: Plots to show how many unique molecules were sampled: by all 20 GAs
(left); by each of the 20 GAs separately (right)
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The behaviour of these genetic algorithms can be examined further by determining
how often molecules "stick around” from one population to the next. A certain level of
this is expected, due to the ’elitism” approach when constructing a new population;
there will also be cases where a crossover operation results in a previously sampled
molecule 'reappearing’.

Electron reorganisation energy GAs (20x Full population)
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FIGURE 7.2: Plots to show how many molecules get ‘carried over’ from between gen-
erations: counts of how many molecules from the previous generation reappear (left);
how many molecules in the current population were also in the initial population
(right)
As shown in the left portion of Figure 7.2, anywhere from 20-30% of each population

is carried over from one generation to the next at most points during the genetic

algorithm runs.

The right portion of Figure 7.2 reveals how often molecules in the initial population of
each genetic algorithm run are 'resampled’ by later generations. In all cases the
reappearance of molecules from the initial populations is very limited, after only a few
generations. This is reassuring, as the initial generations were not constructed with
optimal reorganisation energies in mind; using the genetic algorithm to optimize this
property from essentially ‘random’ sets of molecules has resulted in mostly different

populations as the algorithm progresses.

The diversity of molecule populations changes as genetic algorithms progress, as
shown in Figure 7.3; this plot confirms that all 20 initial populations of molecules are

relatively diverse, with high average pairwise fingerprint diversity scores.
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Electron reorganisation energy GAs (20x Full population)
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FIGURE 7.3: Plots to show diversity and composition for each population: average
pairwise fingerprint diversity (left); average number of rings (middle); average num-
ber of side groups (right)
As the algorithm progresses, a drop in diversity can be seen in all cases, by various
amounts; this is a positive result, as the molecules within each population are
becoming more similar, implying the discovery of an area of chemical space with
promising properties, since the algorithm is ‘exploiting” molecules with good

properties, rather than ‘exploring” new options.

Examining molecular composition of population members as these genetic algorithms
progress can shed light on what kind of molecules perform well according to the
desired fitness function; the middle and right plots of Figure 7.3 show clear trends,
where molecules with more rings and more side groups are sampled by later
generations. Combine this with Figure 7.4, and we can see that molecules with this

type of composition are on average exhibiting lower reorganisation energy values.

7.1.2 Minimizing electron reorganisation energy

The target of running these genetic algorithms was to discover molecules with low
electron reorganisation energies; the performance on this front can be analysed by
plotting the average (and minimum) fitness values of each population, as in Figure 7.4

and Figure 7.5.

Overall a clear reduction in the average fitness scores is observed as the genetic
algorithms progress, but it is worth noting that from generation to generation, there

are several cases where the average increases instead; this is an artefact of the
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‘randomness” which helps to drive these algorithms. Even if two "parent” molecules
exhibit good reorganisation energies, the 'children” which are generated by crossover

of those parents will not necessarily share that behaviour.

It is easier to see the general minimization of properties found by sampling molecules
with a genetic algorithm by producing a similar plot, shown on the right portion of
Figure 7.4, where the average fitness score from the top 100 sampled molecules up to a
given generation is shown.

Electron reorganisation energy GAs (20x Full population)
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FIGURE 7.4: Plots to show how the fitness values (molecular electron reorganisation
energy) change as each of the 20 GAs progress: average values per generation (left);
average of the top 100 molecules sampled up to a given generation (right)

Looking at the minimum reorganisation energies reveals cases where the calculated
value seems unreasonable, exhibiting negative or very low values. These results likely
arise from the approach to reorganisation energy calculations undertaken; neutral and
charged geometries were both obtained through optimizations using the same "rough’
starting geometry. For some molecules, this can lead to cases where these
optimizations lead to different ‘energy basins’, relating to overly different geometries.
The calculation has since been fixed, instead the charged geometry is determined
through optimization using the neutral geometry as a starting point; this more closely
matches the process of reorganisation, where a neutral molecule (in the optimal

geometry) becomes charged and adjusts its geometry to account for the change.

Setting a threshold (as in the right portion of Figure 7.5) shows that the 20 GAs were
all able to find molecules with low, yet reasonable, reorganisation energies within a

window of 0.1-0.12 eV.
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Electron reorganisation energy GAs (20x Full population)
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FIGURE 7.5: Plots to show how the fitness values (molecular electron reorganisation
energy) change as each of the 20 GAs progress: minimum values per generation (left);
minimum values above a ‘reasonable’ threshold (0.1 eV) of reorganisation energy val-
ues (right)
Examining the top-performing portion of molecules sampled by each genetic
algorithm reveals some interesting information; while the top performers for most

GAs are linear 5-ring systems, those started with initial populations 11 and 18 have

sampled more interesting molecules with different compositions.

Job1 012134 eV 012204 eV 012272 eV 012278 eV 012319 eV
- “pocoy” pececclifosssel “pocoy” tpoeoy”
Job 2 011399 eV 011527 eV 01157 eV 011581 eV 011617 eV
Job 11 013195 eV 0.13208 eV 013459 eV 013481 eV 013543 eV
Job 18 012444 eV 013124 eV 013372 eV 013461 eV 013764 eV

FIGURE 7.6: Top 5 molecules sampled by each of 4 jobs, started from populations 1, 2,
11 and 18.
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7.1.3 Convergence of GAs from different starting points

Since the 20 genetic algorithms started from unique initial populations, and they are
exploring such a large space, any overlap between generated populations is worth
investigating. This can be done at two "levels’, as shown in Figure 7.7: overlap per
generation, and cumulative overlap (counting how many jobs have sampled a certain
molecule at any point up to a given generation).

Electron reorganisation energy GAs (20x Full population)
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FIGURE 7.7: Plots to show overlap, or molecules shared, between populations (left)
and between molecules sampled up to a given generation (right)

Of these 20 genetic algorithms, the run started from initial population 18 consistently
sampled populations which had the least overlap with equivalent populations from
other jobs; this couples well with earlier analysis such as in Figure 7.1, which indicates

that this GA also sampled the fewest number of unique molecules overall.

These results could indicate that starting with initial population 18 leads to a portion
of the available chemical space that other initial populations have more trouble
reaching. However, there is only one example of a genetic algorithm for each initial
population, so the behaviour could also be put down to random chance; in the
following section, a selection of these GAs are repeated, to see if this behaviour

reoccurs.
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7.2 Repeating GAs from the same starting point

Of the 20 reorganisation energy genetic algorithms run up to this point, five were
selected to undergo repeat runs starting from the same initial population, and with the
same configuration. Even when these parameters are kept the same, a given GA is
able to explore in a different manner due to the random aspect of genetic operations.

For each of these initial populations, five repeats were conducted.

The initial populations to repeat were chosen based on the results gathered so far, in

an attempt to gather the most interesting cases for additional runs:

Populations 2 and 12 exhibited the best average reorganisation energies at their

final populations.

¢ Populations 5 and 18 exhibited the best minimum reorganisation energies at the

final population.

* Population 18 was of particular interest as this GA run sampled the lowest
number of molecules, and had the least overlap with the other 19 runs (see

Figure 7.7).

¢ Population 20 exhibited the worst average reorganisation energy at the final

population.

Electron reorganisation energy GAs (30x Full papulations, 6 repeats of each, collected)

20000 Unigue molecules sampled across 5 GAs per generation Unique molecules sampled by each of 5 GAs per generation

28000 fob_12_repeats
- 36000 o 10000
@ 34000 a
G 32000 _ =
£ 0000 N uniques = 37903 £ o
© 28000 I

26000
¢ %000 g job_18_repeats
S 22000 S 000
o 20000 o
L 15000 L
E 16000 E

14000 4000
@ 12000 w
3 10000 >
‘= B00D =
c £ 2000
S 6000 3

4000
= 2000 z

0 0
1 10 0 0 0 50 1 10 20 0 ] 50
Generation Number Generation Number

FIGURE 7.8: Plots to show how many unique molecules were sampled: by all 30 GAs
using the chosen repeat populations (left); grouped by each 5 initial population types
(right).
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A summary of the repeat runs is shown in Table 7.1; for each repeated initial
population, the total number of unique structures and average reorganisation energy

values are listed.

Population | Number of | Average | Top 100 Average | Top 100 Average
ID Structures | Reorg/eV Reorg /eV (> 0.1) Reorg /eV

2 9090 0.2425 0.1190 0.1211

5 9313 0.2419 0.1166 0.1185

12 10486 0.2377 0.1131 0.1131

18 6782 0.2868 0.1018 0.1230

20 8894 0.2620 0.1189 0.1202

TABLE 7.1: Summaries of the repeat runs conducted for ’full population” reorganisa-
tion energy genetic algorithms.

Genetic algorithm campaigns initiated from population 18 consistently discovered a
lower number of molecules than the other populations across all repeats. The 5 new
repeats all sampled more than the original run for population 18, effectively exploring
different ‘routes’ through the chemical space, sampling a total of only 6,782 unique
molecules between the 6 repeat runs.

Electron reorganisation energy GAs (6x Full population #18)
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FIGURE 7.9: Plots to show how many unique molecules were sampled: by all 6 GAs
using population 18 (left); by each of the 6 GAs separately (right).

These runs exhibit the lowest average reorganisation energy amongst the top 100
sampled molecules, due to the appearance of some more unique structures with low
calculated reorganisation energies. These mostly move away from the typical
modified pentacene-type structures found in top performing sets that the majority of
these genetic algorithms discover, with non-linear fused ring systems frequently
containing thiophene rings; the top five sampled molecules from each repeat are

shown in Figure 7.10.
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Job 18 012444 eV 013124 eV 013372eV 013461 eV 013764 eV

Job 52 011723 eV 011848 eV 012158 eV 012161 eV 012278 eV
— jJ
Job 53 013151 eV 013225 eV 013309 eV 014128 eV 014158 eV

Job 54 011402 eV 011456 eV 01151 eV 011597 eV 012142 eV
Job 55 010732eV 012144 eV 012708 eV 013181eV 01326 eV

- OO0 O MCO IGO0 xCCD

Job 56 012953 eV 012996 eV 013015eV 013208 eV 01323 eV

FIGURE 7.10: Grid showing the top 5 molecules discovered in each repeat run from
population 18

In contrast, the campaigns started from population 12 sampled the most unique
molecules, with 10,337 discoveries across the 6 repeat runs, with the lowest average

reorganisation energy value amongst all sampled molecules.

These jobs mostly discovered modified pentacene-type structures as top performers,
with varying substitution patterns and ring types in each instance. The grids of top
performers in Figure 7.10 and Figure 7.12 also highlight the prevalence of cyano- and
ethyne- side groups; for linear patterns, presence of such groups on each end of the

molecular core appears to promote a reduction in reorganisation energy.
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FIGURE 7.11: Plots to show how many unique molecules were sampled: by all 6 GAs
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Job 50

Job 51

using population 12 (left); by each of the 6 GAs separately (right).
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FIGURE 7.12: Grid showing the top 5 molecules discovered in each repeat run from

population 12
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7.2.1 Divergence of runs from the same initial populations

Running these repeat jobs allows analysis of the level of reproducibility that genetic
algorithms exhibit, given the same parameters and initial population of molecules.
This is achieved by determining the level of overlap between populations, meaning
how many molecules are shared between runs for each generation; two approaches to
this analysis were used in Figure 7.13 looking at both overlap per generation, and the
cumulative overlap between sampled molecules up to each generation.
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FIGURE 7.13: Overlap plots examining each set of 6 repeats for populations 12 and 18:
per generation (left) and cumulative (right)

Each line in these plots corresponds to one job in the group, where the level of overlap
is determined by the presence of molecules in any other job for/up to the given
generation. Figure 7.13 suggests that for the most part, these genetic algorithms are
taking different paths through the chemical space they can access, since the number of
molecules shared per generation rarely rises above 20%; after completing, algorithms
initiated from the same starting point end up sharing roughly 8%-12% of their overall

sampled molecule sets.
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7.3 Behaviour when the building block set is reduced

Up to this point, the genetic algorithms have all been using the same set of building
blocks; 12 types of ring, and 5 types of "side group’. This section will analyse the
impact of reducing this set of building blocks in various ways; four subsets of the
building blocks were chosen, with varying levels of complexity, effectively running
the genetic algorithms in subsections of the total chemical space accessible with the
full building block set. As stated in the project set-up chapter, these reduced sets use
different selections of ring building blocks, and share a common set of three mutation

types; these are shown in Figure 7.14.

Y, c—

Cl— C: Cl c1

Too similar Too similar
to fluorine to cyanide

Reduced set C1— /§N c1

of mutations C1

FIGURE 7.14: Three chosen side group types used in each reduced OCELOT building
block set.

7.3.1 Aza-substituted fused ring systems

ODOOODL

FIGURE 7.15: Ring building blocks used to create and modify the first set of ‘reduced’
population molecules: aza-substituted ring systems.

The simplest 4 'reduced building block set” GAs sampled a total of 6315 unique
molecules, an average of roughly 1,580 each, which is an increase compared to the 20

"full building block set’ GAs (which sampled on average roughly 1,450 each).

Reducing the building block set gave a slightly faster drop in reorganisation energy

values, with multiple instances approaching 0.15 eV around generation 10, in
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Electron reorganisation energy GAs (4x Reduced population Aza-systems)
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FIGURE 7.16: Plots to show how many unique molecules were sampled: by all 4 GAs
using the aza-substituted ring system building blocks (left); by each of the 4 GAs sep-
arately (right)
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FIGURE 7.17: Plots to show how the fitness values (molecular electron reorganisation
energy) change as each of these 4 GAs progress: average values per generation (left);
average of the top 100 molecules sampled up to a given generation (right)
comparison to the full populations which tended to hit these values around

generation 15.
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FIGURE 7.18: Plots to show diversity and composition for each population: average
pairwise fingerprint diversity (left); average number of rings (middle); average num-
ber of side groups (right)

Systems tended towards a slightly lower average number of rings of 4.3, compared to

full populations 4.5, and a lower presence of side groups with a highest average of 1
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compared to range between 1 and 4 for most full population runs; this could be due to
the selected side groups not providing as much benefit in terms of reorganisation
energy.

Electron reorganisation energy GAs (4x Reduced population Aza-systems)
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FIGURE 7.19: Overlap plots examining each set of 4 aza-system reduced population
genetic algorithms: per generation (left) and cumulative (right)

In contrast to the genetic algorithms which have access to all building blocks, the first
‘reduced’ set exhibits higher levels of overlap between populations, despite starting
from four unique populations; lowering the number of building blocks to this level
appears to allow for faster convergence of genetic algorithms, likely due to the

reduced number of accessible molecules.

7.3.2 Aza- and thio- substituted ring systems

ODOOODLOD

FIGURE 7.20: Ring building blocks used to create and modify the second set of 're-
duced’ population molecules: aza- and thio-substituted ring systems.

The next step-up in building block complexity, adding sulfur-substituted rings,
sampled fewer molecules than the simplest reduced set above, discovering only 5,723
unique molecules across four campaigns; this result is unexpected, since an additional

building block should result in a larger accessible chemical space.

Reorganisation energies converged slower than the aza-systems populations,
approaching more stable average values around generation 20; this was accompanied

by average ring and side group counts similar to the simpler reduced building block
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Electron reorganisation energy GAs (4x Reduced population Aza+thio-systems)
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FIGURE 7.21: Plots to show how many unique molecules were sampled: by all 4 GAs
using the aza- and thio-substituted ring system building blocks (left); by each of the 4
GAs separately (right)

genetic algorithms. The level of overlap between populations is similar to that of the
aza-systems result, with up to 30% of molecules in a given population also being
present in parallel jobs, and roughly 13% of all sampled molecules being shared with
other jobs. Additional plots for these genetic algorithms can be found in the Appendix.
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FIGURE 7.22: Overlap plots examining each set of 4 aza-/thio-system reduced popu-
lation genetic algorithms: per generation (left) and cumulative (right)

7.3.3 Acenes with amide/ester-type rings
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FIGURE 7.23: Ring building blocks used to create and modify the third set of 'reduced’
population molecules: acenes with amide/ester-type rings.
Reduced populations with carbonyl, ester and amide-type building blocks tended
towards a slightly higher average number of rings, likely due to the lower

reorganisation energies found amongst five-ring systems composed with these ring
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types; side groups were also more common amongst the final populations, with all
average counts between 0.7 - 0.9 groups. Additional plots for these genetic algorithms
can be found in the Appendix.

Electron reorganisation energy GAs {4x Reduced population Acenes with amides/esters)
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FIGURE 7.24: Plots to show diversity and composition for each population: average
pairwise fingerprint diversity (left); average number of rings (middle); average num-
ber of side groups (right)

7.3.4 Varied ring types

O0~CO~0O0

FIGURE 7.25: Ring building blocks used to create and modify the most complex set
of 'reduced’ population molecules, attempting to capture the variety of ring OCELOT
fragments while working in a smaller space.
The most complex reduced building block set, as expected, sampled the highest
number of molecules across the four campaigns reaching 6,766 unique species; as the

closest analogue to the genetic algorithms with access to all building blocks, some

more specific comparisons can be made for these runs.

Reorganisation energies of the top 100 species converged neatly around generation 20
to a tight range of values shown in Figure 7.27, compared to the spread of final values

found with the full population runs in the corresponding plot of Figure 7.4.

The average ring count drops slightly in comparison to the full population runs,
however the side group count still remains within a similar range to the other reduced
building block GAs; this reinforces the idea that the chosen side group types are not

able to reduce reorganisation energy values in the same manner as the full set.
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Electron reorganisation energy GAs (4x Reduced population half of the building blocks)
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FIGURE 7.26: Plots to show how many unique molecules were sampled: by all 4 GAs
using half of the original building block set (left); by each of the 4 GAs separately
(right)
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FIGURE 7.27: Plots to show how the fitness values (molecular electron reorganisation
energy) change as each of these 4 GAs progress: average values per generation (left);
average of the top 100 molecules sampled up to a given generation (right)
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FIGURE 7.28: Plots to show diversity and composition for each population: average
pairwise fingerprint diversity (left); average number of rings (middle); average num-
ber of side groups (right)
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7.4 Looking at all the GAs together

7.4.1 Frequently found molecules

While molecules that appear in numerous separate genetic algorithm runs aren’t
necessarily the top performers, looking at the subset of molecules with low
reorganisation energy which are also frequently found can inform on the promising

candidates that MolBuilder can easily access.
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FIGURE 7.29: Grid showing 24 molecules commonly found in the 61 genetic algo-
rithms run so far, where reorganisation energies are below 0.125 eV.

7.4.2 Distribution of reorganisation energies

In terms of reorganisation energy, genetic algorithms sampled molecules with a wide
range of values; while the most concentrated range covers very low values (0.15-0.2
eV), some species were discovered with rather high values (up to 5.4 eV).

Distribution of calculated reorganisation energies
sampled by 61 GAs
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FIGURE 7.30: Plots to show the distribution of reorganisation energy values for all
molecules sampled up to this point: majority of the distribution (main) and outliers
with values higher than 0.7 eV (subplot).
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7.4.2.1 Comparing initial and final populations

The distributions of reorganisation energies can also be used to visualise how genetic
algorithms are able to optimize this property, as shown in Figure 7.31. The initial
populations exhibit a wide range of values up to 4.5 eV, which isn’t unexpected since
these populations were generated at random, without direct consideration of
minimizing reorganisation energies. After 50 generations in a genetic algorithm run,
the final populations fall into a smaller window up to 1.5 eV, with the majority of the

distribution centred around lower values.

Distribution of calculated reorganisation energies
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FIGURE 7.31: Plots to show the difference in distributions of reorganisation energies
between initial populations (chosen at random, blue) and final populations (optimized
via GAs, red).

7.4.2.2 Comparison to known experimental molecules

Calculations on the experimentally known molecules, with the same parameters,
gives a distribution centered around slightly higher values, covering a smaller range,
as shown in Figure 7.32; by sampling molecules “around’ these experimental species,
using extracted building blocks to run a genetic algorithm with MolBuilder, promising
species towards the lower end of the reorganisation energy range found in the

experimental set were generated.
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Distribution of calculated reorganisation energies
sampled by GAs (blue) vs original experimental molecules (green)
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FIGURE 7.32: Plots to show the difference in distributions of reorganisation energies
between GA sampled molecules (blue) and the original experimental set (green).

7.4.3 Common molecular shapes and substructures

Amongst the 25,736 molecules with low reorganisation energies (currently chosen as
between 0.1 - 0.2 eV), a set of 18 "Murcko” molecular scaffolds can be extracted, each of
which appears at least 50 times amongst these molecules with low reorganisation

energies.
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FIGURE 7.33: Drawings of the top 18 "Murcko scaffolds” appearing amongst sampled

molecules with reorganisation energies between 0.1 and 0.2 eV. Below each image is a

label with the number of appearances the scaffold makes, and the average reorganisa-
tion energy value found in molecules sampled with this scaffold.
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Pentacene and pentacene-like molecular scaffolds dominate the top-performing
portion of molecules sampled by these GAs; linear-pentacene and similar scaffolds
make up more than half of these common scaffold types. Linear pentacene itself is the

most common Murcko scaffold amongst top performers, with 488 unique substitution

patterns appearing.
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FIGURE 7.34: Drawings of 15 pentacene derivative molecules, ordered and labelled
by reorganisation energy values.

Of particular note is the set of molecules highlighted in Figure 7.34. Firstly, it’s clear
that many of these molecules break the molecular generation rules put in place; there
were issues in the code that meant the limits on number of side groups could be
exceeded. The information is not without use, however, as high levels of ethyne side
group additions at various positions on a pentacene core, seen in this set, leads to

molecules with promising calculated reorganisation energies.

7.5 Electron mobility as a fitness function

As part of a collaboration within the Day Research group, MolBuilder was used to run
genetic algorithms optimizing electron mobilities calculated from predicted crystal

landscapes; this was a ambitious project, as CSP on this scale is computationally
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expensive. Several members of the group contributed to this project, which required
further development of the CSPy code base and the distribution of computational jobs

between several users.

ARCHER?2 supercomputing resources were used to run calculations, as part of an
MCC Grand Challenge project; for the Grand Challenge, the MCC selects a small
number of projects for which large allocations of ARCHER? time are allocated, which
tit well with this campaign of genetic algorithms where CSP had to be completed

on-the-fly.

Electron mobility was chosen as a "higher level” property to optimize than
reorganisation energy; where reorganisation energies are calculated only accounting
for the changes in molecular geometry, electron mobility calculations also consider the

arrangement of molecular units in the solid state.

A set of 25 genetic algorithms were conducted with the calculation of electron
mobilities through the use of predicted crystal structures. Molecules were again
constructed with the full set of OCELOT building blocks, starting from the five initial
populations for which repeats of reorganisation energy-led genetic algorithms had

been run.

7.5.1 Sampling molecules with mobility genetic algorithms
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FIGURE 7.35: Plots to show how many unique molecules were sampled: by all 25
mobility-led GAs (left); by separated into groups of five by initial population number
(right)



138 Chapter 7. Molecular reorganisation energy GAs

These genetic algorithms sampled fewer molecules than the reorganisation energy
runs, with a maximum of 8,708 unique species discovered across five runs started
from population 18; overall, these runs sampled roughly 7,000 fewer unique

molecules than the 37,903 found in reorganisation energy led genetic algorithms.

7.5.2 Convergence of electron mobility values

Electron mobility GAs (25x Full populetions, 5 repeats of each, collected)
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FIGURE 7.36: Plots to show how the fitness values change as each of the 25 mobility-
led genetic algorithms progress, grouped by the initial population chosen: average
values per generation (left); average of the top 100 molecules sampled up to a given
generation (right)
When optimized on electron mobility rather than reorganisation energy, genetic

algorithms exhibit relatively quick convergence, where average values across each set

of five runs increase rapidly at first, and start to level out after around 25 generations.

The initial populations were predicted to have relatively low electron mobilities,
where molecules were not constructed with this property in mind; the genetic
algorithm was able to quickly discover species with increased mobilities, approaching

values of 6 cm?(Vs) L.
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7.5.3 Molecular composition and diversity of populations

Populations of molecules optimized with electron mobility in mind quickly approach
the maximum count of five rings on average, and converge around an average of 4.4
rings by generation 20; conversely, the number of side groups attached to these
molecules fall into a range of average values, sitting between 0.5 and 0.8.
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FIGURE 7.37: Plots to show diversity and composition for set of five populations: av-
erage pairwise fingerprint diversity (left); average number of rings (middle); average
number of side groups (right)

7.5.4 Overlap between separated populations

The overlap between each set of genetic algorithms per population reveals that by the
end of generation 50, roughly 20% of each population is shared with genetic
algorithms started from different initial populations.

Electron mobility GAs (25x Full populations, 5 repeats of each, collected)
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FIGURE 7.38: Overlap plots examining each set of 5 repeats for each initial population
run in mobility-led genetic algorithms: per generation (left) and cumulative (right)
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7.5.5 Comparing mobility to reorganisation energy

By comparing the values of each property with the scatter plot shown in Figure 7.39,

the utility of more costly calculations to determine electron mobilities is clear.

Mobility GA sampled molecules: Electron mobility vs. Reorganisation energy
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FIGURE 7.39: Scatter plot comparing calculated electron mobilities and electron reor-
ganisation energies of molecules sampled through the 25 electron mobility-led genetic
algorithms.

Molecules with higher reorganisation energy values are calculated to have near zero
electron mobilities, as expected; however, those with low reorganisation energies
achieve a wide range of calculated electron mobilities, as low as zero and reaching

values as high as 16 cm?(Vs) L.
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FIGURE 7.40: The top 5 sampled molecules according to electron mobility

Adding consideration of the solid-state packing arrangements is clearly important
when determining the charge carrier mobility a given candidate molecule has; linear
pentacene-type cores are present in each of the top-performing species shown in
Figure 7.40, which exhibit low reorganisation energies but stand out from the rest

according to calculated mobilities.
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7.6 Conclusions after property-led genetic algorithms

This chapter has shown the efficacy of the MolBuilder genetic algorithm to conduct
more directed exploration of chemical spaces, by considering reorganisation energy as

a fitness function to minimize while iteratively generating populations of molecules.

Across 61 campaigns, these genetic algorithms were able to identify local
reorganisation energy minima in the chemical space available with the OCELOT
building blocks; this is indicated by plots such as Figure 7.4, where average fitness
values level off as the number of generations increases. As the algorithms evolve,
molecules within each population become more similar, indicating an exploitation of
areas with good properties rather than continued broad exploration; average pairwise

fingerprint similarities within each population drop, as shown in Figure 7.3,

Genetic algorithms which start from different initial populations share a portion of
discoveries as they progress, likely hitting top performing molecules despite starting
with unique populations. This behaviour is observed further in repeat runs from the
same initial populations, where between 8% and 12% of the molecules sampled had
also been identified by an analogous repeat run; each set of generations takes a

different 'route’, but a selection of molecules are observed multiple times.

Analysis of molecular composition reveals trends in the sampled species which
correlate with lower reorganisation energy values; the movement of statistics such as
ring counts and side groups shows what kind of values are preferred to optimize

reorganisation energy as the genetic algorithms progress.

Later generations sample molecules with a higher number of rings and side groups,
where average ring counts level out near the maximum intended value of 5, and the
number of side groups increases, as shown in Figure 7.3. A notable exception to this is
seen when the number of side group types is lowered for the 'reduced population’
campaigns, where a fewer side groups tends to be preferred; this suggests that the

chosen side groups do not favour lower reorganisation energies.
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Commonly appearing building blocks and molecular shapes can be observed in the
top performing sets, again suggesting the types of molecular composition which

appear to promote reduced reorganisation energies. Pentacene-like ‘backbones’ are
frequently found amongst molecules with low reorganisation energies, particularly
those with multiple ethyne side groups attached; amongst the top 25,736 molecules
with lower reorganisation energies, linear pentacene cores are observed most often,

and several other pentacene-like analogues are prominent within this set.

Moving to the more expensive calculation of electron mobilities as a fitness function
leads to a similar outcome, where linear pentacene backbones dominate the
top-performing subset of candidates; analysis of the molecules sampled in these
genetic algorithms shows that considering the solid state packing arrangement of

these species is important when trying top optimize charge mobilities.

Overall, these genetic algorithms exhibit how directed chemical space exploration
with MolBuilder can provide sets of molecules optimized for a calculable property of
interest. Within 50 generations, each campaign was able to significantly lower average
reorganisation energies, in comparison to the randomly generated initial populations;
as shown in Figure 7.32, the distribution of reorganisation energies in molecules
sampled by these genetic algorithms is more tightly centred on lower values when
compared to the experimental set from which molecular building blocks were

extracted.
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Chapter 8

Post-hoc synthetic difficulty

prediction

8.1 Azapentacenes - similar molecules

As described earlier, several approaches to synthetic difficulty prediction are utilised
in this work. Applying each approach to the azapentacene chemical space provides
insight into how they deal with a class of molecules which are relatively similar to one
another. This section covers the analysis of the azapentacene space with each synthetic
difficulty estimation method, and will determine how effective each method is in

partitioning a large set of similar molecules into "easy” and “difficult’ synthetic targets.

Methods which only consider the composition of a molecule to estimate synthetic
difficulty, such as the fragment-complexity based approach taken by SYBA (Vorsilak
et al. (2020)) could struggle to differentiate between two given molecules in this set.
Due to the limited number of building blocks, it is almost certain that they will share

ring types, and the number of rings present will always be equal.
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Conversely, methods which predict synthetic routes and base synthetic difficulty
scores on them may have a better chance of partitioning this space, given the model
has the right information. As an example within the azapentacene space, two
molecules with the same set of ring types, but constructed differently, would likely
exhibit a difference in estimated synthetic difficulty due to a different order of

reactions, stereochemical requirements, etc.

If the azapentacene space can be partitioned according to synthetic difficulty, the
clustering performed earlier will be useful in determining whether or not molecular

shape and composition have an effect on predicted scores.

8.1.1 Distribution of synthetic difficulty scores

Analysis here starts with the distributions of predicted scores; since the full set of
135,744 azapentacene molecules available using the selected molecular building

blocks has been generated, smooth distributions of scores are expected.

The highest and lowest scoring portions will be analysed in detail, in particular cases
where a molecule scores well on one metric but poorly on another; this aims to give
insight into how the methods differ, and what sort of compositions cause them to

disagree.

The top performing set according to both metrics will then be further examined using
AiZynthFinder, in an effort to determine what kind of synthetic pathways it suggests
as well as to see if the retrosynthetic analysis based scoring agrees with molecular

complexity and reaction network scoring approaches.
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8.1.1.1 SYBA
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FIGURE 8.1: The best (top) and worst (bottom) scoring azapentacene molecules ac-
cording to SYBA

Starting with the molecular complexity-based scoring approach, the azapentacenes
give a fairly smooth distribution of scores, with the majority being marked as

synthetically accessible according to the suggested threshold of “above zero’.

7,965 molecules fell below said threshold, approximately 6% of the total space
sampled. Examples of the best and worst molecules according to SYBA scores are
shown in Figure 8.1; due to the similarity between these sets, it’s difficult to draw

conclusions from visual inspection.
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FIGURE 8.2: Distribution of calculated SYBA scores for all molecules sampled in an
exhaustive exploration of the azapentacenes; anything scoring below 0 is suggested to
be synthetically difficult.
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FIGURE 8.3: The best (top) and worst (bottom) scoring azapentacene molecules ac-
cording to SCScore

8.1.1.2 SCScore

The reaction-network based scoring also exhibits a fairly normal distribution of scores,
which cut-off at a value of 5 (the maximum value of SCScores) for those predicted to
be synthetically complex; between the top and worst scoring molecules from this
analysis, it can be noted that there appears to be higher symmetry amongst molecules

with lower SCScores.
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FIGURE 8.4: Distribution of calculated SCScore scores for all molecules sampled in an
exhaustive exploration of the azapentacenes; higher scoring molecules are suggested
to be synthetically difficult.
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8.1.1.3 Analysing clusters

As described in previous sections, clustering the azapentacene space by the shape of
the molecular backbone and nitrogen count can be useful to partition this set of
similar molecules, which helps to determine possible relationships between these
factors and predicted synthetic difficulty scores.

Azapentacenes synthetic difficulty, grouped by nitrogen count
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FIGURE 8.5: Violin plots describing synthetic difficulty scores for the azapentacenes,
grouped by nitrogen count.

Clustering by nitrogen count shows a variety of scores within each level of nitrogen
content; the ranges of these scores become wider as the number of possible
substitution patterns increases. There are two trends in the average score, depending
on the synthetic difficulty score used. For SYBA scores, higher levels of nitrogen
content generally reduce the predicted scores, implying higher molecular complexity;
on average, SCScore tends to increase when nitrogen counts are between 1 and 10,
implying higher synthetic complexity for species where there is a mixture of carbon
and nitrogen on the outer edges of azapentacene structures. Clustering by the generic
backbone type shows relatively consistent scores for each group when using SYBA,
with linear pentacene structures scoring the best on average; the same is true for
SCScore results, where linear pentacene stands out from the other backbones with a

lower score on average.
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Azapentacenes synthetic difficulty, grouped by backbone type
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FIGURE 8.6: Violin plots describing synthetic difficulty scores for the azapentacenes,
grouped by generic backbone type.

8.1.14 Comparing SYBA and SCScore

The two different scores can be scattered against each other to determine how much

they "agree” with each other for each molecule in the azapentacene set.

Figure 8.7 shows a rough agreement between SYBA and SCScore, where in general a
higher SCScore (indicating synthetic complexity) is matched by a lower SYBA score
(indicating molecular complexity). Molecules found above the "accessible” threshold
of SYBA > 0 make up the majority of cases where SCScore falls below 3; when
SCScore rises above 3, SYBA scores fall into a larger range, indicating that such
molecules appear more like reaction products during SCScore analysis, but are seen

by SYBA at varying levels of molecular complexity.
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Azapentacenes - SYBA vs. SCScore
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FIGURE 8.7: Scatter plots comparing SYBA and SCScore synthetic difficulty scores.

8.1.2 Retrosynthetic analysis with AiZynthFinder

Top performing azapentacene molecules according to both SYBA and SCScore have
been extracted and passed through AiZynthFinder, to demonstrate the prediction of
retrosynthetic pathways done using this tool to determine the kind of reagents and

reaction steps that may be needed to produce these molecules in-lab.
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FIGURE 8.8: Predicted synthetic route to an example azapentacene molecule, pro-
duced by AiZynthFinder; green borders mean that the molecule is available as a
reagent in the ZINC15 database
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8.1.3 Experimentally known molecules

Given the large number of molecules, and the simplicity of the azapentacene chemical
composition, already discovered and synthesised species should be present. By
examining this subset of the space, we can start to determine which generated

molecules match up with 'real life” results.
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FIGURE 8.9: 5 ChEMBL matches (top) and 15 PubChem matches (bottom)

Only a small number of the sampled molecules were present in the databases
searched, including the well-known linear pentacene and multiple other

arrangements of pentacene with no nitrogen substitution.
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8.2 OCELOT - reorganisation energy GA results

As a step up from the azapentacenes, different behaviour is expected from the
synthetic difficulty estimation tools when analysing molecules generated from the
OCELOT building blocks; there are multiple ring types, including several heteroatom
options, and the inclusion of side groups, an option not present when generating

azapentacene molecules.

8.2.1 SYBA score distributions

Another relatively even distribution is exhibited when looking at the molecules
sampled up to this point with reorganisation energy-led genetic algorithms; of the
71,121 molecules generated, only 2,988 fall below the "synthetically accessible’
threshold.

Distribution of SYBA scores for molecules sampled by 61 reorganisation energy GAs
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FIGURE 8.10: Distribution of calculated SYBA scores for all molecules sampled with
reorganisation energy genetic algorithms; anything scoring below 0 is suggested to be
synthetically difficult.

Compared to the azapentacenes, molecules constructed using the OCELOT building
blocks were able to score far lower than those sampled in the azapentacene space, with
minimum scores of -77 and -16 respectively. This is likely due to some of the OCELOT

building blocks being marked as ‘complex fragments’ in the SYBA scoring scheme.

The peak of the SYBA score distribution has been shifted to a higher value, indicating

less molecular complexity amongst these molecules; this is likely a result of the genetic
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algorithms being able to access different molecule sizes, as smaller molecules have less

rings, and so have fewer fragments to contribute complexity when scoring.
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FIGURE 8.11: The best (top) and worst (bottom) scoring reorganisation energy GA
sampled molecules according to SYBA

The difference between top and bottom-scoring molecules is much clearer when the
set of building blocks is more varied, as shown in Figure 8.11. Benzene and pyridine
rings are favoured in the top-5 molecules, with attachments such as methyl and cyano
groups. Conversely, the worst 5 sampled molecules are visually more complex, with
the presence of amide/ester type rings and frequent appearance of the

cyclopentadiene ring (and its aza-substituted equivalent).

The lowest scoring molecule, simply two 5-membered rings attached "back-to-back’ is
curious; despite the small molecular size, and lack of "visual complexity’, SYBA has
labelled it as incredibly complex, suggesting that such 2-ring fragments have been

considered part of the ‘complex” dataset used to mark molecules as hard-to-synthesise.

8.2.2 SCScore distributions

The distribution of SCScores exhibits a similar shape to the azapentacenes with
slightly more spread and a shifted peak towards lower values, indicating that
molecules sampled with the genetic algorithms using OCELOT building blocks are

generally more synthetically accessible.
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This result isn’t surprising; once again, with the wider range of molecule sizes, and
freedom to pick from a larger set of building blocks, the genetic algorithms are able to
sample ‘simpler” molecules.

Distribution of SCScores for molecules
sampled by 61 reorganisation energy GAs
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FIGURE 8.12: Distribution of calculated SCScores for all molecules sampled with re-
organisation energy genetic algorithms; higher scoring molecules are suggested to be
synthetically difficult.

With SCScore in particular, the molecule size (or number of rings) becomes more
important. As the scores are based on similarity to either reagents or products in a
reaction network, it is almost expected that smaller molecules will score well; common
molecules with small numbers of rings are more likely to be prevalent as reagents,

rather than reaction targets.

The "tail” at the high-scoring portion of this distribution appears again; there are likely
molecules in this set which are "too complex” to be considered as reagents of a reaction

in any way, or are perhaps similar to natural products in some way.

Compared to both the azapentacene results and the SYBA results for OCELOT, the top
and bottom scoring molecules according to SCScore exhibit a stark difference, which

sheds more light on how the scores are being generated.

Amongst the top scoring molecules shown in Figure 8.13, SCScore clearly favours
smaller molecules, including some with chloride functional groups, which is present

in reactants frequently used in the Reaxys database of reactions.

The worst-scoring 5 molecules are visually complex, with several heterocycle types,
and attached side groups. As a note, they all received the maximum score available

with SCScore, 5.
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FIGURE 8.13: The best (top) and worst (bottom) scoring reorganisation energy GA
sampled molecules according to SCScore

8.2.3 Restriction on building blocks to lower synthetic difficulty

One of the ideas that prompted using smaller building block sets was to reduce the
synthetic difficulty of generated molecules by reducing the number of ring types

available.

Other than a subtle shift in centring of SYBA scores to lower values, this had little
effect on the distributions of calculated synthetic difficulty values for molecules
sampled by reorganisation energy genetic algorithms, as shown in Figure 8.14
Distributions of these scores partitioned according to the type of reduced population

are available in the appendix Figure A.47.
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Full vs Reduced populations - score distributions
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FIGURE 8.14: Distribution of calculated SYBA /SCScores for molecules sampled by re-
organisation energy genetic algorithms, partitioned into those with all building blocks
(blue) and those without (red).

8.2.4 How do SYBA and SCScore match up?

Inclusion of additional building blocks compared to the azapentacenes work results in
different behaviour between the synthetic difficulty scoring functions, and highlights
cases where SCScore and SYBA do not agree with one another; the scatter plot of
Figure 8.15 shows that molecules marked by SYBA as complex receive a range of

SCScores across all potential values.

A selection of molecules which produce the biggest ‘disagreements” between SCScore
and SYBA are shown in Figure 8.16, which SYBA marked as highly complex, while

SCScore marked them as synthetically "easier’.

This highlights the possible reasoning behind this mismatch, as all of these species
contain at least one five-membered ring, and only two rings overall; SYBA is likely
marking five-membered rings as more complex when attached to other ring systems,
whereas SCScore is able to see such molecules used as reagents more often than

appearing as products in the Reaxys database of reactions.
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OCELOT Reorganisation energy results
SYBA vs. SCScore

5.0

45

40

35

3.0

SCScore

25

20

15

SYBA

FIGURE 8.15: Scatter plot of SYBA and SCScore results for all molecules sampled with
reorganisation energy genetic algorithms.
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FIGURE 8.16: Grid of species discovered in reorganisation energy genetic algorithms,
where post-hoc analysis with SYBA and SCScore results in a disagreement regarding
their percieved synthetic difficulties.

8.2.5 Comparison to the experimental set

This comparison works to provide validation that generated scores make sense, and
inform on how generated molecules compare to the original experimental species

from which building blocks were extracted.
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Experimentally known molecules should exhibit good synthetic accessibility scores,
and fall into a better range of values than the species sampled with reorganisation

energy genetic algorithms, where synthetic difficulty wasn’t directly taken into

account.
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FIGURE 8.17: Scatter plot of SYBA and SCScore results for the original OCELOT
molecules (red) used to select molecular building blocks, compared to those sampled
through the genetic algorithms (blue).

The scatter plot shown in Figure 8.17 is promising as for the most part, experimental
molecules scored above zero with SYBA, indicating lower molecular complexity;
values predicted by SCScore fall into a wider range of synthetic complexities, but only

a few approach the maximum SCScore of 5.
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8.2.6 Retrosynthetic analysis with AiZynthFinder

Using AiZynthFinder, synthetic routes to sampled molecules can be predicted and
scored according to reagent availability and the number of reaction steps; these scores

are described with a violin plot in Figure A.46 according to different categories.

It’s worth noting the 9 molecules in initial populations which scored close to zero
through AiZynthFinder analysis; these molecules are shown in Figure 8.18. In these
cases, where the score is 0.049 no disconnection steps could be found during the
retrosynthetic analysis, and the target molecule was not available as a reagent in the

ZINC15 database, hence the incredibly low score.
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FIGURE 8.18: 12 molecules marked as highly synthetically difficult according to
AiZynthFinder.

The initial populations generally exhibited higher scores before being passed through
MolBuilder reorganisation energy genetic algorithms; the final populations see a drop

in scores of roughly 0.2 on average.

The best target molecules, scoring close to 1 based on AiZynthFinder analysis, have
very few steps, or are available directly as precursors in the ZINC15 database; such

examples are shown in Figure 8.19.
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FIGURE 8.19: Examples predicted synthetic routes to targets from the OCELOT space
with very high AiZynthFinder scores

8.2.7 Accessible molecules with low reorganisation energies

In order to determine the 'best of the best” from molecules sampled so far with
reorganisation energy genetic algorithms, which exhibit both promising physical
properties and low estimated synthetic difficulty, a subset of 12 species was selected

with the following criteria:

¢ Calculated reorganisation energy below 0.135 eV
¢ Predicted SYBA score above 30

¢ Predicted SCScore below 3
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The 12 molecules which fit these criteria all share the linear pentacene-type structure,
with various levels of nitrogen substitution and side groups attached; these are shown

in Figure 8.20.
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FIGURE 8.20: 12 molecules which exhibit both optimal reorganisation energies and
synthetic difficulty scores according to SYBA and SCScore.

This is a reassuring outcome, since as shown in the previous chapter pentacene-like
cores appear to promote lower reorganisation energies; this set of top performers can
also be identified as top performing molecules in synthetic difficulty scoring through
SYBA and SCScore, meaning there is at least some portion of the OCELOT chemical

space in which both reorganisation energy and synthetic difficulty can be minimized

in tandem.
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8.3 Conclusions from standalone synthetic difficulty analysis

This chapter served to validate the use of SYBA and SCScore as measures of synthetic
difficulty, through analysis of past results and comparisons to scores for
experimentally known molecules, before their implementation into MolBuilder for use

as fitness functions to optimize in genetic algorithms.

These scores fall into smooth distributions for both the azapentacenes and the
GA-sampled OCELOT species; SCScores exhibit a "tail” at the maximum allowed value
of 5, which was noted by Coley et al. (2018) as an indication that molecules are

‘substantially more complex” than the species found in Reaxys used to train the model.

Comparison between SYBA and SCScore values shows a general agreement between
the metrics, and highlights cases where disagreements are found; the grid of
molecules in Figure 12.2 describes such cases, in which small molecules which may
frequently appear as precursors (leading to low SCScore values) are considered to be
higher in molecular complexity according to SYBA, perhaps due to the combinations

of six- and five-membered rings.

The experimentally known OCELOT molecules used to select building blocks for use
in the genetic algorithms of this work generally score well in SYBA analysis, falling
above the molecular complexity threshold of 0; SCScores are predicted across the
possible range of values, which indicates a range of perceived synthetic complexity,
however only a few molecules approach the maximum score of 5, and the majority
score below 3.5, suggesting that while these experimental species may be more

complex to synthesise, they’re not impossible to attain.

These outcomes inspire confidence in the use of these synthetic difficulty tools as
properties to be optimized in genetic algorithms. SYBA and SCScore tend to agree
with one another; in cases where the scores disagree, the reasoning behind such
disagreements is clear. The different approaches appear to be capturing different
aspects of synthesis, and the scores calculated for experimentally validated species

tend to fall within acceptable bounds.
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Chapter 9

Synthetic difficulty GAs

The next set of genetic algorithms run with MolBuilder used only the OCELOT
building blocks, and aim to optimize the synthetic difficulty scoring methods SCScore
and SYBA; allowing GAs to run with these as fitness functions provides more
information on the type of molecules that are preferred by each approach, and should
sample areas of the available chemical space with species easier to produce in

laboratories.

20 genetic algorithms were run with the full OCELOT building block set, using the
same initial populations as the 20 reorganisation energy runs; these will be analysed in
the following sections. An additional four genetic algorithms were run with each of

the four reduced building block sets.

9.1 Behaviour of SCScore-led genetic algorithms

Genetic algorithms tasked with optimizing SCScore to reduce synthetic complexity
show interesting behaviour; the calculated scores drop rapidly for the first few
generations, moving away from the initial populations which had not been built with
synthetic difficulty directly considered, but consistently rise after around generation

10, reaching average values higher than those found earlier on by the end of the run.
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FIGURE 9.1: Plots to show how many unique molecules were sampled: by all 20
SCScore-led GAs (left); by each of the 20 GAs separately (right)

This behaviour may be due to the nature of the genetic operators, as when creating a
new generation with parents from the previous population, there’s a chance that
children can be created with a higher number of rings than their parents; adding more
rings to a molecule will likely raise its SCScore, as larger molecules are more likely to
be present as reaction products as opposed to reagents.
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FIGURE 9.2: Plots to show how the fitness values (SCScore) change as each of the 20
GAs progress: average values per generation (left); average of the top 100 molecules
sampled up to a given generation (right)
The right portion of Figure 9.2 is reassuring, showing that top-performing molecules
get sampled early in each genetic algorithm run, achieving low scores as soon as
generation 20; unlike the left potion, which shows an increase in scores at later

generations, the top 100 average scores continue to decrease as the algorithms

progress.
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9.1.1 Changes to diversity and molecular composition

The central plot of Figure 9.3 confirms the idea suggested above; at first, the average
ring count per population drops to between two and three, achieving low calculated
SCScores; after generation 10, the average counts rise again, leading to values between

3.5 and 4.5 rings.
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FIGURE 9.3: Plots to show diversity and composition for each population in 20
SCScore-led GAs: average pairwise fingerprint diversity (left); average number of
rings (middle); average number of side groups (right)

Average side group counts follow a similar pattern, with the exception of a single run,
which maintained a low average count throughout the genetic algorithm run; this is

likely due to the random aspect of mutations, where the chance of mutations
occurring is controlled by a defined mutation rate. This particular run is getting

"unlucky” and not performing mutations as often as the rest.

9.1.2 Reducing the number of building blocks

The 16 runs with reduced OCELOT building block sets sampled lower numbers of
unique molecules when optimized by SCScore, between 1000 - 1500 per run,
compared to the full populations 1600 - 2200; the average fitness converges in a better
manner than the 20 full population genetic algorithms, settling into a range of low
SCScore values after 10 generations without the increase at later points in the run, as

shown in Figure 9.4.

This behaviour is mirrored by the average counts of rings and side groups (see

Figure A.50), which also converge to tight ranges of values early on in the genetic
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FIGURE 9.4: Plots to show how the fitness values (SCScore) change as each of the 16
reduced-population GAs progress: average values per generation (left); average of the
top 100 molecules sampled up to a given generation (right)

algorithms; new molecules are still being sampled, as shown in Figure A.49, but the

average counts are able to remain low, with calculated SCScores staying in a

promising range.

9.2 Behaviour of SYBA-led genetic algorithms

This set of genetic algorithms seeks to maximise predicted SYBA scores, which should

lower the molecular complexity of generated species; this should reveal some more

information about the ring types within the OCELOT building block set which are

‘preferred’ by SYBA, and how combining rings influences the generated scores.
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FIGURE 9.5: Plots to show how many unique molecules were sampled: by all 20 SYBA-
led GAs (left); by each of the 20 GAs separately (right)
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9.2.1 Maximization of SYBA scores

SYBA scores show a clean convergence across all 20 runs, with high scores being
maintained after generation 20; this is despite the fact that unique molecules are still
being sampled after this point, as shown in Figure 9.5. In contrast to the SCScore-led
genetic algorithms, the right-hand portion of Figure 9.6 shows that the top-100
sampled molecule set is still being improved by later generations.
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FIGURE 9.6: Plots to show how the fitness values (SYBA) change as each of the 20
GAs progress: average values per generation (left); average of the top 100 molecules
sampled up to a given generation (right)

9.2.2 Molecular composition and population diversity

The average number of rings rapidly drops at the start of SYBA-led genetic
algorithms, then breaking into two ’clusters’ of jobs; four runs maintain a low average
ring count, while the rest exhibit rising counts, approaching the maximum allowed
value of five rings. Side group counts also drop at the start of these runs, before rising
to between 0.6 and 1.6 groups at the final generation.
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FIGURE 9.7: Plots to show diversity and composition in 20 SYBA-led GAs
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9.2.3 Reducing the number of building blocks

Reducing the building block set for SYBA-led genetic algorithms had little effect; in
some cases, the number of molecules sampled by a given run increases compared to
the full population runs.
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FIGURE 9.8: Plots to show how many unique molecules were sampled: by all 16 re-
duced population SYBA-led GAs (left); by each of the 20 GAs separately (right)

The average SYBA values behave similarly to the full population runs as genetic
algorithms progress, as shown in the appendix Figure A.51; the same can be said for

the average ring counts and levels of side group addition, as in appendix Figure A.52.
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9.3 Analysis of all molecules sampled with synthetic

difficulty GAs

A set of 18 molecules were frequently found by at least 50 of the 72 synthetic difficulty
led genetic algorithms, with promising scores produced by both SYBA and SCScore;

these are shown in Figure 9.9.
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FIGURE 9.9: 18 molecules sampled by synthetic difficulty GAs multiple times, while
achieving low SCScores and high SYBA scores.

These molecules illustrate a compromise between the two approaches to synthetic
difficulty prediction, containing low ring counts, a maximum of one side group, and
relatively simple ring types; it wouldn’t be surprising to see these species appear as

reagents in reactions.
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9.3.1 Common motifs in 'synthetically accessible’ molecules

A selection of commonly sampled molecular shapes can be extracted through
clustering of all sampled molecules with generic Murcko scaffolds; these shapes are
shared by molecules discovered with multiple genetic algorithms, and for the most

part exhibit promising values in SYBA and SCScore analysis.

oo O o QP oo

1703 cecurances | Reorg D239 eV 1394 oceurances | Reorg: 0347 eV 1308 oceurances | Reorg: 0253 6V 1274 accurances | Reorg 0.348 eV 1156 aceurances | Rearg: 0204 eV
SYBA: 352 | SCscore: 366 5Y8A: 314 | SCscore: 325 SYBA: 361 | SCacore: 303 SYBA: 232 | SCscore: 328 SYBA: 404 | SCscore: 33

0 oo oY oo o

1037 occurances | Reorg 0349 eV 946 pecurances | Reorg: 0.174 eV 543 occurances | Reorg 0.198 eVl 731 pecurances | Reorg: 0278 eV 730 occurances | Reorg: 0.445 eV
SYBA: 333 | SCscore: 249 SYBA: 439 SCscore: 248 SYBA: 363 | SCscore: 186 SYBA: 265 | SCscore: 312 SYBA: 213 | SCscore: 251

FIGURE 9.10: 10 generic molecular shapes commonly sampled by synthetic difficulty
genetic algorithms, with average calculated properties.

9.3.2 Synthetically accessible molecules with low reorganisation energies

Similar analysis can be done with an additional filter to examine backbones which
also exhibit good reorganisation energies, alongside being sampled multiple times

amongst synthetic difficulty; these average values are also shown in Figure 9.10.

The top performing set of molecules once again commonly contains the linear
pentacene shape, with various substitutions and six-membered ring types, as shown
in Figure 9.11. These can be compared to the top performing set found by genetic
algorithms which optimized reorganisation energy directly; the lowest value amongst
molecules sampled by synthetic difficulty GAs is 0.1471 eV, which shows a penalty in
the best scoring species when compared to the lowest found in reorganisation energy

GAs, which tended to be closer to 0.1 eV.
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SYBA: 545 | SCscore: 312 SYBA: 525 | SCscore: 2.86 SYBA: 415 | SCscore: 282 SYBA: 572 | SCscore: 32 SYBA: 490 | SCscore: 316

FIGURE 9.11: 15 molecules sampled by synthetic difficulty genetic algorithms, achiev-
ing the lowest average reorganisation energies from these runs.

9.4 Conclusions from synthetic difficulty-led GAs

This chapter covered the implementation of SYBA and SCScore as fitness functions to
be optimized in MolBuilder genetic algorithms; different convergence behaviour is
observed when targeting these scores, including unexpected rises in the population

average SCScore values.

Top performing molecules according to both measures appear much simpler than
those found with reorganisation energy GAs, containing fewer rings and side groups;
these species look like reasonable precursors, which matches the expected behaviour

of SCScore (where molecules more similar to reaction reagents achieve better scores).

These results show that SYBA and SCScore can be optimized well by genetic

algorithms; there is a noticeable "penalty” in calculated reorganisation energies



172 Chapter 9. Synthetic difficulty GAs

amongst the sampled molecules, which is to be expected since these algorithms were
built to not consider this property, but it is reassuring to see these campaigns sampling

species with higher, but still respectable, reorganisation energy values.
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Multi-objective GAs

The final way in which this project assesses synthetic difficulty as part of the
computational materials discovery process involves consideration of predicted scores

alongside the optimization of target physical properties

This section will cover the effects of minimizing predicted SCScores and electron
reorganisation energies within a combined fitness function during MolBuilder genetic
algorithms, again constructing molecules with the OCELOT building blocks. The
results of these runs will be compared to the single-objective variants of each property,

to see what kind of molecules are generated in each case.

10.1 Behaviour of multi-objective genetic algorithms

Multi-objective GAs (reorganisation energy + SCScore)

Unique molecules sampled across 14 GAs per generation Unique molecules sampled by each of 14 GAs per generation
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Generation Number Generation Number

FIGURE 10.1: Plots to show how many unique molecules were sampled: by all 14
multi-objective GAs (left); by each of the 14 GAs separately (right)
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14 genetic algorithms were conducted with multi-objective fitness functions, sampling
a range of ‘'weights’ placed on each objective, to see what sort of impact different
ratios of physical property to synthetic difficulty consideration has on generated
species; too much focus on one objective would likely lead to similar results compared

to the single-objective genetic algorithms run with that target property.

Across all of these runs, genetic algorithms sampled far fewer molecules than their

separate, single-objective counterparts, discovering only 9004 unique species in total.

10.1.1 Optimizing reorganisation energy and SCScore

By constructing fitness values from both reorganisation energy and SCScore, genetic
algorithms should be aiming to target molecules which look more like reactants
according to Reaxys, and have low reorganisation energies; there will likely be a

compromise between the best possible values for each property.

A simple multi-objective fitness function was trialled, where reorganisation energy
and SCScore were considered at equal weights (i.e. same level of importance during
optimization). In order to determine the fitness score, each property was scaled to a
value between 0 and 1, according to the range of values sampled so far, then squared;

the fitness score is calculated as the square route of the sum of these squares:

FMULTI = \/)\2 + (SCSC0T€)2

Multi-objective GAs (reorganisation energy + SCScore)
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FIGURE 10.2: Plots to show how the individual properties change as each of the 14
GAs progress: reorganisation energy (left) and SCScore (right)
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While both properties exhibited convergence, the final value ranges for reorganisation
energies at generation 50 were not as optimal as values found in the single-objective
reorganisation energy genetic algorithms; SCScore values were able to converge at
lower values, and stay in that range until the end of each run, which the
single-objective runs did not achieve.

Multi-objective GAs (reorganisation energy + SCScore)
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FIGURE 10.3: Plots to show how the individual properties change for the top 100
molecules sampled up to each generation each of the 14 GAs progress: reorganisation
energy (left) and SCScore (right)

Looking at the minimum values rather than the averages, Figure 10.4 reveals that
while the lowest SCScores were updated over the course of these genetic algorithms,
molecules with better reorganisation energies than those in the initial population were
rarely found. The genetic algorithms solely optimizing reorganisation energies were
able to drop minimum values by up to 0.08 eV (see Figure 7.5); this suggests that
optimizing multiple properties as part of the fitness function has required a
compromise in the genetic algorithms ability to reduce reorganisation energies in
sampled molecules.

Multi-objective GAs (reorganisation energy + SCScore)

Calculated Reorganisation energy values Calculated SCScore values
(minimum per generation) (mini 1 per generation)

=
~
&

20

o
N
B

=
~

=
-
&

=
-
o

Minimum SCScore f score

Minimum Reorganisation energy / eV
s
I
]

0 10 20 30 a0 50 0 10 0 30 a0 50
Generation Number Generation Number

FIGURE 10.4: Plots to show how the minimum values of each property changes as
each of the 14 GAs progress: reorganisation energy (left) and SCScore (right)
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10.1.2 Varying property weights

Across the 14 multi-objective genetic algorithms, jobs were run with fitness functions
where the relative importance of each property was modified; the weights (A : B)
were set at ratiosof 1: 1,2 : 1 and 4 : 1, with larger weights being placed on

reorganisation energy in each iteration.

FMULTI,WEIGHTED = \/(A X )\)2 + (B X SCSCOT’E)2

This was an attempt to drop the average reorganisation energies of sampled
populations, by placing more importance on the minimization of that portion of the

fitness function.

Multi-objective GAs (reorganisation energy + SCScore)
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FIGURE 10.5: Plots to show how the individual properties change as each of the 14
GAs progress, grouped by the weights placed on each property in the fitness function:
reorganisation energy (left) and SCScore (right)

Modifying these weights to place more importance on reorganisation energies appears
to have the mixed effects; looking at the values per population in Figure 10.5 shows
that average reorganisation energies typically drop as the weight on this part of the
titness function increases. The average values of the top 100 ‘elite’ sampled molecules

shown in the left portion of Figure 10.6 exhibit a less clear trend.

Increasing the weight placed on reorganisation energy in the fitness functions allowed
genetic algorithms to achieve lower average reorganisation energy values, with little
sacrifice to the calculated SCScores. However, this result is not consistent as the
weights are increased further; fitness functions weighted at 2 : 1 sampled elite sets

with lower average reorganisation energies than those weighted at 4 : 1.
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Multi-objective GAs (reorganisation energy + SCScore)

Calculated Reorganisation energy values of top 100 Calculated SCScore values of top 100
(elite molecules from all sampled) (elite molecules from all sampled)

n

—— 1Reorg:15CScore
—— 2Reorg:15CScore
—— 4Reorg:15CScore

025 |

0.24 !
023 \ \\
022 \

021 — —

-

w

[N

[=)

~
020 ~— S—

=
™

019

-
o

018

8
.
5

0 10 2 0 @ ) 0 @ A
Generation Number Generation Number

Average (topl00) Reorganisation energy / eV
/
/
[
Average (topl00) SCScore / score

FIGURE 10.6: Plots to show how the individual properties change for the top 100
molecules sampled up to each generation each of the 14 GAs progress, grouped by the
weights placed on each property: reorganisation energy (left) and SCScore (right)
This could be a consequence of the random aspect genetic algorithms exploit during

chemical space exploration, where the runs at 4 : 1 weighting simply got “unlucky’;

further repeats at different weights would help to confirm this behaviour.
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FIGURE 10.7: Scatter plots comparing reorganisation energies and SCScores for
molecules sampled with multi-objective algorithms, categorised by the weights placed
on each property.

Plotting the properties against one another in Figure 10.7 shows similar distributions

for each weight trialled; while lower reorganisation energies tend to appear at higher
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weights, the improvement is not great. This suggests that much higher weights should
be trialled in future work, to further improve the performance of these multi-objective

fitness functions in genetic algorithms.

10.2 Top performing molecules

The top performing molecules from multi-objective genetic algorithms appear quite
different from past results; rather than all instances being variations on the linear

pentacene structure, molecules with different ring counts appear.
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SCScore: 2416 SCScore: 2326 SCScore: 2169 SCScore: 2255 SCScore: 2391
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Reorg: 019 eV Reorg: 0.183 eV Reorg: 0173 eV Reorg: 0155 eV Reorg: 0144 eV
SCScore: 2498 SCScore: 2441 SCScore: 2444 SCScore; 2016 SCScore: 2384

FIGURE 10.8: 10 top performing molecules, with both low reorganisation energies and
low SCScores, discovered during multi-objective genetic algorithms.

The influence of including SCScore in fitness functions is clear, where these species
appear more like 'reagents’, or targets which would be accessible in fewer reaction
steps than the top-performing linear-pentacene type structures which dominated top

performing sets from single-objective reorganisation energy genetic algorithms.

10.2.1 Overlap with single-objective GAs

Of the 9,004 molecules sampled, 1,796 were also sampled by both the reorganisation
energy and SCScore-led single objective genetic algorithms; this means roughly 80%
of the molecules sampled with multi-objective genetic algorithms were newly
discovered. The top molecules, according to reorganisation energy, that were

rediscovered by the multi-objective runs are shown in Figure 10.9.
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10.3 Conclusions from multi-objective genetic algorithms

This chapter has covered the use of genetic algorithms where multiple objectives were
optimized as part of a single fitness function, aiming to sample more synthetically

accessible molecules which also exhibit promising reorganisation energies.

Inclusion of SCScore in the fitness functions promotes exploration of the chemical
space which appear more synthetically accessible, with the top-performing set of
species differing well from single-objective genetic algorithms for each property;
while linear pentacene type structures still appear, most of the top 40 sampled

molecules are constructed with fewer rings and side groups.

The best reorganisation energy values in sampled molecules tend to be higher than

those sampled with reorganisation energy led genetic algorithms, indicating a penalty
to the best values accessible through multi-objective optimization. Varying the relative
weights on each objective allowed for lower reorganisation energies; further increases
to the weights should be trialled to promote better reorganisation energy values, while

determining if a compromise on SCScores is observed.

The choice of where best to consider synthetic difficulty appears dependant on the
requirements of the project and/or collaborators. When applied as a post-hoc filter to
molecules sampled with property-led genetic algorithms, a set of similar species can
be selected which exhibit good reorganisation energies, and appear to be more
synthetically accessible than other species sampled this way (see Figure 8.20). This
approach seems more suited to tasks where the best properties are sought after, and

synthetic accessibility in candidate species is desired but not essential.

Including synthetic difficulty as part of a multi-objective fitness function during
genetic algorithm sampling promotes more diversity in the top performing molecule
sets, but the best reorganisation energies amongst these species is raised (see

Figure 10.8). This approach would likely work better for the earlier stages of a project,
where idea generation and the validation of predicted properties is more important;
suggesting synthetically accessible species should promote a lower synthetic difficulty

"barrier’ to the experimental validation of calculated results.
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FIGURE 10.9: 40 top performing molecules, with both low reorganisation energies and
low SCScores, rediscovered during multi-objective genetic algorithms.
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Mixed crystals project

This side project conducted at the start of this PhD involved collaboration with Jim
Wouest and Norbert Villenueve, from the University of Montreal; binary mixed crystals
were constructed both computationally and experimentally, sampling a range of
compositions, to study the crystallisation behaviour of such systems where the two

component species are similar.

11.1 Binary mixed crystal systems

Four species were chosen for this study; Figure 11.1 shows these molecular structures,
which were selected due to a lack of isostructural packing between the species most
stable polymorphs despite clear molecular similarity; in each case, a 5-membered
cycle is flanked by two benzene rings, with a single atom on the 5-membered ring

being changed between species.

0D QO A 4P

DBT DBF FLU CBZ

FIGURE 11.1: Species studied as mixed crystals: Dibenzothiophene (DBT), dibenzofu-
ran (DBF), fluorene (FLU), and carbazole (CBZ).
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11.2 Validation of single-species predicted crystal structures

Starting from 2D sketches of each species, molecular geometries were optimised with
Gaussian(9, then passed to DMACRYS for distributed multipole analysis. CSP was
performed using the optimised structure with the FIT potential, aiming to generate

10,000 valid crystal structures within the ten most common space groups (fine10).

The CSD database contains experimental data for each species under study, so once
crystal landscapes had been generated with CSPy, COMPACK searches were carried
out to confirm that the CSP process had generated experimentally observed packing

arrangements.

11.2.1 Comparing structures between species

On the predicted crystal structure landscape of dibenzothiophene, the structure of
second-lowest energy matches experimental data for the known P21/n form. Higher
up on the landscape, the highlighted Pnma structure matches experimental data

extracted from the CSD for DBF, FLU, and CBZ.
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FIGURE 11.2: Predicted crystal-structure landscape for DBT.
This shows that while dibenzothiophene prefers to form a P21/n crystal structure, the

Pnma structure, analogous to the other species in this study, is also present with an

associated energy penalty.
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FIGURE 11.3: Predicted crystal-structure landscape for DBF.

The landscape for dibenzofuran provides some more information, with the preferred
Pnma form once again shared by DBF, FLU and CBZ. The P21/n form of dibenzofuran
is present on the landscape at a higher energy; this structure was found through
energy minimization of the dibenzothiophene crystal structure where all molecules
were replaced with dibenzofuran, and the optimized structure matched the marked
crystal discovered during crystal structure prediction. Higher up on the landscape

still, the crystal matching dibenzothiophene’s P21/n structure can be found.

11.3 Creating binary mixed crystal supercells

The experimental crystal structure of each "host” was then used to build supercells
containing 32 molecules, to be used as starting points for ‘mixed crystal supercells’; in
cases where supercell dimensions are not equal in each direction, each possible

combination was tested.

Starting from the "host supercell’, N molecular positions were chosen at random to be
swapped for imposter species, using Python random seeds to ensure reproducibility.
Each selected "host” molecule was then replaced the ‘imposter” structure, in the

imposter’s optimal molecular geometry.
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11.3.1 Dealing with configurational entropy

In order to account for variation in imposter positions (Figure 11.4), 40 configurations
were generated for each level of imposter addition, giving different sets of swapped
positions.

1= MNumber of configurations available for Z=32 supercells with N imposter molecules

Number of possible configurations
Lt

0 5 1 15 0 = Y
Number of swaps

FIGURE 11.4: As the host:imposter ratio reaches 50:50, the number of possible im-
poster position sets increases rapidly

This many configurations were tested for each system in order to account for the effect
of placing imposter molecules in various parts of the supercell, while maintaining a
reasonable computational cost; if imposters are present at a different set of positions
within the supercell, the optimal packing arrangement can vary, leading to a range of

potential energies at a given ratio of host to imposter.

11.3.2 Optimizing a mixed crystal supercell

Once the imposter molecules were swapped in, the mixed species supercell was
subjected to energy minimization; this allowed the molecules to rotate and shift,
settling into their optimal positions. The overall process employed in this mixed

crystals study is summarised in Figure 11.5.
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FIGURE 11.5: Overview of computational simulation of mixed crystal systems.
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Mixed crystals project

11.4 Analysing mixed crystals with varying imposter content

After optimizations are complete, plots can be produced for each system summarising

the change in lattice parameters, energy, density and volume as the composition

varies. The impact of changing imposter positions can be seen in each system; while

they all follow trends in each parameter, there were minor variations between the 40

random configurations.
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FIGURE 11.6: Plots of the dibenzofuran / dibenzothiophene mixed crystal system,
summarising 40 sets of randomly configured supercells with varying compositions,

when the initial "host’ supercell was built from dibenzofuran Pnma unit cells.

The importance of the chosen "host” supercell is clear when comparing Figure 11.6 and

Figure 11.7; increasing the ratio of imposter molecules prompts vastly different

behaviour depending on "which side’ the supercells start from.
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FIGURE 11.7: Plots of the dibenzofuran / dibenzothiophene mixed crystal system,
summarising 40 sets of randomly configured supercells with varying compositions,
when the initial "host” supercell was built from dibenzofuran P21/n unit cells.

11.5 Comparison to experimental findings

Work on the dibenzofuran / dibenzothiophene system mostly validates the

computational results (Figure 11.8). Each host-to-imposter ratio examined by Jim

Wauest and Norbert Villenueve was found to adopt the Pnma packing arrangement of

dibenzofuran, in agreement with most predicted results. However, at higher

dibenzothiophene levels (above 59%) the computational model predicts that the Pnma

packing arrangement becomes energetically disfavoured.
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Energy as DBZTHP content varies

DBZTHP packing

DBZFUR packing

Energy

0 20 40 60
% DBZTHP molecules

FIGURE 11.8: A “dual energy’ plot, used to compare data from the dibenzofuran /
dibenzothiophene system. Red lines indicate compositions produced experimentally;
DBF:DBT ratios 77:23, 54:46, 41:59, 27:73 and 20:80

Wauest and Villenueve were able to induce crystallisation of dibenzothiophene in the
Pnma form through sublimation of dibenzothiophene onto seed Pnma crystals of

carbazole, fluorene and dibenzofuran, captured as an image in Figure 11.9.

FIGURE 11.9: From the work of Villeneuve et al. (2022); sublimed crystals of pure DBT
imaged by optical microscopy under polarized light. The thin plates correspond to the
metastable Pnma polymorph and the needles to the previously reported P21/n form.
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Conclusions

Overall, this project examined the use of genetic algorithms to explore defined
chemical spaces, aiming to discover molecules which exhibit promising properties for
applications in organic semiconductor materials; various approaches were attempted
to include biases towards more synthetically accessible species, including the use of

multiple computational tools which seek to estimate scores regarding synthesis.

12.1 Key findings

The objectives within this project are summarised across three main concepts;
generation of molecules while optimizing predicted properties, assessing synthetic
difficulty given molecular structure information, and how these ideas can be

combined in order to assist larger materials discovery workflows.

Exhaustive chemical space explorations in two chemical spaces highlight the need for
more efficient and directed approaches to computational molecular generation;
limited sets of molecular "building blocks” were combined with rigid design rules on
composition, revealing a full chemical space of 135,744 aza-substituted pentacene
species, and a partially explored space of rigid small molecule organic
semiconductors, constructed with building blocks extracted from the OCELOT

chemical space, of at least 12 million species.
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Previous work in the Day group has highlighted the efficiency of genetic algorithms in
exploration of the azapentacene space; in this project, 172 genetic algorithms were
conducted around the OCELOT building block sets, optimizing physical properties
related to charge mobility, aiming to reduce synthetic difficulty by optimizing
estimated scores, or a combination of these two concepts as part of multi-objective

fitness functions.

Across these algorithms, several familiar species were discovered including a high
level of pentacene-type structures, particularly when algorithms were tasked with the
minimization of electron reorganisation energies; when these genetic algorithms were
analysed with synthetic difficulty scoring through the SYBA and SCScore tools, the
top-performing subset is dominated by aza-substituted linear pentacenes, frequently

containing cyano-, methyl- and ethyne side groups.

Rearganisation energy: 0.114 eV Reorganisation energy: 0118 e Reorganisation energy: 0118 e\ Rearganisation energy: 0.118 el Reorganisation energy: 0119 e
SYEA: 20.795 | SCScore: 3372 SYBA: 24353 | SCScores 323 SYBA: 24.999 | SCScore: 3389 SYEA: 28757 | SCScore: 3.383 SYBA: 24552 | sCScore: 3131

Reorganisation energy: 0121 eV Reorganisation energy: 0.122 eV Reorganisation energy: 0123 eV Rearganisation energy: 0.123 eV Reorganisation energy: 0123 eV
SYBA: 23286 | SCScore: 321 SYBR: 23344 | SCScore: 1488 SYBA: 24.403 | SCScore: 2514 SYBA: 26754 | SCScore: 2428 SYBA: 22111 SCScore: 3361

FIGURE 12.1: 10 top performing molecules sampled through genetic algorithms,
which exhibit the most promising calculated reorganisation energies alongside low
molecular and synthetic complexity scores.

Post-hoc synthetic difficulty analysis of molecules sampled in this way reveals that the
scoring methods capture different types of information for use in ranking species;
there are many cases where perceived synthetic difficulty through analysis of
fragments within a molecule (with SYBA) does not match up with a reduced synthetic
complexity based on a species position in a reaction network (with SCScore). The
validity of these scoring methods is exhibited through analysis of experimental
molecules extracted from the original OCELOT dataset, where the methods evaluate

most of these species with reasonable scores.
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FIGURE 12.2: Sampled species where disagreement arises between scoring of molecu-
lar complexity (SYBA) and synthetic complexity (SCScore).

Optimizing genetic algorithms solely to reduce synthetic difficulty returns a rather
different set of species, where the top-performing subsets which are identified as
synthetically accessible are composed of fewer rings, and appear similar to molecules
which would likely be seen as precursors in synthetic pathways; this behaviour is
likely driven by the optimization of the Coley et al. (2018) SCScore, where such species
are given better scores due to a perceived low number of reaction steps commonly

needed to access these smaller and simpler structures.

Reducing the set of building blocks available to construct molecules during genetic
algorithms allowed for the restricted exploration of chemical spaces, with the idea of
reducing molecular complexity as a proxy to lower synthetic difficulty; targeting more
specific areas of the overall chemical space did not result in a large improvement of
predicted synthetic difficulty scores, but this approach remains useful for tasks where

subsets of a larger potential space can be explored individually.

Multi-objective optimization within genetic algorithms produces the most interesting
results; while linear aza-substituted pentacene species still appear in the
top-performing subset of discoveries, there is much more variation in the types of
molecules suggested through these campaigns, where both reorganisation energy and
SCScores work in conjunction to produce synthetically accessible candidates with

reasonable and promising reorganisation energies.

Varying the weights placed on each of these properties is essential to gathering such
results; equal consideration of synthetic complexity and reorganisation energies
produced populations of molecules with higher average reorganisation energies,
while increased emphasis on the physical property allowed these averages to drop

while maintaining promising calculated SCScores.
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12.2 Future work

This project produced results only on the computational portion of a larger materials
discovery workflow; top performing, newly discovered candidates with low predicted
synthetic difficulties would be suggested to experimental researchers for synthesis
and analysis, both in an effort to reduce their workloads, and to provide validation of

both calculated physical properties and the synthetic difficulty estimation methods.

The MolBuilder application for exploring chemical space with genetic algorithms has
many opportunities for further development; as stated previously the algorithm is
currently limited to fused aromatic ring systems with optional side groups attached,
so the classes of molecules accessible with this approach could be expanded through
the implementation of more versatile genetic operations, allowing for the construction
of more flexible species, and different potential applications of the molecules to be

targeted.

Synthetic difficulty is an important factor to assess when combining computational
workflows with materials discovery processes, and many more tools to predict this
concept are available outside of the ones used in this project; with increasing
availability of both data and computational power, it’s vital that further work is done
to consider not only the physical properties a candidate may exhibit, but also the way

in which they may be synthesised.

Multi-objective fitness functions have been shown to work well in optimizing a
combination of these factors, so analysis of synthetic difficulty does not need to be

relegated to a post-hoc step during computational molecular generation processes.
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12.3 Final remarks

I would like to emphasise the importance of collaboration between computational and
experimental teams; while such opportunities were limited during the course of this
project, this sort of collaboration enables both sides of materials discovery research to

"lift each other up’.

With the rise in availability and use of artificial intelligence, the importance of
continued experimental research must be made abundantly clear; these tools work
well for studies where previous knowledge exists and can be used, but over-reliance
on Al without the creativity that a "human touch’ can provide may limit research to

findings that can be extrapolated from historical work.

Computation can predict properties and suggest candidates for lab work, and
experimental studies can provide validation of the calculations and further data to aid
the training of more versatile predictive models. Closer collaboration between these
methodologies can only be beneficial to the increased acceleration of materials

discovery processes, and to academic research overall.
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Appendix A

OCELOT genetic algorithms

A.1 Initial populations

36 populations of 100 molecules each, generated using the OCELOT building blocks,

which were used as starting points for MolBuilder genetic algorithms

A.1.1 Full building block sets

20 unique populations of molecules, generated using the full set of OCELOT building
blocks.
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FIGURE A.2: 100 molecules generated for initial ‘full” population 2
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FIGURE A.3: 100 molecules generated for initial "full” population 3
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FIGURE A.4: 100 molecules generated for initial ‘full’” population 4
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FIGURE A.6: 100 molecules generated for initial ‘full” population 6
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FIGURE A.13: 100 molecules generated for initial "full” population 13
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FIGURE A.18: 100 molecules generated for initial "full” population 18



214 Chapter A. OCELOT genetic algorithms

o wP W W

@ R ke oo ap dr uwo
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FIGURE A.20: 100 molecules generated for initial "full” population 20
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A.1.2 Reduced building block sets

16 unique populations of molecules, generated using the reduced sets of OCELOT

building blocks.
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FIGURE A.21: 100 molecules generated for initial 'reduced” population 1
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FIGURE A.22: 100 molecules generated for initial 'reduced” population 2
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FIGURE A.23: 100 molecules generated for initial 'reduced” population 3
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FIGURE A.29: 100 molecules generated for initial 'reduced” population 9
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FIGURE A.30: 100 molecules generated for initial ‘reduced” population 10



A.1. Initial populations 227

Ao G P H¥P 4R g g
P AR s g P G B
o QP P @ o §p oy
TS S Ao o 8 P S
R on e S ¢ md dwd
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FIGURE A.33: 100 molecules generated for initial ‘reduced” population 13
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FIGURE A.35: 100 molecules generated for initial ‘reduced” population 15
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Job1 012134 eV 012204 eV 012272 eV 012278 eV 012319 eV

Job 2 011399 eV 011527 eV 01157 eV 011581 eV 011617 eV
é i L] ‘
Job 3 011356V 011875eV 011902 eV 011921 eV 012014 eV

Job 4 012566 eV 012743 eV 012749 eV 01289 eV 013138 eV

_ JCCCoy® Co0cn, CooCt,  O0000, oo

Job 5 012259 eV 012373 eV 012398 eV 012544 eV 012621eV
| I
lﬂb 6 011597 eV 011777 eV 011834 eV 011981 eV 012076 eV

FIGURE A.37: Top 5 molecules sampled in the first round of reorganisation energy
GAs, for initial populations 1-6

A.2 Top performers

Selections of top performing molecules sampled through various genetic algorithms.
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Job7 012757 eV 0.12866 eV 012901 eV 012972 eV 013034 eV
Job 8 011633 eV 011725 eV 012153 eV 012232 eV 012308 eV

Job9 01141 eV 011638 eV 01181eV 01187 eV 011959 eV
Job 10 010357 eV 011393 eV 011491 eV 011502 eV 011559 eV
Job 11 013195 eV 013208 eV 013459 eV 013481 eV 013543 eV
Job 12 010836 eV 010934 eV 011078 eV 011097 eV 011132 eV

FIGURE A.38: Top 5 molecules sampled in the first round of reorganisation energy
GAs, for initial populations 7-12

A.3 Additional plots

Analysis of the genetic algorithms, mentioned in the main text but not vital to the flow

of the thesis.

A.3.1 Reorganisation energy - reduced populations

A.4 Synthetic difficulty analysis

Additional plots from synthetic difficulty analysis mentioned in the main text.
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Job 18 012444 eV 013124 eV 013372 eV 013461 eV 013764 eV
Job 19 013023 eV 013113 eV 013187 eV 013393 eV 013573 eV

Job 20 012678 eV 012762 eV 013094 eV 013402 eV 013853 eV

FIGURE A.39: Top 5 molecules sampled in the first round of reorganisation energy
GAs, for initial populations 13-20
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FIGURE A.42: Plots to show how many unique molecules were sampled: by all 4
GAs using the amide/ester ring system building blocks (left); by each of the 4 GAs
separately (right)



A.4. Synthetic difficulty analysis 237

Electron reorganisation energy GAs (4x Reduced population Acenes with amides/esters)

Calculated Reorganisation energy values
(average per generation)

Calculated Reorganisation energy values of top 100
(elite molecules from all sampled)

040 040

035 035

0.30
0.30

025
0.25

NELRZAEHA - £
0.20 - %\\1}?3“#@*{; (/‘\_‘7 ’_f)f/\

0.20

015

Average Reorganisation energy / eV

0 1 N B a0 50
Generation Number

Average (top100) Reorganisation energy / eV

Generation Number
FIGURE A .43: Plots to show how the fitness values (molecular electron reorganisation

energy) change as each of these 4 GAs progress: average values per generation (left);
average of the top 100 molecules sampled up to a given generation (right)

Electron reorganisation energy GAs (4x Reduced population Acenes with amides/esters)

e re GA reduced fix 12

=
g

e re_GA _reduced fix_11

-] 8 8
s B8 8 51

N molecules discovered by
<4
]

any other jobs IN ONLY generation N
N molecules discovered by

any other jobs UP TO generation N

wn
5
2

]
o

0 1 0 B 20 50 1 10 0 0 E 50
Generation Number Generation Number

FIGURE A.44: Overlap plots examining each set of 4 amide/ester-type system reduced
population genetic algorithms: per generation (left) and cumulative (right)

Electron reorganisation energy GAs (4x Reduced population half of the building blocks)

& re_GA reduced fix_13

8
2

& re_GA _reduced fix_14

=] & 8
5 2 8

N molecules discovered by
<4
]

any other jobs UP TO generation N

N molecules discovered by
any other jobs IN ONLY generation N
&
E

=

0 ) o B 20 50 1 10 0 0 E B
Generation Number Generation Number

FIGURE A .45: Overlap plots examining each set of 4 half building block reduced pop-
ulation genetic algorithms: per generation (left) and cumulative (right)



238

Chapter A. OCELOT genetic algorithms

Frequency
g

250

=]
=

Frequency
]
=]

=]
5

10

= =
@ @

AiZynthFinder Top score
o=
=

0.2

0o

AiZynthFinder top scores - OCELOT reorganisation energy GA results

Initial pobulatinns Final po;')ulations Full pop'ulations Reduced p'opulations

FIGURE A.46: Violin plots describing the AIZynthFinder best scores for predicted syn-
thetic routes to molecules generated with the OCELOT building blocks in reorganisa-

tion energy genetic algorithms.

Full vs Reduced populations - score distributions

40

SYBA

1 2 3
SCscore
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reorganisation energy genetic algorithms, partitioned according to the type of reduced

block building set used.
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A.5 Synthetic difficulty genetic algorithms

Further plotting used in the analysis of genetic algorithms, specifically those
optimizing synthetic accessibility.
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FIGURE A.48: Plots to show how many molecules get ‘carried over’ from between

generations in SCScore-led GAs: counts of how many molecules from the previous

generation reappear (left); how many molecules in the current population were also
in the initial population (right)
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FIGURE A.49: Plots to show how many unique molecules were sampled: by all 16
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FIGURE A.51: Plots to show how the fitness values (SYBA) change as each of the 16
reduced-population GAs progress: average values per generation (left); average of the
top 100 molecules sampled up to a given generation (right)
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