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Abstract
Although curtailing pathogen spread is critical for mitigating the impact of novel infectious
disease outbreaks, addressing the psychological and social responses of populations
is also important. This is because uninfected individuals who display an excessive con-
cern of the disease can significantly strain healthcare systems. In existing research, the
transmission dynamics of such “worried-well” behavior is largely unexplored. We present
a mathematical modeling framework to study such spread alongside the pathogen’s
transmission. Our approach extends traditional compartmental models to specifically
include the psychological transmission of worry, while acknowledging two extremes of
this behavioral response: overly cautious and defiantly protesting. We provide guidance
for policymakers, towards healthcare resource allocation and disease outbreak man-
agement, by deriving insights into the differential impacts of both these behaviors. Our
findings suggest that different strategies are required to manage worried-well surges,
depending on the dominant behavioral regime.

1 Introduction
Novel infectious disease outbreaks, caused by previously unidentified strains, are charac-
terized by uncertainty. This uncertainty manifests itself both in the spread of the induc-
ing pathogen, and in the evolution of public perception plus its corresponding behavioral
responses [1]. Although there is extensive epidemiological research on modeling the spread
of infectious disease—such as, determining the trajectories of symptomatic and asymptomatic
infections [2]—the parallel spread of concern and its associated behavioral response is lesser
studied. An adequate understanding of such behavioral dynamics is critical for effective out-
break management for two key reasons.

First, public perception of the pandemic directly influences compliance towards or
away from disease control measures. The resulting behavioral changes—even in uninfected
individuals—can significantly affect the trajectory of the pathogen’s spread, see, e.g., [3,4].
An example of such a behavioral change is social distancing. A significant amount of evi-
dence from the COVID-19 pandemic showed that following social distancing mandates
reduced the pathogen’s spread [5]. However, adherence to social distancing measures varied
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widely as determined by an individual’s risk perception of the outbreak [6]. Some individuals
responded with elevated levels of anxiety by avoiding social contact excessively [7], while oth-
ers rejected public health guidelines by protesting against unrestrained governmental inter-
ventions [8]. These responses necessitate distinct mitigation strategies, presenting separate
challenges for policymakers.

Competing interests: The authors have
declared that no competing interests exist.

Second, reliable asymptomatic testing is often unavailable at the outbreak’s onset [9]. Due
to the absence of clear diagnostic tools, healthcare professionals may struggle to distinguish
genuinely infected individuals from those exhibiting worried-well behavior [10,11]. The term
worried-well refers to individuals who exhibit significant anxiety about a disease outbreak—
despite being clinically uninfected—and alter their behavior. This diagnostic ambiguity risks
an inefficient allocation of scarce therapeutic resources which may lead to shortages for those
genuinely in need. This risk is particularly severe if effective vaccines or countermeasures are
not yet widely available. Thus, accurate estimates of worried-well individuals are essential for
determining overall demand of resources, as well as fair and effective allocation policies.

The concept of worried-well has roots within the medical and psychiatric literature. Orig-
inally, it referred to patients who presented significant health concerns despite the absence
of clear physical symptoms. For example, the term syphilophobia was coined to describe a
fear of syphilis infection without any clinical evidence of the disease [12]. Similar anxiety-
driven health concerns emerged during the AIDS epidemic of the late 1980s as uninfected
individuals sought frequent medical reassurance [13]. However, the formal recognition of
the worried-well as a distinct patient category emerged in the 1970s when health mainte-
nance organizations (HMOs) began classifying incoming patients into three groups: well,
asymptomatically sick, and truly sick [14]. This early classification recognized that portions of
the healthcare-seeking population might be motivated by psychological distress rather than
pathogen-induced illness.

More recent studies refined this classification identifying three primary subgroups within
the worried-well population: (a) individuals experiencing disease symptoms due to anxiety,
but without pathogen exposure, (b) individuals working in high-risk activities seeking reas-
surance of their concerns, but without any symptoms of the pathogen, and (c) those with anx-
iety following a traumatic event [15,16]. At an individual level, such concerns often arise from
anxiety, fear, or distress. At a social level, they can spread rapidly through “mass psychogenic
illnesses” triggered by factors such as unusual smells [17,18], vaccine campaigns [19], or
catastrophic events [20].

Understanding these psychological dynamics is critical for designing effective public health
responses, especially in the early stages of an outbreak. Traditional epidemiological models
focus primarily on pathogen transmission; however, a parallel framework is needed to capture
the spread of fear and anxiety within the uninfected population. Our work stems from this
motivation and seeks to both quantify worried-well behavior and develop practical guidance
for managing it. With this background, the primary aim of our work is to provide quantitative
guidance for healthcare policymakers on how to manage surges in worried-well populations
during the early days of a pathogen-induced infectious disease outbreak. The following are the
two key contributions of this article.

(a) We present a mathematical framework to estimate worried-well populations in a
pathogen-induced disease outbreak. Our model captures a spectrum of behavioral
responses, ranging from overly cautious self-isolation to active protest against public
health mandates.

(b) We provide empirical guidance for policymakers on therapeutic resource allocation
during the critical early stages of an outbreak, when information on both pathogen
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spread and public concern is limited. Specifically, we analyze two contrasting policy
approaches: conserving scarce medical resources for later phases versus distributing
them immediately to alleviate public pressure.

The rest of this article is organized as follows. In Sect 2, we describe the compartmental
model and its parameters. Sect 3 presents our main results, and their implications for public
health policy. Sect 4 concludes with a summary and limitations of our work.

2 Materials and methods
We consider a pathogen-induced infectious disease outbreak, where both worried-well and
pathogen-infected populations evolve over time. The spread of worried-well behavior is
analogous to infectious disease transmission, and both processes propagate independently
through contacts with correspondingly infected individuals. However, unlike a pathogen
that transmits through physical proximity or direct contact, worry can also spread through
less tangible ways such as public health messaging [21], governmental campaigns [22], pro-
paganda [23], and online social networks [24]. In this sense, we are motivated by the basic
two-disease model of Blyuss and Kyrychko [25]. Table 1 summarizes the notation used in this
work.

We divide the host population, N, into three primary compartments: susceptible (S),
infected (I), and recovered (R). Given the short time scales typically involved in early outbreak
dynamics, we assume negligible mortality and ignore demographic changes; thus, the total
population is constant. We consider the following compartments of the total population:

• Susceptible (S): containing individuals who have not yet been infected by the pathogen and
are also not currently worried.

• Pathogen-Infected (IP): Individuals who are genuinely sick due to an infection by the
pathogen, irrespective of their psychological state. These individuals can recover through
medical intervention (e.g., antivirals or antibiotics), social distancing, or rest.

• Worried-Well (IW): Individuals who are uninfected by the pathogen but alter their behavior
due to a perceived risk of infection.

• Recovered (R): Individuals who have recovered from the pathogen, gaining temporary
immunity to both the pathogen and worry.

Table 1. State variables and parameters for model Eq (1).
Parameter Description Units
Compartments
S fraction of individuals susceptible to both pathogens and worry —
IP fraction of individuals infected by a pathogen who may or may not be worried (i.e.,

genuinely sick)
—

IW fraction of individuals worried but not infected by a pathogen (i.e., worried-well) —
RP fraction of individuals recovered from the pathogen infection —
Parameters
𝛼 behavioral modifier for the worried-well, 𝛼 ∈ℝ+
𝛽P transmission coefficient of pathogen [day–1]
𝛽W transmission coefficient of worried-well [day–1]
𝛽WP transmission coefficient of worry from contact with a sick individual [day–1]
𝛾P transition rate of recovery from pathogen [day–1]
𝛾W transition rate of recovery from worry [day–1]
𝛿P transition rate at which individuals recovered from pathogen become susceptible

again
[day–1]

https://doi.org/10.1371/journal.pone.0319550.t001
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We assume recovery from the pathogen confers temporary immunity to both the pathogen
and worry, placing individuals in the RP compartment. In contrast, recovery from worry
alone does not provide immunity; thus, individuals may re-enter the worried-well compart-
ment upon subsequent exposure. This assumption is motivated by previous studies on recur-
rence of anxiety disorders [29].

The spread of pathogen is governed by contacts with individuals in the IP compartment
alone. However, worried-well behavior spreads via contacts of two types: those with indi-
viduals in the compartment IP, and those with individuals in the compartment IW. Thus,
as shown in Fig 1, individuals enter the IP compartment from both the S and IW compart-
ments, while they enter the IW compartment from S alone. We denote the transmission coef-
ficients for these three types of contacts by 𝛽P, 𝛽WP, and 𝛽W, respectively. We then have the
two forces of infection (see, e.g., [26]) defined as follows: 𝜆P = 𝛽PIP and 𝜆W = 𝛽WPIP + 𝛽WIW.
Analogously, we let 𝛾P and 𝛾W denote the transition rates corresponding to the removal of the
pathogen and worry, respectively. These transition rates equal the inverse average duration
of the respective conditions, while 𝛿P is the inverse average duration of the immunity to the
pathogen.

As we mentioned in Sect 1, worried-well behavior results in an altered lifestyle for these
individuals. However, these concerns are genuinely distinguished from those of the pathogen-
infected population, who often reduce contacts as a protective measure, altering their lifestyle
in response to physical illness [27,28]. This distinction informs our choice to introduce a
separate behavioral factor, 𝛼 > 0, for the worried-well:

(a) cautious individuals who excessively decrease their contacts have 𝛼 < 1, and
(b) protesting individuals who excessively increase their contacts (for instance, by attending

mass events and meetings) have 𝛼 > 1.

The default state where individuals are simply worried but do not alter their behavior is mod-
eled via 𝛼 = 1. This behavioral factor changes the force of infection, 𝜆P, from the worried-
well to the pathogen-infected compartments; thus, it influences the overall dynamics of the
outbreak.

Since the total population is constant, we formulate the model in terms of the fractions of
the total population. This implies that all system states belong to the interval [0, 1] and the

Fig 1. Flow diagram of the two-process compartmental model (1).The arrows indicate epidemiological or psy-
chological transitions between the different compartments, while the Greek letters provide the corresponding
rates.

https://doi.org/10.1371/journal.pone.0319550.g001
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sum of the variables equals 1, i.e., S + IP + IW + RP = 1. With this background, we have the
following epidemiological compartmental model:

dS
dt
= –(𝛽P + 𝛽WP)SIP – 𝛽WSIW + 𝛿PRP + 𝛾WIW, (1a)

dIP
dt
= 𝛽PSIP + 𝛼𝛽PIPIW – 𝛾PIP, (1b)

dIW
dt
= –𝛼𝛽PIPIW + 𝛽WSIW + 𝛽WPSIP – 𝛾WIW, (1c)

dRP

dt
= 𝛾PIP – 𝛿PRP. (1d)

Eqs (1a)–(1d) describe the dynamics of the four compartments presented in Fig 1. Then,
the basic reproduction number for model (1) computed using the next-generation matrix
method (see, e.g., [30]) equals the maximum of the two respective reproduction numbers (see,
e.g., [25]):

R0 =max{𝛽P𝛾P
,
𝛽W
𝛾W
} . (2)

If R0 > 1, disease, worry, or both become endemic in the population. Although the repro-
duction number is important in determining the expected number of infections at the steady-
state, our work is focused on the early-stage transient dynamics of the disease.

Interestingly, the reproduction number is independent of 𝛽WP. Intuitively, this is so
because individuals infected by the pathogen are already effective vectors for worry. To illus-
trate this formally, consider the disease-free equilibrium [S∗, I∗P, I∗W, R∗P] with the correspond-
ing disease free steady state [1, 0, 0, 0]. Then, as described in [25], linearizing the system of
equations in model (1) for the three independent variables [Ip, IW, RP] near the disease free
steady state provides the following matrix (note that S is obtained from S + IP + IW + RP = 1).

⎡⎢⎢⎢⎢⎢⎣

𝛽P – 𝛾P 0 0
𝛽WP 𝛽W – 𝛾W 0
𝛾P 0 –𝛿P

⎤⎥⎥⎥⎥⎥⎦
.

All eigenvalues of this matrix must be negative to ensure stability of the disease-free equi-
librium state. The three eigenvalues are 𝛽P–𝛾P,𝛽W–𝛾W and-𝛿P. The third eigenvalue is trivially
negative, while the requirement of negativity of the first two provides the condition R0 < 1 for
the basic reproduction number given by Eq (2).

The parameters we use in our numerical experiments are informed by early estimates from
the COVID-19 pandemic. We use 𝛾P = 𝛾W = 1

14 day
–1 following [31] where the estimated

mean time from the onset of symptoms to two negative RT-PCR tests is taken as two weeks.
We assume worry to persist equally long, on average, as the pathogen. We consider the basic
number of reproductions of the pathogen-induced disease, 𝛽P𝛾P , as 10.3 after [32]; then, 𝛽P =
0.74 day–1. We consider a conservative estimate of the average duration of pathogen immu-
nity as 8 months following [33]; thus, 𝛿P = 1

8×30 day
–1. We are unaware of any studies provid-

ing estimates of the transmission rate or the basic reproduction number for worry. We con-
sider 𝛽W = 𝛽WP = 0.7 day–1; i.e., the reproduction number of the worry-induced disease is 9.8,
which is slightly less than the reproduction number of the pathogen-induced disease. The
default initialization of our simulations described in Sect 3 assumes 1% of the total population
is genuinely infected and another 1% is worried but uninfected.
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3 Results and analysis
In the absence of asymptomatic testing, the quantity IP + IW is the best proxy for the total bur-
den on the healthcare system. However, this does not directly equate to the number of indi-
viduals seeking therapeutic resources, as some worried-well individuals (IW) may intention-
ally avoid healthcare settings (we explain this below). Individuals without symptoms were
explicitly labeled as a non-priority testing group as of March 22, 2020, by the US Centers for
Disease Control and Prevention (CDC) [34]. Thus, during the early stages of a novel disease
outbreak, the consumption of scarce resources by the worried-well can deprive genuinely
infected individuals (IP). The ratio IW

IP
serves as one indicator of the public pressure that the

worried-well population imposes on healthcare policymakers.
When this ratio exceeds one and asymptomatic testing is unavailable, resource allocation

policies should seek to reduce the disproportionately large worried-well population. Then,
an advisable policy is to conserve resources anticipating increased demand from genuinely
infected individuals at a later stage of the outbreak. Conversely, when the ratio is less than
one, the primary focus should be on reducing pathogen spread. Then, a more immediate allo-
cation of available resources, despite scarcity, is advisable, as the worried-well can be effec-
tively treated as susceptible individuals. For further discussions on immediate and sequential
release policies, see [35].

We begin by analyzing the default behavioral case of 𝛼 = 1 whose evolution is shown in
Fig 3 (see, also Fig 5). The outbreak begins with worry surpassing infection: during the first
few days, we have IW > IP. This mirrors early-February 2020 when many countries recorded
almost no infected COVID-19 cases; however, they reported large amounts of worried-well
cohorts [1]. In approximately two weeks, IP peaks and exceeds IW. Following this, worry starts
declining due to the onset of pandemic fatigue [36]; we model this via the recovery rate, 𝛾W.
True infections continue to rise because both susceptible and worried-well individuals acquire
the disease. This divergence showcases the distinct dynamics governing psychological versus
biological contagion.

Controlling the two components of the disease outbreak requires two separate strategies.
Standard and well-studied pathogen control strategies—mask mandates, social-distancing,
vaccination, etc.—target transmission among the genuinely infected populations. In con-
trast, limiting the inflow of worried-well individuals into the infected pool requires a reduc-
tion in their contact rates alone. We capture these behavioral shifts via the parameter 𝛼: cau-
tious responses that dampen contacts (𝛼 < 1) and protesting responses (𝛼 > 1) that amplify
contacts. Next, we analyze both of these regimes.

Effective public health messaging can shift behavior towards the cautious regime (i.e., 𝛼 <
1) by increasing compliance in the uninfected population [3]. Past work shows that individu-
als who rely on reputable news sites maintain stricter social distancing than those who receive
information from social-media feeds [3,39]. Fig 2 (see, also Fig 5) illustrates this scenario:
the peak of genuinely infected individuals (IP) is lower than the default case (see, Fig 3), yet
the overall demand for resources (IP + IW) is nearly the same. This is because although cau-
tious behavior suppresses the spread of the pathogen, it simultaneously increases the pool of
the worried-well population; i.e., the ratio IW

IP
is driven upward. This pattern can lead to dra-

matic headlines and media coverage even when the actual number of infections is declining.
For example, New York City faced surges of consultations from the worried-well populations
patients during the 2009 H1N1 pandemic [37]. Political dynamics can amplify this pressure;
e.g., during the Ebola outbreak, Republicans opposed the US federal government’s response,
whereas during the Zika outbreak, the Democrats blocked the Republican response [38].
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Fig 2. Temporal propagation of pathogen-induced disease and worried-well behavior over 50 weeks for the
cautious regime (𝛼 < 1). For the parameter values, see Sect 2. The initial condition is IP = IW = 0.01.

https://doi.org/10.1371/journal.pone.0319550.g002

Fig 3. Temporal propagation of pathogen-induced disease and worried-well behavior over 50 weeks for the
default regime (𝛼 = 1). For the parameter values, see Sect 2. The initial condition is IP = IW = 0.01.

https://doi.org/10.1371/journal.pone.0319550.g003
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Public pressure on healthcare policymakers within the cautious regime may be defused
following the availability of diagnostic asymptomatic testing. Then, clinicians can distinguish
truly infected patients (IP) from worried– well individuals (IW), revealing that actual risk (IP)
is lower than the headline figure (IP + IW). At this stage, public-facing measures that calm
anxiety—such as, reassuring social-media messaging [40] or community rituals that restore
a sense of control [41]—are advisable as they help shift IW back into the susceptible pool. Ulti-
mately, this eases pressure on hospitals without loosening core infection-control rules. Impor-
tantly, such reassurance strategies complement—rather than replace—social distancing, and
other pathogen-focused interventions because the remaining susceptible population is still at
risk.

Now, consider the protesting regime (𝛼 > 1) where worry amplifies pathogen transmis-
sion by driving individuals toward contact-rich settings. Such behavior manifests itself either
through mass demonstrations against public-health mandates [8] or frequent reassurance-
seeking hospital visits [16]. Despite the very different motives (defiant skepticism versus anx-
ious reassurance), both behaviors increase effective contact rates, pushing worried-well indi-
viduals (IW) rapidly into the infected pool. The result is that this regime produces the largest
peak of genuinely infected individuals (IP) among all three behavioral settings, see, Fig 4
(see, also Fig 5). We note that the early phase of the outbreak is still dominated by worry;
yet, infections quickly exceed worried-well counts due to the rapid increase in contact rates.
This dynamic can overwhelm healthcare systems, especially if paired with public mistrust in
government interventions.

In the protesting regime, the peak demand for resources (at most IP + IW) arrives sooner
than in either the cautious or default settings, presenting a dual challenge for public health
officials. First, the rapid onset leaves less time for system surge preparation. Second, the per-
ceived risk is close to the actual clinical burden, since the observed demand is almost entirely

Fig 4. Temporal propagation of pathogen-induced disease and worried-well behavior over 50 weeks for the
protesting regime (𝛼 > 1). For the parameter values, see Sect 2. The initial condition is IP = IW = 0.01.

https://doi.org/10.1371/journal.pone.0319550.g004
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Fig 5. Ratio of worried-well to genuinely infected individuals ( IWIP ) for the cautious (𝛼 < 1), default (𝛼 = 1), and
protesting (𝛼 > 1) regimes. Values above 1 indicate that perceived demand (driven by worry) exceeds the actual
infectious demand.

https://doi.org/10.1371/journal.pone.0319550.g005

from the genuinely infected individuals. This is true even under optimistic assumptions of
early asymptomatic testing—which is unlikely to be widely available given the novelty of
the pathogen. To manage this combined threat, policymakers must simultaneously suppress
pathogen transmission and address the psychological drivers of worry. One approach is to
enforce strict early lockdowns that limit contact across the entire population, thus dampen-
ing both pathogen and worry spread simultaneously [42]. However, such authoritarian mea-
sures can provoke backlash, including larger protests once restrictions are lifted [8], as well as
heightened public anxiety and depression [43]. An alternative is to release scarce therapeutics
and diagnostics early, without holding them back for future waves [35]. In this high-contact
regime, the risk of wastage is low because few uninfected individuals remain to consume
those resources; further, early access may also help reassure anxious patients [44]. However,
this strategy carries its own uncertainty, as it remains unclear whether worried-well individ-
uals who distrust government policy would view such an approach as genuine support or as a
tactic to suppress dissent.

The analysis so far assumes that the initial sizes of the worried-well and genuinely infected
populations are identical (both comprising 1% of the total population). To test the sensitiv-
ity of our results to this choice, we conduct additional simulations with asymmetric initial
conditions (see Appendix). We find that the qualitative dynamics remain largely unaffected,
although the severity of the outbreak (i.e., the number of worried-well or pathogen-infected
populations) varies with the initial population fractions. For example, even when the ini-
tial worried-well population is ten times smaller than the genuinely infected population, the
general progression of the two groups remains similar (see, S1 Fig in the Appendix), and the
peak value of the ratio IW

IP
still exceeds two (see, S2 Fig in the Appendix). In contrast, this peak

value surpasses 2.5 when the initial proportions are balanced, reflecting a more sustained
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dominance of worry early in the outbreak. The reverse setting—where the initial worried-
well population is ten times larger than the genuinely infected population—produces a greater
imbalance, although the overall trend still remains the same. Here, the peak value of IW

IP
is

nearly 10 (see, S2 Fig), underscoring the self-reinforcing nature of worry in the absence of
early containment. This result is consistent with the high basic reproduction numbers (R0)
used in our simulations, due to which both worry and infection spread rapidly at the start,
and largely dominate the effects of the initial conditions.

4 Conclusions
Public concern can surge long before a pathogen achieves widespread transmission, thereby
rapidly straining healthcare capacity and emergency services with reassurance-seeking vis-
its. Empirical reports suggest that worried-well consultations may exceed true infections by
up to twenty-fold, making them one of the most demanding challenges of outbreak manage-
ment [45]. For example, in February 2020, Canada recorded only four confirmed COVID-
19 cases, yet 2.6 million people reported being “very concerned” [1]. After the 1995 Tokyo
sarin attacks, nearly three-quarters of incoming healthcare visits required no medical treat-
ment [20]. Although such worry is rarely malicious, it can paradoxically increase transmission
via nosocomial exposure risk, as our model shows.

This challenge is most acute during the early, information-scarce phase of a novel epi-
demic, when perceived risk diverges sharply from actual risk. Since perceived risk of the
outbreak directly influences preventative behavior [46], an estimation of public anxiety is
essential. In the absence of such data, risk-seeking decision-makers may underestimate the
worried-well and allow facilities to be overrun, whereas risk-averse leaders may overuse
scarce assets, incurring unnecessary economic costs. Historical responses illustrate this spec-
trum: President Franklin Roosevelt dramatically expanded US polio funding, and Presi-
dent Xi Jinping imposed stringent COVID-19 lockdowns, both of which are high-risk and
resource-intensive strategies. In contrast, Chancellor Angela Merkel maintained a restrained
stance during the Ebola threat, and Prime Minister Manmohan Singh took limited action
against the 2009 H1N1 outbreak, exemplifying risk-averse approaches. Since political leaders
often act on perceived rather than actual risk, any exaggerated public perceptions can directly
influence these decisions.

TheWorld Health Organization’s Director-General warned on 15 February 2020 that
“We’re not just fighting an epidemic; we’re fighting an infodemic. Fake news spreads faster
and more easily than this virus, and is just as dangerous.” [47]. Our analysis substantiates this
concern: even a small trace of anxiety can trigger a self-reinforcing surge of worried-well indi-
viduals whose numbers, and corresponding demand for reassurance, may outweigh those
who are truly infected. Without timely estimates and data on this behavioral spread, author-
ities risk misallocating scarce clinical resources and, thus, amplifying public fear. Our results
suggest that until reliable diagnostics and vaccines are not available, a conservative policy of
maintaining a safeguarded cache of therapeutics offers the best hedge against both epidemio-
logical and psychological uncertainty. Following the widespread availability of such medical
countermeasures, the genuinely infected population is expected to exceed the worried-wells.

Although our model captures the details of the early-stage progression of the worried-
well behavior and its interaction with the pathogen spread, there are several simplifying
assumptions which may be refined in future work. For example, we assume identical recov-
ery rates for worry and infection (𝛾W = 𝛾P); this reflects the practical challenge of lacking reli-
able psychological data from previous disease outbreaks. This assumption is reasonable as
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a first approximation, since both physical recovery from mild viral infections and psycho-
logical recovery from acute anxiety often occur on comparable timescales (e.g., 1–2 weeks)
[31]. However, the resurgence or persistence of worry differs based on both an individual and
social context, as well as media influence, suggesting future models should consider distinct
recovery rates.

Additionally, our current framework does not explicitly account for feedback loops where
sustained worry influences both public behavior and policy responses, potentially creating
self-reinforcing cycles of fear and mistrust. Capturing this nuance requires more sophisticated
mathematical models that integrate social-media dynamics, risk perception thresholds, and
long-term psychological effects. Finally, our model also assumes worry spreads similar to a
pathogen; however, the psychological contagion of fear may follow different social dynamics,
potentially requiring a fundamentally different mathematical modeling approach.

To conclude, surges of worry are not only a clinical challenge but also one of communi-
cation. Dampening such surges requires a tiered strategy: clear, evidence-based messaging
for all groups and tailored interventions for those at heightened psychological risk (including
both ends of the spectrum of worried-well). Ultimately, this requires building public trust in
institutions, which is the hallmark of any successful health-communication campaign [48].
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