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by James Owen David Bramley

This thesis presents methods for crystal structure prediction, introducing techniques
that improve the identification of conformations used as seeds in the search for crystal
structures. The proposed approach enhances sampling of the conformational hypersur-
face, leading to superior initial structures that facilitate a more thorough exploration
of conformational space. Additionally, a Monte Carlo simulated annealing method has
been developed, integrating experimental and computational techniques to effectively
determine crystal structures. This method has demonstrated success for rigid molecules
and polymorphs under various conditions. A Monte Carlo refinement procedure has
also been utilised to enable precise matching of crystal structure prediction datasets
to experimental data for both flexible and rigid molecules. These methodologies hold
promising potential for diverse applications in crystal structure prediction but require
further research to ensure their robustness for practical workloads.
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Chapter 1

Introduction

This thesis explores the prediction of organic molecular crystal lattices with a specific
focus on flexible small-molecule pharmaceuticals. The primary goal is to enhance the
accuracy of crystal structure predictions and introduce novel approaches for predicting
the structures of flexible molecules. In refining current CSP methods, we developed new
techniques where existing ones fell short. This work presents broad method development
with significant potential for future advancements. Each chapter delves into different
aspects of the methodology, from conformer prediction to other CSP strategies.
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1.1 Chapter Overview

Chapter 2 provides the necessary background on CSP. We discuss the history of organic
molecular CSP, evaluating its accuracy and applications to various molecular structures.
We also review the six blind tests conducted over the past 25 years by scientists world-
wide, which highlights the progress of CSP and its future possibilities. We explain the
concepts of conformers and conformations and their importance in CSP. Additionally,
we cover foundational concepts such as how crystals are described, the role of solvates,
and the phenomenon of polymorphism, all of which are essential for understanding the
rest of the thesis.

In Chapter 3, we outline the relevant theories, methods, and programs used within this
thesis. We provide an overview of Density Functional Theory (DFT) and its applications
in electronic structure theory, as well as the statistical methods used throughout this
work. We also explain how CSP calculations are performed from the ground up, giving
a solid theoretical grounding.

In Chapter 4, we present and demonstrate the CSP workflow applied to various crystal
systems associated with the 7th CSP Blind Test. We outline our methodology in detail,
focusing on the strategies used to tackle the prediction of highly flexible molecules,
which required advanced conformational search techniques. The molecules investigated
in this test posed significant challenges due to their flexibility, and we highlight how our
methods addressed these challenges effectively.

Chapter 5 focuses on methods for identifying molecular conformations to seed CSP
methods. We explore two different conformer clustering methods, using a series of
flexible, drug-like molecules. We demonstrate how our methodology improves upon
previous approaches for generating conformers.

In Chapter 6, we introduce a novel Monte Carlo Simulated Annealing (MCSA) approach
for predicting crystal structures using experimental data, such as Powder X-ray Diffrac-
tion Patterns (PXRDs) and Nuclear Magnetic Resonance (NMR). We demonstrate the
effectiveness and versatility of this method compared to other approaches, using a se-
ries of flexible and non-flexible molecular systems. We also explore how this method
can be parametrised and combined with different experimental data to yield more ac-
curate results than typical CSP methods. Additionally, we discuss the use of a Basin
Hopping (BH) approach and how it is integrated into our CSP software, cspy [1].

In Chapter 7, we present a comprehensive CSP workflow for the flexible molecule ide-
lalisib and its solvates. We explore the challenges of dealing with flexible molecules,
such as their complex conformational space and multiple degrees of freedom. We apply
the methodologies described in Chapter 6 to address these challenges and optimise the
prediction of crystal structures. Additionally, we conduct a rigorous post-CSP analy-
sis using a range of Quantum Mechanical (QM), tight binding and forcefield methods.
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These methods allow for a thorough refinement and evaluation of the predicted struc-
tures, ensuring the reliability of the results.

In Chapter 8, we explore an alternative sampling method developed in collaboration with
colleagues from the Day group, aimed at identifying conformations that are likely to be
present in the crystal. This method aims to improve the generation of conformers by
enabling a more thorough sampling of the potential energy landscape. We demonstrate
the entire workflow, using two distinct approaches to address the challenges posed by
highly flexible molecules with many degrees of freedom. By applying this advanced
sampling technique, we show how it enhances the exploration of the conformational
space, leading to more accurate predictions of crystal structures in complex molecular
systems.
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Chapter 2

Background

Organic crystal structures are defined by the periodic packing of one or more organic
molecules in 3 dimensions. The specific packing of these organic molecules is determined
by intermolecular and intramolecular interactions, which in effect dictates physical solid
state properties such as melting point, density, optical activity and solubility.

The number of packings possible for even a single small rigid organic molecule can be
many and slight changes to the crystallisation process can result in different arrange-
ment of molecules within a crystal structure. If the molecular unit possesses observ-
able metastable crystal forms; the structures are known as polymorphs. Due to their
differing arrangement of molecules, different polymorphs might possess many different
physiochemical properties. With sufficient understanding of forces, orientation and con-
formations of molecules, it is possible to predict the crystal structure of a molecule or
set of molecules computationally.
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2.1 Descriptions of Crystal Structures

Crystal structures are not only relevant to organic molecular systems but also have
relevance to inorganic chemistry and other disciplines. However, we will only describe
crystal systems for organic molecules to remain relevant to the subject of this thesis.

2.1.1 Bravais Lattices

Organic crystal structures can be described by the smallest possible periodic molecular
unit repeating in all 3 Cartesian dimensions in which we call the unit cell. This molecular
unit could contain a single molecule, fractions of molecules or whole molecules.

Figure 2.1: An empty unit cell with sides of length a, b, c and angles α, β and γ. For
different unit cells, each of these parameters could vary. The combination of unit cell

parameters dictates the crystal system.

The lengths a, b and c correspond to the lengths on each side of the unit cell and
angles α, β and γ correspond to the angle between sides b and c, a and c, and a and
b respectively. Unit cells are classified by their shape depending on the angles and
unit cell lengths present in the 3-dimensional body. The system of a crystal can be
described as either triclinic, monoclinic, orthorhombic, tetragonal, hexagonal and cubic
as summarised in Table 2.1.
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Crystal System Symbol Unit Cell Lengths Unit Cell Angles

Triclinic P a ̸= b ̸= c α ̸= β ̸= γ ̸= 90◦

Monoclinic C a ̸= b ̸= c α = γ = 90◦, β ̸= 90◦

Orthorhombic O a ̸= b ̸= c α = β = γ = 90◦

Tetragonal T a = b ̸= c α = β = γ = 90◦

Trigonal R a = b = c α = β = γ ̸= 90◦

Hexagonal H a = b ̸= c α = β = 90◦, γ = 120◦

Cubic F a = b = c α = β = γ = 90◦

Table 2.1: Classification of unit cells based on unit cell parameters a, b, c, α, β, γ.
These parameters indicate which crystal system a structure belongs to.

The positions in space that define the periodic arrangement of a crystal are known as
lattice points. A unit cell can contain one or multiple lattice points, depending on
the symmetry and centring of the lattice. Each lattice point can be occupied by one
molecule, multiple molecules, or parts of molecules. The way lattice points are arranged
within the unit cell determines the cell’s centring type, as illustrated in Figure 2.2.

Symbol Lattice Type Description

P Primitive Lattice point located only at unit cell cor-
ners

I Body-centred Primitive lattice type with an additional
lattice point located at the centre of the
unit cell

F Face-centred Primitive lattice type with an additional
lattice point located at the centre of each
face of the unit cell

S Base-centred Primitive lattice type with additional lat-
tice points located in the centre of one pair
of opposite faces

R Rhombohedral lattice Primitive lattice which is typically used to
describe hexagonal crystal systems

Table 2.2: Centring Types of crystal systems. These describe where lattice points are
located within the unit cell which determine the lattice type.
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Whilst any lattice type can possess any centring, many combinations are redundant as
certain arrangements are equivalent. Therefore, only a subset of these combinations is
necessary to describe all distinct lattice types. In 3-dimensions, there are 14 possible
Bravais lattice types that describe the shape and symmetry of the unit cells which form
the foundation of a the crystal’s overall symmetry.

2.1.2 Space Groups

In addition to the lattice types, there are 32 crystallographic point groups, which describe
the sets of symmetry operations that leave at least one point fixed, typically the origin.
These point groups encompass all symmetry operations such as rotations, reflections,
and inversions, and are used to classify the symmetry of molecules. A molecule belongs
to a particular point group if it remains unchanged under the operations in that group.

While point groups describe local symmetries, space groups extend this concept by
combining point group symmetries with translational symmetry, thereby describing the
full symmetry of a crystal lattice. Altogether, there exist 230 distinct space groups
in three dimensions, representing all possible combinations of symmetry operations in
crystals. Space groups are characterised by various symmetry operations, including
rotation, reflection, screw axes, and glide planes which are described in Table 2.3.

Additionally, crystals can be described as centrosymmetric or non-centrosymmetric, de-
pending on whether they possess a centre of symmetry. In a centrosymmetric crystal,
every part of the structure has an equivalent counterpart on the opposite side of the cen-
tre, related by inversion. In contrast, non-centrosymmetric crystals lack this inversion
symmetry.

2.1.3 Space Group Notation

To describe space groups, Hermann-Mauguin notation is used which consists of lattice
type, and additional characters corresponding to the symmetries present [2].

The first symbol in this notation represents the centring type of the cell shown in Table
2.2. The following characters are the symmetry operations. Some space groups may have
different operations present along each axis, such that the first position corresponds to
symmetry elements related to the a-axis, the second position to the b-axis, and the third
position to the c-axis. Whether the operation acts parallel or perpendicular to the axis
depends on the type of symmetry element.
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Symmetry Element Symbol Description

Rotation r Rotation by 360◦

r

Mirror m Reflection symmetry across a plane perpendicu-
lar to the axis

Roto-mirror r/m Rotation by 360◦

r followed by reflection across
the plane perpendicular to the rotation axis

Roto-inversion r̄ Rotations by 360◦

r followed by an inversion

Glide Plane a, b, c,n, d Reflection symmetry across a plane perpendicu-
lar to the axis. This is followed by a translation
depending on the type of glide plane. For a,
b and c the glide plane this is 1

2 the unit cell
length along axis a, b and c respectively. For n,
1
2 translation along two in-plane axes and d, 1

4
or 3

4 translation along two in-plane axes

Screw Axis rm Rotation by 360◦

r followed by fractional transla-
tion equal to m

r along the axis

Table 2.3: Symmetry operations used to define space groups applied to x, y, or z axes.
r = 1, 2, 3, 4, 6.

For all space groups, inversion centres and rotation axes are restricted to specific posi-
tions defined by the symmetry of the crystal lattice. These positions are chosen such
that applying the symmetry operations maps the crystal onto itself without disrupting
its periodicity. Typically, symmetry elements are located at the origin, cell centres, face
centres, edge centres, or other fractional coordinates that correspond to lattice transla-
tions or special symmetry sites.

2.1.4 Z and Z’

The number of molecules in the unit cell is denoted by Z, while Z’ represents the number
of distinct molecules in the asymmetric unit.
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2.2 Conformers and Conformations

Within a molecular crystal, molecules can adopt different geometries known as con-
formers. Some molecules only possess a single stable molecular geometry which can be
described as ”rigid” and often possess no freely rotatable bonds such as those shown in
Figure 2.2.

(a) Benzene (b) Furan (c) Oxazole

Figure 2.2: Example diagrams of rigid molecules. Each molecule contains freely
rotatable bonds meaning that the molecular conformation of the molecule is fixed.

Molecules, such as those in non-conjugated ring systems such as boat and chair confor-
mations in 6-membered carbon rings.

(a) Twist (b) Boat (c) Chair

Figure 2.3: Conformational isomers of cyclohexane. Cyclohexane posses no freely
rotatable bonds however still has multiple conformers by moving its flexible ring.

However, molecules which do possess freely rotatable bonds may be able to adopt differ-
ent conformations where the stability of each conformation is based upon a molecule’s
intramolecular interactions.
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Figure 2.4: Ball and stick models for two different conformers of resorcinol. Resorcinol
featuring a rigid ring system but contains two OH groups, allowing it to adopt different

conformations.

If we consider resorcinol which shown in Figure 2.4, as an isolated molecule, as we rotate
around a bond which possesses torsion, we find that certain geometries are metastable.
Any change to the torsional angle, which is the angle between two planes formed by four
sequentially bonded atoms, would reside in an increase in conformational energy. These
configurational minima are known as conformers.

Figure 2.5: Resorcinol with rotatable bonds shown. The atoms that make up the
torsion of ϕ and Θ are shown where each OH group can rotate 360◦.

If we fix the torsion angle ϕ at 0◦, whilst rotating the torsion Θ, we find that two
metastable configurations exist at 0◦ and 180◦ around this torsion. Although other
conformers may exist, we would need to sample around torsion ϕ and Θ simultaneously
to locate them. By doing this we are able to produce what is known as the Potential
Energy Surface (PES) of the molecule. This surface describes the energy of all possible
conformations of the molecule.
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Figure 2.6: Effect of torsional rotation on the energy of the resorcinol molecule.
The torsion angle Θ determines the energetic stability of each conformation. Two
conformational minima are present at 0◦ and 180◦, corresponding to where the OH
bond is parallel to the plane of the aromatic ring. At angles of 90◦ and 270◦, the OH
bond is positioned orthogonal to the plane, resulting in a significant energy penalty.

Benzene, resorcinol and cyclohexane depicted in Figures 2.2A, 2.3 and 2.4 appear similar
in structure and shape. However, conformational analysis of these structures reveal sig-
nificant differences. In benzene, the stacking of the aromatic π ring allows for significant
low energy arrangements when packing into crystal structures. Whilst resorcinol also
benefits from π stacking, it also contains directional hydrogen bonding groups in which
the orientation can effect the arrangements of molecules when closely packed. Cyclo-
hexane does not contain any π electrons and therefore relies on van der Waals forces
between molecules for stability.
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2.3 Polymorphism

Polymorphism is the phenomenon where a single chemical compound can crystallise
into more than one distinct structure named a polymorph. These polymorphs can have
vastly different physical properties, such as solubility, melting points and stability. Al-
though the molecule’s composition remains unchanged, the way its lattice is arranged
differs, resulting in distinct forms of the same substance. In the pharmaceutical industry,
for example, a drug may have several polymorphs, each with unique properties. One
polymorph might dissolve quickly in the body, making it an ideal drug candidate, while
another polymorph may be less soluble, rendering it ineffective [3]. Therefore polymor-
phism is of critical importance in pharmaceuticals, agrochemicals and materials science,
as different polymorphs can lead to variations in the efficacy, safety and stability of a
product [4].

Different polymorphs can form due to variations in crystallisation conditions such as
temperature, pressure, and the choice of solvent. Even slight environmental changes
can result in different polymorphs, presenting both opportunities and challenges for
industries that require consistent material properties [5]. The formation of polymorphs
is governed by thermodynamics and kinetics. From a thermodynamic perspective, the
most stable polymorph has the lowest free energy, making it the preferred form under
equilibrium conditions. However, if crystallisation conditions favour rapid nucleation and
growth, metastable polymorphs may form, bypassing the thermodynamically stable form
[6]. These metastable polymorphs can eventually convert to the stable form over time
but they may also persist for extended periods influenced by factors such as temperature.

Polymorph screening, which is the process of identifying and characterising all possible
polymorphs of a compound, is a crucial part of drug development and materials science
[7]. Experimental methods such as Single Crystal X-Ray Diffraction (SCXRD) and
Differential Scanning Calorimetry (DSC) are typically used to identify and characterise
these forms, but computational approaches are increasingly being employed to predict
them as discussed later on [8].
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2.4 Crystal Structure Prediction (CSP)

CSP refers to the method of predicting the structures of solid-state materials. This thesis
focuses on non-empirical methods for predicting flexible organic molecular crystals using
only chemical diagrams of molecules as input.

CSP attempts to determine the configuration of molecules packed into a crystal that
is lowest in energy which is determined by sampling the entirety of configurational
space. If we consider both intermolecular and intramolecular forces, we wish to find the
configuration that minimises the total energy, Etotal:

Etotal = Eintermolecular +Eintramolecular. (2.1)

If we consider all of configurational space we can determine what is known as the crystal
energy landscape.

Various approaches have been developed to address CSP, including MC simulations, evo-
lutionary algorithms, and molecular dynamics simulations, among others [9–11] which
enable an exploration of the crystal landscape.

2.4.1 Energy Evaluation

In CSP, accurately ranking the energy of different crystal structures is essential for iden-
tifying the most thermodynamically stable crystal form. Several computational meth-
ods, each varying in accuracy and computational cost, are used for this purpose. These
include force-field based approaches, DFT, and various energy correction techniques.

Force-field methods rely on classical potentials to approximate the total energy of a
system usually by summing over pairwise interactions. Due to their simplicity, force-
fields are computationally inexpensive and allow for large-scale searches of configuration
space. Force-fields, such as Lennard-Jones potentials for non-covalent interactions and
Buckingham potentials for ionic systems, can struggle with transferability across diverse
materials, which lead to inaccurate energy rankings in complex systems [12].

DFT generally offers greater accuracy than force-field methods, as it explicitly accounts
for the electronic structure of the crystal. It is particularly effective for systems with
complex bonding environments and often refines the energy rankings of structures ini-
tially identified through force-field calculations. However, DFT is considerably more
computationally demanding. A significant challenge in DFT is the accurate treatment
of dispersion forces, which stem from fluctuations in electron density that induce tem-
porary dipoles in neighbouring molecules. These forces are crucial in molecular crystals,
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frequently representing the dominant interactions in non-polar systems and still con-
tributing substantially in polar systems. This challenge has spurred the development of
dispersion-corrected DFT approaches, such as DFT-D3 and van der Waals functionals,
to enhance accuracy for these materials [13].

Hybrid approaches combine the strengths of force-fields and DFT. In many CSP studies,
force-fields are used for the initial screening of candidate structures, followed by DFT
refinement to ensure accuracy without overwhelming computational resources.

Post-DFT corrections are often applied to improve the accuracy of energy predictions.
These include Many Body Dispersion (MBD) corrections for long-range interactions and
vibrational corrections, which account for temperature-dependent effects. For systems
where thermal expansion affects stability, the quasi-harmonic approximation is used
to predict free energy at finite temperatures, further improving the reliability of the
rankings [14].

Machine Learning (ML) approaches are emerging as a promising addition to CSP work-
flows. Trained on data from DFT or experiments, ML models can predict energy rank-
ings with significantly reduced computational cost. However, the accuracy of these
models is highly dependent on the quality of the training data and the choice of features
[15, 16].

2.4.2 Overview of Crystal Structure Prediction Methods

CSP has evolved significantly, moving from early heuristic searches to sophisticated
computational workflows that exploit increases in computer power and algorithmic ef-
ficiency. This progress has been monitored through periodic blind tests organised by
the Cambridge Crystallographic Data Centre (CCDC), in which researchers predict the
crystal structures expected from a given chemical diagram and occasionally supplement
them with experimental data such as PXRD patterns. Here, the steady improvement
from the first blind test in 1999 to the seventh in 2021 is summarised.

In the first blind test (1999) early CSP methods were still constrained by the cost of fully
exploring the crystal-energy landscape, so most groups used empirical or semi-empirical
force fields. Electrostatics were already treated with some sophisticated atomic point
charges or distributed multipoles derived from ab initio Hartree Fock (HF) or second-
order Møller–Plesset perturbation theory charge densities, but dispersion interactions
and the delicate balance between many low-energy minima remained hard to capture.
Several participants employed purely statistical fitness functions built from probability
distributions in the Cambridge Structural Database (CSD), showing that a ranking
function need not be a direct estimate of lattice energy. Rigid molecule assumptions and
MC sampling had limited success for anything except the simplest, most rigid molecules
[17]. Some targets are shown in Figure 2.7.
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(a) I (b) II (c) III

Figure 2.7: Targets I-III used in the first blind test

The second (2001) and third (2004) blind tests broadened the range of techniques.
Most entries still relied on force-field lattice energies, but new search algorithms such
as Genetic Algorithm (GA) and more systematic grid searches improved sampling effi-
ciency [7, 18]. The third test also saw more elaborate potentials: anisotropic repulsion for
halogen atoms, distributed multipoles, Angelo Gavezzotti’s PIXEL electron-density in-
tegration scheme, and Detlef Hofmann’s CSD-trained statistical potential [19, 20].Some
targets are shown in Figure 2.8.

(a) IV (b) V (c) VI

Figure 2.8: Targets IV-VI for the second blind test

The fourth blind test (2007) marked the first use of periodic dispersion-corrected DFT.
Neumann, Leusen and Kendrick applied periodic Perdew–Burke–Ernzerhof calculations
supplemented by an atom–atom term and successfully ranked all four experimental struc-
tures as global minima [21]. Retrospective application to earlier blind-test molecules
confirmed the power of this approach although the computational cost restricted its use
to a limited number of candidate structures. Some targets are shown in Figure 2.9.

(a) XIV (b) XV

Figure 2.9: Targets XIV-XV for the fourth blind test
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In the fifth blind test (2010) periodic DFT-D became much more widely adopted. For the
first time the targets included a large, flexible, drug-like molecule, catalysing pharma-
ceutical interest in CSP. Molecules with rigid geometries were now routinely predicted,
whereas flexible molecules possessing multiple low-energy conformations still posed a
challenge [22]. Some targets are shown in Figure 2.10.

(a) XX

Figure 2.10: Target XX for the fifth blind test

The sixth blind test (2016) introduced five demanding highly flexible molecules, extensive
hydrogen-bonding networks and a multi-component crystal. Workflows combined MC
parallel tempering for structure generation with periodic DFT-D ranking, fragment-
based or symmetry-adapted perturbation theory fitted potentials, vibrational free-energy
corrections and even kinetic MC simulations of nucleation. One such MC + DFT-D
pipeline predicted every experimental structure correctly [23]. Some targets are shown
in Figure 2.11.

(a) XXIII (b) XXIV

(c) XXVI

Figure 2.11: Targets XXIII, XXIV and XXVI for the sixth blind test
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There has been a clear trend that improved sampling algorithms, using more accurate
energy models and greater computing resources have progressively increased the relia-
bility of CSP, even for large flexible molecules and multi-component systems. Between
2020 and 2022, the seventh blind test was conducted. Details of the methods employed
are discussed in Chapter 4.

2.4.3 Quasi Random Crystal Structure Prediction (QR-CSP)

Historically, CSP efforts within the Day group have focused predominantly on small,
rigid molecules, as these systems present a more manageable search space and lower
computational requirements. However, advancements in computational power and effi-
ciency have facilitated the study of larger, more flexible molecules, which are of growing
significance in the pharmaceutical field due to the impact of polymorphism on drug
development. These technological improvements now allow for the prediction of crystal
structures in considerably more complex systems.

In this thesis, crystal landscapes are generated using a Quasi Random (QR) routine.
Molecular conformations are sampled using conformer search methods described in sec-
tion 3.3, and molecular multipoles are calculated from these conformations as detailed
in sections 3.1.10.1, 3.1.11, and 3.1.12. Crystals are produced by packing asymmetric
units into various space groups, as discussed in section 2.4.3.2. Molecular multipoles for
the structures are calculated through Distributed Multipole Analysis (DMA) and sub-
sequently minimised using force-field approaches to yield chemically viable structures
using DMACRYS which is described in section 3.1.10. Duplicate structures are removed
using PLATON described in section 3.4.2.
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An overview of the workflow is presented in Figure 2.12.
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Figure 2.12: Workflow for Quasi Random Crystal Structure Prediction

In this section, we will delve deeper into each of these components.

2.4.3.1 Conformer Searching

Our goal in a conformational search is to identify all conformers such as those in Figure
2.6 or at least those possible to be observed within a crystal structure for the purposes
of CSP. We can achieve this by exploring the molecular PES.

The crystal landscape generator described in section 2.4.3.2 packs molecules into a crys-
tal lattice. For rigid molecules, only a single conformation needs to be packed. However,
in the case of flexible molecules, all relevant molecular configurations must be consid-
ered, as they influence the energetics and stability of the crystal. From Equation 2.1,
it is known that both Eintermolecular and Eintramolecular must be minimised to produce
a low energy crystal structure that may be experimentally observable. Consequently,
it is necessary to identify conformations likely to form stable crystal structures. Since
conformers represent energy minima, they can serve as starting points.
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It is established that, for flexible molecules, the lowest energy conformer, also known as
the conformational global minimum, does not always appear in the experimental crystal
structure [24]. This is because crystals can achieve lower overall energy by sacrificing
intramolecular energy and introducing strain, allowing molecules to maximise inter-
molecular interactions and thus lower the intermolecular energy of the crystal. Analyses
of crystal structures have shown that the conformations adopted by molecules within
crystals are often similar to those of conformers. Therefore, it is crucial to consider
conformers when exploring the crystal energy landscape.

There are a variety of algorithms that have been developed to reduce computational
cost and effort in a conformational search to locate conformational minima which are
discussed in section 3.3.

Once conformers have been determined, they are then optimised at high level of theory
such as DFT to ensure geometries are as accurate as possible.

2.4.3.2 Crystal Landscape Generator (CLG)

To construct a crystal energy landscape, configurational space must be explored to
identify crystals with the lowest energy. For small systems, this can be accomplished
using grid-based methods, which sample degrees of freedom at fixed intervals to en-
able a comprehensive search of the landscape. However, as configurational space grows
larger, sampling becomes increasingly challenging, as it is unclear how much sampling
is necessary to adequately explore the landscape.

Random sampling offers an alternative approach, searching the landscape stochastically.
This method is advantageous because extensive sampling can provide a good represen-
tation of the landscape. However, the inherent randomness means there is no certainty
that the landscape has been thoroughly explored. Even with a large number of sam-
pled points, certain regions of configurational space may remain unsampled as shown in
Figure 2.13.

Instead of relying solely on stochastic methods, it is possible to balance the systematic
nature of grid searches with the randomness of random searches. This approach, known
as QR sampling, can more effectively sample a landscape by retaining information from
previously sampled points. Such QR sampling enables more even spacing across the
search space while preserving the beneficial qualities of randomness. Moreover, QR
sampling offers the advantage of reproducibility.
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Figure 2.13: Comparison of different methods to sample a 2D plane using 200 data
points. Random sampling may lead to uneven distribution of sampling points. Grid
sampling requires a fixed interval of between data point. Quasi-Random sampling
allows for an even sampling of space without relying setting fixed intervals between

points.

Structure Generation

The Crystal Landscape Generator (CLG) takes geometry optimised molecules and gen-
erates feasible crystal structures [25]. To generate the crystal structure of a molecule,
numbers generated through low-discrepancy means using the Sobol method [26].

(x1,x2,x3, . . . ,xN ), (2.2)

where each xi ∈ [0, 1). These QR numbers are then mapped to structural parameters
that define a trial crystal structure.

Molecular orientations are determined using the Shoemake method [27]. Here, uniform
random rotations are generated directly as quaternions rather than relying on Euler
angles, thereby avoiding biases and ensuring uniform sampling of orientations. The
method transforms values of xi into angles and square roots that evenly distribute points
over the surface of a four-dimensional hypersphere. Specifically, two numbers define
angles around circles, analogous to longitude and latitude, while the third governs the
relative weighting between two hemispherical components of the hypersphere. These
values are combined using sine and cosine functions to produce four components w,x, y, z
that form a unit quaternion. This quaternion encodes both the axis of rotation and the
angle of rotation, providing a smooth and uniform means of representing molecular
orientations in three-dimensional space.

For unit cell angles θ (α, β, or γ), the mapping avoids extreme angles that could produce
very flat or highly skewed unit cells, which are problematic for energy minimisation. The
angles are sampled using:



22 Chapter 2. Background

θ = arccos
(︂
1 − 2xi

)︂
, (2.3)

to ensure a uniform distribution of cos(θ), which naturally avoids extreme values.

For the unit cell lengths, a molecule’s “shadow” is calculated along each cell axis to
estimate physically reasonable bounds for the cell lengths. The length of lattice vector
l (a, b or c) is sampled as:

lj = c ·
[︂
smin

j + xi ·
(︂
Nmol · smax

j − smin
j

)︂]︂
, (2.4)

where smin
j and smax

j are the minimum and maximum projections (shadows) of the
molecule along lattice vector j, Nmol is the number of molecules in the unit cell and
c is a scaling factor equal to 0.75. This ensures that cell lengths are sufficient to accom-
modate the molecules without being excessively large.

The positions of molecules are directly mapped to the fractional coordinates of the unit
cell, ensuring even sampling of all possible positions.

When a crystal is generated, molecular clashes may occur. In such cases, the unit cell
undergoes expansion, increasing the intermolecular distances between molecules which
helps maintain thorough sampling of configurational space.

Clashes are resolved by enclosing each molecule within its convex hull which is a three-
dimensional polyhedron encompassing all its atoms. If there exists an axis along which
the projections of two convex hulls do not overlap, the molecules do not intersect. If an
overlap is detected, the cell is expanded. In the case of expansion, the following equation
is used:

∆lj = η+

⃓⃓⃓⃓
⃓⃓ voverlap

j

vcentroid
j

⃓⃓⃓⃓
⃓⃓ , (2.5)

where voverlap represents the minimum translation vector required to separate overlap-
ping convex hulls, and vcentroid denotes the vector between the molecular centroids. The
parameter η is a small tolerance value equal to 0.001 Å.

If the clashes cannot be resolved such as if the expansion leads the unit cell volume
becoming very large or the unit cell becomes very flat, the cell is discarded and treated
as invalid.

Therefore, the CLG positions molecules at sensible distances from one another whilst
avoiding molecules clashing. The generation provides starting points for minimisation
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with a set of diverse molecular characteristics which can then undergo geometric opti-
misation.

To further enhance computational efficiency, the internal symmetry of a crystal’s unit
cell, as described in section 2.1.2, can be exploited. Analysis of crystals in the CSD
has shown that most molecules crystallise in a limited set of common space groups [28].
Consequently, focusing on these prevalent space groups allows for a more rigorous search
within a reduced portion of configurational space and therefore decreases the number of
degrees of freedom that must be sampled, reducing computational cost.

Asymmetric Units

The smallest portion of the crystal structure that can generate the entire crystal using
symmetry operations is called the asymmetric unit. In this way, the unit cell can be
described by its internal symmetry.

For many systems, only one molecule is required to build a crystal and, in such cases,
there is one molecule in the asymmetric unit. However, for some systems, such as solvates
and co-crystals, more than one molecule is needed to describe the crystal structure.
Therefore, when building the crystal, multiple molecules must be placed at each lattice
point, giving rise to crystals with Z’ > 1. These molecules may be identical but adopt
different conformations, or they may be entirely different molecules.

If a molecule is centrosymmetric, it may allow for Z’ < 1, meaning that less than a
full molecule is needed to describe the asymmetric unit. For example, if a molecule has
a plane of symmetry, only half of it is required to reproduce the rest of the molecule,
and by extension, the unit cell. Additionally, centrosymmetric systems can occur where
Z’ = 1, and the asymmetric unit contains multiple molecular fragments or fractions of
molecules.

2.4.4 Predicting Polymorphs

The prediction of polymorphs using computational techniques can save significant time
and resources. However, despite substantial advancements, predicting polymorphs ac-
curacy remains challenging.

Polymorphs can be identified by determining the configurations corresponding to local
minima on the crystal energy landscape. This landscape is theoretical, and many local
minima may not be experimentally observable because CSP methods often omit temper-
ature from their calculations. If the energy barrier between crystal structures is small,
crystals may have sufficient thermal energy to transition into a different energy basin.
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In contrast, crystals separated by large energy barriers are more stable and are therefore
less prone to converting into alternative configurations.

The stability of a polymorph is influenced by the energy barriers between crystal struc-
tures, which help predict whether it will be experimentally observed. These barriers
can give rise to metastable forms that may only appear under certain conditions. While
computational approaches are improving in their ability to simulate real-world condi-
tions, this remains an area where experimental methods may be necessary to validate
predictions [23].

Molecules with flexible structures, such as large organic compounds, present a further
challenge [29]. Each conformer may lead to a different crystal packing, significantly in-
creasing the number of potential polymorphs. Historical CSP methods are well-suited to
small, rigid molecules but struggle to accurately model polymorphs of these molecules
due to the significant number of degrees of freedom need to be explored complicating
the search for stable polymorphs [28]. Accurate prediction of polymorphs requires the
use of high-level computational techniques, such as DFT simulations, which are compu-
tationally expensive. As the size and flexibility of the molecule increase, so too does the
computational cost of accurately predicting the crystal structures. CSP methods must
balance computational efficiency with accuracy, often relying on approximations or ML
models to reduce the search space [15].

Despite the challenges, there have been significant advancements in CSP methods. ML
and artificial intelligence techniques are now being employed to guide the search for
polymorphs by learning from existing databases of crystal structures and predicting
the most likely polymorphs for new compounds. Genetic algorithms, which mimic the
process of natural selection, have also proven useful in identifying stable polymorphs
by iteratively refining possible crystal structures and selecting the most promising can-
didates [30]. Threshold algorithms have been employed to determine energy barriers
between hypothetical crystal structures determining polymorph stability [31].

Additionally, utilising a mixture of faster throughput classical forcefield techniques have
been used to ensure thorough searching of a crystal landscape and post QM methods
used on low energy structures for greater accuracy of predictions for complex molecules.
This approach allows for a more accurate calculation of lattice energies, which is critical
in determining the most stable polymorph [32].

CSP therefore allows us to analyse and investigate the crystal structures of molecules
before synthesis. In materials discovery, this capability can be used to design substances
in silico to achieve desired properties and to determine whether synthesis is necessary
or appropriate. Our workflow has shown notable success particularly in predicting the
structures of rigid molecules [33]. However, predicting the structures of flexible molecules
remains a significant challenge due to their high number of degrees of freedom.



25

Chapter 3

Theory, Methods and Programs

This chapter provide an overview of the theoretical frameworks and methodologies em-
ployed throughout this thesis.

Section 3.1 discusses DFT, its origins, and its application in performing energy eval-
uations and geometry optimisations for molecular and crystalline systems. Electronic
structure calculations, semi-empirical approaches, and force-field calculations are exam-
ined, highlighting their roles in modelling molecular behaviour. Additionally, DMA is
described as a technique for assessing molecular conformations and charge distributions.

Section 3.2 focuses on statistical methods, including Principal Component Analysis
(PCA) and k-means clustering. These techniques are utilised to reduce data complexity
and analyse structural patterns within datasets.

Section 3.3 explores conformer search methods used to identify molecular conforma-
tions suitable for crystal packing. Molecular simulation techniques are also discussed,
featuring three distinct conformational search tools, RDKit, Conformer Rotamer En-
semble Sampling Tool (CREST), and an Low Mode Conformer Search (LMCS), and
their applications in exploring PESs.

Section 3.4 details methods for comparing molecules and molecular crystals. This in-
cludes calculations of surface areas and PXRD analysis. The section explains how these
methods facilitate structural comparisons and describes approaches for predicting NMR
chemical shifts.
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3.1 Energy Models

3.1.1 Hartree-Fock Theory

HF theory is a fundamental method in quantum chemistry for approximating the wave-
functions and energies of many-electron systems. It is an extension of the Hartree
method, which itself approximates the many-electron wavefunction as a product of
single-electron wavefunctions [34]. In HF theory however, the Pauli exclusion principle
is explicitly incorporated using an anti-symmetrised wavefunction, known as a Slater
determinant, to describe the electron configuration [35].

HF Equations

The starting point of HF theory is the many-electron Schrödinger equation, which de-
scribes the total electronic energy of a system:

ĤΨ(r1, r2, . . . , rN ) = EΨ(r1, r2, . . . , rN ) , (3.1)

where Ĥ is the Hamiltonian of the system, Ψ is the many-electron wavefunction, E is
the total energy, and ri are the positions of the electrons.

As mentioned previously, the wavefunction Ψ is approximated as a Slater determinant
of single-electron wavefunctions ψi(ri), ensuring the antisymmetry property required by
the Pauli exclusion principle:

Ψ(r1, r2, . . . , rN ) =
1√
N !

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

ψ1(r1) ψ2(r1) · · · ψN (r1)

ψ1(r2) ψ2(r2) · · · ψN (r2)
...

... . . . ...

ψ1(rN ) ψ2(rN ) · · · ψN (rN )

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

. (3.2)

The HF method seeks to minimise the energy by varying the orbitals ψi(ri), subject to
the orthonormality constraint, leading to a set of coupled integro-differential equations
known as the HF equations [36]:

F̂ [ψi]ψi = ϵiψi , (3.3)

where F̂ is the Fock operator, and ϵi are the orbital energies. The Fock operator consists
of three terms:
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F̂ [ψi] = ĥ+
N∑︂

j=1

(︂
Ĵ j − K̂j

)︂
, (3.4)

where ĥ represents the one-electron part of the Hamiltonian, which includes the kinetic
energy of the electron and its attraction to the nucleus. The term Ĵ j , known as the
Coulomb operator, accounts for the repulsive interaction between the electron in orbital
ψi and the electron in orbital ψj . Finally, K̂j is the exchange operator, which arises from
the antisymmetry of the wavefunction and represents the exchange interaction between
electrons with the same spin.

The Fock operator depends on the orbitals ψi, making the HF equations non-linear.
Therefore, the solution requires an iterative procedure known as the Self Consistent
Field (SCF) method where the orbitals are updated until the solution converges to a
consistent set of orbitals and energies [35].

HF theory explicitly accounts for the exchange interaction which arises due to the an-
tisymmetrisation of the wavefunction and results in the exchange operator K̂j . This
is a uniquely QM effect that has no classical analogue [34]. Additionally, HF employs
the mean-field approximation, where each electron is considered to move in an aver-
aged potential generated by the other electrons. While this simplifies the interactions,
it neglects electron correlation, which refers to the instantaneous, real-time interactions
between electrons that are not fully captured in this approximation [35]. Although ex-
change interactions are accounted for, the dynamic correlation of electron motions is
not, which can significantly impact the accurate description of many-electron systems.
In turn, this limitation necessitates the development of more advanced methods, such
as post-HF techniques and DFT, which provide better treatment of electron correlation
[37].

3.1.2 Density Functional Theory

One such method is DFT, which approaches the problem of electron correlation differ-
ently. Instead of focusing on the wavefunction, DFT expresses the energy of a system
as a function of the electron density, ρ(r), greatly simplifying the treatment of many-
electron systems [37]. DFT therefore offers a more computationally efficient way to
incorporate electron correlation effects through exchange-correlation functionals, which
approximate both the exchange and correlation energies. In the following section, we
will discuss the principles of DFT and how it addresses some of the limitations inherent
in HF theory, particularly with respect to electron correlation.

In quantum mechanics, we can obtain the electron density of a system by taking the
square modulus of the wavefunction and integrating over the coordinates of N − 1 elec-
trons:
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ρ(r) =
∫︂

|Ψ(r1, r2, . . . , rN )|2 dr2 . . . drN . (3.5)

According to the Schrödinger equation:

E |Ψ⟩ = Ĥ |Ψ⟩ . (3.6)

Evaluation of the electronic Hamiltonian operator given by the Schrödinger equation
yields the total energy of the system, which is composed of the sum of its kinetic and
potential parts.

Etotal = Ekinetic +Epotential (3.7)

The potential terms are derived from electron–nuclei, electron–electron, and nuclei–nuclei
interactions:

H = −1
2

Nelec∑︂
i=1

∇2
i −

Nnuclei∑︂
a=1

Nelec∑︂
i=1

Za

|Ra − ri|
+

Nelec∑︂
i=1

Nelec∑︂
j>i

1
|ri − rj |

+
Nnuclei∑︂

a=1

Nnuclei∑︂
b>a

ZaZb

|Ra − Rb|
,

(3.8)

where r and R are the positions of an electron and a nucleus respectively, Z is the charge
of the nucleus, and ∇ is the Laplacian.

Due to the computationally intensive solution to the equation, it is not feasible to
solve for a system of more than a few electrons; therefore we make assumptions to
reduce the computational cost without significant loss in accuracy. If we apply the
Born-Oppenheimer approximation, we treat electrons as QM objects and nuclei as point
charges. Therefore, we treat nuclei-nuclei interactions as a function of atomic positions
which can enable the solving of the electronic energy with the nuclear energy as con-
stant. This enables the determination of the total energy for that set of atomic positions.
Consequently, this allows for energy minimisation by varying the atomic positions until
the energy is minimised.

If we assume that we can take two different external potentials Vext and V ′
ext which

describe the electron–nuclei interactions that result in the same electron density ρ, we
determine that there must also be two wavefunctions associated with these potentials,
Ψ and Ψ′. If we take Ψ′ as an approximate wavefunction for H, we obtain from the
variational principle that:

⟨Ψ′|H|Ψ′⟩ > E0 (3.9)



3.1. Energy Models 29

⟨Ψ′|H ′|Ψ′⟩ + ⟨Ψ′|H −H ′|Ψ′⟩ > E0 (3.10)

E′
0 + ⟨Ψ′|Vext − V ′

ext|Ψ′⟩ > E0 (3.11)

E′
0 +

∫︂
ρ(r)

(︂
Vext − V ′

ext

)︂
dr > E0 (3.12)

Similarly, if we take Ψ as an approximate wavefunction of H ′, we get:

E′
0 −

∫︂
ρ(r)

(︂
Vext − V ′

ext

)︂
dr > E0. (3.13)

Through addition of Equations 3.12 and 3.13, we find that:

E′
0 +E0 > E′

0 +E0. (3.14)

This equation states that the assumption that any two potentials can create the same
electron density is incorrect, and therefore the energy is a unique function of the electron
density. Therefore, we can bypass the wavefunction, providing a basis for DFT.

We also know that the approximate electron density integrates to the number of electrons
in the system:

∫︂
ρ(r) dr = Nelec. (3.15)

For any density that is not the ground-state density:

E0[ρ
′] ≥ E0[ρ] . (3.16)

Finally, there is a variational way in which one can solve for the electron density, which
we will discuss in Kohn-Sham theory.

Kohn–Sham Theory

Kohn–Sham theory is an approach that reformulates an N -electron problem as multiple
single-particle problems. This is achieved by introducing a set of orbitals that represent
a system of non-interacting electrons. A correction term is then added to account for
the difference between this model and the true interacting system. We can thus rewrite
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the Schrödinger equation in terms of the electron density. The Kohn–Sham functional
is therefore expressed as:

E[ρ] = Ts[ρ] +Ene[ρ] +Eee[ρ] +Exc[ρ] , (3.17)

where Ts[ρ] is the kinetic energy of the non-interacting electrons, Ene[ρ] is the nu-
cleus–electron interaction energy functional, and Eee[ρ] is the electron–electron inter-
action energy functional. Exc[ρ] is the exchange–correlation functional, which contains
both the kinetic energy not accounted for by Ts and the correlation contributions arising
from electron dynamics. This functional can be approximated in various ways, forming
the basis of many different DFT methods. Finally, Exc can be further decomposed into
the exchange energy Ex and the correlation energy Ec.

3.1.3 Basis Sets

Basis sets are mathematical functions used to represent the electronic wavefunctions of
atoms and molecules. By using basis sets, complex partial differential equations like the
Schrödinger equation can be converted into algebraic ones, making the computational
solving of QM problems feasible. A molecular wavefunction, which describes the distri-
bution of electrons in a molecule, is often approximated as a linear combination of fixed
sets of mathematical functions called basis functions.

The wavefunction Ψi(r) of a molecular orbital can be expressed as a linear combination
of basis functionsGα(r), each representing an atomic orbital. This relationship is written
as:

Ψi(r) =
NBF∑︂
α=1

Gα(r)Cαi , (3.18)

where Ψi(r) is the molecular orbital, NBF is the total number of basis functions, Gα(r)
is a basis function, and Cαi are the coefficients that determine the contribution of each
basis function to the molecular orbital [38].

The exact solution for the wavefunction of the hydrogen atom is represented by Slater
Type Orbital (STO)s, which provide an accurate description of atomic orbitals due to
their ability to capture the electron behaviour near the nucleus. A Slater function for
an atomic orbital is expressed as:

sν(r) = e−ζν |r| = e−ζν

√
x2+y2+z2 , (3.19)
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where ζν is the orbital exponent that controls the spread of the orbital. While STOs are
physically accurate, they are computationally inefficient because the integrals needed to
solve molecular problems are challenging to compute [39].

To improve computational efficiency, Gaussian Type Orbitals (GTOs) are often used
instead, which can be expressed as:

gν(r) = e−ζν r2
= e−ζν(x2+y2+z2) . (3.20)

Gaussian functions decay more rapidly than Slater functions due to the quadratic de-
pendence on r, and they lack the nuclear cusp. However, GTOs are preferred in most
quantum chemistry calculations because their integrals are easier to compute owing to
the Gaussian product theorem [40].

Contracted and Primitive Gaussians

To regain some of the accuracy lost by using Gaussian functions, a set of primitive
Gaussians is combined to form a contracted Gaussian. A contracted Gaussian is a linear
combination of several primitive Gaussian functions with different exponents. By using
multiple Gaussians with varying spreads, the contracted Gaussian can approximate the
behaviour of an atomic orbital more accurately [41].

gν(r) = xk ym zn e−ζν r2
= xk ym zn e−ζν(x2+y2+z2) , (3.21)

where k, m, and n are the powers of the Cartesian coordinates, and l = k +m+ n is
the angular momentum quantum number. A contracted Gaussian is formed by linearly
combining multiple primitive Gaussians as follows:

Ga(r) =
Nα∑︂
ν=1

gν(r) cν , (3.22)

where Ga(r) is the contracted Gaussian, gν(r) are the primitive Gaussians, cν are the
contraction coefficients, and Nα is the number of primitive functions used in the con-
traction.

Basis sets are composed of these contracted Gaussian functions and are tailored to
provide an appropriate balance between computational efficiency and accuracy. Minimal
basis sets use a small number of Gaussian functions to describe each atomic orbital while
extended basis sets, such as double-zeta or triple-zeta, use multiple functions for each
orbital to better describe the flexibility of electron distributions.
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3.1.4 Pople Basis Sets

Pople basis sets, developed by John A. Pople and collaborators, represent a widely used
family of Gaussian-type basis sets in quantum chemistry. These basis sets are designed to
balance computational efficiency and accuracy, particularly for HF and DFT calculations
[42]. The flexibility and performance of Pople basis sets make them useful for describing
electronic structures, especially in the context of molecular interactions and chemical
reactions.

Pople basis sets use a split valence approach which distinguishes between core and valence
electrons, allowing different levels of precision for their description. Core electrons,
which are closer to the nucleus and less involved in bonding, are represented by fewer
Gaussian functions. Since core orbitals undergo smaller distortions in various chemical
environments, fewer functions suffice for an accurate description. Conversely, valence
orbitals, which play a significant role in bonding, are represented by multiple Gaussian
functions. This added flexibility captures changes in electron distribution during bonding
and chemical reactions [43].

Core orbitals are typically described by contracted Gaussians which are combinations
of multiple primitive Gaussian functions. This reduces the computational cost while
retaining an accurate representation of core orbitals which are tightly bound and less
affected by chemical reactions. On the other hand, valence orbitals are described using
split functions with multiple Gaussian functions of varying exponents. This increased
flexibility is crucial for valence orbitals as they adapt more readily to different chemical
environments during bonding [44].

Further refinements to Pople basis sets involve the inclusion of polarisation functions,
denoted by symbols such as (d), (p), or (f) following the basis set name. For example,
6-31G(d) or 6-31G(d,p) incorporates polarisation functions to account for angular distor-
tions in the electron cloud. These functions are crucial for accurately describing complex
electron distributions, including those associated with lone pairs or external fields [45].
Additionally, diffuse functions, indicated by a plus sign (+), may be appended to Pople
basis sets. These functions, characterised by small exponents, are used to represent
loosely bound electrons, which play a significant role in systems such as anions or ex-
cited states [46]. While these enhancements improve the accuracy of calculations, they
also increase computational cost [47].

3.1.5 Gaussian09

Gaussian09 is a computational chemistry program that allows us to perform (a) single-
point energy calculations using QM methods and (b) geometry optimisations [48].
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a) A single-point energy calculation determines the energy of a molecule at a fixed ge-
ometry, without altering its atomic structure. This type of calculation is useful for eval-
uating the energy of a system as a reference point for different molecular conformations.
Gaussian performs calculations based on parameters defined by the user, including the
choice of basis set, computational method, dispersion corrections, and other settings. In
single-point energy calculations, Gaussian computes the electronic wavefunction using
the selected method by solving the SCF equations. This yields the ground-state elec-
tronic density and the corresponding energy of the system. Once the wavefunction is
established, the program computes the total energy of the system, which includes con-
tributions such as electronic energy, nuclear repulsion, and exchange-correlation. The
final output is a single energy value, often used as a comparative reference.

b) Geometry optimisation involves adjusting the atomic positions of a molecule to find
its local minimum energy geometry. Gaussian performs a single-point energy calculation
to establish the initial energy and forces on the atoms. It then calculates the forces on
each atom, which correspond to the negative gradient of the energy with respect to
atomic positions. The gradient indicates the direction in which the energy decreases
most rapidly. Utilising the Berny optimisation algorithm, Gaussian iteratively adjusts
the atomic coordinates, moving the system toward a lower energy configuration [49].
The algorithm evaluates step size and direction based on the forces and the Hessian
matrix, which is the second derivative of energy.

This process continues until convergence criteria are met. These criteria include the max-
imum force, maximum displacement of atoms, and changes in energy between iterations
falling below specified thresholds. The final output provides the optimised geometry
and corresponding energy.

Whilst the approach is often successful for many systems, geometry optimisation can
encounter challenges such as convergence issues if the initial structure is far from a
minimum or if the system has a complex PES.

3.1.6 Density Functional Tight Binding

Density Functional Tight Binding (DFTB) is a simplified version of DFT that approx-
imates total energy through a second-order expansion in charge density fluctuations,
thereby reducing the complexity of solving the Kohn-Sham equations, a fundamental
component of DFT. Instead of explicitly calculating all electronic integrals, DFTB em-
ploys pre-computed parameters often derived from DFT calculations to describe the
Hamiltonian matrix elements between atomic orbitals. This approach imparts a ’tight-
binding’ characteristic, allowing DFTB to retain essential electronic structure infor-
mation without the computational expense of full DFT. DFTB effectively captures
chemical bonding effects by considering interactions between atoms up to two and three
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centres, providing reasonable accuracy in describing molecular and material properties.
Its reliance on parametrised terms, rather than complex exchange-correlation energy
calculations, enables significantly better scaling with system size, making it a valuable
tool for studying complex chemical and material systems that are typically challenging
for traditional DFT methods.

An enhanced version, known as DFTB+, incorporates several extensions to the original
method, addressing some limitations, such as the need for extensive parameterisation
similar to force fields [50]. The Hamiltonian matrix elements are defined in an ele-
ment pair-wise manner, which requires thousands of empirical parameters, limiting the
method’s applicability to a broader range of elements in the periodic table. Although
DFTB combines the efficiency of earlier minimal basis set methods with the improved ac-
curacy of DFT, surpassing HF theory in performance, the use of small minimal atomic
orbital basis sets restricts the accurate representation of simplified Kohn-Sham equa-
tions. This can lead to inaccuracies in predicting certain properties, such as chemical
bond energies, necessitating further optimisation with tools. This issue is not unique to
DFTB but is common across all semi-empirical methods.

3.1.7 xTB

The limitations of tight-binding methods have led to the development of Extended Tight
Binding (xTB) methods, specifically designed to accurately describe molecular proper-
ties such as geometries, vibrational frequencies, and non-covalent interactions for up
to thousands of atoms [51]. Whilst also employing a tight-binding approach, xTB is
empirically parametrised to be more versatile, handling a broader range of elements
and environments. This makes xTB more transferable across diverse chemical systems,
including organic, inorganic, and transition metal complexes.

To solve for the electronic structure, xTB employs the SCF method, similar to other QM
approaches like HF and DFT. The process begins with an initial guess for the electron
density or molecular orbitals. Using the tight-binding Hamiltonian, xTB calculates the
electronic structure of the system. The electron density is then updated based on the
results of the electronic structure calculation, and this process is repeated iteratively
until the electron density converges.

One of the major advantages of xTB is its speed, as it is much faster than ab initio
methods. This makes xTB highly suitable for large systems and high-throughput cal-
culations, where computational efficiency is critical. xTB also scales well, allowing it to
handle molecular systems with hundreds or even thousands of atoms.
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GFN1-xTB uses a similar approximation scheme to DFTB, primarily employing second-
order terms with some third-order corrections, but without relying on element pair-
wise parameterisation. This approach enables consistent parameterisation across a large
portion of the periodic table, covering elements with proton numbers up to 86.

GFN2-xTB incorporates advanced physics, including a multipole electrostatic treatment
up to quadrupole terms and the latest D4 dispersion model, eliminating the need for
pair-specific parameterisation [52]. It offers improved accuracy and is computationally
more efficient by avoiding the Self Consistent Charge (SCC) iterations that are typically
the computational bottleneck in most semi-empirical QM methods.

3.1.8 Periodic DFT

In band theory, as implemented in codes like Vienna Ab initio Simulation (VASP), solids
are modelled as collections of nuclei and electrons, with the electronic structure deter-
mined by solving the Schrödinger equation. This equation accounts for the interaction of
electrons with both the nuclei and each other. Within this framework, chemical bond-
ing emerges naturally as a property of the system’s ground state. Both bonded and
non-bonded electrons are treated equally, and the interaction between electrons and the
external potential is derived directly from solving the equation.

Band theory can employ a simplified model that neglects electron–electron interactions,
known as the one-electron model, where the Schrödinger equation is written as:

E Φ = − h̄2

2me
∇2Φ + V (r)Φ , (3.23)

where E is the energy eigenvalue of the electron, h̄ is the reduced Planck constant, me is
the electron mass, Φ(r) is the electron wavefunction, and V (r) is the external potential
experienced by a single electron at position r.

This potential typically arises from the atomic nuclei and is treated as static. Since the
potential V (r) acts independently on each electron and depends only on spatial position,
this formulation represents the most basic version of the Schrödinger equation used in
band theory.

To account for electron–electron interactions, the one-electron formulation is extended
to more complex systems using methods like HF or DFT. In DFT, the many-body
Schrödinger equation is reformulated to include electron–electron interactions within
the potential. DFT simplifies the problem by mapping the many-electron system onto
an auxiliary system of non-interacting particles that experience an effective potential,
making it computationally feasible to study large systems while accurately accounting
for these interactions.
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In periodic systems such as crystals, the nuclear (external) potential is a sum of Coulomb
potentials from the nuclei, expressed as:

V (r) =
∑︂

i

Vi

(︂
r − Ri

)︂
=
∑︂

i

Zi

|r − Ri|
, (3.24)

where Zi represents the charge of nucleus i at position Ri, and r is the position of the
electron. For a periodic crystal, the potential repeats itself at intervals determined by
the crystal’s translation vectors Tj , making the potential periodic:

V (r + Tj) = V (r) . (3.25)

The index j labels all combinations of integer multiples of the reciprocal lattice basis vec-
tors, effectively enumerating all the plane waves consistent with the crystal’s periodicity.
This periodicity enables the potential to be expressed as a Fourier series:

V (r) =
∑︂
Gj

V (Gj) e
i Gj ·r , (3.26)

where Gj are the reciprocal lattice vectors, which form a reciprocal lattice corresponding
to the real-space lattice defined by Tj .

In a crystal with real-space lattice vectors a, b, and c, the corresponding reciprocal
lattice vectors a∗, b∗, and c∗ are given by:

a∗ =
2π
V

b × c , (3.27)

Plane-Wave Basis in Periodic Systems

In plane-wave DFT, the wavefunctions are expanded as a series of plane waves. The
electron wavefunction is approximated by a plane-wave trial function:

Φk(r) = ck e
i k·r , (3.28)

where k is the wavevector and ck is a coefficient. Substituting this trial function into
the Schrödinger equation for free space gives:

− h̄2

2me
∇2Φk(r) =

h̄2 |k|2

2me
Φk(r) . (3.29)
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Thus, the term h̄2 |k|2
2me

is the eigenvalue corresponding to the eigenstate Φk(r).

First Brillouin Zone and Zone Folding

In periodic systems, the wavevector k takes values in the range −π
a < k ≤ π

a . The
wavefunction takes the form of a Bloch function, combining a plane wave with a periodic
function:

Φk(r) = ei k·r uk(r) . (3.30)

Here, uk(r) is a periodic function with the same periodicity as the crystal lattice, and
the phase factor ei k·r reflects the translational symmetry of the lattice. The function
uk(r) can itself be expanded in a Fourier series:

uk(r) =
∑︂
Gj

ck+Gj
ei Gj ·r . (3.31)

This Fourier expansion of uk(r) allows for the treatment of periodicity and variations
in the electron wavefunction within the crystal lattice.

3.1.9 Vienna Ab initio Simulation Package

The VASP software package performs periodic DFT calculations, enabling high-accuracy
crystal structure optimisations. While DMACRYS (described in section 3.1.10) can min-
imise the lattice energy of crystal structures generated from CSP using rigid molecular
conformations, further energy minimisation is possible by relaxing the molecular confor-
mations within the unit cell [53–56]. VASP can be utilised to perform periodic DFT on
these crystal structures, providing more accurate energy calculations. This is achieved
by assuming translational invariance through periodic boundary conditions to minimise
the crystal structure.

In studies presented within this thesis, VASP optimisation begins with a fixed-cell re-
laxation, during which the atoms within the unit cell are allowed to relax while the
cell dimensions remain constant. Upon reaching a minimum-energy configuration, a
variable-cell relaxation follows, permitting changes in the unit cell’s shape and volume.
Finally, a single-point energy calculation is performed on the fully relaxed structure,
employing a higher plane-wave energy cut-off, a denser k-point mesh, and tighter con-
vergence criteria to achieve a more accurate total energy.

Plane-wave DFT codes like VASP are generally preferred for periodic DFT due to their
inherent periodic nature. This formalism allows for efficient computation of electronic
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band structures, especially in systems with well-defined crystal geometries. The scala-
bility of plane-wave DFT is advantageous for large systems, especially when combined
with pseudo potentials that reduce computational complexity by focusing on valence
electrons, simplifying the treatment of core electrons.

However, a notable drawback of the plane-wave approach is the substantial number
of plane waves required to accurately represent localised states, such as those found
in molecules or defects within crystals. This can make the method computationally
intensive for systems with significant electron localisation.

3.1.10 DMACRYS

The crystal structures generated by the CLG are minimised using DMACRYS [57]. This
program calculates the lattice energies of crystal structures by summing both van der
Waals and electrostatic interactions between molecules. DMACRYS operates under a
rigid-body approximation, treating molecules as fixed units during optimisation. This
ensures that the overall crystal structure is energy-minimised with respect to both trans-
lational and rotational degrees of freedom.

In this thesis, repulsion and dispersion forces are modelled using the Buckingham po-
tential, which is widely used for molecular systems and is described by Equation 3.32:

ϕab(r) = Ae−Br − C

r6 , (3.32)

where A, B, and C are constants, and r is the interatomic distance between points a
and b. The exponential term models the repulsive interaction at short ranges, while the
second term accounts for the attractive van der Waals interaction, characterised by a
power-law decay proportional to r−6 at long distances.

The electrostatic interactions are modelled using Coulomb’s law, representing the force
between point charges in the system. The electrostatic force between two charges qa and
qb separated by distance r is given by Equation 3.33:

F = ke
qaqb

r2 , (3.33)

where F is the electrostatic force, ke is Coulomb’s constant 9 × 109 Nm2 C−2, q is the
charge, and r is the distance between points a and b.

However, atoms and molecules are anisotropic in nature, meaning that they are not
simple spherical point charges. The charge distribution is more complex, particularly
in molecules, due to electron clouds and chemical bonds. This anisotropy necessitates a
more accurate representation of the electrostatic interactions using multipole expansion.
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3.1.10.1 Distributed Multipole Analysis (DMA)

In DMACRYS, the electrostatic interactions are modelled using distributed multipoles,
which include dipoles, quadrupoles, and higher-order terms. These are computed via
the DMA method [58], which decomposes the molecular charge distribution into a set
of atomic multipoles, allowing for a more accurate representation of the electrostatic
potential and energy.

The use of multipole expansion extends the accuracy of the electrostatic modelling be-
yond simple charge-charge interactions, allowing DMACRYS to capture directional ef-
fects and polarisation that are crucial in determining the correct packing and interactions
in crystal structures. This method is particularly useful for complex molecules where hy-
drogen bonding, polar groups, and non-spherical electron distributions play a significant
role in the stabilisation of a crystal structure. In this thesis, a rigid-body approximation
has been used.

Conventional multipole analysis represents atoms or molecules as point multipoles of
rank k, where k = 0 corresponds to a monopole, k = 1 to a dipole, k = 2 to a
quadrupole, and so on. For example, a water molecule can be approximated as a dipole,
which is sufficient for simulating systems with large spatial separations. However, this
model becomes inaccurate for short-range interactions, such as hydrogen bonding, where
water would behave unrealistically. DMA provides a more detailed representation of a
molecule’s charge distribution, by modelling atoms up to hexadecapoles.

3.1.11 GDMA

GDMA software generates atom-centred multipoles to reproduce the electrostatics of a
molecule based on data derived from Gaussian calculations [58].

An electronic wavefunction describes the distribution of electrons in a molecule. The
multipole expansion expresses this distribution as a series of terms, each representing
a different order of spatial distribution. The first term in this series is the monopole
moment, denoted as q, which represents the total charge at a point. For an atom,
this corresponds to the net electronic charge. The second term is the dipole moment,
µ, which represents the first-order distribution of charge, indicating how the charge is
polarised or how the positive and negative charges are separated. Following this, the
quadrupole moment, Q, describes the second-order distribution, providing information
about the shape of the charge, such as its elongation or compression. Higher-order
multipoles, such as octapoles and hexadecapoles, offer even more refined details of the
charge distribution.
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The total potential V (r) due to a charge distribution at a distance r from the atom
centre can be expanded in terms of these multipole moments. This expansion is given
by:

V (r) =
1
r

⎛⎝q+ r · µ

r2 +
1
2
∑︂
i,j

ri rj Qij

r4 + . . .

⎞⎠ , (3.34)

where ri and rj are the ith and jth components of the vector r, r is its magnitude, q
and µ represent the monopole and dipole moments respectively, and Qij represents the
components of the quadrupole moment tensor, describing how the charge is distributed
in a non-spherical manner around the centre.

DMA distributes these multipole moments over atom centres. This process involves
partitioning the total electron density into localised regions associated with each atom.
For each of these regions, the local multipole moments, such as charge, dipole, and
quadrupole, are calculated by integrating the electron density over the localised region
using basis functions. The original electronic wavefunction or density is then represented
as a sum of these local multipole moments, offering a detailed picture of the charge
distribution throughout the molecule.

3.1.12 MULFIT

One issue with GDMA is that it can generate high-rank multipoles, which increase
computational cost. The program MULFIT addresses this by refitting the multipoles to
lower ranks without significantly altering the electric potential [59, 60].

As the multipole expansion of the series converges, some high-order terms may become
redundant as these multipoles provide finer details of the charge distribution. Reducing
the rank of a multipole minimises the use of high-order multipoles while preserving
the essential features of the charge distribution. Therefore these terms can be dropped
without drastically altering the charge distribution and reduce the cost of DMA.

MULFIT performs an orthogonalisation procedure to transform the multipoles into a
set of orthogonal components. This transformation helps to identify linearly dependent
or redundant multipoles, which can then be eliminated or merged. After this orthog-
onalisation, MULFIT fine-tunes the remaining multipoles to best reproduce the target
properties, such as the electrostatic potential and dipole moment, using the reduced set
of multipoles.

MULFIT achieves this by minimising the error ϵ between the reference potential Vref(r)

and the potential Vfit(r) generated by the fitted multipoles:
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ϵ =
∑︂

r

(Vref(r) − Vfit(r))
2 . (3.35)

where Vfit(r) is the summation of calculated as:

Vfit(r) =
∑︂

i

qi

|r−Ri|
+
∑︂

i

µi · (r−Ri)

|r−Ri|3
+
∑︂

i

Qi · (r−Ri)(r−Ri)

|r−Ri|5
+ . . . , (3.36)

where qi, µi, and Qi represent the monopole, dipole and quadrupole moments, respec-
tively, located at centre Ri. The electrostatic potential is evaluated at a set of grid points
r, and the total fitted potential Vfit(r) is constructed as a sum of contributions from each
multipole at each site i. MULFIT optimises these parameters to best match the reference
potential while systematically reducing the rank and eliminating insignificant terms.
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3.2 Statistical Methods

3.2.1 Euclidean Distance

In this work, we use the Euclidean distance to describe the real distance between any
two points. The Euclidean distance is a metric used to calculate the distance between
two objects in n-dimensional space:

d(A,B) =

⌜⃓⃓⎷ n∑︂
j=1

(xjA − xjB)
2 , (3.37)

where xjA and xjB represent the values of the j-th feature for points A and B, respec-
tively.

3.2.2 Principal Component Analysis

PCA, first introduced by Pearson [61] and later refined by Hotelling [62], is an unsuper-
vised dimensionality reduction technique that uses feature variation to represent data
while preserving the global structure of the dataset [63]. PCA works by identifying
new axes, known as principal components, which are linear combinations of the original
features. These components capture the maximum variance in the data with the first
principal component accounting for the largest variance, the second capturing the next
highest variance and so on.

The data is first standardised to ensure that each feature contributes equally, especially
when the variables are measured in different units. Zij is the standardised value of data
point Xij where i is the data point of feature j. This can be calculated using:

Zij =
Xij − µj

σj
, (3.38)

where µj is the mean and σj is the standard deviation of the jth feature.

PCA computes the covariance matrix to assess how much each feature varies in relation
to others. The covariance between two features, j and k, is defined as:

Cjk =
1

n− 1

n∑︂
i=1

(Zij − µi)(Zik − µj) , (3.39)

where Cjk represents the covariance between feature j and k, while n is the number of
data points within each feature. The covariance matrix C is a square matrix, with each
element describing the covariance between a pair of variables.
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Once the covariance matrix is obtained, the eigenvectors and eigenvalues of C are calcu-
lated. Eigenvalue decomposition is performed similarly to as described in section 3.3.2.

C = V ΛV T . (3.40)

In this equation, V is a matrix whose columns are the eigenvectors, representing the
directions of maximum variance in the data. Λ is a diagonal matrix containing the
corresponding eigenvalues, which indicate the amount of variance described by each
eigenvector.

The dataset is then transformed onto a new coordinate system which is the projection
onto the principal components.

Xnew = ZV , (3.41)

where Z is the standardised dataset and Xnew is the dataset expressed in the new coordi-
nate system defined by these eigenvectors. Each row in Xnew represents the original data
point, but re-expressed as a combination of the new axes known as principal components.

Each principal component is defined by an eigenvector corresponding to an eigenvalue
λ1,λ2, . . . of the data’s covariance matrix. The eigenvalues quantify the amount of
variance in the original dataset captured by each component. The proportion of variance
explained by a principal component is determined by dividing its eigenvalue by the sum
of all eigenvalues. Components associated with the highest eigenvalues are considered
the most informative for representing the structure of the data.

The proportion of variance explained by each component can be visualised using a scree
plot, shown in Figure 3.1.
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Figure 3.1: Example scree plot illustrating the proportion of variance explained by
each principal component. A principal component accounting for a large amount of

variance conveys more information about the dataset.

This plot helps determine how many components to retain after performing PCA. When
a small number of components explain a large proportion of the total variance, effective
data approximation is achievable. Conversely, if the variance is distributed across many
components, dimensionality reduction may result in the loss of important information.
The cumulative variance explained by the selected components indicates how much of
the original data’s variability is preserved. For example, if the first three components
account for 90% of the variance, they provide a reliable approximation of the original
data.

3.2.2.1 Loading Scores

Loading scores represent the weights or coefficients assigned to each original feature
when forming a principal component. By analysing the loading scores of each of these,
it is possible to understand which features have the most influence in shaping that
component. This provides insight into the structure of the data and reveals how the
principal components are constructed from the original variables.

3.2.2.2 Geodesic Principal Component Analysis

When clustering molecular conformations based on torsion angles, Geodesic PCA is
more appropriate than PCA due to the nature of angular data. Torsion angles are
inherently circular, meaning that they exist on a continuous loop. This circularity
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presents significant challenges for standard linear methods like PCA, which assume that
data is distributed in a Euclidean space. Geodesic PCA, however, operates on manifolds
and accurately calculates geometric distances between points in circular space, ensuring
correct representation of such data.

Geodesic PCA has been widely applied in the study of molecular conformations, partic-
ularly in Ribonucleic Acid (RNA) and protein research, where torsion angles dominate
the conformational flexibility of the molecules [64, 65].

3.2.3 k-means Clustering

k-means clustering is an unsupervised machine learning technique based on Lloyd’s or
Elkan’s algorithm [66, 67] which assigns data points into k clusters where k is an in-
put parameter. These clusters can be used to assign unlabelled data into groups and
categories.

The algorithm works by randomly assigning a data point to each of the k clusters which
act as each clusters initial ”centroid”. All other data points are then assigned to the
cluster of the centroid closest to it based on Euclidean distance.

Figure 3.2: Stages of k-means clustering for a linear dataset. Stage 1 describes the
initial unlabelled linear dataset, stage 2 describes how centroids are randomly assigned
to a random data point, stage 3 describes assigning the data point to the cluster of the

nearest centroid and stage 4 describes the final labelled linear dataset.
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The effectiveness of the clustering process can measured by calculating the sum of square
distances between all clusters. This metric describes overall, how well each data point
has been assigned to a particular cluster.

V =
k∑︂

i=1

Ni∑︂
n=1

d(xin, ci)
2 , (3.42)

where i is the ith cluster, xin is the nth of data point belonging to cluster i, d is the
euclidean distance, Ni is the number of data points in cluster i and ci the centroid of
cluster i.

As a small value of V suggests better clustering, we wish to minimise this value using
an iterative approach. This will identify the optimum clustering arrangement which
reduces the sum of square distances across all clusters.

Once all data points have been assigned, the centroid of each cluster is reassigned to
be the mean of that cluster. Again, the V is calculated for the new centroids and the
process repeated until there is no change to the assignment of the clusters.

Figure 3.3: Stage 5 describes the position of the new centroids as the mean of all
data points within its cluster and stage 6 describes the final clustering of data points.

Steps 1-6 are repeated using a different random selection of initial data points which
define the first centroids. The iteration with the lowest sum of the square distances for
all clusters is the ideal clustering iteration.
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Figure 3.4: Initial centroids and final clustering arrangement with the smallest sum
of square distances for k-means clustering.

The sum of square distances from this second selection is less than that of the first
selection therefore is a more optimal grouping of data points.

3.2.3.1 Determination of k

As the value of k is an input parameter, it is useful to be able to identify its value using
an automated or systematic method. In this thesis, the ideal value of clusters has been
determined using an elbow plot.

Lets propose we have a dataset in which we wish to label into clusters shown in Figure
3.5

Figure 3.5: Example dataset for clustering using k-means clustering. Each point
should be defined to a distinct cluster.
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Here, we have performed k-means clustering on the dataset using a series of values of k.

(a) k=2 (b) k=3

(c) k=4 (d) k=5

Figure 3.6: Example assignment of data points to clusters using k-means clustering
with various values of k. Multiple values of k have been tested, and most result in poor

clustering, whereas k = 4 produces well-defined clusters.

The sum of squared distances for each value of k has been plotted and is presented in
Figure 3.7.
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Figure 3.7: Example elbow plot illustrating the determination of an appropriate
number of clusters for a dataset. Beyond k = 4, the reduction in the sum of squared
distances diminishes significantly compared to earlier decreases, indicating that four

clusters may adequately represent the data structure.

The sum of the square distances for all clusters will always decrease by increasing the
number of clusters. Though, after the ideal value of k, the reduction in the sum of square
distances is significantly decreases. The optimal value of k is the number in which
possesses the smallest value whilst also having the smallest sum of square distances.
Therefore this indicates that the optimal value of k = 4.

3.2.4 Silhouette Scores

To identify how well any data point is assigned to a cluster, we can measure how close
it is to its cluster rather than another cluster.

If the data point is equidistant between clusters, this suggests that it is poorly clustered.
Conversely, if the data point is close to a centroid, and far away from another, then the
data point has been well assigned. The metric for how well a point is assigned to a
cluster is known as the silhouette coefficient which can be calculated by:

sin =
d(xin, ci) − d(xin, cj)

max(d(xin, ci), d(xin, cj))
, (3.43)
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where sin is the silhouette coefficient, xin is the nth data point of cluster i, ci is the
centroid of cluster i and cj is the centroid of cluster j that is closest to xin that is not i.

The coefficient identifies the degree of uncertainty in the assignment of any data point.
Where the silhouette coefficient for a data point is close to 1, it suggests that the data
point is clustered well, and far away from other clusters. Where a coefficient is 0 the
data point is on the boundary between two clusters. Where the coefficient is -1 it is
closer to a different cluster.

A silhouette score, S is determined as the mean silhouette coefficient across all data
points such that:

S =
1

Ntotal

k∑︂
i=1

Ni∑︂
n=1

sin , (3.44)

where Ntotal is the total number of data points across all clusters.

Figure 3.8: Example variation of silhouette scores across different values of k in k-
means clustering. A maximum silhouette score occurs at k = 4, suggesting this value
optimises the separation of data points from neighbouring clusters to which they do

not belong.

Plotting the silhouette scores for varying numbers of clusters enables identification of
an ideal cluster count. In this instance, a maximum silhouette score is observed when
k = 4, indicating the ideal number of clusters.
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3.3 Conformer Search Methods

In principle, it is possible to create a full PES of a molecule by calculating the potential
energy in all possible configurations by utilising a grid based search. The resolution of
such a search would depend on the number of conformations generated. For systems
with few degrees of freedom, this approach is feasible such as our scan of the flexible
torsions Θ and ϕ in Figure 2.6. However this method scales poorly when working with
molecules with many degrees of freedom as the complexity scales exponentially. As a
result, alternative methods to explore the molecular PES must be used.

3.3.1 RDKit

RDKit can be used to sample conformational space by utilising distance geometry fol-
lowed molecular optimisation which can produce different molecular conformations used
to seed our CSP methodologies [68].

3.3.2 Distance Geometry

Distance geometry is used to produce a series of 3-dimensional coordinates. For this
to be achieved, an initial distance bounds matrix is created consisting of upper and
lower bounds for the distances between pairs of atoms within a molecule in. In this
process, fixed chemical bond lengths are used, including those between directly bonded
atoms, as defined by established covalent bond parameters. Bond angles are similarly
constrained by the molecular geometry. These values are derived from empirical data,
reflecting typical bond lengths and angles observed in structurally similar molecules.
Torsion angles, which influence the spatial arrangement of atoms separated by multiple
bonds, are also constrained but allow some flexibility. These are also guided by empirical
data to reflect energetically favourable conformations. For atoms separated by greater
distances, where direct bonding is not involved, distance bounds are estimated using
empirical rules such as van der Waals radii or data from experimental techniques like
NMR spectroscopy.

For example, if we wish to calculate the non-hydrogen distance bounds matrix for molec-
ular butane, C4H10, we can use C-C bond distances.

Figure 3.9: Molecular structure of butane with hydrogens removed for distance ge-
ometry
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The distance bounds matrix D where Dij = [lij ,uij ] where lij and uij are the lower and
upper bounds between atoms i and j would be:

Dij / Å C1 C2 C3 C4

C1 0 [1.45, 1.60] [2.40, 2.60] [3.60, 4.20]

C2 [1.45, 1.60] 0 [1.45, 1.60] [2.40, 2.60]

C3 [2.40, 2.60] [1.45, 1.60] 0 [1.45, 1.60]

C4 [3.60, 4.20] [2.40, 2.60] [1.45, 1.60] 0

Table 3.1: Lower and upper interatomic distances between carbon atoms in a molecule
of butane for distance geometry.

Once the bounds are set, RDKit generates a distance matrix which satisfies the distance
bounds matrix. For rigid molecules, the distance bounds matrix may be the distance
matrix.

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1.54 2.56 3.93

1.54 0 1.50 2.60

2.56 1.50 0 1.51

3.93 2.60 1.51 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.45)

Multi Dimensional Scaling (MDS) is then applied to transform the distance matrix into
3D coordinates. The goal of MDS in this context is to determine a set of 3D coordinates
such that the pairwise distances between atoms match the entries in the distance matrix
as closely as possible.

To proceed, the matrix is double-centred, which transforms the distances into inner
products.

D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2.3716 6.5536 15.4449

2.3716 0 2.2500 6.7600

6.5536 2.2500 0 2.2801

15.4449 6.7600 2.2801 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.46)

where D2 is the element-wise squared distance matrix. This allows for the calculation
of coordinates. The centring process involves using a centring matrix, H:
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H = I − 1
n

11T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.75 −0.25 −0.25 −0.25

−0.25 0.75 −0.25 −0.25

−0.25 −0.25 0.75 −0.25

−0.25 −0.25 −0.25 0.75

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.47)

The double-centred matrix, B, [69] can be calculated using formula,

B = −1
2HD

2H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.8638 1.0544 −1.0744 −3.8443

1.0544 0.6166 −0.5456 −1.1254

−1.0744 −0.5456 0.5422 1.0773

−3.8443 −1.1254 1.0773 3.8925

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.48)

Elements of matrix B have been rounded to 4 decimal places. The double-centred matrix
then undergoes eigenvalue decomposition via

B = V ΛV T , (3.49)

where V is an orthogonal matrix of eigenvectors and Λ is the diagonal matrix of eigen-
values, which are arranged in descending order.

This is achieved by solving:

det
(︂
B − λI

)︂
= 0 . (3.50)

This yields a degree-4 polynomial in λ. Numerical computation gives approximate eigen-
values:

λ1 ≈ 8.0598

λ2 ≈ 0.7708

λ3 ≈ 0.0848

λ4 ≈ −0.0002

(3.51)

For each eigenvalue λi is solved:

(︂
B − λiI

)︂
vi = 0 . (3.52)
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and then each eigenvector is normalised:

v⊤
i vi = 1. (3.53)

The eigenvectors are collected into the orthogonal matrix V :

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5979 −0.4722 0.2950 −0.5673

−0.3168 0.6863 −0.6088 −0.2039

0.1652 −0.3974 −0.6940 0.5727

0.7498 0.1854 1.0056 0.5558

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.54)

and the eigenvalues into the diagonal matrix:

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.0598 0 0 0

0 0.7708 0 0

0 0 0.0848 0

0 0 0 −0.0002

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.55)

Only the largest three eigenvalues are kept for 3D conformer generation which means:

Λ1/2
(3) =

⎡⎢⎢⎢⎢⎣
√

8.0598 0 0

0
√

0.7708 0

0 0
√

0.0848

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
2.8397 0 0

0 0.8779 0

0 0 0.2912

⎤⎥⎥⎥⎥⎦ (3.56)

The 3D coordinates, X, of the atoms are then computed from the eigenvectors and
eigenvalues:

X = V Λ1/2 , (3.57)

The corresponding eigenvectors, found in the matrix V , provide the directions in the 3D
space for placing the atoms. For butane, this results in the matrix:
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X ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.698 −0.4148 0.0859

−0.899 0.6025 −0.1774

0.469 −0.3490 −0.2021

2.128 0.1628 0.2928

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.58)

3.3.2.1 Optimisation

Generated conformations initially may not correspond to local minima configurations
and therefore, small adjustments to the atomic positions are made to produce a more
physically realistic conformations. To ensure conformations are chemically sound, we
apply an inexpensive Merck Molecular Force Field (MMFF)94 [70–74], which optimises
bond lengths, bond angles, and torsion angles while keeping the molecule within its
physical constraints.

3.3.3 Metadynamics

Metadynamics (MD) is an sampling technique designed to explore the free energy land-
scape of complex systems more efficiently. It is particularly valuable for studying
rare events such as chemical reactions, phase transitions, and molecular conformational
changes that occur on timescales inaccessible to conventional molecular dynamics meth-
ods [75, 76].

The method works by introducing a history-dependent biasing potential as the landscape
is explored. This bias discourages the system from remaining trapped in metastable
states, enabling it to escape and traverse less accessible regions of configuration space.
As a result, the simulation can uncover new conformational states or reaction pathways
that are rarely visited in standard MD.

MD also uses Collective Variables (CVs) which represent essential degrees of freedom
in the system [77]. By doing so, the method simplifies the complex, high-dimensional
energy landscape into a more tractable form [78]. This reduction preserves the essential
physics while making the exploration of relevant thermodynamic and kinetic features
computationally feasible. These CVs often correspond to slow, relevant motions such
as interatomic distances or torsion angles that govern the system’s transitions between
metastable states [79].

During a simulation, a bias potential is continuously added to the system [80]. The bias
potential is typically implemented as a series of Gaussian hills, which are added to the
space of the CVs as the simulation progresses. Each time the system visits a particular
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point on the free energy surface, a small Gaussian potential is deposited, raising the
energy at that point and facilitating the escape from local minima [76].

The Gaussian hills described by a Gaussian function:

V (s, t) =
∑︂

i

wi exp
(︄

− (s− si)2

2σ2

)︄
, (3.59)

where s is the CV, si is the position where the hill is added, wi represents the height (or
weight) of the hill, and σ is the width of the Gaussian. These Gaussian hills gradually
fill the energy wells in the landscape [79] and enable the overcoming energy barriers to
uncover new states or molecular conformations [75].

3.3.4 Conformer Rotamer Ensemble Sampling Tool (CREST)

CREST is a tool that provides quick and effective sampling of conformational space for
a molecule which is provided by the xTB program described in section 3.1 [51, 81].

CREST offers several methodologies. However, here we will discuss the latest develop-
ments namely iMTD-GC and the iMTD-sMTD workflows.

iMTD-GC

The iMTD-GC workflow uses xTB with Root Mean Square Deviation (RMSD) based
MD (section 3.3.3) to sample conformational space.

The CVs are given as the RMSD between previous minima on the PES during MD run
with the biasing potential applied described below (Equation 3.60).

Vbias =
n∑︂
i

kie
−α∆i

2 , (3.60)

where ∆i is the RMSD between minima, n is the number of reference structures, ki is
the pushing strength and α is the potential shape. The potential provides guiding forces
to drive the structure away from previous minima and into unexplored conformational
space. The values of α and ki are determined for each molecule by using a variety of
biasing potentials and tested using an iterative process.

In addition, the algorithm uses genetic z-matrix crossing for more efficient sampling.
This method refers to selecting two or more conformers based on their energy profiles
or structural diversity and converted them into Z-matrix representations; a geometry of
a molecule using internal coordinates. Portions of their internal coordinates are then
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exchanged to generate a new child conformer, emulating genetic crossover such as in
biological evolution.

For example, if two conformers were to undergo genetic Z-matrix crossing, a coordinate
such as the H–C–C–H torsion angle might be selected as the ”gene” to be swapped.
CREST could extract this torsion angle from the conformer and insert it into the scaffold
of the second conformer.

This new structure is then geometry-optimised and if both energetically favourable and
distinct from other members of the ensemble, it is retained and added to the conforma-
tional pool. The reference structure is then updated by utilising the genetic crossing.

The ensembles of conformers and rotamers generated from this method are collected
and from here onwards will be referred to as CREST conformers generated using the
iMTD-GC algorithm.

iMTD-sMTD

The iMTD-sMTD workflow utilises multiple MD runs and rather than updating the new
structures, Vbias is used as a global term for all runs by adding previously found minima.

The algorithm runs until convergence in the energy and number of conformations in
the ensemble. For each run, new bias structures are identified using PCA and k-means
clustering using torsion angles.

3.3.5 Low Mode Conformer Search (LMCS)

LMCS explores conformational space by investigating the direction of the eigenvector
for the low-frequency vibrational modes on the PES using Eigenvector following [82].
This is achieved by the determination of eigenvectors which are described as the normal
modes of vibration. We assume in this case that the path between conformations follow
generally low frequency modes.
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Figure 3.10: Movement of a trajectory on the potential energy surface using a low
mode search.

To enable the method to be applicable to conformer search applications, LMCS [83, 84]
determines saddle points. An initial local minimum is found by performing geometry
optimisation on any molecular conformation. Saddle points are then located by mak-
ing molecular perturbations of discrete step size until the change in energy becomes
smaller than a defined threshold suggesting a saddle point has been reached. The re-
sultant geometry at the saddle point is subjected to energy minimisation, identifying
a new minimum [85]. If a new global minimum is found, it it is designated as the
new reference point for further exploration. Subsequent perturbations and searches are
then initiated from this geometry, rather than from higher-energy structures. By con-
tinuously updating the search centre to the lowest-energy conformer found so far, the
method more efficiently guides the sampling process toward deeper regions of the po-
tential energy surface, thereby improving the discovery of low-energy conformers. When
the low modes are fully exhausted, MC sampling can be used to further explore the
space using a random mixture of low-mode eigenvectors.

The ensembles of conformers and rotamers generated from this method are collected
and from here onwards will be referred to as LMCS conformers.
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3.4 Comparison Methods

This section describes methods used for analysis of molecules and crystal features and
discusses how we can compare molecules and crystals to one another.

3.4.1 Shrake-Rupley Surface Area Calculations

The surface area of a molecule, particularly its Solvent Accessible Surface Area (SASA),
is calculated using the Shrake-Rupley method [86]. This method estimates the SASA
by placing a series of points equidistant from each atom centre and determining which
of these points are accessible to a solvent probe. Points that are accessible indicate the
solvent-exposed surface area, while those that are buried or occluded are ignored.

In this method, each atom in the molecule is treated as a sphere with its radius defined by
the van der Waals radius of the atom. To account for solvent accessibility, an additional
solvent radius is added to each atom’s van der Waals radius. This results in an effective
radius that reflects both the atom and the surrounding solvent. The SASA is calculated
by distributing a large number of uniform points across the new surface where each
point covers a patch. The areas of the exposed surfaces are calculated by the number of
distributed points to provide a measure of the area.

To differentiate between exposed and buried points on the surface of each atom, for each
sampled point, the algorithm checks if it is within a certain distance of another atom in
the molecule. If a sampled point is close enough to a neighbouring atom (considering
the van der Waals and solvent radii), it is classified as buried or inaccessible. This is
done by calculating the distances between the sampled points on an atom’s surface and
the centres of neighbouring atoms.

Once the exposed points have been identified, the algorithm calculates the accessible
surface area for each atom. Each exposed point corresponds to a small patch of the
atom’s surface, and the total area of these patches is summed to give the accessible
surface area of the atom. The total SASA for the entire molecule is then obtained by
summing the accessible surface areas of all the atoms in the molecule, accounting for
overlaps between atoms.
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Figure 3.11: Shrake-Rupley Surface Area. Red circles represent atoms van der Waals
surface, blue circle represents the solvent probe. The dashed line represents the solvent

accessible surface area, AShrake−Rupley.

3.4.2 PLATON

PLATON is a software tool used to generate PXRD patterns for molecular crystals
from the crystallographic data of a given crystal structure. It computes theoretical
PXRD patterns based on the lattice parameters, atomic positions, and symmetry of the
molecular crystal.

PLATON systematically generates sets of Miller indices (hkl), calculates the correspond-
ing d-spacings from the unit cell parameters, and determines the diffraction angles using
Bragg’s law.

nλ = 2d sin(θ), (3.61)

where n is the order of diffraction (typically n = 1 in PXRD), λ is the wavelength of
the incident X-ray, d is the interplanar spacing, and θ is the diffraction angle.

It also calculates the structure factor F (hkl) for each set of planes, which dictates the
intensity of each reflection in the PXRD pattern. The structure factor is the sum of the
scattering contributions from all atoms in the unit cell, considering their positions and
scattering powers given by:

F (hkl) =
∑︂

j

fje
2πi(hxj+kyj+lzj) (3.62)
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where fj is the atomic scattering factor of atom j, and (xj , yj , zj) are the fractional
coordinates of atom j. The Miller indices h, k, l define the lattice plane. The intensity
of each diffraction peak is proportional to the square of the structure factor:

I(hkl) ∝ |F (hkl)|2 . (3.63)

Using the calculated structure factors, PLATON determines the intensities of the diffrac-
tion peaks. The intensity of each peak depends on the atomic positions and the scattering
power of each atom in the unit cell.

This pattern produced shows the intensity of diffracted X-rays as a function of the
diffraction angle, reported as 2θ.

Figure 3.12: Simulated powder X-ray diffraction pattern of BENZEN03[87]

3.4.3 PXRD Comparison

Comparison of PXRD patterns can be a challenging endeavour due to the variations in
the pattern shape.

Dynamic Time Warping

In this thesis, Dynamic Time Warping (DTW) is employed to assess the similarity
between two PXRD patterns [88]. To compare two series of data; X = (x1,x2, . . . ,xn)

and Y = (y1, y2, . . . , ym), we could use the square distance between points to see how
well they are aligned. For a one dimensional sequence:
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D =
n∑︂

i=1
(xi − yi)

2 , (3.64)

where i is the ith point of series X, and j is the jth point of series Y . However, this
approach only applies if the series are of equal length, i.e. n = m.

A more effective method for comparing PXRD data involves allowing flexibility in the
matching process through DTW. This method identifies the optimal alignment between
two patterns by locally warping the positions of points and minimising their cumulative
distance, even when the sequences differ in length or exhibit local shifts and distortions.

To find the distance between two points for a one dimensional sequence we use:

D(xi, yj) = (xi − yj)
2 , (3.65)

We can calculate a cost matrix describing the pairwise distances between all points,

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D(x1, y1) D(x1, y2) · · · D(x1, ym)

D(x2, y1) D(x2, y2) · · · D(x2, ym)
...

... . . . ...

D(xn, y1) D(xn, y1) · · · D(xn, ym)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.66)

We compute a cumulative cost matrix, A, such that:

A(i, j) = C(i, j) + min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D(i− 1, j),

D(i, j − 1),

D(i− 1, j − 1)

(3.67)

We do this by first computing A(1, 1) = C(1, 1), then calculating other elements se-
quentially. The value A(n,m) provides us with the value of the DTW distance.

This adaptability makes the method particularly suitable for PXRD pattern analysis,
where minor variations can significantly influence direct point-to-point comparisons.
Although DTW is effective in identifying similarities between patterns, noise can cause
peaks to be misaligned, resulting in inaccurate comparisons.
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Sakoe-Chiba Band

The Sakoe-Chiba band introduces a constraint into the DTW algorithm by restricting
the warping path to a predefined band around the diagonal of the DTW cost matrix.
This band is defined by a maximum allowable deviation r from the diagonal, effectively
constraining the search space for the optimal warping path.

In the matrix representation, the DTW algorithm uses a matrix where the cell at position
(i, j) represents the cost of aligning the ith element of X with the jth element of Y .
The Sakoe-Chiba band limits the path to a narrow strip around the diagonal of this
matrix, meaning that if |i− j| > r, the corresponding cell in the DTW matrix is not
considered in the path calculation. This ensures that only points within a certain range
are compared, preventing excessive stretching or compression of the time series. In
addition, by reducing the number of cells that need to be evaluated, the Sakoe-Chiba
band can decrease the computational cost of the DTW algorithm.

This constraint ensures that the extracted distance measure remains robust and mean-
ingful, reflecting true structural similarities rather than artifacts of experimental error.
We call this distance calculated the constrained Dynamic Time Warping (cDTW) dis-
tance.

(a) Euclidean Distance (b) cDTW Distance

Figure 3.13: Comparison of comparing two different time series data using A) eu-
clidean distance B) constrained dynamic time warping distance

3.4.4 COMPACK

COMPACK is a computational tool designed to group crystal structures after comparing
their molecular packing arrangements [89]. It is primarily used to identify and remove
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duplicate structures that arise during crystal structure prediction or energy minimisa-
tion, and to compare experimental and predicted crystal structures. The method em-
phasises the packing similarity between two crystal structures by comparing the relative
positions and orientations of molecules in each structure.

The clustering process in COMPACK begins by selecting a reference molecule in each
crystal structure. This reference molecule serves as the centre for comparison and a
cluster of neighbouring molecules around it is considered. Typically the nearest 30
neighbour molecules are chosen to define the cluster. These neighbours are the closest
molecules in the crystal lattice and their relative arrangements are compared between
the two crystal structures.

Superposition of Molecular Clusters

COMPACK employs molecular superposition aligning clusters of neighbouring molecules
in the crystal structures. A least-squares fit is performed to superimpose the reference
molecule and its nearest neighbours from one structure onto the corresponding molecules
in another structure [90]. During this superposition, COMPACK minimises the RMSD
between the atomic positions of the two clusters.

Short intermolecular distances between atoms of adjacent molecules are focussed on, as
these distances play a critical role in defining the packing motifs of the crystal. These
nearest neighbour interactions contribute significantly to the stability and arrangement
of the crystal [91]. By comparing these distances, COMPACK determines whether the
molecular packing in two crystal structures is similar, even if there are slight differences
in molecular conformations.

COMPACK calculates the RMSD between the molecular clusters after superposition.
The total RMSD value represents the degree of similarity between the packing arrange-
ments in the two crystal structures. A low RMSD indicates high similarity in molecular
packing, whereas a high RMSD suggests significant differences in how the molecules are
packed.

After calculating RMSD values for all pairs of structures, COMPACK clusters those
with similar molecular packing. Structures with low RMSD values, indicating high
packing similarity, are grouped together as duplicates or variants of the same crystal
form. This approach is especially effective for identifying structures that share similar
packing motifs but may differ slightly in molecular conformation or orientation. This
process aids in removing duplicates from predicted crystal structures [92]. COMPACK
is robust enough to detect similarities even when the predicted structure exhibits slight
deviations in molecular conformation or positioning [93].
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Experimental Match

A structure is classified as an experimental match if, within a superimposed molecular
cluster, each pair of equivalent atoms in the cluster is no more than 20 % apart, and the
angular differences between the two clusters are less than 20◦. The RMSD for a cluster
of 30 molecules is reported as RMSD30.

3.4.5 ShiftMLv2

We utilise ShiftMLv2 which can be used to predict 1H and 13C NMR chemical shift values
for organic molecular crystals using a machine learning approach [94]. The training
data, derived from high-quality quantum chemical calculations, represents each atom
in a molecule through features capturing its local chemical environment. ShiftMLv2
employs a neural network model trained to minimise the difference between predicted
and reference chemical shifts.

The model uses supervised learning, with known chemical shifts serving as target out-
puts for each atomic environment. Parameters are optimised iteratively through back
propagation and gradient descent. Techniques like cross-validation and regularisation
are applied to prevent over fitting and ensure the model generalises well to new data.





67

Chapter 4

CCDC Blind test 2021

The following work has been in collaboration with Ramón Cuadrado, Joseph Glover,
Christopher R. Taylor and Graeme M. Day. The author, Cuadrado, Glover, Taylor and
Day ran CSP calculations on all sixth blind test targets and Day also provided his expert
advice. In addition, the author performed conformational searches, CSPs and geometric
optimisations of crystal structures which are presented here.

The CCDC organises blind tests to assess the current state of scientific methods in the
field of CSP. In these blind tests, various participants and research groups attempt to
predict the crystal structures of small molecules without prior knowledge of the experi-
mental structures.

The seventh CSP blind test, conducted from 2020 to 2022, presents unique challenges
for CSP examining a range of molecules. This chapter focuses on the CSP of target
XXX, depicted in Figure 4.1, and establishes the groundwork regarding the challenges
and areas of development necessary for future blind CSP studies.

(a)
Molecule A

(b) Molecule B

Figure 4.1: Target XXX for the Cambridge Structural Data Centre Blind Test 2021

In this study, we have been provided that for target XXX, there are two experimen-
tally known forms with different stoichiometries and the number of components in each
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stoichiometry is < 4. As a result, the following stoichiometries should be investigated:
1:1, 2:1 and 1:2 of molecule A and molecule B respectively. The challenges imposed by
this target is that there are two elements which both contribute considerably towards
computational cost. Firstly, there are multiple stoichiometries and secondly molecule B
has 5 flexible torsions. These coupled together means that there is a vast amount of
configurational space to explore.

The methods employed in this study follow the workflow depicted in Figure 2.12, utilising
multiple generated conformations for each of the different stoichiometries.
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4.1 Conformer Search

The PES of molecule B was explored using conformational searches with both LMCS
and CREST methods. For CREST, the iMTD-sMTD algorithm was used. The resultant
conformations were optimised with DFT using PBE0/6-311G(d,p) with GD3BJ and then
clustered within an RMSD threshold of 0.5 Å.

Despite using two different search methods and combining the results, conformational
searches yielded few conformers suggesting the landscape was not very well explored.
As a result, we attempted to improve our conformational search by utilising multiple
starting conformations. We suggest that utilising different starting positions would
enable better exploration of conformational space.

Conformers were manually selected which possessed distinctly different conformations
as shown in Figure 4.2.

(a) away and bent (b) toward and bent

(c) away and straight (d) toward and straight

Figure 4.2: Starting conformations of target XXX molecule B for the CREST con-
formational search. Each conformation is designed to be distinct from the others to
maximise exploration of the conformational space. KEY: Grey – carbon; white – hy-

drogen; red – oxygen.

Two main features were of particular interest: the position of the hydrogen atom in the
hydroxyl group and the conformation of the alkyl chain.

Molecule A and the conformers of molecule B underwent geometry optimisation at the
DFT level using Gaussian09 with the PBE0/6-311G(d,p) basis set and GD3BJ empirical
dispersion correction. The resulting structures were then clustered using RMSD with a
threshold of 0.5 Å, yielding a final set of 123 unique conformers.

Given the number of conformations and stoichiometries that needed to be explored
during the CSP process, it was determined that further reduction in computational cost
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was necessary. Therefore, the focus shifted towards conformations more likely to be
experimentally observed, emphasising the crystal structure of neat molecule B.

CANNOL, depicted in Figure 4.3, represents the neat crystal structure of molecule
B. Examination of CANNOL shows that molecule B crystallises with its alkyl chain
extended [95].

Figure 4.3: The crystal structure of molecule B, CANNOL from the Cambridge
structural database. Here, the alkyl chains are shown to be extended.

Particular attention was directed towards studying conformers featuring extended alkyl
chains. The orientation of the hydrogen atom on the hydroxyl group of molecule B could
not be determined with certainty. Analysis of the conformers indicated that they did not
exhibit significant variation in hydroxyl orientations. Consequently, it was considered
important to perform an OH scan to examine the energies of the molecule at different
angles.

For each conformer, such a scan was carried out by fixing all bonds and bond lengths
except for the OH group. The results indicated that energy minima were generally
found approximately 180◦ from the original OH orientation in the conformer. It is
proposed that future CSP efforts should incorporate these OH scans to enable a more
comprehensive exploration of this conformational space.
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4.2 Crystal Structure Prediction

CSP was performed on the DFT optimised conformers and their respective OH scans
in a co-crystal with the geometry optimised molecule A. Three different stoichiometries
were investigated, 1:1, 2:1 and 1:2 of molecule A and B respectively, each using different
amounts of sampling.

For the 1:1 case, the sampling shown in Table 4.1 was used.

Space group Number of valid structures

P 1 21 / c 1 50000

C 1 2 / c 1 50000

P 1 21 1 20000

P b c a 20000

P 21 21 21 10000

P -1 10000

Table 4.1: Number of valid crystal structures generated using the crystal landscape
generator for target XXX for the 1:1 stoichiometry. The number of crystal structures
correlates with how frequently each space group is observed within the crystallographic

structural database.

In the 2:1 and 1:2 case, the sampling of space group P 1 21 / c 1 was doubled. This
space group is among the most frequently observed symmetries for organic molecular
crystals and is therefore sampled more extensively. Ideally more sampling of these
structures would be conducted, however due to time constraints, we found that it was
more appropriate to investigate a larger number of conformers.
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4.3 Optimisation

In each of the CSPs, crystal structures within 10 kJ mol−1 were optimised using DFTB+.
This was chosen over VASP due to time constraints imposed by an impending deadline.
The structures were then optimised using DMACRYS.

Figure 4.4: Crystal landscape of the lowest 1500 crystal structures generated for
target XXX in the Blind Test 2021. Shown in red is the magnified low energy region

of the crystal landscape corresponding to 14 kJ mol−1 above the global minimum.

We predicted that the co-crystals formed with stoichiometries 1:2 (A:B). Both 1:1 and
1:2 were more stable than neat forms of molecule A and B. The 2:1 stoichiometry did
not appear to form stable structures.

Figure 4.5: Lowest energy structure for target XXX of the blind test obtained from
performing KEY: Grey – carbon; white – hydrogen; blue - nitrogen; red – oxygen.
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4.4 Conclusions and Future Work

The complete workflow employed for the prediction of target XXX has been presented.
As the experimental structure is not yet available, direct comparison for accuracy is not
possible. However, a list of the lowest-ranked crystal structures has been submitted to
the CCDC for review. The publication relating to this work has not yet been released.
Though this study has highlighted several areas warranting further exploration.

Firstly, the identification of conformers from different starting points emerged as a novel
idea that deserves additional investigation. It was observed that initiating searches from
varied starting positions led to the discovery of many new conformers not previously
identified as discussed in Chapter 5.

Secondly, for one of the targets, a PXRD pattern was available that could potentially
have been incorporated into the calculations. However, standard methods for integrating
such data into the CSP process were lacking. Including this information might improve
the accuracy of future CSP predictions which is to be discussed in Chapter 6.

Thirdly, packing rigid conformers alone may not be enough to determine experimentally
observable crystal structures. As performed in the case of molecule B, sampling around
each conformer may enable improved structure prediction as discussed in Chapter 8.
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Chapter 5

Conformer Search Methods

In this chapter, conformational search methods are explored in the context of their ap-
plication to CSP schemes. Previous work has employed LMCS as a primary tool for
sampling conformational space, owing to its superior performance compared with other
search methods available at the time [96]. However, recent years have seen the emer-
gence of new conformational search techniques that may offer improved determination of
conformations when exploring molecular conformational space. Notably, a recent pub-
lication by Pracht et al. describes the use of MD to sample low-energy conformational
space within the CREST program [81].

In this work, the commonly used LMCS method is benchmarked against CREST, with a
focus on exploring parameters potentially suitable for CSP applications. Subsequently,
the development of a new conformer search methodology is investigated. This involves
examining how multiple conformer search methods can be combined to achieve a more
comprehensive sampling of the PES.
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5.1 Clustering Methods

Before conducting investigations it is essential to establish a method for comparing
conformations. For any ensemble of conformations generated by a given method, it is
desirable to determine whether two conformations correspond to the same local minimum
on the PES. Therefore, a clear and well-defined comparison technique must be outlined
to enable effective bench marking.

Even if conformations occupy the same minima, their geometries and specific coordinates
might differ slightly due to numerical error. Therefore, it is necessary to employ a
method to eliminate duplicate conformations. While this problem may initially seem
trivial, it is crucial to ensure that the comparison process does not affect nearby minima
when evaluating different molecular conformations. This issue, known as over-clustering,
poses a challenge in clustering molecular geometries. This concept can also be applied
to comparing two different ensembles of structures generated by distinct methodologies.
Here, methods of comparing conformations are described.

5.1.1 Clustering Using Root Mean Square Deviation (RMSD)

RMSD-based clustering is an efficient method for grouping molecular conformations.
This approach calculates distances between equivalent atoms in different structures,
producing a score that reflects the similarity of the conformations. The use of the root
mean square emphasises larger interatomic deviations, so even a few mismatched atoms
can significantly influence the overall RMSD value.

RMSD =

⌜⃓⃓⎷ 1
N

N∑︂
i=1

⃓⃓⃓
r(A)

i − r(B)
i

⃓⃓⃓2
, (5.1)

where r(A)
i and r(B)

i are the position vectors of the ith atom in molecule or structure A
and and B respectively and N is the total number of atoms in one molecule or structure.

Although two conformers may be chemically identical, their calculated RMSD after
structural superposition is rarely exactly zero in practice. Minor residual differences
often arise due to numerical precision limits and floating-point rounding errors during
coordinate alignment, resulting in subtle deviations in atomic positions. Consequently,
practical RMSD thresholds are used and below which, conformers are considered prac-
tically identical.

Values below approximately 0.2 Å usually indicate virtually identical structures, dif-
fering only due to numerical noise. RMSDs between 0.2 and 0.5 Å often reflect minor
differences, such as variations in hydrogen atom positions, yet may still correspond to
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the same conformer. RMSDs exceeding 0.5 Å typically suggest a significant geometric or
conformational difference [97]. The precise threshold employed depends on factors such
as the molecule’s size, flexibility, and the specific purpose of the comparison, whether
for clustering in crystal structure prediction or distinguishing unique conformers [98].
These are shown in Figure 5.1.

Figure 5.1: Overlay of two molecules yielding an RMSD of 0.402 Å. The differing
orientation of the O–H functional group is highlighted in blue, while the mismatched
methyl group is shown in orange. Although the methyl group’s orientation is largely
inconsequential, the O–H group can engage in directional hydrogen bonding, signifi-
cantly influencing the intermolecular interactions within a crystal lattice. KEY: Grey
– carbon; white – hydrogen; red – oxygen; green – carbons belonging to the second

molecule.

Using RMSD alone, it may be difficult to resolve these differences, which may cause dis-
tinct conformations to be grouped together and potentially omitted from consideration
when exploring crystal landscapes.

The threshold for clustering conformations could be lowered further to mitigate these
issues; however, doing so may result in the inclusion of more geometrically and ener-
getically similar conformations, thereby increasing the computational cost of the CSP
calculations unnecessarily. Adding a check to see if the energy between conformers
is small is better, but might be insufficient as two conformer may hold similar ener-
gies whilst being geometrically distinct when it comes to directional functional groups.
Therefore an alternate method of ensuring conformers are clustered, whilst not removing
distinct conformations which hold directional functional groups, is necessary.
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5.1.2 Torsional Clustering

To tackle this problem, code has been written to cluster conformations based on torsion
angles. This approach compares equivalent torsion angles between conformations and
allows for resolving mismatched atoms such as in the example above. In addition, a Root
Mean Square (RMS) torsion angle can be used which can identify rotamers allowing for
higher resolution when clustering.

This code has been written to allow the user to cluster a series of conformations in the
xyz format; a typical format for molecule structures in computational chemistry. The
method removes duplicate molecular conformations using a list of user defined torsions
and for two conformations to be considered identical, two conditions must be met:

• The difference in the angle between any pair of equivalent torsions is within a
specified threshold.

• The root mean square difference of all pairs of torsion angles are lower than a
specified threshold.

The rationale for these constraints is to detect large torsional differences in molecular
conformations, whilst allowing for some molecular flexibility in the clustering. In princi-
ple it could be sufficient to cluster simply based on angular differences between any pair
of equivalent torsions. However, this may over-cluster conformations particularly those
in which multiple pairs of torsions are close to the angular limit. The use of a RMS
difference adds another criterion to be met in order for two conformers to be unique.
This reduces potential over-clustering as if a pair of conformers had many torsion angles
that were close to the torsion angle difference limit, they would be able to be treated as
unique.

Flexible torsions are automatically detected for any conformation; however, it is also
possible to manually specify which torsions to use for clustering. This allows the user
to deliberately exclude certain conformational changes that are not significant for their
investigation.

To ensure geometric accuracy when calculating torsional angles, these were defined as di-
rectional (clockwise or anticlockwise) relative to the torsion under study. This approach
prevents molecular conformations from being incorrectly classified as identical when, in
fact, their torsions are geometrically distinct despite having the same numerical values.

To address challenges associated with molecules exhibiting symmetry, a method was
required to identify equivalent torsional environments. For example, in the rotation of
a C–N bond in a NO2 group, multiple torsion angles may be geometrically equivalent.
Therefore, the rotational symmetry for such torsions was determined by identifying the
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maximum value of n for which a rotation of the torsion angle by 360/n results in an
RMSD between two rotamers of less than 0.1 Å. When comparing conformers, differences
were then assessed while accounting for this symmetry.

To ensure efficient storage and account for High Performance Computing (HPC) effi-
ciency, conformations were stored inside sqlite3 databases [99]. This means that con-
formers can be easily clustered and fed into other applications without difficulty.

The code benefits from reduced computational cost compared to utilising an RMSD
between conformations. This is due to the torsion angles being defined on a molecular
basis. Atom labelling within the xyz file format is used to identify atoms which make up
each flexible torsion. The molecular graph between two conformations does not need to
be calculated unlike RMSD methods which allow for a significant speed up when making
conformational comparisons.
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5.2 Conformer Searches

5.2.1 Test Molecules

The molecules shown in Figure 5.2 were studied by performing a conformational search
using LMCS and CREST methods. These molecules were chosen as they possessed
similar features to drug molecules which would be under future investigation which
include flexibility, functional groups, atom types and molecular sizes.

(a) DADNUR (b) DANQEP

(c) FAHNOR (d) FIBKUW (e) GALCAX

(f) HIBGUV (g) MABZNA (h)
ODNPDS

(i) SIKRIN (j) VEMTOW

Figure 5.2: Molecular diagrams of the molecular unit of crystals according to RE-
FCODE to be used to test the Low Mode Conformer Search (LMCS) and the Con-
former Rotamer Ensemble Sampling Tool (CREST) using iMTD-GC and iMTD-sMTD.
Molecules are referred to as the name of their REFCODE present within the Cambridge

Structural Database for more compact labelling of molecular structures.

To address the state of conformational search methods currently available, a set of
conformers obtained from published works by Thompson 2014 [24] were used. In this
work, the LMCS method [100] was applied to each of the molecules from Figure 5.2
where the resultant conformations exist as minima with MMFF PES [70].
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5.2.2 Single CREST Search

A single CREST search was performed for each molecule in Figure 5.2. To do this,
molecular conformations were extracted from each crystal with the corresponding RE-
FCODE as starting positions. Where there were multiple conformational geometries,
the lowest energy conformation was chosen. We performed both the iMTD-GC and
iMTD-sMTD procedure on molecules. The PES was explored up to 25 kJ mol−1 above
the global minimum. Conformer search details can be found in Appendix A.

5.2.3 Comparison of Methods

Each ensemble was clustered according to similarity in torsion angles using our torsional
clustering procedure in subsection 5.1.2. Conformers were deemed identical if the maxi-
mum difference in torsion angles was < 10◦ and the RMS difference < 5◦. These angles
seemed appropriate for distinguishing conformers.

The two sets of conformers produced by CREST using the iMTD-GC and iMTD-
sMTD methods were compared by analysing their torsion angles to identify confor-
mations present in both sets. As DFT-optimised conformers are typically used as inputs
for CSP methods, geometry optimisation was performed using Gaussian with the 6-
311G(p,d)/B3LYP level of theory incorporating a GD3BJ dispersion correction. This
approach meant that any minima unique to the GFN2 landscape were removed, leaving
only those present on the DFT PES. The results are shown in Figure 5.3.

For conformations generated using the LMCS method, geometry optimisation was also
performed using the same settings as previously mentioned.
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Figure 5.3: Relative distribution of conformational energies produced by the
iMTD-sMTD and iMTD-GC algorithms in conformer rotamer ensemble sampling tool
(CREST) methods following density functional theory optimisation. Areas are cal-
culated using the Shrake-Rupley method. Many conformers were identified by both

algorithms, although some conformers were missed by each method.
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Figure 5.4: Relative distribution of conformational energies produced by the Low
Mode Conformer Search (LMCS) algorithm and iMTD-sMTD algorithm in Conformer
Rotamer Ensemble Sampling Tool (CREST) methods following density functional the-
ory optimisation. Areas are calculated using the Shrake-Rupley method. Significant

numbers of low energy conformations were missed for the LMCS.
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In most subplots, the green points, representing shared results, tend to cluster in low-
energy regions, indicating that both methods generally identify similar favourable con-
formations. The iMTD-sMTD algorithm often finds lower energy conformations com-
pared to the iMTD-GC method (e.g., in the subplots for DADNUR, DANQEP, and
FIBKUW), suggesting that iMTD-sMTD is slightly more effective at locating the lowest
energy conformers. Both methods are able to find high energy conformations which the
other method does not.

In Figure 5.4, LMCS shows a broader range of energy values, occasionally reaching higher
levels (e.g., in DADNUR, DANQEP, and FIBKUW), while iMTD-sMTD sometimes
finds lower energy conformations but less consistently. This observation is likely due
to the sampling in the CREST methodology being only up to 25.1 kJ mol−1 (6 kcal).
Most structures not found by LMCS appeared to be much higher in conformational
energy. There are many shared conformations in lower energy regions for both methods,
indicating significant overlap. Neither LMCS nor iMTD-sMTD consistently outperforms
the other. LMCS has broader coverage but does not reliably find the lowest energies,
whereas iMTD-sMTD is more effective in specific cases.
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5.3 Improving Upon a CREST Search

5.3.1 Utilising varying starting positions

It has been shown that there is discrepancy between the LMCS and CREST search
methods. Neither method is clearly superior but rather produce different ensembles of
conformations for a single molecule. This may be due to the algorithm or the energy
model used in PES exploration.

It is possible that a single CREST search does not produce a complete ensemble of
conformers despite the energy lid for calculations being sufficient to explore the landscape
due to the energy barriers between conformers. This results in certain conformations
being inaccessible from an initial geometry as conformations would need to surpass the
energy limit in order to explore it further.

One solution is to increase the energy lid; however, a challenge arises in that the height
of the required energy barrier is unknown. Although it is possible to raise this barrier
substantially, doing so could impose significant computational costs. This issue is par-
ticularly pronounced for large molecules, as the number of degrees of freedom increases
this cost exponentially.

If such an energy barrier exists, it is proposed that CREST searches be performed using
geometries located on different sides of the barrier, with each search conducted indepen-
dently. However, this introduces a new challenge in determining the appropriate starting
positions for a given molecule. Ideally, this selection process should be automated, re-
quiring minimal user input.

Figure 5.5: Diphenylethyne

Diphenylethyne shown in Figure 5.5 adopts a low energy state when both aromatic
rings are in the same plane due to aromatic effects as shown in Figure 5.6. Single
point energy calculations in both conformations (6-311G**/PBE0 with GD3BJ) reveal
an energy barrier of 3.57 kJmol−1, where the orthogonal conformation was lowest in
energy.
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Figure 5.6: Rotational energy barrier of the phenyl group in diphenylethyne, cal-
culated by rotating around the C–C bond using density functional theory with the
6-311G**/PBE0 basis set and GD3BJ dispersion correction. At 0◦, the phenyl rings

are parallel to each other, while at 180◦ an energy maximum is observed.

5.3.2 Determining CREST Starting Positions

Presented here is the workflow termed mCREST, introduced as an improved method for
generating conformers.

To determine an appropriate starting position, it is necessary to consider the factors
that contribute to large energy barriers. A relatively cheap method of generating many
conformations is through distance geometry. Here, for each molecule, 10,000 molecular
conformers were generated using RDKit described in section 3.3.1.

To analyse the conformational PES, torsion angles were measured from the resulting
conformers. Initially, PCA was performed on all molecular torsions. However, due to
the circular nature of torsion angles, meaningful data was not able to be obtained and
a method capable of accounting for their periodic characteristics was required.

Geodesic PCA [101] is performed, and the resulting principal components are clustered
to identify conformations that are geometrically similar to one another. The number of
principal components used is limited to ensure that at least 90% of the total variance
is captured. This approach reduces the dimensionality of the data by filtering out
information from non-flexible torsion angles. For illustration, the first two principal
components are shown in Figure 5.7.
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Figure 5.7: Geodesic principal components of the torsion angles for DADNUR. RD-
Kit was used to generate molecular conformations, from which torsion angles were
calculated. Clustering of conformations is observed, suggesting the presence of similar

geometries.

By viewing the first two Principal Component (PC)s, conformers which possess similar
geometries are clustered together. Selecting geometries from different clusters would
result in conformers which were largely distinct in their conformations such as those
shown in Figure 5.8. The idea here being that structures belonging to separate clusters
may be separated by larger energy barriers such as those shown in Figure 5.6.



88 Chapter 5. Conformer Search Methods

(a) Same cluster (b) Different Cluster

Figure 5.8: Overlay of two molecules using the smallest root mean square distance
between them from different clusters identified by Geodesic Principle Component Anal-
ysis. Molecules within the same cluster exhibit similar geometries, with only minor vari-
ations in torsion angles throughout the molecule. In contrast, molecules from different
clusters display significantly different geometries, characterised by large differences in
torsion angles. KEY: Grey – carbon; white – hydrogen; red – oxygen; yellow – sulphur;

orange – bromine; green – carbons belonging to the second molecule.

To enable automation of the process, k-means clustering is employed to identify clus-
ters of molecular conformations with similar geometries, facilitating the exploration of
specific regions of conformational space. To automatically determine the appropriate
number of clusters, a silhouette score is calculated for values of k ranging from 1 to 14
shown in Figure 5.9.
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Figure 5.9: Example silhouette scores for varying the number of clusters k. A higher
silhouette score indicates better clustering of data points. In this example, the first
maximum occurs at k = 4, although high silhouette scores can also be achieved at

larger values of k.

While the objective is to maximise the silhouette score, it is also essential to consider the
computational cost associated with performing conformational searches from numerous
starting points. Therefore, efforts are made to limit the number of starting locations
to reduce computational expenses. To accomplish this, the first local maximum in the
series of silhouette scores is selected. In the example provided, the first maximum occurs
when four clusters are identified. The lowest-energy conformer from each cluster is then
extracted, and a CREST search is performed on each of these starting conformations.

5.3.3 Comparison to Other Methods

The conformer search is improved by utilising starting positions in very different lo-
cations on the PES. One conformation was not found by mCREST but was found
by LMCS. However, given conformations found elsewhere we claim this method is an
improvement over LMCS. For CSP applications, it is unlikely that the conformation
missed would yield observable crystal structures due to its relatively middling surface
area coupled with its very high energy compared to the global energy minimum confor-
mation.
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Figure 5.10: Comparison of conformational search methods (Low Mode Conformer
Search (LMCS) and multiple Conformer Rotamer Ensemble Sampling Tool (mCREST)
using the iMTD-sMTD search algorithm. Overall, mCREST performs better than

LMCS; however, one conformation is missed by mCREST but identified by LMCS.
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5.4 Conclusions and Future Work

A routine has been developed for CREST that offers a greater yield of conformations
on the DFT PES. One significant advantage of using CREST is its ease of integration
into the CSPy program. LMCS is performed within the program Macromodel, which
requires a licence. Utilising CREST therefore was beneficial to ensure CSPy become
more freely available to users.

mCREST is comparatively more computationally demanding than CREST, as it requires
multiple CREST runs. A single CREST search typically consumes around 8–12 Central
Processing Unit (CPU) hours for smaller molecules with fewer torsion angles. Most
molecules required approximately 24 hours, while the largest molecule took up to 70.1
hours.

Figure 5.11: Computer Processing Unit time taken to perform iMTD-sMTD con-
former search using the Conformer Rotamer Ensemble Sampling Tool for test molecules.

The computational cost of mCREST depends on the number of clusters identified after
PCA; for instance, a search involving four clusters would result in a total cost equal
to four times that of a single CREST run. Nonetheless, the improved performance of
mCREST may justify the increased cost, as conformer generation remains considerably
less expensive than generating crystal landscapes within the CSP workflow. As CSPy
moves towards open-source availability, identifying an alternative to LMCS is essential
to enable automated conformer generation and to streamline CSP for flexible molecules.

One drawback of this approach arises during the application of Geodesic PCA, as molec-
ular symmetry is not accounted for. This issue is evident from the symmetry observed
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in the distribution of data points along PC1 and PC2. It is recognised that this may
result in the starting positions generated for the searches being overly similar.

Future applications of this method should attempt to remove these phenomena such as
where there is internal symmetry present within clusters or the geodesic components.

Instances of poor clustering when determining starting positions, such as observed for
VEMTOW, are likely attributable to the intrinsic symmetry of the molecule, wherein
certain torsions are equivalent.

Figure 5.12: GeoPCA distribution for VEMTOW. Internal symmetry within the clus-
ters and across PC1 and PC2 is observed, leading to multiple clusters where relatively

few would be expected.

In Figure 5.12, no clearly identifiable elbow point is observed. Furthermore, examination
of the silhouette scores reveals a maximum at k = 4. Although the silhouette score
continues to increase beyond k = 5, this trend suggests that the data may not be
well-suited to clustering.
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(a) Elbow plot (b) Silhouette Plot

Figure 5.13: Analysis of conformer selection for mCREST searches on VEMTOW. No
easily identifiable elbow point is observed. A maximum occurs at k = 4, and silhouette

scores continue to increase beyond k = 5.

While the improvements in the search algorithm nonetheless outweigh this issue, it
may still be possible to significantly reduce computational cost by eliminating these
redundancies.
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Chapter 6

Monte Carlo Simulated Annealing

In this chapter, a new approach to CSP is introduced that incorporates experimental
data to guide and enhance the prediction process. Specifically, a MCSA procedure is
employed that integrates commonly available experimental data to steer CSP towards
identifying observable structures with greater confidence. The method simulates PXRD
or NMR data, comparing them with their experimental counterparts. By perturbing
trial structures and annealing them with temperature, crystal structures are deduced
which match experimental data.

CSP typically aims to find the most stable crystal structures of a given molecule using
purely computational techniques, primarily through minimisation of total energy, often
with limited or no experimental input during the prediction.

In principle, experimental methods alone can determine crystal structures. For example,
structure determination is frequently achieved via SCXRD; however, obtaining suitable
single crystals can be challenging, requiring significant time and optimisation of crys-
tallisation conditions. Often, organic molecules crystallise as fine crystalline powders,
which necessitate characterisation through PXRD or solid state Nuclear Magnetic Res-
onance (ss-NMR).

Methods exist for determining crystal structures directly from utilising PXRD data
alone. Harris and Johnston notably developed a GA to determine structures by fitting
calculated powder patterns to experimental PXRD data [102]. The approach evolves
a population of candidate structures, optimising molecular orientations and positions
to best match experimental PXRD data. The work was later added to by combining
R-factor with lattice energy to build a ”hybrid hypersurface” for structure solution [103].
However, the success of methods such as this depend critically on accurate indexing to
determine the unit cell parameters from a powder diffraction pattern, which are required
to obtain the R-factor. Indexing, usually being performed using software that analy-
ses peak positions to find a lattice consistent with observed diffraction angles. While
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automated programs exist, indexing can be time-consuming and may require manual
intervention if the pattern is complex or shows peak overlap [104]. For organic crys-
tals, indexing can be particularly challenging because of peak broadening, low symme-
try, and preferred orientation effects. Other approaches aim to integrate experimental
PXRD data directly into CSP methods [105]. Even partial PXRD information, such as
approximate unit cell dimensions or space group symmetry, can significantly constrain
the search space, guiding CSP towards physically relevant solutions. Furthermore, sim-
ulated PXRD patterns generated from hypothetical CSP predicted structures can be
compared directly with experimental PXRD patterns, effectively validating and refining
predictions [106–108].

Another data-driven CSP method include MCSA, as demonstrated by Balodis et al., who
employed experimental ss-NMR data to guide their algorithm towards correct crystal
structures [109]. Similar success has been achieved using electron diffraction [110, 111]
and ss-NMR constraints [112–115].
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6.1 Monte Carlo Simulated Annealing

This work focuses on the use of more accessible PXRD data, as it is often more widely
available than NMR data. Similar to other methods, a generated PXRD pattern is
compared to the experimental pattern and subsequently optimised. The strength of this
method lies in the application of cDTW for pattern comparison, eliminating the need
for indexing and thereby potentially streamlining the process considerably.

To validate this method, tests have been conducted using both experimental and simu-
lated data, demonstrating that it can be used to predict the crystal structures of various
polymorphs accurately and reliably under different pressures. Furthermore, the ap-
proach introduces a novel way of matching experimental data with CSP results and is
versatile, with potential for adaptation to incorporate other types of experimental data
in the future.
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6.2 Method

A general method was employed that utilises MC moves to minimise the cost function
defined by Equation 6.1.

Epseudo = Etotal +EPXRD , (6.1)

where Etotal is the sum of the intermolecular and intramolecular energies of the crystal
structure normalised per molecule, EPXRD is a pseudo-energy term that is attributed
to the difference between the crystal structure and experimental PXRD pattern. This
term is defined as EPXRD = λDcDTW, where DcDTW is the cDTW dissimilarity measure
between the simulated PXRD pattern of a trial crystal structure and the experimental
PXRD pattern. λ is a scaling factor with the units kJ mol−1. Selecting the value of λ,
allows the user to determine the relative weight of the cDTW distance term compared
to crystal energy. This term steers the optimisation towards structures whose simulated
PXRD agrees with the experimental diffraction pattern.

Each crystal generated is a single trajectory. The pseudo energy of the initial trial struc-
ture is calculated before a random change is attempted on one of the parameters defining
the crystal structure. The types of move allowed are molecular translation, molecular
rotation changes in unit cell lengths, angles, and volume. For flexible molecules, changes
in torsion angles around selected bonds are also included. The magnitude of this change
is selected randomly between specified upper and lower limits which are shown in Table
6.1. Space group symmetry is preserved throughout the simulation, so that molecular
moves (translation, rotation and torsion angles) are applied only to the asymmetric unit.

Parameter Change / ± Degrees of Freedom

Flexible torsion 3.5◦ T

Unit cell volume 25 Å3 1

Unit cell length 0.5 Å 3

Unit cell angle 0.5◦ 3

Molecular translation 0.5 Å 3

Molecular rotation 0.05◦ 3

Table 6.1: Upper and lower boundaries for move types in the Monte Carlo simulated
annealing (MCSA) protocol. T denotes the number of flexible torsions in the asymmet-

ric unit.
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MC move sizes were selected to produce small geometric changes in the crystal structure.
The relative change in pseudo energy, i.e. the difference before and after the MC move,
is calculated. The move is then accepted based on a probability, Pacc.

Pacc = exp
(︃

−∆Epseudo
RTn

)︃
, (6.2)

where ∆Epseudo is change in pseudo energy, R is the universal gas constant, Tn is the
temperature at step n.

The temperature of the system is defined by the user through a starting and a final
temperature. The temperature at the first step is equal to the starting temperature,
while the temperature at the final step matches the final temperature. If a step is
accepted, the structure is annealed by progressively reducing the temperature towards
the final value. This temperature reduction continues until the target number of steps
has been completed. The decrease in temperature follows a linear profile, as described
further in section 6.5.4.

A trajectory was also permitted to terminate before reaching the maximum number of
accepted steps if 120 consecutive MC steps were rejected.

An overview of the workflow is depicted in Figure 6.1.
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Initial conformation, Ci

Crystal, Xn Make MC move

Calculate
E’pseudo,n

Perturbed
crystal, X ′

n

Calculate
E’pseudo,n

Select random
number ξ:
0 ≤ ξ ≤ 1

ξ ≤ Pacc(∆Epseudo,Tn)? Reject move

Accept move;
set Xn+1 = X ′

n

n = maximum
accepted moves?

Final crystal, Xf

yes

no

no

yes

Figure 6.1: Monte Carlo simulated annealing (MCSA) workflow for a single trajectory
to identify matches with experimental data. In this process, a conformer Ci is used
to generate an initial crystal structure X0 via the crystal landscape generator. The
pseudo energy at step n, Epseudo,n, of the crystal is calculated as defined in Equation
6.1. The crystal is then perturbed via a Monte Carlo (MC) move to form X ′

n, and the
pseudo energy is recalculated as E′

pseudo,n. The change in pseudo energy, ∆Epseudo, is
determined, and the move is accepted based on the probability Pacc defined by Equation
6.2. If the move is rejected, a different MC move is attempted. If accepted, the
perturbed crystal becomes the structure of crystal at the next step, such that Xn+1 =
X ′

n. This process is repeated until a predetermined number of MC steps have been
accepted.
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6.3 Experimental Data

Three molecules shown in Figure. 6.2, were studied in the development of the method:

• N-(4-methyl-2-nitrophenyl)acetamide

• Benzimidazole

• 5-methyl-2-((2-nitrophenyl)amino)thiophene-3-carbonitrile which is often referred
to as ROY due to its red, orange and yellow polymorphs.

(a) N-(4-methyl-2-
nitrophenyl)acetamide

(b) benz-
imidazole

(c) ROY

Figure 6.2: Chemical diagrams of molecules used in the Monte Carlo simulated an-
nealing procedure. N-(4-methyl-2-nitrophenyl)acetamide and ROY contain multiple
freely rotatable bonds, whereas benzimidazole is rigid with no freely rotatable bonds.

The molecules were selected due to their availability of multiple PXRDs. Experimental
data was obtained from Lunt et al. who completed an automated syntheses and PXRD
diffraction of benzimidazole and ROY [116]. PXRD data from this work was taken for
each of the 8 samples of benzimidazole and ROY which were then used to guide MCSA.
In this thesis, these will be referred to as the PXRD patterns of experimental samples
1-8 for both molecules. Each of the 8 PXRD patterns for benzimidazole resemble the
alpha polymorph, whilst the 8 PXRD patterns for ROY mostly resemble the monoclinic
orange needle (ON) polymorph. It has been identified that in sample 4, the monoclinic
yellow (Y) polymorph may also be present as well as the ON polymorph. Different poly-
morphs of benzimidazole were investigated by obtaining PXRD patterns for each form.
The PXRD patterns of BZDMAZ02, BZDMAZ03, and BZDMAZ07 were simulated to
represent the alpha, beta, and gamma polymorphs, respectively [117–119]. For the mon-
oclinic (ON) polymorph of ROY, QAXMEH01 [120] was used. Additionally, the PXRD
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pattern of the monoclinic amber polymorph of N-(4-methyl-2-nitrophenyl)acetamide was
simulated using MNIAAN02 from the CSD.

6.3.1 Experimental Matches

COMPACK, as described in section 3.4.4, was employed to determine whether the gen-
erated structures matched the experimental structure.
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6.4 Initial Results

Prior to testing the procedure, an assessment was conducted to determine whether
matches to the MNIAAN02 system could be identified without relying on any PXRD
information. This served as a control to evaluate whether the method performed dif-
ferently if such data was available. The MCSA procedure was carried out using N-(4-
methyl-2-nitrophenyl)acetamide as the input molecule, employing the parameters listed
in Table 6.2 for this testing.

Parameter Value

Initial Temperature 2500 K

Final Temperature 100 K

Total Accepted MC Steps 4000

Total Trajectories 1000

Table 6.2: Initial parameter set used for Monte Carlo simulated annealing (MCSA)
during preliminary testing on the MNIAAN02. The settings span a wide thermal win-
dow and include many Monte Carlo steps. A total of 1000 crystal structures are gen-

erated, each using a single trajectory.

The set of parameters was selected to ensure a sufficiently high temperature to overcome
energy barriers between minima. A suitable number of MC steps was targeted to enable
the simulation to reach the global minimum and thoroughly explore the landscape, in
line with the chosen MC move size.

The MCSA procedure was carried out starting from 1000 QR crystal structures. This
approach was employed to demonstrate that the methodology could function without
incorporating PXRD data, relying exclusively on the minimisation of Etotal by setting
λ = 0 kJ mol−1.
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Figure 6.3: Crystal landscape for the search of MNIAAN02 using Monte Carlo sim-
ulated annealing with λ = 0 kJ mol−1. Each data point represents the final structure
of a single trajectory. Points in red are crystal structures which match with the exper-

imentally observed structure, whilst points in blue did not match.

The final structure of a single trajectory matched with the structure of MNIAAN02
[121]. However, the accuracy of the match was poor overall and there was a significant
mismatch in the generated PXRD patterns of either structure shown in Figure 6.4.

(a) Geometric overlay (b) PXRD Pattern

Figure 6.4: Comparison of experimental matches from Monte Carlo simulated an-
nealing during initial testing targeting MNIAAN02. The settings used include 4000
steps and λ = 0 kJ mol−1. There is reasonable overlap between crystal structures,
and the packing is mostly similar. Some discrepancies are observed in the alignment
of molecules. The PXRD patterns show that the peaks are shifted, though they still
display some resemblance. KEY: Grey – carbon; white – hydrogen; red – oxygen; blue

– nitrogen; green – carbons belonging to the second crystal structure.
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The same methodology was again performed, setting the λ = 20 kJ mol−1, to identify
whether altering the value of λ provided sufficient guidance for the simulation. The
generated PXRD pattern of MNIAAN02 from the CSD was used to guide the MCSA
procedure. It is hypothesised that the addition of PXRD to the system will improve the
calculation as both Etotal and EPXRD are optimised.

Figure 6.5: Crystal landscape for the search of MNIAAN02 using Monte Carlo sim-
ulated annealing with λ = 20 kJ mol−1. Each data point represents the final structure
of a single trajectory. Points in red are crystal structures which match with the ex-
perimentally observed structure, whilst points in blue did not match. 10 experimental
matches have been found which all exist in the low energy region of the crystal land-

scape.

By increasing the parameter λ, significantly more matches were found to the target
crystal. The accuracy of the match according to Epseudo also improved, ranking the
structure lowest in energy on the landscape. In addition, there was also an improvement
in the match according to the lattice parameters and RMSD summarised in Table 6.3.

Determination a / Å b / Å c / Å α / ◦ β / ◦ γ/ ◦ ρ / g cm−3 RMSD30

MNIAAN02 10.158 11.635 8.041 90.000 94.550 90.000 1.362 -
MCSA λ = 0 9.089 11.362 8.385 90.000 91.968 90.000 1.490 0.672
MCSA λ = 20 10.005 11.484 8.005 90.000 91.381 90.000 1.403 0.260

Table 6.3: Crystal lattice parameters for the lowest root-mean-square deviation crys-
tal structure compared to experimental crystal obtained after performing Monte Carlo
simulated annealing (MCSA) in the prediction of MNIAAN02 for different values of λ.
For comparison, the lattice parameters of MNIAAN02, which did not undergo any re-
laxation, are also shown. The calculation using MCSA with λ = 20 kJ mol−1 produced
lattice parameters that aligned more closely with the experimental crystal structure

than those from MCSA with λ = 0 kJ mol−1.
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6.5 Parameterisation of MCSA

This section describes the process used to parametrise the method. Parameterisation
is crucial to ensure optimal performance and versatility across a wide range of different
molecules. The workflow was parametrised by scanning each parameter across a series
of sensible values across a range of systems.

6.5.1 Optimisation of Lambda

The value for λ should be selected so that when an MC move is made the relative change
in energy of crystal ∆Etotal and ∆EPXRD are approximately equal to ensure that neither
term dominates the cost function, Equation 6.1.

Due to the change in the topology of any one pseudo energy landscape for any given
crystal, the relative weights of ∆Etotal and ∆EPXRD may differ with each MC step.
Therefore it is difficult to identify the effect of λ through individual MC steps and that
a full simulation needs to be performed for testing. A suitable value is identified by
conducting simulations and scanning across different values of λ.

The MCSA workflow was performed using the alpha polymorph of benzimidazole and
the monoclinic amber polymorph of N-(4-methyl-2-nitrophenyl)acetamide. Calculations
were run for each of different values for λ and utilised the hit rate as a metric to
identify an ideal value whereby a high hit rate provides a greater probability to find
an experimental match from any single starting position. Changing the parameter λ has
informed how much the simulation steers towards either total energy or PXRD energy.
Testing indicates that the amount in which the PXRD energy influences a trajectory
is system dependant and also depends on the quality of the experimental PXRD. In a
blind study, testing all possible values for λ may not be feasible; however, sensible values
between 0 - 40 kJ mol−1 were selected.
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Figure 6.6: Hit rate for Monte Carlo simulated annealing using different values of λ,
which dictates the influence of EPXRD on the system targeting BZDMAZ02, a crystal
containing an asymmetric unit with no flexible torsions. A value of λ = 10 kJ mol−1 was
found to provide the best hit rate, indicating the probability of finding the experimental

structure from any starting position.

For benzimidazole, a value of λ = 10 kJ mol−1 yielded the highest number of matches
as shown in Figure 6.6.
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Figure 6.7: Number of matches for Monte Carlo simulated annealing using different
values of λ, which dictates the influence of EPXRD on the system targeting MNIAAN02,
a crystal containing an asymmetric unit with multiple flexible torsions. A value of
λ = 20 kJ mol−1 provided the greatest number of experimental matches across 1000

trajectories.

For N-(4-methyl-2-nitrophenyl)acetamide, a value of λ = 20 kJ mol−1 yielded the highest
number of matches as shown in Figure 6.7.

The use of cDTW to calculate PXRD energy reliably produced matches to experimental
structures across a range of different values for beta but found the most experimental
matches between a range of 10 - 20 kJ mol−1 for rigid and flexible molecules.

6.5.2 Adaptive and Static Move Styles

Two different approaches were tested for when making MC steps, static or adaptive
move sizes. In the previously tested static case, the scale of the move sizes are fixed
and are selected between upper and lower limits which remain constant throughout the
simulation. It was observed that towards the end of a trajectory, the acceptance rate of
MC moves decreased significantly, leading to an increase in computational cost.

An alternative adaptive approach could be used which allows the size of the MC moves
to adapt within the procedure based upon the recent history of its acceptance rate. A
target acceptance rate of 0.5 was established, defined as the ratio of accepted moves to
the total number of attempted moves. To achieve this target, the scale of the MC moves
was adjusted. Specifically, the move scale was increased if the acceptance rate fell below
the target value, and decreased if it exceeded the target.
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Both move types were tested on three crystal polymorphs of benzimidazole, and exper-
imental matches were identified at the global energy minimum for all methods. The
adaptive method demonstrated greater efficiency for the alpha and gamma polymorphs
but performed less effectively for the beta polymorph as shown in Figure 6.8.

Figure 6.8: Cost efficiency of static and adaptive move types in Monte Carlo sim-
ulated annealing targeting the different polymorphs of benzimidazole. For the alpha
and gamma polymorphs, utilising the adaptive move type significantly reduced com-
putational cost; however, for the beta polymorph, the adaptive move type significantly

increased computational cost.

Part of the success of the adaptive move type is attributed to its capacity for small
adjustments, refining structures to align with the PXRD pattern. The final move scales
of matching structures were approximately ten times smaller than the initial starting
move scale, ranging from 0.062 - 0.135. This significant reduction resulted from fewer
overall MC attempts. Although it remains unclear which method is ultimately superior,
the adaptive move style has been selected for continued use.

6.5.3 Band Warping Limit

The constrained dynamic time warping distance is employed to measure the similarity
between two PXRD patterns [122–124]. The warping limit permits slight alterations in
the PXRD pattern without significantly affecting the value of EPXRD in the cost function.
This flexibility is necessary because PXRD patterns often do not align perfectly due to
physical and practical factors, yet they can still correspond to the same crystal structure.
The warping effect allows minor shifts in peak positions to be accommodated, ensuring
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a more accurate comparison of diffraction data. The degree of warping can be adjusted,
effectively shaping the cost landscape associated with EPXRD, and providing flexibility
when calculating the cDTW. A high warping limit can make it challenging to distinguish
between good and poor matches, as peaks can be mismatched, effectively broadening
the basin associated with EPXRD and potentially causing unrelated patterns to appear
similar. Conversely, an extremely small warping limit may prove too restrictive, resulting
in a narrow basin that fails to account for realistic experimental variations and thus offers
limited benefit for guiding the comparison.

The level of constraint should be parametrised to be suitable for systems including both
simulated and experimental data. When comparing PXRD patterns using cDTW, it
is necessary to account for physical phenomena that influence PXRD patterns. For
instance, preferred orientation within experimental crystals arising from growth con-
ditions or mechanical processing influence the relative peak intensities observed which
mean that some peaks could become invisible and peak shape can be effected by grain
size.

To determine the optimal value for the band warping limit, the cDTW distance was
calculated between each of the eight experimental patterns for benzimidazole and ROY
and the corresponding PXRD patterns of the experimental crystals from the CSD. The
aim of this was to identify how similar or different PXRD patterns from the automated
synthesis were from the confirmed single crystal structure. This would enable us to cap-
ture the required amount of warping sufficient to match a structure to the experimental
pattern.

(a) Benzimidazole (b) ROY

Figure 6.9: The effect of band-warping limits on the constrained dynamic time warp-
ing (cDTW) distance for benzimidazole and ROY. For each molecule 8 sets of experi-
mental powder X-ray diffraction patterns (PXRD)s are compared against a simulated
PXRD of the corresponding crystal in the Cambridge Crystallographic Database. Error
bars indicate the range of distances across the set of patterns. In both molecules, an
identifiable elbow point is observed at 0.5 for benzimidazole and between 0.25 and 0.50

for ROY.
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The cDTW distances in Figure 6.9 show that while increasing the band warping limit
lowered the cDTW distance between any pair of patterns, an elbow point was identified
at 0.50 for benzimidazole. Whilst less identifiable, a similar value of between 0.25 and
0.50 was also identified for ROY. These values were of interest as they allowed for
enough warping to account for small differences between the patterns, but insufficient
to allow for false matches to be present. A band warping limit 0.5 was used for PXRD
comparisons hereafter.

6.5.4 Temperature

The probability of accepting an MC move which increases its pseudo energy is related to
the current temperature (Equation. 6.2) and therefore the selection of temperatures is
an important feature to consider during the procedure. A high temperature means that
MC moves are more likely to be accepted when the pseudo energy is increased, whilst
lower temperatures reduce this probability as shown in Figure 6.10.

Figure 6.10: Effect of temperature on the acceptance probability for a step in the
Monte Carlo simulated annealing procedure. Low temperatures permit smaller positive

changes in the pseudo energy, Epseudo, compared to higher temperatures.

6.5.4.1 Starting and Finishing Temperatures

The starting and finishing temperatures for the MCSA simulations are parameters users
can specify in the MCSA settings. These parameters act as fixed points in the simulation
and cannot change.
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The aim of the MCSA procedure is to identify the global minimum on the pseudo energy
landscape. As is typical with any simulated annealing process, beginning at a high
temperature facilitates exploration of the hypersurface by overcoming energy barriers,
since the acceptance probability for a positive change in pseudo energy remains high.
As MC moves are made, the energy is gradually lowered, making moves that increase
the pseudo energy less likely to be accepted. This process aims to focus on structures
exhibiting low pseudo energies.

A temperature of 100 K was initially chosen to be a reasonable final temperature as it
allowed for small changes in the pseudo energy. The MCSA procedure was performed
using 100 K as a final temperature. However it was found that this led to many structures
getting close to the experimental structure, but not close enough to be an experimental
match.

Lowering the temperature further to 0 K allowed the trial structure to more closely
align to the experimental powder pattern and therefore be a closer match geometrically.
These results are shown in Table 6.4

Final Temperature / K Experimental Matches Total CPU Time (hrs)
100 72 12,455
0 82 10,340

Table 6.4: Comparison of experimental matches and computational cost for different
final temperatures targeting BZDMAZ02 using λ = 10 kJ mol−1 in Monte Carlo sim-
ulated annealing for 1000 trajectories. Utilising a final temperature of 0 K results in a

lower computational cost and yields a greater number of experimental matches.

Ideally, all trajectories should lead to the experimental structure. Examining the rate at
which matches are identified for a given number of trajectories enables identification of
the parameters most effective in directing starting positions towards a global minimum.
Doing so would not only give greater confidence but also allow us to perform fewer
trajectories, decreasing computational cost.
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Figure 6.11: Crystal landscape for the search of BZDMAZ02 using Monte Carlo
simulated annealing with λ = 10 kJ mol−1 with a final temperature of 0 K. Each data
point represents the final structure of a single trajectory. Points in red are crystal
structures which match with the experimentally observed structure, whilst points in
blue did not match. Many experimental matches have been found which exist in the
low energy region of the crystal landscape, some structures match in higher energy

regions.

6.5.4.2 Temperature Profiles

Previously, a linear temperature profile was explored, in which the change in temperature
between accepted MC steps remains constant.

Tn = Ti − n · Ti − Tf

nmax
, (6.3)

where n in the step number, Tn is the temperature at step n, Ti and Tf are the initial
and final temperatures and nmax is the maximum number of steps. The linear profile
allows for change in the temperature at each step but this could be optimised further
using other temperature profiles [125, 126] as part of the MCSA procedure.

Another alternative profile is exponential where the temperature changes exponentially
with step number.

Tn = Ti

(︃
Tf

Ti

)︃ n−1
nmax , (6.4)

The exponential temperature profile allows the algorithm to spend more steps exploring
at medium and low temperatures, while spending fewer steps at high temperatures
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as shown in Figure 6.12. The profile is naturally cooler, having a mean temperature
throughout procedure lower than that of a linear profile for the same starting and final
temperatures.

Figure 6.12: Comparison of linear and exponential temperature profiles that can be
used for the Monte Carlo simulated annealing procedure. The various profiles determine
how many steps should be spent in higher or lower temperature regions, given a starting
temperature of 2500 K and a final temperature of 100 K. Some profiles do not allow

for specifying both a fixed starting and finishing temperature.

Two MCSA runs were completed each with the linear and exponential profiles using the
BZDMAZ02 PXRDs with λ = 20 kJ mol−1.

(a) Linear, 24 experimental matches (b) Exponential, 18 experimental
matches

Figure 6.13: Crystal landscape for the search of BZDMAZ02 using Monte Carlo sim-
ulated annealing with λ = 20 kJ mol−1 with a final temperature of 100 K for linear and
exponential profiles. Each data point represents the final structure of a single trajec-
tory. Points in red are crystal structures which match with the experimentally observed
structure, whilst points in blue did not match. Many experimental matches have been
found which exist in the low energy region of the crystal landscape, some structures
match in higher energy regions. Using a linear profile 24 experimental matches were
found compared to the exponential temperature profile in which 18 matches were found.
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The exponential temperature profile performed worse than the linear profile, yielding
only 18 matches compared to 24 for the linear case. It’s possible that higher temperatures
were required to better explore the configurational space. Additionally, the exponential
profile incurred slightly higher computational costs due to a lower average acceptance
rate across all temperatures.

6.5.5 Maximum Number of Monte Carlo Steps

Studies have demonstrated that 4,000 accepted MC steps can yield a reasonable number
of matches to experimental structures across various molecules. However, this number
of steps may be excessive and potentially waste computational resources. Striking a
balance between achieving experimental matches and minimising the number of steps is
crucial for improving computational efficiency. To explore this balance, the method was
tested using different limits for the maximum number of MC steps.

The MCSA procedure was conducted on a range of 50 - 6000 maximum steps. The
performance of these calculations are shown in Figure 6.14.

Figure 6.14: Effect of maximum number of Monte Carlo (MC) steps for Monte Carlo
Simulated Annealing runs for benzimidazole targeting BZDMAZ02 using λ = 10 kJ

mol−1.

Only 50 MC steps are required to identify matches to the experimental structure, al-
though 100 MC steps offer optimal CPU efficiency. Both step counts successfully repro-
duce the landscapes observed using 4000 steps while maintaining a good ranking of the
experimental structure match in terms of pseudo energy. To verify that the results were
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not obtained merely by chance, additional tests confirmed reproducibility using different
random seeds for the MC moves.

Although optimal efficiency is achieved at 100 MC steps, it is noteworthy that the hit
rate remained at 0.6%. Consequently, generating a larger number of QR structures
would be advisable to confidently identify experimental matches. For systems featuring
a greater number of degrees of freedom, such as those with rotatable bonds, 100 MC steps
may prove insufficient. Therefore, the maximum number of steps should be carefully
adjusted to accommodate system complexity. For systems of this size, a compromise
could involve employing 500 MC steps, which delivers good CPU efficiency alongside a
reasonably high hit rate for this system.

6.5.6 Pressure

Pressure plays an important role in stabilising crystal structures, so much so that many
structures undergo polymorphic changes under high pressures [127]. At ambient tem-
peratures (∼1 atmosphere), the effect of the work done from pressure is negligible such
that a change in volume of 0.1 g cm−3 corresponds to around 0.8 J mol−1 of work done.
As a result, the presence of pressure and its effect on stability has been neglected so far.

At high pressures however, the amount of work done on stabilising a crystal is significant
and can cause significant changes to the crystal landscape. When investigating crystal
structures known to be observed at high pressures, the effect of pressure can be added
to the cost function which reflects this work done.

Epseudo = Etotal +EPXRD + PV , (6.5)

where P is the pressure and V is the volume normalised per molecule.

An MCSA run with benzimidazole using the simulated PXRD of BZDMAZ07 (high
pressure gamma polymorph) was used as input. The revised cost function was used,
leading to the landscape shown in Figure 6.15.
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Figure 6.15: Crystal landscape for the search of BZDMAZ07 using Monte Carlo simu-
lated annealing including pressure term with λ = 20 kJ mol−1 with a final temperature
of 100 K for the linear profile. Each data point represents the final structure of a single
trajectory. Points in red are crystal structures which match with the experimentally
observed structure, whilst points in blue did not match. Many experimental matches
have been found which exist in the low energy region of the crystal landscape, some

structures match in higher energy regions.

It is noted that, to identify an experimental match for the high-pressure gamma poly-
morph, the inclusion of pressure is not strictly necessary. However, incorporating pres-
sure enhances the efficiency of the search, as the procedure preferentially identifies struc-
tures of higher density. Consequently, the search yields more matches for the same
computational cost.
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6.6 Experimental PXRD Patterns

Thus far, the methodology has been tested on PXRD patterns generated from experi-
mental structures in the CSD. As these PXRD patterns originate from the structures
used for matching, they serve as the ”ideal” PXRD. The methodology will now be ap-
plied to real-world experimental PXRD data and compared against structures within
the CSD.

6.6.1 Benzimidazole

MCSA was performed on the eight experimental PXRD patterns for the benzimidazole
alpha polymorph.

Figure 6.16: Experimental powder X-Ray diffraction patterns of benzimidazole. Each
benzimidazole sample was synthesised through an automated process, and powder X-
Ray diffraction data were collected for each sample. For comparison, the simulated
powder X-Ray diffraction pattern of the alpha polymorph from BZDMAZ02 is also
shown. The data suggest that the experimental powder X-Ray diffraction patterns
correspond to the alpha polymorph. The characteristic peaks at approximately 13◦

and 24◦ are absent in benzimidazole 7. Peaks for other samples are present but with
significantly reduced intensity.

Figure 6.16 shows that across the eight different samples of benzimidazole, there are
significant differences in the PXRD patterns likely due to preferred orientation. The
challenge remains that powders subject to this might be less effective when determining
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crystals structures in our MCSA approach. Whilst peak positions are unaffected by
this phenomena, the relative peak sizes can change substantially, resulting in inaccu-
rate cDTW distances between simulated and experimental patterns. The experimental
PXRDs have therefore been compared to the alpha polymorph in these studies.

MCSA calculations were conducted using each of the eight experimental PXRD patterns
of benzimidazole to guide the search. The calculations were performed for 4000 accepted
steps, employing a temperature range of 2500–100 K, and utilising the adaptive move
type with λ = 20 kJ mol−1. Results obtained using a generated PXRD pattern from the
experimental structure for comparison under the same settings are also provided. These
results are presented in Table 6.5.

Sample Experimental Experimental match

matches at global minimum?

BZDMAZ02 24 yes

Benzimidazole 1 32 yes

Benzimidazole 2 15 yes

Benzimidazole 3 4 yes

Benzimidazole 4 0 no

Benzimidazole 5 7 yes

Benzimidazole 6 4 yes

Benzimidazole 7 0 no

Benzimidazole 8 8 yes

Table 6.5: Results of Monte Carlo simulated annealing performed using 4000 accepted
steps, a temperature range of 2500–100 K, and the adaptive move type. The number
of experimental matches identified based on 1000 trajectories for each of the different

powder x-ray diffraction patterns (PXRD)s.

In a blind context, it is assumed that structures with the lowest pseudo energy correspond
to the experimental structure. For most systems, the global minimum was found to
match the experimental structure. Notably, strong success was achieved using Sample
1 of benzimidazole, which yielded more experimental matches than even the simulated
BZDMAZ02 pattern. Although this result is unexpected, it may not be atypical given
the inherent randomness of the procedure.

Samples 4 and 7 proved ineffective for determining crystal structures, preventing the
algorithm from effectively utilising PXRD data to guide the procedure.
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6.6.2 ROY

MCSA was performed on the eight experimental PXRD patterns for the ROY ON poly-
morph (QAXMEH01).

Figure 6.17: Experimental powder X-ray diffraction patterns (PXRD)s of ROY. Each
ROY sample was synthesised through an automated process, and PXRD data were
collected for each sample. For comparison, the simulated PXRD pattern of the alpha
polymorph from QAXMEH01 is also shown. The data suggest that the experimental
PXRD patterns correspond to QAXMEH01 within the Cambridge Structural Database.
Notably, ROY 6 exhibits additional peaks, which could indicate the presence of multiple

polymorphs within the sample.

Figure 6.17 shows that PXRD patterns have good resemblance to QAXMEH01 poly-
morph. Sample 6 of ROY possessed a significant peak at around 11◦, suggesting the
presence of a second polymorph QAXMEH.

MCSA calculations were conducted using each of the eight experimental PXRD patterns
of ROY to guide the search. The calculations were performed for 4000 accepted steps,
employing a temperature range of 2500–100 K, and utilising the adaptive move type
with λ = 20 kJ mol−1.

No matches to experimental structures were identified using ROY. Parameters were
chosen for use with benzimidazole, a rigid structure. A new set of parameters should be
calculated for more flexible molecules. This may be due to insufficient MC steps being
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utilised throughout the simulation to account for the increase in the configurational
space.

6.6.3 Blind study

The methodology was validated in a blind context by performing analyses without prior
knowledge of the space group. Inclusion of up to the top 25 most common space groups
was permitted, mirroring the approach used in CSP, since 99% of all structures crystallise
within these groups.

An attempt was made to predict all three polymorphs of benzimidazole. In the absence
of experimental data, PXRD patterns were simulated from CSD structures BZDMAZ02
(α), BZDMAZ03 (β), and BZDMAZ07 (γ) using PLATON. The number of accepted
MC steps was reduced to 500 to lower computational costs.

(a) Alpha Polymorph (b) Beta Polymorph

(c) Gamma Polymorph (d) Alpha Polymorph (experimental)

Figure 6.18: Crystal landscape for the search of benzimidazole polymorphs in a blind
test using a maximum of 500 MC steps, with λ = 20 kJ mol−1 and a final temperature
of 100 K for the linear profile. Each data point represents the final structure of a single
trajectory. Points in red correspond to crystal structures that match the experimen-
tally observed structure, whilst points in blue do not. The alpha, beta, and gamma
polymorphs are generated from their corresponding CSD structures, whereas the ex-
perimental alpha polymorph uses the experimental PXRD pattern of benzimidazole 1.
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All of the tests managed to find matches to the experimental crystal structure at the
global minimum. The experimental PXRD pattern appears to have more competing
structures according to pseudo energy most likely due to the noise within the pattern
compared to its simulated counterpart.

6.6.4 NMR

Rather than employing PXRD data to guide CSP, the methodology was tested using
simulated NMR data for BZDMAZ02. The data were generated with ShiftMLv2. The
equation for the cost function is as follows:

Epseudo = Etotal +ENMR . (6.6)

ENMR is defined to represent the difference in the 1H chemical shift values within the
crystal structure.

ENMR = ϵ×

√︄∑︁n
i=1 (δi,trg − δi,shiftML)

2

n
(6.7)

Similar to the role of λ, the parameter ϵ can be used to adjust the importance of NMR
data within the procedure. A single run was performed utilising NMR data and the cost
function (Equation 6.6), applying a value of ϵ equal to 10 kJ mol−1 ppm−1.

The methodology was applied using the simulated NMR data of MNIAAN02.
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Figure 6.19: Crystal landscape for the search of MNIAAN02 using a maximum of
4000 Monte Carlo steps, with ϵ = 10 kJ mol−1 and a final temperature of 100 K for
the linear profile. Nuclear Magnetic Resonance data was used to guide the search.
Each data point represents the final structure of a single trajectory. No experimental

structures were found during the search.

As seen in Figure 6.19, no matches to the experimental structure were identified, which
may once again be attributed to the number of degrees of freedom within this crystal
system. Consequently, further parameterisation is required.
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6.7 MC Refinement

The use of MCSA was explored to match crystal structures from an existing CSP dataset
to an experimental PXRD pattern. Instead of QR crystal structures, hypothetical struc-
tures derived from CSP methods, obtained from previous work [116, 128], were employed.
The initial and final temperatures were both set to 0 K, ensuring that only MC moves
reducing the pseudo energy were accepted. Eight experimental PXRD patterns were
utilised for each of benzimidazole and ROY. Additionally, the impact of employing a
’perfect’ PXRD pattern, simulated from the experimental crystal structures of the al-
pha polymorph for both benzimidazole and ROY, was investigated.

Figure 6.20: Screenshot monitoring the change in pseudo energy throughout the
Monte Carlo refinement process for a single trajectory of ROY. After approximately
half the total number of steps, the change in the pseudo energy is very small. KEY:

Grey – carbon; white – hydrogen; red – oxygen; blue – nitrogen; yellow - nitrogen

Figure 6.20 shows that the change in pseudo energy becomes very small towards the end
of the procedure.

Initial structures were anticipated to lie close to minima on the pseudo energy landscape;
therefore, when employing the adaptive move type, simulations were initiated using move
sizes ten times smaller than those applied in MCSA from QR structures. The procedure
minimised both total energy and PXRD energy, allowing an increase in one of these
energies provided a corresponding decrease occurred in the other. In this manner, the
MCSA procedure leverages both low total and PXRD energies to identify potential
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candidates. It is assumed that candidates matching the experimental structure exhibit
both of these characteristics.

Sample CSP Rank CSP + MC Refinement Rank CSP+MCSA
No. Total Distance Total Distance Pseudo Distance ∆E12 / kJ mol−1

BZDMAZ02 9 1 7 1 1 2.19
BZDMAZ03 6 1 1 1 1 2.23
BZDMAZ07 - - - - - - -
Benz. 1 9 37 1 1 1 7.97 45.33
Benz. 2 9 2 3 2 1 8.63 13.85
Benz. 3 9 3 1 9 4 10.20 5.05
Benz. 4 9 48 5 316 184 13.53 5.23
Benz. 5 9 1 1 1 1 19.21 25.23
Benz. 6 9 1 5 2 1 14.18 10.53
Benz. 7 9 54 12 185 100 11.38 4.99
Benz. 8 9 1 1 2 1 17.89 27.32
ROY 1 1 47 127 2 2 14.64 18.97
ROY 2 1 35 101 9 4 18.87 25.73
ROY 3 1 34 135 6 2 18.81 37.93
ROY 4 1 49 132 1 1 23.07 61.57
ROY 5 1 46 112 3 4 16.85 40.37
ROY 6 1 35 139 1 1 26.78 30.72
ROY 7 1 56 133 2 1 17.51 6.07
ROY 8 1 33 112 1 1 17.69 41.50

Table 6.6: Relative rankings of experimental structures at 0 K on the Z’ = 1 crystal
structure prediction (CSP) landscape of benzimidazole and ROY molecules. The CSP
rank shows how the structure of the experimental match is ranked from global minimum
before any Monte Carlo (MC) refinement in terms of total energy and constrained
dynamic time warping (cDTW) distance. CSP + MC Refinement Rank shows how each
structure is ranked after the procedure including pseudo energy. CSP+MCSA Distance
is the cDTW distance after refinement and ∆E12 is the pseudo energy difference between

the second-lowest and the lowest-energy structure by total energy.

The ranking of the benzimidazole experimental structure was generally poor within the
initial CSP set, where it ranked ninth. For most systems, the structure was successfully
ranked as the global minimum based on pseudo energy. For two structures, the ranking
after MC refinement remained notably low, likely due to preferred orientation effects
within the crystal, as previously discussed. It is noticed that structures with a large ∆E12

typically were well ranked, which could be used to provide confidence in a match. The
small energy difference between the first- and second-ranked structures on the pseudo
energy surface suggests that, in a blind study, these structures may not be convincingly
well-matched.

The MC refinement process was also carried out using BZDMAZ07; however, no matches
to this structure were found. A single structure within the CSP dataset was identified
as possessing a similar packing motif to BZDMAZ07. An attempt was made to refine
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the structure by applying additional pressure to encourage convergence towards the
experimental form. Although greater similarity was observed in packing density, an
experimental match could not be achieved.

QAXMEH01 for ROY was initially well ranked energetically within the DFT-optimised
CSP dataset; however, the PXRD agreement between the experimental and CSP struc-
tures was poor. Following application of the procedure, an improvement in the overall
cDTW distance was achieved, but this resulted in a substantial increase in the total
energy of matching structures. Consequently, the overall ranking of structures accord-
ing to Epseudo deteriorated significantly. Improved results could be found by performing
calculations increasing the influence of EPXRD compared to Etotal by increasing λ.
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6.8 Basin Hopping Approach

Thus far, the procedure for identifying crystals has involved evaluating the energy of the
crystal at each step. An alternative approach is also possible, whereby, instead of using
the crystal’s immediate energy, the energy of its local minima is considered, such that:

Epseudo = E′
total +EPXRD , (6.8)

where E′
total is the sum of the intermolecular and intramolecular energies of the local

minimum of the crystal structure normalised per molecule.

This approach effectively flattens the PES, as removing energy barriers between struc-
tures allows the trajectory to explore more easily. It is observed that a trajectory may
still need to traverse higher-energy configurational space to reach the final structure.
Therefore, the MCSA procedure should retain a temperature component to facilitate
the search for global minima on the landscape. Employing larger MC move sizes could
potentially reduce the computational cost associated with exploring.

To determine E′
total, the structure from each step is subjected to geometry optimisation

using DFTB+.

Figure 6.21: Crystal landscape for the Monte Carlo simulated annealing with basin
hopping of BZDMAZ02 using a maximum of 4000 MC steps, with λ = 10 kJ mol−1

and a final temperature of 100 K for the linear profile. Each data point represents the
final structure of a single trajectory. No experimental structures were found during the
search. Points in red correspond to crystal structures that match the experimentally

observed structure, whilst points in blue do not.
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Multiple structures were identified using the basin hopping approach; however, none
were located at the global minimum. As energy minimisation must be carried out at
every step to identify global minima, the method proves significantly more computa-
tionally demanding than MCSA. Further parameter optimisation could be explored,
or an alternative energy calculation method, such as a force field, might be adopted to
accelerate the process.
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6.9 Conclusions and Future Work

Both the MCSA procedure and MC refinement procedures appear to provide good ac-
curacy for rigid benzimidazole, although improvements in either case should be made.
Efforts here should address preferred orientation and molecular flexibility.

Preferred orientation effects can be simulated using software, where different h, k, and l
values are considered, and the March–Dollase parameter is adjusted to model the degree
of orientation. This approach would lead to a significant increase in the computational
cost of calculations, especially for flexible molecular systems. Costs could potentially
be reduced by investigating the Bravais-Friedel-Donnay-Harker (BFDH) morphology of
crystals to predict Miller planes as seen in Figure 6.22.

Figure 6.22: BFDH Morphology of BZDMAZ02. Each surface indicates its corre-
sponding miller plane.

No matches have yet been obtained using NMR data; however, further parameter test-
ing is warranted. Additional testing with rigid molecules should also be conducted to
evaluate whether the methodology is fundamentally sound. Additionally, this could be
coupled with PXRD such that the cost function would be:

Epseudo = Etotal ++EPXRD +ENMR . (6.9)

This may enable the identification of experimental crystal structures, as NMR can pro-
vide insights into molecular conformation, while PXRD offers information about crystal
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packing and intermolecular distances. Parameterisation of both λ and ϵ simultaneously
would need to be performed for best results.

Flexible molecules continue to present challenges when employing the MCSA procedure.
Further parameter testing could be undertaken to identify a more optimal setup for such
molecules. Alternatively, modifications to the manner in which the MCSA procedure is
executed may prove beneficial, for instance by focusing on torsional moves. This would
require analysis of the different move types utilised during the run, for instance how
much does each degree of freedom change over the course of the run.

It is also possible that PXRD alone is insufficient for thoroughly exploring configura-
tional space. For MC refinement, this limitation is less problematic, as the optimal
arrangements are typically close to the starting configuration, and significant movement
of the molecule within the crystal is not required.

Neither the MCSA procedure or MC refinement process when approaching CSP is su-
perior but rather each method allows for different approaches depending on accessible
data. Whilst the MC refinement procedure appears effective for both rigid and flexible
molecules, it requires a CSP dataset and it fails to perturb structures sufficiently to
find experimental structures that are not present on the CSP landscape. However, high
pressure polymorphs can be found using MCSA without the the explicit use of high
pressure in calculations.

CSP did not succeed in identifying the gamma polymorph of benzimidazole. Even after
applying the MC refinement procedure, no match was obtained. However, an MCSA
performed on QR structures successfully identified a match, indicating that the MCSA
workflows possesses an advantage when it comes to dealing with PXRD data. However,
the data here was ”ideal”, as it was simulated from the experimental crystal structure.
The procedure should be run on experimental data and their success tested.
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Chapter 7

Crystal Structure Prediction of
Idelalisib and its Solvates

Idelalisib, sold under the brand name Zydelig®, is a medication used to treat chronic
lymphocytic leukaemia [129, 130]. While the drug’s pharmaceutical applications are
significant, they are not the focus of this discussion. Instead, a currently deployed
Active Pharmaceutical Ingredient (API) was utilised to demonstrate the CSP method
and assess its effectiveness on larger, flexible molecules. This compound was selected due
to its considerable molecular size and numerous degrees of freedom, presenting a greater
challenge compared to more rigid systems. Despite its complexity, the task remains
manageable, as the configurational space is not excessively large.

Figure 7.1: Idelalisib

Molecules such as idelalisib sit on the frontier of accuracy for CSP methods to date. In
addition to predicting the crystal structure of neat idelalisib, the capability to predict
several of its solvate forms, including those with dimethylacetamide, pyridine, and ace-
tonitrile, was also demonstrated. These solvates present further challenges due to the
requirement to explore regions of the crystal landscape where Z’ > 1.
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(a) Pyridine (b) Acetonitrile

(c) Dimethylac-
etamide

Figure 7.2: Solvents used to form solvate structures in the CSP of idelalisib
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7.1 Search Details

7.1.1 Conformer Generation

To tackle such a molecule, a vigorous search of both conformations and tautomers must
be conducted. Tautomers are two or more isomers of a compound that readily intercon-
vert by the movement of a proton. Such a search would require conformational searches
for each of the tautomeric forms of idelalisib. The combination of all tautomer types
and their conformations would result in a considerably expensive study. Therefore, ef-
forts were made to reduce computational cost in various areas without compromising
accuracy by concentrating on systems more likely to be observed experimentally.

To identify observable tautomers, sites on the idelalisib molecule capable of accepting
protons were investigated. Among these sites, the main areas of interest were susceptible
to imine-enamine tautomerism [131]. As idelalisib contains an adenine group, various
tautomeric forms of idelalisib were modelled based on those of adenine, as illustrated in
Figure 7.3.

(a) Adenine
1

(b) Adenine 2 (c) Adenine
3

(d) Adenine
4

(e) Adenine 5 (f) Ade-
nine 6

(g) Adenine
7

(h) Ade-
nine 8

(i) Adenine 9 (j) Adenine
10

(k) Ade-
nine 11

(l) Adenine
12

Figure 7.3: Tautomeric forms of adenine to be used as a proxy for the tautomers of
idelalisib for crystal structure prediction.
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The analysis of adenine tautomers shows that among the various forms, adenine 9 pos-
sesses the lowest energy. This suggests that adenine 9 is the preferred tautomeric form in
the gaseous state. In contrast, adenine 12 and adenine 7 exhibit higher relative energies,
with adenine 12 having a relative energy range of 28.5 - 29.7 kJ mol−1, and adenine 7
ranging from 31.4 - 34.7 kJ mol−1 depending on molecular symmetry. This indicates
that while these forms are less stable than adenine 9, they are still relatively close in
energy, making them possible, albeit less favourable, tautomeric candidates.

Even less stable is adenine 5, with an energy of 44.4 kJ mol−1. This significant increase
in relative energy compared to adenine 9 suggests that adenine 5 is not likely to be
observed under crystallisation conditions as there will be a large contribution towards
intramolecular energy. All other tautomers exhibit even higher energies, exceeding 59.4
kJ mol−1, indicating they are significantly less stable and, therefore, even less probable
in terms of their observation.

Based on this energy analysis, four tautomeric forms of idelalisib were proposed. This
proposal considers not just the most energetically favourable tautomer but also other
tautomers which may be able to interact and stabilise within a crystal structure.

(a) Tautomer A (b) Tautomer B

(c) Tautomer C (d) Tautomer D

Figure 7.4: Low energy tautomeric forms of idelalisib.

From stability analyses of adenine, only tautomers with relative energies below 25 kJ
mol−1 were included as conformations were unlikely to be adopted above this energy
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threshold [24]. However, when assessing the stability of tautomeric forms for idelal-
isib, it is essential to consider not only the energy of each individual tautomer but also
the range of conformations that each tautomer can adopt. Unlike rigid or semi-rigid
molecules such as adenine, flexible molecules can adjust their torsions to minimise their
conformational energy, potentially stabilising tautomers that would otherwise be ener-
getically unfavourable. Therefore, despite initially excluding higher-energy tautomers,
both idelalisib A and idelalisib B were considered as starting points for a conformational
search to evaluate the relative stabilities of the idelalisib tautomers across different
molecular geometries.

CREST software was utilised to perform an extensive conformational search, applying
an energy limit of 30 kJ mol−1 and using the GFN2-xTB semiempirical tight-binding
method. Following the search, the resulting conformers underwent further refinement
through geometry optimisation using Gaussian09. The optimisation was carried out
with the 6-311G(d,p) basis set and PBE0 functional, along with GD3BJ empirical dis-
persion corrections. This step ensured that the conformers were optimised at a higher
theoretical level, providing more accurate energy rankings on the relative stabilities of
conformations.

To reduce redundancy, duplicate conformations were identified and removed using tor-
sional clustering, which groups conformers based on their torsional angles. Where con-
formations were duplicates, only the lowest energy conformer from each cluster was
retained for further analysis, ensuring that only unique conformations were included in
subsequent evaluations. This clustering resulted in a total of 51 conformers, for which
the SASA was calculated using the Shrake–Rupley algorithm with a probe radius of 1.8
Å.
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Figure 7.5: Gaussian geometry optimisations were performed using the PBE0 func-
tional with the 6-311G(d,p) basis set and GD3BJ dispersion correction, starting from
conformations of idelalisib obtained via a CREST search employing the GFN2-xTB

method.

As anticipated, the low-energy forms of idelalisib conformers were predominantly idelal-
isib A. The lowest-energy conformation of idelalisib B exhibited a relative conformational
energy of 23.8 kJ mol−1 compared to the global minimum conformation, indicating that
inclusion of idelalisib B in the CSP process is necessary.

(a) 0.00 (b) 1.55 (c) 38.42

Figure 7.6: Molecular conformers of idelalisib after optimisation with the 6-311G(d,p)
basis set and PBE0 functional, along with GD3BJ. Shown are the relative conforma-
tional energies in kJ mol−1. KEY: Grey – carbon; white – hydrogen; red – oxygen;

yellow – fluorine.

In addition to energy, surface area can be a useful predictor for the formation of low-
energy crystal structures. Conformers with larger surface areas may give rise to lower
energy crystals, as they allow for more extensive intermolecular interactions within the
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crystal lattice. The increased surface contact facilitates greater stabilisation through
van der Waals forces, which can significantly influence the stability and formation of the
crystal structure. This means that higher energy conformations could be observed if a
corresponding increase in surface was sufficiently high.

7.1.1.1 Surface Area Analysis of Conformers

The energy gain per unit of surface area can be modelled using sublimation enthalpies
of small molecule aromatic hydrocarbons by recognising the correlation between subli-
mation energy against molecular surface area [24]. This relationship suggests that the
larger the surface area, the greater the intermolecular energies and can indicate which
conformations should be prioritised for CSP.

(a)
Ben-
zene

(b) Naptha-
lene

(c) Anthracene

(d) Tetracene (e) Pentacene

(f)
Toluene

(g)
Adaman-
tane

(h) para-
Xylene

(i) Phenan-
threne

Figure 7.7: Molecular structures of small molecule aromatics used to calculate the
energy gain per unit of surface area.

The molecular surface areas of molecules, benzene [132–134], napthalene [133, 135–147],
anthracene [137, 144, 147–155], tetracene [140, 156–159], pentacene[140, 159], toluene
[160], adamantane [161–167], para-Xylene [168], phenanthrene [135, 137, 147] were calcu-
lated using Shrake-Rupley method with a probe radius of 1.8 Å. Sublimation enthalpies
for each of these molecules was obtained and used as a proxy for the energy stabilisation
provided through an increase in surface area.
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Figure 7.8: Variation in measured Hsublimation with molecular AShrake−Rupley for a
set of small rigid hydrocarbon crystal structures. In black is the trend line after least

squares regression analysis on the data.

Least squares regression analysis was performed showing the relationship between sub-
limation enthalpies and surface area shown in Figure 7.8. It was found that there was
0.4876 kJ mol−1/Å2 increase in sublimation enthalpy per unit surface area. The gra-
dient allows us to consider the stabilisation energy, providing us with a metric to rank
conformations based on surface area and conformational energy shown in Equation 7.1.

EBIAS = ECONF −ESA (7.1)

where EBIAS is the biased energy, ECONF is the conformational energy and ESA = 0.4876
kJ mol−1/Å2 which corresponds to the energy stabilisation due to the increase in surface
area.

Using EBIAS, it is possible to identify structures which might be good candidates for
CSP. Structures that possess higher conformational energy yet exhibit an EBIAS lower
than that of the global minimum conformation can be highlighted by plotting an EBIAS

line relative to the surface area of the global minimum conformation as shown in Figure
7.9.
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Figure 7.9: Gaussian geometry optimised conformers of idelalisib using the 6-
311G(d,p) basis set and PBE0 functional, along with GD3BJ dispersion correction
obtained from a CREST search employing the GFN2-xTB method. The ESA line is
plotted, indicating that conformers located to the right of this line possess a biased
energy lower than that of the global minimum when accounting for the surface area of

each conformer.

Conformers below of the EBIAS line are predicted to have their higher energy compen-
sated by an increase in surface area forming greater intermolecular interaction within
the crystal. It is shown however that few conformations exist to the right of this line.

7.1.2 Crystal Structure Prediction Sampling

To conduct an effective CSP, only common space groups from the CSD [28] were con-
sidered. Owing to the chirality of the molecule, the selection was further restricted
to Sohncke space groups, which preserve molecular chirality and lack glide planes or
inversion centres. This process was carried out using in-house CLG.
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Space group Number of valid structures

P 21 21 21 50000

P 1 21 1 40000

C 1 2 1 20000

P 1 20000

P 21 21 2 15000

P 41 10000

P 43 21 2 10000

P 41 21 2 10000

P 43 10000

P 32 10000

Table 7.1: Number of valid crystal structures generated using the crystal landscape
generator for neat idelalisib. The number of crystal structures correlates with how
frequently each space group is observed within the crystallographic structural database.

The extent of sampling conducted within each space group is proportional to the fre-
quency with which that space group is observed in the CSD. The highest level of sam-
pling is performed in the most common space groups, while less sampling is undertaken
in less frequently occurring groups.
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7.2 Idelalisib

CSP for neat idelalisib was performed. The workflow for this process is illustrated in
Figure 7.10.

Crystal Landscape Generator

Trial Structures

DMACRYS

In lowest 20
kJmol−1 ?

In lowest 40
kJmol−1 ?

VASP DFTB

DMACRYS

VASP Structures DFTB-DMACRYS Structures

yes

no

yes yes

Figure 7.10: Workflow for crystal structure prediction of neat idelalisib

CSP was conducted on each conformer using the CLG, which packs rigid conformations
into crystal structures. Only packing arrangements resulting in crystal structures with
Z’ = 1 were considered. These structures were minimised using DMACRYS. A multipole
force field was used which did not allow for movement of molecular geometries keeping
conformations fixed.
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Figure 7.11: Crystal landscape of idelalisib after crystal structure prediction. Shown
in red is the magnified low energy region of the crystal landscape corresponding to 20

kJ mol−1 above the global minimum.

Around 220,000 unique crystal structures were obtained ranging over 200 kJ mol−1

above the global minimum crystal structure. The low energy region is dominated by
conformers of tautomer A, suggesting that the energy gain of adopting tautomer B was
not compensated for by inter-molecular interactions. 4745 structures were found within
50 kJ mol−1 of the global energy minimum in which only 188 contained tautomer B.

7.2.1 Post Crystal Structure Prediction Optimisation

To construct a comprehensive crystal energy landscape, it is essential to allow the molec-
ular geometries within the unit cell to relax. Two strategies for performing this relax-
ation have been investigated. One approach employs periodic DFT, which can yield
highly accurate crystal structures. However, its significant computational cost makes
it impractical to optimise every generated structure. Therefore, only a limited subset
of structures from the low-energy region of the landscape is selected for periodic DFT
refinement.

Alternatively, a more computationally efficient method uses semi-empirical DFT tech-
niques. These methods help reduce computational demands while still providing rea-
sonable predictions of relative energies. Structures optimised using this approach are
then further refined with a multipole force field to improve the accuracy of their energy
evaluations.

When examining the size of the lowest energy lid, the number of structures follows a
sigmoid distribution shown in Figure 7.12.
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Figure 7.12: The cumulative number of structures within select energy windows above
the global minimum structure for the generated crystal landscape of idelalisib.

Therefore, to reduce computational cost, only the lower-energy half of the sigmoid curve
is likely to be investigated. During post-CSP optimisation, this consideration implies
that only narrow energy windows may be selected for re-optimisation using alternative
methods.

7.2.1.1 Periodic Density Functional Theory Optimisation

A total of 38 structures were identified within 20 kJ mol−1 of the global minimum and
subsequently reduced to 24 structures following duplicate removal using COMPACK.
VASP minimisation was performed to relax the molecular geometries within each crystal
structure. The resulting landscape is illustrated in Figure 7.13.
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Figure 7.13: Crystal landscape for neat idelalisib after VASP optimisation of the
lowest 20 kJ mol−1. The two lowest energy structures are labelled (a) and (b).

Two crystal structures were identified within 5 kJ mol−1 of the global minimum. These
structures underwent significant re-ranking, with their new energies rising to over 32.1
kJ mol−1. One structure failed to converge during the minimisation process and was
consequently excluded from the dataset.

(a) 0.00 (b) 2.06

Figure 7.14: Lowest energy VASP optimised crystal structures of idelalisib. Shown
are Erelative values for each structure. (a) 0.00, b) 2.06 kJ mol−1. KEY: Grey – carbon;

white – hydrogen; red – oxygen; yellow – fluorine.

7.2.1.2 DFTB+ and DMACRYS

A total of 1056 crystal structures were identified within 40 kJ mol−1 of the global
minimum and were initially optimised using DFTB+. This optimisation step yields
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reasonable and well-defined molecular geometries; however, it often produces inaccurate
energy estimates. In particular, DFTB tends to overestimate electron repulsion leading
to crystal structures with excessively high calculated densities [169]. To improve both
the energy rankings and the predicted densities, further relaxation of the crystal ge-
ometries was carried out using DMACRYS. Because DMACRYS is computationally less
demanding than VASP, it allows a larger number of crystal structures to be examined.

Since geometry optimisation using DFTB+ permits relaxation of internal molecular
coordinates, it is necessary to calculate the new intramolecular contribution of geometries
when progressing to DMACRYS optimisation, in order to determine the Etotal of the
crystal lattice (Equation 2.1). Therefore, single-point calculations were performed on the
molecules within the asymmetric unit using Gaussian, employing the 6-311G(d,p)/PBE0
basis set with the GD3BJ dispersion correction.

It was proposed that a standard error exists across all molecular geometries resulting
from performing DFT single-point energy calculations on DFTB geometries. Analysis of
Etotal incorporating the new intramolecular energies led to substantial re-ranking of the
structures. It was observed that molecular conformations which were not significantly
different still exhibited energies tens of kJ mol−1 higher than anticipated.

Part of the intramolecular contribution was accounted for by applying a Polarisable
Continuum Model (PCM) to each conformation during the single-point calculation. A
dielectric constant of 3.0 was employed for this purpose [170], thus leading to our cor-
rected final energy landscape.

Figure 7.15: Crystal Landscape of neat idelalisib after lowest 40 kJ mol−1 have been
optimised using DFTB+ and DMACRYS. Only structures optimised are shown.
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Three crystal structures were found within 10 kJ mol−1 of the global minimum.

(a) 0.00 (b) 5.40 (c) 8.84

Figure 7.16: Lowest energy DFTB-DMACRYS optimised crystal structures of the
idelalisib crystal landscape. Shown are Erelative values for each structure in kJmol−1.

KEY: Grey – carbon; white – hydrogen; red – oxygen; yellow – fluorine.

7.2.2 Comparison of Workflows

Two distinct workflows for the CSP of neat idelalisib have been presented.

Cost and Accuracy

For a single VASP optimisation, the average total compute time was 112 CPU hours
per structure. Due to this high computational expense, only 24 crystal structures were
examined. Consequently, if DMACRYS provides poor energy rankings, important low-
energy structures might be overlooked.

In comparison, the combined DFTB+ and DMACRYS calculations were significantly
less demanding, requiring an average of only 3.8 CPU hours per structure. This means
that evaluating 43 times more crystal structures was only slightly more costly overall
than performing the limited set of VASP calculations.

A comparison of the two landscapes was performed to identify which structures were
identified by either method.
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Figure 7.17: Structures found by DFTB+ and DMACRYS workflow on the VASP
crystal energy landscape. Structures indicated by a diamond are structures which
appeared on both VASP and DFTB-DMACRYS landscapes, whereas blue dots indicate

structures which did not match.

The structures that were not identified by the DFTB-DMACRYS workflow appear to
have relatively high energies, exceeding 13 kJ mol−1 above the global minimum. Due
to their elevated energy levels, these structures are unlikely to be observed, though they
should not be entirely disregarded.

Of the 23 structures generated by the VASP workflow, 19 were matched to those found
in the DFTB-DMACRYS landscape. Notably, the workflow successfully identified low-
energy crystal structures, while DMACRYS sampled a broader range of configurational
space. Both methods identified the same crystal structure as the global minimum which
indicates some consistency across both landscapes.

To validate these findings, the computed PXRD patterns for structures a, b, and c
from both the VASP and DFTB-DMACRYS workflows were compared to experimental
PXRD data of neat idelalisib. However, no convincing matches were observed across
these crystal structures, suggesting discrepancies between the theoretical models and
experimental results.
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Figure 7.18: Powder X-ray diffraction pattern of the experimentally observed poly-
morph of neat idelalisib.

All generated crystal structures were compared to the experimental crystal structure
using cDTW. Distances were evaluated across a range of band-warping limits to identify
structures that most closely match the experimental PXRD pattern.

The better rank indicates a shorter cDTW distance. A good candidate will be observed
to have a low rank across all band-warping limits. It is therefore possible to eliminate
poor candidates which do not reach a low rank. Candidate crystal structures that failed
to achieve a rank of at least 50 across all bandwidths were excluded. Good candidates
could be optimised further at DFT level to produce better matches to experimental
structures.
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Figure 7.19: Ranking of computed powder X-ray diffraction patterns to experimental
crystal structure across a range of bandwidths.

A visual comparison of the generated PXRD patterns was conducted. None of the
structures appeared to provide a convincing match to experimental data.

7.2.3 Extended Sampling

The sampling of the CSP was extended as detailed in Table 7.2.
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Space group Number of valid structures

P 21 21 21 100000

P 1 21 1 80000

C 1 2 1 40000

P 1 40000

P 21 21 2 30000

P 41 20000

P 43 21 2 20000

P 41 21 2 20000

P 43 20000

P 32 20000

Table 7.2: Number of valid crystal structures generated using the crystal landscape
generator for neat idelalisib in the extended sampling. The number of crystal structures
correlates with how frequently each space group is observed within the crystallographic

structural database.

It was found that increasing the sampling in the CSP allows for the identification of
additional crystal structures within the low-energy region. Therefore, the energy window
for post-CSP optimisation was expanded to include structures up to 50 kJ mol−1 above
the global minimum. As shown in Figure 7.20.

(a) Initial Sampling (b) Extended Sampling

Figure 7.20: Crystal Landscape of neat Idelalisib after optimised using DFTB+ and
DMACRYS with increased sampling. For initial sampling crystals that were up to 40
kJ mol−1 above the global minimum were taken from the initial crystal landscape. For
the extended sampling 50 kJ mol−1 was taken. Only structures optimised are shown.

Many more structures were subjected to optimisation, revealing a substantially larger
number of low-energy structures in the low-energy region than had been previously iden-
tified. The PXRD patterns for each of these structures were simulated using PLATON
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and visually compared with the experimental diffraction pattern.

(a) (b)

(c) (d)

Figure 7.21: Overlay of powder X-ray diffraction patterns against the experimental
pattern. Patterns shown show the closest resemblance across the dataset after re-

optimisation with DFTB+ and DMACRYS for idelalisib.

Figure 7.21 shows that some PXRD patterns exhibit similarities to the experimental
crystal structure PXRD; however, there remains uncertainty as to whether the experi-
mental structure has been identified at this stage. Optimisation of promising candidates
using VASP may yield improved matches. Additionally, the new flexible CSP approach
described in Chapter 8 will also be explored.

7.2.4 Structure Re-ranking

For future CSP efforts, determining the appropriate energy range for further optimisation
is essential. Here, the energies of structures before and after subsequent optimisation
were examined. In systems exhibiting significant re-ranking, a wider energy window is
required to ensure that no potentially low-energy structures are overlooked.
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Figure 7.22: Re-ranking of structures relative to the global minimum energy for
before and after DFTB+ and DMACRYS re-optimisation for neat idelalisib. The black
line shows where Relative EDFTB-DMACRYS = Relative ECSP. Structures below this
line are structures which have decreased in energy relative to the global minimum and

structures above have increased in energy.

There is a significant amount of re-ranking before and after DFTB+ and DMACRYS
re-optimisation. The global minimum energy structure was ranked around 30 kJ mol−1

above the global minimum energy structure before re-optimisation. For these flexible
molecules, relaxation of molecular geometry can lead to significant changes in Etotal. An
energy window at least 30 kJ mol−1 should be used to account for these changes.

For the post-CSP optimisation using VASP, the global minimum identified by VASP
was located within 20 kJ mol−1 of the CSP global minimum. This indicates that dif-
ferent initial structures converged to the same final predicted crystal structure during
optimisation.

One major source of structure re-ranking lies within the energy surface used to describe
the intramolecular energies within each crystal structure. Energies are calculated at
DFT level whilst the conformations within the crystal use a DFTB+ level of theory.
The discrepancy between these two energy surfaces can lead to artificial strain energy
being added to the system. Here, it is assumed that the energy gain resulting from this
effect will be balanced, as the gain should be similar across all systems. However, once
intramolecular interactions were considered, poorer ranking was observed.
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7.2.5 Using Experimental Data

This section was in collaboration with Robert Caroll and Edd Bilbe. Caroll performed
the growth of the single crystal and performed SCXRD on the idelalisib crystal. Bilbe
performed PXRD on a sample of powdered idelalisib.

In light of insufficient data to confidently determine the crystal structure of idelalisib,
a sample was purchased from SelleckChem [171]. On this sample, PXRD and SCXRD
was performed.

PXRD

PXRD data had already been obtained from a sample of anhydrous idelalisib, as dis-
cussed previously. Given that idelalisib is known to possess at least two polymorphs, it
was essential to confirm that the data corresponded to the same crystal structure.

Figure 7.23: Comparison of powder X-ray diffraction patterns before and after back-
ground correction for powdered idelalisib.

The PXRD of the store-bought product was measured. Background correction was
performed, and the data was truncated at 5◦ using DASH to eliminate noise and the
shallow peak observed near 3◦ [28]. A comparison between corrected and non-corrected
PXRDs is shown in Figure 7.24.
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Figure 7.24: Powder X-Ray diffraction patterns of two different samples of idelalisib
obtained from SelleckChem and communication from Johnson Matthey [172].

Good agreement was observed between the PXRD patterns providing confidence that
the structures are identical.

SC-XRD

Attempts were made to grow single crystals using five solvents: dichloromethane (DCM),
tetrahydrofuran (THF), acetonitrile, chloroform, and nitrobenzene. Single crystals of
idelalisib were successfully obtained only through slow evaporation from a saturated
DCM solution. A suitable crystal with block morphology was selected and mounted
on the diffractometer for SCXRD data collection. The experiment was performed on a
Rigaku 007HF diffractometer using Cu-Kα radiation (λ = 1.54184 Å), equipped with
Varimax confocal mirrors, a UG2 goniometer, and HyPix Arc-100 detectors. The crystal
was maintained at 100.00(10) K during data collection. The structure was solved with
SHELXT [173] using Intrinsic Phasing and refined with SHELXL [174] via Least Squares
minimisation, employing Olex2 [175].
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Figure 7.25: Single Crystal of Idelalisib obtained from slow evaporation of
dichloromethane solution.

The analysis of our experimental results suggests that the structure predominantly
adopts the less energetically favourable tautomer B. This conformation facilitates hy-
drogen bonding interactions with adjacent molecules.

Figure 7.26: Crystal structure of the grown single crystal of idelalisib from the slow
evaporation of dichloromethane

As seen in Figure 7.26, further investigation using PLATON software revealed a sig-
nificant amount of void space within the structure, estimated to be approximately 560
Å3. However, these voids exhibit minimal electron density, corresponding to roughly 0.5
DCM molecules per unit cell. The presence of both the higher-energy tautomer and the
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seemingly stable porous framework indicates the potential formation of a kinetic product
rather than the thermodynamically most stable system. This observation also implies
the formation of a solvate, despite the lack of direct visualisation of solvent molecules
within the structure.

Figure 7.27: Powder X-ray diffraction (PXRD) patterns of two different samples of
idelalisib. The experimental PXRD patterns were obtained from powdered idelalisib
samples sourced from SelleckChem. For comparison, the simulated PXRD pattern was
generated using PLATON from the crystallographic information file derived by solving

the structure of a grown single crystal.

Comparison of PXRD patterns generated from the Crystallographic Information File
(CIF) file is shown in shown in Figure 7.27. The overlay indicates that the structure
under investigation does not correspond to the one obtained in the previous PXRD
experiment as a substantial mismatch between the two structures has been observed.
Consequently, the investigation of this particular crystal form has been discontinued.

7.2.6 MC Refinement

A MC refinement as described in section 6.7 was subsequently performed on the 32
lowest-energy structures. Five structures, all belonging to space groups P 41 21 2 and
P 43 21 2, failed to meet the criteria for completion. However, the structures from the
last accepted MC step were carried forward for analysis.
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Figure 7.28: Crystal landscape for the search of idelalisib using a maximum of 4000
Monte Carlo steps, with λ = 20 kJ mol−1 and a final temperature of 100 K for the
linear profile. Each data point represents the final structure of a single trajectory.
The experimental powder X-ray diffraction pattern for idelalisib was used to guide the

search.

Figure 7.28 reveals a significant energy gap of 30.08 kJ mol−1 between the first- and
second-ranked structures, suggesting that the global minimum stands out distinctly from
the other structures and providing some confidence in this candidate structure being that
experimentally observed. Nonetheless, it remains uncertain whether the structure is a
true experimental match.

Figure 7.29: Powder X-ray diffraction (PXRD) patterns of two different samples of
idelalisib. The experimental PXRD patterns were obtained from powdered idelalisib
samples sourced from SelleckChem. For comparison, the simulated PXRD pattern was
generated using PLATON from structure with the lowest pseudo energy after Monte

Carlo refinement.
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Comparison of PXRD patterns in Figure 7.29 shows reasonable agreement between
structures. However there is an additional peak at around 13◦ which is unaccounted
for by the experimental pattern.



7.3. Idelalisib Solvates 159

7.3 Idelalisib Solvates

Three solvate structures were investigated using a methodology similar to that ap-
plied in the neat idelalisib workflow. For each solvate crystal, three stoichiometries
were considered, corresponding to 1:1, 2:1, and 1:2 ratios of idelalisib to solvent. The
DFTB–DMACRYS workflow described in the previous section was evaluated for its per-
formance in modelling these solvated systems.

Crystal Landscape Generator

Trial Structures

DMACRYS

In lowest 25
kJmol−1 ?

DFTB

DMACRYS

In lowest 15
kJmol−1 ?

VASP DFTB-DMA-VASP Structures

DFTB-DMACRYS Structures

yes

yes

Figure 7.30: Workflow for crystal structure prediction of idelalisib solvates.

As idelalisib is chiral, the most 10 most common Schonke space groups for Z’ > 1
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were selected for CSP. These space groups contain no mirrors, inversion centres, roto-
inversions.

Space group Number of valid structures

P 1 21 1 50000

P 21 21 21 40000

P 1 20000

C 1 2 1 20000

P 21 21 2 15000

P 41 10000

P 31 10000

P 32 10000

P 43 10000

P 43 21 2 10000

Table 7.3: Number of valid crystal structures generated using the crystal landscape
generator for each idelalisib solvate. The number of crystal structures correlates with
how frequently each space group is observed within the crystallographic structural

database.

The extent of sampling varies between space groups to account for their respective rates
of occurrence in any given crystal structure. Consequently, more extensive sampling is
conducted for the space group P 1 21 1 compared to P 43 to accurately reflect their
differing frequencies.

7.3.1 Idelalisib:Pyridine

CSP was performed on an idelalisib–pyridine solvate using the sampling scheme detailed
in Table 7.3.
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Figure 7.31: Crystal landscape of idelalisib:pyridine 1:1 search after CSP. Shown in
red is the magnified low energy region of the crystal landscape corresponding to 20 kJ

mol−1 above the global minimum.

Around 3 million crystal structures were found across all identified conformations of
idelalisib. Again, the low energy region was dominated by tautomer A.

Figure 7.32: Overlay of predicted crystal of idelalisib:pyridine and the experimentally
observed crystal structure before further re-optimisation. COMPACK 30/30 molecules
within distance and angular tolerances of 20 % and 30◦ respectively. RMSD: 0.868
Å. KEY: Grey – carbon; white – hydrogen; red – oxygen; yellow – fluorine; green –

carbons belonging to the experimental crystal.

Figure 7.32 illustrates the crystal structure prior to optimisation. The RMSD30 value
between the experimental and predicted crystals is 0.868 Å, indicating a reasonable
resemblance between the two structures. However, the molecular conformation in the
predicted structure requires further optimisation.
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To address this, additional optimisation was performed by considering structures within
20 kJ mol−1 of the global energy minimum. A total of 651 structures underwent DFTB+
- DMACRYS minimisation to refine the molecular geometries within each crystal struc-
ture.

Figure 7.33: Crystal Landscape of idelalisib:pyridine 1:1 solvate after DFTB+ and
DMACRYS optimisation. Structures shown as diamonds match to experimentally ob-

served structure

After optimisation, two structures were identified as matching the experimental crystal
structure of the idelalisib solvate. These structures are ranked second and third in terms
of energy, indicating good agreement with the experimental data. Notably, the global
minimum energy structure does not correspond to the experimental structure.
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(a) 0.00 (b) 1.40

(c) 2.67

Figure 7.34: Overlay of predicted crystal to experimentally observed crystal structure
after further re-optimisation with DFTB+ - DMACRYS. KEY: Grey – carbon; white
– hydrogen; red – oxygen; blue - nitrogen; yellow – fluorine; green – carbons belonging

to the experimental crystal. Shown are the relative total energies in kJ mol−1.

The relative ranking of structures before and after re-optimisation can be examined to
assess the extent of re-ranking. This information helps determine how large an energy
window should be considered for subsequent analyses.
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Figure 7.35: Energy re-ranking of idelalisib:pyridine solvate before and after DFTB-
DMACRYS optimisation. The solid black line indicates y = x where the ranking of

both structures is the same.

Fewer structures were minimised to low energy levels compared to the re-ranking of the
neat idelalisib system. However, the new global minimum was obtained from a structure
initially positioned approximately 20 kJ mol−1 above the previous global minimum.
To ensure that all potential structures capable of achieving a lower energy state are
considered, it is recommended to expand the energy window to beyond 20 kJ mol−1.

7.3.2 Idelalisib:Dimethylacetamide

CSP was conducted on an idelalisib–dimethylacetamide solvate using the sampling scheme
outlined in Table 7.3.
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Figure 7.36: Crystal landscape of idelalisib:dimethylacetamide 1:1 crystal structure
prediction. Shown in red is the magnified low energy region of the crystal landscape

corresponding to 30 kJ mol−1 above the global minimum.

Around 3 million crystal structures were found across all identified conformations of
idelalisib. Again, the low energy region was dominated by tautomer A.

Figure 7.37: Overlay of predicted crystal for idelalisib:dimethylacetamide to ex-
perimentally observed crystal structure before further re-optimisation. COMPACK
30/30 molecules within distance and angular tolerances of 20 % and 30 Å respectively.
RMSD30: 0.483 Å. KEY: Grey – carbon; white – hydrogen; red – oxygen; blue - ni-

trogen; yellow – fluorine; green – carbons belonging to the experimental crystal.
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Crystal structures were compared to the experimentally observed crystal structure. Fig-
ure 7.37 displays the closest match, indicating potential for further optimisation. A
total of 1257 structures were identified within 25 kJ mol−1 of the global minimum.
These structures have been selected for further re-optimisation using DFTB+.

Figure 7.38: Idelalisib:dimethylacetamide landscape for 1:1 stoichiometry. Matches
to experimental structure indicated with orange diamonds.

7.3.3 Idelalisib:Acetonitrile

CSP was performed on an idelalisib–acetonitrile solvate using the sampling approach
detailed in Table 7.3. The resultant landscape is shown in Figure 7.39.

Figure 7.39: Crystal landscape of idelalisib:acetonitrile 1:1 search after CSP. Shown
in red is the magnified low energy region of the crystal landscape corresponding to 40

kJ mol−1 above the global minimum.
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No close matches to structures were identified during this search. Further examination
of the experimental structure revealed that the experimental form (Figure 7.40) adopts
a 6:2 stoichiometry.

Figure 7.40: Experimental crystal structure of idelalisib:acetonitrile solvate. KEY:
Grey – carbon; white – hydrogen; red – oxygen; blue - nitrogen; yellow – fluorine.

The low level of symmetry in the system may contribute to the difficulty in predicting
the structure. As idelalisib molecules exhibit similar geometries, the crystal structure
might be accessible by exploring a 3:1 stoichiometry. However, the computational cost
of such an approach is substantial, and the CSP for this solvate under these conditions
was not completed due to the excessive search space involved.

7.3.4 Solvate Stoichiometry Prediction

The energies of crystal structures cannot be directly compared across different stoi-
chiometries because the number of molecules in each asymmetric unit varies. To address
this issue, a convex hull was employed to evaluate the relative stabilities of the global
minima for each stoichiometry [176].

These energies were subsequently compared to a constant stoichiometry comprising 2
moles of the API idelalisib and 2 moles of solvent, as presented in Equations 7.2.

E2:2(1:1) = Etotal(1:1) +Etotal(Idel) +Etotal(Solvent)

E2:2(2:1) = Etotal(2:1) +Etotal(Solvent)

E2:2(1:2) = Etotal(1:2) +Etotal(Idel)

(7.2)
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where E2:2(1:1), E2:2(2:1) and E2:2(1:2) are the corrected energies compared to a con-
stant 2:2 stoichiometry, Etotal(Idel) and Etotal(Solvent) are the total crystal energies of
the experimentally observed crystal structures for idelalisib and the solvent respectively.

To determine the Etotal(Solvent), crystals from the CSD for each solvent were used and
optimised using DFTB+ followed by DMACRYS. For pyridine entries, PYRDNA01,
PYRDNA02, PYRDNA03, PYRDNA04, PYRDNA05, PYRDNA06 were used from the
CSD [177–180]. For acetonitrile, QQQCIV01 and QQQCIV08 were used [120, 181]. This
ensured structures were energetically sensible. For dimethylacetamide, no experimental
crystal structure could be found in the literature, so a Z’ = 1 CSP search was performed,
utilising the workflow described in this section. The lowest energy crystal structure was
selected as a proxy for Etotal(DMAC).

To identify if co-crystallisation would take place, a comparison was made to the sum of
the total energies for 2 mols of neat idelalisib and 2 mols of solvent crystallising such
that:

E2:2(Independent) = 2Etotal(Idel) + 2Etotal(Solvent) (7.3)

where E2:2(Independent) is the total energy for neat idelalisib and neat solvent where
no co-crystallisation occurs.
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(a) Pydridine (b) Dimethylacetamide

(c) Acetonitrile

Figure 7.41: Relative stabilities of idelalisib solvate stoichiometries. Lower relative
total energy indicates greater stability of the stoichiometry. Each energy value is cal-

culated relative to 2 mol of idelalisib and 2 mol of solvent.

The idelalisib–pyridine and idelalisib–dimethylacetamide solvates were both accurately
predicted to exist in a 1:1 stoichiometry. The idelalisib–acetonitrile solvate was also
predicted to adopt a 1:1 stoichiometry; however, stoichiometries with Z ′ > 3 were not
examined. Future work should investigate the 3:1 and 6:2 stoichiometries and compare
the resulting structures after re-optimisation using DFTB+ and DMACRYS.
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7.4 Conclusions and Future Work

For neat idelalisib, a convincing match between the predicted and experimental crys-
tal structures has not yet been identified. Although some of the hypothetical crystals
appear similar, none provide a sufficiently strong correlation to the experimental diffrac-
tion data. This discrepancy may be due to insufficient sampling, particularly given that
idelalisib is a flexible molecule featuring multiple rotatable bonds. Further additional
sampling could therefore be crucial for improving the chances of locating the experimen-
tal structure within the predicted crystal energy landscape.

To see if more sampling is needed, assessing the completeness of the current landscape
would be an informative next step. One way to evaluate this is to analyse the diversity of
unique crystal structures generated towards the end of CSP runs. If the landscape is well-
sampled and nearing completion, newly generated structures should tend to minimise
into already identified energy minima rather than yielding distinct new crystal packings.

Further computational studies focusing on tautomer B of idelalisib are also recom-
mended. Experimental evidence suggests that idelalisib may crystallise in the B tau-
tomeric form, and additional CSP efforts targeting this conformer could potentially
yield superior results. Moreover, the molecular conformation observed within the single
known experimental crystal structure could be extracted and employed as the asymmet-
ric unit in subsequent CSP calculations, potentially improving the chances of identifying
a correct match.

Another avenue involves applying the MCSA algorithm for more structures. This could
be utilised either for performing MC refinement on those predicted structures whose
simulated PXRD patterns resemble the experimental pattern, or by executing full CSP
runs starting from QR structures. However, it should be noted that the MCSA ap-
proach previously failed to produce satisfactory results for other complex systems such
as ROY, suggesting that it may require further methodological enhancements before
proving effective for idelalisib.

Where the MC refinement of crystal structures of idelalisib was carried out, no matches
to the experimental crystal structure were identified. Although comparisons based on
PXRD suggest reasonable agreement, the results remain unconvincing. Further work
could involve increasing the number of structures taken forward from the crystal land-
scape for analysis. Additionally, ss-NMR studies could be performed on the idelalisib
sample, and the resulting data incorporated into the cost function, potentially aiding in
the search for the correct structure.

Given the significant flexibility of the idelalisib molecule and the diversity of its possible
crystal packing arrangements, it is also advisable to maintain a relatively large energy
window in the DFTB+–DMACRYS workflow. This ensures that potentially relevant
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structures, even if initially predicted at higher energies, are not prematurely excluded
from consideration. Moreover, the extent of sampling should remain high to maximise
the likelihood of discovering the experimental structure.

It may also be beneficial to perform a dedicated DCM CSP to investigate whether
the experimental crystal is, in fact, a solvate. Such an approach could help confirm
the nature of the experimentally observed phase and explain discrepancies between the
predicted and observed data.

The crystal structures of two solvate forms of idelalisib have been successfully predicted.
However, the experimental structure of the acetonitrile solvate has not yet been de-
termined, most likely due to its asymmetric nature. It is proposed that further CSP
calculations could be undertaken using a stoichiometry of 6:2, which may enable matches
to be found with the experimental structure. Nevertheless, the computational cost asso-
ciated with performing CSP at this stoichiometry is considerable, and it may be prudent
to restrict the search to the space group of the experimental structure. Consequently, a
blind search for this crystal structure is likely not to be feasible.

An alternative approach for identifying the crystal structure of the idelalisib:acetonitrile
solvate involves employing CSP with a 3:1 stoichiometry. This could be followed by
perturbation techniques, which may assist in identifying the crystal structure and po-
tentially refining it through the MC refinement process using a supercell.
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Chapter 8

cspy-flex

The following work was carried out in collaboration with Ramón Cuadrado, Joseph
Glover, Christopher R. Taylor, and Graeme M. Day. As part of this research, conformer
searches were performed and torsional ranges for different molecules were investigated by
the author. Cuadrado completed flexible-CSP calculations for XBCN90 and developed a
computational pipeline; Glover completed flexible-CSP calculations for FAHNOR; Taylor
programmed a significant portion of the code; and Day provided expert advice.

In Chapters 4 and 7, a rigid-conformer packing strategy was demonstrated, wherein gas-
phase metastable conformations of the target molecule were generated, packed using
the CLG, and subsequently relaxed with DMACRYS. The primary limitation of this
approach lies in its reliance on the gas-phase conformer already closely resembling the
crystal geometry.

Earlier studies addressed tackled flexible molecules in various ways. Fully flexible
searches incorporate intramolecular torsions directly into the global optimisation, al-
beit at significant computational expense. Evolutionary algorithms perform parallel
genetic searches using empirical force fields, simultaneously exploring both packing and
conformation; although these methods have been successful for drug-like molecules, they
remain constrained by the inherent inaccuracies of force fields [182]. More recent research
has leveraged ML explicitly for flexible CSP: Butler et al. employed active learning to
train neural potentials iteratively on density-functional data acquired during CSP, en-
abling fully flexible lattice relaxations at computational costs comparable to those of
force fields [183]. This allows for easier exploration of configurational space.

To address the conformer-mismatch problem without incurring the full cost of ML train-
ing, a new approach, cspy-flex, is introduced. Drawing inspiration from previously em-
ployed methods, two potential workflows are proposed, incorporating both global and
local conformer sampling. A global-sampling path executes a lightweight search to sug-
gest diverse conformations, while a local-sampling path perturbs gas-phase conformers
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within user-defined torsion windows. Both workflows pack conformations using the CLG
and minimise with DMACRYS as before which preserves the proven accuracy of the en-
ergy model while expanding the scope of explored conformational space.
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8.1 Global Sampling of Conformational Space

In principle, it is possible to sample conformational space by conducting a grid based
search across flexible torsion angles of a molecule. The number of conformations in this
instance would scale according to the degree of sampling and the number of flexible
torsion angles a molecule possesses.

C =
T∏︂

t=0

2π
st

, (8.1)

where C is the total number of conformations, t is the torsion number, T is the total
number of torsions, st is the angular step size of torsion t in radians.

This method can generate a large number of conformations. Consequently, it is necessary
either to limit the resolution of the grid or to restrict its application to molecules with
few flexible torsions.

Focus has been concentrated on predicting the crystal structure of XBCN90 shown in
Figure 8.1 [184].

Figure 8.1: XBCN90. Flexible torsions (1-4) are shown with arrows.

If the global minimum conformation from a CREST search is distorted around all flexible
torsion angles using an angular step size of π

4 radians, or 45◦, a total of 4096 potential
conformations are generated.
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Conformational space can be more effectively sampled by adjusting the level of sampling
around each flexible torsion, thereby placing greater emphasis on regions of particular
interest. For example, sampling around XBCN90 could be performed using the following
set:

Torsion Number Angular Range / ◦ Angular Step Size / ◦

1 70 7

2 20 2

3 48 12

4 24 6

Table 8.1: Extent of sampling performed during global sampling in cspy-flex for
XBCN90. Torsion numbers (1–4) correspond to flexible torsions labelled in Figure 8.1.
The angular range represents the total region around a conformer sampled using the

specified angular step size.

Some generated conformations resulted in atomic clashes and were consequently dis-
carded. After removing all clashing geometries, a total of 3630 conformations remained.
These conformations were subsequently used with the CLG to generate crystal struc-
tures in the P 21 21 21 space group, in which XBCN90 has been experimentally observed
to crystallise. The crystal energy landscape is shown in Figure 8.2.

Figure 8.2: Crystal landscape of XBCN90 search after global flexible crystal structure
prediction for space group P 21 21 21 only. Shown in red is the magnified low energy
region of the crystal landscape corresponding to 20 kJ mol−1 above the global minimum.

The global energy minimum structure for this structure was then compared against the
experimentally observed structure.
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Figure 8.3: Overlay of predicted crystal of XBCN90 to experimentally observed crys-
tal structure. COMPACK 30/30 molecules within distance and angular tolerances of 20
% and 30◦. RMSD: 0.3300 Å KEY: Grey – carbon; white – hydrogen; blue - nitrogen;

green – carbons belonging to the experimental crystal.

A comparison between the structures as seen in Figure 8.3, shows that there is an ex-
perimental match using COMPACK having an RMSD30 = 0.33 Å. Further optimisation
using our post-CSP workflows was not needed.
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8.2 Local Sampling of Conformational Space

An alternative approach to sampling global conformational space involves focusing on
local sampling around each gas-phase conformer. Since molecules typically adopt con-
formations that are closely related to experimentally observed conformers, exploring
local conformations can be achieved by introducing small distortions to flexible torsion
angles [185, 186]. This technique allows for an effective exploration around each energy
minimum as shown in Figure 8.4.

Figure 8.4: Illustration of local conformational sampling around each conformer.
Conformers with low energy are indicated with darker blue. The region within the
red square is area sampled by the local conformational sampling indicated by angular

ranges rθ and rϕ.

By utilising local distortions the amount of conformations needed for the CSP calcula-
tions can be reduced.

C = n
T∏︂

t=0
(
rt

st
+ 1) , (8.2)

where n is the number of gas phase conformers, rt is the angular range for torsion t where
rt<2π and st is the angular step size of torsion t. Again, some of these conformations
may be discarded due to clashing atoms upon generation.

To identify the extent of sampling needed, experimental conformations found in a series
of flexible pharmaceutical-like crystal structures were studied as shown in Figure 5.2. A
conformational search was performed on each molecule using the program CREST. The
extent to which each conformer within the ensemble would require rotation of its flexible
torsions to align with the experimental conformation was calculated. The conformer
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exhibiting the smallest maximum rotation among all its flexible torsions was selected
from the ensemble. This angle value indicates the local sampling range necessary for the
closest conformer to achieve the conformation observed in the crystal structure. The
results are summarised in Figure 8.5.

Figure 8.5: Minimum angular range in which a generated conformer can be dis-
torted to reach conformations within experimental crystal structures for a series of

pharaceutical-like molecules shown in Figure 5.2.

Around 70% of experimental conformations can be found by distorting gas phase con-
formers by 20◦. However some angles require distortions up to 50◦ across all flexible
torsions. This means that when using local conformer sampling, each torsion should be
distorted by up to 50◦ in order to reach the experimentally observed conformation.

8.2.1 Generating Crystal Structures

Given the vast number of conformations, it is not computationally feasible to perform
DMA on all of them. Consequently, lower accuracy point charges were used to model
the electronic densities.

Conformations generated from each workflow were packed as described previously in
section 2.4.3.2.
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8.2.2 FAHNOR

A conformational search using mCREST on the FAHNOR molecule was performed
shown in Figure 8.6.

Figure 8.6: FAHNOR. Flexible torsions (1-5) are shown with arrows.

Local sampling was performed around each of the generated conformers.

Torsion Number Angular Range / ◦ Angular Step Size / ◦

1 40 10

2 40 10

3 40 10

4 40 10

5 40 10

Table 8.2: Extent of sampling performed during local sampling in cspy-flex for
FAHNOR. Torsion numbers (1–5) correspond to flexible torsions labelled in Figure 8.6.
The angular range represents the total region around a conformer sampled using the

specified angular step size.

35002 unique structures were generated using the sampling in Table 8.2. CSP was
subsequently performed by randomly selecting conformers from the generated conformer
database for packing. Crystal structures were generated in the usual method for space
group P 21 / c, resulting in the generation of 40,000 structures.
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Figure 8.7: Crystal landscape of FAHNOR search after local flexible crystal structure
prediction for space group P 21 / c only. Shown in red is the magnified low energy region

of the crystal landscape corresponding to 20 kJ mol−1 above the global minimum.

One of the structures matched with the experimental structure with a COMPACK 30/30
search shown in Figure 8.8. This structure though had an energy of 13.1 kJ mol−1 above
the global minimum and ranked 42nd in energy.

Figure 8.8: Overlay of predicted crystal of FAHNOR to experimentally observed
crystal structure FAHNOR after initial crystal structure prediction. COMPACK 30/30
molecules within distance and angular tolerances of 20 % and 30◦. RMSD: 0.64 Å
KEY: Grey – carbon; white – hydrogen; yellow - sulphur; red - oxygen; green – carbons

belonging to the experimental crystal.
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For this last all the crystal structures were re-optimised up to 30 kJ mol−1 above the
global minimum using DFTB+. One of the structures matched with the experimental
polymorph with an RMSD30 of 0.23 Å and an energy of 6.78 kJ mol−1 above the global
minimum.

8.2.3 Idelalisib

It was not possible to produce a convincing match using our previous methodology
employed for idelalisib. Therefore, an attempt was made using our cspy-flex.

A conformational search was conducted using mCREST on the idelalisib molecule, with
sampling limited exclusively to idelalisib A, the lowest energy tautomer.

Figure 8.9: Idelalisib A. Flexible torsions (1-5) are shown with arrows.

Local sampling was performed around each of the conformers generated by our conformer
search using the angular ranges and step sizes set out by Table 8.3.

Torsion Number Angular Range / ◦ Angular Step Size / ◦

1 50 25

2 50 25

3 50 25

4 50 25

5 50 25

Table 8.3: Extent of sampling performed during local sampling in cspy-flex for
idelalisib. Torsion numbers (1–5) correspond to flexible torsions labelled in Figure 8.9.
The angular range represents the total region around a conformer sampled using the

specified angular step size.
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103,125 structures were generated using the sampling above. CSP was then performed
by randomly selecting conformers for packing. The ten most common Sohncke space
groups were sampled, generating 400,000 crystals for each space group. The resultant
landscape is shown in Figure 8.10.

Figure 8.10: Crystal landscape of idelalisib search after local flexible crystal structure
prediction across top 10 most common spacegroups.

Structures were optimised using the DFTB-DMACRYS workflow as described in section
7.2.1.2, taking structures 40 kJ mol−1 above the global energy minimum. The resultant
landscape is shown in Figure 8.11.
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Figure 8.11: Crystal landscape of idelalisib search after local flexible crystal structure
prediction across top 10 most common spacegroups after optimisation of structure up
to 40 kJ mol−1 above the global energy minimum. Only structure that have been

optimised are shown.

Structures were compared with the experimental PXRD to identify any improvements
made between the initial methodology and cspy-flex using local distortions.
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(a) cDTW Distance = 21.63 (b) cDTW Distance = 23.40

(c) cDTW Distance = 24.85 (d) cDTW Distance = 25.05

Figure 8.12: Powder X-ray diffraction (PXRD) overlays between experimental and
generated crystal structures for idelalisib using the cspy-flex workflow. Patterns shown
are those with the lowest constrained dynamic time warping distance between patterns.

Some structures exhibit peaks that closely align with one another. However, the cDTW
distance remains high, and peak intensities are also poorly matched. As previously
observed, no convincing matches to the experimental PXRD pattern were identified.
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8.3 Conclusions and Future Work

The use of cspy-flex eliminates the need for extensive post-CSP optimisation of struc-
tures, as molecular conformations are already packed in a perturbed state. This ap-
proach allows for the adoption of new geometries that might otherwise be overlooked
when packing only standard molecular conformers.

Future calculations may benefit by performing post-CSP re-optimisation using DFTB+.
As in the case of FAHNOR, it was seen to improve the geometric match between the
predicted crystal and experimental structure.

However, the computational cost of this method is significant. While the full effective-
ness of the method has not yet been established, future work is necessary to test this
methodology on a range of flexible molecules. The challenge of performing multiple
GDMA calculations is compounded by this computational expense. Approximations,
such as assuming that the multipoles of a perturbed conformer are the same as the
unperturbed conformer, could help mitigate this issue. Nevertheless, further testing is
required to confirm the viability of this approach.

It is possible to use the relative energies of conformations to bias this selection, as de-
scribed by Equation 8.3. Here, instead of selecting conformers uniformly with probability
1
C , each conformer i is assigned a weight wi that depends on its relative intramolecular
energy Ei. The probability pi of selecting conformer i is then given by:

pi =
wi

C∑︂
j=1

wj

(8.3)

where wi is a weight function defined to decrease with increasing conformer energy, for
example:

wi =
1

1 +Ei
(8.4)

In this way, lower-energy conformers are preferentially selected, while still allowing the
possibility of sampling higher-energy conformations.
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Chapter 9

Conclusions

This thesis has detailed the development of several CSP methodologies. These ap-
proaches were designed to address the challenges of predicting the crystal structures of
flexible, drug-like small molecules, which typically possess multiple rotatable bonds, can
adopt different tautomeric states, crystallise in a range of solvate stoichiometries, and
exhibit complex packing motifs. The main objective of the work was therefore to refine
CSP protocols so they can reliably handle such systems and to introduce a set of novel
techniques that overcome the limitations of existing approaches.

Key features of dealing with such molecules has been identified which must be considered
when performing CSP on pharmaceuticals: conformational and crystal sampling, post
CSP optimisation and integration of experimental data into workflows.

Conformational Sampling

A initial challenge was achieving comprehensive sampling of the PES. A single con-
formational search rarely explores the full PES; instead, running multiple, independent
searches markedly increases the diversity of conformers obtained. The resulting ensem-
ble is best clustered through the use of molecular torsion angles rather than by RMSD,
as the former affords finer control over which conformers are retained. The mCREST
protocol produced broader coverage of the PES and consistently out-performed both
LMCS and a single CREST run.

Tautomerism must also be considered. High-energy gas-phase tautomers can become
thermodynamically competitive in the solid state if their geometry stabilises otherwise
inaccessible hydrogen-bonding patterns. Therefore it is recommended that performing
conformer searches for every plausible tautomer.

In addition to packing pre-optimised conformers into the CLG, performing local sam-
pling around each conformer and packing them, may yield lower-energy structures that
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require minimal further optimisation with DFTB. Conversely, a global, grid-based ex-
ploration of the conformational space may be employed to ensure that crystal confor-
mations differing substantially from the gas-phase ensemble are not overlooked. Both
approaches, however, face challenges associated with the rapid expansion of candidate
structures and the limitations of point-charge electrostatics in reliably ranking them. To
achieve quantitative accuracy, it will be necessary to incorporate multipole electrostatics
or the use of ML forcefields, or to re-rank candidate structures using DFT.

Sampling Crystal Landscape

To assess whether sampling is complete, one approach is to inspect if late-stage CSP runs
continue to yield new minima or predominantly relax into previously identified energy
wells. This evaluation helps determine whether additional sampling such as incorpo-
rating more conformers or generating more structures is warranted for a challenging
flexible target. The strategy can also be tailored by space group, enabling more efficient
allocation of computational resources.

Post Crystal Structure Prediction Optimisation

Taking a subset of the low-energy crystals from the crystal landscape through post-CSP
optimisation was essential to obtain close matches with experimentally observed struc-
tures. In several systems, substantial re-ranking of structures was observed; therefore,
generous energy cut-offs on the order of tens of kJ mol−1, should be employed when
selecting structures for higher levels of theory. Prematurely discarding higher-energy
candidates risks omitting the experimental form.

Two methodologies were identified as particularly promising for this process. A compos-
ite approach combining DFTB with DMACRYS was found to generate structures that
were geometrically similar to experimental structures. However, the energy rankings
of these structures relative to the broader landscape were only moderately reliable. In
contrast, the use of a higher-level method such as periodic DFT provided both strong
geometric agreement and improved energy ranking. Nevertheless, this approach incurred
a significantly higher computational cost.

Utilising Experimental Data

If experimental data is available, it can be used to validate predicted structures. One
such approach involves using a DTW algorithm to measure the dissimilarity between
two PXRDs. When PXRD patterns are generated from hypothetical crystals, this com-
parison can be performed with relative ease. However, patterns that do not visually
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match can still yield low DTW distances. Comparing structures across a range of differ-
ent Sakoe–Chiba bands offers some improvement but often requires manual intervention
and has limited effectiveness.

The newly developed MCSA method demonstrates significant promise as a tool for de-
termining molecular crystal structures by integrating experimental and computational
techniques. It is robust enough to reliably resolve the crystal structures of rigid molecules
and distinguish polymorphs formed under different conditions, such as varying pressure.
For the method to be truly effective, the PXRD data must be free from significant pre-
ferred orientation. Therefore, for an automated synthesis and PXRD workflow to be
feasible, preferred orientation should be minimised. Despite this limitation, the method
successfully predicted the α polymorph of benzimidazole from 6 out of 8 samples, which
is encouraging. Nonetheless, the method currently struggles to determine the structures
of flexible molecules with the same reliability. Of the two flexible molecules investigated,
only one could be determined consistently. Further development is required, including
testing a wider range of molecules with different numbers of flexible torsions, and opti-
mising parameters such as trajectory types, step sizes, and temperatures. A significant
parameter space remains unexplored, and the method’s limitations are not yet fully un-
derstood. The approach could allow for the incorporation of multiple experimental data
sources simultaneously such as PXRD and NMR with the potential to include additional
data types. Provided that a suitable structural similarity metric and a rapid simula-
tion method exist for the data type in question, implementation within our codebase is
straightforward.

A slightly different approach utilises MC refinement which facilitates the matching of
CSP datasets to experimental data. It has proven successful for both rigid and flexible
molecules in the systems tested thus far and could be used towards the end a CSP to
determine whether a match has been made where there is ambiguity. The refinement
process provides insight into the reliability of structural matches.

Closing Remarks

The contents of this thesis present promising developments in the advancement of new
methods for CSP applications, though further refinement is necessary to realise their
full potential.

The integration of conformational sampling strategies, improved post-CSP optimisation
techniques, and the incorporation of experimental data into predictive workflows repre-
sents a significant step forward in addressing the complexities of flexible pharmaceutical
molecules. While the protocols presented here have demonstrated success across a range
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of systems, several limitations persist. Among these are the challenges in handling ex-
treme conformational flexibility, reliably predicting rare or metastable polymorphs, and
confidently matching predicted structures to experimental data.

Future work should focus on the continued refinement of these techniques, particularly
through the adoption of machine learning models to efficiently estimate the energies
of crystal structures and to develop methods for ranking structures whose total energy
comprises contributions from multiple levels of theory. Parallel efforts should also aim
to broaden the integration of experimental data by incorporating additional data types
into the CSP process, thereby further enhancing predictive accuracy.

Ultimately, reliable CSP for flexible, drug-like molecules remains a significant challenge.
However, the advances made in this thesis represent progress toward establishing CSP as
a routine and dependable tool in pharmaceutical solid-form development. As computa-
tional capabilities expand and algorithms become more sophisticated, the prospect of a
fully predictive, experimentally guided CSP for flexible molecules becomes increasingly
attainable.
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Appendix A

Conformer Search Settings

Job Settings
Sort Z-matrix F

CRE Settings
Energy window (kcal) 6.0000
RMSD threshold (Å) 0.1250
Energy threshold (kcal) 0.0500
Rot. const. threshold 0.01
T (K) (for boltz. weight) 298.15

General MD/MTD Settings
Time step (fs) 5.0
Shake mode 2
MTD temperature (K) 300.00
Trj dump step (fs) 100
MTD Vbias dump (ps) 1.0

XTB Settings
GFN method GFN2
Final optimisation level very tight

Table A.1: iMTD-GC conformational search settings used throughout.
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Job Settings
Sort Z-matrix F

CRE Settings
Energy window (kcal) 6.0000
RMSD threshold (Å) 0.1250
Energy threshold (kcal) 0.0500
Rot. const. threshold 0.01
T (K) (for boltz. weight) 298.15

General MD/MTD Settings
Time step (fs) 5.0
Shake mode 2
MTD temperature (k) 300.00
Trj dump step (fs) 100
MTD Vbias dump (ps) 1.0

XTB Settings
GFN method GFN2
Final optimisation level very tight

Table A.2: iMTD-sMTD conformational search settings used throughout.
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Parameter Setting
Optimisation Algorithm Berny Algorithm
Convergence Criteria

Maximum Force 4.5 × 10−4 Hartree/Bohr
RMS Force 3.0 × 10−4 Hartree/Bohr
Maximum Displacement 1.8 × 10−3 Bohr
RMS Displacement 1.2 × 10−3 Bohr

Step Size 0.01 Bohr
Hessian Update

Broyden–Fletcher–Goldfarb–Shanno (BFGS)
update

Optimisation
Maximum Steps 29
Maximum cycles 500

SCF
Maximum cycles 65
Level tight

Initial Hessian Model Hessian (calculated analytically for the
first point)

Symmetry Retained during optimisation unless ‘NoSymm‘
keyword is used

Charge 0
Spin Multiplicity Singlet

Table A.3: Optimisation Settings used in Gaussian09 for conformer search compar-
isons
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Appendix B

Idelalisib Landscapes
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B.1 Idelalisib Experimental Details

Empirical formula C22H18FN7O

Formula weight 415.43

Temperature / K 100.00(10)

Crystal system monoclinic

Space group P21

a/Å 20.8926(17)

b/Å 11.1874(5)

c/Å 21.2003(18)

α/deg 90

β/deg 116.919(10)

γ/deg 90

Volume/Å3 4418.3(7)

Z 8

ρcalcg/cm3 1.249

µ/mm 1 0.725

F(000) 1728

Crystal size/mm3 0.17 × 0.1 × 0.04

Radiation Cu Kα (λ = 1.54184)

2θ range for data collection/deg 4.744 to 138.85

Index ranges -23 ≤ h ≤ 25, -13 ≤ k ≤ 13, -25 ≤ l ≤ 14

Reflections collected 32992

Independent reflections 13364 [Rint = 0.0530, Rσ = 0.0597]

Data/restraints/parameters 13364/1/1122

Goodness-of-fit on F2 1.072

Final R indexes [I≥2σ (I)] R1 = 0.0908, wR2 = 0.2483

Final R indexes [all data] R1 = 0.1115, wR2 = 0.2754

Largest diff. peak/hole / e Å−3 0.36/-0.37

Flack parameter -0.08(13)

Table B.1: Crystal data and structure refinement for idelalisib (C22H18FN7O).
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B.2 MC Refinement Parameters

Parameter Value

Max. accepted steps 1000

Starting move scale 1.0

Move Type Adaptive

Energy evaluation DFTB

α 1

λ / kJ mol−1 10

Temperature profile Linear

Starting temperature 0

Final temperature 0

Reject count limit 120

Bandwarping limit 0.5

2θ range / ◦ 0-40

Table B.2: Monte Carlo refinement parameters for neat idelalisib
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B.3 Idelalisib Solvates

B.3.1 Pyridine

Figure B.1: Idelalisib-Pyridine 2:1 Crystal Landscape sampling the 10 most common
space groups for Z’ > 1.

Figure B.2: Idelalisib-Pyridine 1:2 Crystal Landscape sampling the 10 most common
space groups for Z’ > 1.
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B.3.2 Dimethylacetamide

Figure B.3: Idelalisib-Dimethylacetamide 2:1 Crystal Landscape sampling the 10
most common space groups for Z’ > 1.

Figure B.4: Idelalisib-Dimethylacetamide 1:2 Crystal Landscape sampling the 10
most common space groups for Z’ > 1.

Figure B.5: Post crystal structure prediction dimethylacetamide low energy landscape
for Z’ = 1. Each structure has been optimised using DFTB+ and DMACRYS followed

by VASP.
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B.3.3 Acetonitrile

Figure B.6: Idelalisib-Acetonitrile 2:1 Crystal Landscape sampling the 10 most com-
mon space groups for Z’ > 1.

Figure B.7: Idelalisib-Acetonitrile 1:2 Crystal Landscape sampling the 10 most com-
mon space groups for Z’ > 1.
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Persson, J. Řezáč, C. G. Sánchez, M. Sternberg, M. Stöhr, F. Stuckenberg, A.
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