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We discuss confinement and chiral symmetry breaking in SU(Nc) gauge theories with fermions in
the adjoint representation. There has been considerable work on studying these theories compactified
on a small circle (with compactification scale 1/L large relative to the strong coupling scale of
the theory). The weakly coupled IR theory of photons exhibits confinement through a density
of magnetically charged instanton configurations. As the compactification scale 1/L approaches
the strong coupling scale, the IR theory becomes strongly coupled. In this regime we propose
a holographic description of the IR degrees of freedom. The instanton condensation scale can
be associated with a scale at which the Brietenlohner-Freedman (BF) bound is violated in the
model and the glueball spectrum computed. We can also introduce the adjoint fermions which
holographically display a BF bound violation associated to their running anomalous dimension.
Very näıvely extending the perturbative results to the non-perturbative regime suggests that chiral
symmetry breaking might occur ahead of confinement, but equally they may be joined phenomena.
If the two phenomena are separate, then it would be useful to be able to enlarge the gap in scales.
We propose adding fermions in the fundamental representation as well, which in a holographic model
(that favours this separation) can greatly enlarge the gap to an order of magnitude. These results
challenge the lattice community to seek such scale gaps (or their absence) to further understand the
confining and chiral symmetry breaking dynamics.

I. INTRODUCTION

The fundamental mechanisms by which strongly coupled
gauge theories, such as QCD, break chiral symmetries
and confine remain to be clearly understood. The lit-
erature has split into two sectors. One group view chi-
ral symmetry breaking as occurring due to the running
coupling driving the anomalous dimension of the quark
anti-quark operator through γ = 1 (see for example [1–
11] and the lattice papers measuring γ with reference
to this language such as [12, 13]). In this picture, con-
finement is a property of the low energy glue theory be-
low the scale where the quarks have been integrated out.
The alternative group have sought models where confine-
ment is isolated and associated with non-perturbative
monopole configurations [14–17]. Here, as one moves
back towards QCD, the monopole vacuum expectation
value (vev) through effective Yukawa terms is responsi-
ble for chiral symmetry breaking. In QCD, these scales
are presumably very close, and in reality it may be a
mixture of these scenarios that occurs. It is interesting
to continue to find theories in which the phenomena are
separated. Here we will use holographic models of the
two scenarios to contrast them and to look for separa-
tion mechanisms.

The “γ = 1” construction was first motivated by
Schwinger-Dyson truncation (gap equation) methods [1–
4, 7]. It is natural that an instability switches on when
the running coupling grows enough to make the dimen-
sions of the quark mass and condensate equal at ∆ = 2.
This picture has separately emerged in holography [9–
11], where the dimension of scalar operators is dual to the
mass of a scalar in the AdS5 bulk (M2 = ∆(∆− 4))[18].
In rigorous top-down models, chiral symmetry breaking is

triggered when the mass squared becomes radially depen-
dent and passes in the IR through M2 = −4/R (where R
is the AdS radius) - the Breitenlohner-Freedman insta-
bility bound [19]. Models in which supersymmetry and
conformality are broken by a magnetic field or running
coupling display this mechanism [20, 21]. The γ = 1 cri-
teria is often used to determine where the edge of the
Conformal Window is for gauge theories as a function of
the number of fermion flavours [4–6]. Here it is believed
that the Banks-Zaks fixed point, when Nf lies close to the
boundary for the loss of asymptotic freedom, gives way
to a chiral symmetry breaking phase at lower Nf where
the IR fixed point coupling rises. Lattice studies of the
conformal window often concentrate on the value of γ to
argue that a theory is IR conformal [12, 13, 24–26]. In-
herent in this world view is that instanton or monopole
configurations appear in the deep IR below the chiral
symmetry breaking scale.

On the other hand, there have been some very impressive
pieces of work in which the confinement mechanism has
taken centre stage [14–17]. The Seiberg-Witten theory of
N = 2 supersymmetric Yang Mills (SYM) theory in d=4
[14] is an example where chiral symmetry breaking is
forbidden by the supersymmetry, and non-perturbative
monopole configurations manifest. Breaking to N = 1
(in d=4) supersymmetry leads to their condensation and
confinement. The gauginos acquire a mass via a Yukawa
term to the monopole vev. Another impressive construc-
tion is the work in compactified SU(Nc) theories with
fermions in the adjoint representation (QCD(Adj)) [15–
17]. When this theory is compactified on a small cir-
cle (relative to the inverse strong coupling scale), con-
finement by instanton configurations, which appear as
a monopole density in the 3 dimensional IR theory, oc-



2

curs at weak coupling. It is natural to speculate from
these cases that non-perturbative configurations are po-
tentially key to both confinement and chiral symmetry
breaking.

In this paper, we wish to make a first step in bringing
these pictures together. We will use holographic model
building to attempt to unify the ideas. In particular,
the condensation of monopoles and quarks must each be
driven by a BF bound violation in the theory. Here we
will build a very simple model of QCD(Adj) on a com-
pact circle whose radius is close to the inverse strong
coupling scale. The IR theory is expected to be strongly
coupled and holography may be a sensible tool to study
the spectrum. We will produce an AdS/QCD style model
that describes the monopole condensate as forming due
to a BF bound violation and the resulting bound state
spectrum. Here we will just model theories with massive
fermions (although below the strong coupling scale).

The model allows us to estimate the scale at which the
instability sets in by extrapolating from the perturbative
regime. Of course, this is very näıve. The perturbative
exponential suppression of instanton configurations hints
that this scale is somewhat lower than the equivalent one
for chiral condensation (from looking at where γ = 1 from
one gluon exchange). However, the theory with a single
massless Weyl fermion in the adjoint representation is
N = 1 SYM (in d=4), where the gaugino condensate and
the glueballs are bound into a single supermultiplet [22].
This theory is likely an example where the mechanisms
maximally converge, so whether they can be separated
in other cases is unclear.

To play Devil’s advocate it is interesting to try to con-
ceive of theories where chiral symmetry breaking is sepa-
rated from confinement. We have argued previously [8],
that this might be supported in the γ = 1 paradigm (see
also [7]). In theories with fermions in multiple represen-
tations, higher dimension representations than the fun-
damental typically couple more strongly to gluons, and
reach the γ = 1 criteria ahead of the fundamental repre-
sentation. If they condense and are integrated from the
theory, then a gauge theory with just fundamentals is left
in the IR, which presumably behaves like QCD (for suffi-
ciently low NF

f flavours). If one can include sufficient
fundamentals to slow the running between the higher
representation condensing and the fundamental condens-
ing, then presumably confinement is also separated. One
needs to be careful however, not to push the theory into
the conformal window by adding too much matter.

In a previous paper [23], we built a holographic model of
SU(Nc) theories with two-index symmetric matter and
fundamentals which displayed such gaps. The model has
no confinement mechanism because it is assumed to hap-
pen at or below the chiral symmetry breaking scale of
the fundamental matter. Here we use the same model
for SU(Nc) with a single Weyl adjoint fermion and NF

f

fundamentals - we pick a single Weyl adjoint to allow
the maximum additional number of fundamentals to slow
the running below the adjoint IR mass scale. We observe
mass gaps for some choices of Nc and NF

f as large as
an order of magnitude. The gap size does depend on
the extrapolations used for the running of the anomalous
dimensions from the perturbative to non-perturbative
regime as we investigated in [23]. We also neglect in-
teractions between the two fermionic sectors (and poten-
tially the instanton/monopole sector) - condensation in
one could trigger condensation in the other, for example,
undoing the conclusions. It would be interesting in the
future to study such mutual interactions. For the mo-
ment, the model presented is intended as a challenge to
lattice studies to seek such phenomena.

The current state of lattice simulations for gauge theo-
ries with adjoint matter is as follows. The SU(2) gauge

theories with both NAdj
f = 1 and 2 appear to lie in the

conformal window (i.e. they do not break chiral symme-
try) with anomalous dimensions around 0.2−0.3 [24–26].
N = 1 super Yang-Mills theory with Nc = 2 and Nc = 3
is known to break chiral symmetry and confine [27–30].
There has been one initial study of an SU(2) gauge the-
ory with a single Weyl fermion and two Dirac fundamen-
tal fermions [31], which indeed shows a gap between the
ρ mesons made of adjoint and fundamental matter (the
adjoint ρ is reported as being about 1.6 the mass of the
fundamental ρ - see Table 3 in [31]) and is consistent
with our holographic model using the γ = 1 criteria. A
key future test of the separation of the confinement and
chiral symmetry breaking mechanisms would be to check
if they occur at different thermal transitions.

II. THE GAUGE THEORIES

We will consider SU(Nc) gauge theories with fermionic
matter in the adjoint and, later, the fundamental repre-
sentations. The two loop running of the gauge coupling
in QCD for arbitrary representation is given by

µ
dα

dµ
= −b0α2 − b1α3 (1)

b0 =
1

2π

(
11

3
C2(G)− 4

3

∑
R

T (R)Nf (R)

)
. (2)

b1 =
1

24π2

(
34C2

2 (G)

−
∑
R

[20C2(G) + 12C2(R)]T (R)Nf (R)

)
. (3)

where Nf (R) is the number of Dirac fermion flavours
in the representation R. We will use the notation NF

f

for the number of fundamental fermions and NAdj
f for

the number of adjoint fermions. For SU(Nc) theories
C2(G) = Nc; T (Adj) = Nc and T (F ) = 1/2. N.b.
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for Weyl fermion we must include a factor of 1/2 in the
flavour count in these formulae.

To extract the running we must choose initial conditions
for the RG equation. For example, α(Log(ΛUV = 5)) =
0.1393, for Nc = 2, Nf = 0, gives a Landau pole at
Log(Λ) = 0; Λ = 1. A more accurate way to set the
strong coupling scale, is to set a bound state mass (we
will take the ρ meson made from the adjoint fermions)
in any theory at zero fermion mass to be the strong cou-
pling scale. We therefore, when comparing the spectra
of theories, write all masses and couplings in units of the
adjoint mρ at mf = 0.

The two-loop ansatz for the running includes IR fixed
point behaviour - the so-called conformal window [4–
6]. As Nf is lowered, the IR fixed point coupling grows
and at some point is expected to trigger chiral symmetry
breaking and or confinement - this is the edge of the con-
formal window. We will use our holographic models to
estimate these critical couplings below. When we predict
the spectra of the Weyl adjoint plus fundamentals theory,
we will show plots over a range of NF

f up to the edge of

the conformal window (from below) - the position of the
edge in each case can therefore be seen on those plots to
come.

III. CONFINEMENT IN COMPACT SU(2)(ADJ)
GAUGE THEORY

For simplicity, we will initially restrict our discussion to
the case of Nc = 2 with adjoint fermions. Here, the re-
view [17] is very useful. We will first review the results for
confinement in the theory on a small compact direction
[15–17]; then we will write a holographic model for the
intermediate regime where the IR theory is strongly cou-
pled; we finally briefly discuss the extension to SU(Nc).
We will then be able to consider the interplay between
chiral symmetry breaking and confinement in section IV.

A. Summary of the SU(2)(Adj) theory on R3 × S1

There has been considerable work [15–17] on understand-
ing four dimensional SU(2) gauge theory with Nf Weyl
fermions in the adjoint representation on a compact cir-
cle of radius L. At the scale 1/L we can rewrite the 4d
gauge field as a 3d gauge field and a real, adjoint scalar,
a4. The classical potential for the scalar, inherited from
the 4d TrF 2 commutator term, allows a vev that breaks
SU(2) to U(1) and leaves a massless U(1) gauge field and
a massless, chargeless scalar. One expects the vev to lie
at the scale 1/L when loop corrections are included. Any
charged adjoint fermions speak to the scalar vev through

a Yukawa term (generated from the 4d covariant deriva-
tive) and are massive. The charge zero fermions survive
in the IR theory. The (näıvely) non-interacting IR theory
has a characteristic coupling g24(1/L).

The consistency of this picture can be checked by com-
puting the Coleman-Weinberg effective potential from
the gauge and fermion fields (including their KK towers)
and confirming that it is minimized at the vev 2π/L. The
potential for the vev v is given by

V = − (Nf − 1)

L3

1

12π2
[vL]2(2π − [vL])2, (4)

where [vL] = vL(mod2π). Note v is the vev of A3
4, and

a4 is the fluctuation about the vev, i.e. A3
4 = v + a4

For NAdj
f = 1/2 (SYM) the potential vanishes and one

must argue that non-perturbative effects will stabilize the
vev. For Nf > 1, the minimum is at v = 2π/L. Note
that the fluctuation of the scalar about the minimum has
a mass of order g/L and the a4 can thus be integrated
from the IR theory. In fact even if the adjoint fermions
have masses m ≤ 1/L they still act to stabilize the vev
and can then be neglected in the deep IR - we will work
in this theory here for simplicity.

One can use electromagnetic duality in 3d to rewrite the
IR U(1) electric and magnetic fields in terms of a single
(dimensionless) scalar potential σ:

Fµν =

 0 Ex Ey
−Ex 0 B
−Ey −B 0

↔ ∂µσ =
4πL

g24
(−B,Ey,−Ex).

(5)
The kinetic term for σ is

Lσ =
1

2

g24
(4π)2L

(∂µσ)2. (6)

The interesting aspect of the theory is that SU(2) in-
stanton dynamics above the breaking scale generate con-
finement in the low energy theory. The mechanism is
the 3d version of the dual Meissner effect. In particular,
note that the natural charges for a 0-form potential are
pseudo-particles (as a vector couples to point particles
and a two-index field to strings, etc.) So, for example, a
constant density of magnetically charged pseudoparticles
at some time t = 0 emits field lines into the time direction
in analogy to a charged plane emitting field lines in the
perpendicular spatial direction in 3+1d. The solution,
using Gauss’ law, is σ = Bt and there is a constant mag-
netic field in the space. This motivates the idea that the
instantons of the SU(2) theory are suitable candidates to
play the role of such magnetic charges. Indeed, explicit
construction shows that the instantons do indeed radiate
magnetic field lines asymptotically. These computations
have been done in detail [32, 33] - there are two types of
instantons: M and KK instantons, which are both mag-
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netically charged.

We would expect the instanton and anti-instanton distri-
butions to be uniform on average at all x, y, t, so there
is no net magnetic field from their presence. They do
though, generate a potential for σ. If we stick to the
theory where the fermions have a small mass, then a po-
tential is generated directly by the M and KK instantons.
It is given by

V =
4e−S0

L3
(1− cosσ) (7)

where S0 = 4π2

g24(1/L)
is the action of the instanton config-

uration, which is minimized at σ = 0 and the σ field has
an effective mass

m2
σ =

64π2e−S0

g24L
2

Note, the theories with massless fermions are more com-
plicated since they possess a remnant of the anomalous
U(1)A symmetry that acts as a Z4Nf

, under which σ
shifts by π. This shows that the M and KK contribu-
tions to the potential must vanish in these theories. It
is then possible to consider dyons made of bound M and
KK states and argue that magnetic charge two dyons
play the important role of condensing and causing con-
finement [15]. Let us stay in the massive theory for sim-
plicity though.

Confinement can be seen directly because there are ex-
cited states of the vacuum that correspond to electric flux
tubes. Here, one finds solutions for σ that traverse from
0 to 2π as one moves across a line in the x−y plane - for
example, in x in a y-independent solution. The solution
of the classical equation of motion for σ is

σ(x) = 4 arctan e−mqx (8)

Asymptotically at large x, this solution’s action returns
to that of the vacuum. In the central region, the solution
lies at the top of the potential where the σ mass falls
to zero (here the instanton density has fallen to zero)
and ∂xσ = Ey 6= 0. The flux tube’s energy will be pro-
portional to the length of the tube in y (neglecting end
effects where the electric charges attach).

B. From Weak to Strong Coupling with
Holography

One of the strengths of the work performed on the ad-
joint theory is that when the compact radius is small -
so 1/L is large compared to the strong coupling scale of
the field theory - one can see the confinement dynam-
ics at weak coupling. Nevertheless, it is interesting to
consider the transition to strong coupling. As the com-
pactification length rises and the scale 1/L falls, eventu-

ally g4(1/L) will become large and perturbation theory
will break down. In this regime, one can propose a holo-
graphic description of the strongly coupled σ-instanton
bath system. This description will hold until the field
vevs grow to 1/L, when one should return to a purely 4d
description.

The natural starting point is the effective IR action of
(6) plus (7) which obey the correct symmetries of the 3d
theory. This is a similar philosophy to writing the chiral
Lagrangian in AdS for AdS/QCD models [38]. We place
the action into AdS4 space

ds2 = ρ2dx22+1 +
dρ2

ρ2
(9)

(here x2+1 are the Minkowski directions of the field the-
ory, and ρ is the radial direction that becomes the renor-
malization group scale). We will include the dimension-
less field σ̂ as the holographic partner to the field theory
σ operator from the field theory. We will also included a
dimension 3 field I, that will correspond to the instanton
density - we will force it’s vev to consistently generate
the pre-factor in (7).

Our action is

SAdS4 =

∫
dρd3x

1

2

ρ3

r2
C

L
GMN∂M σ̂∂N σ̂ +

I

r
2 sin2 σ̂

2

+
1

2

(
1

ρ2
1

r2
GMN∂MI∂NI +M2

I

I2

r4

)
(10)

Note here we use symbols r and ρ, which for the moment
are the same (we will distinguish them when we come

to discuss fluctuations below). The constant C =
g24

(4π)2

is taken from the field theory action normalization (6).
The field σ̂, assuming I → 0 in the UV, has UV solution

1

L
∂ρ(ρ

3∂ρσ̂) = 0, σ̂ = c+
c′

ρ2
(11)

σ̂ is dimensionless. We interpret c as the dimensionless
field vev and c′/L as the dimension 3 source for the field.

M2
I is a mass term for I, which if zero in the UV (and

σ̂ → 0 in the UV), ensures the UV equation of motion
and solution for I is

∂ρ(
1

ρ2
∂ρI) = 0, I = k + k′ρ3 (12)

I has dimension 3. Here we interpret k as the vev of the
dimension 3 field and k′ as its dimensionless source. We
will pick an example form for M2

I shortly.

The interaction term is that in (7), where we need the
field I to acquire a vev 4E−S0/L3. To enforce that, con-
sider the action that controls the vacuum, where we as-
sume that the fields do not depend on the spatial or time
directions but only on ρ. The bulk Lagrangian density
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reduces to

LAdS4 =
1

2
ρ3

C

L
(∂ρσ̂)2 +

1

2

(
1

ρ2
(∂ρI)2 +M2

I

I2

r4

)
+
I

r
2(sin

σ̂

2
)2 (13)

In fact, the interaction term pins σ̂ = 0 in the vacuum
solutions with non-zero I. We must solve

∂ρ(
1

ρ2
∂ρI)−M2

I

I

ρ4
− I2

2ρ4
∂M2

I

∂I
= 0 (14)

It is necessary to choose IR and UV boundary conditions.
Here we allow ourselves to be led by the D3/D7 probe
system [34–36], where the D7 brane embedding solutions
for the massless theory can be interpreted as the source
vanishing in the UV and the operator vanishing in the
IR. (The DBI action for the D7 brane embedding field
χ, takes the form L = ρ3(∂ρχ)2, and the solution is of
the form χ = m+ c/ρ2, where m is the quark mass and c
the quark condensate operator. Here, one seeks solutions
where m vanishes in the UV for the massless theory, and
in the IR, a regular brane embedding requires χ′IR = 0,
i.e. vanishing condensate.)

Thus for I we solve using

I(ρIR) = ρ3IR, ∂ρI|ρIR = 3ρ2IR (15)

The first condition is an on mass-shell condition for the
field below which it should be integrated from the dy-
namics. The second condition ensures that the solution
tends to a constant, dynamically generated source value
at the on mass-shell point.

For σ̂ and its fluctuations we will use the - similarly jus-
tified - IR boundary conditions

σ̂(ρIR) = 1/ρ2IR, ∂ρσ̂|ρIR = −2/ρ3IR (16)

and require in the UV

ρ3∂ρσ̂ = 0 (17)

Now we must decide on a form for the mass squared for I.
We want a running mass (i.e. a ρ dependent mass) that
will violate the BF bound in the IR causing condensation
of I - we will adjust the BF bound violation point so that
the condensation occurs to match that expected in the
field theory model. Note that with the chosen dimension
for I, M2

I = −9/4 is the BF bound violation point where
∆ = 3/2. A simple choice we can make is

M2
I = −K

r
(18)

at low r (for the moment ρ), this will violate the BF
bound. If one were to set purely r = ρ, then there would

5 10 15 20
ρ0.0

0.2

0.4

0.6

0.8

1.0

I(ρ)

1 2 3 4 5
ρ0.0

0.2

0.4

0.6

0.8

1.0

I (ρ)

ρ3

Figure 1: Top: The blue line is the numerical result for
the vacuum solution I(ρ). The grey line represents the
function y = x3 which sets the IR boundary. Bottom:

The blue line shows the plot I(ρ)
ρ3 against ρ. (Set-up:

K = 7.82498, ρIR = 0.223527, ρUV = 20 such that
I(ρUV ) = 1 and I ′(ρUV ) = 0.)

be no stable IR solution since the BF bound is violated for
all I vevs. A simple resolution, that occurs naturally in
the D3/probe D7 system [34–36] for example, and which
is dimensionally consistent is to use

r2 = ρ2 + I2/3. (19)

Now, if I acquires a vev, it can move to a value where the
BF bound is not violated and it becomes stable. At this
point, we also replace occurrences of r in the action with
ρ as shown in (13) - here, again as in the D3/probe D7
system, the replacements feed the presence of the vev to
the fluctuations, but are introduced so as not to change
the UV asymptotic solutions. Although this choice looks
a little arbitrary, the D3/probe D7 system artfully en-
ables this from first principles - we follow it’s example.

The constant K is the first introduction of a scale into
the action for I (L does not enter when σ̂ = 0). Numeri-
cally, we have solved (14) with (18) to find the value of K
so that the solution in the UV tends to I = 1 with van-
ishing source (derivative). We find K = 7.82498, ρIR =
0.223527. We plot the solution in Figure 1 (and also the
form of I/ρ3 which displays the solution as a running
source term more analogous to the familiar D7 probe
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ρ
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-0.5

0.5

1.0

1.5

f1

MI
2

1.56

4.36

9.52

1 2 3 4 5
ρ

-0.5

0.5

1.0

f1

ρ3
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2

1.56

4.36

9.52

Fig 2: Top: The regular solutions for the fluctuation of
the instanton density f1 against ρ. Bottom: f1

ρ3 against
ρ.

embeddings in the D3/D7 system).

Next, we consider the fluctuation around the vacuum so-
lutions: Ī(ρ)+εI(ρ, x) and σ̂(ρ) = 0+εσ̂(ρ, x), expanding
the action (10) to O(ε2). We seek perturbations of the
form I(ρ, x) = f1(ρ)eik1·x and σ̂(ρ, x) = f2(ρ)eik2·x, with
k21 = −M2

1 and k22 = −M2
2 (those being the masses of

the bound states). With some algebra, the equations of
motion for the fluctuations are

Īf2(ρ)√
Ī2/3 + ρ2

− ∂ρ
(
C

L
ρ3∂ρf2(ρ)

)
− ρ3

(ρ2 + Ī2/3)2
C

L
M2

2 f2(ρ) = 0 (20)

−
k
(
−19ρ2Ī2/3 − 2Ī4/3 + 18ρ4

)
18
(
Ī2/3 + ρ2

)9/2 f1(ρ)

−∂ρ
(

1

ρ2
∂ρf1(ρ)

)
− M2

1

ρ2(ρ2 + Ī2/3)2
f1(ρ) = 0, (21)

which implies that the fluctuations f1, f2 decouple. And

the coefficient C/L =
g24

L(4π)2 will affect the spectrum of

the dual photon.

The equations of motion for the instanton fluctuation
are solved with boundary conditions f1(ρIR) = ρ3IR,
f ′1(ρIR) = 3ρ2IR. The meson masses are obtained by fine-
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●
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2 4 6 8 10 12 14
g4

0.5

1.0

1.5

2.0

2.5

3.0

Mσ

● n=0

■ n=1

◆ n=2

Fig 3: Top: c
L against g4 in Eq. (23); There is a

minimum c/L = 0.143 at g4 = 2π√
3

= 3.7. Bottom: Mσ

against g4.

tuning M2
1 so that f ′1(ρUV )→ 0. The mass spectrum, in

the theory with I → 1 in the UV, for the instanton den-
sity fluctuation is M2

I = 1.56, 4.36, 9.52, with correspond-
ing excitation number n = 0, 1, 2, and the corresponding
solutions are presented in Fig 2.

Next, we compute the meson modes for σ̂. The boundary
conditions used are f2(ρIR) = 1

ρ2IR
, f ′2(ρIR) = −2

ρ3IR
, and

ρ3UV f
′
2(ρUV ) = 0, which make the condensate vanish in

the IR, and the source vanish in the UV. The results
depend on the value of C/L. Here we rewrite that scale
in terms of the I vev as

〈I〉 =
4e−S0

L3
, S0 =

4π2

g24
(22)

C

L
=

g24
(4π)2L

=
3

√
〈I〉

4e−S0

g24
(4π)2

(23)

Now we compute the σ̂ spectrum as a function of g4 which
directly controls C/L at 〈I〉 = 1. The masses can be
directly compared to those in Fig 2 for the I fluctuations.
This suppresses the I dependence on L, or equivalently
g4. The σ̂ masses are plotted in Fig 3.

It is worth noting that when c/L is large (when g4 < 1.72
or g4 > 15), there is a tachyon mode, i.e, m2

σ < 0. This
follows from computing the spectrum using (20) neglect-
ing the first term when M2

σ = −0.298. These regimes
correspond to parameter choices where the holographic
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Fig 4: The mass spectrum of dual photons σ1 and σ2
for SU(3). The darker colours represent σ1; The lighter

colours represent σ2.

model should not be applied. When the gauge theory
is weakly coupled, the holographic dual should become
strongly coupled. Equally, when the theory has g4 >
4π, the four dimensional theory will hit strong coupling
before reaching the IR compactification scale and there
should never be a three dimensional description. It is
interesting that the holographic model becomes aware of
these regimes where it fails.

C. The SU(Nc) Theory

The SU(Nc) theory with adjoint matter (which we again
assume is massive, but with those masses below the com-
pactification scale) shows similar behaviour [15, 16]. The
A3 component of the gauge field again becomes an adjoint
scalar on compactification and its vev breaks the theory
to U(1)Nc−1 - there are σi fields (i = 0..Nc − 2). The in-
stanton monopoles are now “bi-fundamental” fields with
charge (+1,−1) under the adjacent U(1)s one would ob-
tain from breaking U(Nc) (one can just switch off the
coupling of the extra U(1) to reduce to SU(Nc)).

For example, for SU(3) the resulting potential for the two
σi are

V =
4e−S0

L3

(
sin2 σ0

2
+ sin2 σ1

2
+ sin2 σ0 − σ1

2

)
(24)

with S0 → 8π2/g24Nc.

At the level of the holographic model, one includes three
copies of the monopole field I and an appropriate poten-
tial. The holographic model for SU(3) is

SAdS4 =

∫
dρ d3x

1

2

ρ3

r2
C

L
GMN∂Mσi∂Nσi

+
1

2

(
1

ρ2
1

r2
GMN∂MIi∂NIi +M2

I

I2i
r4

)
(25)

+
I1
r

sin2(
σ̂1
2

) +
I2
r

sin(
σ̂2
2

) +
I3
r

sin(
σ̂1 − σ̂2

2
)

where we chose the M2
I so that I = 4e−S0/L3, and

C = ( g
4π )2. The vacuum solutions for the I fields lead

to the same vev solutions, and there is a multiplicity of
the same excitation states as we saw in SU(2). For the σ̂i
fluctuations the potential can be diagonalized by writing

σ̃± =
1√
2

(σ̂1 ± σ̂2) (26)

This leads to two mass eigenstates (σ̂0 ± σ̂1). We show
the resultant mass spectrum in Figure 4.

IV. COMPARISON OF INSTABILITIES

The BF bound violating scale [19] marks the onset of the
instability to condensation of an operator in the holo-
graphic context.

In the SU(2) model where the instanton density vev was
1 we needed K = 7.82498. The BF bound violation oc-
curred (in AdS4) when κ/ρ = 9/4, i.e. when ρBF = 3.47.
We should rescale this scale so that the instanton density
fits field theory predictions - I = 4E−S0/L3 so then the
model gives the BF bound violation scale as

ρBF = 3.47

(
4e−S0

L3

)1/3

(27)

The instanton condensation scale rises to 1/L when g24 =
7.7 - at higher g4 values at the scale 1/L the three dimen-
sional theory no longer has any applicability. For larger
Nc values S0 → 8π2/g24Nc and eg for Nc = 3 we find
g24 = 5.2.

In competition with this instanton-driven gap formation
mechanism is the mechanism deduced from gap equations
[1–4, 7] and the study of chiral symmetry breaking in
holography [9–11]. Here one follows the running anoma-
lous dimension of the adjoint fermion bi-linear in the four
dimensional theory above the scale 1/L. One can write a
holographic model here also with the dimension one field

λ̂ dual to the fermion bilinear mass and condensate

SAdS5
=

∫
d4xdρ ρ3(∂λ̂)2 + ρ2∆M2λ̂2 (28)

Here the solutions of the equation of motion are

λ̂ = mρ−γ + cρ2+γ , γ(γ − 2) = ∆M2 (29)

There is a BF bound violation that causes gaugino con-
densation when γ = 1 (∆M2 = −1). One can fix the
form of ∆M2 from the formula in the perturbative regime
and

∆M2 = −2γ γ =
3C2(R)

2π
α (30)
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where C2(R) is Nc for the adjoint representation. This
BF bound violation is now predicted to occur at g24 = 6.6
for Nc = 2 and g24 = 4.4 for Nc = 3.

Part of our goal in this paper was to put these two
mechanisms’ scales in the same holographic language of
BF bound violations, which we have done. In princi-
ple, one can now ask does adjoint fermion condensation
or instanton condensation occur earlier? The above es-
timates slightly favour adjoint fermion condensation to
occur first. However, one can’t really deduce any such
thing, since both estimates are based on wildly extrap-
olating the perturbative results to the non-perturbative
regime. The fact that N = 1(in d=4) super Yang-Mills
theory ties the gaugino bound states and glueballs into a
single multiplet suggests that the two mechanisms might
merge in that theory and hence possibly all theories with
adjoint matter. Holographic models are not going to re-
solve this fundamental question about the dynamics (first
principle holographic constructions might of course).

Thus, whether the dynamics of these theories are set
at a single scale by instanton condensation or whether
there are two scales, one for chiral symmetry breaking
(γ = 1) and one for confinement (instanton condensa-
tion) remains to be discovered. If there are two scales,
one could hope to separate them. In a previous paper, we
explored this phenomenon in a theory with fundamental
representation and two-index symmetric representation
fermion flavours [23]. The idea is to let the theory trig-
ger γ = 1 for the higher dimension representation, and
then run as slowly as possible (by adjusting the number
of fundamentals) to a new trigger scale for fundamen-
tal representation condensation. That scale, which is in
a theory similar to QCD, one posits has instanton con-
densation near the fundamental condensation scale. In
the next section, we will repeat this method to model a
theory with fundamentals and adjoint fields (neglecting
instanton condensation). It is a straw-man model for the
γ = 1, and hence the separated scales, hypothesis which
we hope will inspire first principles lattice simulations to
seek the phenomena (or disprove this world view).

V. HOLOGRAPHY OF QCD(ADJ) +
FUNDAMENTALS

Here we present a holographic model of an SU(Nc) gauge
theory with a single Weyl fermion in the adjoint repre-
sentation and in addition Nf fundamental representation
Dirac fermions. The model does not include the instan-
ton sector so lives in the “γ = 1 paradigm” - that is, we
simply use the perturbative running of the anomalous
dimensions for the bi-fermion operator in each represen-
tation to predict where they condense. By adjusting Nf ,
we can weaken the running between the scale where the
adjoint condenses and that where the fundamental con-

denses to try to exhibit a gap. We assume here that
instanton condensation (and hence confinement) occurs
below the scale of the fundamental condensation. Likely
these scales are very close as in QCD because when the
fundamentals are integrated out at that condensation
scale one is already at very strong coupling and the pure
Yang-Mills theory in the IR will run to its pole fast. Our
model is a straw-man, intended to provoke lattice sim-
ulations to look for the gap in scales. The gaps we see
depend on the extrapolations of perturbative results, and
so of course come with large errors, the idea is intriguing
though. The analysis mimics our previous study of these
theories with two index symmetric matter rather than
the adjoint where the model also predicts large gaps [23].

A. The Holographic Model

The holographic model is simply a refinement of the dis-
cussion in (28) above, as first presented in [37]. We will
briefly present the action and equations of motion which
will be used to calculate meson masses and decay con-
stants for the adjoint/fundamental theories.

The gravity action for the fields for the two representa-
tions in dynamic AdS/Yang-Mills is

Sboson =
∑
R

∫
d5x ρ3

(
1

r2
(DMXR)†(DMXR) (31)

+
∆m2

R

ρ2
|XR|2 +

1

2g2R5

FR,MNF
MN
R + axial

)
.

where the only interaction between the two representa-
tions is through their contributions to ∆m2

R. One could
include cross-terms where the condensation of one rep-
resentation would enhance or hinder the condensation of
the other but we omit them because it is unclear how
strong or what sign they should have.

The five-dimensional coupling, as in [37, 38], is obtained
by matching to the UV vector-vector correlator

g2R5 =
12π2

d(R) Nf (R)
, (32)

where d(R) is the dimension of the fermion’s representa-
tion and Nf (R) is the number of Dirac flavours in that
representation.

The model has a five-dimensional asymptotically AdS
spacetime, the metric for which is

ds2R = r2dx2(1,3) +
dρ2

r2
, (33)

where r2 = ρ2 + |XR|2 - ρ is the holographic radial direc-
tion corresponding to the energy scale, and with the
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Figure 5: SU(5) gauge theory with one Weyl adjoint
field and NF

f = 16.9 (as an approximation to Nf = 17):

The running of ∆m2 for the adjoint rep. (blue),
fundamental (red), and for the fundamentals with the

higher dim rep. decoupled below the scale where it is on
mass-shell leaving the fundamental running (green).
The energy scales are given in units of the ρ-meson

mass in the adjoint sector. BF bound violation occurs at
13.9 for the adjoint and −2.2 for the fundamental with

the adjoint decoupled.

AdS radius set to one. The XR vev is again included as
a back-reaction in the metric.

The dynamics of the particular gauge theory, with quark
contributions to any running coupling, are included
through ∆m2

R in (31). We use the perturbative result
for the running of the anomalous dimension of the quark
mass, γ and expand M2 = ∆(∆− 4) at small γ giving

∆m2 = −2γ. (34)

Since the true running of γ is not known non-
perturbatively, we extend the perturbative results as a
function of the renormalization group (RG) scale µ to the
non-perturbative regime. We then directly set the field
theory RG scale µ equal to the holographic RG scale
r =

√
ρ2 + |XR|2. The model breaks chiral symmetry

when γ passes 1/2, as the BF bound is then violated.
This is an extrapolation of the perturbative results that
favours early condensation and hence larger gaps. We
explored other choices in [23] but here we seek to simply
show that large gaps seem possible.

The two-loop result for the running coupling, α(µ), in a
gauge theory with multi-representational matter is

µ
dα

dµ
= −b0α2 − b1α3 , (35)

with

b0 = 1
6π (11C2(G)− 4

∑
R T (R)Nf (R)) ,

b1 = 1
24π2

(
34C2

2 (G)

−
∑
R (20C2(G) + 12C2(R))T (R)Nf (R)) .

(36)

where T (R) is half the Dynkin index and C2(R) the
quadratic Casimir (each per representation, R) and we
have used the results for the number of Dirac fermions
in a given representation (a Weyl fermion is Nf = 1/2).

For the results to come, we have numerically set α(1) =
0.65 which sets the strong coupling scales of the theory.
We are careful though to rewrite all our results in units
of the ρ mass made from adjoint fields to remove this
arbitrary choice.

We use the one-loop anomalous dimension relation for
the running of γ.

γ =
3 C2(R)

2π
α. (37)

We stop at one loop since it is already a guess non-
perturbatively and no additional features are added be-
yond.

To find the vacuum of the theory, with s, we set all fields
to zero except for |XR| = LR(ρ). For ∆m2

R a constant,
the equation of motion we obtain from (31) is

∂ρ(ρ
3∂ρLR)− ρ ∆m2

RLR = 0 . (38)

At large ρ, in the UV, the asymptotic solution is LR(ρ) =
mR + cR/ρ

2, with cR = 〈q̄q〉, with the fermion conden-
sates of dimension three and mR, and the mass of dimen-
sion one. We numerically solve (38) with our input ∆m2

R
for the function LR(ρ).

We use IR boundary conditions where the fermions go
on mass-shell

LR(ρ)|ρ=ρIRR = ρIRR , ∂ρLR(ρ)|ρ=ρIRR = 0 . (39)

The value of ρIR is fixed in each theory. We numerically
vary ρIR until the value of LR at the boundary is the
desired fermion mass. We refer to the vacuum solutions
as LR0(ρ), with IR value LIRR at ρIR.

In the models we study, the adjoint representation al-
ways condenses at a higher ρIRR than the fundamental
representation. At that scale we integrate out the adjoint
representation fermions and remove their contribution to
the beta function at lower scales. We show an example
running of ∆m2

R for the two representations in the case
of Nc = 5 and NF

f = 17 in Figure 5.

The mesons of the theory are fluctuations of this vac-
uum configuration that satisfy the appropriate boundary
conditions, matching those of the vacuum in the IR and
consisting of just fluctuations of operators in the UV. The
resulting Sturm-Liouville problems fix the meson masses.
Decay constants obtained by substituting these solutions
and those for a background source back into the action
and integrating over the radial direction. The full equa-
tions can be found in [23].
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Figure 6: SU(5) gauge theory with NF
f = 17

(approximates by NF
f = 16.9): The LR(ρ) functions for

the adjoint (blue) and 5 (green) representations with
mIR,A ≈ 0.29 and mIR,F ≈ 0.025 respectively in units

of the ρ-meson mass in the adjoint sector.

B. Nc and NF
f Dependence In The Massless Theory

We will now discuss the predictions of the holographic
model, starting with the case that has the largest gap
in the spectrum between the adjoint and fundamental
fermion bound states.

1. Nc = 5 Theory

The most extreme theory makes a good example. We
take Nc = 5 and a single Weyl fermion in the adjoint
representation plus NF

f Dirac fundamental flavours. In

[8] this model was identified as having a maximum gap
between the condensation scales of the representations
at NF

f = 17. There, the adjoint sector is eliminated
from the running at the scale of the BF bound violation
(i.e. at γAdj = 1) and the γF = 1 BF bound violation
scale is then computed from the running, resulting in a
separation of 22.

We implement this theory in our holographic model.
We show the running of ∆m2

Adj against the log of the
RG scale in Figure 5. We set scales with the ρ-meson
mass composed of adjoint fermions. In fact, the edge of
the conformal window for this theory is slightly above
NF
f = 17, but calculations for 17 flavours are numeri-

cally intractable, 16.9 was used as a near approximation.
Already at NF

f = 16.9, the IR fixed point value of the ad-

joint sector is exceedingly close to 1, with ∆m2
Adj in the

IR being -1.04. We can extrapolate that for NF
f = 17,

given that the IR fixed point is even closer to 1, the vi-
olation point will be increased further and the mass gap
will be slightly larger, i.e. a continuation of the trend
that we will see across the range of NF

f in this section.

Figure 7: Mass spectra for the SU(5) theory, ρ-mesons
in blue (adjoint) and dark yellow (fundamental),

σ-mesons in green (adjoint) and orange (fundamental),
axials in purple (adjoint) and brown (fundamental). The
pions in both sectors are massless at zero fermion mass.

Figure 6 shows the vacuum configuration LAdj(ρ) in the
holographic model (blue line). It corresponds to the ef-
fective fermion mass as a function of ρ, the RG scale.
We see chiral symmetry breaking, with the line bending
away from L = 0 in the IR. The value of the lower IR
value of the mass is significantly lower than the scale of
BF bound violation.

Returning to Figure 5 we next consider the fundamen-
tal sector. The red and green lines show the running of
∆m2

F , the red being the running with the presence of the
adjoint sector, and thus valid only above the scale where
the adjoint goes on shell at the IR value LAdj(ρ) = ρ.
The green line then shows the results of integrating out
the adjoint sector. We use an interpolation function to
transition between the two runnings. BF bound viola-
tion for the fundamentals occurs at lnµ = −2.2 in units
of the ρ mass in the adjoint rep (compared to the value
for the adjoints of lnµ = 13.9).

As with the adjoint, we solve for the embedding function
L(ρ) for the fundamental representation, which can be
seen as the green line in Figure 6. There is an IR mass gap
between the two representations of 11.6. This is smaller
than the factor of 22 from [8] but nevertheless substantial.

We can use the holographic model to compute the spec-
trum and decay constants of the theory for all NF

f from

1 to 16.9 (with integer NF
f excepting the last case), be-

ginning by computing the equivalent embedding for each
value. The mass-spectrum results are shown in Figure
7. For each theory, the spectrum is normalized in terms
of the adjoint representation ρ-meson mass, hence the
blue line for the adjoint ρ is a flat line at precisely 1.
The decay constants are shown in Figure 8. One can see
that the adjoint ρ-meson decay constant is also relatively
unaffected by NF

f .
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Figure 8: Decay constants for the SU(5) theory,
ρ-mesons in blue (adjoint) and dark yellow

(fundamental), σ-mesons in green (adjoint) and orange
(fundamental), axials in purple (adjoint) and brown
(fundamental) and pions in cyan (adjoint) and light

yellow (fundamental).

For the other mesons, in the adjoint sector we see that
the axial-mesons (purple) have a larger mass than the
ρ-mesons, slightly increasing with NF

f while their de-

cay constant is slightly smaller and decreases with NF
f ,

though both changes are marginal.

The adjoint sigma mesons (green) are the lightest state,
reflecting the walking in the high energy theory. The
mass spectrum decreasing to essentially zero by the edge
of the conformal window. The adjoint sigma decay con-
stant is the largest at all NF

f , with an initial rise followed

by a tail off at large NF
f . Finally we have the adjoint pi-

ons which are of course, massless in the massless theory
but whose decay constant (cyan) is around half that of
the ρ-meson and only slightly affected by the increasing
NF
f .

In the fundamental sector, we see the ρ-meson (dark yel-
low) mass decreases strongly relative to the adjoint ρ
mass, with the mass gap for NF

f = 16.9 being ∼ 12.38.
This gap should be expected to increase marginally at
the actual final, non-conformal integer value of NF

f = 17.
Meanwhile, the decay constant for the fundamental ρ ini-
tially rises, before falling at large NF

f as the scale of the
gap decreases. The fundamental axial-mesons begin with
a larger mass than the adjoint ρ-meson, before falling
sharply with increasing NF

f , eventually dovetailing into

the fundamental ρ-meson at high NF
f , while the decay

constant for the fundamental axials is almost indistin-
guishable from that of the fundamental ρ-mesons.

The fundamental σ-mesons (orange) behave similarly to
their adjoint counterpart, albeit, starting at a higher
mass and falling more sharply before levelling off at high
NF
f as they approach the mass scale of the adjoint σ-

meson. The decay constant however, along with that of
the fundamental pions, displays behaviour more similar
to the fundamental ρ and axial-mesons, with a smooth

initial rise followed by fall.

2. Other Nc

We additionally investigated the Nc dependence of the
spectrum, looking at the cases Nc = 2, 3, 4. For each we
retained the single adjoint representation Weyl fermion
and NF

f fundamental Dirac fermions, computing all NF
f

up to the edge of the conformal window (as per our ansatz
for the running of γ). The results are shown in Figure
8. As with the SU(5) case, we computed the maximum
mass gap for each theory (the ratio of the adjoint and
fundamental ρ-meson mass spectra) which are:

SU(2), NF
f = 6: 5.26;

SU(3), NF
f = 10: 10.63;

SU(4), NF
f = 13: 8.50.

VI. CONCLUSIONS

Gauge theories with fermions in the adjoint representa-
tion could potentially shed light on the origins of con-
finement and chiral symmetry breaking. When compact-
ified on a small circle, such that the theories are weakly
coupled, they display low energy confinement by the for-
mation of a background density of magnetically charged
instantons [15]. Chiral symmetry breaking has been un-
derstood to set in when the anomalous dimension of the
fermion bilinear operator becomes equal to one [1–4].
Here we have made a first step to model these two mecha-
nisms together by presenting holographic models of both
phenomena. Both the condensation of instantons and
fermions are associated to BF bound violations in holo-
graphic models. A very näıve extrapolation of perturba-
tive results suggests that the fermion condensation may
occur first, but this is very far from clear cut. If the two
mechanism are separable, then it is interesting to try to
grow the gap between the scales. We have proposed do-
ing this by adding additional fermions in the fundamen-
tal representation that condense at higher coupling values
and slow the gauge running. A simple holographic model
suggests gaps as big as an order of magnitude might be
possible, although this again depends on the extrapo-
lation of running results from the perturbative regime.
Our results are intended to provoke first principle lattice
simulations of such theories (in the spirit of [31]) which
could shed light on the mechanism(s) of confinement and
chiral symmetry breaking.

Acknowledgements: NE’s work was supported by the
STFC consolidated grant ST/X000583/1.
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A: Mass spectra for the SU(2) theory.

C: Mass spectra for the SU(3) theory.

E: Mass spectra for the SU(4) theory.

Figure 9: The spectra and decay constants of the SU(Nc) gauge theory with one adjoint representation matter field
and NF

f fundamentals forNc = 2, 3, 4. ρ mesons in blue (adjoint) and dark yellow (fundamental), σ mesons in green

(adjoint) and orange (fundamental), axials in purple (adjoint) and brown (fundamental) and pions in cyan (adjoint)
and light yellow (fundamental).

B: Decay constants for the SU(2) theory.

D: Decay constants for the SU(3) theory.

F: Decay constants for the SU(4) theory.
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