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Summary

Background The oesophageal cancer (OC) multi-disciplinary team (MDT) operates under significant pressures,
handling complex decision-making. Machine learning (ML) can learn complex decision-making paradigms to
improve efficiency, consistency, and cost if trained and deployed responsibly. We present an externally validated
ML-based clinical decision support system (CDSS) designed to predict OC MDT treatment decisions and
prognosticate palliative scenarios, co-designed using Responsible Research and Innovation (RRI) principles.

Methods Clinicopathological data collected from 1931 patients between 4th September 2009, and 8th November
2022 were used to test and validate models trained through four ML algorithms to predict curative and palliative
treatment pathways along with palliative prognosis. 953 OC cases treated at University Hospitals Southampton
(UHS) were used to train ML models which were externally validated on 978 OC cases from Oxford University
Hospitals (OUH). Model performance was evaluated using Area Under Curve (AUC) for treatment classifiers and
calibration curves for survival models. A parallel RRI program at the University of Southampton (United Kingdom)
combining clinician interviews and inter-disciplinary workshops was conducted between 16.3.23 and 23.5.24. The
RRI program comprised a group of 17 domain experts comprising programmers, computer scientists, clinicians
and patient representatives to allow end-users to contribute towards the co-design of the CDSS user interface.

Findings Cohorts differed in baseline characteristics, with the external cohort (OUH) being younger, having better
performance status, and a higher prevalence of pulmonary and vascular disease. Despite these differences, on internal
validation (UHS cohort) mean AUCs for the primary treatment model were: MLR 0.905 + 0.048, XGB 0.909 + 0.044
and RF 0.883 + 0.059 (k = 5 cross-validation) and MLR 0.866 (95% CI 0.866—0.867), XGB 0.863 (0.862-0.864), RF 0.863
(0.867-0.868) on bootstrapped resampling. For the palliative classifier, mean AUCs were: MLR 0.805 + 0.096, XGB
0.815 + 0.081 and RF 0.793 + 0.083 (k = 5 cross-validation) and MLR 0.736 (95% CI 0.734-0.737), XGB 0.799
(0.798-0.800), RF 0.781 (0.778-0.782) on bootstrapped resampling. On external validation (OUH cohort), AUCs
were MLR 0.894, XGB 0.887 and RF 0.891 for the primary treatment model and MLR 0.711, XGB 0.742 and RF
0.730 for the palliative treatment classifier. Predicted survival probability from the palliative survival model was well
calibrated over the first 12 months post-diagnosis in both cohorts. The RRI program provided a collaborative
environment leading to valuable modifications to the CDSS including prediction explanations, visual aids for
survival and integrated education for users producing a user-friendly and quick to use tool.

Interpretation We present a novel, responsibly developed, externally validated AI CDSS trained to predict oeso-
phageal cancer MDT decisions. It represents the foundations of a transformative application of ML, personalised,
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consistent and efficient MDT decision-support within OC which aligns to RRI principles.
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Research in context

Evidence before this study

Machine learning (ML) a branch of Artificial Intelligence (Al)
may offers a viable solution towards supporting clinicians
however to date no externally validated models have been
reported within Oesophageal cancer (OC). We searched
PubMed on August 27th, 2025, without date or language
restrictions for publications using the terms “Machine
Learning” AND “Oesophageal cancer” AND “Multidisciplinary
Team” (or “Cancer Board” or “Tumour Board”). We did not
identify any additional studies beyond those previously
published by this research group investigating ML as a means
of predicting treatment assignment at MDT for OC.

Added value of this study

The machine learning algorithms used within this study are
easily accessible, off-the-shelf libraries and compatible within
the current digital healthcare infrastructures of many

Introduction
Oesophageal cancer (OC) is the 7th commonest cause
of cancer death worldwide and is a cancer of unmet
need."” Affected patients commonly present beyond
their late 60s, are nutritionally compromised and often
co-morbid. They require high-quality decision-making
as treatment options have grown in number and
complexity, each carrying significant survival and
quality of life implications.” Cancer multidisciplinary
teams (MDTs), while greatly improving patient out-
comes, face a relentless increase in caseload and clinical
complexity.* They are susceptible to pressured, incon-
sistent and potentially suboptimal decision-making.>®
In 2017, Cancer Research UK evaluated UK MDT
services finding an urgent need for evolution and
adaptation within their operational framework.* Their
report stressed an aging population combined with
expanding treatment options had led to caseload vol-
umes rising linearly with almost no corresponding in-
crease in MDT resources to adapt or cope, a scenario
common to many economies and countries. MDTs had
on average 2-3 min to discuss cases, with no additional
time to audit, reflect or learn from their internal
decision-making. The MDT’s challenges are also
financial: the national cost of MDTs in the United

countries worldwide. The resulting CDSS, which provides
both treatment classification and palliative prognostication
has been externally validated using data from a separate
geographical catchment. Finally, the parallel Responsible
Research and Innovation (RRI) program, has integrated early
input from stakeholders in the development process.

Implications of all the available evidence

Our results suggest that ML can learn and predict MDT
treatment decisions effectively in OC posing significant
implications for future-proofing MDT operations against
continued rises in caseload both within OC as well as other
cancer types. Future iterations can also adapt to novel
molecular markers and treatment modalities. The CDSS here
provides rapid decision support for OC MDT personnel as well
as a platform with which to counsel patients.

Kingdom was estimated at £50 million in 2010, £88
million in 2011/12, approximately £150 million by
2014/2015 and £316 million as of 2024.*”* While this
data is now over a decade out of date, there is nothing to
indicate that the situation has improved in that time
with regards to cost or case discussion time. Further-
more, assuming a starting NHS consultant salary of
approximately £100,000 p.a., a 3-h MDT would cost at
minimum £7500 per consultant present per year (with
a minimum of 4-5 consultants present being typical of
most MDTs). Reducing an MDT by even an hour could
provide a hospital significant savings over a calendar
year.

A process to streamline, prioritize, and ease MDT
caseload is essential within the current economic
climate of many world regions. Artificial intelligence
(AI) has seen a boom in healthcare use-cases in the
form of clinical decision-support systems (CDSS).>"
Machine learning (ML), a branch of Al which lever-
ages advanced computational power to identify patterns
within complex and multimodal data has provided one
such engine for CDSSs and its potential to support OC
management has been recently recognized."** ML has
seen increasing adoption within early detection of
cancer'”" yet while Al platforms have been applied to
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MDT-style frameworks in some medical fields, OC
MDTs have remained untouched in this regard."-'***
Similarly, a paucity of qualitative evidence exists on
the viewpoints of clinicians and patients on the use of
Al CDSSs in OC which creates a knowledge gap when
design such tools for translation. Medical AI (MAI)
necessitates trustworthy, ethical and responsible
innovation.” Where much of the literature has focused
on proving MAI tools, there is a paucity of consider-
ation for their implications on stakeholders from
design-to-deployment.” These include governance,
handling bias, quality control, data drift detection and
AT explainability.” Responsible Research and Innova-
tion (RRI) has developed in recent years to address
this, aiming to maximise societal benefit while mini-
mizing harm.”’ The AREA framework (Anticipation,
Reflection, Engagement and Action) is an example of
this which integrates RRI within the life cycle of
research programs.”!

Within this study we present a novel, responsibly
developed, externally validated Al CDSS trained to
predict oesophageal cancer MDT decisions. The tool
utilizes readily accessible, off-the-shelf ML algorithms
built into a user-friendly interface. The CDSS was co-
designed with Patient & Public Involvement (PPI), cli-
nicians, and computer scientists specialising in Al. By
harnessing Al-based technologies in a bid to replicate
and simulate OC MDT decision-making ML may be
able to offer the potential to streamline, standardize and
increase efficiency within the OC MDT operational
framework in a manner which still aligns with
Responsible AI (RAI) principles.

Methods

This was a mixed-methods study including a retro-
spective complete-case analysis of oesophageal cancer
patients across two tertiary referral centres in the UK
(University Hospital Southampton and Oxford Univer-
sity Hospitals) under the ethical approvals of IRAS
233065 & 319540.

Study cohort

Training cohort

Oesophageal cancer patients discussed at MDT at
University Hospital Southampton (UHS) between
2010 and 2023 were identified from a prospectively
maintained local database and unit submission re-
cords to the UK National Oesophagogastric Audit
(NOGCA). Treatment decisions were based on UK
National Institute for Clinical Excellence (NICE)
guidelines."””* Patients who present with non-
metastatic disease (T0-4, NO-3, MO disease) and fit
(determined by the referring clinician and ratified by
the MDT) for neoadjuvant therapies and/or surgery
are filtered down curative pathways. For those with
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metastatic disease at presentation, or who are non-
metastatic but felt too unfit for curative treatment
are managed with palliative intent which may also be
filtered based on their performance status (PS 0-2
patients for example, are deemed eligible for 1st-line
palliative chemotherapy by NICE).

The mainstay of curative treatment for locally
advanced OC is surgical resection alone (designated
“Surgery”) or surgery combined with neoadjuvant
therapy (NAT) (neoadjuvant chemotherapy (designated
“Chemo”) or neoadjuvant chemoradiotherapy (desig-
nated “CRT”)). While a small proportion of patients
detected early are eligible for endoscopic resection, their
management remains controversial and entry to the
MDT, nuanced meaning they could not be standardized
to allow a fair comparison.” While they were excluded
from the external validation process, the results of a
UHS model incorporating endoscopic resection are
presented separately within the supplementary mate-
rials. Definitive CRT as monotherapy was also excluded
from this study owing to insufficient training data for
meaningful modelling.

In general, non-curative patients are offered one of
five possible outcomes: best supportive care (designated
“BSC”), palliative chemotherapy (designated “Chemo”
within the palliative models), palliative radiotherapy
(designated “RTX”, typically to either the primary
tumour and/or symptomatic secondary sites amenable
to radiotherapy, however for the purposes of this study,
RTX was defined as therapy to the primary tumour),
palliative oesophageal stent alone, or with an oncolog-
ical adjunct (chemotherapy or radiotherapy, and desig-
nated “Stent_Onc”).

Predictor variables for model training were derived
from clinicopathological variables known to be
routinely considered by the MDT. Clinical staging was
assessed on baseline imaging (Computer Tomography
(CT) and/or Positron Emission Tomography (PET)) and
tissue biopsies in accordance with the American Joint
Committee on Cancer (AJCC) Tumour-Node-
Metastasis (TNM) staging system (7th edition until
2017 and 8th edition thereafter). Novel molecular
markers and immunotherapies which have been
approved for metastatic disease in the UK since 2021
were not built into this first generation of models as
these are emerging treatments and consequently there
was insufficient training data for inclusion.

External validation cohort

The validation cohort were identified from a prospectively
maintained clinical database (Cancer Outcomes Database
Application for Upper GI or “CODA-UGI”) at Oxford
University Hospitals (OUH) which was similarly sub-
mitted to NOGCA. The included patients were discussed
at MDT over the same study period and underwent the
same inclusion/exclusion criteria as the training cohort.
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Ethics

This research (including all relevant participant
informed consents) was conducted under the following
ethical approvals; The United Kingdom Heath Research
Authority (HRA) Integrated Research Application Sys-
tems (IRAS) 233,065 & 319,540 as well as under the
approval of the local ethical review board: University of
Southampton Ethics Research & Governance Online
(ERGO) 70,735. Anonymised external validation data
access was granted after review by CODA-UGI data
access committee, and following registration and
approval via the Oxford University Hospitals gover-
nance platform (project no. 8441).

Statistics

Patient sample

Sample size was dictated by the number of retrospec-
tively recorded cases available for analysis at both cen-
tres. As a specific “effect” is not sought here from
comparing treatment outcomes, a sample size calcula-
tion was not relevant to this use case. We set a historical
boundary at 2010 to ensure we balanced maximising
sample size while ensuring treatment paradigms
remained relevant and still in-practice within the
modern era.

Cohort comparison
Differences between the training and validation cohorts
were assessed using Standardised Mean Difference
(SMD). An SMD of 0.2 was deemed a small difference,
0.5 a medium difference and 0.8 a large difference.
Numeric performance metrics where relevant are
presented as mean + standard deviation (SD) and
mean = standard error from the mean (SEM) for thr
5-fold cross-validated models. Where model perfor-
mance has been tested with bootstrapped resampling,
95% confidence intervals have also been provided.

Model comparison

Differences in performance between algorithms were
analysed using the Kruskal-Wallis test coupled with the
Pairwise Wilcoxon Rank Sum Test where appropriate (p
values were adjusted using the Benjamini-Hochberg
correction, (p < 0.05 was deemed significant)).

Machine learning model development

Data preparation and analysis

Data analysis, model training and validation were con-
ducted in R (version 4.2.2) with relevant packages
described where first used (Supplemental Materials).
The features used in this study (Table 1) are derived
from a combination of domain expertise and UK na-
tional guidelines.”? Data was manually checked for
quality control by NT and CP. Data entry was stand-
ardised for analysis using terminology accepted within
the clinical field. As this was a complete analysis, any
missing data was retrospectively extracted from hospital

electronic health records to ensure high-fidelity quality
control. Age and overall survival were treated as
continuous variables, while the remaining covariates
were categorical (Table 1). Three separate decision-
assistance models were developed: a primary classifi-
cation model which triaged patients into either a spe-
cific curative pathway directly or triaged to a secondary,
bespoke, palliative treatment classification model. A
third, survival model was also trained to predict prog-
nosis for a palliative patient from time of diagnosis
when factoring in palliative treatment. Survival analysis
was first undertaken using a Kaplan—-Meier survival
estimator (“survival” package). Median survival was
stratified by treatment with a log-rank test-of-signifi-
cance between curves. Overall survival was defined as
survival from date of diagnosis to date of death or last
recorded follow-up.

Feature selection

The features used in this study are derived from a
combination of domain expertise and UK national
guidelines.”” The features outlined in Table 1 are com-
mon to both the full cohort model and the palliative
models except for the additional “obstructing” variable
within the latter which was defined as either severe
dysphagia to solids and liquids or difficulty passing the
gastroscope at the time of the original diagnostic
gastroscopy (while dysphagia of some degree is a hall-
mark of OC even in curative settings, cases which are
deemed curative at diagnosis have rarely progressed to
a stage where the lesion is causing severe dysphagia or
an inability to pass a gastroscope which is more typi-
cally of palliative cases). The final palliative treatment
allocation was then included as an extra feature within
the palliative survival models. Feature selection was
primarily dictated by the clinical variables routinely
collected at the respective training and validation units
(this was to ensure a pragmatic access to realistically
accessible variables combined with domain knowledge
of variables routinely discussed at MDT. Race, BMI,
smoking status for instance are not routinely discussed
or considered beyond exception circumstance (in situ-
ations of extremely high BMI which may make surgery
more challenging or risky for instance). Similarly, while
the American Society of Anaesthesiology (ASA) grading
system is assessed pre-operatively in all surgical can-
didates, this score is not used in those not undergoing
surgery or those who are palliative. As such their per-
formance status is a more practical variable as it is
considered across treatment pathways.

Machine learning algorithms

The ML algorithms used in this study were chosen for
several reasons: firstly, they allowed us to focus
explainable, accessible and technically realistic ML ar-
chitectures which can be implemented easily within
current healthcare systems. In many world regions

www.thelancet.com Vol 89 November, 2025


http://www.thelancet.com

Articles

(including the UK) these systems are under immense
financial and technological restrictions. Deep learning
platforms were avoided as they are too opaque for this
level of high-stakes decision-making, and too complex
for easy implementation while still allowing regulators
and hospital clinicians ready access to the explainability
of the final decisions. Furthermore, high quality, clean,
clinical data is notoriously difficult to curate at the
scales needed for deep learning platforms which typi-
cally demand thousands if not tens of thousands of data
points for quality learning, making standard architec-
tures which can handle smaller datasets instantly more
favourable. Finally, it is established that within tabular
data structures, ML algorithms such as tree-based
models outperform deep learning architectures when
provided tabular data.” Multinomial Logistic Regres-
sion, Random Forests and eXtreme Gradient Boost
models were trained through “caret” package using
“nnet”, “RandomForest”, and “xgboost” libraries
respectively.” Survival modelling used Random Sur-
vival Forests as these have been shown to outperform
traditional Cox Proportional Hazard models for prog-
nostication in OC patients post-oesophagectomy (ran-
domForestsSRC package).'**

Model training

Classifier models were trained in the “caret” package in
R using the train () (the “method = ” argument was
determined by the base algorithm, “metric” was set to
“logloss” and the “trControl” argument applied). The
trainControl () function was used with “method = cv”. A
5% cross validation was set with the train and test folds
from each indexed for tracking of predictions. The test
fold predictions were then saved and averaged to pro-
vide individual ROC curves for each outcome class with
1x standard error of the mean (the rationale for this is
described in the next section). A manual ROC for each
class was generated over a single Multinomial ROC as
this provided insight into which classes were best or
least confidently discriminated. Additionally, internal
metrics on balanced accuracy were obtained using the
resamples () function (“caret” package) and averaged
across the 5-fold CV models.

The palliative survival model was trained using the
rfsrc () training function (“randomForestSRC” package,
ntree = 1000, “nodesize=" was set based on the tune ()
function (ntreetry = 200)).

Model hyperparameters for all final models will be
provided within the Supplementary Results.

Validation and model performance

Internal validation for the treatment classifier models
was by k = 5-fold cross-validation (“caret” package) to
provide estimated generalizability error averaged across

www.thelancet.com Vol 89 November, 2025

Pre-treatment variables UHS (N = 953) (%) OUH (N = 978) (%) Test SMD
Gender
Male 718 (75.3%) 744 (76.1%) 0.017
Female 235 (24.7%) 234 (23.9%)
Median age in years (Range) 70.0 (21.0-96.7) 68 (29.0-96.0) 0.156
Performance status
0 371 (38.9%) 712 (72.8%) 0.726
1 329 (34.5%) 150 (15.3%)
2 160 (16.8%) 71 (7.3%)
3 88 (9.2%) 43 (4.4%)
4 5 (0.5%) 2 (0.2%)
cT stage
0 4 (0.4%) 0 0.885
Is 3 (0.3%) 0
1 (unspecified) 7 (0.7%) 2 (0.2%)
1a 1 (0.1%) 13 (1.3%)
1b 1 (0.1%) 17 (1.7%)
2 169 (17.7%) 196 (20.0%)
3 557 (58.4%) 503 (51.4%)
4 (unspecified) 134 (14.1%) 7 (0.7%)
4a 37 (3.9%) 138 (14.1%)
4b 15 (1.6%) 72 (7.4%)
X 25 (2.6%) 30 (3.1%)
cN stage
0 254 (26.7%) 313 (32.0%) 0.340
1 437 (45.9%) 310 (31.7%)
2 183 (19.2%) 253 (25.9%)
3 61 (6.4%) 97 (9:9%)
X 18 (1.9%) 5 (0.5%)
cM stage
0 690 (72.4%) 712 (72.8%) 0.047
1 257 (27.0%) 263 (26.9%)
X 6 (0.6%) 3 (0.3%)
Tumour location
Proximal Oesophagus 22 (2.3%) 20 (2.0%) 0.885
Mid oesophagus 102 (10.7%) 176 (18.0%)
Distal Oesophagus 570 (59.8%) 321 (32.8%)
Siewert 1 56 (5.9%) 256 (26.2%)
Siewert 2 124 (13.0%) 205 (21.0%)
Siewert 3 57 (6.0%) 0
Siewert undefined 22 (2.3%) 0
Tissue histology
Adenocarcinoma 749 (78.6%) 780 (79.8%) 0.029
Squamous Cell 204 (21.4%) 198 (20.2%)
Co-morbidities
Chronic pulmonary disease (CPD) 130 (13.6%) 179 (18.3%) 0.128
Peripheral vascular disease (PVD) 43 (4.5%) 23 (2.4%) 0.119
Cerebrovascular disease (CVD) 106 (11.1%) 44 (4.5%) 0.249
Uncomplicated diabetes (DM uncomp) 128 (13.4%) 155 (15.8%) 0.068
Leukaemia 4 (0.4%) 1 (0.1%) 0.062
Lymphoma 11 (1.2%) 13 (1.3%) 0.016
Renal disease 39 (4.1%) 34 (3.5%) 0.032

Standardized Mean Differences (SMD) are provided for the two cohorts. An SMD of 0.2 is considered a small
difference, 0.5 medium and 0.8 or more, a large difference.

Table 1: Demographics for the training cohort (UHS) and validation cohort (OUH).
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test sets in each fold. The final model for each algorithm
was then trained on the full training cohort and tested on
the full OUH validation cohort (external validation).
Classifier models were optimised for log loss during
training and their mean-model performance assessed
primarily on balanced accuracy (accuracy weighted by
class size) and area under the curve (AUC of the Receiver
Operator characteristic (ROC)) for each outcome class
(one versus rest) using default probability thresholds set
by the caret package. As 5-fold cross validation was used
(to optimise a balance between sufficient diversity in the
test folds without reducing training set sample size
unduly) providing 5 sample metrics, 95% confidence
intervals are not provided here as they assume a normal
distribution (c.f. Kwak et al., 2017?) and the law of large
numbers and central limit theorem typically requires at
least 30 samples for this to be testable. Importantly, the
need for estimating generalisability error within the
training set is largely obviated by a truly independent
external validation set (oxford cohort) providing a direct
assessment of generalisability. A standard error of the
mean however is provided across these thresholds on the
visual ROC plots for error estimation. To statistically test
for differences in performance between classifier algo-
rithms, AUCs were also generated over 1000 bootstraps
(models were trained on the bootstrapped sample and
tested on the out-of-bag cases). Mean, standard deviation,
range and 95% confidence intervals are provided for the
bootstrapped model AUCs. Differences in performance
between algorithms were analysed using the Kruskal-
Wallis test coupled with the Pairwise Wilcoxon Rank
Sum Test where appropriate (p values were adjusted
using the Benjamini-Hochberg correction, (p < 0.05 was
deemed significant)).

Survival forests were internally validated using
bootstrapped resampling (1000 forests, ntree = 1000 per
forest) with hyperparameter tuning via the Tune ()
function. Mean-model performance was assessed pri-
marily on calibration, while additional metrics: Predic-
tion error and Continuous Rank Probability Score
(CRPS) are also provided.

Calibration curves were plotted both by quintile
(based on survival probability at a single time point),
and by event-probability at 3,6, and 12 months (“pec”
package). Quintile-based survival curves were derived
from mean test-set predictions averaged at each time
point across all bootstrapped models and plotted
against the corresponding Kaplan Meier (observed)
survival probability. Cases were stratified into quintiles
based on predicted 1-year survival using the RSF model
with Q1 being highest risk (0-20% predicted survival)
versus Q5 being lowest risk of death at 1-year (80-100%
predicted survival). The predicted survival over 5 years
is then plotted for each subgroup (the x-axis) as 5-year
survival is a standard survival metric within oncology.

This approach is again based on Rahman et al’
Quintile-based plots provide evaluation of the model
when patients are stratified by risk at a single defined
time-point, while calibration plotted at sequential time-
points allow for comparison of predictions across the
cohort at multiple timepoints. This combined approach
offers clearer insight into the optimal operating window
for the model longitudinally and by patient-risk.

Prediction error was defined as 1- Concordance.”
Here, concordance is the percentage of observation-
pairs where the probability of a true event is greater
than a true non-event (a perfect model error rate = 0).°
Error rate was extracted for each bootstrapped model
and averaged.

The Continuous Rank Probability Score (CRPS),
(defined as Integrated Brier Score divided by time) is
another measure of prediction calibration and derived from
the Brier score (mean squared difference between predicted
probability and observed probability’). In this study it was
averaged across all bootstrapped models.* A perfect model
scores 0 and a perfectly inaccurate model scores 1.

Model fairness was not a primary outcome in this
study however the impact of age on OC treatment
allocation has been previously investigated.”

Responsible co-design

To ensure the applicability and real-world utility of the
CDSS we pursued an RRI program in parallel to the
CDSS development. Heartburn Cancer UK, a leading
charity for oesophageal cancer provided PPI, offering
insight into the patient experience. Our approach
involved early engagement with clinicians and computer
scientists to ensure the tool was clinically relevant, tech-
nically sound and user-friendly. Regular RRI workshops
were combined with semi-structured interviews using
MDT domain experts. These are detailed within the Co-
Design section of the Supplementary Methods.

User Interface

Using insights from our RRI program, we developed a
high-fidelity prototype of the User interface (UI) using
the “Shiny” R package. Trained models were uploaded
with their performance metrics, Receiver Operator
Characteristic (ROC) curves and a short educational
summary of the performance metrics. The Palliative
Survival model is presented using treatment-specific
survival curves for the recommended palliative
pathway and a user-selectable alternative pathway to
provide a visual comparison of the potential prognoses.
For classifier models, a Local Interpretable Model-
Agnostic Explanation (LIME, “LIME package”) was in-
tegrated to provide prediction explanations in real-time.
LIME was used within the prototype UI as the package
currently supports a diverse array of ML models
through the “caret” package.
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Role of the funding source

The funding sources were not involved in study design,
data collection, analysis, interpretation of data or
writing of this manuscript.

Results

Cohort demographics

A total of 1047 eligible UHS cases were identified of
which 94 were excluded for endoscopic resection,
leaving 953 cases for training the initial model. Within
the palliative sub-group (N = 439), two were excluded
from the palliative-specific models as they were
assigned a non-standard chemoradiotherapy regimen.
As the initial model does not need to provide a specific
palliative treatment however, they were eligible for in-
clusion within the primary model to maximise training
data.

Within the validation cohort, a total of 978 eligible
cases were identified and provided by OUH of which
475 palliative cases were identified for validation the
palliative models. The Training Cohort (UHS) and the
Validation cohort (OUH) are outlined in Table 1.
Detailed demographic breakdown by outcome class is
provided in Supplemental Table S1 while palliative
cohort demographics are provided in Supplemental
Table S2.

The two cohorts differed in composition across
several variables including age, performance status, cT
and cN stage, tumour location, and incidence of chronic
pulmonary disease, peripheral vascular disease and
cerebrovascular disease (Supplemental Table S3). In
summary the OUH cohort presented a typically
younger, physically more active cohort despite a higher
incidence of pulmonary and vascular disease. The dis-
tribution of biological gender, cM staging at presenta-
tion, tumour histology and incidence of the remaining
co-morbidities were consistent in both cohorts.

CDSS model performance

Primary treatment model classification performance
Performance of the primary treatment classifiers were
first tested internally on 5-fold cross validation and then
externally on the OUH cohort to confirm generalisability.
All three algorithms exhibited strong classification

performance within the primary model. The XGB model
performed best on internal cross-validation with a mean
AUC of 0.909 + 0.044 while the MLR model generalised
best with a validation set performance of 0.894 + 0.056.
Mean balanced accuracy calculated for MLR, RF and XGB
algorithms were 0.780 + 0.008, 0.752 + 0.019 and
0.781 + 0.009 respectively (Table 2, Fig. 1). Over 1000
bootstraps, MLR and RF performed statistically better
than XGB (Supplemental Tables S4 and S5) however the
differences in mean performance remained modest.
Performance was also assessed on an internally validated
UHS model which incorporated endoscopic resection
(Supplemental Figure S1, Supplemental Table S6).

Palliative classifier performance

Palliative classifier performance was then assessed in a
similar manner. All algorithms performed well in classi-
fying palliative treatment (Table 3). The XGB algorithm
offered the best performance on both the UHS and OUH
datasets. Balanced accuracy for MLR, RF and XGB were
0.689 + 0.018, 0.683 + 0.028, 0.690 + 0.013 respectively
(Table 3, Fig. 2). Over 1000 bootstraps, XGB again per-
formed statistically best (Supplemental Tables S7 and S8).

Palliative survival model performance

Palliative survival in both cohorts demonstrated signifi-
cant survival differences between treatments (Fig. 3).
Best median survival was associated with palliative
chemotherapy in each cohort (UHS: median 11.1
months (95% CI 9.7-12.2), OUH 11.2 months (9.9-
12.9)) followed by radiotherapy and stent + oncological
adjunct. However, while the stent only group survived
longer in the UHS cohort, they experienced poorer out-
comes relative to the BSC group within the OUH cohort.
Supplemental Table S9 details median survival for both
cohorts by treatment.

The final random survival forest model, trained on
the full cohort after internal validation, demonstrated a
prediction error of 0.331 and a CRPS of 0.077. On in-
ternal validation over 1000 bootstrapped models, mean
prediction error was 0.334 + 0.018 while mean CRPS
was 0.112 + 0.020. This was consistent with the vali-
dation cohort (Table 4).

Calibration curves were stratified by 1-year survival
quintiles (Fig. 4) as well as by whole-cohort survival at

UHS model UHS (N = 953) OUH (N = 978) “Chemo” “CRT" “Surgery” “Palliative” Mean (£SD)
MLR UHS test set 0.893 0.868 0.884 0.976 0.905 + 0.048
OUH validation set 0.895 0.815 0.924 0.943 0.894 + 0.056
XGB UHS test set 0.897 0.873 0.892 0.979 0.909 = 0.044
OUH validation set 0.894 0.835 0.849 0.970 0.887 + 0.061
RF UHS test set 0.872 0.835 0.847 0.978 0.883 + 0.065
OUH validation set 0.890 0.835 0.865 0.973 0.891 + 0.059
Best performance for each class within the UHS training and OUH validation sets is highlighted in bold.
Table 2: Mean classification performance AUCs for the UHS test set versus OUH validation set.
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Fig. 1: Mean cross-validated ROC curves for each classifier algorithm (UHS cohort on left, OUH validation cohort right). Shaded areas represent

+1x Standard error from the Mean.

sequential time points where calibration was best ~ OUH models

within the first 12 months (Fig. 5). Quintile-based
analysis indicated calibration was best for the three

To determine if the modelling process remained robust
when applied to a non-UHS cohort the same algorithms

highest-risk quintiles (Q1-3). Model predictions were  were again trained using OUH as the training centre and
pessimistic for Q4 patients but over-optimistic by Q5. tested on the UHS cohort as the external validation

www.thelancet.com Vol 89 November, 2025


http://www.thelancet.com

Articles

UHS model UHS (N = 437) OUH (N = 475) "“Chemo” “BSC” “RTX” “Stent” “Stent_Onc” Mean
MLR UHS 0.909 0.690 0.730 0.889 0.805 0.805 + 0.096
OUH Validation 0.780 0.746 0.697 0.687 0.645 0.711 + 0.053
XGB UHS 0.909 0.737 0.746 0.892 0.790 0.815 + 0.081
OUH Validation 0.817 0.794 0.734 0.704 0.662 0.742 + 0.064
RF UHS 0.881 0.713 0.712 0.875 0.782 0.793 + 0.083
OUH Validation 0.821 0.784 0.739 0.670 0.636 0.730 + 0.077
Best performance for each class are in bold.
Table 3: Mean palliative treatment classification performance AUCs for the UHS test set versus OUH validation set.

centre. XGB models again performed best on both in-
ternal and external validation across treatment classifiers
(Supplemental Tables S10 and S11). Similarly, a survival
model trained on the OUH cohort demonstrated good
calibration within the first 12 months after which pre-
dictive performance dropped away (Supplemental
Figure S3, Supplemental Table S12).

Co-design insights

The co-design RRI program was set up to provide
guiding insights into user-needs and concerns when
implementing a clinical CDSS. This was stimulated
by discussing prompts from the RRI card deck
(Supplemental Figure S4) in combination with insights
drawn from our clinician interviews (Interview ques-
tions provided in Supplemental materials) and RRI
workshops. It highlighted several key challenges and
considerations which were factored when developing
the CDSS. Themes identified included: bias within the
models, data drift, unintended inequalities of access, as
well as safety and accuracy from a regulatory perspec-
tive. The RRI process recognised the impact CDSSs
may have on clinical training for junior clinicians as
MDTs are traditionally a source of experiential learning
along with a need for education in AI literacy.
Explainability proved a recurring theme along with the
potential ramifications of group Al interactions where
multiple human actors are interacting dynamically with
the AI. This in turn prompted considerations over
where the ultimate decision-making responsibility lies
when a CDSS is supporting high-risk decision-making
within healthcare. The themes identified through the
RRI process are detailed in Tables 5 and 6 along with
adjustments we gradually introduced into the tool to
address these where possible.

User interface

To generate a User Interface that could be implemented
clinically, we compartmentalised user interactions into
three main areas using the R Shiny platform. No sig-
nificant prior training is needed to allow users to
generate an output, with walk-through tutorials built
into the main interface and continued across each page
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of the tool. Users are simply required to select their
preferred pre-loaded model and the clinical input data.

Patient variables are inputted for the primary treat-
ment model in the first instance where an instant
recommendation is then provided along with predicted
probabilities for all potential outcomes to illustrate how
confident the final recommendation is (Fig. 6). LIME
explanations are also given for the final prediction.

If the outcome is “Palliative”, the Ul automatically
carries the inputs across to the palliative treatment
classifier (Fig. 7). As with the primary model, a LIME
explanation is available for the user along with perfor-
mance metrics for whichever model was loaded (RF,
MLR, or XGB).

For palliative treatments, the associated predicted
survival curve is then automatically generated along
with an option to compare survival with an alternative
pathway. In the example illustrated in Fig. 8, the orig-
inal recommendation was for palliative chemotherapy
which was then compared to palliative radiotherapy.
The survival curves effectively personalise to the level of
the treating hospital from which the training data was
derived.

Discussion

We present the first externally validated ML CDSS co-
designed using RRI principles, capable of predicting
OC MDT treatment decisions early within the cancer
pathway. The sequential modelling approach quickly
predicts a new patient’s probable treatment plan which
if palliative, is accurately prognosticated within the first
12 months post-diagnosis. All algorithms performed
well; however, our results particularly favour MLR and
XGB models, with mean AUCs above 0.87 for the pri-
mary classifier, and above 0.711 in the palliative clas-
sifier. The RSF model performed well within the first 12
months on calibration curve analysis and CRPS scores.
Furthermore, the models have shown they generalise
even when faced with differing cohort demographics.
This suggests that for predictions at an instance-level,
the ML models appear to handle perturbations in de-
mographics at the feature-level. The use of a parallel


http://www.thelancet.com

10

Articles

Mean Model AUCs by Outcome Class - Palliative MLR Model (437 UHS cases)

100-

075

MDT Outcome

— BestSupportive Care (AUC 0.690)
— Paliaiive Chemo (AUC 0.909)

— Pallative Radiotherapy (AUC 0.730)
— Pallative Stent (AUC 0.880)

00
t-specificity

Mean Model AUCs by Outcome Class - Palliative RF Model (437 UHS cases)

100-

075+

MDT Outcome.

— BestSupportie Care (AUC 0.713)
— Paliaiie Chemo (AUC 0.881)

— Paliative Radiotherapy (AUC 0.712)
— Paliative Stent (AUC 0.875)

RF - UHS Test set

050
t-specificity

Mean Model AUCs by Outcome Class - Palliative XGB Model (437 UHS cases)

100-

075

MDT Outcome.

— BestSupportive Care (AUC 0737)
— Paliaiive Chemo (AUC 0.909)

— Pallative Radiotherapy (AUC 0.74)
— Pallative Stent (AUC 0.892)

Sensitivity

/’ XGB - UHS Test set
000 025 050 075 100
1-specificity

— Paliative Stent  Onc adjunct (AUC 0.805)

MLR - UHS Test set -

— Pallative Stent » Onc adjunct (AUC 0.782)

=

— Paliative Stent » Onc adjunct (AUC 0.790)

=

Mean Model AUCs Validation Cohort - Palliative MLR Model (475 OUH cases)

100~

075-

MDT Outcome

— BestSupportive Care (AUC 0746)

— Paliaiive Chemo (AUC 0.780)

— Pallative Radiotherapy (AUC 0.697)

— Pallative Stent (AUC 0.667)

— Paliative Stent » Chemo/Rad (AUC 0.645)

MLR - OUH validation set

00
1-specificity

Mean Model AUCs Validation Cohort - Palliative RF Model (475 OUH cases)

100~

o075+

MDT Outcome.

— BestSupportie Care (AUC 0.784)

— Paliaiive Chemo (AUC 0821)

— Pallative Radiotherapy (AUC 0.739)

— Paliative Stent (AUC 0.670)

— Pallative Stent » Chema/Rad (AUC 0.636)

RF - OUH validation set

00
1-specificity

Mean Model AUCs Validation Cohort - Palliative XGB Model (475 OUH cases)

100-

075+

MDT Outcome.

— BestSupportive Care (AUC 0734)

— Palialve Chemo (AUC 0817)

— Pallative Radioterapy (AUC 0.734)

— Pallatve Stent (AUC 0.704)

— Paliatve Stent » Chemo/Rad (AUC 0.662)

XGB - OUH validation set

00
t-specifcity

Fig. 2: Mean cross-validated ROC curves for each palliative classifier algorithm (UHS cohort on left, OUH validation cohort right). Shaded areas

represent +1x Standard error from the Mean.

RRI program ensured that the design of the AI CDSS
has considered stakeholders and integrated their input.
Early collaboration with a diverse skill-mix and open-
format workshops have produced a CDSS with imme-
diate clinical translational potential.

The primary treatment classifier models performed
consistently well in discriminating palliative pathway

patients across algorithms. This is primarily driven by
the large palliative subgroup within the training pro-
cess, a largely binary influence of cM staging and the
additional input of high PS score patients. Across al-
gorithms the models predict the curative pathways
evenly however within the validation cohort (OUH) the
CRT class demonstrates lower predictive performance.
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a Overall Survival by Treatment in Palliative UHS Cohort
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Fig. 3: Kaplan Meier survival plots for the UHS cohort (a) and OUH cohort (b).
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Metric Cohort Score Reference Interpretation
Prediction error (1-Concordance) UHS model 0.334 + 0.017 0 = perfect concordance Fair
OUH validation set 0.354 1 = perfect non-concordance i
CRPS (Integrated Brier Score/time) UHS model 0.112 + 0.020 0 = perfectly accurate model Very Good
OUH validation set 0.093 1 = perfectly inaccurate model Very Good
Table 4: Survival model performance metrics for UHS and OUH cohorts with an interpretation of the performance metric provided.

This is attributable to the relatively high use of CRT at
UHS versus the OUH unit which favours neoadjuvant
chemotherapy preferentially outside of squamous cell
cancers. Until recently, chemotherapy and CRT have
been equally acceptable options however early ESOPEC
trial results now suggest chemotherapy may be the
long-term front runner in these non-SCC cases.”
Where misclassifications occur this discordance be-
tween units favouring chemotherapy versus chemo-
radiotherapy is likely to be the main source. It is also
important to recognise the differential in performance
between the full primary classifier, which is trained off
the full cohort, versus the palliative models which are
only trainable on the palliative sub-group comprising
approximately 50% of the training cohort. Classes such
as palliative radiotherapy and best supportive care are
innately harder to predict early on (radiotherapy is most
commonly utilised for symptom control (dysphagia,
pain, bleeding)) while chemotherapy is most prevalent
as it provides disease control. BSC is determined on a
combination of disease stage, physiological reserve and
most importantly, patient wishes (the latter typically
only determined after the MDT meeting when patients
are seen in clinic).

The findings of this study continue to support the
role of ML in oncological MDT decision-making, even
early within the care pathway. The preserved perfor-
mance on external validation indicates that overfitting
remains modest. The optimal use of the palliative sur-
vival model was localised within the first 12 months
post-diagnosis, in keeping with the expected survival for
this cohort on current best therapy.”” As median sur-
vival was 6 months across the entire palliative cohort,
and maximally 11 months with best palliative onco-
logical therapy (chemotherapy) we have to acknowledge
that predictions beyond the 1-year mark will not be
reliable and return to best clinical judgement for those
few who survive beyond this time point. As core man-
agement of OC is well established within national
guidelines, ML lends itself to modelling the UK,
decision-making framework, however this principle
should in theory translate internationally as well.?>*
Where model performance drops between the cohorts
this likely reflects idiosyncrasies specific to individual
centres, an observation previously made in Denmark.®

There is a clear and urgent need to support MDT
workflow. With 60% of new discussions likely to end in

palliative treatment plans, rapidly predicting, and pri-
oritising caseload is of clear clinical and financial
benefit. When developed and implemented correctly
they also have the capability to improve patient safety.”!
Yet while Al-based CDSSs offer much to the healthcare
sector, there remains a translational gap.* This is
multifactorial in nature but partly attributable to a sense
of clinician superiority especially when handling
nuance and uncertainty, or a lack of clinical validation.”
Furthermore, as the current boom in healthcare Al
continues, the need for more responsible, co-designed
and explainable AI (XAI) approaches are increasingly
paramount.” This study addresses this by establishing
external validity of our clinical models combined with a
co-designed user interface. Algorithms were chosen as
either inherently interpretable (MLR) or amenable to
both global and local XAI techniques.

The RRI program delineated potential challenges
and barriers to the use of Al based CDSSs in clinical
settings, including data bias, data governance, data
drift, regulatory concerns over the role of the human-in-
the-loop, and the foundations of legal and clinical re-
sponsibility.***® The new EU AI Act unsurprisingly
classifies MAI into the “high-risk” category especially
when the impact of new technologies may still be
emerging far downstream of their first deployment
(The “Collingridge” Dilemma).**”

Our study employed one of the largest patient co-
horts within the literature, providing robust internal
and external validation of our models which span
curative and palliative pathways. The algorithms are oft-
the-shelf libraries, ensuring that scalability of imple-
mentation is not reliant on high-performance
computing clusters, something the current NHS digi-
tal infrastructure cannot offer evenly across the UK.
The integrated RRI program was designed to act in the
best interests of patients and clinicians. Including
stakeholders early we have developed a highly func-
tional CDSS which can be rationalised on a user-
specific basis. The UI allows clinicians to counsel
patients while insights derived from the program also
allow development of future iterations of the CDSS.
Consequently, the present study presents the first,
cohesive, responsibly derived ML solution to assist OC
MDT workflow needs which has not been provided
previously within the literature. This is also the first
study to externally validate OC treatment allocation

www.thelancet.com Vol 89 November, 2025


http://www.thelancet.com

Articles

a

Mean calibration curve by 1-yr predicted survival (UHS cohort) for Paliative RSF model - Quintile 1 (1000 bootstraps)
o6

UHS cohort Q1

>
3
H
H
H
oz
o e =
Tene (o)
Mean calbration curve by 1-y preclcted survival (UHS cohort) forPalfative RSF model -Quintl 2 (1000 bootsraps)
i
H
¢
@

Time (months)

Mean calibration curve by 1-yr predicted survival (UHS cohort) for Palliative RSF model - Quintile 3 (1000 bootstraps)

UHS cohort Q3

Time (morths)

Mean calibration curve by 1-yr predicted survival (UHS cohort) for Paliative RSF model - Quintile 4 (1000 bootstraps)

w B
\
\
UHS cohort Q4
:
3
omoe
H
@
]
¢ = ‘Time (morths) = *
Mean atbatincurveby . preciied s (UHS cooror Pl RSF model- e 5 (1000 boosrape)
UHS cohort Q5
&
3
g

www.thelancet.com Vol 89 November, 2025

Quintles

= Preacesan

Quinties
© onsenescz

Quintles
Je—
Preaceacs

Quinties
£ oneensaar
— preddesos

Quintles
ep—
= Preacescs

Calibration curve by 1-year predicted survival in validation cohort - Quintile 1

MR OUH cohort Q1

‘Sunvival Probabikty

Time (months)

Calibration curve by 1-year

in validation cohe intile 2

OUH cohort Q2

z
L
g

A\
° 2 @ 0
‘Time (months)
Calibration curve by 1-year in validation cohort iintile 3

OUH cohort Q3
z
z
@

025

“Time (morihs)

Callbration curve by 1-year predicted survival in validation cohort - Quintile 4

OUH cohort Q4

Survival Probabity

Time (months)

Callbration curve by 1-year predicted survival in validation cohort - Quintile 5

OUH cohort Q5

Survival Probabitty

Time (moniths)

Quintles

Quintles
obseneac
- Predceace

Quintles
onseneac
Predied

Quintles
£ osseneans
— Preacesas

Quintles
= onseneans
— Pradesas

Fig. 4: Quintile Calibration curves plotted with standard error over 60 months. Quintile cases are stratified based on predicted 1-year survival
probability as determined by the RSF model (Quintile 1 = 0-20% (a), Quintile 2 = 20-40% (b), Quintile 3 = 40-60% (c), Quintile 4 = 60-80%
(d), Quintile 5 = 80-100%).

13


http://www.thelancet.com

Articles

14

100 %

~
]
®

Observed suvival frequencies

»
bl
®

)
3
®

0%

100 %

~
]
®

Observed survival frequencies

»
b
*®

@
8
®

0%

100 %

Observed suvival frequencies

~
]
®

@

3
®

»
X
*®

0%

100 %

Observed suvival frequencies

~
]
*®

@
3
®

»
b
*®

0%

= Survival at 3 months

UHS cohort

r T T T 1
0% 25% 50% 5% 100 %

Predicted survival probability

] = Survival at 6 months

el

UHS cohort

r T T T 1
0% 25% 50% 75% 100 %

Predicted survival probability

] = Survival at 9 months

UHS cohort

r T T T 1
0% 25% 50% 5% 100 %

Predicted survival probability

—— Sunival at 12 months

/J:;hort

0% 25% 50% 75% 100 %

Predicted survival probability

100 %

75%

Observed sunvival frequencies
8
=

»
]
®

0%

100 %

75%

Observed sunvival frequencies
3
®

»
X
®

0%

100 %

75%

Observed sunvival frequencies
3
®

25%

0%

100 %

Observed sunvival frequencies
r ~
3 el
® =

»
]
®

0%

— Suvivalat B’MM'SJ//

OUH cohort

r T T T 1
0% 25% 50 % 5% 100 %

Predicted suvival probability

— Survival at 6 months

~

OUH cohort

r T T T 1
0% 25% 50 % 5% 100 %

Predicted suvival probability

— Survival at 9 months

.

OUH cohort

r T T T 1
0% 25% 50% 75% 100 %

Predicted sunvival probability

— Survival at 12 months

w/

OUH cohort

r T T T 1
0% 25% 50% 75% 100 %

Predicted suvival probability
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Clinicians’ understanding of Al and its role in healthcare

Perceived potential benefits of Al in multidisciplinary
teams (MDTs)

Barriers to the adoption and trust of Al in healthcare

Theme 1: Conceptual Understanding and Knowledge
Variability

The interviews revealed a significant variability in clinicians’
understanding of artificial intelligence (Al) and machine
learning (ML). Some dlinicians demonstrated a deep
understanding of these technologies, recognizing their
potential and limitations, while others exhibited a more
superficial or unclear perception. This disparity in
understanding is likely to influence how different clinicians
interact with and trust Al tools. As one clinician noted,
“Some of us see Al as just algorithms, but the deeper
layers are often misunderstood.” This variability suggests
the need for targeted educational initiatives to ensure that
all clinicians have a sufficient grasp of Al concepts.

Theme 2: Al as an Extension of Data Analytics

Several clinicians perceived Al as a powerful extension of
traditional data analytics, capable of processing larger
datasets and uncovering patterns that might escape
conventional methods. This perception ties Al closely to
evidence-based practice, where it is seen as enhancing the
clinician’s ability to make data-driven decisions. One
clinician remarked, “Al is like data analytics on steroids; it
can handle much larger datasets and pick up on trends
we might miss.”

Theme 3: Mystification and Misconceptions

The interviews also revealed that some clinicians hold
misconceptions about Al, viewing it either as an almost
omniscient entity or as an unreliable tool. This mystification
of Al can lead to polarized views—some clinicians might
place undue reliance on Al, while others might harbour
unwarranted scepticism. As one participant explained,
“Some think Al is this magical tool that can do anything,
while others don’t trust it to do anything right.” These
misconceptions underscore the importance of clear
communication about what Al can and cannot do in clinical
settings.

Our Response: We recognise that there remains an ongoing
knowledge gap for Clinicians in the MAI sphere. While this is
an evolving field, we have sought to assist the Al-lay
clinician using the tool by providing a section which
outlines some key metrics and a guide of their
interpretation to allow them to critically appraise our model
performance.

Theme 1: Improved Diagnostic Accuracy

Clinicians widely recognized Al's potential to improve
diagnostic accuracy, particularly by analysing large datasets
and identifying subtle patterns that may be overlooked by
human clinicians. This capability was seen as a significant
advantage, especially in the context of complex diseases
like oesophageal cancer. “Al can help us catch things we
might otherwise miss in diagnostics,” one clinician
stated, highlighting the perceived value of Al in enhancing
diagnostic precision.

Our Response: We have ensured the tool’'s models have
been internally and externally validated on a large training
cohort

Theme 2: Workload Reduction and Efficiency

Another major benefit identified was Al's potential to
reduce clinicians’ workload by automating routine tasks.
This could allow clinicians to focus more on complex cases
and patient interactions, thus improving overall efficiency
in the healthcare setting. One clinician commented, “Al
could free us from repetitive tasks, giving us more time
to focus on patients,” emphasizing the role of Al in
enhancing productivity.

Our Response: We have integrated the ability to upload a
list of patients simultaneously and provide a generate
report of predictions for each patient in real time. This will
allow use of the tool between MDT meetings too

Theme 3: Enhanced Decision Support

Clinicians also saw Al as a valuable tool for enhancing
decision support, particularly in complex cases where
multiple variables need to be considered. The ability of Al
to process and analyse data rapidly was viewed as a way to
formulate more comprehensive and informed treatment
plans. “Al could be a valuable assistant in making
decisions in complicated cases,” one clinician noted,
underscoring the potential for Al to augment clinical
decision-making.

Theme 4: Personalized Medicine

The potential of Al to advance personalized medicine was
another recognized benefit. Clinicians appreciated Al's
ability to tailor treatments based on individual patient data,
which could lead to better outcomes. “With Al, we could
move closer to truly personalized medicine, where
treatments are tailored to the individual,” one
participant remarked, highlighting the transformative
potential of Al in this area.

Theme 1: Concerns About Bias and Accuracy

A significant barrier to the adoption of Al tools identified by
clinicians was the concern about bias in Al algorithms and
the accuracy of Al decisions. Clinicians expressed worry that
Al could perpetuate or even exacerbate existing biases in
healthcare, leading to unfair treatment decisions. One
clinician emphasized, “Bias in Al is a serious concern,
especially if it leads to unfair treatment decisions,”
reflecting a common apprehension about the ethical
implications of Al in healthcare.

Our Response: We have identified and acknowledged the
possibility of bias. The tool provides a detailed breakdown
of the training cohort for user inspection. Future iterations
will also include warning messages where specific clinical
inputs represent cases with few data points e.g.
“dementia = Y”

Theme 2: Transparency and Explainability

The need for transparency and explainability in Al decision-
making processes was another critical barrier. Clinicians
expressed a strong desire to understand how Al reaches its
conclusions to trust and use these tools effectively. “I need
to know how Al makes its decisions before | can trust it,”
one clinician explained, underscoring the importance of Al
interpretability in clinical practice.

Our Response: The tool provides a detailed breakdown of
the training cohort for user inspection; it also provides
detailed performance metrics of the current models. We
have integrated a LIME explanation plot that reactively
updates in real time with user inputs to give a specific
explanation at an instance level.

Theme 3: Impact on Clinical Autonomy

Concerns were also raised about the potential impact of Al
on clinical autonomy. Clinicians worried that an over-
reliance on Al might diminish the role of human judgment
in decision-making, leading to a reduction in their
autonomy. As one clinician put it, “I'm worried that Al
might take away our decision-making power, making us
too dependent on it,” reflecting a fear of losing control
over clinical decisions.

Our Response: We recognise this is a valid risk of
automating a clinical decision-making framework like the
MDT. Where the tool generates reports for a group of
patients at once, it orders them in order of confidence in
the recommendation. A traffic light system then signposts
clinicians to cases of low confidence where the human is
required to assess and recommend. This keeps the human
central to the process for discussing those most difficult
cases first and sense-checking high-confidence cases
thereafter.

Theme 4: Legal and Liability Concerns

Legal and liability concerns were also prominent among
clinicians. They were unsure who would be held accountable
if an Al tool made a mistake—whether the responsibility
would fall on the clinician using the tool or the developer
who created it. “Who's responsible if Al makes a mistake?
This is a big question to ask,” one clinician stated,
highlighting the legal uncertainties surrounding Al
adoption.

Our Response: We acknowledged the implications from a
ethicolegal perspective and have included a disclaimer
message at first use which explains clearly that
responsibility of the decision remains with the human as it
is a decision-support tool. This will remain the case even if
certification as a medical device is

(Table 5 continues on next page)
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Clinicians’ understanding of Al and its role in healthcare Perceived potential benefits of Al in multidisciplinary

teams (MDTs)

Barriers to the adoption and trust of Al in healthcare

(Continued from previous

page)

Theme 5: Predictive Analytics for Preventive Care
Clinicians acknowledged the potential of Al in predictive
analytics, particularly for preventive care. Al could be used
to identify patients at risk of certain conditions, enabling
early intervention and improving patient outcomes. One
clinician noted, “Al could help us predict and prevent
diseases by identifying at-risk patients earlier,”
indicating the proactive role Al could play in healthcare.

Theme 5: Fear of Losing Skills

Finally, some clinicians expressed a fear that the adoption of
Al could lead to a loss of skills, particularly in routine
diagnostic tasks. There was concern that Al might replace
certain aspects of their work, leading to skill degradation,
especially among less experienced clinicians. “There's a fear
that Al could replace us in certain tasks, which may make
some juniors lose some important skills,” one participant
observed, pointing to a potential unintended consequence
of Al integration.

Table 5: Thematic analysis of domain expert interviews highlighting user expectations, concerns and solutions engineered into the tool in response.

models building on our previous efforts to integrate
explainability within the process.'***** Importantly,
while previous studies have highlighted the utility of
ML in other conditions,''*'*** yet there often lacks a
clear roadmap to guide the transition from technical
demonstration to active clinical application. Here we
have sought to provide a working tool that can be
deployed online quickly and used by clinicians not
specifically trained in ML.

One limitation was that the endoscopic manage-
ment of early cancers had to be excluded from the
validation analysis as we could not ensure a consistent
selection criteria within the external cohort. Many cases

are identified through Barrett’s surveillance programs,
and their care is not necessarily initiated by the MDT in
the first instance making consistency of case presenta-
tion difficult. Additionally, we could not include novel
molecular markers or immunotherapies within this
generation of models as insufficient training data was
available. Future iterations will support an expanding

array of  systemic  treatments such  as
Chemotherapy + anti HER2, anti-PD-1/PD-L1, Claudin
18.2, and immunotherapies for MMR-d/MSI-H

tumours.”* As a newer cohort of patients emerge
accruing data in these biomarkers, it is conceivable that
these cases will be used to train a smaller model on just

Themes Computer scientists

Patient and public involvement

Theme 1: Explainable Al (XAI)

A major focus of the discussion has been on the tool more interpretable, leading to
developments in explainable Al (XAl). This ensures that models can be understood
and trusted by non-experts. Supporting Code: “We've built tools that provide
explanations for Al decisions, making it easier for users to trust the system.”

Theme 2: Visvalizations and Diagnostic Tools

Tools like saliency maps, LIME, SHAP, and attention visualization have been discussed
to provide insights into why Al models make specific decisions. Supporting Code: “By
visualizing how models interpret inputs, we make Al decisions clearer and more
understandable to end users.”

Theme 3: Techniques for Bias Detection and Reduction

Computer scientists have also suggested ways of identifying and reducing biases in Al
models, particularly in sensitive areas like healthcare. Techniques such as fairness
constraints and debiasing were examples. Supporting Code: “We may incorporate
fairness constraints into the training process to mitigate biases against
underrepresented groups.”

Theme 4: Creating Diverse Datasets

Recognizing that biases often stem from the data itself, there has been a push toward
creating and curating more diverse datasets that better reflect the population.
Supporting Code: "We may need to think of other datasets to ensure Al systems
perform fairly across all demographics.”

Theme 1: Ethical concerns

This includes issues such as data privacy, and fears of Al exacerbating inequality, might
act as barriers to public acceptance. Supporting Code: “Who controls the data when Al
is involved? This is my biggest concern.”

Our response: By working symbiotically with the local hospital who provides the
clinical data we also ensure it is stringently protected, anonymised as soon as possible
and quality checked by the clinicians within the team. The presence of clinicians
within the research team also ensure that the patient is the priority even with data
storage and collection.

Theme 2: Complexity and lack of understanding

This may prevent the general public from engaging fully with Al tools. Supporting
Code: “People think Al is too complicated to understand, so | think they may feel
uncomfortable using it.”

Our response: We have incorporated a section which briefly outlines some of the
technical information in more accessible terms. While this Ul is designed to be used
primarily with clinicians the principle also extends to patients being shown the Ul
outputs and hopes to enhance Ai literacy for patients and clinicians alike

where relevant.

Table 6: Thematic analysis of RRI workshop outlining additional themes extracted on user expectations, concerns along with solutions engineered into the tool in response
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Fig. 7: Palliative model recommendation and associated LIME explanation.

www.thelancet.com Vol 89 November, 2025

17


http://www.thelancet.com

Articles

18

UGI MDT dashboard

- ; Palliative Survival Tool

o Walk me through this page

Choose Model

RSF.ds -

Treatment T Probabiity  Survival Model Calibration Curve

Predicted survival probability with
recommended palliative therapy

1.00-
59.3%
6 Month Survival
31.0%
12 month Survival

14.4%

18 month Survival

Compare alternate treatment pathway

Survival probability

RTX -

Alternate treatment pathway survival probabilities

0.25-
65.9% M 35.0% 1
6 Month Survival 12 Month 18 Month
Survival Survival

Predicted Survival Probabilility on Palliative Pathway

Survival Probability Curve

Predicted survival probability |

5 10 15 20 25
Time in Months

Fig. 8: Palliative survival curves specific to recommended or selected treatment plans.

and future iterations will readily adapt to such trial
outputs.”® While early curative cohort prognostication
would be desirable (ideally prior to treatment initiation),
the temporal effect of two separate major interventions
(neoadjuvant therapy and subsequent surgery) make it
extremely challenging in a single static model without
post-operative inputs.”* It is also important to note that
much of the data fed to MDTs may be recorded by non-
clinical personnel or those of varying oncological
experience especially in evaluating PS scores for pa-
tients. By way of example, while the OUH cohort may
represent a fitter cohort, it is equally conceivable that
less fit patients were either screened out pre-MDT in
this unit or assigned lower PS scores erroneously. This
also extends to data input as a whole, where prediction
quality is inextricably linked to the quality of this input.
While algorithms such as RF and XGB are capable of
handling missing data, the user interface is designed to
ensure all fields are completed. Fields set to a default
and if left un-touched will still allow a prediction to be
generated, however, it sits with the end-user to ensure
that final inputs are correct else the prediction quality
may be affected. Model fairness is not directly
addressed within the scope of this study. Within the
feature set only gender and age are protected charac-
teristics, the latter of which we have previously inves-
tigated.” However, it necessary to recognise that
advanced age carries risk and clinician experience may
easily be confused for bias in this context.” Gender
remains vulnerable to bias in OC too, which is

historically a male-centred condition.* Assessing model
fairness regarding gender however requires assessing
the equitability of the predicted outcomes which was
beyond the scope of this study and evaluating long-term
fairness of models will require more clarity in the
definition of “equity” within OC treatment allocation.
Finally, we have consciously chosen to map the current
MDT versus an attempt to model the “best decision”.
There remains no single, quantifiable metric currently
agreed within OC to adequately encapsulate the myriad
outcomes important to OC patients. Survival may not in
every case be the most salient outcome measure, yet it
is by far the most prolific in quantifying treatment
“success” of oncological strategies. It is intended to be a
springboard towards composite metrics which consider
quality-of-life, complication rates or even resection
margin status. Meanwhile, for this technology to
translate to clinical use, we must first prove capable of
mapping what “is” while the field attempts to agree
upon what “should be”.

Future work in this field will look to integrate many of
the novel markers discussed previously, as well as develop
additional co-designed patient-only user interfaces.
Broadening external validation to additional centres will
further verify the results reported in this study. Trust
must be established with patients, clinicians and regula-
tors alike, and this study now sets the foundations for
prospective trials within real-life scenarios to smooth the
way towards clinical implementation. With the introduc-
tion of the EU Al Act, the regulatory landscape for

www.thelancet.com Vol 89 November, 2025


http://www.thelancet.com

Articles

medical Al continues to shift. Satisfying regulatory hur-
dles moving forward will almost certainly involve risk
management, data governance, transparency, human
oversight (and override mechanisms), post-market sur-
veillance, quality management systems and CE marking
among other considerations.” Additional work will also
be required to test such CDSSs in real-time clinical
application. This will provide insight into if such a tool
functions best when used within the MDT meetings or if
is best utilised between meetings to triage discussions
and “pre-screen” cases. Finally, an aspect lacking within
the current literature is investigation into the decision-
making thresholds for human agents faced with Al-
based predictions in clinical settings across a range of
machine confidence levels—at what confidence level is a
clinician willing to accept and trust a prediction? And is
this “line in the sand” equivalent for every use-case, pa-
tient or treatment? This will guide future Medical AT re-
searchers when validating their model performances.

This is the first co-designed externally validated AlI-
derived CDSS targeted towards decision-making
within the MDT cancer pathway for oesophageal can-
cer. It provides an integrated sequence of ML models
which can reliably predict treatment allocation and
palliative prognosis both locally and externally. The
integration of an RRI program is intended to enhance
user confidence that the CDSS considers individual
and society risk as well as sources of potential bias
within its design. Such technologies must contend
with the standard challenges facing workflow inte-
gration within current digital healthcare in-
frastructures, as well as achieving clinician buy-in,
especially where such models may adversely impact
future clinician training. While future work includes
prospective trials for real-world validation and regula-
tory approvals to address this, these models offer po-
tential for a transformative impact on current MDT
operations within the UK in OC and is both theoreti-
cally and technically transferrable to other cancer types
and world regions.
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