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Statistical models are often based on sample surveys. When the sample 
selection probabilities and/or the response probabilities are related to a 
model outcome variable, even after conditioning on the model covari
ates, the model holding for the observed data is different from the model 
holding in the population, resulting in biased inference if not accounted 
for properly. Accounting for sample selection bias is relatively simple 
because the sample selection probabilities are usually known. 
Accounting for nonignorable nonresponse is much harder since the 
response probabilities are, in practice, unknown. In this article, we 
develop a new approach for modelling complex survey data, which 
accounts simultaneously for nonignorable sampling and nonresponse. 
Our proposed approach combines the nonparametric empirical likeli
hood with a parametric model for the response probabilities, which con
tains the outcome variable as one of the covariates. Combining the 
model holding for the responding units with the model for the response 
probabilities enables extracting the model holding for the missing data 
and imputing them. We propose ways of testing the underlying model 
holding for the respondents’ data. Simulation results illustrate the good 
performance of the approach in terms of parameter estimation and impu
tation. We conclude with an application to the household expenditure 
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survey in Israel, carried out by Israel’s Central Bureau of Statistics. The 
survey collects information on the socio-demographic characteristics of 
each member of the sampled households (HH), as well as detailed infor
mation on the HH income and expenditure. The total sample size was n 
¼ 12,136 with 7,827 responding HHs. The target estimated parameter in 
this application is the population mean of the gross HH income.

KEY WORDS: Kernel smoothing; Model testing; NMAR nonresponse; 
Respondents’ model; Sample model.

1. INTRODUCTION

Survey data are often used for analytic inference, based on statistical models 
assumed to hold for the population from which the sample is taken. Familiar 
examples include the estimation of elasticity of demand from household (HH) 
expenditure surveys, estimation of health risk factors from health surveys and 
the analysis of market dynamics from labor force surveys. In particular, survey 

Statement of Significance  
Survey data are often used for analytic inference, based on statistical 
models assumed to hold for the population from which the sample is 
taken. It is often the case, however, that the sampling design used to 
select the sample is informative in the sense that the sample selection 
probabilities are correlated with the outcome variable even after condi
tioning on model covariates, in which case the model holding for the 
sample data differs from the model holding in the population. 
Inevitably, sample data are subject to nonresponse, which is informa
tive if the response probability is correlated with the outcome value 
after conditioning on the model covariates. Clearly, ignoring an infor
mative sampling design and/or response mechanism may yield highly 
biased estimators. In this article, we develop a new approach for 
modelling complex survey data, which accounts simultaneously for 
nonignorable sampling and nonresponse. The approach combines the 
nonparametric empirical likelihood with a parametric model for the 
response probabilities. Combining the model holding for the respond
ing units with the model for the response probabilities enables extract
ing the model holding for the missing data and imputing them. We 
propose ways of testing the underlying model holding for the respond
ents data. We also consider estimation of an assumed parametric pop
ulation model based on our approach. The article contains simulation 
results and an application to a real data set.

2                                                               Pfeffermann, Preminger, and Sikov 



data are used for estimating population parameters of interest such as totals and 
proportions. It is often the case, however, that the sampling design used to 
select the sample is informative for the population model in the sense that the 
sample selection probabilities are correlated with the target outcome variable 
even after conditioning on model covariates, in which case the model holding 
for the sample data is different from the model holding for the population val
ues. This will happen, for example, when the selection probabilities are deter
mined by one or more design variables (stratification variables, size variables 
used for probability proportional to size sampling, etc.), which are correlated 
with the model outcome variable, but some or all of them are not included 
among the model covariates. In an extreme case, the sample selection probabil
ities are determined directly by the outcome values, as in case-control studies.

Inevitably, sample data are subject to nonresponse, which is informative for 
the population model if the response propensity is correlated with the outcome 
value after conditioning on the model covariates, known as “not missing at 
random” (NMAR) nonresponse. For example, sampled units may choose not 
to respond to questions related to their income, based on their level of income. 
In section 8, we analyze data observed in a household expenditure survey, car
ried out by Israel’s Central Bureau of Statistics. The survey collects informa
tion on socio-demographic characteristics of each member of the sampled 
households, as well as detailed information on the HH income and expendi
ture. The total sample size was n ¼ 12,136  with 7,827 responding HHs. The 
target estimated parameter in this application is the population mean of the 
gross HH income. As shown in our application, the response probabilities 
depend on the household incomes even after conditioning on the model 
covariates.

Under NMAR nonresponse, the model holding for the data observed for the 
responding units is different from the sample model under complete response, 
which, as noted above, is different from the population model under informa
tive sampling. Clearly, and as illustrated also in the present article, ignoring an 
informative sampling design and/or response mechanism may yield highly 
biased estimators and distort the inference.

Pfeffermann (2011) reviews several approaches proposed in the literature to 
deal with informative sampling, ranging from weighting each sample observa
tion by the corresponding sampling weight to maximization of the sample like
lihood as defined by the model holding for the sample data. A common feature 
of these approaches is that they utilize the sampling weights in the inference 
process, although in different ways. Accounting for NMAR nonresponse, 
however, is much more complicated since the response probabilities are practi
cally never known, requiring some assumptions on them. Pfeffermann and 
Sikov (2011) review approaches proposed in the literature to deal with NMAR 
nonresponse, but these approaches are quite restricted. In particular, most of 
the approaches assume that the model covariates are known also for the non
respondents, which is often not the case. Evidently, accounting for both 
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informative sampling and NMAR nonresponse in a single analysis is a major 
undertaking, and the present article attempts to address this challenge.

We assume that not only the outcome values are missing for the nonres
ponding units but also the corresponding covariate values, known as unit non
response. The only additional information beyond the data observed for the 
responding units assumed to be known is the population means of calibration 
variables, which may include some of the model covariates, and possibly also 
the mean of the outcome variable. The totals of such variables are often avail
able from administrative or census records, or from large surveys. Note that 
even though in practice, fitting a model would usually be done for estimating 
unknown population parameters like means, it might be desired to fit a model 
even when the population mean of the outcome variable is known, for exam
ple, for estimating model parameters, such as regression coefficients of 
explanatory variables of interest. Our approach combines the nonparametric 
empirical likelihood (EL) for the population model with a parametric model 
for the response probabilities, which contains the outcome variable as one of 
the covariates. Moreover, the proposed approach allows the incorporation of 
additional estimating equations to accommodate estimation of the response 
model parameters. Specifically, the methods developed by Chang and Kott 
(2008) and Sverchkov (2008) are considered. A third component needed for 
setting the likelihood holding for the responding units is the expectation of the 
sampling weights given the outcome and the covariates, which we estimate 
nonparametrically, using kernel smoothing.

The use of the EL for analyzing complex survey data has its origin in a 
landmark paper by Hartley and Rao (1968), and has gained increasing interest 
in more recent years in general statistical contexts, following the work of 
Owen (1988, 1990, 1991, 2001, 2013). Another fundamental paper is Qin and 
Lawless (1994). See also Kim and Morikawa (2023), with references to other 
recent articles. The EL combines the robustness of nonparametric methods 
with the efficiency of the likelihood approach. Another important advantage of 
this method is that it lends itself to the use of calibration constraints, thus 
enhancing the precision of the estimators. See, for example, Chen and Van 
Keilegom (2009) for a review. As our proposed method is based on the empiri
cal likelihood, conditional on the response, we refer to it as “Respondents 
Empirical Likelihood” (REL).

In the next section, we define the sample and respondents’ distributions. In 
section 3, we present the empirical likelihood and provide details of its maxi
mization. In addition, we describe the methods proposed by Chang and Kott 
(2008) and Sverchkov (2008), and explain how they can be incorporated into 
the estimation process. In section 4, we show how to use the estimates 
obtained from maximization of the REL for estimating parametric models 
assumed to hold in the population. Variance estimation is also considered. 
Section 5 discusses ways of validating the assumptions underlying our 
approach. Section 6 considers the imputation of the missing sample data. In 
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Section 7, we report the results of a simulation study aimed to illustrate the 
performance of the proposed method, while in Section 8, we apply the proce
dure to the data collected as part of the 2019 Household Expenditure Survey 
in Israel. Section 9 contains concluding remarks.

2. SAMPLE AND RESPONDENTS’ DISTRIBUTIONS

Let yi denote the value of an outcome variable Y associated with unit i belong
ing to a sample S, drawn from a finite population U ¼ f1; . . . ;Ng with known 
inclusion probabilities πi ¼ Prði 2 SÞ. Let Ii denote the sampling indicator 
defined as 1 if unit i is sampled and 0 otherwise, and xi ¼ ðx1;i; . . . ; xk;iÞ

0

denote 
the values of k auxiliary variables (covariates) associated with unit i. Denote 
by R the set of respondents and define the response indicator Ri to be 1 if unit 
i 2 S responds and 0 otherwise. We denote by n the size of S and by r the size 
of R.

In what follows, we assume that the population outcomes are independent 
realizations from distributions with probability density functions (PDF) 
fuðyijxiÞ. Following Pfeffermann et al. (1998), the sample PDF, fsðyijxiÞ, is 
defined as the conditional PDF of yi given that unit i is sampled, that is, 
fsðyijxiÞ ¼ f ðyijxi; Ii ¼ 1Þ. By Bayes Rule, 

fsðyijxiÞ ¼
PrðIi ¼ 1jxi; yiÞfuðyijxiÞ

PrðIi ¼ 1jxiÞ
; (2.1) 

where PrðIi ¼ 1jxiÞ ¼
Ð

PrðIi ¼ 1jxi; yiÞfuðyijxiÞdyi. Note that PrðIi ¼ 1jxi; yiÞ

is generally not the same as the sample inclusion probability 
πi ¼ Prði 2 sÞ ¼ PrðIi ¼ 1jZuÞ, where Zu defines a matrix of population values 
of design variables used for the sample selection. Since 
PrðIi ¼ 1jπi; yi;xiÞ ¼ πi, PrðIi ¼ 1jyi;xiÞ ¼ Euðπijyi;xiÞ, where Eu is the 
expectation under the population PDF. The population and sample PDFs differ 
unless PrðIi ¼ 1jxi; yiÞ ¼ PrðIi ¼ 1jxiÞ for all yi, and when this condition is not 
met, the sampling design is informative and cannot be ignored in the inference 
process. In particular, it follows from (2.1) that under informative sampling 

EsðyijxiÞ ¼ Eu
PrðIi ¼ 1jxi; yiÞ

PrðIi ¼ 1jxiÞ
yijxi

� �

6¼ EuðyijxiÞ; (2.2) 

where Es denotes the expectation with respect to the sample PDF. Estimating 
EuðyijxiÞ is often the main target of inference. Thus, ignoring an informative 
sampling scheme and practically estimating EsðyijxiÞ can severely bias the 
inference.

Next, consider the respondents’ distribution. The marginal PDF for respond
ing unit i, denoted by fRðyijxiÞ ¼ f ðyijxi; Ii ¼ 1;Ri ¼ 1Þ, is by Bayes Rule, 
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fRðyijxiÞ ¼
PrðRi ¼ 1jyi; xi; Ii ¼ 1ÞfsðyijxiÞ

PrðRi ¼ 1jxi; Ii ¼ 1Þ
: (2.3) 

Here again, unless PrðRi ¼ 1jyi;xi; Ii ¼ 1Þ ¼ PrðRi ¼ 1jxi; Ii ¼ 1Þ for all i, the 
respondents’ PDF differs from the sample PDF, which as shown above differs 
from the target population distribution under informative sampling. Notice 
that PrðRi ¼ 1jyi;xi; Ii ¼ 1Þ may not be the same as PrðRi ¼ 1jyi;xiÞ since in 
theory, the missingness generating mechanism among the sampled individuals 
may be different from the mechanism applied by the nonsampled individuals. 
However, the assumption that PrðRi ¼ 1jyi;xi; Ii ¼ 1Þ ¼ PrðRi ¼ 1jyi;xi; Ii ¼

0Þ ¼ PrðRi ¼ 1jyi;xiÞ is generally reasonable, reflecting an inherent tendency 
of an individual regarding their willingness to answer particular questions or 
all the questions of a survey.

So far, we have excluded for convenience from the notation the parameters 
governing the various distributions. If the outcome, the sampling and the 
response are independent between units, the respondents’ likelihood takes the 
form, 

LR γ; βð Þ ¼
Yr

i¼1

PrðRi ¼ 1jyi; xi; Ii ¼ 1; γÞPrðIi ¼ 1jyi; xiÞfuðyijxi; βÞ
PrðRi ¼ 1jxi; Ii ¼ 1; β; γÞPrðIi ¼ 1jxiÞ

: (2.4) 

Remark 1. In theory, one also needs to model the probabilities 
PrðIi ¼ 1jyi;xiÞ. However, since PrðIi ¼ 1jπi; yi;xiÞ ¼ πi, the probability 
PrðIi ¼ 1jyi;xiÞ can be estimated outside the likelihood using the relationship 
PrðIi ¼ 1jyi;xiÞ ¼ Euðπijyi;xiÞ ¼ 1=Esðwijyi;xiÞ, where wi ¼ 1=πi is the sam
pling weight (Pfeffermann and Sverchkov 1999). Thus, assuming that the 
probability to respond, PrðRi ¼ 1jyi;xi; Ii ¼ 1Þ does not depend on the sam
pling weight wi, that is, the response is independent of the sample selection, 
we obtain that Esðwijyi;xiÞ ¼ ERðwijyi;xiÞ. This implies that the probabilities 
PrðIi ¼ 1jyi;xiÞ can be estimated by regressing wi on ðyi;xiÞ using the 
observed data. See Pfeffermann and Sverchkov (2003, 2009) for plausible 
approaches and examples of modeling and estimating the expectations 
Esðwijyi;xiÞ. Alternatively, the expectations can be estimated nonparametri
cally using smoothing methods. In the simulation study described in section 7 
and in the empirical application of section 8, we use kernel smoothing to 
obtain estimates of τi ¼ PrðIi ¼ 1jyi;xiÞ, by applying kernel regression of wi 

on ðyi;xiÞ. See section 7.2 for further details. 
As discussed in section 4.2, the parameters underlying an assumed para

metric population model can be estimated easily once the probabilities under
lying the empirical likelihood have been estimated. In this respect, the use of 
the empirical likelihood can be viewed as a convenient way of estimating the 
parameters of an assumed parametric population model. 
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Remark 2. A notable property of the likelihood (2.4) is that it does not 
require knowledge of the covariates of the nonresponding units. On the other 
hand, even with good estimates of the probabilities PrðIi ¼ 1jyi;xiÞ, the use of 
this likelihood requires specifying the population model fuðyijxiÞ, and the 
response probabilities PrðRi ¼ 1jyi;xi; Ii ¼ 1Þ, and with no observations 
obtained directly from either one of the two distributions, one may run into 
identification problems. Pfeffermann and Landsman (2011) and Wang et al. 
(2014) establish conditions under which likelihoods of the form (2.4) are 
identifiable, but experience shows that even under these conditions, maximi
zation of the likelihood is often unstable, due to what Lee and Berger (2001)
refer to as “practical nonidentifiability.” See Rotnitzky and Robins (1997) for 
further discussion and theoretical results on the identifiability of likelihoods 
of the form (2.4). 

Remark 3. Although no observations are available for either the model 
defining the population PDF or the model assumed for the response probabil
ities, the resulting respondents’ model (2.3) can nonetheless be tested using 
classical test statistics, since it relates to the data observed for the responding 
units. See sections 5, 7, and 8 for the tests used in our empirical study, with 
illustrations.  

3. RESPONDENTS EMPIRICAL LIKELIHOOD

3.1 Notation and Definition

We assume that for each population unit i corresponds a vector ui ¼ ðyi; z
0

iÞ
0

, 
such that zi ¼ xi [ ci, where ci is a d-dimensional vector of survey values for 
which the population means �cu are known sufficiently accurately, and yi and xi 

are related via a model fuðyijxi; βÞ. The vector ci may include some or all of 
the variables in xi.

Denote, τi ¼ PrðIi ¼ 1jyi;xiÞ and ρi ¼ PrðRi ¼ 1jyi;xi; Ii ¼ 1Þ. We follow 
the load-scale approach of Hartley and Rao (1968) by assuming that the finite 
population values are generated from a multinomial distribution with a vector 
of probabilities p¼ ðp1; . . . ;prÞ

0

, where pi ¼ PruðuiÞ. We assume that the pop
ulation distribution has its support in the set of the observed values.

Denote by Ni the number of units in the finite population, assuming the vec
tor ui, such that pi ¼ EðNi=NÞ, where N ¼

P
i Ni is the population size. Under 

this set-up, the distribution of the observed data for the responding units (here
after the respondents’ distribution) is multinomial, with cell probabilities given 
by pðrÞi ¼ Prðuiji 2 RÞ ¼ piτiρi=

P
k pkτkρk. The empirical likelihood is then 
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L ¼
Y

i

pðrÞi ¼ ΠðpðrÞÞ; (3.1) 

where we use the generic notation ΠðaÞ ¼
Q

i ai to denote the product of the 
elements of a vector a. Chaudhuri et al. (2008) and Chaudhuri et al. (2010) use 
a similar formulation for their empirical likelihood, but they restrict it to the 
case of full response (viz., ρi ¼ 1 for all i).

The response probabilities ρi in (3.1) are unknown and need to be estimated. 
We model ρi as a function of the outcome and the covariates. Specifically, we 
assume ρiðγÞ ¼ PrðRi ¼ 1jyi;xi; γÞ ¼ logit− 1ð‘ðyi;xi; γÞÞ, where logit− 1ðsÞ ¼
ð1þ e− sÞ

− 1 and ‘ðyi;xi; γÞ is a polynomial in ðy;xÞ with coefficients γ. 
Lemma 1 below asserts that if the probability to respond is a continuous func
tion of x; y, then it can be approximated arbitrarily close by a function of the 
form logit− 1ð‘ðy;x; γÞÞ, where ‘ðy;xÞ is a polynomial. Thus, the assumption 
that ρiðγÞ has this form is not as arbitrary as it might seem. The use of the logit 
function for modeling the unknown response probabilities is very common in 
the survey sampling literature. See, for example, Kim and Morikawa (2023)
and the references therein.

Lemma 1. Assume that ρðy;xÞ is a continuous function on a closed 
bounded set D and 0 ≤ ρðy;xÞ≤ 1. Then, for every ε>0, there exists a multi
variate polynomial Qðy;xÞ such that jlogit− 1ðQðy;xÞÞ− ρðy;xÞj< ε for all 
ðy;xÞ 2 D. 

Proof. See the Appendix.  

In summary, our REL is a combination of the nonparametric multinomial pop
ulation distribution, the expectations τi ¼ EuðIijyi;xiÞ and a model for the 
response probabilities.

3.2 Calibration Constraints

We mentioned in the introduction that the use of the empirical likelihood 
facilitates the use of calibration constraints for enhancing the efficiency of the 
estimators. Under our set-up, the calibration values satisfy P

i2R pici � N − 1P
i2R Nici ¼ N − 1P

j2U cj ¼ �cu, yielding the R-level   

constraints 
X

i2R

pðrÞi τ − 1
i ρ − 1

i ðci − �cuÞ ¼ 0: (3.2) 

It should be noted that in certain situations the sample means of some calibra
tion variables are also available. In this case, additional constraints can be 
defined as 

P
i2R pðrÞi ρ− 1

i ðci −�csÞ ¼ 0, where �cs denotes the vector of known 
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sample means. This constraint can be justified as follows. Let 
pðsÞi ¼ PrðUi ¼ ui j Ii ¼ 1Þ. Then, pðrÞi ¼ PrðUi ¼ ui j Ri ¼ 1; Ii ¼ 1Þ ¼

PrðRi ¼ 1 j Ii ¼ 1;Ui ¼ uiÞPrðUi ¼ ui j Ii ¼ 1Þ
PrðRi ¼ 1 j Ii ¼ 1Þ

¼
ρip
ðsÞ
i

P
j2R ρjp

ðsÞ
j

:

Thus, pðsÞi ¼
pðrÞi
ρi

P
j2R pðsÞj ρj. Then the constraint can be obtained as 

P
i2R pðsÞi ci ¼ �cs or 

P
i2R pðsÞi ðci −�csÞ ¼ 0, implying 

P
i2R pðrÞi ρ− 1

i ðci −�csÞ ¼ 0. 

However, our experience shows that the gain in precision by inclusion of these 
additional constraints is very modest.

Denote ξi ¼ τiρi and �ξu ¼
P

i2R piξi. Since τi ¼ EðIijyi;xiÞ and 
ρi ¼ EðRijyi;xi; Ii ¼ 1Þ, ξi is the probability that unit i is sampled and subse
quently responds, given its outcome and covariate values. Recall that 
pi
ðrÞ / piτiρi ¼ piξi. Thus, pi

ðrÞ ¼ �ξ − 1
u piξi.

Denote by Eξ the expectation with respect to the combined sampling and 
response distribution. Then, for the (random) respondents sample size, 
EξðrÞ ¼ N

P
i2R piτiρi ¼ N

P
i2R piξi ¼ N�ξu. Thus, r � N�ξu, leading to the 

additional constraint r ¼ N�ξu. Since 
P

i2R pi ¼ 1, we have 
1¼ rðN�ξuÞ

− 1
¼ rðN�ξuÞ

− 1P
i2R pi ¼ ðr=NÞ

P
i2R pi

ðrÞξ− 1
i , or 

X

i2R

pðrÞi

�
1 − r=ðNτiρiÞ

�
¼
X

i2R

pðrÞi

�
1 − r=ðNξiÞ

�
¼ 0: (3.3) 

Note that this constraint is equivalent to 
P

i2R pðrÞi τ − 1
i ρ− 1

i ¼ N=r (using 
P

i2R pðrÞi ¼ 1).

Let C be the r × d matrix, the ith row of which being c
0

i −�c
0

u, and DðγÞ be the 
r × r diagonal matrix with fτiρi ¼ τiρðyi;xi; γÞg as its diagonal elements. The 
constraints (3.2) and (3.3) can be written in matrix form as C

0

D− 1ðγÞq¼ 0 and 
1
0

D− 1ðγÞq¼ N=r, respectively, where we denote q¼ pðrÞ for convenience. 
While the constraints can be defined using all calibration variables ci, our experi
ence shows that some of the calibration variables are more vital than others. This 
issue is discussed and illustrated in more detail in sections 3.5 and 7.5.

Notice that our proposed approach is somewhat similar to the method developed 
by Qin et al. (2002), where the authors factorize the joint distribution of ðYi;xi;RiÞ

into a parametric model for the response probability PrðRi ¼ 1 j yi;xiÞ and a non
parametric model for the joint distribution ðYi;xiÞ, yielding the empirical likelihood, 

L ¼
Yr

i¼1

PrðRi ¼ 1 j yi; xi; i 2 S; γÞpiλn − r; (3.4) 

where λ¼ PrðRi ¼ 1; i 2 SÞ.
The proposed empirical likelihood is maximized with respect to pi, λ, and γ 

under the constraints, 
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Xr

i¼1

pi½PrðRi ¼ 1jyi; xi; i 2 S; γÞ− λ� ¼ 0;

Xr

i¼1

piðci − �cuÞ ¼ 0; pi ≥ 0;
Xr

i¼1

pi ¼ 1:
(3.5) 

The authors extend the empirical likelihood (3.4) to the case where the covari
ates are observed for both the respondents and nonrespondents, but in this 
case, maximizing the likelihood is almost impossible except in some special 
cases. Notice that this approach does not account for an informative sample 
selection.

Another approach based on the empirical likelihood with constraints 
was proposed by Morikawa et al. (2023). The empirical population-level 

likelihood, L¼
QN

i¼1 pi is maximized under the constraints 
PN

i¼1 pi ¼ 1, 
PN

i¼1 piIiwiDθðRi;Xi;Yi;Zi;wiÞ ¼ 0, and 
PN

i¼1 pið1 − IiwiÞCθðXiÞ ¼ 0, where 
N is the population size, Ii and wi, i¼ 1; . . .;N are the sampling indicators and 
sampling weights respectively, and Dθ and Cθ with unknown parameter θ that 
characterize the relationship between X and Y, are some efficient score functions 
defined by the authors. The authors distinguish between the case where the 
x-values are only known for the sampled units, and the case where they are 
known for all the population units. The first case includes two different settings: 
(i) population-level summary statistics of x-variables, such as means and correla
tions are known and (ii) the summary statistics are unknown. However, although 
this approach allows adjusting for both sampling and nonresponse, non- 
ignorable nonresponse mechanism is not considered. Also, the authors do not 
consider the case where the covariates are only known for the responding units.

A similar idea of maximizing the empirical likelihood under constraints that 
incorporate auxiliary information in the context of analyzing complex survey 
data was considered by Chen and Kim (2014), Zhao et al. (2022) and Kim and 
Morikawa (2023). However, the first two approaches do not address adjust
ment for nonresponse, while the last approach assumes that the x-values are 
known for all population units.

3.3 Maximization of the Respondents Empirical Likelihood

By section 3.2, we now have the constrained maximization problem 

max
q;γ

ΠðqÞ s:t:
AðγÞ

bðγÞ

 !

q ¼
0

0

 !

; q 2 Ωr − 1; (3.6) 

where AðγÞ ¼ C
0

D− 1ðγÞ, bðγÞ ¼ ðrN − 1ξðγÞ− 1 − 1Þ
0

, ξðγÞ− 1
¼

ðτ − 1
1 ρ1ðγÞ

− 1
; . . . ; τ − 1

r ρrðγÞ
− 1
Þ
0

, and Ωr − 1 is the simplex of all nonnegative 
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vectors ðq1; . . . ;qrÞ
0

2 Rr with 
P

i qi ¼ 1. The MLE of γ and q are the values 
maximizing (3.6). The maximization problem can be solved in two ways.

3.3.1 Use of the profile likelihood of γ.

The maximization problem in (3.6) is equivalent to maxγGðγÞ, where GðγÞ is 
the profile likelihood of γ, defined as 

Gðγ Þ ¼ max
q

ΠðqÞ :

AðγÞ

bðγÞ

0

B
@

1

C
Aq ¼ 0; q 2 Ωr − 1

8
><

>:

9
>=

>;
: (3.7) 

The maximization of (3.7) can be carried out using the R function emplik, 
written by Owen and available from his website http://statweb.stanford.edu/ 
�owen/empirical/scel.R. See Owen (2013) for related theory and further details.

The question arises whether the maximum in (3.7) exists.

Lemma 2. Consider the constrained maximization problem, 

max
q
fΠðqÞ : AðγÞq ¼ 0; q 2 Ωr − 1g: (3.7*) 

If the feasible region for (3.7�) is not empty for a given γ, then it is not empty 
for any γ. Furthermore, if the feasible region is not empty, then the maximum 
exists and is finite. 

Proof. See the Appendix. 

Remark 4. The constraints in the maximization problem (3.7�) do not con
tain the univariate constraint bðγÞq¼ 0 (equation (3.3)), contained in the 
maximization constraints (3.7). The reason for this is that the constraint (3.3) 
can lead to an empty feasible region in (3.7) for certain vectors γ. This is the 
case, for example, if the ρi’s are very small, because if ρiðγÞ< r=Nτi for all i, 
P

i2R pi
ðrÞτ − 1

i ρiðγÞ
− 1
>N=r.  

The feasible region for the maximization problem (3.7�) may also be empty 
and therefore no solution exists. A simple example is where all the observed 
values of a constraining variable c are greater (or smaller) than its known pop
ulation mean. Moreover, a combination of multivariate constraints can also 
preclude a solution. For example, when the sum of 2 variables used in the con
straints is greater for all the responding units than the sum of the correspond
ing population means.

The maximum of GðγÞ in (3.7) under the constraints, can be obtained 
by using Lagrange multipliers. Let gðci; γÞ ¼ ðg1ðci; γÞ; . . .;gdþ1ðci; γÞÞ, 
with ðgkðci; γÞ ¼ τ − 1

i ρ− 1
i ðcik −�cUkÞ, k ¼ 1; . . .;d; i¼ 1; . . .; r; gdþ1ðci; γÞ ¼�

1 − r=ðNτiρiÞ
�
, where d is the dimension of ci. Then, the constraints defined 
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in (3.2) and (3.3) can be rewritten as 
P

i2R pðrÞi gðci; γÞ ¼ 0. Note that 
dimðgðci; γÞÞ is not necessarily equal to dimðciÞ. In our study, we use the addi
tional constraint defined in (3.3). Following Qin and Lawless (1994), profiling 
for all the values of pðrÞi results in 

pðrÞi ¼
1

rð1þ λtgðci; γÞÞ
; (3.8) 

where λ¼ ðλ1; . . .;λdþ1Þ
t are the Lagrange multipliers. Furthermore, the maxi

mum empirical likelihood estimate of γ is derived by maximizing the empiri
cal likelihood L¼

Qr

i¼1
pðrÞi , which can be rewritten as 

LE ¼
Yr

i¼1

1
rð1þ λtgðci; γÞÞ

:

Then the empirical log-likelihood is obtained as 

lE ¼ −
Xr

i¼1

log ð1þ λtgðci; γÞÞ: (3.9) 

Obviously, maximizing (3.9) with pðrÞi obtained from (3.8) is equivalent to 
maximizing (3.6).

The asymptotic properties of the estimators resulting from (3.8) and (3.9) 
can be established by applying the theory developed in Qin and Lawless 
(1994). In particular, it follows that under some regularity conditions and for 
known sampling probabilities τi ¼ PrðIi ¼ 1jyi;xiÞ (see Remark 5 below), the 
estimators defined by (3.8) and (3.9) are consistent and have a normal asymp
totic distribution. Moreover, for fixed γ parameters, there exists a unique maxi
mum for (3.6), provided that 0 is inside the convex hull of the points 
gðc1; γÞ; . . .;gðcr; γÞ. This implies that plugging the estimates for γ obtained by 
using the Chang and Kott (2008) method described below into (3.6) results in 
a unique solution for pðrÞi if the aforementioned condition holds.

Remark 5. The asymptotic properties of the REL estimators defined by 
(3.8) and (3.9) outlined above assume known sampling probabilities 
τi ¼ PrðIi ¼ 1jyi;xiÞ. In practice, these probabilities are unknown and we esti
mate them outside the likelihood by use of kernel regression. The resulting 
estimators are then plugged into the REL and the calibration equations. As 
well known, these estimators converge at a slower rate than n− 1

2, see, for 
example, Stone (1982). The asymptotic properties of the REL estimators fol
lowing this procedure have not been considered in the literature, although the 
simulation results in section 7 seem to support the validity of the approach. 

Remark 6. Maximization of GðγÞ with respect to γ can be performed by opti
mization routines available in most statistical packages.  
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3.3.2 Estimation of the γ coefficients outside the likelihood.
In the present article, we consider also the approach proposed by Chang and 
Kott (2008). By this approach, the totals of K calibration variables, which may 
contain some or all of the covariates in the response model, are regressed 
against their Horvitz–Thompson (H–T) estimators, with the weights appearing 
in the H–T estimators defined by the inverse of the product of the sampling 
probabilities and the response probabilities under the model. Let ci denote the 
values of the calibration variables for unit i. Chang and Kott (2008) estimate 
the unknown response model coefficients by setting the regression equations, 

Cpop ¼
P

i2R wiρ− 1
i ðyi;νi; γÞciþε�, where Cpop ¼

PN

j¼1
cj, νi defines the values 

of the covariates included in the response model for unit i and ε� is a vector of 
errors. Note that if the population size N is known, an additional equation can 
be obtained by setting cj ¼ 1, 8j. The parameters γ are estimated by applying 
an iterative algorithm. The authors show that under certain assumptions, the 
algorithm has a unique solution, which is consistent for the response model 
parameters.

Remark 7. Chang and Kott (2008) do not assume a model for the outcome 
so that their approach is restricted to estimation of the response probabilities 
and hence estimation of finite population totals, but it cannot be used for 
imputation. See section 6 for imputation of the missing data under our pro
posed approach. 

Remark 8. The maximization by use of the profile likelihood is neat, but it 
raises the question of model identifiability. Model identification is a fundamen
tal problem for non-ignorable nonresponse data. We therefore present in our 
simulation study the results obtained by application of the second approach of 
estimating the γ coefficients outside the likelihood, which turned out to yield 
similar results to the results obtained by maximization via the profile likelihood.  

3.4 Another Approach Proposed in the Literature for Estimating the 
Response Probabilities

Sverchkov (2008) proposes another procedure for estimating the response 
probabilities. Suppose first that the missing values were actually observed. 
Then, using previous notation, the response probabilities could be estimated 
by solving the likelihood equations 

X

i2R

@ log ρðxi; yi; γÞ
@γ

þ
X

k2Rc

@ log½1 − ρðxk; yk; γÞ�
@γ

¼ 0; (3.10) 

where Rc consists of the sample units with missing outcomes. (It is assumed 
that the covariates are known for the nonrespondents). In practice, however, 
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the outcomes are unknown for the nonresponding units, and so by application 
of the missing information principle (Orchard and Woodbury 1972), the equa
tions (3.10) are replaced by their conditional expectation given the observed 
data, that is, by solving 

E

(P
i2R
@ log ρðxi; yi; γÞ

@γ þ

P
k2Rc @ log½1 − ρðxk; yk; γÞ�

@γ

�
�
�
�
�
O

)

¼

P
i2R @ log ρðxi; yi; γÞ

@γ
þE

(P
k2Rc @ log½1 − ρðxk; yk; γÞ�

@γ

�
�
�
�
�
O

)

¼ 0;

(3.11) 

where O defines the observed data and the expectation in the second row is 
taken with respect to the model holding for the missing outcomes of the non
respondents. The latter model is expressed as a function of the models holding 
for the observed outcomes and for the response probabilities. Notice that the 
derivation of the conditional expectation in (3.11) does not require a specifica
tion of a parametric model for fuðy j xÞ.

When the nonrespondents’ covariates are unobserved, the expectation in 
(3.11) can be derived by using the PDF of vi ¼ ðyi;x

0

iÞ given ðRi ¼ 0; i 2 SÞ. 
Under the assumption that the population distribution has its support in the set 
of the observed values (section 3.1), we obtain that 8k 2 Rc 

E
n @ log½1 − ρðxk; yk; γÞ�

@γ
j ðRk ¼ 0; k 2 SÞ

o
¼
X

j2R

pðnrÞ
j

@ log½1 − ρðxj; yj; γÞ�
@γ

;

(3.12) 

where pðnrÞ
j ¼ PrðvjjRj ¼ 0; j 2 SÞ ¼

P
i2R

pðrÞi
ρi

− 1

� �− 1 1 − ρj

ρj
pðrÞj (see section 

6). Thus, the expectation of interest in (3.11) takes the form 

E

(
X

k2Rc

@ log½1 − ρðxk; yk; γÞ�
@γ

jO

)

¼ ðn − rÞ
X

j2R

pðnrÞ
j

@ log½1 − ρðxj; yj; γÞ�
@γ

:

(3.13) 

It follows that the estimation equations (3.11) can be rewritten as 

X

i2R

n @ log ρðxi; yi; γÞ
@γ

þðn − rÞpðnrÞ
i

@ log½1 − ρðxi; yi; γÞ�
@γ

o
¼ 0: (3.14) 

Sverchkov and Pfeffermann (2018) and Pfeffermann and Sverchkov (2019)
extend the approach to small area estimation under informative sampling and 
nonresponse.
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3.5 Importance of the Constraints

The likelihood (3.6) is subject to calibration constraints. How important are 
these constraints and how should they be chosen? In our proposed empirical 
likelihood approach, the constraints (3.2) are of the form 

P
i2R pici ¼ �cu, 

which are seemingly unrelated to the response probabilities, suggesting that it 
should not matter which survey variables are used for defining the constraints. 
This, however, is a false conclusion since the empirical likelihood is defined 
with respect to the probabilities pðrÞi ðγÞ ¼ piτiρiðγÞ=

P
k pkτkρkðγÞ, such that 

any constraint on the pi’s effectively defines a constraint on the ρi’s, implying 
that the variables in c should be correlated as highly as possible with y and x. 
See section 7.5 for an empirical study of the importance of the constraints.

4. ESTIMATION OF PARAMETRIC MODELS AND 
VARIANCE OF ESTIMATORS

4.1 Estimation of the Population Multinomial Probabilities

The main, or intermediate, target of the inference process is the estimation of 
the multinomial probabilities p¼ ðp1; . . .;prÞ

0

. Having estimated the vector 
pðrÞ ¼ ðpðrÞ1 ; . . . ;pðrÞr Þ

0

(section 3.3), the probabilities in p are estimated as 

bpi ¼ bpi
ðrÞ½bτ iρiðbγÞ�

− 1
=
Xr

k¼1

bpðrÞk ½bτkρkðbγÞ�
− 1
: (4.1) 

There is often interest in estimating a parametric population model fuðyjxÞ. In 
the following section 4.2, we show how this can be done by use of the esti
mated multinomial probabilities (4.1), in the case where the form of the model 
is known and only the unknown model parameters need to be estimated. 
Recall, however, that our proposed approach does not require specification of 
a parametric model for fuðyjxÞ.

4.2 Estimation of Parametric Models

We have assumed so far that the population distribution is multinomial with 
unknown probabilities p, which are estimated by maximization of the REL or 
in conjunction with the procedure proposed by Chang and Kott (2008). 
Suppose, however, that the target population distribution is in fact parametric. 
Specifically, suppose that the population measurements fyi;xi; i¼ 1; . . . ;Ng
can be regarded as N independent realizations from some joint PDF fuðyi;xiÞ, 
with corresponding conditional PDFs fuðyijxi; βÞ i¼ 1; . . . ;N, which are 
known up to the vector parameter β¼ ðβ1; . . . ;βkÞ

0

. Then, under some general 
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conditions, the true vector of β is defined as the unique solution of the estimat
ing equations, 

WUðβÞ ¼ N − 1
XN

i¼1

Eu½dUi� ¼ 0; (4.2) 

where dUi ¼ ðdUi;0;dUi1;i; . . . ;dUi;kÞ
0

¼ @ log fUðyijxi;βÞ=@β is the ith score 
function.

The ‘census parameter’ (Binder, 1983) corresponding to (4.2) is defined as 
the solution of the equations, 

WUðβÞ ¼ N − 1
XN

i¼1

dUi ¼ 0: (4.3) 

Hence, under the present set-up, β can be defined as the solution of, 

WUðβÞ ¼ N − 1
X

i2R

pidUi ¼ 0: (4.4) 

Having estimated the probabilities p1; . . . ;pr, an estimate of β is obtained by 
solving (4.4), with p1; . . . ;pr replaced by their estimates. See section 7.3 for 
illustration of the application of this estimation procedure.

Remark 9. An alternative way of estimating β is by solving the equations, 

bW UðβÞ ¼ N − 1
X

i2R

1
bτi bρi

dUi ¼ 0; (4.5) 

where (4.5) is the Horvitz–Thompson estimator of the population equations 
in (4.3), with estimated probabilities bτi bρi .  

4.3 Variance Estimation

As mentioned in Remark 8, in our simulation study in section 7, we estimated 
the γ coefficients outside the likelihood. For estimating the variances of the γ 
and β estimators, we use parametric bootstrap (BS). The parametric BS 
approach consists of generating B samples, with each sample consisting of r 
units independently drawn from the estimated model bf RðuÞ fitted to the 
observed data for the responding units, where u stands for all the variables 
involved. In our case of the empirical likelihood, the fitted distribution is mul
tinomial, with cell probabilities bpðrÞ ¼ ðbpðrÞ1 ; . . . ;bpðrÞr Þ

0

. Therefore, we make r 
independent draws from R such that in each draw, the probability that unit i is 
selected is bpðrÞi . The estimation procedure is then applied to the data of each 
BS sample. Denote the B estimates of a parameter β by bβ1; . . . ;

bβB. The 
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parametric bootstrap estimate of the variance of bβ is B− 1PB
b¼1 ð

bβb − �βÞ2, 
where �β ¼ B− 1PB

b¼1
bβb. A similar procedure is used for estimating the var

iance of the γ estimators. See section 7.3 for illustration.

5. MODEL TESTING

A crucial question regarding any model fitting is testing the goodness of fit of 
the model. Contrary to a common perception that it is impossible to test a model 
assumed for the response probabilities, we contend that under the present 
approach, this is not true. Notice that we have observations from a model fitted 
to the responding units so that we are basically faced with the classical problem 
of testing the goodness of fit of a hypothesized model to the observed data. A 
common argument in favor of the claim that the model cannot be tested is that 
it may be the case that there is more than one combination of a population 
model and a sampling or response mechanism yielding the same respondents 
model, such that the respondents model is not identifiable or weakly identifi
able. Pfeffermann and Landsman (2011) and Wang et al. (2014) establish con
ditions under which the sample model is identifiable, with references to other 
related studies. Moreover, in our case, we estimate the population model non
parametrically and the conditional sampling and response probabilities outside 
the likelihood, so that we are practically only testing the response model.

Pfeffermann and Landsman (2011) and Pfeffermann and Sikov (2011)
applied several goodness-of-fit tests to test the model fitted to the observed 
data for the case where the outcome is continuous, see section 8.4. Below, we 
describe the application of the Hosmer and Lemeshow test statistic (1980, 
hereafter HL), for the case of a binary outcome y, which performed well in our 
simulation study. To construct this test, the sample is partitioned into G groups 
of approximately equal size, based on the estimated probabilities of “success” 
(y¼ 1). The test statistic is defined as, 

HL ¼
XG

k¼1

ðok − nk�μkÞ
2

nk�μkð1 − �μkÞ
; (5.1) 

where ok is the number of observed “successes” in group k, nk is the size of 
the group and �μk is the mean of the estimated probabilities of success therein; 
�μk ¼

P
i2Gk

bμi=nk, where bμi ¼
bPrðyi ¼ 1jIi ¼ 1;Ri ¼ 1;xiÞ.

By (2.4), for the case of a binary y, the estimated probability of success for 
unit i 2 R given x is, 

bμi ¼
bPruðy¼ 1jxÞbτðx;y¼ 1Þbρðy¼ 1;xÞ

bPruðy¼ 1jxÞbτðx;y¼ 1Þbρðy¼ 1;xÞþ bPruðy¼ 0jxÞbτðx;y¼ 0Þbρðy¼ 0;xÞ
:

(5.2) 
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We estimate PruðyjxÞ by applying a smooth cubic spline to the observed values 
fyi;xigi2R, with the estimated population multinomial probabilities 
bp1
ðuÞ
; . . . ; bpr

ðuÞ as weights, restricting the estimate to the [0, 1] interval; that is, 
bPruðyjxÞ ¼minf1;maxf0;predðPruðyjxÞgg, where predðPruðyjxÞÞ is the pre
dicted value by the cubic spline. For estimating τi ¼ EuðIijyi;xiÞ, we use kernel 
smoothing by applying kernel regression of wi on ðyi;xiÞ. Estimates of 
ρðyi;xiÞ are obtained from the estimated response model.

HL found through an empirical study under a simpler set-up that their test 
statistic follows approximately a χ2

ðG − 2Þ distribution under the null hypothesis 
that the model fits the data. We verify this conjecture in our simulation study 
in section 7.6.

6. IMPUTATION OF NONRESPONDENTS DATA

In this section, we propose methods for imputation of the nonrespondents 
data, depending on whether the auxiliary variables x are known for the 
nonrespondents or not. The goal is to impute an observation for each unit 
in the nonrespondents set Rc in such a way that the distribution of the vari
ables in the combined sample, R[Rc will be as close as possible to the 
distribution of the same variables in the original sample, in the case of full 
response.

Let ρi ¼ PrðRi ¼ 1jyi;xi; Ii ¼ 1; γÞ and vi ¼ ðyi;x
0

iÞ. The PDF of vi for the 
responding units is given by PrðvijRi ¼ 1; i 2 SÞ ¼

P
j2R;vj¼vi

pðrÞj ¼ pðrÞðviÞ;

i¼ 1; . . . ; r
0

; r
0 ≤ r, where pðrÞj is defined in section 3.1. By Bayes’ law and fol

lowing Pfeffermann and Sikov (2011), 

PrðvijRi ¼ 0; i 2 SÞ ¼
PrðRi ¼ 0jvi; i 2 SÞ

PrðRi ¼ 0ji 2 SÞ
Prðviji 2 SÞ

¼
PrðRi ¼ 0jvi; i 2 SÞPrðvijRi ¼ 1; i 2 SÞPrðRi ¼ 1ji 2 SÞÞ

PrðRi ¼ 0ji 2 SÞPrðRi ¼ 1jvi; i 2 SÞ
;

(6.1) 

where the second row follows from the relationship, 

Prðvi j i 2 SÞ ¼ Prðvi j Ri ¼ 1; i 2 SÞ
Pr ðRi ¼ 1 j i 2 SÞ

PrðRi ¼ 1 j vi; i 2 SÞ
:

Let z¼ x=ð1 − xÞ where x¼ PrðRi ¼ 1ji 2 SÞ. Since the population distribution 
has its support in the set of the observed values, it follows that, 
P

i2R PrðvijRi ¼ 0; i 2 SÞ ¼ 1. Then, by (6.1) 
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P
i2R PrðvijRi ¼ 0; i 2 SÞ ¼ z

P
i2R

1 − ρi

ρi
prðviÞ

� �

¼ z
P

i2R
prðviÞ

ρi
− prðviÞ

� �

¼ z
P

i2R
prðviÞ

ρi
− 1

� �

¼ 1

)
P

i2R

prðviÞ

ρi
¼ 1=zþ 1 ¼ 1=x

) PrðRi ¼ 1ji 2 SÞ ¼
�P

i2Rðp
rðviÞ=ρiÞ

�− 1
:

(6.2) 

Let pðnrÞðviÞ ¼ PrðvijRi ¼ 0; i 2 SÞ and denote bpðnrÞ
ðviÞ its estimate by use of 

(6.1) and (6.2). Consider the following two scenarios:

SCENARIO 1: The covariates xi are unknown for nonresponding units. By 
(6.1) and (6.2), 

bpðnrÞ
ðviÞ ¼

X

i2R

bpðrÞðviÞ

bρi
− 1

 !− 1
1 − bρi

bρi
bpðrÞðviÞ: (6.3) 

Thus, under Scenario 1, data for Rc can be imputed by drawing ðn − rÞ independ
ent observations v1; . . . ; vðn − rÞ from the Multinomial distribution with 
probabilities pðnrÞðv1Þ; . . . ; bp

ðnrÞ
ðvr0 Þ and define ðy1;x1Þ; . . . ; ðyðn − rÞ;xðn − rÞÞ as 

the imputed data.
SCENARIO 2: The covariates xi are known for both the responding and non

responding units. In this case, one can independently draw yi for each nonres
ponding unit i from the estimated model Prðyijxi;Ri ¼ 0; i 2 SÞ, 

PrnrðyijxiÞ ¼ Prðyijxi;Ri ¼ 0; i 2 SÞ

¼
PrðRi ¼ 0jyi; xi; i 2 SÞPrðyijxi; i 2 SÞ

Ð
PrðRi ¼ 0jyi; xi; i 2 SÞPrðyijxi; i 2 SÞdyi

; (6.4) 

where Prðyijxi; i 2 SÞ ¼
Prðviji 2 SÞ
Prðxiji 2 SÞ

. The numerator is defined by the equation 

following (6.1) while the denominator is the sum of the numerator over 
all possible y values. In particular, when y is binary, the denominator of 
(6.4) equals PrðRi ¼ 0 j yi ¼ 1;xi; i 2 SÞPrðyi ¼ 1 j xi; i 2 SÞþPrðRi ¼ 0 j yi ¼

0;xi; i 2 SÞ Prðyi ¼ 0 j xi; i 2 SÞ.

Notice that the information contained in the nonrespondents’ covariates is 
not incorporated in our estimation procedures, but it can be utilized for imput
ing the missing outcomes. Including this information into the estimation proc
ess generally results in considerable complications of the likelihood 
maximization. See, for example, Qin et al. (2002).

In our simulation study in section 7.4, we assume Scenario 1.
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7. SIMULATION STUDY

7.1 Simulation Set-up

In order to examine the performance of our proposed approach, we conducted 
a simulation study as follows. A population of values xj, j¼ 1; . . .;10;000 was 
generated from Gammað2;2Þ. For each value xj, a binary outcome yj was gen
erated with Prðyj ¼ 1jxj; βÞ ¼ logit− 1ð− 0:8þ0:8xjÞ. Next, values of a design 
variable Z were generated as zj ¼max½ðxjþ1:1Þð2yjþ1Þþνj;0:01�, where 
νj � Uniformð− 0:2;0:2Þ. Values of 6 calibration variables c were generated 
as cj ¼ ð1; xj; yj; xjyj; x2

j ; x
2
j yjÞ

0

þεj, with εj independently drawn from 
Nð06;σ2

cI6Þ, (0m and Im are respectively the m-dimensional zero vector and the 
m × m identity matrix). While different values of σ2

c are considered in section 
7.5, in the rest of this section, we use σ2

c ¼ 1. A sample was drawn by 
Bernoulli sampling (Ij�

indep BerðπjÞ), where πj ¼minð3500z− 1
j =

P10000
k¼1 z− 1

k ;

0:9999Þ and EðnÞ ¼ 3500 is the expected sample size. The sampled units were 
classified as respondents/nonrespondents with PrðRj ¼ 1 j yj; xj; j 2 SÞ ¼ ρj ¼

logit− 1ðγ0þ γxxjþ γyyjÞ; γ0 ¼ 0:7; γx ¼ 0:5; γy ¼ − 1:5.

Remark 10. The sampling process and the response are both informative 
since they depend on the outcome for given x.  

The process of generating the population y-values and selecting the sample 
and the respondents was repeated independently 300 times. (The population x 
values were generated only once). The ranges of the sample size n and the 
number of respondents r are 3395 ≤ n ≤ 3625, 2227 ≤ r ≤ 2455. For each 
sample of respondents, we estimated the vector coefficients ðγ;βÞ using the 
following procedure described in section 3. The response model parameters γ 
were estimated outside the likelihood by application of the Chang and Kott 
(2008, hereafter C–K) method. Next, the probabilities estimates bpðrÞ were 
derived by maximizing the likelihood defined by (3.7) with γ replaced by bγ, 
obtained at the previous step. The same calibration variables were utilized in 
both steps. The estimates of the regression parameters β were derived using 
the equations (4.4), with estimated probabilities bp. The variance of the estima
tors had been estimated using the bootstrap procedure described in section 4.3.

7.2 Estimation of the Conditional Expectation of the Sampling 
Weights

We used kernel smoothing to obtain estimates of Esðwijyi; xiÞ ¼ ERðwijyi; xiÞ

(see Remark 1), by applying kernel regression of wi on ðyi; xiÞ. Here, the sub
script R refers to the respondents distribution. Since in our case yi attains only 
the values 0 or 1, the smoothing was applied to estimate ERðwijyi ¼ 0; xiÞ and 
ERðwijyi ¼ 1; xiÞ separately. The kernel regression was performed using the 
function npreg from the R package np at its default setting. Specifically, 
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Nadaraya–Watson (Nadaraya 1964, Watson 1964) kernel smoothing was per
formed, with a bandwidth calculated using the method of Racine and Li 
(2004).

7.3 Empirical Results—Estimation of Model Parameters

Table 1 shows the mean estimates of the response model coefficients (γ) and 
their empirical standard error (S.E.) over the 300 samples. Also shown are the 
square roots of the mean variance estimates, obtained by application of the 
parametric bootstrap procedure described in Section 4.3. The results in table 1
illustrate good performance of the point and variance estimators under the pro
posed estimation method.

Table 2 compares 5 estimators of the logistic population model coefficients 
β, used to generate the population outcomes: (i) the unweighted standard esti
mates based on the full sample data (observed and missing), but ignoring the 
sampling process, (ii) estimates that use the full sample data but account for 
the informative sampling by use of the sampling weights, (iii) estimates that use 
the respondents data only, ignoring the sampling and response processes, (iv) 
estimates that use the respondents data only and account for the sampling proc
ess by use of the sampling weights, but ignore the response process, (v) estimates 
obtained by our proposed C–K and REL procedure. For the application of the 
REL procedure, the β coefficients were estimated by solving the estimating 
equations 

Pr
i¼1 bpiðyi − logitðβ0þβ1xiÞÞð1; xiÞ

0

¼ 0, where bp1; . . . ;bpr are the 
estimated population multinomial probabilities (see section 4.2).

As can be seen, the estimators derived by application of our proposed 
method are virtually unbiased in estimating the population logistic model coef
ficients although with the largest S.E., which can be explained by the complex
ity of the procedure and in particular, the estimation of the response model. 
The bootstrap variance estimators also perform well. The FR PW estimators 
are also unbiased and with the smallest variance, but they use the nonrespond
ents data, which are not available in practice. The other estimators, which 

Table 1. Estimation of γ. Mean Estimates, Empirical Standard Errors (S.E.), and 
Square Root of Mean Variance Estimates, Based on the Parametric Bootstrap 
Procedure.

γ0 γx γy

True values 0.700 0.500 − 1.500
Mean estimates 0.723 0.490 − 1.511
Empirical S.E. 0.225 0.203 0.332
Sqrt mean BS variance 0.231 0.224 0.338
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ignore the informative sampling and/or the NMAR nonresponse are seen to be 
highly biased, particularly in estimating β0.

7.4 Imputation of Nonrespondents Data

In a simulation study, the missing values are known, allowing us to compare 
the distribution of measurements corresponding to the nonrespondents to that 
of their imputed values.

We illustrate the performance of our proposed imputation procedure (sec
tion 6) for the case where the covariate values are unknown for the nonres
ponding units. For this, we generated 300 samples in the same manner as 
described in section 7.1, with calibration variance σ2

c ¼ 1. Following the impu
tation procedure described in section 6, we find that the average percentage of 
units with y¼ 1 is 22.3 percent in the full samples and 22.4 percent in the 
combined respondents and imputed data. The average percentage of units with 
y¼ 1 is 38.7 percent in the true nonrespondents data, compared with 39.1 per
cent in the imputed data.

In figure 1, we plot the empirical cumulative distribution functions (eCDF) 
of the imputed x-values given y, separately for y¼ 0 and y¼ 1, and compare 
them to the corresponding eCDF of the true values. Averaged over the 300 
samples, the curves are practically identical. Therefore, we compare in figure 1
the averaged eCDFs over just the first 5 samples.

Averaging over the 5 samples, 0.387 of the nonrespondents have a value of 
y¼ 1, compared to 0.369 in the imputed data. Denote by eCDFimp and 
eCDFnr the cumulative distributions of the imputed data and of the true 

Table 2. Estimation of β: Mean Estimates, Empirical Standard Errors (S.E.) and 
Square Root of Mean Bootstrap Variance Estimates. True Coefficients 
β05 − 0:8;β15 0:8.

Method Mean estimates Square root mean BS variance Empirical S.E.

bβ0
bβ1

bβ0
bβ1

bβ0
bβ1

FR UW − 1.902 0.802 0.073 0.071 0.073 0.071
FR PW − 0.798 0.799 0.075 0.072 0.073 0.072
IGR UW − 2.665 0.966 0.111 0.095 0.105 0.093
IGR PW − 1.559 0.962 0.113 0.097 0.106 0.093
C-K and REL − 0.802 0.800 0.186 0.110 0.177 0.104

FR, Full response, estimators obtained from all the sample data; IGR, estimators 
obtained when ignoring the response mechanism; PW, Probability weighted by use of 
the sampling weights; UW, Unweighted; C-K and REL, our proposed method.
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nonrespondents data, respectively. It appears that eCDFimpðyÞ � eCDFnrðyÞ
and eCDFimpðxjyÞ � eCDFnrðxjyÞ. Thus, we conclude that the proposed impu
tation procedure performs well.

7.5 The Role of the Constraints

An important element of our proposed method is the use of known population 
means of a vector of calibration values ci. As discussed in section 3.5, ideally, 
the components of ci should be highly correlated with the model variables. In 
this section, we illustrate the effect of the choice of the variables ci and their 
proximity to the model variables on the estimation of the model parameters. 
For this, we created a 6-dimensional variable c¼ ðc0; c1; c2; c3; c4; c5Þ

0

, where 
ci ¼ ð1; xi; yi; xiyi; x2

i ; x
2
i yiÞ

0

þεi, with the εi independently generated from a 
multivariate normal distribution Nð06;σ2

cI6Þ. Table 3 demonstrates the depend
ence of the accuracy of the model parameter estimates on the closeness of the 
calibration variables to the model variables, by considering different subsets of 
c0; c1; c2; c3; c4; c5 with different values of σc, along with the r-constraint (3.3).

The results in table 3 demonstrate the importance of choosing the “right”, 
sufficiently accurate constraints. In particular, using the pair c2 and c3 alone 
performs well, even with σc ¼ 1, whereas the combination of c0; c1 and c4 (not 
shown) results in lack of convergence of the estimation algorithm when esti
mating the parameters γ. This is explained by the fact that it is the dependence 
of y on x that matters and in our case, c2 and c3 represent y and xy, respec
tively. Thus, to estimate the population model well, calibration variables 
should be chosen so that the conditional distribution of y given x is accounted 
for. As the case c2; c3 shows, even when only 2 constraints are used (along 
with the r-constraint (3.3)), the estimates are good (although generally less 
precise than with more constraints). The use of c1; c2 also provides acceptable 

Figure 1. Cumulative Distributions of x given y in the Nonrespondents Sample 
and of the Imputed Values, Averaged Over 5 Samples. x-values considered miss
ing for nonrespondents.
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estimates, although somewhat less accurate than with c2; c3, especially when 
estimating the response model parameters. We also computed the empirical 
standard errors of the estimates over the 300 samples and as expected, the 
more accurate are the constraints (smaller σc), the smaller are the empirical 
standard errors of the parameter estimates.

7.6 Model Testing

In order to illustrate the distribution of the Hosmer–Lemeshow test statistic (5.1) 
under the population model, sampling design and response mechanism defined 
in section 7.1, we show in figure 2 its empirical distribution with G¼ 10 nearly 
equal groups. Recall that if x1; . . . ; xn are independent draws from a χ2

d distribu
tion, the log-likelihood of d is d

2

P
log xi − nd

2 log 2 − log Γ d
2

� �
þHðx1; . . . ; xnÞ, 

where Γ is the Gamma function and HðxÞ is a function of x1; . . . ; xn alone. 
Hosmer and Lemeshow (1980, hereafter HL) conjectured that the distribution of 
the test statistic (5.1) under H0 is χ2 with G − 2¼ 8 degrees of freedom (df). We 
estimated the degrees of freedom to be 8.0991, using maximum likelihood esti
mation based on 300 original samples. Figure 2 contains a histogram and QQ 
plot, comparing the observed quantiles to the quantiles of a χ2

8 distribution. The 
2 figures show a close approximation of the empirical distribution of the test sta
tistic to the hypothesised χ2

8 distribution, thus validating the conjecture of HL.

Remark 11. As an alternative to using the χ2 distribution, one can employ 
the bootstrap approach, which could provide a more accurate approximation 
for the distribution of the HL statistic in the case where the respondents’ sam
ple size is not sufficiently large for justifying the asymptotic distribution. See 
also section 9 with the concluding remarks. 

Table 3. Effects of the Choice of the Constraints and Their Accuracy. Mean 
Estimates Based on 300 Samples in Each Case

β0 β1 γ0 γx γy

True coefficients − 0.800 0.800 0.700 0.500 − 1.500
Constrains used

σc ¼ 0:5 c0; c1; c2; c3;c4; c5 − 0.807 0.800 0.713 0.489 − 1.507
σc ¼ 0:5 c1; c2; c3; c4; c5 − 0.806 0.806 0.717 0.494 − 1.509
σc ¼ 0:5 c2; c3 − 0.807 0.805 0.716 0.500 − 1.516
σc ¼ 0:5 c2; c3; c5 − 0.807 0.804 0.717 0.499 − 1.509
σc ¼ 0:5 c1; c2 − 0.806 0.805 0.726 0.503 − 1.525
σc ¼ 1:0 c0; c1; c2; c3;c4; c5 − 0.803 0.800 0.723 0.490 − 1.511
σc ¼ 1:0 c1; c2; c3; c4; c5 − 0.808 0.802 0.722 0.493 − 1.516
σc ¼ 1:0 c2; c3 − 0.812 0.779 0.733 0.504 − 1.526
σc ¼ 1:0 c2; c3; c5 − 0.810 0.795 0.734 0.504 − 1.523
σc ¼ 1:0 c1; c2 − 0.817 0.796 0.746 0.491 − 1.552
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Remark 12. We also studied the power of the test statistic by computing the 
rejection rates of the null hypothesis that the response model is of the form 
ρi ¼ logit− 1ðγ0þ γxxiþ γyyiÞ, when in fact the true response model was of the 
form ρi ¼ logit− 1ðγ0þ γxxiþ γyyiþayðxi − bÞ2þ cÞ, for several combinations 
of a, b and c, with γ0 ¼ 0:7, γx ¼ 0:5, γy ¼ − 1:5. The population model was 
generated as Prðy¼ 1jxÞ ¼ logit− 1ð− 0:8þ0:8xÞ, same as in section 7.1. We 
assumed that the form of this model is known, but not the model parameters. 
We found that with significance level of α¼0.05, as the dissimilarity between 
the correct model and the model assumed under the null hypothesis grows, so 
do in general the rejection rates, with some of them being very high. 

Remark 13. We repeated the analysis with G¼ 20 groups. The results are 
generally similar to the results obtained with 10 groups, but the empirical 
rejection rates are always somewhat lower than with 10 groups.  

8. APPLICATION TO HOUSEHOLD EXPENDITURE 
SURVEY IN ISRAEL

8.1 Study Population and Outcome Variable

In this section, we illustrate the performance of the REL approach by using 
data collected as part of the Household Expenditure Survey (HES), carried out 

Figure 2. Empirical Distribution of the HL Test Statistic (5.1) (G 5 10 Equal size 
Groups), Under the Population Model, Sampling Design and Response Model of 
Section 7.1. Comparison to χ2

8 Distribution. (a) Histogram (b) QQ plot. Based on 
300 simulated samples.
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by Israel’s Central Bureau of Statistics (ICBS) in 2019. (Data for later years 
were still under study when analysing the 2019 data because of COVID-19.) 
The survey collects information on socio-demographic characteristics of each 
member of the sampled HH, as well as detailed information on the HH income 
and expenditure. The HHs are generally sampled with equal probabilities. The 
total sample size in the 2019 survey was n ¼ 12,136, with r ¼ 7,827 respond
ing HHs and n − r ¼ 4,309 nonresponding HHs. Our target outcome variable 
in the present application is the household gross monthly income.

Remark 14. In this application, we maximized the REL using the profile 
likelihood of γ as described in section 3.3 (method 1). Estimating the γ coeffi
cients outside the likelihood by use of Chang and Kott (2008) method turned 
out to be very sensitive to the calibration variables used, not converging with 
some of the variables, or yielding unreasonable estimates for some of the 
coefficients of the variables defining the response model. 

Remark 15. Unlike the simulation study in section 7, where the outcome 
variable was binary, in this application, the outcome variable is continuous.  

8.2 Model for Response Probabilities

As in our simulation study in section 7, we assume that the HH response prob
abilities given the outcome and the covariates can be modeled by the logistic 
function, 

ρi ¼ PrðRi ¼ 1jzi; xiÞ ¼ ½1þ e − ðγzzi þ γ0xxiÞ�
− 1
; (8.1) 

where zi ¼ log yi is the log(income) of HH i and xi is the corresponding vector 
of covariates. Covariates considered are: (i) Socio-economic index (SEI) of 
the statistical area (SA) to which the HH belongs; a weighted average of 
socio-economic variables measured at the SA level. Israel is divided into more 
than 3,000 statistical areas and with a population of about 9 million people in 
2019, each statistical area contained on average about 3,000 individuals; (ii) 
the size of the HH (HHsize) and (iii) characteristics of the head of the HH: 
gender, (Gen, 1 for male), Religion (Rel.Jew, 1 for Jew), age (Age) and 
Country of birth (Cob, 1 for native).

8.3 Calibration Constraints

For the REL application, we calibrated the observed data of the responding HH 
to the following population estimates, as obtained from the ICBS Labor force 
survey (LFS) in 2019. The LFS is a monthly rotating survey with a total of about 
33,400 responding HH in 2019. With such a big sample size, the LFS estimates 
are quite accurate. See equation (3.2) for the form of the calibration constraints:
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(1) Proportion of Jewish HH out of all the HH in the country. 
(2) Proportion of HH with total number of working hours per day less than 9 

hours. 
(3) Proportion of HH with 1 or 2 members. 

The HES also collects socio-economic and demographic data for all the 
individuals in the sampled HH. For pre-defined groups, we counted the num
ber of individuals in each HH belonging to a given group and computed their 
expectation using the multinomial HH probabilities. Multiplying the expecta
tion by the number of HH in the population and dividing by the number of 
individuals in the population belonging to the group defines the estimated 
expected proportion of individuals in the group, which we calibrated to the 
corresponding true population proportion, known from administrative regis
ters. Specifically, we imposed the following additional calibration constrains:

(4) Proportions of individuals in 3 classes defined by “religiosity”; Jewish 
Ultra-Orthodox (UO), Non UO Jews, Arabs (2 constraints).

(5) Proportions of individuals in 17 income classes, as defined by 10 deciles in 
the Jewish population, 5 quintiles in the Arab population, and children and 
persons with no income (14 constraints).

(6) Proportions of individuals residing in 7 different geographical districts 
comprising the entire country (6 constraints).

(7) Proportions of children under the age of 15, and classification by gender 
for individuals aged 15 and over (2 constraints).

Finally, we also imposed the following two constraints:

(8) The constraint defined by (3.3).

(9) 
P

i2R ðbτi bρiÞ
− 1
¼ N (number of HH in the population as obtained from the 

LFS).

In summary, we used a total of 29 calibration constraints.

8.4 Results

Table 4 presents the estimates of the response model coefficients and their esti
mated standard errors, as obtained by computing the square roots of the diagonal 
elements of the inverse profile information matrix. We only show the significant 
estimates and the (nonsignificant) constant term, based on the standard t-tests.

Remark 16. The standard errors could also be estimated by parametric 
bootstrap as done in the simulation study in section 7. However, since in this 
application we maximized the REL by using the profile likelihood (see 
Remark 14), we preferred to estimate them by use of the inverse profile infor
mation matrix.  
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As can be seen, the log(income) variable is highly significant, indicating 
that the nonresponse is informative (NMAR), given the covariates included in 
the model. The negative sign of the coefficient suggests that the higher the HH 
log(gross income), the less is the response propensity. The positive signs of 
the other coefficients can be reasoned as well.

Remark 17. The response model contains only a subset of the x- variables 
mentioned above, included in the multinomial distribution, so that the model 
is identifiable.  

Having estimated the response model coefficients and the multinomial 
probabilities fpig by maximization of the REL with the calibration constraints, 
there are two ways of estimating the population mean of the gross HH income, 

bY 1 ¼ N − 1
X

i2R

ðbτ ibρiÞ
− 1yi; bY 2 ¼

X

i2R

bpiyi: (8.2) 

The first estimator is the Horvitz–Thompson estimator with estimated sam
pling weights, which account for the response probabilities, viewed as a 
‘second stage’ of the sampling process. See equation (4.5) in section 4.2 and 
the last calibration constraint in section 8.3. The second estimator is based on 
the estimated population multinomial probabilities, assuming that the popula
tion distribution has its support in the set of the observed values. Under correct 
model specification, both estimators are consistent for the true population 
mean and we obtained bY 1 ¼ 19;886;bY 2 ¼ 20;173 (in Israeli shekels), which 
we consider to be sufficiently close, given the complexity of the analysis.

8.4.1 Can we test the model used?
Suppose first that the multinomial probabilities pðrÞ ¼ ðpðrÞ1 ; . . . ;pðrÞr Þ are 
known, where pðrÞi ¼ Prððyi;xi; ciÞji 2 RÞ. Hence, the marginal probability of yi 

is PrðyiÞ ¼
P

j2R;yj¼yi
pðrÞj ¼ pðrÞ�i . (Recall that under the EL, the observations 

are discrete). The CDF is therefore, UðyÞ ¼
P

i2R;yi ≤ y pðrÞ�i . Let u1; . . . ;ur 

denote the values of U1; . . .;Ur at the respondents’ values y1; . . . ; yr and denote 
by uð1Þ; . . . ;uðrÞ the ordered values of the ui’s. Denote by Fi;EMP the 

Table 4. Estimates of Response Model Coefficients and Their Standard Errors 
(S.E.) (8.1)

Parameters bγ S:E:ðbγÞ

Constant 0.338 1.095
SEI 0.592 0.0544
HH size 0.053 0.0015
Rel.Jew 0.141 0.0814
log (income) −0.109 0.0297
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corresponding empirical CDFs. The following goodness of fit test statistics are 
in common use:

Kolmogorov –Smirnov: 

KS ¼ maxijFi;EMP − uðiÞj; (8.3) 

Cramer-von Misses: 

CM ¼
1

12r
þ
Xr

i¼1

uðiÞ −
2i − 1

2r

� �2

; (8.4) 

Anderson-Darling: 

AD ¼ − r −
1
r

Xr

i¼1

½ð2i − 1Þ lnðuðiÞÞ þ ð2rþ 1 − 2iÞ lnð1 − uðiÞÞ�: (8.5) 

In practice, the multinomial probabilities pðrÞ are unknown, and we replace 
them by their REL estimates. When computed with estimated probabilities, 
the asymptotic distributions of the three test statistics depend in a complex 
way on the true underlying CDF and possibly on the method of estimation. 
Sufficiently accurate critical values can be obtained in this case by use of para
metric bootstrap, re-estimating the unknown model parameters for each boot
strap sample and then computing the corresponding test statistics. Babu and 
Rao (2004) show that the bootstrap distributions of the test statistics approxi
mate the true distributions under the hypothesized model with correct order of 
error.

We generated 1,000 bootstrap samples with probabilities pðrÞi estimated 
from the original sample and obtained the following test statistics and p values, 
as computed from the corresponding bootstrap distributions: KS test 0.0497 (p 
value¼0.17); CM Test 0.0624 (p value¼0.25); AD test 0.0689 (p val
ue¼0.31). It would seem that the relative high p-values for all the three tests 
support the use of the model fitted for this application.

Remark 18. The ICBS has applied the procedure developed by Sverchkov 
(2008, see section 3.4) for estimating the response probabilities in the 2019 
HES survey. Next, the base sampling weights have been multiplied by the 
inverse of the estimated response probabilities, and the resulting weights have 
been calibrated using about 400 calibration constraints, yielding a calibrated 
“design-based” estimator, which accounts for NMAR nonresponse, similar in 
nature to the estimator bY 1 in equation (8.2). The value of the estimate is 
bY ICBS19 ¼ 19;542, quite close to our “design-based” REL estimate, 
bY 1 ¼ 19;886. We mention in this respect that the design-based estimator 
based on only the base sampling weights (no calibration, ignoring the nonres
ponse) equals bY BW ¼ 21;480. Thus, all the three estimators bY 1, bY 2 and 
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bY ICBS19, which account for the NMAR nonresponce, reduce the weighted esti
mator, which ignores the nonresponse, quite significantly.  

9. CONCLUDING REMARKS

We develop and illustrate a general approach for analysing complex survey 
data, subjected to informative sampling and NMAR nonresponse, with basi
cally minimal assumptions. The only parametric model assumed is the model 
for the response probabilities but as illustrated, and contrary to common mis
conception, this model can be tested with good power.

The proposed approach is more robust and more stable than fully parametric 
alternatives. The results of the simulation study and the real application dem
onstrate good properties of the method, but as with any new approach, we rec
ommend more research with simulated and real data sets, considering different 
sample sizes and response models, before practical implementation.

We mention in this respect two open questions, related to our article, which 
need to be explored further. The first question refers to the asymptotic proper
ties of our proposed estimators, given that we estimate the conditional sample 
selection probabilities outside the likelihood by use of kernel regression. See 
Remark 5. The second question regards the use of the bootstrap distribution of 
the HL test (or any other test) in the case of a small or moderate number of 
responding units, as an alternative to the asymptotic Chi-square distribution, 
which we used in this article. See Remark 11.

In this article, we review several other approaches proposed in the literature 
for analyzing complex survey data. It will be of great interest to compare the 
alternative approaches empirically, using simulated and possibly also real sur
vey data. This is a very challenging project, which we hope to undertake in the 
future.

DATA AVAILABILITY

The data used in section 8 are available from the authors.
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Appendix: Proofs of Lemmas 1 and 2

Proof of Lemma 1:  
(a) Assume first that ε=2 ≤ ρðy;xÞ≤ 1 − ε=2 for all ðy;xÞ. Then logitðρðy;xÞÞ
is bounded. By the multivariate generalization of Weierstrass (Picard 1891; 
Weierstrass 1895), there exists a polynomial Q such that 
jQðy;xÞ− logitðρðy;xÞÞj< ε for all ðy;xÞ. It follows from the Mean Value 
Theorem that jlogit− 1ðQðy;xÞÞÞ− ρðy;xÞÞj< ε=4 (since d

ds logit− 1ðsÞ≤ 1=4). 
(b) If ε=2 ≤ ρðy;xÞ≤ 1 − ε=2 does not hold everywhere, define 
ρ1ðy;xÞ ¼ ε=2þð1 − εÞρðy;xÞ. Then ε=2 ≤ ρ1ðy;xÞ≤ 1 − ε=2 and 
jρðy;xÞ− ρ1ðy;xÞj≤ ε=2 for all y;x. Now, by Part (a) there exists a polynomial 
Q such that jlogit− 1ðQðy;xÞÞ− ρ1ðy;xÞj< ε=4 for all y;x. Applying the 
Triangle Inequality, we get jlogit− 1ðQðy;xÞÞ− ρðy;xÞj< ε. 

Proof of Lemma 2:  
(a) If qð1Þ is in the feasible region for (3.7�), C0Dð− 1ÞðγÞqð1Þ ¼ 0. For any γ0, 
let qð3Þ ¼ Dðγ0ÞDð− 1ÞðγÞqð1Þ, implying C0Dð− 1Þðγ0Þqð3Þ ¼ 0. Define 
qð2Þ ¼ ð10qð3ÞÞ− 1qð3Þ. Then, C0Dð− 1Þðγ0Þqð2Þ ¼ 0 and qð2Þ 2Ωr − 1. This proves 
the first part of the Lemma. 
(b) For a fixed γ, the feasible region in (3.7�) [and in (3.7)] is a closed subset 
of Ωr − 1. Thus, if it is not empty, the maximum exists and is finite.  
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