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Abstract

Non-verbal gestures play a crucial role in social robots, enabling them to signal their intentions to users during
human-robot interaction (HRI). While recent research in this domain has primarily focused on robot gesture
generation, there remains a limited number of studies on multimodal generation frameworks, where generated
gestures are harmonized with other generated modalities, to better convey the robot’s intention to users via a
wider range of communication channels. Inspired by recent advancements in multimodal large language models
(MLLMs), we propose a novel framework that integrates motion generation models with existing MLLMs to
produce high-quality 3D motions without the need for extensive multimodal training. Our framework comprises
three key components: a Denoising Diffusion Motion Generation (DDMG) module that maps text descriptions to
motion sequences using a diffusion-based approach; a Motion Decoding Alignment (MDA) module that refines
motion representations by incorporating signal embeddings generated by an LLM; and a Fusion Module (FM)
that integrates motion features trained from previous phases to enhance coherence and realism. We conducted
a series of experiments on a publicly available dataset to evaluate the efficiency of the proposed framework in
terms of motion quality, diversity, and semantic alignment. The results suggest that our multimodal approach
can serve as a powerful controller for robot gesture generation, offering a more scalable and effective solution,
particularly for social HRI.
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1. Introduction

Non-verbal gestures are essential for social robots to signal their intentions to users during human-robot
interaction (HRI). By integrating gestures with other visual and auditory modalities (e.g., speech,
images, video), robots can communicate with users more effectively through a wider range of channels.
Multimodal communication has been shown to be a crucial strategy for social robots, as users can better
perceive the robot’s communicative messages through complementary modalities, towards enhancing
their understanding of the robot behaviors [1]. In various situations, such as service environments
with background noise [2] or elderly care settings where users may have sensory impairments [3],
multimodal communication has become a key for social robots to deliver messages to users effectively.
However, there remains a limited number of studies on multimodal generation frameworks in which
gesture features are harmonized with other modalities to effectively convey intentions through diverse
communication channels. One possible reason is that training a powerful model capable of handling
multiple modalities is highly resource-intensive. Inspired by recent advancements in multimodal large
language models (MLLMs), this paper contributes a novel framework that integrates a diffusion-base
motion generation model with an MLLM to address multimodal generation tasks, particularly for
social HRI. These models leverage strong encoders trained on large-scale datasets to process multiple
modalities without the need for additional training. By employing an MLLM as a reasoning controller
and integrating it with a robust motion generation model, our approach aims to reduce the reliance on
extensive multimodal datasets while maintaining high-quality gesture generation.
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The rest of this paper is organized as follows. In section 2, we review studies on human-inspired
gesture generation framework for social robots and virtual agents. Then, we highlight recent works
on MLLMs and their limitations in the context of motion generation for social robots. In section 3,
the proposed approach consisting of three training phases will be explained in detail. In section 4, we
evaluate the efficiency of the proposed framework using a wide range of evaluation metrics and under
different configurations. As a proof of concept, we demonstrate how the designed framework on a
social robot. Finally, the experimental results and future work are summarized in section 5.

2. Related Works

2.1. Non-verbal Gesture Generation in Social Robots

Studies on generating robots’ non-verbal gestures are categorized into two groups: rule-based ap-
proach and data-driven approach. However, rule-based approaches often struggle to adapt to dynamic
interactions, motivating researchers to explore data-driven methods for more natural and realistic
motion generation. Regression-based models has been used in previous studies to generate human
motion by encoding input features. For example, the Joint Language-to-Pose (JL2P) model learns a
shared embedding space for language and motion, facilitating natural language-driven animations
[4]. However, these models often struggle with capturing long-range dependencies, leading to overly
smooth and less realistic predictions. Generative frameworks such as Generative Adversarial Networks
(GANSs), Variational Autoencoders (VAEs), and Diffusion have been used in recent studies, enabling
more diverse and realistic sequences of the generated motion. Previous GAN-based approach, such as
ActFormer, integrate Transformers for temporal and interaction modeling in motion generation [5].
VAEs has been applied in [6] to improve generative modeling by leveraging latent variables, as seen in
text-to-motion applications [7]. MoMask extends VAEs with hierarchical quantization for high-quality
motion synthesis [8]. Normalizing flows [9] construct complex distributions through invertible trans-
formations, enhancing the realism of the motion. Recently, Denoising Diffusion Probabilistic Models
(DDPMs) have demonstrated state-of-the-art performance. MotionDiffuse [10], [11] use the diffusion
model to generate high quality of motion based on the contextual. The study [12] extends diffusion
models to open-vocabulary motion synthesis, enabling zero-shot generation from text.

While recent data-driven frameworks have extensively addressed motion generation task, enabling
robots or virtual agents to convey their intention and the verbal content of their speech through
synthesized gestures, there remains a limited number studies on multimodal frameworks, particularly
inspired from recent advancement of MLLM. In such frameworks, the motion modality could be
harmonized with others in the latent space to produce coherent multimodal communication outputs.
Notably, current motion generation approaches mostly rely on text-based condition [4, 11, 13], which
limits their ability to fully interpret and align with the tokens representations provided by MLLM. In
the context of social HRI, however, non-verbal communication extends beyond robot gestures. The
ability to engage users through other communication channels, such as audio, images, or other visual
cues, is essential for enhancing interaction across different HRI scenarios [2, 3].

2.2. Multimodal Large Language Models

Recent advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced
the integration of diverse modalities. Mini-Gemini [14] employs a dual-encoder approach, notably
improving the interpretation of high-resolution visuals. Similarly, the work in [15] introduces a flexible
vision encoding technique, optimizing the processing of high-resolution images. In addition, OneLLM
[16] integrates diverse data types using universal projection modules, improving scalability. NExT-GPT
[17] extends LLM capabilities to handle a broader range of modalities, including text, image, video,
and audio. However, those solutions typically rely on domain-specific training, resulting in substantial
computational costs and limited generalization capabilities. Importantly, existing models in this domain
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Figure 1: The proposed framework consists of three training phases. Phase 1 uses the Denoising Diffusion
Motion Generation module (DDMG) to map textual descriptions into initial motion representations. Phase 2
employs the Motion Decoding Alignment module(MDA) module to refine motion representations within the
motion domain. Phase 3 combines the outputs of MDA with the Fusion module (FM) to optimal the accuracy of
motion sequence output.

primarily focus on audio, visual, and textual modalities, often neglecting motion modality, an essential
channel for robots to convey semantic contents of their speech during HRI.

This paper addresses this gap by extending the multimodal LLM framework introduced in [17]
to incorporate motion as an additional modality, alongside audio, image, and video, making it more
practical for HRI settings. The proposed unified multimodal framework is capable of synthesizing
high-quality motion without requiring extensive domain-specific training. In this paper, we utilize
Vicuna-7B-v0 to effectively synthesize textual descriptions and bridge text-based prompts with motion
generation. Our approach aims to advance the deployment of MLLM in the context of HRI where the
synthesis of multimodality communication, particularly the nonverbal gesture channel, is the key for
the robot to interact with users efficiently.

3. Methodology

Overview of the Proposed Framework

Fig. 1 illustrates an overview of the proposed framework, including three Phases. In 3.1, we illustrate the
Denoising Diffusion Motion Generation module (DDMG), the core mechanism for generating motion
sequences, trained during Phase 1. In 3.2, we introduce the Motion Decoding Alignment module (MDA)
trained in Phase 2. In 3.3, we explain our novel refinement method for motion diffusion, trained in the
final Phase with fusion module (FM).

3.1. Phase 1: Motion Diffusion Generation Module

The Motion Diffusion Generation Module (DDMG) plays a pivotal role in the framework, as
outlined in the first phase of the training process. In Phase 1, the module is trained using a traditional
text-to-motion model to establish basic text-guided motion generation. The model is trained with a
forward diffusion process, where a Markov chain adds Gaussian noise to the motion data over several
steps, and the sequence of noisy samples is generated according to a variance schedule. This forward
process is modeled using the equation:

q(x¢|x0) = N (x4; Varxo, (1 — ap)I), (1)



where x( represents the original motion sequence, and & is the cumulative product of oy = 1 — 4,
the variance schedule. To reconstruct the motion sequence, the reverse motion diffusion process is
used, where the noise addition is reversed. The reverse process is modeled as a Gaussian distribution
conditioned on the text embedding. The mean for this process is calculated as:
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where €g(x¢, t, text) is the predicted noise component. The model is trained to minimize the mean
squared error (MSE) loss, which ensures the accuracy of the noise prediction:

o (X¢, t, text) = eg(xy, t, text)> , (2)

L= Et7X07€ [HG - Eg(Xt,t,teXt)HQ] s (3)

where the true noise € is sampled from a Gaussian distribution. The pretrained weights from Phase 1
are then utilized in Phase 3, where they are integrated into the overall framework, enabling coherent
motion synthesis throughout the system.

To implement the reverse denoising function eg(xy, ¢, text), we adopt a Transformer-based architec-
ture composed of three core components: a Self-Attention (S-Attention) layer for modeling intra-motion
temporal dependencies, a Cross-Attention (C-Attention) mechanism for conditioning on text or signal
embeddings, and a Feed-Forward Network (FFN) for non-linear transformation.

3.2. Phase 2: Motion Decoding Alignment Module

The MLLM in our framework, as shown in Fig.1, generates multiple outputs, including a text response
and signal tokens containing motion-related information. These tokens are passed to the transformer-
based MDA, which models temporal dependencies and refines motion sequence representations. The
Learning Queries Output Projection component adapts the multimodal LLM output into a format
suitable for motion generation, ensuring coherent responses across text, image, and motion modalities.

Unlike traditional motion diffusion models, which rely on text-based conditioning, our approach uses
signal tokens as conditional inputs. These tokens pass through transformer-based projection layers to
better align with LLM outputs, resulting in more coherent motion sequences.

To ensure alignment between signal tokens and CLIP text embeddings, we introduce a loss function
combining consistency loss (£.) and discrepancy loss (£4). The total alignment loss is given by:

Ealign =a- L+ /8 Ly (4)

1 & 1 Y a; - b;
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This combination ensures stable training, better semantic alignment, and improved motion generation
quality. The aligned signal tokens guide the motion synthesis process in the diffusion model.

3.3. Phase 3: Fusion Module

Directly pushing the signal token embedding from Phase 2 to the DDMG module resulted in suboptimal
motion quality. To address this, we designed a Fusion module (FM) integrated into the diffusion pipeline,
which enhances both fusion quality and motion performance. The FM acts as a controller for the function
€g(X¢, t, text), integrating diverse inputs to produce tailored motion sequences. Fig. 2 illustrates the
Phase 3 pipeline, which trains the FM and DDMG components. The FM integrates the signal token
embedding with other motion-related features, capturing semantic and temporal relations for improved
motion representations. The pre-trained DDMG from Phase 1 is trained alongside the FM module.
Our FM, based on the MoE architecture [18], enables dynamic feature fusion and adaptive learning.
The Gate function dynamically assigns weights to different experts based on input data. The top-k
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Figure 2: Overall framework of the pipeline on Phase 3. The input text is processed by a LLM to generate
a semantic signal. The Clip encoder processes the input to align motion features. The MDA module bridges
textual and motion embeddings. The DDMG module, consisting of self-attention (S-Attention), cross-attention
(C-Attention) mechanisms along with Feed-Forward Networks (FFNs), utilizes a probabilistic diffusion process to
model motion data. FM integrates text and motion features via attention gating and outputs sequential motion
frames, which reverse the diffusion process to produce a synthesis motion. Time embeddings are incorporated to
encode temporal dynamics of the motion.

gating mechanism selects the most relevant experts via a similarity measure. The gating function is
defined as Eq. 6 with softmax normalization Wgating = softmax(gtop_k).

g = _HWg - Econcat||2> Stop-k; indices = top'k(ga k) (6)

The final aggregated output followed by an output projection is presented in Eq. 7 where W, and
byt are trainable projection parameters.

k
Fagg = Z Weating,i * Ei; Fﬁnal = WoutFagg + bout (7)
=1

To enforce consistency between signal and text embeddings, we incorporate L2 regularization as
below. This regularization aligns multimodal feature distributions, stabilizes training, and enhances
representation consistency.

Liotal = Limain + A HEsignal - EtextHi (8)

4. Experimental Results and Dicussion

4.1. Dataset and Evaluation Metrics

We evaluated on the HumanML3D dataset [19], which includes 14,616 motion samples from AMASS
[20] and HumanAct12 [21], with a total of 44,970 annotations. Each motion sequence consists of N
joints, where joint j; at time ¢ is represented by position p;(¢) and rotation R;(¢). The position follows
pi(t) = T; + R;(t) - 1;, with T; as the joint root translation, R; (%) as the rotation matrix, and 1; as
the local offset. The motion is represented as a time series P(t) = {p1(¢),...,pn(t)}, mapped from
textual descriptions D = {wq, ..., wy,} viaD ERN P(t).

To comprehensively evaluate the quality of the generated motions, we adopted eight key metrics
validating semantic, spatial, temporal, and distributional aspects. Specifically, R Precision measures



Table 1

Quantitative results on the HumanML3D test set. All methods use the real motion length from the ground
truth. + indicates 95% confidence interval, and — means the closer to real motions the better. Bold face indicates
the best result.

Methods R Precision? FID| MultiModal Dist.| | Diversity— | MultiModality? APE| Velocity Jerk]
Top 1 Top 2 Top 3
Real motions 05005005 0,695=006 (. 7955005 g 002F-001 2,788+ 012 8.425=109 - B - N
4 signal tokens 0.297£-005  (502%-003 () 508+.004 | 4 371g%.022 5.147+-030 7.426+-109 3.014 0.652£-005 | . 022%:002 | (076002
8 signal tokens | 0.342%5:004 05095004 0626005 | 7.9718+:022 2.980+029 7.655+-079 4124 05475008 | 0,017£:006 | ¢ 72%-003
24 signal tokens | 0.371F:00%  0.558+001  0,676+005 | 3.428+183 2.970+:030 7.918+:109 4.516 0.532%005 | 0,012%+002 | 0.006%002
Table 2

Quantitative results on the HumanML3D test set. All methods use the real motion length from the ground
truth. + indicates the 95% confidence interval, and — means the closer to real motions, the better. Bold face
indicates the best result. Experts refer to the number of specialized sub-networks used within the mixture
of experts (MoE), where each expert captures different motion characteristics. Top-k denotes the number of
experts dynamically selected by the gating function for each input instance, ensuring that only the most relevant
experts contribute to the final motion generation.

Methods R Precisiont FID] MultiModal Dist.| | Diversity— | MultiModalityf APE] Velocity| Jerk]
Top 1 Top 2 Top 3

Real motions 0.501%095 0.695F006 0 795F 005 "¢ 002+ 001 2.788% 012 8.425%109 - - B ,

With 4 experts, top, = 2 | 03715095 0,558%:004  0,676+:005 | 7.918+:183 3.014%:029 7.455+:079 3.014 0.552%:008 | 0,012%:006 | 0,006+-003

With 6 experts, topy, = 2 0.385%-005 5681003  (ge2t003 | 5gqgE021 5.276+-030 7.932%:109 3.023 0.539%:005 | 0073+:002 | ( gp7%.004

With 8 experts, top, = 2 | 0.387F001  0564%001  0,678+005 | 2.4171+183 2.963+:029 7.725%+:079 2.963 0.5765008 | 0,012+:006 | ,005+:003

With 8 experts, top, = 4 | 03455001 0,523%:000  0,641%:005 | 3456+:126 2.959+:029 7.782°:079 3.062 0.541%:008 | 0,012%:003 | 0,006+:002

semantic alignment by retrieving the top-k captions closest to each generated motion in an embedding
space, with the score defined as R-Precision@k = & Zij\ilﬂ‘ [ci € Top-k(m;)|. Fréchet Inception
Distance (FID) evaluates distributional similarity between real and generated motion features via
FID = ||pr — pgll3 + Tr (Z, + 24 — Q(ETZQ)I/Q). Diversity quantifies motion variation using the
average pairwise distance across samples: Diversity = m >i<j llmi — mj[[2. Multimodal-

ity measures intra-prompt diversity through Multimodality = % 21]\;1 ﬁ Zj<l lmi; — mi|2.

Multimodal Distance assesses cross-modal alignment via the average embedding distance between
generated motions and their paired captions: MD = + Zf\il d(Em(m;), Ey(c;)). Average Posi-
tional Error (APE) evaluates spatial accuracy using APE = 4 PSS Z}'le | Zntj — Tntj|2-
Velocity and Jerk assess temporal consistency and smoothness, defined respectively as Velocity =

1 1
NTT Dot [Tnt = Ta-1)jll2 and Jerk = 77 304 5 |2ntg = BTn-1)j + 3Tn(e-2); = Tne-3)4,
We additionally report Energy as an auxiliary metric without further elaboration.

4.2. Number of Signal Tokens

Our experiment was firstly conducted using different numbers of signal tokens, as illustrated in Fig.2,
to assess their impact on motion generation. The experimental results presented in Table 1 demonstrate
that using only 4 signal tokens resulted in the lowest R-Precision scores (0.297, 0.502, 0.598) and the
highest MultiModal Distance (5.147), indicating weak alignment with real motions. Increasing to 8
tokens improved retrieval accuracy (Top-1 R-Precision: 0.342) and reduced MultiModal Distance to
2.980, though FID increased to 7.918. Our experiment noticed that with 24 tokens, the model achieved
the best performance across all evaluation metrics, including the highest R-Precision (0.371, 0.558, 0.676),
Diversity (7.918), and the lowest FID (3.428). This finding implies that increasing number of tokens
enhances motion diversity, and retrieval accuracy. Additionally, lower APE (0.532), Velocity (0.012), and
Jerk (0.006) indicate smoother and more natural motion sequences.

4.3. Mixture of Experts

As our designed FM utilizes the mixture of experts (MoE) approach, an experiment was conducted with
different numbers of experts and topy, values to determine the optimal configuration. The results in
Table 2 indicate that increasing the number of experts generally improves motion diversity but introduces
trade-offs in retrieval accuracy. Expanding from 4 to 6 experts slightly enhances Top-2 R-Precision



Table 3

Quantitative results on the HumanML3D test set. All methods use the real motion length from the ground
truth.+ indicates 95% confidence interval, and — means the closer to Real motions the better. Bold face indicates
the best result, while underscore refers to the second best. The Total loss is the sum of Original loss, Projection
loss and Out loss

Methods R Precision? FID| MultiModal Dist.| | Diversity— | MultiModalityt APE| Velocity| Jerk]
Top 1 Top 2 Top 3

Real motions 0.500F 095 0,695F006 (,795F-005 [0 902+ 007 2.788F 012 8.425F109 - - - -

Original loss 0.371%1005 05581004 676+005 | 797g%183 3.014%:029 7.455%:079 3.014 0.552%008 | 0,012%:006 | 0 0pe*003

Original loss + Out loss 0.385%003  0,571+003 0,686+ 003 | 3085%167 2,980+:029 7.509%+:067 2.871 0.532+008 | 0.012+905 | 0.006+00!

Original loss + Projection loss | 0.363%001  0.548%:001 06614005 | 3,074+183 2.959+029 7.782+:079 2,959 0531008 | 0,012:006 | 0,006+003

Total loss 0.1 561.00’1 0155&.“04 0_3381,(]05 121 941,183 6'9641.02‘) 9'3431.07‘) 2.945 0.591 +.008 0.214% 006 0.1 471,()()3

(from 0.558 to 0.568) and significantly reduces FID (from 7.918 to 5.818), suggesting better alignment
with real motions. Further increasing to 8 experts leads to the lowest FID (2.411) and MultiModal
Distance, demonstrating improved the realistic and diversity of generated motions. However, Top-1
R-Precision remains stable (0.385-0.387), indicating that additional experts do not necessarily improve
single-instance retrieval accuracy. Adjusting topy, from 2 to 4 with 8 experts decreases Top-1 R-Precision
(from 0.387 to 0.345) and increases FID again (from 2.411 to 3.456). This result suggests that selecting
more experts introduces variability without consistently enhancing accuracy. Despite these trade-offs,
diversity remains relatively stable, indicating that expert fusion preserves a broad range of motion styles.
Overall, the configuration with 8 experts and top;, = 2 achieves the relatively balanced performance,
offering the lowest FID (2.411) and reasonably low MultiModal Distance (2.963) while maintaining
strong retrieval accuracy and motion diversity, making it the most effective choice for realistic motion
generation.

4.4. Configuration of the Loss Function in Phase 3

We examined the impact of the loss function in Phase 3 by comparing the model’s performance using
the original DDMG loss and an augmented loss with L2 regularization, as defined in Equation 8. The
L2 loss consists of two components: the embedding from the MDA module and the text embedding
from the CLIP encoder. These embeddings are processed through a transformer encoder to produce
tensor out, which is projected to form tensor projection, used in the cross-attention layers of the DDMG
module.

The loss function is evaluated using two approaches: Out Loss, which measures the L2 distance
between tensor out and the CLIP text embedding, and Projection Loss, which compares the L2 distance
between tensor projection representations.

We tested four configurations of the loss function within the same network architecture. As shown in
Table 3, the loss function configuration significantly affects model performance. The original loss yields
a Top-1 R-Precision of 0.371 with a high FID (7.918), indicating the generated motions deviate from
real motions. Adding Out loss improves Top-1 R-Precision (0.385) and reduces FID (3.085), aligning the
model’s output closer to real motions. The projection loss decreases the accuracy of the search (0.363)
but reduces the Multi-Modal Distance (2.959 vs. 3.014 in the original loss), improving motion diversity.
The Total loss configuration, combining all components, results in a large drop in Top-1 R-Precision
(0.156) and an increase in FID (12.194), suggesting excessive regularization harms model performance.
These results highlight the need for a balanced loss formulation to optimize retrieval accuracy, realism,
and motion diversity.

4.5. Demonstration of the Inference Phase on a Social Robot

We implemented the proposed framework on a social robot, namely Pepper. During the inference phase,
as illustrated in Fig. 1, the framework receives a human textual prompt as a mandatory input, while
other modalities are optional. The model generates a textual response and corresponding motion as
mandatory outputs, with additional modalities that could be produced depending on the input prompt.
The Motion Conversion module was deployed to convert gestured motions into the robot’s motion



Human Input: " e been sitting all day. Can you show me a quick stretch and an image visual
Robot Response: "Of course! | can definitely help you with that. Here's a quick stretch that you can do to warm up your muscles and get some fresh air. It's important to take breaks and
stretch regularly to prevent stiffness and improve overall health."

Figure 3: The robot responses to human input with a generated motion and a generated image of stretching
with the right hand (displayed on the robot tablet) to explain verbal contents of it speech.

space, resulting in communicative gestures performed by the robot. The generated textual responses
were converted to robot’s speech, while other generated modalities were displayed on the robot’s tablet,
to support the robot speech, simultaneously. In Fig. 3, in response to a user request of showing a quick
stretch illustrated with an image, the framework additionally generated an image of right-hand stretch,
which was displayed on the robot’s tablet. This enabled the robot to comprehend their communicative
messages through a combination of speech, gesture, and an image.

5. Conclusion

This paper introduced a novel framework that leverages a multimodal LLM and a diffusion-based motion
approach to generate high-quality motions that can be implemented into social robots, supporting
for multimodal communication. By integrating a DDMG module with a MDA module and a novel
FM module, our approach enables the network to capture both semantic and temporal information,
ensuring diverse and contextually coherent motions. Experimental results on the HumanML3D dataset
demonstrated that our framework yields competitive performance across a wide range of metrics.
Ablation studies revealed the importance of carefully balancing signal tokens, mixture-of-experts
configurations, and alignment losses, underscoring the effectiveness of the fusion mechanism in bridging
the gap between textual instructions and the target motion domain. Our approach mitigates the need
for extensive multimodal datasets by exploiting pre-trained components, such as ImageBind and well-
established language models, thereby reducing computational costs without compromising generation
quality. There are several remaining works that will be considered in our future works. First, we plan
to expand the framework to a higher number of interaction modalities commonly seen in HRI (e.g.,
eye-contact, haptic feedback, etc.). We also aim to explore more advanced gating mechanisms and
integration strategies, aiming to further improve the scalability and adaptability of our multimodal
system.
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