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Summary
Background The oesophageal cancer (OC) multi-disciplinary team (MDT) operates under significant pressures, 
handling complex decision-making. Machine learning (ML) can learn complex decision-making paradigms to 
improve efficiency, consistency, and cost if trained and deployed responsibly. We present an externally validated 
ML-based clinical decision support system (CDSS) designed to predict OC MDT treatment decisions and 
prognosticate palliative scenarios, co-designed using Responsible Research and Innovation (RRI) principles.

Methods Clinicopathological data collected from 1931 patients between 4th September 2009, and 8th November 
2022 were used to test and validate models trained through four ML algorithms to predict curative and palliative 
treatment pathways along with palliative prognosis. 953 OC cases treated at University Hospitals Southampton 
(UHS) were used to train ML models which were externally validated on 978 OC cases from Oxford University 
Hospitals (OUH). Model performance was evaluated using Area Under Curve (AUC) for treatment classifiers and 
calibration curves for survival models. A parallel RRI program at the University of Southampton (United Kingdom) 
combining clinician interviews and inter-disciplinary workshops was conducted between 16.3.23 and 23.5.24. The 
RRI program comprised a group of 17 domain experts comprising programmers, computer scientists, clinicians 
and patient representatives to allow end-users to contribute towards the co-design of the CDSS user interface.

Findings Cohorts differed in baseline characteristics, with the external cohort (OUH) being younger, having better 
performance status, and a higher prevalence of pulmonary and vascular disease. Despite these differences, on internal 
validation (UHS cohort) mean AUCs for the primary treatment model were: MLR 0.905 ± 0.048, XGB 0.909 ± 0.044 
and RF 0.883 ± 0.059 (k = 5 cross-validation) and MLR 0.866 (95% CI 0.866–0.867), XGB 0.863 (0.862–0.864), RF 0.863 
(0.867–0.868) on bootstrapped resampling. For the palliative classifier, mean AUCs were: MLR 0.805 ± 0.096, XGB 
0.815 ± 0.081 and RF 0.793 ± 0.083 (k = 5 cross-validation) and MLR 0.736 (95% CI 0.734–0.737), XGB 0.799 
(0.798–0.800), RF 0.781 (0.778–0.782) on bootstrapped resampling. On external validation (OUH cohort), AUCs 
were MLR 0.894, XGB 0.887 and RF 0.891 for the primary treatment model and MLR 0.711, XGB 0.742 and RF 
0.730 for the palliative treatment classifier. Predicted survival probability from the palliative survival model was well 
calibrated over the first 12 months post-diagnosis in both cohorts. The RRI program provided a collaborative 
environment leading to valuable modifications to the CDSS including prediction explanations, visual aids for 
survival and integrated education for users producing a user-friendly and quick to use tool.

Interpretation We present a novel, responsibly developed, externally validated AI CDSS trained to predict oeso-
phageal cancer MDT decisions. It represents the foundations of a transformative application of ML, personalised,
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consistent and efficient MDT decision-support within OC which aligns to RRI principles.
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Introduction
Oesophageal cancer (OC) is the 7th commonest cause 
of cancer death worldwide and is a cancer of unmet 
need. 1,2 Affected patients commonly present beyond 
their late 60s, are nutritionally compromised and often 
co-morbid. They require high-quality decision-making 
as treatment options have grown in number and 
complexity, each carrying significant survival and 
quality of life implications. 3 Cancer multidisciplinary 
teams (MDTs), while greatly improving patient out-
comes, face a relentless increase in caseload and clinical 
complexity. 4 They are susceptible to pressured, incon-
sistent and potentially suboptimal decision-making. 5,6 

In 2017, Cancer Research UK evaluated UK MDT 
services finding an urgent need for evolution and 
adaptation within their operational framework. 4 Their 
report stressed an aging population combined with 
expanding treatment options had led to caseload vol-
umes rising linearly with almost no corresponding in-
crease in MDT resources to adapt or cope, a scenario 
common to many economies and countries. MDTs had 
on average 2–3 min to discuss cases, with no additional 
time to audit, reflect or learn from their internal 
decision-making. The MDT’s challenges are also 
financial: the national cost of MDTs in the United

Kingdom was estimated at £50 million in 2010, £88 
million in 2011/12, approximately £150 million by 
2014/2015 and £316 million as of 2024. 4,7,8 While this 
data is now over a decade out of date, there is nothing to 
indicate that the situation has improved in that time 
with regards to cost or case discussion time. Further-
more, assuming a starting NHS consultant salary of 
approximately £100,000 p.a., a 3-h MDT would cost at 
minimum £7500 per consultant present per year (with 
a minimum of 4–5 consultants present being typical of 
most MDTs). Reducing an MDT by even an hour could 
provide a hospital significant savings over a calendar 
year.

A process to streamline, prioritize, and ease MDT 
caseload is essential within the current economic 
climate of many world regions. Artificial intelligence 
(AI) has seen a boom in healthcare use-cases in the 
form of clinical decision-support systems (CDSS). 9–12 

Machine learning (ML), a branch of AI which lever-
ages advanced computational power to identify patterns 
within complex and multimodal data has provided one 
such engine for CDSSs and its potential to support OC 
management has been recently recognized. 13,14 ML has 
seen increasing adoption within early detection of 
cancer 15–17 yet while AI platforms have been applied to

Research in context

Evidence before this study
Machine learning (ML) a branch of Artificial Intelligence (AI) 
may offers a viable solution towards supporting clinicians 
however to date no externally validated models have been 
reported within Oesophageal cancer (OC). We searched 
PubMed on August 27th, 2025, without date or language 
restrictions for publications using the terms “Machine 
Learning” AND “Oesophageal cancer” AND “Multidisciplinary 
Team” (or “Cancer Board” or “Tumour Board”). We did not 
identify any additional studies beyond those previously 
published by this research group investigating ML as a means 
of predicting treatment assignment at MDT for OC.

Added value of this study
The machine learning algorithms used within this study are 
easily accessible, off-the-shelf libraries and compatible within 
the current digital healthcare infrastructures of many

countries worldwide. The resulting CDSS, which provides 
both treatment classification and palliative prognostication 
has been externally validated using data from a separate 
geographical catchment. Finally, the parallel Responsible 
Research and Innovation (RRI) program, has integrated early 
input from stakeholders in the development process.

Implications of all the available evidence
Our results suggest that ML can learn and predict MDT 
treatment decisions effectively in OC posing significant 
implications for future-proofing MDT operations against 
continued rises in caseload both within OC as well as other 
cancer types. Future iterations can also adapt to novel 
molecular markers and treatment modalities. The CDSS here 
provides rapid decision support for OC MDT personnel as well 
as a platform with which to counsel patients.
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MDT-style frameworks in some medical fields, OC 
MDTs have remained untouched in this regard. 11–13,18 

Similarly, a paucity of qualitative evidence exists on 
the viewpoints of clinicians and patients on the use of 
AI CDSSs in OC which creates a knowledge gap when 
design such tools for translation. Medical AI (MAI) 
necessitates trustworthy, ethical and responsible 
innovation. 19 Where much of the literature has focused 
on proving MAI tools, there is a paucity of consider-
ation for their implications on stakeholders from 
design-to-deployment. 19 These include governance, 
handling bias, quality control, data drift detection and 
AI explainability. 20 Responsible Research and Innova-
tion (RRI) has developed in recent years to address 
this, aiming to maximise societal benefit while mini-
mizing harm. 21 The AREA framework (Anticipation, 
Reflection, Engagement and Action) is an example of 
this which integrates RRI within the life cycle of 
research programs. 21

Within this study we present a novel, responsibly 
developed, externally validated AI CDSS trained to 
predict oesophageal cancer MDT decisions. The tool 
utilizes readily accessible, off-the-shelf ML algorithms 
built into a user-friendly interface. The CDSS was co-
designed with Patient & Public Involvement (PPI), cli-
nicians, and computer scientists specialising in AI. By 
harnessing AI-based technologies in a bid to replicate 
and simulate OC MDT decision-making ML may be 
able to offer the potential to streamline, standardize and 
increase efficiency within the OC MDT operational 
framework in a manner which still aligns with 
Responsible AI (RAI) principles.

Methods
This was a mixed-methods study including a retro-
spective complete-case analysis of oesophageal cancer 
patients across two tertiary referral centres in the UK 
(University Hospital Southampton and Oxford Univer-
sity Hospitals) under the ethical approvals of IRAS 
233065 & 319540.

Study cohort 
Training cohort
Oesophageal cancer patients discussed at MDT at 
University Hospital Southampton (UHS) between 
2010 and 2023 were identified from a prospectively 
maintained local database and unit submission re-
cords to the UK National Oesophagogastric Audit 
(NOGCA). Treatment decisions were based on UK 
National Institute for Clinical Excellence (NICE) 
guidelines. 13,22 Patients who present with non-
metastatic disease (T0-4, N0-3, M0 disease) and fit 
(determined by the referring clinician and ratified by 
the MDT) for neoadjuvant therapies and/or surgery 
are filtered down curative pathways. For those with

metastatic disease at presentation, or who are non-
metastatic but felt too unfit for curative treatment 
are managed with palliative intent which may also be 
filtered based on their performance status (PS 0–2 
patients for example, are deemed eligible for 1st-line 
palliative chemotherapy by NICE).

The mainstay of curative treatment for locally 
advanced OC is surgical resection alone (designated 
“Surgery”) or surgery combined with neoadjuvant 
therapy (NAT) (neoadjuvant chemotherapy (designated 
“Chemo”) or neoadjuvant chemoradiotherapy (desig-
nated “CRT”)). While a small proportion of patients 
detected early are eligible for endoscopic resection, their 
management remains controversial and entry to the 
MDT, nuanced meaning they could not be standardized 
to allow a fair comparison. 23 While they were excluded 
from the external validation process, the results of a 
UHS model incorporating endoscopic resection are 
presented separately within the supplementary mate-
rials. Definitive CRT as monotherapy was also excluded 
from this study owing to insufficient training data for 
meaningful modelling.

In general, non-curative patients are offered one of 
five possible outcomes: best supportive care (designated 
“BSC”), palliative chemotherapy (designated “Chemo” 
within the palliative models), palliative radiotherapy 
(designated “RTX”, typically to either the primary 
tumour and/or symptomatic secondary sites amenable 
to radiotherapy, however for the purposes of this study, 
RTX was defined as therapy to the primary tumour), 
palliative oesophageal stent alone, or with an oncolog-
ical adjunct (chemotherapy or radiotherapy, and desig-
nated “Stent_Onc”).

Predictor variables for model training were derived 
from clinicopathological variables known to be 
routinely considered by the MDT. Clinical staging was 
assessed on baseline imaging (Computer Tomography 
(CT) and/or Positron Emission Tomography (PET)) and 
tissue biopsies in accordance with the American Joint 
Committee on Cancer (AJCC) Tumour-Node-
Metastasis (TNM) staging system (7th edition until 
2017 and 8th edition thereafter). Novel molecular 
markers and immunotherapies which have been 
approved for metastatic disease in the UK since 2021 
were not built into this first generation of models as 
these are emerging treatments and consequently there 
was insufficient training data for inclusion.

External validation cohort
The validation cohort were identified from a prospectively 
maintained clinical database (Cancer Outcomes Database 
Application for Upper GI or “CODA-UGI”) at Oxford 
University Hospitals (OUH) which was similarly sub-
mitted to NOGCA. The included patients were discussed 
at MDT over the same study period and underwent the 
same inclusion/exclusion criteria as the training cohort.
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Ethics
This research (including all relevant participant 
informed consents) was conducted under the following 
ethical approvals; The United Kingdom Heath Research 
Authority (HRA) Integrated Research Application Sys-
tems (IRAS) 233,065 & 319,540 as well as under the 
approval of the local ethical review board: University of 
Southampton Ethics Research & Governance Online 
(ERGO) 70,735. Anonymised external validation data 
access was granted after review by CODA-UGI data 
access committee, and following registration and 
approval via the Oxford University Hospitals gover-
nance platform (project no. 8441).

Statistics 
Patient sample
Sample size was dictated by the number of retrospec-
tively recorded cases available for analysis at both cen-
tres. As a specific “effect” is not sought here from 
comparing treatment outcomes, a sample size calcula-
tion was not relevant to this use case. We set a historical 
boundary at 2010 to ensure we balanced maximising 
sample size while ensuring treatment paradigms 
remained relevant and still in-practice within the 
modern era.

Cohort comparison
Differences between the training and validation cohorts 
were assessed using Standardised Mean Difference 
(SMD). An SMD of 0.2 was deemed a small difference, 
0.5 a medium difference and 0.8 a large difference. 

Numeric performance metrics where relevant are 
presented as mean ± standard deviation (SD) and 
mean ± standard error from the mean (SEM) for thr 
5-fold cross-validated models. Where model perfor-
mance has been tested with bootstrapped resampling, 
95% confidence intervals have also been provided.

Model comparison
Differences in performance between algorithms were 
analysed using the Kruskal–Wallis test coupled with the 
Pairwise Wilcoxon Rank Sum Test where appropriate (p 
values were adjusted using the Benjamini-Hochberg 
correction, (p < 0.05 was deemed significant)).

Machine learning model development 
Data preparation and analysis
Data analysis, model training and validation were con-
ducted in R (version 4.2.2) with relevant packages 
described where first used (Supplemental Materials). 
The features used in this study (Table 1) are derived 
from a combination of domain expertise and UK na-
tional guidelines. 22 Data was manually checked for 
quality control by NT and CP. Data entry was stand-
ardised for analysis using terminology accepted within 
the clinical field. As this was a complete analysis, any 
missing data was retrospectively extracted from hospital

electronic health records to ensure high-fidelity quality 
control. Age and overall survival were treated as 
continuous variables, while the remaining covariates 
were categorical (Table 1). Three separate decision-
assistance models were developed: a primary classifi-
cation model which triaged patients into either a spe-
cific curative pathway directly or triaged to a secondary, 
bespoke, palliative treatment classification model. A 
third, survival model was also trained to predict prog-
nosis for a palliative patient from time of diagnosis 
when factoring in palliative treatment. Survival analysis 
was first undertaken using a Kaplan–Meier survival 
estimator (“survival” package). Median survival was 
stratified by treatment with a log-rank test-of-signifi-
cance between curves. Overall survival was defined as 
survival from date of diagnosis to date of death or last 
recorded follow-up.

Feature selection
The features used in this study are derived from a 
combination of domain expertise and UK national 
guidelines. 22 The features outlined in Table 1 are com-
mon to both the full cohort model and the palliative 
models except for the additional “obstructing” variable 
within the latter which was defined as either severe 
dysphagia to solids and liquids or difficulty passing the 
gastroscope at the time of the original diagnostic 
gastroscopy (while dysphagia of some degree is a hall-
mark of OC even in curative settings, cases which are 
deemed curative at diagnosis have rarely progressed to 
a stage where the lesion is causing severe dysphagia or 
an inability to pass a gastroscope which is more typi-
cally of palliative cases). The final palliative treatment 
allocation was then included as an extra feature within 
the palliative survival models. Feature selection was 
primarily dictated by the clinical variables routinely 
collected at the respective training and validation units 
(this was to ensure a pragmatic access to realistically 
accessible variables combined with domain knowledge 
of variables routinely discussed at MDT. Race, BMI, 
smoking status for instance are not routinely discussed 
or considered beyond exception circumstance (in situ-
ations of extremely high BMI which may make surgery 
more challenging or risky for instance). Similarly, while 
the American Society of Anaesthesiology (ASA) grading 
system is assessed pre-operatively in all surgical can-
didates, this score is not used in those not undergoing 
surgery or those who are palliative. As such their per-
formance status is a more practical variable as it is 
considered across treatment pathways.

Machine learning algorithms
The ML algorithms used in this study were chosen for 
several reasons: firstly, they allowed us to focus 
explainable, accessible and technically realistic ML ar-
chitectures which can be implemented easily within 
current healthcare systems. In many world regions
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(including the UK) these systems are under immense 
financial and technological restrictions. Deep learning 
platforms were avoided as they are too opaque for this 
level of high-stakes decision-making, and too complex 
for easy implementation while still allowing regulators 
and hospital clinicians ready access to the explainability 
of the final decisions. Furthermore, high quality, clean, 
clinical data is notoriously difficult to curate at the 
scales needed for deep learning platforms which typi-
cally demand thousands if not tens of thousands of data 
points for quality learning, making standard architec-
tures which can handle smaller datasets instantly more 
favourable. Finally, it is established that within tabular 
data structures, ML algorithms such as tree-based 
models outperform deep learning architectures when 
provided tabular data. 24 Multinomial Logistic Regres-
sion, Random Forests and eXtreme Gradient Boost 
models were trained through “caret” package using 
“nnet”, “RandomForest”, and “xgboost” libraries 
respectively. 25 Survival modelling used Random Sur-
vival Forests as these have been shown to outperform 
traditional Cox Proportional Hazard models for prog-
nostication in OC patients post-oesophagectomy (ran-
domForestsSRC package). 14,26

Model training
Classifier models were trained in the “caret” package in 
R using the train () (the “method = ” argument was 
determined by the base algorithm, “metric” was set to 
“logloss” and the “trControl” argument applied). The 
trainControl () function was used with “method = cv”. A 
5× cross validation was set with the train and test folds 
from each indexed for tracking of predictions. The test 
fold predictions were then saved and averaged to pro-
vide individual ROC curves for each outcome class with 
1× standard error of the mean (the rationale for this is 
described in the next section). A manual ROC for each 
class was generated over a single Multinomial ROC as 
this provided insight into which classes were best or 
least confidently discriminated. Additionally, internal 
metrics on balanced accuracy were obtained using the 
resamples () function (“caret” package) and averaged 
across the 5-fold CV models.

The palliative survival model was trained using the 
rfsrc () training function (“randomForestSRC” package, 
ntree = 1000, “nodesize=” was set based on the tune () 
function (ntreetry = 200)).

Model hyperparameters for all final models will be 
provided within the Supplementary Results.

Validation and model performance
Internal validation for the treatment classifier models 
was by k = 5-fold cross-validation (“caret” package) to 
provide estimated generalizability error averaged across

Pre-treatment variables UHS (N = 953) (%) OUH (N = 978) (%) Test SMD

Gender
Male 718 (75.3%) 744 (76.1%) 0.017
Female 235 (24.7%) 234 (23.9%)

Median age in years (Range) 70.0 (21.0–96.7) 68 (29.0–96.0) 0.156
Performance status
0 371 (38.9%) 712 (72.8%) 0.726
1 329 (34.5%) 150 (15.3%)
2 160 (16.8%) 71 (7.3%)
3 88 (9.2%) 43 (4.4%)
4 5 (0.5%) 2 (0.2%)

cT stage
0 4 (0.4%) 0 0.885
Is 3 (0.3%) 0
1 (unspecified) 7 (0.7%) 2 (0.2%)
1a 1 (0.1%) 13 (1.3%)
1b 1 (0.1%) 17 (1.7%)
2 169 (17.7%) 196 (20.0%)
3 557 (58.4%) 503 (51.4%)
4 (unspecified) 134 (14.1%) 7 (0.7%)
4a 37 (3.9%) 138 (14.1%)
4b 15 (1.6%) 72 (7.4%)
X 25 (2.6%) 30 (3.1%)

cN stage
0 254 (26.7%) 313 (32.0%) 0.340
1 437 (45.9%) 310 (31.7%)
2 183 (19.2%) 253 (25.9%)
3 61 (6.4%) 97 (9.9%)
X 18 (1.9%) 5 (0.5%)

cM stage
0 690 (72.4%) 712 (72.8%) 0.047
1 257 (27.0%) 263 (26.9%)
X 6 (0.6%) 3 (0.3%)

Tumour location
Proximal Oesophagus 22 (2.3%) 20 (2.0%) 0.885
Mid oesophagus 102 (10.7%) 176 (18.0%)
Distal Oesophagus 570 (59.8%) 321 (32.8%)
Siewert 1 56 (5.9%) 256 (26.2%)
Siewert 2 124 (13.0%) 205 (21.0%)
Siewert 3 57 (6.0%) 0
Siewert undefined 22 (2.3%) 0

Tissue histology
Adenocarcinoma 749 (78.6%) 780 (79.8%) 0.029
Squamous Cell 204 (21.4%) 198 (20.2%)

Co-morbidities
Chronic pulmonary disease (CPD) 130 (13.6%) 179 (18.3%) 0.128
Peripheral vascular disease (PVD) 43 (4.5%) 23 (2.4%) 0.119
Cerebrovascular disease (CVD) 106 (11.1%) 44 (4.5%) 0.249
Uncomplicated diabetes (DM uncomp) 128 (13.4%) 155 (15.8%) 0.068
Leukaemia 4 (0.4%) 1 (0.1%) 0.062
Lymphoma 11 (1.2%) 13 (1.3%) 0.016
Renal disease 39 (4.1%) 34 (3.5%) 0.032

Standardized Mean Differences (SMD) are provided for the two cohorts. An SMD of 0.2 is considered a small 
difference, 0.5 medium and 0.8 or more, a large difference.

Table 1: Demographics for the training cohort (UHS) and validation cohort (OUH).
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test sets in each fold. The final model for each algorithm 
was then trained on the full training cohort and tested on 
the full OUH validation cohort (external validation). 
Classifier models were optimised for log loss during 
training and their mean-model performance assessed 
primarily on balanced accuracy (accuracy weighted by 
class size) and area under the curve (AUC of the Receiver 
Operator characteristic (ROC)) for each outcome class 
(one versus rest) using default probability thresholds set 
by the caret package. As 5-fold cross validation was used 
(to optimise a balance between sufficient diversity in the 
test folds without reducing training set sample size 
unduly) providing 5 sample metrics, 95% confidence 
intervals are not provided here as they assume a normal 
distribution (c.f. Kwak et al., 2017 2 ) and the law of large 
numbers and central limit theorem typically requires at 
least 30 samples for this to be testable. Importantly, the 
need for estimating generalisability error within the 
training set is largely obviated by a truly independent 
external validation set (oxford cohort) providing a direct 
assessment of generalisability. A standard error of the 
mean however is provided across these thresholds on the 
visual ROC plots for error estimation. To statistically test 
for differences in performance between classifier algo-
rithms, AUCs were also generated over 1000 bootstraps 
(models were trained on the bootstrapped sample and 
tested on the out-of-bag cases). Mean, standard deviation, 
range and 95% confidence intervals are provided for the 
bootstrapped model AUCs. Differences in performance 
between algorithms were analysed using the Kruskal– 
Wallis test coupled with the Pairwise Wilcoxon Rank 
Sum Test where appropriate (p values were adjusted 
using the Benjamini-Hochberg correction, (p < 0.05 was 
deemed significant)).

Survival forests were internally validated using 
bootstrapped resampling (1000 forests, ntree = 1000 per 
forest) with hyperparameter tuning via the Tune () 
function. Mean-model performance was assessed pri-
marily on calibration, while additional metrics: Predic-
tion error and Continuous Rank Probability Score 
(CRPS) are also provided.

Calibration curves were plotted both by quintile 
(based on survival probability at a single time point), 
and by event-probability at 3,6, and 12 months (“pec” 
package). Quintile-based survival curves were derived 
from mean test-set predictions averaged at each time 
point across all bootstrapped models and plotted 
against the corresponding Kaplan Meier (observed) 
survival probability. Cases were stratified into quintiles 
based on predicted 1-year survival using the RSF model 
with Q1 being highest risk (0–20% predicted survival) 
versus Q5 being lowest risk of death at 1-year (80–100% 
predicted survival). The predicted survival over 5 years 
is then plotted for each subgroup (the x-axis) as 5-year 
survival is a standard survival metric within oncology.

This approach is again based on Rahman et al. 3 

Quintile-based plots provide evaluation of the model 
when patients are stratified by risk at a single defined 
time-point, while calibration plotted at sequential time-
points allow for comparison of predictions across the 
cohort at multiple timepoints. This combined approach 
offers clearer insight into the optimal operating window 
for the model longitudinally and by patient-risk. 

Prediction error was defined as 1- Concordance. 4 

Here, concordance is the percentage of observation-
pairs where the probability of a true event is greater 
than a true non-event (a perfect model error rate = 0). 5 

Error rate was extracted for each bootstrapped model 
and averaged.

The Continuous Rank Probability Score (CRPS), 
(defined as Integrated Brier Score divided by time) is 
another measure of prediction calibration and derived from 
the Brier score (mean squared difference between predicted 
probability and observed probability 6 ). In this study it was 
averaged across all bootstrapped models. 4 A perfect model 
scores 0 and a perfectly inaccurate model scores 1.

Model fairness was not a primary outcome in this 
study however the impact of age on OC treatment 
allocation has been previously investigated. 27

Responsible co-design
To ensure the applicability and real-world utility of the 
CDSS we pursued an RRI program in parallel to the 
CDSS development. Heartburn Cancer UK, a leading 
charity for oesophageal cancer provided PPI, offering 
insight into the patient experience. Our approach 
involved early engagement with clinicians and computer 
scientists to ensure the tool was clinically relevant, tech-
nically sound and user-friendly. Regular RRI workshops 
were combined with semi-structured interviews using 
MDT domain experts. These are detailed within the Co-
Design section of the Supplementary Methods.

User Interface
Using insights from our RRI program, we developed a 
high-fidelity prototype of the User interface (UI) using 
the “Shiny” R package. Trained models were uploaded 
with their performance metrics, Receiver Operator 
Characteristic (ROC) curves and a short educational 
summary of the performance metrics. The Palliative 
Survival model is presented using treatment-specific 
survival curves for the recommended palliative 
pathway and a user-selectable alternative pathway to 
provide a visual comparison of the potential prognoses. 
For classifier models, a Local Interpretable Model-
Agnostic Explanation (LIME, “LIME package”) was in-
tegrated to provide prediction explanations in real-time. 
LIME was used within the prototype UI as the package 
currently supports a diverse array of ML models 
through the “caret” package.
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Role of the funding source
The funding sources were not involved in study design, 
data collection, analysis, interpretation of data or 
writing of this manuscript.

Results
Cohort demographics
A total of 1047 eligible UHS cases were identified of 
which 94 were excluded for endoscopic resection, 
leaving 953 cases for training the initial model. Within 
the palliative sub-group (N = 439), two were excluded 
from the palliative-specific models as they were 
assigned a non-standard chemoradiotherapy regimen. 
As the initial model does not need to provide a specific 
palliative treatment however, they were eligible for in-
clusion within the primary model to maximise training 
data.

Within the validation cohort, a total of 978 eligible 
cases were identified and provided by OUH of which 
475 palliative cases were identified for validation the 
palliative models. The Training Cohort (UHS) and the 
Validation cohort (OUH) are outlined in Table 1. 
Detailed demographic breakdown by outcome class is 
provided in Supplemental Table S1 while palliative 
cohort demographics are provided in Supplemental 
Table S2.

The two cohorts differed in composition across 
several variables including age, performance status, cT 
and cN stage, tumour location, and incidence of chronic 
pulmonary disease, peripheral vascular disease and 
cerebrovascular disease (Supplemental Table S3). In 
summary the OUH cohort presented a typically 
younger, physically more active cohort despite a higher 
incidence of pulmonary and vascular disease. The dis-
tribution of biological gender, cM staging at presenta-
tion, tumour histology and incidence of the remaining 
co-morbidities were consistent in both cohorts.

CDSS model performance
Primary treatment model classification performance
Performance of the primary treatment classifiers were 
first tested internally on 5-fold cross validation and then 
externally on the OUH cohort to confirm generalisability. 
All three algorithms exhibited strong classification

performance within the primary model. The XGB model 
performed best on internal cross-validation with a mean 
AUC of 0.909 ± 0.044 while the MLR model generalised 
best with a validation set performance of 0.894 ± 0.056. 
Mean balanced accuracy calculated for MLR, RF and XGB 
algorithms were 0.780 ± 0.008, 0.752 ± 0.019 and 
0.781 ± 0.009 respectively (Table 2, Fig. 1). Over 1000 
bootstraps, MLR and RF performed statistically better 
than XGB (Supplemental Tables S4 and S5) however the 
differences in mean performance remained modest. 
Performance was also assessed on an internally validated 
UHS model which incorporated endoscopic resection 
(Supplemental Figure S1, Supplemental Table S6).

Palliative classifier performance
Palliative classifier performance was then assessed in a 
similar manner. All algorithms performed well in classi-
fying palliative treatment (Table 3). The XGB algorithm 
offered the best performance on both the UHS and OUH 
datasets. Balanced accuracy for MLR, RF and XGB were 
0.689 ± 0.018, 0.683 ± 0.028, 0.690 ± 0.013 respectively 
(Table 3, Fig. 2). Over 1000 bootstraps, XGB again per-
formed statistically best (Supplemental Tables S7 and S8).

Palliative survival model performance
Palliative survival in both cohorts demonstrated signifi-
cant survival differences between treatments (Fig. 3). 
Best median survival was associated with palliative 
chemotherapy in each cohort (UHS: median 11.1 
months (95% CI 9.7–12.2), OUH 11.2 months (9.9– 
12.9)) followed by radiotherapy and stent ± oncological 
adjunct. However, while the stent only group survived 
longer in the UHS cohort, they experienced poorer out-
comes relative to the BSC group within the OUH cohort. 
Supplemental Table S9 details median survival for both 
cohorts by treatment.

The final random survival forest model, trained on 
the full cohort after internal validation, demonstrated a 
prediction error of 0.331 and a CRPS of 0.077. On in-
ternal validation over 1000 bootstrapped models, mean 
prediction error was 0.334 ± 0.018 while mean CRPS 
was 0.112 ± 0.020. This was consistent with the vali-
dation cohort (Table 4).

Calibration curves were stratified by 1-year survival 
quintiles (Fig. 4) as well as by whole-cohort survival at

UHS model UHS (N = 953) OUH (N = 978) “Chemo” “CRT” “Surgery” “Palliative” Mean (±SD)

MLR UHS test set 0.893 0.868 0.884 0.976 0.905 ± 0.048
OUH validation set 0.895 0.815 0.924 0.943 0.894 ± 0.056

XGB UHS test set 0.897 0.873 0.892 0.979 0.909 ± 0.044
OUH validation set 0.894 0.835 0.849 0.970 0.887 ± 0.061

RF UHS test set 0.872 0.835 0.847 0.978 0.883 ± 0.065
OUH validation set 0.890 0.835 0.865 0.973 0.891 ± 0.059

Best performance for each class within the UHS training and OUH validation sets is highlighted in bold.

Table 2: Mean classification performance AUCs for the UHS test set versus OUH validation set.
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sequential time points where calibration was best 
within the first 12 months (Fig. 5). Quintile-based 
analysis indicated calibration was best for the three 
highest-risk quintiles (Q1-3). Model predictions were 
pessimistic for Q4 patients but over-optimistic by Q5.

OUH models
To determine if the modelling process remained robust 
when applied to a non-UHS cohort the same algorithms 
were again trained using OUH as the training centre and 
tested on the UHS cohort as the external validation

Fig. 1: Mean cross-validated ROC curves for each classifier algorithm (UHS cohort on left, OUH validation cohort right). Shaded areas represent 
±1× Standard error from the Mean.
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centre. XGB models again performed best on both in-
ternal and external validation across treatment classifiers 
(Supplemental Tables S10 and S11). Similarly, a survival 
model trained on the OUH cohort demonstrated good 
calibration within the first 12 months after which pre-
dictive performance dropped away (Supplemental 
Figure S3, Supplemental Table S12).

Co-design insights
The co-design RRI program was set up to provide 
guiding insights into user-needs and concerns when 
implementing a clinical CDSS. This was stimulated 
by discussing prompts from the RRI card deck 
(Supplemental Figure S4) in combination with insights 
drawn from our clinician interviews (Interview ques-
tions provided in Supplemental materials) and RRI 
workshops. It highlighted several key challenges and 
considerations which were factored when developing 
the CDSS. Themes identified included: bias within the 
models, data drift, unintended inequalities of access, as 
well as safety and accuracy from a regulatory perspec-
tive. The RRI process recognised the impact CDSSs 
may have on clinical training for junior clinicians as 
MDTs are traditionally a source of experiential learning 
along with a need for education in AI literacy. 
Explainability proved a recurring theme along with the 
potential ramifications of group AI interactions where 
multiple human actors are interacting dynamically with 
the AI. This in turn prompted considerations over 
where the ultimate decision-making responsibility lies 
when a CDSS is supporting high-risk decision-making 
within healthcare. The themes identified through the 
RRI process are detailed in Tables 5 and 6 along with 
adjustments we gradually introduced into the tool to 
address these where possible.

User interface
To generate a User Interface that could be implemented 
clinically, we compartmentalised user interactions into 
three main areas using the R Shiny platform. No sig-
nificant prior training is needed to allow users to 
generate an output, with walk-through tutorials built 
into the main interface and continued across each page

of the tool. Users are simply required to select their 
preferred pre-loaded model and the clinical input data. 

Patient variables are inputted for the primary treat-
ment model in the first instance where an instant 
recommendation is then provided along with predicted 
probabilities for all potential outcomes to illustrate how 
confident the final recommendation is (Fig. 6). LIME 
explanations are also given for the final prediction.

If the outcome is “Palliative”, the UI automatically 
carries the inputs across to the palliative treatment 
classifier (Fig. 7). As with the primary model, a LIME 
explanation is available for the user along with perfor-
mance metrics for whichever model was loaded (RF, 
MLR, or XGB).

For palliative treatments, the associated predicted 
survival curve is then automatically generated along 
with an option to compare survival with an alternative 
pathway. In the example illustrated in Fig. 8, the orig-
inal recommendation was for palliative chemotherapy 
which was then compared to palliative radiotherapy. 
The survival curves effectively personalise to the level of 
the treating hospital from which the training data was 
derived.

Discussion
We present the first externally validated ML CDSS co-
designed using RRI principles, capable of predicting 
OC MDT treatment decisions early within the cancer 
pathway. The sequential modelling approach quickly 
predicts a new patient’s probable treatment plan which 
if palliative, is accurately prognosticated within the first 
12 months post-diagnosis. All algorithms performed 
well; however, our results particularly favour MLR and 
XGB models, with mean AUCs above 0.87 for the pri-
mary classifier, and above 0.711 in the palliative clas-
sifier. The RSF model performed well within the first 12 
months on calibration curve analysis and CRPS scores. 
Furthermore, the models have shown they generalise 
even when faced with differing cohort demographics. 
This suggests that for predictions at an instance-level, 
the ML models appear to handle perturbations in de-
mographics at the feature-level. The use of a parallel

UHS model UHS (N = 437) OUH (N = 475) “Chemo” “BSC” “RTX” “Stent” “Stent_Onc” Mean

MLR UHS 0.909 0.690 0.730 0.889 0.805 0.805 ± 0.096
OUH Validation 0.780 0.746 0.697 0.687 0.645 0.711 ± 0.053

XGB UHS 0.909 0.737 0.746 0.892 0.790 0.815 ± 0.081
OUH Validation 0.817 0.794 0.734 0.704 0.662 0.742 ± 0.064

RF UHS 0.881 0.713 0.712 0.875 0.782 0.793 ± 0.083
OUH Validation 0.821 0.784 0.739 0.670 0.636 0.730 ± 0.077

Best performance for each class are in bold.

Table 3: Mean palliative treatment classification performance AUCs for the UHS test set versus OUH validation set.
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RRI program ensured that the design of the AI CDSS 
has considered stakeholders and integrated their input. 
Early collaboration with a diverse skill-mix and open-
format workshops have produced a CDSS with imme-
diate clinical translational potential.

The primary treatment classifier models performed 
consistently well in discriminating palliative pathway

patients across algorithms. This is primarily driven by 
the large palliative subgroup within the training pro-
cess, a largely binary influence of cM staging and the 
additional input of high PS score patients. Across al-
gorithms the models predict the curative pathways 
evenly however within the validation cohort (OUH) the 
CRT class demonstrates lower predictive performance.

Fig. 2: Mean cross-validated ROC curves for each palliative classifier algorithm (UHS cohort on left, OUH validation cohort right). Shaded areas 
represent ±1× Standard error from the Mean.

Articles

10 www.thelancet.com Vol 89 November, 2025

http://www.thelancet.com


Fig. 3: Kaplan Meier survival plots for the UHS cohort (a) and OUH cohort (b).
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This is attributable to the relatively high use of CRT at 
UHS versus the OUH unit which favours neoadjuvant 
chemotherapy preferentially outside of squamous cell 
cancers. Until recently, chemotherapy and CRT have 
been equally acceptable options however early ESOPEC 
trial results now suggest chemotherapy may be the 
long-term front runner in these non-SCC cases. 28 

Where misclassifications occur this discordance be-
tween units favouring chemotherapy versus chemo-
radiotherapy is likely to be the main source. It is also 
important to recognise the differential in performance 
between the full primary classifier, which is trained off 
the full cohort, versus the palliative models which are 
only trainable on the palliative sub-group comprising 
approximately 50% of the training cohort. Classes such 
as palliative radiotherapy and best supportive care are 
innately harder to predict early on (radiotherapy is most 
commonly utilised for symptom control (dysphagia, 
pain, bleeding)) while chemotherapy is most prevalent 
as it provides disease control. BSC is determined on a 
combination of disease stage, physiological reserve and 
most importantly, patient wishes (the latter typically 
only determined after the MDT meeting when patients 
are seen in clinic).

The findings of this study continue to support the 
role of ML in oncological MDT decision-making, even 
early within the care pathway. The preserved perfor-
mance on external validation indicates that overfitting 
remains modest. The optimal use of the palliative sur-
vival model was localised within the first 12 months 
post-diagnosis, in keeping with the expected survival for 
this cohort on current best therapy. 29 As median sur-
vival was 6 months across the entire palliative cohort, 
and maximally 11 months with best palliative onco-
logical therapy (chemotherapy) we have to acknowledge 
that predictions beyond the 1-year mark will not be 
reliable and return to best clinical judgement for those 
few who survive beyond this time point. As core man-
agement of OC is well established within national 
guidelines, ML lends itself to modelling the UK, 
decision-making framework, however this principle 
should in theory translate internationally as well. 22,30 

Where model performance drops between the cohorts 
this likely reflects idiosyncrasies specific to individual 
centres, an observation previously made in Denmark. 6 

There is a clear and urgent need to support MDT 
workflow. With 60% of new discussions likely to end in

palliative treatment plans, rapidly predicting, and pri-
oritising caseload is of clear clinical and financial 
benefit. When developed and implemented correctly 
they also have the capability to improve patient safety. 31 

Yet while AI-based CDSSs offer much to the healthcare 
sector, there remains a translational gap. 32 This is 
multifactorial in nature but partly attributable to a sense 
of clinician superiority especially when handling 
nuance and uncertainty, or a lack of clinical validation. 33 

Furthermore, as the current boom in healthcare AI 
continues, the need for more responsible, co-designed 
and explainable AI (XAI) approaches are increasingly 
paramount. 19 This study addresses this by establishing 
external validity of our clinical models combined with a 
co-designed user interface. Algorithms were chosen as 
either inherently interpretable (MLR) or amenable to 
both global and local XAI techniques.

The RRI program delineated potential challenges 
and barriers to the use of AI based CDSSs in clinical 
settings, including data bias, data governance, data 
drift, regulatory concerns over the role of the human-in-
the-loop, and the foundations of legal and clinical re-
sponsibility. 34,35 The new EU AI Act unsurprisingly 
classifies MAI into the “high-risk” category especially 
when the impact of new technologies may still be 
emerging far downstream of their first deployment 
(The “Collingridge” Dilemma). 36,37

Our study employed one of the largest patient co-
horts within the literature, providing robust internal 
and external validation of our models which span 
curative and palliative pathways. The algorithms are off-
the-shelf libraries, ensuring that scalability of imple-
mentation is not reliant on high-performance 
computing clusters, something the current NHS digi-
tal infrastructure cannot offer evenly across the UK. 
The integrated RRI program was designed to act in the 
best interests of patients and clinicians. Including 
stakeholders early we have developed a highly func-
tional CDSS which can be rationalised on a user-
specific basis. The UI allows clinicians to counsel 
patients while insights derived from the program also 
allow development of future iterations of the CDSS. 
Consequently, the present study presents the first, 
cohesive, responsibly derived ML solution to assist OC 
MDT workflow needs which has not been provided 
previously within the literature. This is also the first 
study to externally validate OC treatment allocation

Metric Cohort Score Reference Interpretation

Prediction error (1-Concordance) UHS model 0.334 ± 0.017 0 = perfect concordance
1 = perfect non-concordance

Fair
OUH validation set 0.354 Fair

CRPS (Integrated Brier Score/time) UHS model 0.112 ± 0.020 0 = perfectly accurate model
1 = perfectly inaccurate model

Very Good
OUH validation set 0.093 Very Good

Table 4: Survival model performance metrics for UHS and OUH cohorts with an interpretation of the performance metric provided.
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Fig. 4: Quintile Calibration curves plotted with standard error over 60 months. Quintile cases are stratified based on predicted 1-year survival 
probability as determined by the RSF model (Quintile 1 = 0–20% (a), Quintile 2 = 20–40% (b), Quintile 3 = 40–60% (c), Quintile 4 = 60–80% 
(d), Quintile 5 = 80–100%).
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Fig. 5: Calibration plots for the UHS cohort (left) and OUH validation cohort (right) at 3,6,9 and 12 months post-diagnosis.
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Clinicians’ understanding of AI and its role in healthcare Perceived potential benefits of AI in multidisciplinary 
teams (MDTs)

Barriers to the adoption and trust of AI in healthcare

Theme 1: Conceptual Understanding and Knowledge 
Variability
The interviews revealed a significant variability in clinicians’ 
understanding of artificial intelligence (AI) and machine 
learning (ML). Some clinicians demonstrated a deep 
understanding of these technologies, recognizing their 
potential and limitations, while others exhibited a more 
superficial or unclear perception. This disparity in 
understanding is likely to influence how different clinicians 
interact with and trust AI tools. As one clinician noted,
“Some of us see AI as just algorithms, but the deeper 
layers are often misunderstood.” This variability suggests 
the need for targeted educational initiatives to ensure that 
all clinicians have a sufficient grasp of AI concepts.

Theme 1: Improved Diagnostic Accuracy
Clinicians widely recognized AI’s potential to improve 
diagnostic accuracy, particularly by analysing large datasets 
and identifying subtle patterns that may be overlooked by 
human clinicians. This capability was seen as a significant 
advantage, especially in the context of complex diseases 
like oesophageal cancer. “AI can help us catch things we 
might otherwise miss in diagnostics,” one clinician 
stated, highlighting the perceived value of AI in enhancing 
diagnostic precision.
Our Response: We have ensured the tool’s models have 
been internally and externally validated on a large training 
cohort

Theme 1: Concerns About Bias and Accuracy
A significant barrier to the adoption of AI tools identified by 
clinicians was the concern about bias in AI algorithms and 
the accuracy of AI decisions. Clinicians expressed worry that 
AI could perpetuate or even exacerbate existing biases in 
healthcare, leading to unfair treatment decisions. One 
clinician emphasized, “Bias in AI is a serious concern, 
especially if it leads to unfair treatment decisions,” 
reflecting a common apprehension about the ethical 
implications of AI in healthcare.
Our Response: We have identified and acknowledged the 
possibility of bias. The tool provides a detailed breakdown 
of the training cohort for user inspection. Future iterations 
will also include warning messages where specific clinical 
inputs represent cases with few data points e.g. 
“dementia = Y”

Theme 2: AI as an Extension of Data Analytics
Several clinicians perceived AI as a powerful extension of 
traditional data analytics, capable of processing larger 
datasets and uncovering patterns that might escape 
conventional methods. This perception ties AI closely to 
evidence-based practice, where it is seen as enhancing the 
clinician’s ability to make data-driven decisions. One 
clinician remarked, “AI is like data analytics on steroids; it
can handle much larger datasets and pick up on trends 
we might miss.”

Theme 2: Workload Reduction and Efficiency
Another major benefit identified was AI’s potential to 
reduce clinicians’ workload by automating routine tasks. 
This could allow clinicians to focus more on complex cases 
and patient interactions, thus improving overall efficiency 
in the healthcare setting. One clinician commented, “AI 
could free us from repetitive tasks, giving us more time 
to focus on patients,” emphasizing the role of AI in 
enhancing productivity.
Our Response: We have integrated the ability to upload a 
list of patients simultaneously and provide a generate 
report of predictions for each patient in real time. This will 
allow use of the tool between MDT meetings too

Theme 2: Transparency and Explainability
The need for transparency and explainability in AI decision-
making processes was another critical barrier. Clinicians 
expressed a strong desire to understand how AI reaches its 
conclusions to trust and use these tools effectively. “I need 
to know how AI makes its decisions before I can trust it,” 
one clinician explained, underscoring the importance of AI 
interpretability in clinical practice.
Our Response: The tool provides a detailed breakdown of 
the training cohort for user inspection; it also provides 
detailed performance metrics of the current models. We 
have integrated a LIME explanation plot that reactively 
updates in real time with user inputs to give a specific 
explanation at an instance level.

Theme 3: Mystification and Misconceptions
The interviews also revealed that some clinicians hold 
misconceptions about AI, viewing it either as an almost 
omniscient entity or as an unreliable tool. This mystification 
of AI can lead to polarized views—some clinicians might 
place undue reliance on AI, while others might harbour 
unwarranted scepticism. As one participant explained, 
“Some think AI is this magical tool that can do anything, 
while others don’t trust it to do anything right.” These 
misconceptions underscore the importance of clear 
communication about what AI can and cannot do in clinical 
settings.
Our Response: We recognise that there remains an ongoing 
knowledge gap for Clinicians in the MAI sphere. While this is 
an evolving field, we have sought to assist the AI-lay 
clinician using the tool by providing a section which 
outlines some key metrics and a guide of their 
interpretation to allow them to critically appraise our model 
performance.

Theme 3: Enhanced Decision Support
Clinicians also saw AI as a valuable tool for enhancing 
decision support, particularly in complex cases where 
multiple variables need to be considered. The ability of AI 
to process and analyse data rapidly was viewed as a way to 
formulate more comprehensive and informed treatment 
plans. “AI could be a valuable assistant in making 
decisions in complicated cases,” one clinician noted, 
underscoring the potential for AI to augment clinical 
decision-making.

Theme 3: Impact on Clinical Autonomy
Concerns were also raised about the potential impact of AI 
on clinical autonomy. Clinicians worried that an over-
reliance on AI might diminish the role of human judgment 
in decision-making, leading to a reduction in their 
autonomy. As one clinician put it, “I’m worried that AI 
might take away our decision-making power, making us 
too dependent on it,” reflecting a fear of losing control 
over clinical decisions.
Our Response: We recognise this is a valid risk of 
automating a clinical decision-making framework like the 
MDT. Where the tool generates reports for a group of
patients at once, it orders them in order of confidence in 
the recommendation. A traffic light system then signposts 
clinicians to cases of low confidence where the human is 
required to assess and recommend. This keeps the human 
central to the process for discussing those most difficult 
cases first and sense-checking high-confidence cases 
thereafter.

Theme 4: Personalized Medicine
The potential of AI to advance personalized medicine was 
another recognized benefit. Clinicians appreciated AI’s 
ability to tailor treatments based on individual patient data, 
which could lead to better outcomes. “With AI, we could 
move closer to truly personalized medicine, where 
treatments are tailored to the individual,” one 
participant remarked, highlighting the transformative 
potential of AI in this area.

Theme 4: Legal and Liability Concerns
Legal and liability concerns were also prominent among 
clinicians. They were unsure who would be held accountable 
if an AI tool made a mistake—whether the responsibility 
would fall on the clinician using the tool or the developer 
who created it. “Who’s responsible if AI makes a mistake? 
This is a big question to ask,” one clinician stated, 
highlighting the legal uncertainties surrounding AI 
adoption.
Our Response: We acknowledged the implications from a 
ethicolegal perspective and have included a disclaimer 
message at first use which explains clearly that 
responsibility of the decision remains with the human as it 
is a decision-support tool. This will remain the case even if 
certification as a medical device is

(Table 5 continues on next page)
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models building on our previous efforts to integrate 
explainability within the process. 13,25,27,38 Importantly, 
while previous studies have highlighted the utility of 
ML in other conditions, 11,12,18,39 yet there often lacks a 
clear roadmap to guide the transition from technical 
demonstration to active clinical application. Here we 
have sought to provide a working tool that can be 
deployed online quickly and used by clinicians not 
specifically trained in ML.

One limitation was that the endoscopic manage-
ment of early cancers had to be excluded from the 
validation analysis as we could not ensure a consistent 
selection criteria within the external cohort. Many cases

are identified through Barrett’s surveillance programs, 
and their care is not necessarily initiated by the MDT in 
the first instance making consistency of case presenta-
tion difficult. Additionally, we could not include novel 
molecular markers or immunotherapies within this 
generation of models as insufficient training data was 
available. Future iterations will support an expanding 
array of systemic treatments such as 
Chemotherapy ± anti HER2, anti-PD-1/PD-L1, Claudin 
18.2, and immunotherapies for MMR-d/MSI-H 
tumours. 40–42 As a newer cohort of patients emerge 
accruing data in these biomarkers, it is conceivable that 
these cases will be used to train a smaller model on just

Clinicians’ understanding of AI and its role in healthcare Perceived potential benefits of AI in multidisciplinary 
teams (MDTs)

Barriers to the adoption and trust of AI in healthcare

(Continued from previous page)

Theme 5: Predictive Analytics for Preventive Care
Clinicians acknowledged the potential of AI in predictive 
analytics, particularly for preventive care. AI could be used 
to identify patients at risk of certain conditions, enabling 
early intervention and improving patient outcomes. One 
clinician noted, “AI could help us predict and prevent 
diseases by identifying at-risk patients earlier,” 
indicating the proactive role AI could play in healthcare.

Theme 5: Fear of Losing Skills
Finally, some clinicians expressed a fear that the adoption of 
AI could lead to a loss of skills, particularly in routine 
diagnostic tasks. There was concern that AI might replace 
certain aspects of their work, leading to skill degradation, 
especially among less experienced clinicians. “There’s a fear 
that AI could replace us in certain tasks, which may make 
some juniors lose some important skills,” one participant 
observed, pointing to a potential unintended consequence 
of AI integration.

Table 5: Thematic analysis of domain expert interviews highlighting user expectations, concerns and solutions engineered into the tool in response.

Themes Computer scientists Patient and public involvement

Theme 1: Explainable AI (XAI)
A major focus of the discussion has been on the tool more interpretable, leading to 
developments in explainable AI (XAI). This ensures that models can be understood
and trusted by non-experts. Supporting Code: “We’ve built tools that provide 
explanations for AI decisions, making it easier for users to trust the system.”

Theme 1: Ethical concerns
This includes issues such as data privacy, and fears of AI exacerbating inequality, might 
act as barriers to public acceptance. Supporting Code: “Who controls the data when AI 
is involved? This is my biggest concern.”
Our response: By working symbiotically with the local hospital who provides the 
clinical data we also ensure it is stringently protected, anonymised as soon as possible 
and quality checked by the clinicians within the team. The presence of clinicians 
within the research team also ensure that the patient is the priority even with data 
storage and collection.

Theme 2: Visualizations and Diagnostic Tools
Tools like saliency maps, LIME, SHAP, and attention visualization have been discussed 
to provide insights into why AI models make specific decisions. Supporting Code: “By
visualizing how models interpret inputs, we make AI decisions clearer and more 
understandable to end users.”

Theme 2: Complexity and lack of understanding
This may prevent the general public from engaging fully with AI tools. Supporting 
Code: “People think AI is too complicated to understand, so I think they may feel 
uncomfortable using it.”
Our response: We have incorporated a section which briefly outlines some of the 
technical information in more accessible terms. While this UI is designed to be used 
primarily with clinicians the principle also extends to patients being shown the UI 
outputs and hopes to enhance Ai literacy for patients and clinicians alike

Theme 3: Techniques for Bias Detection and Reduction
Computer scientists have also suggested ways of identifying and reducing biases in AI 
models, particularly in sensitive areas like healthcare. Techniques such as fairness 
constraints and debiasing were examples. Supporting Code: “We may incorporate 
fairness constraints into the training process to mitigate biases against 
underrepresented groups.”
Theme 4: Creating Diverse Datasets
Recognizing that biases often stem from the data itself, there has been a push toward 
creating and curating more diverse datasets that better reflect the population. 
Supporting Code: “We may need to think of other datasets to ensure AI systems 
perform fairly across all demographics.”

Table 6: Thematic analysis of RRI workshop outlining additional themes extracted on user expectations, concerns along with solutions engineered into the tool in response 
where relevant.
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those features, the predicted probabilities of which may 
then be fed into a larger model leveraging the main 
cohort for whom those biomarkers may not have played

a part in their treatment, reconciling the separate 
training datasets. Similarly, the recently reported ESO-
PEC trial may narrow down indications for NACRT,

Fig. 6: Primary Model interface and input screen.

Fig. 7: Palliative model recommendation and associated LIME explanation.
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and future iterations will readily adapt to such trial 
outputs. 28 While early curative cohort prognostication 
would be desirable (ideally prior to treatment initiation), 
the temporal effect of two separate major interventions 
(neoadjuvant therapy and subsequent surgery) make it 
extremely challenging in a single static model without 
post-operative inputs. 14 It is also important to note that 
much of the data fed to MDTs may be recorded by non-
clinical personnel or those of varying oncological 
experience especially in evaluating PS scores for pa-
tients. By way of example, while the OUH cohort may 
represent a fitter cohort, it is equally conceivable that 
less fit patients were either screened out pre-MDT in 
this unit or assigned lower PS scores erroneously. This 
also extends to data input as a whole, where prediction 
quality is inextricably linked to the quality of this input. 
While algorithms such as RF and XGB are capable of 
handling missing data, the user interface is designed to 
ensure all fields are completed. Fields set to a default 
and if left un-touched will still allow a prediction to be 
generated, however, it sits with the end-user to ensure 
that final inputs are correct else the prediction quality 
may be affected. Model fairness is not directly 
addressed within the scope of this study. Within the 
feature set only gender and age are protected charac-
teristics, the latter of which we have previously inves-
tigated. 27 However, it necessary to recognise that 
advanced age carries risk and clinician experience may 
easily be confused for bias in this context. 43 Gender 
remains vulnerable to bias in OC too, which is

historically a male-centred condition. 44 Assessing model 
fairness regarding gender however requires assessing 
the equitability of the predicted outcomes which was 
beyond the scope of this study and evaluating long-term 
fairness of models will require more clarity in the 
definition of “equity” within OC treatment allocation. 
Finally, we have consciously chosen to map the current 
MDT versus an attempt to model the “best decision”. 
There remains no single, quantifiable metric currently 
agreed within OC to adequately encapsulate the myriad 
outcomes important to OC patients. Survival may not in 
every case be the most salient outcome measure, yet it 
is by far the most prolific in quantifying treatment 
“success” of oncological strategies. It is intended to be a 
springboard towards composite metrics which consider 
quality-of-life, complication rates or even resection 
margin status. Meanwhile, for this technology to 
translate to clinical use, we must first prove capable of 
mapping what “is” while the field attempts to agree 
upon what “should be”.

Future work in this field will look to integrate many of 
the novel markers discussed previously, as well as develop 
additional co-designed patient-only user interfaces. 
Broadening external validation to additional centres will 
further verify the results reported in this study. Trust 
must be established with patients, clinicians and regula-
tors alike, and this study now sets the foundations for 
prospective trials within real-life scenarios to smooth the 
way towards clinical implementation. With the introduc-
tion of the EU AI Act, the regulatory landscape for

Fig. 8: Palliative survival curves specific to recommended or selected treatment plans.
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medical AI continues to shift. Satisfying regulatory hur-
dles moving forward will almost certainly involve risk 
management, data governance, transparency, human 
oversight (and override mechanisms), post-market sur-
veillance, quality management systems and CE marking 
among other considerations. 36 Additional work will also 
be required to test such CDSSs in real-time clinical 
application. This will provide insight into if such a tool 
functions best when used within the MDT meetings or if 
is best utilised between meetings to triage discussions 
and “pre-screen” cases. Finally, an aspect lacking within 
the current literature is investigation into the decision-
making thresholds for human agents faced with AI-
based predictions in clinical settings across a range of 
machine confidence levels—at what confidence level is a 
clinician willing to accept and trust a prediction? And is 
this “line in the sand” equivalent for every use-case, pa-
tient or treatment? This will guide future Medical AI re-
searchers when validating their model performances.

This is the first co-designed externally validated AI-
derived CDSS targeted towards decision-making 
within the MDT cancer pathway for oesophageal can-
cer. It provides an integrated sequence of ML models 
which can reliably predict treatment allocation and 
palliative prognosis both locally and externally. The 
integration of an RRI program is intended to enhance 
user confidence that the CDSS considers individual 
and society risk as well as sources of potential bias 
within its design. Such technologies must contend 
with the standard challenges facing workflow inte-
gration within current digital healthcare in-
frastructures, as well as achieving clinician buy-in, 
especially where such models may adversely impact 
future clinician training. While future work includes 
prospective trials for real-world validation and regula-
tory approvals to address this, these models offer po-
tential for a transformative impact on current MDT 
operations within the UK in OC and is both theoreti-
cally and technically transferrable to other cancer types 
and world regions.
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