
1

Multi-user Oriented Data Sharing Scheme for Internet of
Medical Things Based on Dual Cryptography Mechanism

Guiping Zheng, Bei Gong, Muhammad Waqas Senior Member, IEEE, Iftekhar Ahmad Senior Member, IEEE,
Hisham Alasmary Member, IEEE, and Sheng Chen Fellow, IEEE

Abstract—Encrypted sharing of Internet of Medical Things
(IoMT) data is essential for facilitating collaboration, safeguard-
ing patient privacy, and advancing clinical research. However, ex-
isting encryption schemes face numerous challenges in multi-user
environments. Traditional proxy re-encryption requires exclusive
ciphertext for each user, which is evidently unsuitable for IoMT’s
multi-user scenarios. Meanwhile, attribute-based encryption pro-
vides flexible data access control, but its complex computations
and high resource demands limit its use in large-scale IoMT
environments. Additionally, challenges like single-point failure
and redundant backups emerge in ciphertext storage. To address
these challenges, we propose a dual-cryptography mechanism
integrating enhanced proxy re-encryption and attribute-based
encryption. Our scheme enables unified ciphertext access for
authorized users while applying attribute encryption exclusively
to small data keys. To mitigate potential data loss from storage
server failures, we propose a decentralized ciphertext storage and
recovery mechanism with verifiable secret sharing. Furthermore,
we implement decentralized ciphertext storage using verifiable
secret sharing, ensuring recoverability from server failures.
Formal analysis proves confidentiality under the random oracle
model. Experimental results demonstrate high security strength,
computational efficiency, and robustness. The solution prevents
single-point failures, resists collusion attacks, and maintains
traceability through blockchain-integrated audit trails.

Index Terms—Internet of Medical Things, data sharing, data
encryption, privacy protection, decentralized storage

I. INTRODUCTION

THE Internet of Medical Things (IoMT) is an extension of
Internet of Things (IoT) technology applied in medical

scenarios [1]–[4]. It involves connecting various sensors and
medical terminals to collect, transmit, process, and analyze
medical data, aiming to enhance the efficiency of medical
services and hospital operational management capabilities [5].

This work was supported by National Key Research and Development
Program of China (Grant No. 2019YFB2102303), and National Natural
Science Foundation of China (Grant Nos. 61971014 and 11675199). The
authors extend their appreciation to the Deanship of Scientific Research at
King Khalid University for funding this work through Large Groups Project
under grant number RGP.2/637/46. (Corresponding author: Bei Gong.)

G. Zheng and B. Gong are with Faculty of Information Technol-
ogy, Beijing University of Technology, Beijing 100124, China (E-mails:
zhenggp@emails.bjut.edu.cn, gongbei@bjut.edu.cn).

M. Waqas is with the School of Computing and Mathematical Sciences,
Faculty of Engineering and Science, University of Greenwich, U.K., and also
with the School of Engineering, Edith Cowan University, Perth, 6007 WA,
Australia (E-mail: engr.waqas2079@gmail.com).

I. Ahmad is with the School of Engineering, Edith Cowan University, Perth,
6007 WA, Australia (E-mail: i.ahamad@ecu.edu.au).

H. Alasmary is with Department of Computer Science, King Khalid
University, Abha, Saudi Arabia (E-mail: alasmary@kku.edu.sa).

S. Chen is with School of Electronics and Computer Science, University
of Southampton, Southampton SO17 1BJ, U.K., and also with Faculty of
Information Science and Engineering, Ocean University of China, Qingdao
266100 China (e-mail: sqc@ecs.soton.ac.uk).

In IoMT, patients’ personal health data, medical records, etc.,
are digitized and stored in cloud servers for access and analysis
by doctors, patients, and other healthcare practitioners [6], [7].
This model of data sharing brings great convenience to the
healthcare field.

However, with the popularity of terminal devices and the
increase in data volume, IoMT data faces challenges in privacy
protection [8]–[10]. Medical data contains a large amount of
sensitive information, such as personal identity data, financial
data, communication data, medical health data, etc. Once
leaked or tampered with, it can cause serious harm to patients’
privacy and rights. Therefore, ensuring the integrity, confiden-
tiality, and availability of data during the sharing process is
crucial. In this context, the encryption process and storage
stage become key components of data security sharing, directly
affecting the security of data transmission and storage, as well
as healthcare information privacy protection and compliance.

To ensure the confidentiality and integrity of data during
transmission, Raghav et al. [11] and Muthukumaran et al.
[12] proposed data security sharing schemes based on proxy
re-encryption (PRE) mechanisms. The basic principle is for a
third-party proxy to convert data owner’s ciphertext into user’s
ciphertext. However, in IoMT data sharing, which involves
numerous doctors, patients, and other healthcare professionals,
their schemes require providing exclusive transformed cipher-
text for each user [13], [14]. This increases system overhead
and also fails to achieve fine-grained access control. To tackle
this issue, Das et al. [15] proposed an Ciphertext-policy
attribute-based encryption (CP-ABE) scheme for healthcare
data sharing, achieving flexible and fine-grained data access
control suitable for multi-user scenarios. Nevertheless, the
computational complexity of this scheme increases system
burden, especially in large-scale IoMT environments. Addi-
tionally, changes in user attributes require extra mechanisms
to maintain data accessibility [16].

Moreover, ensuring the secure storage of encrypted data is
an indispensable aspect of data privacy [17]–[19]. Centralized
storage poses risks of single point of failure leading to data
leakage and loss, while backup storage incurs additional costs.
Therefore, Wang et al. [20] proposed a privacy-preserving
cloud storage scheme based on fog computing. They utilized
the Hash-Solomon encoding algorithm for data grouping,
storing a portion of the data locally or on fog servers and the
remainder on cloud servers. This setup prevents cloud servers
from accessing all data, thus protecting data owners’ privacy.
However, in this scheme, if a storage server is tampered with
or damaged, data cannot be promptly recovered. For instance,
in cases of cloud server failures or data loss, some data may
remain unrecoverable, leading to significant losses.

2

In response to these challenges, we focus on researching
the issues of secure data transmission and storage in multi-user
scenarios of IoMT, aiming to provide more reliable guarantees
for secure sharing of data. Our main contributions are as
follows.

1) Leveraging the characteristics of PRE and CP-ABE, we
propose a dual-cipher mechanism for multi-user data
sharing. We improve the PRE scheme to enables all
users to access shared data using a unified ciphertext
and key. Concurrently, we employ CP-ABE to encrypt
the small amounts of keys, enabling fine-grained access
control. Even if user attributes change, it does not affect
the ciphertext generated by PRE. Furthermore, after
permission validation, decryption keys are encrypted us-
ing CP-ABE, eliminating the need for separate attribute
revocation mechanisms.

2) We introduce a decentralized ciphertext storage and re-
covery mechanism based on Shamir secret sharing [21].
This approach distributes ciphertext fragments across
multiple servers, enabling data recovery during server
failures and preventing single points of failure.

3) To streamline permission determination, we implement a
data sharing chain and attribute change chain. When user
attributes change, the attribute change chain enforces
constrains, while new attribute sets undergo validation to
prevent unauthorized access. All data sharing activities
are immutably recorded on the data sharing chain.

4) We formally verify the scheme’s correctness and prove
its confidentiality under the random oracle model. The
scheme not only prevents single point of failure in
storage servers, but also implements fine-grained ac-
cess control for dynamic multi-users, resists conspiracy
attacks, and realizes data access traceability. Perfor-
mance evaluations confirm the scheme’s suitability for
resource-constrained IoMT environments.

The remaining sections of this paper are structured as fol-
lows. Section II discusses the existing related work. Section III
introduces the preliminaries used in our scheme. Section IV
presents our proposed IoMT data sharing architecture and
security model. The details of the scheme are described in
Section V. The correctness proofs and security analysis of the
scheme are presented in Section VI. The performance of the
scheme is evaluated in Section VII. Finally, we conclude our
work in Section VIII.

II. RELATED WORK

We review the related work from two aspects, data encryp-
tion sharing strategies and data sharing storage models.

A. Data Encryption Sharing Strategies

Mohammadali and Haghighi [22] presented a smart grid
data aggregation scheme with multi-dimension and fault toler-
ance, supporting multi-category aggregation and batch authen-
tication. Su et al. [23] introduced LCEDA, a lightweight and
communication-efficient smart grid data aggregation scheme
enabling efficient shield value sharing update and dynamic
registration and revocation of smart meters, with freely formed

aggregation zones for low communication and computational
costs. Subsequently, Su et al. [24] proposed a scalable cen-
tralized data aggregation scheme using edge node aggregation
groups for correct, secure, and efficient aggregation, leveraging
symmetric encryption and online/offline signature for reduced
online computation. Additionally, Guo et al. [25] introduced
accountable proxy re-encryption to address proxy misbehavior
without focusing on data visitor authentication and authoriza-
tion, offering insights for efficient data sharing. Pei et al.
[26] proposed a IoMT data security sharing scheme based on
proxy re-encryption mechanism, which ensures the integrity
of ciphertext through ciphertext verification mechanism to
prevent tampering. However, these schemes do not focus on
the use of shared data and ignore the importance of fine-
grained control in data sharing.

CP-ABE is well-suited for fine-grained access control in
data sharing. Therefore, most researchers have considered
secure data storage and privacy sharing using CP-ABE [27]–
[33]. For example, Xue et al. [34] introduced a CP-ABE data
sharing scheme to counter economic denial of sustainability
(EDoS) attacks, employing fine-grained access control policies
and ciphertext randomization to regulate data downloads and
prevent resource abuse. Zhang et al. [35] employed CP-
ABE for confidentiality and fine-grained access control of
shared telematics data in cloud and fog, introducing auditable
user revocation for dynamic vehicle groups, and enhancing
efficiency and correctness through online/offline and verifiable
outsourcing techniques, though data integrity and traceability
sharing were not addressed. Yang et al. [36] proposed an
efficient and secure data sharing scheme for cloud storage. The
scheme was implemented based on a multi-trusted third-party
attribute encryption algorithm, which is also effective against
collusion attacks. Vaanchig et al. [37] proposed a scalable
and fine-grained cloud storage access control that supports
effective user revocation policies. Zhang et al. [38] proposed
an efficient attribute-based data sharing scheme with enhanced
policy hiding and policy updating, addressing collusion issues
between revoked users and the cloud by protecting user privacy
through hiding sensitive attribute values in access policies.
Muhammad et al. [39] proposed a secure data aggregation
collection and transmission scheme, providing anonymity for
patients’ mobile devices and intermediate fog nodes. Ren et
al. [40] introduced a certificateless autonomous path proxy
re-encryption (CLAP-PRE) scheme utilizing multilinear maps,
enabling fine-grained access control to delegation paths in e-
health systems, ensuring the security and privacy of patient
health data shared with doctors. While the aforementioned
schemes can achieve fine-grained access to data users, they
impose heavy computation loads. Moreover, once a data user
gains access to the data, it can have unlimited access to
the data, which can be serious security risk for the complex
environment of IoMT [41], [42].

Professor Jiguo Li’s research team has made a series of
groundbreaking advancements in the field of ABE, covering
a complete technological chain from foundational architecture
innovation to application scenario expansion. The team inno-
vatively proposed a multi-authority ABE scheme supporting
verifiable data deletion [43], which employs Merkle hash

3

trees to achieve data deletion proofs, addressing the key
escrow problem in traditional single-authority schemes while
proving security under the DBDH assumption. The team’s
research system demonstrates a clear trajectory of technolog-
ical evolution: in foundational architectures, they developed a
Registered ABE framework [44] to eliminate key escrow risks
entirely; in privacy preservation, they successively proposed a
policy-hiding scheme with white-box traceability [45] and a
flexible encryption framework for multi-group scenarios [46];
in dynamic management, they constructed an efficient scheme
integrating revocation mechanisms and integrity verification
[47]. These achievements collectively form a comprehensive
ABE technology ecosystem applicable to cloud storage, IoT,
medical data, and other scenarios.

B. Data Sharing Storage Models
Sun et al. [48] proposed a secure data sharing model for

smart terminals, utilizing self-authentication and blockchain
for integrity verification and traceability, but doesn’t address
resource limitations or ensure safe data transmission to the
cloud server. Ning et al. [49] proposed an encryption scheme
by limiting the maximum number of times that a user can
access privileges within a specified time. This achieves fine-
grained access control and addresses the problem of granting
unlimited access privileges to a user once the user’s attribute
set satisfies a given ciphertext access policy. Wang et al.
[50] proposed a secure data sharing encryption scheme for
cloud computing by introducing the concept of weighted
attribute and enhancing the expression of attribute, which
not only extends the expression of attribute from binary to
arbitrary state but also reduces the complexity of access policy.
However, Lan et al. [51] proved that this scheme is insecure
in that users can obtain higher-level decryption privileges
by tampering with their own attribute weights. Kumar et al.
[52] addressed critical issues in medical data processing such
as authentication, scheduling, redundant data removal, and
data access time by introducing a solution based on Bloom
filters. Jiang and Guo [53] proposed a secure cloud storage
scheme utilizing conditional proxy broadcast re-encryption for
dynamic user management without changing encryption keys,
streamlining sharing while ensuring data privacy. However,
these schemes do not address the issue of data corruption and
loss due to a single point of failure in the storage server.

Wang et al. [54] proposed an efficient, revocable, and
searchable privacy protection scheme using CP-ABE for mo-
bile cloud storage. The scheme supports attribute revocation
and outsources decryption to alleviate user-side computational
burden, but requires verification of the outsourcing service
provider’s credibility and security to mitigate the risk of
data leakage. Seth et al. [55] realized secure data storage in
the cloud based on an integrated encryption technique. By
devising a procedure for the secure distribution of cloud data,
it provides reliability guarantee to customers and motivates
them to store the information in confidential records. Islam et
al. [56] introduced a lightweight image encryption technique
based on substitution permutation networks, safeguarding the
privacy of medical data through the generation of transforma-
tion magic blocks by subsystems and subsequent permutation

processes. However, the complexity introduced by substitu-
tion permutation networks and their associated transformation
magic blocks may escalate implementation and maintenance
costs. Pu et al. [57] proposed a privacy-preserving edge data
sharing scheme with data recoverable and attribute revocation.
In this scheme, a blockchain-base attribute revocation chain
was proposed to implement attribute revocation in CP-ABE,
and a secret sharing scheme was introduced to assist data
recovery. To cope with the case of a single server being
hijacked, the efficient detection mechanism and key update
strategy were proposed to ensure the security of the whole
system. However, the data provider and the data consumer use
the same encryption and decryption scheme, which is more
suitable for data sharing based on edge servers, and is not
suitable for data sharing in IoMT [58]

III. PRELIMINARIES

This section introduces the necessary preliminaries.

A. Bilinear Mapping

Let G1 and G2 be two multiplication cyclic groups of order
q, namely, |G1| = |G2| = q, and g be the generating element
of G1. Bilinear mapping e : G1 × G1 → G2 satisfies the
following properties.

1) Bilinearity. For any x, y ∈ G1 and any a, b ∈ Zq ,
e
(
xa, yb

)
= e (x, y)

ab.
2) Non-degeneracy. e (g, g) 6= 1.
3) Computability. For any x, y ∈ G1, there exists an

efficient algorithm to compute e (x, y).

B. DBDH Assumption

1) Decisional bilinear Diffie-Hellman (DBDH) problem:
Give multiplicative groups G1 and G2 of order p, and let g be
the generating element of G1. Randomly choose a1, a2, a3 ∈
Zp, T ∈G2, and use algorithm Φ to determine whether T ==
e(g, g)a1a2a3 holds. If it does, output 1; otherwise, output 0.
The advantage AdvDBDHΦ of algorithm Φ is:

AdvDBDHΦ =
∣∣∣Pr [Φ (g, ga1 , ga2 , ga3 , e (g, g)

a1a2a3) = 1]

− Pr [Φ (g, ga1 , ga2 , ga3 , T) = 1]
∣∣∣. (1)

2) DBDH assumption: The DBDH assumption is said to
hold in groups G1 and G2 if for any probabilistic polynomial-
time algorithm Φ, the advantage AdvDBDHΦ is negligible.

C. Cipher Policy Attribute-Based Encryption

CP-ABE is an access policy based attribute-based encryp-
tion scheme. It allows data owner to define the access policy,
and only users who comply with the access policy can access
the encrypted data. The formal definition of CP-ABE includes
the following components [59].

1) Parameter Setting Algorithm SetupCP−ABE: It gen-
erates the system master key MK and public parameters
paramCP−ABE .

4

Parameters

Parameters

ParametersParameters

Fig. 1. The system model of the IoMT data sharing.

2) Key Generation Algorithm KeyGenerationCP−ABE
(MK,AS): It uses the system master key MK and the user’s
attribute set AS to generate the attribute key skAS for the user.

3) Data Encryption Algorithm EncryptCP−ABE
(paramCP−ABE ,M,Λ): It inputs the public parameters
paramCP−ABE , the plaintext M to be encrypted and the
access structure Λ, and outputs the ciphertext CT .

4) Ciphertext Decryption Algorithm DecryptCP−ABE
(paramCP−ABE , CT, skAS): It inputs the public parameters
paramCP−ABE , the ciphertext CT to be decrypted and the
attribute key skAS based on the attribute set AS. If AS
satisfies Λ, the plaintext M is outputted.

IV. SYSTEM OVERVIEW

We begin by presenting the system model of the IoMT data
sharing scheme. Subsequently, we provide a formal definition
of the scheme, followed by a description of the security model.

A. System Model

As shown in Fig. 1, the IoMT data sharing system model
primarily consists of the following 5 entities.

1) Data Collection Terminal DCT : It can be wearable
device, medical sensor, and smart medical equipment, among
others, with small computing and storage capabilities. It is
responsible for collecting physiological data from patients or
users, such as heart rate, body temperature, blood pressure,
etc. It performs personalized encryption on the collected raw
data and then uploads the result to the Edge Computing Layer.

2) Edge Computing Layer ECL: It is located near the
healthcare data collection devices. In real life, it plays the
role of a local medical institution and is trustworthy. ECL
consists of small edge servers, denoted as ECServer, with
robust computational and storage resources. The ECServer is
responsible for managing access control policies, customizing
access permissions based on specific application requirements,
data sensitivity, and other factors. Due to the large number
of DCT , resource constraints, and strong decentralization, it
is difficult to update the key. Therefore, ECL is primarily
used for normalizing personalized terminal ciphertext into
uniformly encrypted shared ciphertext using a unified key. The

resulting ciphertext is then uploaded to the Data Management
Layer. This allows for key updates to be performed only on
the re-encryption key during key updates.

3) Data Management Layer DML: This entity realizes
healthcare data storage and management. It comprises multiple
servers, denoted as DMServer, with ample storage and
computing resources. This layer serves as a crucial platform
for IoMT data owners and users to store and share data. It
assists data owners in storing their shared data and provides
services to data users, facilitating access to authorized data.
However, DMServer are honest but curious and may be
interested in the stored data. That is, it may try to gain as
much private information as possible from the information
they observe, potentially seeking unlawful gains by selling or
leaking the data to unauthorized parties.

4) Data Requester DR: It is the initiator of data sharing
services, and represents users in different roles such as doctors,
pharmaceutical experts, and data analysts. Each DR has a set
of attributes, and DR with legitimate permissions accesses
healthcare data by requesting data from DML.

5) Trusted Key Management Layer TKML: As a fully
trusted entity, TKML is responsible for key management and
registering other entities in the system. In the event of attribute
changes for a DR, TKML takes charge of regenerating and
distributing a new key for the DR.

The process of data sharing is illustrated in Fig. 1, which can
be divided into three main parts: data encryption processing,
ciphertext distributed storage, and data sharing access. We
describe this process in the context of IoMT data sharing.

In the data encryption stage, DCT comprises various de-
vices: (1) Wearable devices (2) Medical sensors (3) Smart
medical equipment. These devices collect patients’ physi-
ological and health data. The DCT performs preliminary
encryption on the collected raw healthcare data and uploads
the results to the nearby ECServer within the ECL. The
ECServer, which can be seen as a local clinic or healthcare
facility, devises specific access policies and re-encrypts the
data previously encrypted by DCT .

In the second stage, the ciphertext distributed storage stage,
the re-encrypted data is uploaded to the DML, where the
ciphertext is stored in distributed DMServer.

Finally, in the data sharing access stage, the DR, who could
be a user such as a doctor, pharmacy specialist, or data analyst,
requests access to the data. DML verifies whether the DR has
the necessary permission for data access. If the DR passes the
authentication, it can access and decrypt the requested shared
data.

Hence, the data flow from collection to sharing and reaching
the data requester involves several steps: ‘DCT → ECL →
DML→DR’. Here, DR represents the group requesting data
access, indicating that the same data is transmitted multiple
times during the previous flow, but transmitted to DR multiple
times. Our focus is on securely sharing IoMT data with
data requesters, while protecting the healthcare data shared
by data owners from being accessed by illegal entities and
being decrypted or revealed by unauthorized entities during
the storage and sharing.

5

B. Formal Definition of the Scheme

By leveraging the features of proxy re-encryption and
attribute-based encryption, we design a multi-user-oriented
IoMT data sharing scheme, which incorporates dual crypto-
graphic mechanisms to enable efficient data mining, sharing,
and application. The scheme is formally defined as follows.

1) Setup1(1λ): It generates the system parameters param
for the IoMT data sharing system.

2) KeyGen(param): It contains KeyGen1(param) and
KeyGen2(param), which are used to generate the public-
private key pair for DCT and the specific public-private key
pair, respectively.

3) ReKeyGen(skDCT i
, pkpeculiar): It generates the re-

encryption key.
4) ReKeyUpdate(skDCT i

, param): It updates the spe-
cific public-private key pair and re-encryption key.

5) EncryptDCT (pki,m): DCT uses its public key to
personalize the collected raw data m to obtain the personalized
ciphertext.

6) ReEncryptECL(ReKeyi→p, PCi): ECServer in
ECL re-encrypts the personalized ciphertext to obtain the
normalized ciphertext.

7) Distributed Trusted Storage of Ciphertext: DML slices
the normalized ciphertext and distributes the fragments to other
DMServer, so that each DMServer stores only one piece
of ciphertext, forming distributed trusted storage of ciphertext.

8) Secure Data Access for DR: According to the sharing
request of DR, DML completes the verification of DR, the
retrieval and aggregation of ciphertext with the assistance
of TKML, and finally DR completes the decryption of
ciphertext to realize the secure sharing of healthcare data.

C. Security Model

The confidentiality of data includes the confidentiality of
personalized terminal encryption and the confidentiality of
normalized re-encryption, defined as the chosen plaintext
security of personalized terminal encryption and the chosen
plaintext security of normalized re-encryption, respectively.

1) The Chosen Plaintext Security of Personalized Terminal
Encryption: For an arbitrary personalized terminal encryption
algorithm Φ, the choice of plaintext security for Φ is described
by constructing the game between challenger C and adversary
A. The game consists of the following phases.

1.1) Initialization phase: Challenger C runs Setup1, obtains
the system parameters param, and returns the system param-
eters to adversary A.

1.2) Query phase 1: Adversary A can execute the following
queries.
• qkc(i). Query whose key has not been compromised.

Challenger C runs KeyGen1, obtains (ski, pki), and
returns pki to adversary A.

• qknc(i). Query with compromised key. Challenger C runs
KeyGen1, obtains (ski, pki), and returns ski and pki to
adversary A.

1.3) Challenge phase: Adversary A selects two messages
m0,m1 of the same length to challenger C. Challenger C
selects b ∈ {0, 1} randomly, encrypts the message mb into

challenge ciphertext PC∗ according to the encryption algo-
rithm EncryptDCT , and returns the challenge ciphertext PC∗

to adversary A.
1.4) Query phase 2: Adversary A executes the same query

as in query phase 1.
1.5) Guessing phase: Adversary A makes a guess on b and

outputs b′ ∈ {0, 1}. If b′ = b, adversary A is said to have won
the game.

The advantage of adversary A in winning the game is
denoted as AdvA =

∣∣Pr [b′ = b]− 1
2

∣∣. If no polynomial
time algorithm can break the personalized terminal encryption
algorithm Φ with advantage AdvA, Φ is considered secure
under the chosen-plaintext attack.

2) The Chosen Plaintext Security of Normalized Re-
Encryption: For an arbitrary normalized re-encryption algo-
rithm Φ, the choice of plaintext security for Φ is described by
constructing the game between challenger C and adversary A.
The game consists of the following phases.

2.1) Initialization phase: Challenger C runs Setup1, obtains
the system parameters param, and returns the system param-
eters to adversary A.

2.2) Query phase 1: Adversary A can execute the following
queries.
• qkc(i). Query whose key has not been compromised.

Challenger C runs KeyGen1, obtains (ski, pki), and
returns pki to adversary A.

• qknc(i). Query with compromised key. Challenger C runs
KeyGen1, obtains (ski, pki), and returns ski and pki to
adversary A.

• qrkc
(
pki, pkj

)
. Query for re-encryption key. Challenger

C runs ReKeyGen, obtains the re-encryption key
ReKeyi→j , and returns ReKeyi→j to adversary A.

2.3) Challenge phase: Adversary A selects two messages
m0,m1 of the same length to challenger C. Challenger C
selects b ∈ {0, 1} randomly, encrypts the message mb into
challenge ciphertext UC∗ according to the encryption al-
gorithm ReEncryptECL

(
ReKeyi→p, PCi

)
, and returns the

challenge ciphertext UC∗ to adversary A.
2.4) Query phase 2: Adversary A executes the same query

as in query phase 1.
2.5) Guessing phase: Adversary A makes a guess on b and

outputs b′ ∈ {0, 1}. If b′ = b, adversary A is said to have won
the game.

The advantage of adversary A in winning the game is
denoted as AdvA =

∣∣Pr [b′ = b]− 1
2

∣∣. If no polynomial time
algorithm can break the normalized re-encryption algorithm
Φ with advantage AdvA, Φ is considered secure under the
chosen-plaintext attack.

V. DETAILS OF THE PROPOSED SCHEME

The framework of the proposed secure IoMT data sharing
scheme is depicted in Fig. 2, which consists of seven com-
ponents, namely, 1) System Initialization, 2) Key Generation
and Update, 3) Data Collection and Personalized Terminal En-
cryption, 4) Normalized Re-encryption, 5) Distributed Trusted
Storage of Ciphertext Data, 6) Data Security Sharing, and
7) Attribute Revocation. We now detail them one by one. The
commonly used symbols in the scheme are shown in Table I.

6

System

Parameters

Encryption of

Data Collection

and Personalization

Public-Private

Key Pair and Re-

Encryption Key

Personalized

Ciphertext

Normalized

Ciphertext

Key Generation and Update

Fig. 2. Framework diagram of the proposed secure IoMT data sharing scheme.

TABLE I
SYMBOLS AND DESCRIPTIONS

Symbol Description

DCT IoMT Data Collection Terminal
ECL Edge Computing Layer
ECServer Edge Computing Server
ECServer0 Nearest ECServer in ECL to DCT
DML Data Management Layer
DMServer Data Management Server
DMServer0 Nearest DMServer in DML to ECL
DR Data Requester
TKML Trusted Key Management Layer(
skDTCi

, pkDTCi

)
DCT ’s public-private key pair(

skpeculiar, pkpeculiar
)

The peculiar public-private key pair
ReKeyi→p Re-encryption key
m Plain text
kws Keywords
AS Attribute set
Tree Access control tree
δ Maximum number of accesses
PC Personalized ciphertext
UC Normalized ciphertext

A. System Initialization

TKML needs to implement Setup1(1λ) algorithm to pro-
vide a secure foundation for IoMT data sharing. Specifically,
in the system initialization, TKML uses Setup1(1λ) to
generate system parameters param for personalized terminal
encryption and normalized re-encryption. It sets the security
parameter λ. For cyclic groups G1 and G2 of prime order
q, where q ≥ 2λ, and bilinear mapping e : G1 × G1 →
G2, it randomly chooses g0, g1, g2, g3 ∈ G1, and computes
I0 = e (g0, g1) and I1 = e (g0, g3). The system parameters
are param = {g0, g1, g2, g3, I0, I1}.

In addition, TKML needs to run SetupCP−ABE algorithm
in attribute-based encryption to generate the required public-
private key and system parameters for the attribute-based
encryption phase.

B. Key Generation and Update

With system parameters param as input, TKML executes
KeyGen(param) to generate DCT ’s public-private key pair
and peculiar public-private key pair. This includes:
• Use KeyGen1(param) to generate public-private key

pair
(
skDTCi

, pkDTCi

)
, i = 1, · · · , n for DCT , where

n is the number of DCT involved in data shar-
ing. It randomly selects sk1

DTCi
, sk2

DTCi
∈ Zq as

the private key skDTCi
of DTCi, i.e., skDTCi

=(
sk1
DTCi

, sk2
DTCi

)
, calculates the public key pkDTCi

=(
pk1
DTCi

, pk2
DTCi

)
=
(
g
sk1DTCi
0 , g

sk2DTCi
2

)
of DTCi,

and distributes pkDTCi
to DTCi.

• Use KeyGen2(param) to generate peculiar public-
private key pair

(
skpeculiar, pkpeculiar

)
. It randomly

selects sk1
peculiar, sk

2
peculiar ∈ Zq as skpeculiar, i.e.,

skpeculiar =
(
sk1
peculiar, sk

2
peculiar

)
, computes the

public key pkpeculiar =
(
pk1
peculiar, pk

2
peculiar

)
=(

g
sk1peculiar

0 , g
sk2peculiar

2

)
, and distributes pkpeculiar to

ECL.
TKML uses ReKeyGe

(
skDCT i , pkpeculiar

)
to generate

the re-encryption key. Re-encryption is that ECServer in
ECL encrypts the data again on the basis of the terminal
personalized encryption. The re-encryption key ReKeyi→p
is required to be generated from the private key skDTCi

of
DTCi and the peculiar public key pkpeculiar. It computes the

re-encryption key ReKeyi→p =
(
g1g3pk

2
peculiar

) 1

sk1
DCTi , and

sends ReKeyi→p to ECL.
ReKeyUpdate (skDCT i

, param) is used to update the
peculiar public-private key pair to

(
sknewpeculiar, pk

new
peculiar

)
and the re-encryption key to ReKeynewi→p. This key update
process only needs to update the key in ECL and does not
need to update the key in DCT . The update steps are as
follows. First evenly select sk1 new

peculiar, sk
2 new
peculiar ∈ Zq as

the new private key sknewpeculiar =
(
sk1 new
peculiar, sk

2 new
peculiar

)
,

then compute the new peculiar public key pknewpeculiar =(
pk1 new
peculiar, pk

2 new
peculiar

)
=
(
g
sk1 new

peculiar

0 , g
sk2 new

peculiar

2

)
, and fi-

nally compute the updated re-encryption key ReKeynewi→p =(
g1g3pk

2 new
peculiar

) 1

sk1
DCTi .

C. Data Collection and Personalized Terminal Encryption

DCT is responsible for extracting keywords from the
collected plaintext data, performing preliminary personalized
encryption to obtain personalized ciphertext, and upload-
ing the keywords and personalized ciphertext to the nearest
ECServer in ECL based on the network topology.

Specifically, the IoMT data collection terminal DTCi ex-
tracts the keywords kws from the healthcare data m, which are
terms or phrases used to describe the content or subject of the
data, facilitating data retrieval by data requesters. Assuming
DTCi collects blood pressure information for user A, such as
”Blood Pressure: 100/70 mmHg,” the corresponding kws for
this data could include: ”User A, Blood Pressure” or ”DTCi,
Blood Pressure”. DTCi then executes the personalized ter-
minal encryption algorithm EncryptDCT (pki,m) by using

7

its public key pki to personalize the collected data m into a
personalized ciphertext PCi. The process is as follows. DTCi
randomly selects ra ∈ Zq , obtains the personalized ciphertext
PCi = (C0, C1, C2, C3) by computing Eq. 2.

C0 = mI0
ra ,

C1 = gra2 ,

C2 = I1
ra ,

C3 =
(
pk1
DTCi

)ra
.

(2)

After obtaining the personalized ciphertext PCi, DTCi
uploads {kws, PCi} to the nearest ECServer in ECL based
on the network topology, denoted as ECServer0.

D. Normalized Re-Encryption

ECServer makes access control policies and performs
normalized re-encryption on the personalized encryption re-
sults. After ECServer0 in ECL receives the key words
and ciphertext of the data, the attribute-based access control
policy of the data is formulated, and the access control tree
Tree is constructed based on this access control policy.
Then ECServer0 computes the hash value H(kws) of the
keywords kws and re-encrypts the personalized ciphertext PC
using the re-encryption key ReKeyi→p to obtain the normal-
ized ciphertext UC. This ciphertext can be decrypted by the
peculiar private key skpeculiar. More specifically, after receiv-
ing the personalized ciphertext PCi, ECServer0 uses the re-
encryption key ReKeyi→p generated by TKML to run the re-
encryption algorithm ReEncryptECL(ReKeyi→p, PCi) to
obtain the normalized ciphertext UC, by calculating Eq. 3,
and forming UC = (C ′0, C

′
1, C

′
2).

C ′0 = C0,

C ′1 = C1,

C ′2 =
e
(
C3, ReKeyi→p

)
C2

.

(3)

When the data requester has the normalized ciphertext
UC and the peculiar private key skpeculiar, it can run the
decryption algorithm Decrypt(skpeculiar, UC) with the input
of the normalized ciphertext UC and the peculiar private key
skpeculiar to get the data by Eq. 4. The correctness proof of
this data decryption can be found in Subsection VI-A.

m =
C ′0 · e

(
g0, C

′
1

)sk2peculiar

C ′2
(4)

ECServer0 uploads H(kws), Tree and UC to the nearest
DMServer in DML, denoted as DMServer0.

E. Distributed Trusted Storage of Ciphertext Data

DMServer sets the threshold of data access times, splits
the normalized ciphertext, and distributes fragments to other
DMServers, so that each DMServer only stores one piece
of ciphertext. The purpose of setting the threshold is to
prevent the risk of users having unlimited access to data
once authorized. The size of the threshold can be determined
based on , factors such as data management policies, data

privacy levels, cost-effectiveness considerations. Splitting the
ciphertext serves the purpose of ensuring effective recovery of
user-stored data in case of a storage server failure, so as to
prevent the user’s data from being lost or corrupted. We now
describe this distributed storage.

After receiving the normalized ciphertext UC from ECL,
DMServer0 first sets the upper limit δ for the number of
accesses to this data, i.e., the same user can access this data
at most δ times. Then, the normalized ciphertext UC is stored
in each server of DML in a distributed manner, that is, UC
is distributed as a secret parameter to other DMServers in
DML. The detailed steps are as follows.

Step 1: Polynomials construction. DMServer0 constructs
two t-order polynomials f1(x) and f2(x). Specifically, the
binary string corresponding to UC is cut into t copies as
the coefficients of f1(x), which are written in the order of
a0, a1, · · · , at−1, i.e., f1(x) = a0 + a1x + · · · + at−1x

t−1.
Randomly choose b0, b1, · · · , bt−1 ∈ Zq to construct f2(x) =
b0+b1x+· · ·+bt−1x

t−1. DMServer0 computes Vk = gak0 gbk1

for other DMServers to verify that the ciphertext fragmen-
tation, where 0 ≤ k < t.

Step 2: Ciphertext splitting. DMServer0 chooses n
nonzero mutually unequal elements x1, x2, · · · , xn ∈ Zq ,
computes yi = (f1(xi), f2(xi)), 1 ≤ i ≤ n, and assigns
(xi, yi, Vk) to the ith DMServer in DML, denoted as
DMServeri.

Step 3: Ciphertext verification. After receiving (xi, yi, Vk),
DMServeri verifies if g

f1(xi)
0 g

f2(xi)
1 ==

∏t−1
k=0 (Vk)

xi
k

holds. Ciphertext fragment correctness can be proved in Sub-
section VI-A. If it holds, the ciphertext fragment UCi =
(xi, f1(xi)) is valid, and DMServeri returns the message
that the ciphertext fragment was received to DMServer0 and
stores UCi. Otherwise, DMServeri requests DMServer0 to
resend the correct fragment of the ciphertext.

Tree()H kws
iUC Tree()H kws
iUC

Fig. 3. Data storage structure of DMServeri in DML.

The structure stored in DMServeri is shown in Fig. 3.
Each DMServer in DML stores not only a unique ciphertext
fragment UCi but also the keywords hash H(kws) corre-
sponding to the complete data, the access control structure
Tree and the access limit δ for data retrieval and verification.

To perform ciphertext recovery, it is sufficient to combine
any at least t ciphertext fragments UCi = (xi, f1(xi)) to
construct the following system of t linear equations

a0 + a1x1 + a2x1
2 + · · ·+ at−1x1

t−1 = f1 (x1) ,
a0 + a1x2 + a2x2

2 + · · ·+ at−1x2
t−1 = f1 (x2) ,

...
a0 + a1xt + a2xt

2 + · · ·+ at−1xt
t−1 = f1 (xt) .

(5)

By solving the above equations to obtain a0, a1, · · · , at−1, we
can get the complete ciphertext UC.

F. Data Security Sharing

DR retrieves the unique identifier, attribute set AS =
{att1, att2, · · · , attNas

}, and attribute key skAS from

8

Header

记录Ri

Header

Block i

Record Rj

Header

记录Ri

Header

Block i

Record Rj

Exist

Doesn't Exist

Fig. 4. The process of DR requesting shared data.

TKML. When DR sends a data access request to its
neighboring DMServer in DML, the DMServer verifies
whether DR has permission to access the requested data. If
permission is granted, the ciphertext fragments are retrieved
and aggregated to form the normalized ciphertext. Simultane-
ously, TKML is contacted to encrypt the decryption key of
the normalized ciphertext, based on the attributes of DR. The
resulting normalized ciphertext and the encrypted decryption
key are then transmitted to DR. Subsequently, DR decrypts
the received decryption key and utilizes it to decrypt the
normalized ciphertext, thereby obtaining the plaintext data.
Fig. 4 shows the data request process of DR from the
nearest server DMServer0 in DML. If related conflicts or
intentional denial of access requests are involved, conflict
resolution mechanisms and error handling mechanisms can be
introduced, which will not be studied in depth in this paper.
The specific steps are as follows.

Step 1: The DR sends a data request to DMServer0,
containing identity information, attribute hash
HAS = {H (att1) , H (att2) , · · · , H (attNas

)}, the hash
value H(kws) of the keywords kws for the data to be
accessed. For the authenticated DR, it includes the following
three situations.
• DR exists in the attribute change chain: Use the latest set

of attributes in the attribute change chain as new HAS.
Then go to Step 2.

• DR does not exist in the attribute change chain, and
there are records of DR accessing the data in the data
sharing chain: When the number of accesses is less than
δ, DMServer0 agrees to let DR access the data, and
executes Step 3; Otherwise the access is directly denied.

• DR does not exist in the attribute change chain and the
data sharing chain: Go to Step 2.

Step 2: DMServer0 broadcasts message = {H(ID),
HAS,H(kws)} to other servers DMServeri in DML. For
each ”DMServeri,” the following steps are taken:
• DMServeri looks up and retrieves the data fragments,

access count threshold, and the corresponding access
control tree based on the hash value of the keyword set

th=3

th=1 th=2 th=2

H(c) H(d) H(e) H(f) H(g)H(b)H(a)

Fig. 5. Access control tree based on attribute hash.

H(kws).
• If the number of accesses is less than δ and the hash

value of the attribute set matches Tree successfully,
DMServeri approves DR’s data access and sends the
data fragments to ”DMServer0”. Otherwise, it rejects
the data access request from DR.

• When the number of votes exceeds half, DMServer0

agrees to let DR access the data and executes Step 3.
Step 3: DMServer0 sends the access control tree Tree

and the information of DR to TKML.
Step 4: Based on the AS of DR, TKML ex-

ecutes EncryptCP−ABE(paramCP−ABE , skpeculiar, T ree)
algorithm to encrypt skpeculiar of into the ciphertext KC,
and sends KC to DMServer0. Here, skpeculiar can decrypt
UC.

Step 5: TKML encrypts this shared record based on its
own private key, generates signature, and sends the signature
to the blockchain composed of DMServeri in TKML and
DML. When DMServeri receives the message, it deter-
mines whether the shared record comes from TKML by
verifying the signature. If so, store the record. That is, the
data sharing record is stored in the data sharing chain and
cannot be tampered with later, and the usage of the data can
be tracked for further audit.

Step 6: DMServer0 selects t of these DMServers, con-
structs linear polynomial groups from the data fragments they
sent, and derives f1(x). DMServer0 uses the remaining ci-
phertext fragments to verify f1(x). The normalized ciphertext
UC is derived after the verification passes.

Step 7: DMServer0 sends the normalized cipher-
text UC and the encrypted key KC to DR. DR de-
crypts KC using the attribute key skAS , and exe-
cutes DecryptCP−ABE

(
paramCP−ABE ,KC, skAS

)
algo-

rithm to obtain the correct skpeculiar. Then DR executes
Decrypt (skpeculiar, UC) algorithm, and computes m =

C′0·e
(
g0,C

′
1

)sk2
peculiar

C′2
, so that UC can be decrypted and plain-

text m can be obtained. The proof process that the plaintext
obtained by decryption is the original plaintext is in Subsec-
tion VI-A.

For ease of understanding the matching process between
the attribute set hash and the access control tree, we provide
illustrative examples. Let’s consider the current access control
tree Tree depicted in Fig. 5. In this representation, leaf nodes
denote the hash values of attributes, specifically H(a), H(b),
H(c), H(d), H(e), H(f), H(g). Non-leaf nodes represent the
minimum threshold values. Once the sum of its child nodes’
values exceeds or equals the minimum threshold, the node is

9

set to 1. This process is recursively applied upwards until it is
determined whether it satisfies the threshold at the root node. If
satisfied, it indicates that the attribute set of the corresponding
DR complies with the requirements of the given Tree.

Let DR1 have an attribute set {b, c, d, e, f} and DR2 have
an attribute set {a, c, e, f, g}. According to the aforemen-
tioned conditions, DR1 satisfies the access structure depicted
in Fig. 5, while DR2 does not. Through this mechanism,
DMServer can rapidly ascertain whether DR possesses the
authorization to access the data.

G. Attribute Revocation

Algorithm 1 Attribute Change Management and Data Access
Authorization

1: procedure ATTRIBUTECHANGE
2: Input: Attributes of DR
3: Output: Updated attribute change chain
4: key ← RequestLatestKey(DR)
5: record← CreateRecord(DR, key)
6: signature← Encrypt(record, privateKey)
7: SendToChain(signature)
8: verified← ChainVerifySignature(signature)
9: if verified then

10: ModifyChain(DR, record)
11: else
12: DenyModify()
13:
14: procedure AUTHORIZEACCESS
15: Input: DR, sharedData
16: Output: Access decision
17: latestHash← LookupHash(DR)
18: authorized ← MatchHash(latestHash,

accessControl)
19: if authorized then
20: GrantAccess(sharedData)
21: else
22: DenyAccess()

The algorithm 1 formalizes the process of managing at-
tribute changes for a DR and ensuring data access authoriza-
tion based on the latest attribute set hash.

When the attributes of DR change, the first step is for DR
to request the latest attribute key from TKML. Subsequently,
TKML adds an attribute change record for DR to the
attribute change chain, which is jointly maintained by TKML
and DMServer in DMC. This record contains identity in-
formation of DR, the latest attribute set hash, and the attribute
change time. After creating the record, TKML encrypts
it with the private key to form a signature and transmits
this signature to the attribute change chain. Upon receiving
the signature, DMServer in DML verifies its authenticity
to ensure it originates from TKML. If the verification is
successful, DMServer stores the attribute change record
and maintains synchronization with the attribute change chain
managed by TKML.

When a DR with changed attributes requests shared data
from DMServer0 in DML, the server first looks up the

latest attribute set hash for DR in the attribute change chain.
Following this lookup, the latest attribute set hash is compared
against the access control structure to determine whether DR
is authorized to access the requested data.

VI. PROOF OF CORRECTNESS AND SECURITY ANALYSIS

A. The Correctness of the Data Sharing Model

1) Ciphertext Fragment Correctness Proof: In the dis-
tributed trusted storage phase of ciphertext data, DMServeri
receives the data fragment (xi, yi) sent by DMServer0 and
verifies g

f1(xi)
0 g

f2(xi)
1 ==

∏t−1
k=0 (Vk)

xi
k

holds or not to
decide whether the ciphertext fragment is valid or not. The
correctness proof is as follows:

g
f1(xi)
0 g

f2(xi)
1 =

(
g
a0+a1xi+a2xi

2+···+at−1xi
t−1

0

)
×
(
g
b0+b1xi+b2xi

2+···+bt−1xi
t−1

1

)
=
(
ga00 gb01

)(
ga10 gb11

)xi
(
ga20 gb21

)xi
2

· · ·
(
g
at−1

0 g
bt−1

1

)xi
t−1

= V0V
xi
1 V xi

2

2 · · ·V xi
t−1

t−1 =
∏t−1

k=0
(Vk)

xi
k

. (6)

2) Data Decryption Correctness Proof: When DR has
the normalized ciphertext UC and the peculiar private key
skpeculiar, it runs Decrypt(skpeculiar, UC) algorithm. The

data m is calculated as m =
C′0e
(
g0,C

′
1

)sk2
peculiar

C′2
, and the

correctness proof is as follows:

C ′0e
(
g0, C

′
1

)sk2peculiar

C ′2
=
mIra0 e

(
g0, g

ra
2

)sk2peculiar

e
(
C3, ReKeyi→p

)
/C2

=
mIra0 e

(
g0, g

ra
2

)sk2peculiar

e
((
pk1
DTCi

)ra
,
(
g1g3pk

2
peculiar

) 1

sk1
DCTi

)
/Ira1

=
mIra0 e

(
g0, g

ra
2

)sk2peculiar

e
((
g
sk1DTCi
0

)ra
,
(
g1g3pk

2
peculiar

) 1

sk1
DCTi

)
/e(g0, g3)ra

=
mIra0 e

(
g0, g

ra
2

)sk2peculiar

e
(
g0,
(
g1g3pk

2
peculiar

))ra
/e(g0, g3)ra

=
mIra0 e

(
g0, g

ra
2

)sk2peculiar

e(g0, g1)rae(g0, g3)rae
(
g0, pk

2
peculiar

)ra
/e(g0, g3)ra

=
mIra0 e(g0, g

ra
2)sk

2
peculiar

e(g0, g1)rae
(
g0, pk

2
peculiar

)ra =
mIra0 e(g0, g

ra
2)sk

2
peculiar

Ira0 e
(
g0, pk

2
peculiar

)ra
=
m · e

(
g0, g

ra
2

)sk2peculiar

e
(
g0, g

sk2peculiar

2

)ra = m. (7)

B. The Security of the Data Sharing Model

1) Confidentiality of Data: The confidentiality of the data
sharing scheme involves the personalized terminal encryption
and the normalized re-encryption. Therefore, we prove that the
scheme can guarantee the confidentiality of data through the
security of personalized terminal encryption algorithm and the
security of normalized re-encryption algorithm, respectively.

10

Theorem 1: Under the DBDH assumption, the personalized
terminal encryption algorithm is consistent with the ciphertext
indistinguishability under the choice of plaintext attack.

Proof: If there is an adversary A who can break the per-
sonalized terminal encryption algorithm with a non-negligible
advantage AdvA, then construct a challenger C to solve the
DBDH problem with the advantage AdvA.

T1.1) Initialization phase: Randomly select u ∈ Zq , let
g0 = ga, g1 = gb, g2 = g, g3 = gu, I0 = e

(
ga, gb

)
,

I1 = e (ga, gu), and output param = {g0, g1, g2, g3, I0, I1}
as the system parameters.

T1.2) Query phase 1: Challenger C answers the query as
follows.

• qkc(i): Randomly choose sk1
i , sk

2
i ∈ Zq . If it is

the kth key query, let i∗ = i, calculate pki∗ =(
pk1
i∗ = gsk

1
i∗ , pk2

i∗ = gsk
2
i∗
)

, let sk∗i =
(
sk1i∗
a , sk2

i∗

)
,

and return pki∗ to adversary A. Otherwise, calcu-
late pki =

(
pk1
i = g

sk1i
0 , pk2

i = g−1
1 gsk

2
i

)
, let ski =(

sk1
i , sk

2
i − b

)
, and return pki to adversary A.

• qknc(i): Randomly choose sk1
i , sk

2
i ∈ Zq , let ski =(

sk1
i , sk

2
i

)
, calculate pki =

(
pk1
i = g

sk1i
0 , pk2

i = gsk
2
i

)
,

and return (ski, pki) to adversary A.

T1.3) Challenge phase: When adversary A completes the
query of phase 1, it outputs m0,m1 and the target public
key pk∗. If pki∗ 6= pk∗, challenger C outputs a random
bit and rejects the response of adversary A. Otherwise,
challenger C randomly chooses b ∈ {0, 1}, and calculates
C0 = T · mb, C1 = gra2 = gc, C2 = Ira1 = e (ga, gc)

u,
C3 =

(
pk1
DTCi

)ra
= (gc)

sk1i∗ , where ra = c. Let adversary
A perform qkc(i) at most nqkc

times. Then the probability that
challenger C guesses correctly is at least 1

nqkc
.

T1.4) Query phase 2: Adversary A executes the same query
as in query phase 1.

T1.5) Output phase: Adversary A guesses b and outputs b′ ∈
{0, 1}. If b′ = b, challenger C outputs 1, otherwise outputs 0.

The probability that challenger C solves the DBDH problem
is at least AdvAnqkc

. Therefore, under the DBDH assumption, the
personalized terminal encryption algorithm is indistinguish-
able from ciphertext under chosen plaintext attack.

Theorem 2: Under the DBDH assumption, the normalized
re-encryption algorithm is consistent with the ciphertext indis-
tinguishability under the choice of plaintext attack.

Proof: If there is an adversary A who can break the
normalized re-encryption algorithm with a non-negligible ad-
vantage AdvA, then construct a challenger C to solve the
DBDH problem with the advantage AdvA.

T2.1) Initialization phase: Randomly select u ∈ Zq , let
g0 = ga, g1 = gb, g2 = g, g3 = gu, I0 = e

(
ga, gb

)
,

I1 = e (ga, gu), and output param = {g0, g1, g2, g3, I0, I1}
as the system parameters.

T2.2) Query phase 1: Challenger C answered the query as
follows.

• qkc(i): Randomly choose sk1
i , sk

2
i ∈ Zq . If it

is the kth key query, let i∗ = i, calculate
pki∗ =

(
pk1
i∗ = g

sk1i∗
0 , pk2

i∗ = g−1
1 gsk

2
i∗
)

, let ski∗ =

(
sk1
i∗ , sk

2
i∗ − b

)
, and return pki∗ to adversary A. Oth-

erwise, calculate pki =
(
pk1
i = gsk

1
i , pk2

i = gsk
2
i

)
, let

ski =
(
sk1i
a , sk

2
i

)
, and return pki to adversary A.

• qknc(i): Randomly choose sk1
i , sk

2
i ∈ Zq , let ski =(

sk1
i , sk

2
i

)
, calculate pki =

(
pk1
i = g

sk1i
0 , pk2

i = gsk
2
i

)
,

and return (ski, pki) to adversary A.
• qrkc

(
pki, pkj

)
: Given pki and pkj queried from qkc(i)

and qknc(i), challenger C runs ReKeyGen and returns
the output.

T2.3) Challenge phase: When adversary A completes the
query of phase 1, it outputs m0,m1 and the target public key
pk∗. If pki∗ 6= pk∗, challenger C outputs a random bit and
rejects the response of adversary A. Otherwise, challenger C
randomly chooses b ∈ {0, 1}, and calculates C ′0 = T · mb,
C ′1 = gra2 = gc, C ′2 = Ira0 e

(
g0, pk

2
i∗
)ra

= e (ga, gc)
pk2i∗ . Let

adversary A perform qkc(i) query at most nqkc
times. Then

the probability that challenger C guesses correctly is at least
1

nqkc
.

T2.4) Query phase 2: Adversary A executes the same query
as in query phase 1.

T2.5) Output phase: Adversary A guesses b and outputs b′ ∈
{0, 1}. If b′ = b, challenger C outputs 1; otherwise outputs 0.

The probability that challenger C solves the DBDH problem
is at least AdvAnqkc

. Therefore, under the DBDH assumption, the
normalized re-encryption algorithm is indistinguishable from
ciphertext under chosen plaintext attack.

2) Prevent Storage Server from Single Point of Failure:
To prevent the loss of shared data, we a distributed approach
is used to store the data. ciphertext is cut into n pieces by
constructing t-order polynomials, and the ciphertext fragments
are distributed to servers. Each storage server in the data
management center stores only one unique fragment of the
ciphertext and the hash of the keywords used for fragment
retrieval.

When the data requester accesses the data, the data sharing
is realized by retrieving and aggregating the data. In data
aggregation, we do not need to aggregate all the ciphertext
fragments but only need to combine any t of the data fragments
to recover the original ciphertext. After the aggregator receives
the ciphertext fragments, the remaining data fragments are
used for verification to prevent a single point from being hi-
jacked or data recovery errors. This approach not only greatly
reduces the storage overhead of each server, but also prevents
a situation where the ciphertext data cannot be recovered due
to a failure or attack on one of the servers.

3) Resistance to Collusion Attacks: Our scheme can combat
collusion attacks between storage servers in the data man-
agement center to obtain the access to stored shared data,
which leads to data leakage. The ciphertext data in the data
management center is encrypted at the personalized terminal
encryption by DCT , and then normalized re-encryption by
the edge computing center. The ciphertext is cut into n pieces
by constructing t-order polynomials, and then the ciphertext
fragments are distributed to servers. Only one of the ciphertext
fragments is stored in each storage server of the data manage-

11

ment center. It is impossible to obtain the complete ciphertext
data without collusion among at least t storage servers.

Even in the extreme case where more than t storage servers
collude to obtain the complete ciphertext, the ciphertext still
needs to be decrypted by the specific key. The specific key
is encrypted by the key management center based on the
attributes of the data requester, and the storage server in
the data management center cannot decrypt the plaintext of
the shared data. Therefore, the shared private data cannot be
accessed through the storage server of the data management
center in our scheme.

4) Controlling Number of Accesses to Shared Data: To
ensure that the data can be used reasonably and normally,
the data management center sets the threshold δ for access
times when the ciphertext data is received, and the same
data can only be accessed by the same data requestor δ
times. Each storage server in the data management center
stores a ciphertext fragment and the corresponding threshold
of access times for the ciphertext fragment. When a data
requester makes a data sharing request, DMServer in DML
verifies if the number of accesses exceeds δ. If it does,
access is denied. This prevents malicious users who have the
corresponding permission from accessing the data indefinitely,
avoiding the risk of data leakage. This prevents data requester
from repeatedly making the data sharing request, thereby
occupying communication bandwidth and wasting resources.
This access control therefore prevents malicious users who
have the corresponding permission from accessing the data
indefinitely, avoiding the risk of data leakage.

5) Data Access Record Traceability: When the data re-
quester DR makes a data request, DMServer in DML needs
to verify whether DR has shared data access authority. When
the verification is passed, the key management center TKML
encrypts this data sharing record based on its own private key
and generates the associated signature. Other participants in
the data sharing chain determine whether the shared record
comes from TKML by verifying the signature. If so, the
record is stored. The data sharing records are stored in the data
sharing chain, enhancing the tamperability of the records. The
blockchain structure ensures that each data sharing record is
linked to the preceding one, forming a chain-like structure.
Once a record is written into the chain, tampering with
any individual record necessitates modifying all subsequent
records, a formidable task on a blockchain. This guarantees
the tamperability of shared record data. The data sharing chain
records the access history of the data, and each data sharing
record is linked to the previous record, making it easy to track
data usage and enhancing the traceability of data access.

6) Resistance to EDoS Attacks: Some malicious data re-
questers who do not have access to the shared data may
try to maliciously take up the communication overhead by
continuously making data sharing requests and downloading
large amounts of data, which causes the data sharing system
to fail to function properly. The proposed IoMT data sharing
system is resistant to this type of attacks.

When DR makes a data request, TKML first needs to
determine whether there is a record of DR accessing this
data in the data sharing chain. If relevant records exist, it

will further determine whether DR has access permission
according to the data access threshold. If there is no access
record, the storage server of the data management center
first judges whether the attribute set of DR can construct
a data access control tree, and then decides whether it has
access permission based on the voting consensus mechanism.
If the data access control tree is not satisfied or the data
access threshold is exceeded, the requested data cannot be
downloaded. Therefore, EDoS attacks cannot be launched by
continuously maliciously downloading large amounts of data.
If DR persistently sends numerous unauthorized data sharing
requests, they will be blacklisted, resulting in the rejection
of all subsequent access requests. This proactive measure
effectively curtails resource wastage. To manage the blacklist
efficiently, automated processes or manual intervention can
be implemented for periodic review and potential removal
of flagged entities, ensuring continuous system security and
resource optimization.

7) Forward and backward security: During the key gener-
ation phase, the scheme employs the key generation algorithm
KeyGen based on system parameters to generate public-
private key pairs of DCT and special public-private key pairs,
ensuring the randomness and security of the generated key.
The key generation process utilizes the discrete logarithm
problem within group theory as a security foundation, in-
volving steps such as randomly selecting private keys and
computing public keys. These steps, rooted in mathematical
complexities, enhance forward security by making it challeng-
ing for attackers to compromise keys during generation.

In the re-encryption process, ReKeyGen is utilized to
generate re-encryption keys, ensuring the security of data
during transmission. Within the ReKeyGen process, public-
private key pairs and special public-private key pairs are
employed to guarantee the secure and reliable generation of
re-encryption keys. When updating the special public-private
key pairs, the system enhances backward security by selecting
new private keys and recalculating new special public-private
key pairs and re-encryption keys. This updating process only
affects the keys in ECL, avoiding the need to update keys in
DCT and minimizing the impact of system updates on the
overall system, thereby enhancing backward security.

8) Resistance to Man-in-the-Middle Attacks: Our scheme
establishes a hierarchical security protection system through
the collaborative operation of CP-ABE and proxy re-
encryption. For access permission verification, the scheme
adopts the CP-ABE, embedding access control policies di-
rectly into the ciphertext structure. This ensures that each
legitimate user’s decryption key is bound to their specific set
of attributes. This design not only achieves fine-grained data
access control but, more importantly, establishes an intrinsic
correlation between the key and the user’s identity, fundamen-
tally eliminating the possibility of attackers obtaining valid
information through simple eavesdropping. When a man-in-
the-middle attempts to intercept communication content, they
first encounter this layer of attribute verification—attackers
lacking compliant attributes cannot effectively decrypt the
encrypted data even if they obtain it.

On the dynamic protection level, the scheme further en-

12

hances system security through a key management mechanism.
The periodic key update algorithm introduced in the proxy
re-encryption phase ensures the time-constrained validity of
encryption keys. The re-encryption key update algorithm in the
scheme can securely perform key rotation while maintaining
continuous system operation. This dynamic feature strictly
limits the validity window of decryption keys, even if attackers
obtain them through certain means during a specific period.
More critically, all data access behaviors are recorded on the
data-sharing blockchain, forming an immutable and complete
audit trail. The dual safeguards of attribute verification and
dynamic key management make man-in-the-middle attacks
theoretically and practically insurmountable obstacles.

VII. PERFORMANCE EVALUATION

This section provides further performance evaluation for our
proposed data sharing scheme.

A. Functionality Comparison

Table II compares our proposed data sharing scheme with
several existing data sharing schemes, in terms of data sharing
functionality. It can be seen that our scheme provides the most
functionality, and it can implement dynamic multi-user fine-
grained access control, distributed secure storage and recovery
of ciphertext. Therefore, our scheme is more suitable for data
sharing in IoMT edge computing and storage systems.

TABLE II
FUNCTIONALITY COMPARISON

Scheme F1 F2 F3 F4 F5 F6 F7 F8

[25] X × × × × × × X
[35] X X × × × × X ×
[48] X X × X X × × ×
[49] X X X × × × X X
[50] × X × × × × X ×
[53] X × × × × × × X
[54] X X × × × × X ×
[57] X X × × X X X X
Our X X X X X X X X

F1: Data Confidentiality; F2: Multi-User Access and Au-
thentication; F3: Limited Access Control; F4: Data Access
Traceability; F5: Distributed Data Storage; F6: Data Recov-
erability; F7: Attribute Revocation; F8: Resistance to EDoS
Attacks.
Functionality exists: X; Functionality does not exist: ×.

TABLE III
EXECUTION TIMES OF BASIC CRYPTOGRAPHY OPERATIONS

Symbol Description Execution
time (ms)

Tadd
Execution time for an elliptic curve point
addition 0.129

Tmul
Execution time for an elliptic curve point
multiplication 0.114

Texp
Execution time for an elliptic curve point
exponent 12

Tinv
Execution time for inversion operations
on finite fields 0.033

Th Execution time for the hash operation 0.009
Tpair Execution time of a bilinear pairing 25
TEnAtt Execution time of property-based encryption 84
TDeAtt Execution time of property-based decryption 36
TEnPk Execution time of public key encryption 43
TDeSk Execution time of private key decryption 9

TSym
Execution time of symmetric
encryption/decryption 6

B. Experimental Evaluation
The proposed scheme is implemented on a user terminal de-

vice. We invoke the Java Pairing-Based Cryptography(JPBC)
Library 2.0.0 [60] to implement the basic cryptographic op-
erations in our scheme. In the experiment, we choose an
elliptic curve of Type A on a 512-bit finite prime field, and
the order of the multiplicative cyclic group on the elliptic
curve is 160-bit. The hardware environment where the ex-
perimental program runs is Intel(R) Core(TM) i5-6500 CPU,
3.20 GHz CPU frequency, 12.0GB memory. We use IntelliJ
IDEA 2020.1.2 compilation tool on Windows 10 operating
system for programming. The execution times required for
basic cryptographic operations in this environment are listed
in Table III.

Table IV compares the computational complexity of our
proposed scheme with those of the existing schemes [25],
[35], [48], [57], in terms of the computational overhead of
each entity as well as execution time. It can be seen that our
scheme imposes the lowest total execution time.

Next we carry out some experiments to evaluate the perfor-
mance of the proposed model, in terms of the time consump-
tion in the four phases of the encryption system, initialization,
re-encryption key generation, plaintext encryption and cipher-
text decryption as well as in the distributed storage.

1) Fixed Data Length: IoMT data are collected and up-
loaded in real-time, and often the data uploaded to the server
in real-time is of the same type and the same length. Therefore,
we set the constant data length of 128 bytes and investigate
the execution time of each stage of the system as the number
of data increases. The results obtained are depicted in Fig. 6.

The system initialization is executed only once. The time
consumption of each initialization does not have clear math-
ematical relationship with the amount of plaintext but is
related to the algorithm design and more importantly to the
specific experimental environment. In other words, the time
consumption of system initialization is random. During the
experiments, to test the runtime of the data encryption and
decryption algorithms more accurately, we generated the key
pairs in the initialization phase and hence the re-encryption
key generation phase is also executed only once. At each
execution, since the environment is not guaranteed to be
exactly the same as the previous environment, the runtime
fluctuates. Fig. 6a and Fig. 6b plot the mean runtime values
and the associated standard deviations averaged over multiple
runs in system initialization and re-encryption key generation
phases, respectively. It can be seen that the time consumptions
of system initialization and re-encryption key generation are
random and do not depend on the number of data packets.

Fig. 6c and Fig. 6d depict the time consumptions in the data
encryption and decryption phases, respectively, where it can
be seen that the runtime increases linearly with the number
of plaintext data. Our experimental results indicate that the
encryption and decryption times of a single plaintext data are
33 ms and 8 ms, respectively. By multiplying the number of
plaintext data with 33 ms and 8 ms, we obtain the theoretical
runtimes of encryption and decryption phases, respectively,
plotted in Fig. 6c and Fig. 6d as the red dashed lines. However,
in practice, it is found that the actual runtimes are better than

13

TABLE IV
COMPUTATION OVERHEADS OF FIVE SCHEMES IN TERMS OF NUMBERS OF CRYPTOGRAPHY OPERATIONS REQUIRED AND EXECUTION TIMES

Scheme [25] [35] [48] [57] Our

Terminal
8Texp+2Tpair

+3Tmul

(146.342 (ms))

TEnAtt+TSym

(90 (ms))

(2m+6)Tmul+Tinv+2Tpair
(0.228m+50.717 (ms))

(m is number of attributes)

TEnPk+TEnAtt

(79 (ms))
4Texp+Tmul

(48.114 (ms))

Edge Computing Layer
Tpair+Tinv

+Tmul

(25.147 (ms))

2Tpair+3Tmul

(50.342 (ms))

2Tpair+(2m+2)Tmul

+Tinv

(0.228m+50.261 (ms))
- Tpair+Tinv+Tmul

(25.147 (ms))

Data Management Layer - - 3Tmul+2Tpair+Tinv

(50.375 (ms))

TEnAtt+2nTSym

(12n+36 (ms))
(n is number of servers)

2Texp+Tmul

(12.114 (ms))

Data Requester
2Tpair+3Tmul

+2Tinv

(50.408 (ms))

2Texp+2Tmul

+TSym

(30.228 (ms))

2(m− 1)Tmul

+Tadd+mTinv

(0.228m-0.066 (ms))

TEnPk+TDeAtt

+TSym

(85 (ms))

Texp+Tpair+Tinv

+2Tmul+TDeAtt

(73.261 (ms))

Total Execution Time 221.897 (ms) 170.57 (ms) 0.684m+151.287 (ms) 12n+200 (ms) 158.636 (ms)

0 100 200 300 400 500 600 700 800 900 1000
Number of Data (unit)

50

55

60

65

70

75

Ti
m

e
(m

s)

Initialization

Average Runtime
Standard Deviation

(a) Initialization

0 100 200 300 400 500 600 700 800 900 1000
Number of Data (unit)

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

Ti
m

e
(m

s)

Re-encryption Key Generation

Average Runtime
Standard Deviation

(b) Re-encryption Key Generation

0 100 200 300 400 500 600 700 800 900 1000
Number of Data (unit)

0

5

10

15

20

25

30

35

Ti
m

e
(s

)

Data Encryption

Theoretical
Actual Runtime

(c) Data Encryption

0 100 200 300 400 500 600 700 800 900 1000
Number of Data (unit)

0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
(m

s)

Data Decryption

Theoretical
Actual Runtime

(d) Data Decryption

Fig. 6. Relationship between system runtime and the number of data. Each data has the fixed length of 128 bytes.

0 10 20 30 40 50 60 70 80 90 100
Data Size (MB)

0

1000

2000

3000

4000

5000

6000

7000

Ti
m

e
(m

s)

Personalization Terminal Encryption

Theoretical
Actual Runtime

(a) Personalized Terminal Encryption

0 10 20 30 40 50 60 70 80 90 100
Data Size (MB)

0

2

4

6

8

10

12

14

16

Ti
m

e
(m

s)

Normalization Re-encryption

Our Scheme
CLAP-PRE

(b) Normalization Re-encryption

0 10 20 30 40 50 60 70 80 90 100
Data Size (MB)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Ti
m

e
(m

s)

Data Decryption

Theoretical
Actual Runtime

(c) Data Decryption

0 10 20 30 40 50 60 70 80 90 100
Data Size (MB)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ti
m

e
(m

s)

Total Encryption

Our Scheme
CP-ABE

(d) Total Encryption

Fig. 7. Relationship between system running time and individual data size.

the theoretical ones. The reason is that we can pre-calculate the
computations of the bilinear pairs during the actual operation
so that the number of calculations of the bilinear pairs is
reduced, which in turn reduces the time consumption.

2) Varible Data Length: In some scenarios, healthcare data
are accumulated locally, and the data accumulated over a
certain period of time are then uploaded. This forms the data
of different sizes that need to be encrypted and decrypted.
We set the data size from 1 MB to 100 MB and perform
the personalized terminal encryption, normalized re-encryption
and ciphertext decryption operations, respectively, to obtain
the results shown in Fig. 7. Since the runtimes required in the
system initialization and re-encryption key generation phases
are random and do not have a clear relationship with the size
of data, they are not included in Fig. 7.

It can be seen from Fig. 7 that the runtimes of the
personalized terminal encryption and ciphertext decryption
increase linearly with the data size, while the runtime of
the normalized re-encryption phase is random. The reason

is that the personalized terminal encryption and ciphertext
decryption depend on the size of the plaintext data but the
normalized re-encryption does not have clear relationship with
the data size. For 1 MB of data, the runtimes required for
personalized encryption and ciphertext decryption are about
68 ms and 50 ms, respectively. We add the theoretical runtimes
of personalized terminal encryption and ciphertext decryption
based on the results of 1 MB data as the red dashed lines in
Fig. 7a and Fig. 7c, respectively, where again it can be seen
that the actual runtimes are better than the theoretical ones.

We compared the re-encryption phase of our scheme with
that of CLAP-PRE [40], as illustrated in Fig. 7b. It can be
observed that the required re-encryption computation time
remains nearly constant despite variations in plaintext data
packet sizes, with our scheme consuming approximately half
the time compared to CLAP-PRE. Since the re-encryption
phase is independent of plaintext data, the consumed time
remains relatively constant. Moreover, in designing the re-
encryption phase, we aimed to minimize computational com-

14

100 200 300 400 500 600 700 800 900 1000
Number of User (unit)

0

10

20

30

40

50

60

70

80

Ti
m

e
(s

)

Multi-user Data Encryption Time

Our Scheme
A-PRE

Fig. 8. Multi-user data encryption.

plexity by employing simple transformations, thereby avoiding
multiple bilinear pairing operations as in CLAP-PRE.

In Fig. 7d, the total encryption time in our scheme is
compared with the CP-ABE encryption method. It is evi-
dent that, with an increase in data packet size, our scheme
outperforms CP-ABE significantly. This is attributed to the
fact that CP-ABE necessitates encrypting plaintext data based
on access control structures, making the encryption process
more intricate. Therefore, it is not well-suited for applications
with substantial data requirements. However, in our proposed
scheme, we employ attribute-based encryption for decryption
keys associated with smaller data volumes, leveraging the
advantages of attribute-based encryption algorithms.

3) Multi-data Requester: In order to verify the efficiency
of our scheme in a multi-user scenario, we introduced a
simulation experiment featuring multiple data requesters in-
teracting with the data storage center. In these experiments,
we maintained a fixed packet size of 1MB and measured the
data encryption time statistics, presenting the results in Fig. 8.
Where A-PRE is a data sharing scheme implemented using the
proxy re-encryption method, proposed in [25]. It can be seen
that the time of data encryption in our scheme remains almost
the same as the number of users increases, while A-PRE is
increasing. It is important to note that due to significant numer-
ical differences, the encryption time for our proposed solution
may appear to be 0ms; however, the actual value is around
75ms. This is because the proxy re-encryption scheme needs
to re-encrypt the data once for each user if there are multiple
data users when sharing the data, resulting in a linear increase
in the encryption time with the number of users. Our scheme
addresses this limitation of the proxy re-encryption approach
by normalizing the ciphertext to the ciphertext decrypted by
a unified key. This normalization enables a unified encryption
process for multiple users, decoupling the data encryption time
from the number of data requesters. As a result, our scheme
demonstrates resilience to variations in the number of users,
ensuring consistent data encryption performance.

4) Performance of Distributed Trusted Storage: We carry
out some experiments to evaluate the proposed distributed
trusted storage. As explained in Subsection V-E, in our
scheme, after the data management center receives the ci-
phertext data uploaded from the edge processing center, it

50 100 150 200 250 300 350 400 450 500
Number of Servers (unit)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Ti
m

e
(m

s)

Ciphertext Splitting and Reconstruction Time

Ciphertext Splitting(Threshold: 2/3 of Total Servers)
Ciphertext Splitting(Threshold: 1/2 of Total Servers)
Ciphertext Reconstruction(Threshold: 2/3 of Total Servers)
Ciphertext Reconstruction(Threshold: 1/2 of Total Servers)

Fig. 9. Computation times for ciphertext splitting and reconstruction versus
number of servers given two values of ciphertext reconstruction threshold t.

splits the ciphertext into n fragments by constructing t-order
polynomials and distributes the ciphertext fragments to other
servers to realize the distributed storage of data, where n
is the number of servers and t is also called the ciphertext
reconstruction threshold. When a data requester made a data
sharing request, the data management center uses the cipher-
text recovery method of Subsection V-E to reconstruct the
ciphertext by combining t fragments of the ciphertext.

Fig. 9 depicts the computation times required for ciphertext
splitting and reconstruction as the functions of the number
of servers n. It can be seen that both the times required
for ciphertext splitting and ciphertext reconstruction increase
with n. The reason is that increasing the number of servers
is equivalent to increasing the number of fragments, which
increases the total number of polynomial coefficients to be
constructed, thereby increasing the required ciphertext splitting
and ciphertext reconstruction times. It can also be seen that
the required ciphertext splitting and ciphertext recovery times
for the threshold t = 2

3n are higher than the corresponding
times for the threshold t = 1

2n. The reason is that the larger
the threshold value, the more polynomial coefficients need to
be constructed and the more computation time is required.
Moreover, under the same condition, ciphertext splitting takes
much more time than ciphertext reconstruction.

5) Communication Cost: In our data sharing scheme, the
health data undergoes a process of collection, encryption, stor-
age, and then retrieval by authenticated data requesters. This
process involves two main data flows: first, the data collection
and storage phase ”DCT → ECServer→DMServer”, and
second, the data sharing phase ”DMServer → DR”. Let’s
analyze the data communication overhead in detail for each
step of these data flows. Among them, the length of identity
information is 128 bits, the length of keywords is 160 bits,
the length of hash digest is 160 bits, the length of ciphertext
is 1024 bits, and the maximum length of access control tree
structure is 320 bits.
DCT → ECServer: After DCT collects plaintext data

with keywords {kws}, it performs personalized encryption
to obtain PCi, then uploads {kws, PCi} to ECServer.
Therefore, the data transmission size is 160+1024=1184 bits.
ECServer → DMServer: ECServer constructs an access

15

control tree Tree, manages and encrypts the ciphertext to
obtain normalized ciphertext UC, then uploads {H(kws),
Tree, UC} to DMServer. Therefore, the transmission size
for this part is 160+320+1024=1504 bits.
DMServer → DR: DR sends data request {Identity,

HAS, H(kws)} to DMServer. DMServer communicates
with TKML to verify DR’s information and generates
ciphertext for the decryption key if verification passes.
The messages exchanged between them are {Identity,
Tree} and {KC}. Finally, DMServer sends {UC, KC}
to DR. In this process, the total transmission size
is {128+160+160}+{128+320}+{1024}+{1024+1024}=3968
bits.

VIII. CONCLUSIONS

Medical data sharing is integral to collaborative medical
decision-making, research, and innovation. However, within
the context of IoMT, the sharing of sensitive information
poses risks of privacy breaches. To address this challenge,
our research has focused on employing a dual encryption
mechanism that combines proxy re-encryption and attribute-
based encryption. This approach enables fine-grained access
control and simplifies permission management. Additionally,
we introduce a decentralized ciphertext storage and recov-
ery mechanism based on Shamir secret sharing, enhancing
data reliability and stability. Utilizing data sharing chains
and attribute change chains streamlines the user permission
determination process and ensures the security of shared
records. Our proposed scheme is validated for correctness and
confidentiality under the random oracle model, with perfor-
mance evaluations demonstrating its suitability and efficiency
in IoMT environments. The dual cryptographic mechanism
proposed in the scheme is theoretically sound, but subsequent
research and practical deployment must prioritize resolving
interoperability issues between different healthcare institution
information systems. Attribute-based encryption requires a
unified attribute namespace and policy expression standards,
which are currently lacking in the healthcare industry. The
proxy re-encryption component necessitates establishing a uni-
fied key management framework for cross-institutional shar-
ing, presenting significant challenges for implementation in
distributed healthcare environments. Additionally, compatibil-
ity considerations with emerging standards must be addressed.

ACKNOWLEDGEMENT

The authors extend their appreciation to the Deanship of
Scientific Research at King Khalid University for funding
this work through Large Groups Project under grant number
RGP.2/637/46.

REFERENCES

[1] S. Messinis, et al., “Enhancing internet of medical things security with
artificial intelligence: A comprehensive review,” Computers in Biology
and Medicine, p. 108036, 2024.

[2] V. Puri, A. Kataria, and V. Sharma, “Artificial intelligence-powered
decentralized framework for internet of things in healthcare 4.0,” Trans.
on Emerging Telecommunications Technologies, vol. 35, no. 4, p. e4245,
2024.

[3] X. Liu, P. Liu, B. Yang & Y. Chen, “One multi-receiver certificateless
searchable public key encryption scheme for IoMT assisted by LLM,” in
Journal of Information Security and Applications, vol. 90, pp. 104011,
2025.

[4] G. Xu et al., “Anonymity-Enhanced Sequential Multi-Signer Ring Sig-
nature for Secure Medical Data Sharing in IoMT,” in IEEE Transactions
on Information Forensics and Security, vol. 20, pp. 5647-5662, 2025.

[5] S. F. Ahmed, et al., “Insights into internet of medical things (iomt): Data
fusion, security issues and potential solutions,” Information Fusion, vol.
102, p. 102060, 2024.

[6] S. Rani, S. Kumar, A. Kataria, and H. Min, “Smarthealth: An intelligent
framework to secure iomt service applications using machine learning,”
ICT Express, vol. 10, no. 2, pp. 425–430, 2024.

[7] B. Bhushan, A. Kumar, A. K. Agarwal, A. Kumar, P. Bhattacharya, and
A. Kumar, “Towards a secure and sustainable internet of medical things
(iomt): Requirements, design challenges, security techniques, and future
trends,” Sustainability, vol. 15, no. 7, p. 6177, 2023.

[8] O. J. Akindote, et al., “Evaluating the effectiveness of it project man-
agement in healthcare digitalization: a review,” International Medical
Science Research Journal, vol. 4, no. 1, pp. 37–50, 2024.

[9] H. Jiang, P. Ji, T. Zhang, H. Cao and D. Liu, “Two-Factor Authentication
for Keyless Entry System via Finger-Induced Vibrations,” in IEEE
Transactions on Mobile Computing, vol. 23, no. 10, pp. 9708-9720,
Oct. 2024.

[10] J. Hu et al., “WiShield: Privacy Against Wi-Fi Human Tracking,” in
IEEE Journal on Selected Areas in Communications, vol. 42, no. 10,
pp. 2970-2984, Oct. 2024.

[11] Raghav, et al., “Proactive threshold-proxy re-encryption scheme for
secure data sharing on cloud,” The J. of Supercomputing, vol. 79, no. 13,
pp. 14 117–14 145, 2023.

[12] V. Muthukumaran and D. Ezhilmaran, “A cloud-assisted proxy re-
encryption scheme for efficient data sharing across iot systems,” in
Research Anthology on Convergence of Blockchain, Internet of Things,
and Security. IGI Global, 2023, pp. 626–646.

[13] F. Hu, H. Yang, L. Qiu, S. Wei, H. Hu, and H. Zhou, “Spatial structure
and organization of the medical device industry urban network in China:
evidence from specialized, refined, distinctive, and innovative firms,” in
Frontiers in Public Health, vol. 13, p.1518327, 2025.

[14] C. Chen, & J. Pan, “The effect of the health poverty alleviation project
on financial risk protection for rural residents: evidence from Chishui
City, China,” International Journal for Equity in Health vol. 18, no.1,
pp. 79, 2019.

[15] S. Das and S. Namasudra, “Macpabe: Multi-authority-based cp-abe with
efficient attribute revocation for iot-enabled healthcare infrastructure,”
International journal of network management, vol. 33, no. 3, p. e2200,
2023.

[16] M. Waqas, S. Tu, Z. Halim, et al. “The role of artificial intelligence
and machine learning in wireless networks security: principle, practice
and challenges,” Artificial Intelligence Review vol. 55, pp. 5215–5261,
2022.

[17] A. Ometov, O. L. Molua, M. Komarov, and J. Nurmi, “A survey of
security in cloud, edge, and fog computing,” Sensors, vol. 22, no. 3, p.
927, 2022.

[18] Y. Zhou, K. Liu, and P. Vijayakumar, “FTPS: Efficient fault-tolerant
dynamic phrase search over outsourced encrypted data with forward
and backward privacy,” Concurrency & Computation: Practice & Expe-
rience, vol. 34, no. 28, 2022.

[19] M. Haus, M. Waqas, A. Y. Ding, Y. Li, S. Tarkoma and J. Ott, “Security
and Privacy in Device-to-Device (D2D) Communication: A Review,” in
IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 1054-
1079, Secondquarter 2017.

[20] T. Wang, J. Zhou, X. Chen, G. Wang, A. Liu, and Y. Liu, “A three-
layer privacy preserving cloud storage scheme based on computational
intelligence in fog computing,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 2, no. 1, pp. 3–12, 2018.

[21] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, Nov. 1979.

[22] A. Mohammadali and M. S. Haghighi, “A privacy-preserving homomor-
phic scheme with multiple dimensions and fault tolerance for metering
data aggregation in smart grid,” IEEE Trans. Smart Grid, vol. 12, no. 6,
pp. 5212–5220, Nov. 2021.

[23] Y. Su, Y. Li, J. Li, and K. Zhang, “LCEDA: Lightweight and
communication-efficient data aggregation scheme for smart grid,” IEEE
Internet of Things J., vol. 8, no. 20, pp. 15639–15648, Oct. 2021.

[24] Y. Su, J. Li, Y. Li, and Z. Su, “Edge-enabled: A scalable and de-
centralized data aggregation scheme for IoT,” IEEE Trans. Industrial
Informatics, vol. 19, no. 2, pp. 1854–1862, Feb. 2022.

16

[25] H. Guo, et al., “Accountable proxy re-encryption for secure data
sharing,” IEEE Trans. Dependable and Secure Computing, vol. 18, no. 1,
pp. 145–159, Jan.-Feb. 2018.

[26] H. Pei, et al., “Proxy re-encryption for secure data sharing with
blockchain in internet of medical things,” Computer Networks, vol. 245,
p. 110373, 2024.

[27] S. Das and S. Namasudra, “Multiauthority CP-ABE-based access control
model for IoT-enabled healthcare infrastructure,” IEEE Trans. Industrial
Informatics, vol. 19, no. 1, pp. 821–829, Jan. 2023.

[28] Y. Zhou, et al., “Tre-dsp: A traceable and revocable cp-abe based
data sharing scheme for iov with partially hidden policy,” Digital
Communications and Networks, 2024.

[29] M. Xie, Y. Ruan, H. Hong, and J. Shao, “A CP-ABE scheme based on
multi-authority in hybrid clouds for mobile devices,” Future Generation
Computer Systems, vol. 121, pp. 114–122, Aug. 2021.

[30] Z. Ren, E. Yan, T. Chen, and Y. Yu, “Blockchain-based cp-abe data
sharing and privacy-preserving scheme using distributed kms and zero-
knowledge proof,” J. of King Saud University-Computer and Information
Sciences, p. 101969, 2024.

[31] Y. Yang, J. Sun, Z. Liu, and Y. Qiao, “Practical revocable and multi-
authority CP-ABE scheme from RLWE for cloud computing,” J. Infor-
mation Security and Applications, vol. 65, no. 103108, pp. 1–12, Mar.
2022.

[32] S. Zhang, F. Guo, C. Jing, and C. Wu, “Electronic medical record privacy
protection scheme based on attribute encryption technology,” in Proc.
IAEAC 2024(Chongqing,China), Mar. 15-17, 2024, vol. 7, pp. 402–412.

[33] M. Zhang, E. Wei, R. Berry and J. Huang, “Age-Dependent Differential
Privacy,” in IEEE Transactions on Information Theory, vol. 70, no. 2,
pp. 1300-1319, Feb. 2024.

[34] K. Xue, et al., “Combining data owner-side and cloud-side access control
for encrypted cloud storage,” IEEE Trans. Information Forensics and
Security, vol. 13, no. 8, pp. 2062–2074, Aug. 2018.

[35] J. Zhang, et al., “Enabling efficient data sharing with auditable user
revocation for IoV systems,” IEEE Systems J., vol. 16, no. 1, pp. 1355–
1366, Mar. 2022.

[36] Y. Yang, X. Chen, H. Chen, and X. Du, “Improving privacy and security
in decentralizing multi-authority attribute-based encryption in cloud
computing,” IEEE Access, vol. 6, pp. 18009–18021, Apr. 2018.

[37] N. Vaanchig, W. Chen, and Z. Qin, “Ciphertext-policy attribute-based
access control with effective user revocation for cloud data sharing
system,” in Proc. CBD 2016 (Chengdu, China), Aug. 13-16, 2016,
pp. 186–193.

[38] L. Zhang, S. Xie, Q. Wu, and F. Rezaeibagha, “Enhanced secure
attribute-based dynamic data sharing scheme with efficient access policy
hiding and policy updating for iomt,” IEEE Internet of Things J., 2024.

[39] M. A. et al., “A secure and privacy preserved data aggregation scheme
in iomt,” Heliyon, 2024.

[40] C. Ren, et al., “Clap-pre: certificateless autonomous path proxy re-
encryption for data sharing in the cloud,” Applied Sciences, vol. 12,
no. 9, p. 4353, 2022.

[41] B. Gong et al., “SLIM: A Secure and Lightweight Multi-Authority
Attribute-Based Signcryption Scheme for IoT,” in IEEE Transactions
on Information Forensics and Security, vol. 19, pp. 1299-1312, 2024,

[42] S. Tu, M. Waqas, A. Badshah, M. Yin and G. Abbas, “Network
Intrusion Detection System (NIDS) Based on Pseudo-Siamese Stacked
Autoencoders in Fog Computing,” in IEEE Transactions on Services
Computing, vol. 16, no. 6, pp. 4317-4327, Nov.-Dec. 2023.

[43] J. Li. et al., “Multiauthority attribute-based encryption for assuring data
deletion,” IEEE Systems Journal, vol. 17, no. 2, pp. 2029-2038, 2023.

[44] W. Weng, J. Li, Y. Zhang, Y. Lu, J. Shen and J. Han, “Efficient registered
attribute based access control with same sub-policies in mobile cloud
computing,” IEEE Trans. on Mobile Computing, pp. 1-13, 2025.

[45] J. Li. et al., “Attribute based encryption with privacy protection and
accountability for CloudIoT,” IEEE Trans. on Cloud Computing, vol.
10, no. 2, pp. 762-773, 2022.

[46] J. Li, E. Zhang, J. Han, Y. Zhang and J. Shen, “PH-MG-ABE: A flexible
policy-hidden multigroup attribute-based encryption scheme for secure
cloud ctorage,” IEEE Internet of Things J., vol. 12, no. 2, pp. 2146-2157,
2025.

[47] S. Chen, J. Li, Y. Zhang and J. Han, “Efficient revocable attribute-based
encryption with verifiable vata integrity,” IEEE Internet of Things J.,
vol. 11, no. 6, pp. 10441-10451, 2024.

[48] H. Sun, et al., “A fine-grained and traceable multidomain secure data-
sharing model for intelligent terminals in edge-cloud collaboration
scenarios,” Int. J. Intelligent Systems, vol. 37, no. 3, pp. 2543–2566,
2022.

[49] J. Ning, et al., “Auditable σ-time outsourced attribute-based encryption
for access control in cloud computing,” IEEE Trans. Information Foren-
sics and Security, vol. 13, no. 1, pp. 94–105, Jan. 2018.

[50] S. Wang, et al., “Attribute-based data sharing scheme revisited in cloud
computing,” IEEE Trans. Information Forensics and Security, vol. 11,
no. 8, pp. 1661–1673, Aug. 2016.

[51] C. Lan, C. Wang, H. Li, and L. Liu, “Comments on ‘Attribute-based data
sharing scheme revisited in cloud computing’,” IEEE Trans. Information
Forensics and Security, vol. 16, pp. 2579–2580, 2021.

[52] M. Kumar and A. Singh, “Bloom filter empowered smart storage/access
in iomt [edge-fog-cloud] hierarchy for health-care data ingestion,” Con-
currency and Computation: Practice and Experience, p. e8012, 2024.

[53] L. Jiang and D. Guo, “Dynamic encrypted data sharing scheme based
on conditional proxy broadcast re-encryption for cloud storage,” IEEE
Access, vol. 5, pp. 13336–13345, Jul. 2017.

[54] S. Wang, D. Zhang, Y. Zhang, and L. Liu, “Efficiently revocable and
searchable attribute-based encryption scheme for mobile cloud storage,”
IEEE Access, vol. 6, pp. 30444–30457, Jun. 2018.

[55] B. Seth, et al., “Integrating encryption techniques for secure data stor-
age in the cloud,” Trans. Emerging Telecommunications Technologies,
vol. 33, no. 4, article no. e4108, pp. 1–24, 2022.

[56] M. O. U. Islam, et al., “Lightweight medical-image encryption tech-
nique for iomt based healthcare applications,” Multimedia Tools and
Applications, pp. 1–36, 2024.

[57] Y. Pu, C. Hu, S. Deng, and A. Alrawais, “R2PEDS: A recoverable and
revocable privacy-preserving edge data sharing scheme,” IEEE Internet
of Things J., vol. 7, no. 9, pp. 8077–8089, Sep. 2020.

[58] D. Zeng, A. Badshah, S. Tu, M. Waqas and Z. Han, “A Security-
Enhanced Ultra-Lightweight and Anonymous User Authentication Pro-
tocol for Telehealthcare Information Systems,” in IEEE Transactions on
Mobile Computing, vol. 24, no. 5, pp. 4529-4542, May 2025.

[59] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. SP 2007 (Berkeley, CA, USA), May 20-23,
2007, pp. 321–334.

[60] A. De Caro and V. Iovino, “jPBCJ: Java pairing based cryptography,” in
Proc. ISCC 2011 (Kerkyra, Greece), Jun. 28-Jul. 1, 2011, pp 850–855.

