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STATISTICAL INFERENCE UNDER NONIGNORABLE
SAMPLING AND NONRESPONSE—AN EMPIRICAL
LIKELIHOOD APPROACH

DANNY PFEFFERMANN*
ARIE PREMINGER
ANNA SIKOV

Statistical models are often based on sample surveys. When the sample
selection probabilities and/or the response probabilities are related to a
model outcome variable, even after conditioning on the model covari-
ates, the model holding for the observed data is different from the model
holding in the population, resulting in biased inference if not accounted
for properly. Accounting for sample selection bias is relatively simple
because the sample selection probabilities are usually known.
Accounting for nonignorable nonresponse is much harder since the
response probabilities are, in practice, unknown. In this article, we
develop a new approach for modelling complex survey data, which
accounts simultaneously for nonignorable sampling and nonresponse.
Our proposed approach combines the nonparametric empirical likeli-
hood with a parametric model for the response probabilities, which con-
tains the outcome variable as one of the covariates. Combining the
model holding for the responding units with the model for the response
probabilities enables extracting the model holding for the missing data
and imputing them. We propose ways of testing the underlying model
holding for the respondents’ data. Simulation results illustrate the good
performance of the approach in terms of parameter estimation and impu-
tation. We conclude with an application to the household expenditure
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survey in Israel, carried out by Israel’s Central Bureau of Statistics. The
survey collects information on the socio-demographic characteristics of
each member of the sampled households (HH), as well as detailed infor-
mation on the HH income and expenditure. The total sample size was n
= 12,136 with 7,827 responding HHs. The target estimated parameter in
this application is the population mean of the gross HH income.

KEY WORDS: Kernel smoothing; Model testing; NMAR nonresponse;
Respondents’ model; Sample model.

Statement of Significance

Survey data are often used for analytic inference, based on statistical
models assumed to hold for the population from which the sample is
taken. It is often the case, however, that the sampling design used to
select the sample is informative in the sense that the sample selection
probabilities are correlated with the outcome variable even after condi-
tioning on model covariates, in which case the model holding for the
sample data differs from the model holding in the population.
Inevitably, sample data are subject to nonresponse, which is informa-
tive if the response probability is correlated with the outcome value
after conditioning on the model covariates. Clearly, ignoring an infor-
mative sampling design and/or response mechanism may yield highly
biased estimators. In this article, we develop a new approach for
modelling complex survey data, which accounts simultaneously for
nonignorable sampling and nonresponse. The approach combines the
nonparametric empirical likelihood with a parametric model for the
response probabilities. Combining the model holding for the respond-
ing units with the model for the response probabilities enables extract-
ing the model holding for the missing data and imputing them. We
propose ways of testing the underlying model holding for the respond-
ents data. We also consider estimation of an assumed parametric pop-
ulation model based on our approach. The article contains simulation
results and an application to a real data set.

1. INTRODUCTION

Survey data are often used for analytic inference, based on statistical models
assumed to hold for the population from which the sample is taken. Familiar
examples include the estimation of elasticity of demand from household (HH)
expenditure surveys, estimation of health risk factors from health surveys and
the analysis of market dynamics from labor force surveys. In particular, survey
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data are used for estimating population parameters of interest such as totals and
proportions. It is often the case, however, that the sampling design used to
select the sample is informative for the population model in the sense that the
sample selection probabilities are correlated with the target outcome variable
even after conditioning on model covariates, in which case the model holding
for the sample data is different from the model holding for the population val-
ues. This will happen, for example, when the selection probabilities are deter-
mined by one or more design variables (stratification variables, size variables
used for probability proportional to size sampling, etc.), which are correlated
with the model outcome variable, but some or all of them are not included
among the model covariates. In an extreme case, the sample selection probabil-
ities are determined directly by the outcome values, as in case-control studies.

Inevitably, sample data are subject to nonresponse, which is informative for
the population model if the response propensity is correlated with the outcome
value after conditioning on the model covariates, known as “not missing at
random” (NMAR) nonresponse. For example, sampled units may choose not
to respond to questions related to their income, based on their level of income.
In section 8, we analyze data observed in a household expenditure survey, car-
ried out by Israel’s Central Bureau of Statistics. The survey collects informa-
tion on socio-demographic characteristics of each member of the sampled
households, as well as detailed information on the HH income and expendi-
ture. The total sample size was n = 12,136 with 7,827 responding HHs. The
target estimated parameter in this application is the population mean of the
gross HH income. As shown in our application, the response probabilities
depend on the household incomes even after conditioning on the model
covariates.

Under NMAR nonresponse, the model holding for the data observed for the
responding units is different from the sample model under complete response,
which, as noted above, is different from the population model under informa-
tive sampling. Clearly, and as illustrated also in the present article, ignoring an
informative sampling design and/or response mechanism may yield highly
biased estimators and distort the inference.

Pfeffermann (2011) reviews several approaches proposed in the literature to
deal with informative sampling, ranging from weighting each sample observa-
tion by the corresponding sampling weight to maximization of the sample like-
lihood as defined by the model holding for the sample data. A common feature
of these approaches is that they utilize the sampling weights in the inference
process, although in different ways. Accounting for NMAR nonresponse,
however, is much more complicated since the response probabilities are practi-
cally never known, requiring some assumptions on them. Pfeffermann and
Sikov (2011) review approaches proposed in the literature to deal with NMAR
nonresponse, but these approaches are quite restricted. In particular, most of
the approaches assume that the model covariates are known also for the non-
respondents, which is often not the case. Evidently, accounting for both
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informative sampling and NMAR nonresponse in a single analysis is a major
undertaking, and the present article attempts to address this challenge.

We assume that not only the outcome values are missing for the nonres-
ponding units but also the corresponding covariate values, known as unit non-
response. The only additional information beyond the data observed for the
responding units assumed to be known is the population means of calibration
variables, which may include some of the model covariates, and possibly also
the mean of the outcome variable. The totals of such variables are often avail-
able from administrative or census records, or from large surveys. Note that
even though in practice, fitting a model would usually be done for estimating
unknown population parameters like means, it might be desired to fit a model
even when the population mean of the outcome variable is known, for exam-
ple, for estimating model parameters, such as regression coefficients of
explanatory variables of interest. Our approach combines the nonparametric
empirical likelihood (EL) for the population model with a parametric model
for the response probabilities, which contains the outcome variable as one of
the covariates. Moreover, the proposed approach allows the incorporation of
additional estimating equations to accommodate estimation of the response
model parameters. Specifically, the methods developed by Chang and Kott
(2008) and Sverchkov (2008) are considered. A third component needed for
setting the likelihood holding for the responding units is the expectation of the
sampling weights given the outcome and the covariates, which we estimate
nonparametrically, using kernel smoothing.

The use of the EL for analyzing complex survey data has its origin in a
landmark paper by Hartley and Rao (1968), and has gained increasing interest
in more recent years in general statistical contexts, following the work of
Owen (1988, 1990, 1991, 2001, 2013). Another fundamental paper is Qin and
Lawless (1994). See also Kim and Morikawa (2023), with references to other
recent articles. The EL combines the robustness of nonparametric methods
with the efficiency of the likelihood approach. Another important advantage of
this method is that it lends itself to the use of calibration constraints, thus
enhancing the precision of the estimators. See, for example, Chen and Van
Keilegom (2009) for a review. As our proposed method is based on the empiri-
cal likelihood, conditional on the response, we refer to it as “Respondents
Empirical Likelihood” (REL).

In the next section, we define the sample and respondents’ distributions. In
section 3, we present the empirical likelihood and provide details of its maxi-
mization. In addition, we describe the methods proposed by Chang and Kott
(2008) and Sverchkov (2008), and explain how they can be incorporated into
the estimation process. In section 4, we show how to use the estimates
obtained from maximization of the REL for estimating parametric models
assumed to hold in the population. Variance estimation is also considered.
Section 5 discusses ways of validating the assumptions underlying our
approach. Section 6 considers the imputation of the missing sample data. In
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Section 7, we report the results of a simulation study aimed to illustrate the
performance of the proposed method, while in Section 8, we apply the proce-
dure to the data collected as part of the 2019 Household Expenditure Survey
in Israel. Section 9 contains concluding remarks.

2. SAMPLE AND RESPONDENTS’ DISTRIBUTIONS

Let y; denote the value of an outcome variable Y associated with unit i belong-

ing to a sample S, drawn from a finite population U = {1,...,N} with known
inclusion probabilities z; = Pr(i € S). Let [; denote the sampling indicator
defined as 1 if unit i is sampled and O otherwise, and x; = (xy;,...,%;) denote

the values of k auxiliary variables (covariates) associated with unit i. Denote
by R the set of respondents and define the response indicator R; to be 1 if unit
i € S responds and 0 otherwise. We denote by n the size of S and by r the size
of R.

In what follows, we assume that the population outcomes are independent
realizations from distributions with probability density functions (PDF)
fu(yilx;). Following Pfeffermann et al. (1998), the sample pDF, f;(y;|x;), is
defined as the conditional ppF of y; given that unit i is sampled, that is,
fsilx:) =f (vilxi, I; = 1). By Bayes Rule,

Pr(l; = 1xi, yi)fu(yilxi)
Pr(l; = 1x;)

fs(ilxi) = (2.1)
where PI'(I,' = 1|x,-) = fPI'(Il = l\x,-,y,-) ,,(y,»|x,-)dy,-. Note that Pl"(ll' = l\x,-,y,-)
is generally not the same as the sample inclusion probability
7 =Pr(i € s) =Pr(l; = 1|Z,), where Z, defines a matrix of population values
of design variables used for the sample selection. Since
Pr(l; = 1|z, yi,x;) = m;, Pr(f; = 1|yi,x;) = E,(mi|y;,x;), where E, is the
expectation under the population PDF. The population and sample pprs differ
unless Pr(Z; = 1|x;,y;) = Pr(l; = 1|x;) for all y;, and when this condition is not
met, the sampling design is informative and cannot be ignored in the inference
process. In particular, it follows from (2.1) that under informative sampling

Be) = B e eyl 2 B, @)
where E; denotes the expectation with respect to the sample PDF. Estimating
E,(yi|x;) is often the main target of inference. Thus, ignoring an informative
sampling scheme and practically estimating E;(y;|x;) can severely bias the
inference.

Next, consider the respondents’ distribution. The marginal ppF for respond-
ing unit i, denoted by fz (y:|x;) = f(yi|x;,I; = 1,R; = 1), is by Bayes Rule,
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Pr(R; = 1|yi, xi, I; = 1)f;(yilxi)
PI'(R,' = 1|x,~,I,~ = 1) '

fr(ilxi) = (2.3)

Here again, unless Pr(R; = 1|y;,x;,I; = 1) =Pr(R; = l|x;,I; = 1) for all i, the
respondents’ ppF differs from the sample ppF, which as shown above differs
from the target population distribution under informative sampling. Notice
that Pr(R; = 1|y;,x;,I; = 1) may not be the same as Pr(R; = 1|y;,x;) since in
theory, the missingness generating mechanism among the sampled individuals
may be different from the mechanism applied by the nonsampled individuals.
However, the assumption that Pr(R; = 1|y;,x;,[; = 1) =Pr(R; = l|y;,x;,[; =
0) =Pr(R; = 1]y;,x;) is generally reasonable, reflecting an inherent tendency
of an individual regarding their willingness to answer particular questions or
all the questions of a survey.

So far, we have excluded for convenience from the notation the parameters
governing the various distributions. If the outcome, the sampling and the
response are independent between units, the respondents’ likelihood takes the
form,

Le(y.p) = IL[Pr(Ri = Uyi,xi, i = Liy)Pr(li = 1yi, xi)fu (vilxi: B)
R\/» Pr(R[ = l|xi7]i = l’ﬂ,y)Pr(Il _ l|x,) .

i=1

(2.4)

Remark 1. In theory, one also needs to model the probabilities
Pr(l; = 1|y;,x;). However, since Pr(l; = 1|z, y;,x;) = m;, the probability
Pr(I; = 1]y;,x;) can be estimated outside the likelihood using the relationship
Pr(l; = 1y, x;) = E,(milyi, x;) = 1/Eg(wilyi, x;), where w; = 1/x; is the sam-
pling weight (Pfeffermann and Sverchkov 1999). Thus, assuming that the
probability to respond, Pr(R; = 1|y;,x;,1; = 1) does not depend on the sam-
pling weight w;, that is, the response is independent of the sample selection,
we obtain that E;(w;|y;,x;) = Er(w;|y:,x;). This implies that the probabilities
Pr(I; = 1|y;,x;) can be estimated by regressing w; on (y;x;) using the
observed data. See Pfeffermann and Sverchkov (2003, 2009) for plausible
approaches and examples of modeling and estimating the expectations
E,(wi|yi,x;). Alternatively, the expectations can be estimated nonparametri-
cally using smoothing methods. In the simulation study described in section 7
and in the empirical application of section 8, we use kernel smoothing to
obtain estimates of z; = Pr(I; = 1|y;,x;), by applying kernel regression of w;
on (y;,x;). See section 7.2 for further details.

As discussed in section 4.2, the parameters underlying an assumed para-
metric population model can be estimated easily once the probabilities under-
lying the empirical likelihood have been estimated. In this respect, the use of
the empirical likelihood can be viewed as a convenient way of estimating the
parameters of an assumed parametric population model.
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Remark 2. A notable property of the likelihood (2.4) is that it does not
require knowledge of the covariates of the nonresponding units. On the other
hand, even with good estimates of the probabilities Pr(I; = 1|y;,x;), the use of
this likelihood requires specifying the population model f,(y;|x;), and the
response probabilities Pr(R; = 1|y;,x;,/; = 1), and with no observations
obtained directly from either one of the two distributions, one may run into
identification problems. Pfeffermann and Landsman (2011) and Wang et al.
(2014) establish conditions under which likelihoods of the form (2.4) are
identifiable, but experience shows that even under these conditions, maximi-
zation of the likelihood is often unstable, due to what Lee and Berger (2001)
refer to as “practical nonidentifiability.” See Rotnitzky and Robins (1997) for
further discussion and theoretical results on the identifiability of likelihoods
of the form (2.4).

Remark 3. Although no observations are available for either the model
defining the population ppF or the model assumed for the response probabil-
ities, the resulting respondents’ model (2.3) can nonetheless be tested using
classical test statistics, since it relates to the data observed for the responding
units. See sections 5, 7, and 8 for the tests used in our empirical study, with
illustrations.

3. RESPONDENTS EMPIRICAL LIKELTHOOD
3.1 Notation and Definition

We assume that for each population unit i corresponds a vector u; = (y,-,z;)/,
such that z; = x; U¢;, where ¢; is a d-dimensional vector of survey values for
which the population means ¢, are known sufficiently accurately, and y; and x;
are related via a model f,(y;|x;;8). The vector ¢; may include some or all of
the variables in x;.

Denote, 7; = Pr(I; = 1|y;,x;) and p; =Pr(R; = 1|y;,x;,I; = 1). We follow
the load-scale approach of Hartley and Rao (1968) by assuming that the finite
population values are generated from a multinomial distribution with a vector
of probabilities p = (py, ..., p,)/, where p; = Pr,(u;). We assume that the pop-
ulation distribution has its support in the set of the observed values.

Denote by N; the number of units in the finite population, assuming the vec-
tor u;, such that p; = E(N;/N), where N = ) . N; is the population size. Under
this set-up, the distribution of the observed data for the responding units (here-
after the respondents’ distribution) is multinomial, with cell probabilities given
by pgr) =Pr(u;li € R) = pitip;/ Y Prtipy- The empirical likelihood is then
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c=1]p"=m6"). (3.1)

where we use the generic notation I7(a) = [[; a; to denote the product of the
elements of a vector a. Chaudhuri et al. (2008) and Chaudhuri et al. (2010) use
a similar formulation for their empirical likelihood, but they restrict it to the
case of full response (viz., p; = 1 for all i).

The response probabilities p; in (3.1) are unknown and need to be estimated.
We model p; as a function of the outcome and the covariates. Specifically, we
assume p; (y) = Pr(R; = 1|y;,x;;7) = logit™" (£(y;,xi;7)), where logit™ ' (s) =
(1+e~*)"" and £(y;,x;;y) is a polynomial in (y,x) with coefficients 7.
Lemma 1 below asserts that if the probability to respond is a continuous func-
tion of x,y, then it can be approximated arbitrarily close by a function of the
form logit™'(¢(y,x;7)), where £(y,x) is a polynomial. Thus, the assumption
that p,(y) has this form is not as arbitrary as it might seem. The use of the logit
function for modeling the unknown response probabilities is very common in
the survey sampling literature. See, for example, Kim and Morikawa (2023)
and the references therein.

Lemma 1. Assume that p(y,x) is a continuous function on a closed
bounded set D and 0 <p(y,x) < 1. Then, for every & >0, there exists a multi-
variate polynomial Q(y,x) such that [logit™'(Q(y,x)) —p(y,x)| <e for all
(y,x) €D.

Proof. See the Appendix.

In summary, our REL is a combination of the nonparametric multinomial pop-
ulation distribution, the expectations 7; = E,(I;]y;,x;) and a model for the
response probabilities.

3.2 Calibration Constraints

We mentioned in the introduction that the use of the empirical likelihood
facilitates the use of calibration constraints for enhancing the efficiency of the
estimators. Under our set-up, the calibration values satisfy
Y icrPiCi N-! Y icrNici = N-! ZieU ¢j=c, yielding the R-level
constraints

ZP, p; (ci—¢,)=0. (3.2)

i€eR

It should be noted that in certain situations the sample means of some calibra-
tion variables are also available. In this case, additional constraints can be
defined as Zie R pl(.r)pi_l(c,- —¢,) =0, where ¢, denotes the vector of known
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sample means. This constraint can be justifitd as follows. Let
P =Pr(U; =u; | I; = 1). Then, p\"”) = Pr(U; =u; | Ri = 1,[; = 1) =

Pr(Ri=1|L=1U=u)PrUi=w | =1)  pp!’
- = ®
Pr(R =1 =1) S

"
Thus, pl()fp b JeRpj( )pj Then the constraint can be obtained as

ZieRpg >ci =¢; or ZieRpi )("i —¢,) =0, implying ZieRplmpi_ '(ci—¢,) =0.
However, our experience shows that the gain in precision by inclusion of these
additional constraints is very modest.

Denote & =1p; and &,=), ppi&. Since 7;=E(L]y;,x;) and

= E(Ri|yi,xi,I; = 1), & is the probability that unit i is sampled and subse-
quently responds, given its outcome and covariate values. Recall that
i) o< pitip; = pi&;. Thus, pi") =&, ' pic;.

Denote by E; the expectation with respect to the combined sampling and
response distribution. Then, for the (random) respondents sample size,
Ee(r) =N Y, cgpitip; = N Y jcgpiéi = N&,. Thus, r~NE,, leading to the
additional ~ constraint r=N¢&,. Since ) ,Rpi=1, we have

1=r(NE,) ™" = r(NE) ™" Yiexpi = (r/N)XicppiVET ! or

Zplr)(l —r/(Nzip; ) Zpl (1 -r/ chl)) = (3.3)

Note t%lat this constraint is equivalent to 3, .p"z7 p7 1 =N/r (using
ZzeRp: = 1)

Let C be the 7 X d matrix, the ith row of which being ¢'; —¢,,, and D(y) be the
r X r diagonal matrix with {z;p; = 7;p(y;,x;;7)} as its diagonal elements. The
constraints (3.2) and (3.3) can be written in matrix form as C’D (y)g =0 and
1'D~"(y)g = N/r, respectively, where we denote ¢ =p'”) for convenience.
While the constraints can be defined using all calibration variables ¢;, our experi-
ence shows that some of the calibration variables are more vital than others. This
issue is discussed and illustrated in more detail in sections 3.5 and 7.5.

Notice that our proposed approach is somewhat similar to the method developed
by Qin et al. (2002), where the authors factorize the joint distribution of (¥;,x;, R;)
into a parametric model for the response probability Pr(R; = 1 | y;,x;) and a non-
parametric model for the joint distribution (¥;,x;), yielding the empirical likelihood,

L=]]Pe(R =1]yixii € S;p)pid" ™", (3.4)
i=1

where A =Pr(R; = 1,i € 5).
The proposed empirical likelihood is maximized with respect to p;, 4, and y
under the constraints,
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Zp,PrR—Hy,,x,,leSy) A =0,

ZPz i_cu *0717120 szfl

The authors extend the empirical likelihood (3.4) to the case where the covari-
ates are observed for both the respondents and nonrespondents, but in this
case, maximizing the likelihood is almost impossible except in some special
cases. Notice that this approach does not account for an informative sample
selection.

Another approach based on the empirical likelihood with constraints
was proposed by Morikawa et al. (2023). The empirical population-level

(3.5)

likelihood, L=T[Y,p; is maximized under the constraints >~  p; =1,
Zﬁvzlp[IiW,‘Dg(R,‘,X,', Y,’,Zi, W,‘) = 0, and Ziv:lpl(l —I,‘Wl')Cg(Xi) = 0, where
N is the population size, I; and w;, i = 1,...,N are the sampling indicators and
sampling weights respectively, and Dy and Cy with unknown parameter 6 that
characterize the relationship between X and Y, are some efficient score functions
defined by the authors. The authors distinguish between the case where the
x-values are only known for the sampled units, and the case where they are
known for all the population units. The first case includes two different settings:
(1) population-level summary statistics of x-variables, such as means and correla-
tions are known and (ii) the summary statistics are unknown. However, although
this approach allows adjusting for both sampling and nonresponse, non-
ignorable nonresponse mechanism is not considered. Also, the authors do not
consider the case where the covariates are only known for the responding units.

A similar idea of maximizing the empirical likelihood under constraints that
incorporate auxiliary information in the context of analyzing complex survey
data was considered by Chen and Kim (2014), Zhao et al. (2022) and Kim and
Morikawa (2023). However, the first two approaches do not address adjust-
ment for nonresponse, while the last approach assumes that the x-values are
known for all population units.

3.3 Maximization of the Respondents Empirical Likelihood

By section 3.2, we now have the constrained maximization problem

()= (o)

maxI1(q) s.t. q= , q€Q,_y, (3.6)
o b(y) 0

where Ay) = C/D_l(y),, b(y) = (rN""g@y)"" - 1)/’ Ey) "' =

(77 1p1(y)_1,...,1r‘ Ip.(y)™"), and Q,_, is the simplex of all nonnegative
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vectors (qi,. .. ,q,), € R" with ), ¢g; = 1. The MLE of y and q are the values
maximizing (3.6). The maximization problem can be solved in two ways.

3.3.1 Use of the profile likelihood of y.

The maximization problem in (3.6) is equivalent to max,G(y), where G(y) is
the profile likelihood of y, defined as

G(y) = maxq 71(q) : g=0; qgcQ, . (3.7)

The maximization of (3.7) can be carried out using the R function emplik,

written by Owen and available from his website http://statweb.stanford.edu/

~owen/empirical/scel.R. See Owen (2013) for related theory and further details.
The question arises whether the maximum in (3.7) exists.

Lemma 2. Consider the constrained maximization problem,
max{I1(q) : A(r)g =0; q€Qr1}. (3.7%)

If the feasible region for (3.7%*) is not empty for a given ¥, then it is not empty
for any y. Furthermore, if the feasible region is not empty, then the maximum
exists and is finite.

Proof. See the Appendix.

Remark 4. The constraints in the maximization problem (3.7*) do not con-
tain the univariate constraint b(y)g =0 (equation (3.3)), contained in the
maximization constraints (3.7). The reason for this is that the constraint (3.3)
can lead to an empty feasible region in (3.7) for certain vectors y. This is the
case, for example, if the p,’s are very small, because if p;(y) <r/Nz; for all i,

ZiERpi(r>Ti_l/)i(7)_l >N/r.

The feasible region for the maximization problem (3.7*) may also be empty
and therefore no solution exists. A simple example is where all the observed
values of a constraining variable c are greater (or smaller) than its known pop-
ulation mean. Moreover, a combination of multivariate constraints can also
preclude a solution. For example, when the sum of 2 variables used in the con-
straints is greater for all the responding units than the sum of the correspond-
ing population means.

The maximum of G(y) in (3.7) under the constraints, can be obtained
by using Lagrange multipliers. Let g(c;,7) = (g1(¢i,¥),---,8a+1(¢i7)),
with (gi(ei,y) =77 'p7 Yew—cm), k=1,....di=1,...r, gari(ci,y)=
(1-r/(Nzip;)), where d is the dimension of ¢;. Then, the constraints defined
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in (3.2) and (3.3) can be rewritten as ZieRpEr)g(ci, y) =0. Note that
dim(g(c;,7)) is not necessarily equal to dim(c;). In our study, we use the addi-
tional constraint defined in (3.3). Following Qin and Lawless (1994), profiling
for all the values of pl@ results in

m____ 1 3.8
P Agleny) oy
where A = (Ay,...,Aq11)" are the Lagrange multipliers. Furthermore, the maxi-

mum empirical like]ihood estimate of ¥ is derived by maximizing the empiri-

cal likelihood L = [ p\"”’, which can be rewritten as
i1

r 1
L=y

i=1

Then the empirical log-likelihood is obtained as

le= =y log(1+4g(ei,7)). (3.9)

i=1

Obviously, maximizing (3.9) with pﬁ” obtained from (3.8) is equivalent to
maximizing (3.6).

The asymptotic properties of the estimators resulting from (3.8) and (3.9)
can be established by applying the theory developed in Qin and Lawless
(1994). In particular, it follows that under some regularity conditions and for
known sampling probabilities 7; = Pr(l; = 1]y;,x;) (see Remark 5 below), the
estimators defined by (3.8) and (3.9) are consistent and have a normal asymp-
totic distribution. Moreover, for fixed y parameters, there exists a unique maxi-
mum for (3.6), provided that 0 is inside the convex hull of the points
gle1,7),...,g(c,,y). This implies that plugging the estimates for y obtained by
using the Chang and Kott (2008) method described below into (3.6) results in
a unique solution for plm if the aforementioned condition holds.

Remark 5. The asymptotic properties of the REL estimators defined by
(3.8) and (3.9) outlined above assume known sampling probabilities
7; = Pr(I; = 1]y;,x;). In practice, these probabilities are unknown and we esti-
mate them outside the likelihood by use of kernel regression. The resulting
estimators are then plugged into the REL and the calibration equations. As
well known, these estimators converge at a slower rate than n‘%, see, for
example, Stone (1982). The asymptotic properties of the REL estimators fol-
lowing this procedure have not been considered in the literature, although the

simulation results in section 7 seem to support the validity of the approach.

Remark 6. Maximization of G(y) with respect to y can be performed by opti-
mization routines available in most statistical packages.
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3.3.2 Estimation of the y coefficients outside the likelihood.
In the present article, we consider also the approach proposed by Chang and
Kott (2008). By this approach, the totals of K calibration variables, which may
contain some or all of the covariates in the response model, are regressed
against their Horvitz—Thompson (H-T) estimators, with the weights appearing
in the H-T estimators defined by the inverse of the product of the sampling
probabilities and the response probabilities under the model. Let ¢; denote the
values of the calibration variables for unit i. Chang and Kott (2008) estimate
the unknown response model coefficients by setting the regression equations,
N
CPP =% pwipi L (vi,visy)ei +€*, where CPP = 3 ¢;, v; defines the values
j=1
of the covariates included in the response model for unit i and £* is a vector of
errors. Note that if the population size N is known, an additional equation can
be obtained by setting ¢; = 1, Vj. The parameters y are estimated by applying
an iterative algorithm. The authors show that under certain assumptions, the
algorithm has a unique solution, which is consistent for the response model
parameters.

Remark 7. Chang and Kott (2008) do not assume a model for the outcome
so that their approach is restricted to estimation of the response probabilities
and hence estimation of finite population totals, but it cannot be used for
imputation. See section 6 for imputation of the missing data under our pro-
posed approach.

Remark 8. The maximization by use of the profile likelihood is neat, but it
raises the question of model identifiability. Model identification is a fundamen-
tal problem for non-ignorable nonresponse data. We therefore present in our
simulation study the results obtained by application of the second approach of
estimating the y coefficients outside the likelihood, which turned out to yield
similar results to the results obtained by maximization via the profile likelihood.

3.4 Another Approach Proposed in the Literature for Estimating the
Response Probabilities

Sverchkov (2008) proposes another procedure for estimating the response
probabilities. Suppose first that the missing values were actually observed.
Then, using previous notation, the response probabilities could be estimated
by solving the likelihood equations

01 ir Vi3 01 1- ) ks
Z og p(xi,y 7)+Z og[l - p(xx, yi;7)]

S 3 =0, (3.10)

i€R keRe
where R¢ consists of the sample units with missing outcomes. (It is assumed

that the covariates are known for the nonrespondents). In practice, however,
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the outcomes are unknown for the nonresponding units, and so by application
of the missing information principle (Orchard and Woodbury 1972), the equa-
tions (3.10) are replaced by their conditional expectation given the observed
data, that is, by solving

e { 5 010220, ) | Syer Ologll = p(xe i )] 0}

e 9logp(xi, yis ¥) +E{ D kere Olog[1 = p(xx, yi; ¥)]

B o o

0}:0,

@3.11)

where O defines the observed data and the expectation in the second row is
taken with respect to the model holding for the missing outcomes of the non-
respondents. The latter model is expressed as a function of the models holding
for the observed outcomes and for the response probabilities. Notice that the
derivation of the conditional expectation in (3.11) does not require a specifica-
tion of a parametric model for f,, (y | x).

When the nonrespondents’ covariates are unobserved, the expectation in
(3.11) can be derived by using the PDF of v; = (y,-,x;) given (R; =0,i € S).
Under the assumption that the population distribution has its support in the set
of the observed values (section 3.1), we obtain that Vk € R°

dlog[1 — p(xi, yi; 7)] _ B (nr) Olog[1 = p(x;, ;5 7)]
2 5 [(Re=0keS)} =) e

(3.12)

JjeR

(r)

-1
1-p.

where pj("r) =Pr(vj|R;=0,j€S) = (ZieRp,';, - 1) ijl)](r) (see section

j

6). Thus, the expectation of interest in (3.11) takes the form

E{Z dlog[1 —p(xk,)’k;i’)]o} —(n- r)zp](m) dlog[1 _g(xﬁy”)]'

keRe I JeR 4
(3.13)
It follows that the estimation equations (3.11) can be rewritten as
dlogp(xi, yi;7) (nr) Olog|1 —p(x,-,y,-;y)]}
—)p! =0. 3.14
> 5 TP 5 (3.14)

i€R

Sverchkov and Pfeffermann (2018) and Pfeffermann and Sverchkov (2019)
extend the approach to small area estimation under informative sampling and
nonresponse.
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3.5 Importance of the Constraints

The likelihood (3.6) is subject to calibration constraints. How important are
these constraints and how should they be chosen? In our proposed empirical
likelihood approach, the constraints (3.2) are of the form Zie RDiCi =Cy,
which are seemingly unrelated to the response probabilities, suggesting that it
should not matter which survey variables are used for defining the constraints.
This, however, is a false conclusion since the empirical likelihood is defined
with respect to the probabilities pl@ () =pitip:(v)/ >k Prtpr(¥), such that
any constraint on the p;’s effectively defines a constraint on the p;’s, implying
that the variables in ¢ should be correlated as highly as possible with y and x.

See section 7.5 for an empirical study of the importance of the constraints.

4. ESTIMATION OF PARAMETRIC MODELS AND
VARIANCE OF ESTIMATORS

4.1 Estimation of the Population Multinomial Probabilities

The main, or intermediate, target of the inference process is the estimation of
the multinomial probabilities p = (py,...,p,) . Having estimated the vector
p) = (pgr), . p,.r)) (section 3.3), the probabilities in p are estimated as

P =" S B e @) 4.1
k=1

There is often interest in estimating a parametric population model f;, (y|x). In
the following section 4.2, we show how this can be done by use of the esti-
mated multinomial probabilities (4.1), in the case where the form of the model
is known and only the unknown model parameters need to be estimated.
Recall, however, that our proposed approach does not require specification of
a parametric model for f, (y|x).

4.2 Estimation of Parametric Models

We have assumed so far that the population distribution is multinomial with
unknown probabilities p, which are estimated by maximization of the REL or
in conjunction with the procedure proposed by Chang and Kott (2008).
Suppose, however, that the target population distribution is in fact parametric.
Specifically, suppose that the population measurements {y;,x;,i=1,...,N}
can be regarded as N independent realizations from some joint PDF f, (y;,x;),
with corresponding conditional PDFs f,(yi|x;;8)i=1,...,N, which are
known up to the vector parameter f = (5, ..., ﬂk)/. Then, under some general
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conditions, the true vector of f§ is defined as the unique solution of the estimat-
ing equations,

Wy (f) = 1ZE [dyi] = 0, (4.2)

where dy; = (dyio,dui s - - - ,dUi’k)/ = Ologfy(yilxi,)/0B is the i™ score
function.

The ‘census parameter’ (Binder, 1983) corresponding to (4.2) is defined as
the solution of the equations,

Wy(p) =N~" Zdy, =0. 4.3)

Hence, under the present set-up, f§ can be defined as the solution of,

Wy(B) =N~"Y pidy; = 0. (4.4)

i€R
Having estimated the probabilities py,...,p,, an estimate of # is obtained by
solving (4.4), with p,...,p, replaced by their estimates. See section 7.3 for

illustration of the application of this estimation procedure.

Remark 9. An alternative way of estimating f is by solving the equations,

Wy(B) =N~! Z =—du =0, (4.5)

i€R ZipPi

where (4.5) is the Horvitz—Thompson estimator of the population equations
in (4.3), with estimated probabilities 7;p;.

4.3 Variance Estimation

As mentioned in Remark 8, in our simulation study in section 7, we estimated
the y coefficients outside the likelihood. For estimating the variances of the y
and f estimators, we use parametric bootstrap (BS). The parametric BS
approach consists of generating B samples, with each sample consisting of r
units independently drawn from the estimated model fg(u) fitted to the
observed data for the responding units, where u stands for all the variables
involved. In our case of the emplrlcal hkehhood the fitted distribution is mul-
tinomial, with cell probabilities p p (p R pr ) Therefore, we make r
independent draws from R such that in each draw the probability that unit i is
selected is pl( ") The estimation procedure is then applied to the data of each
BS sample. Denote the B estimates of a parameter § by ﬂl, . ﬂB The
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parametric bootstrap estimate of the variance of B is B~ 'Y 1( ,—B)7,
where f =B~! Zb lﬂb A similar procedure is used for estimating the var-
iance of the y estimators. See section 7.3 for illustration.

5. MODEL TESTING

A crucial question regarding any model fitting is testing the goodness of fit of
the model. Contrary to a common perception that it is impossible to test a model
assumed for the response probabilities, we contend that under the present
approach, this is not true. Notice that we have observations from a model fitted
to the responding units so that we are basically faced with the classical problem
of testing the goodness of fit of a hypothesized model to the observed data. A
common argument in favor of the claim that the model cannot be tested is that
it may be the case that there is more than one combination of a population
model and a sampling or response mechanism yielding the same respondents
model, such that the respondents model is not identifiable or weakly identifi-
able. Pfeffermann and Landsman (2011) and Wang et al. (2014) establish con-
ditions under which the sample model is identifiable, with references to other
related studies. Moreover, in our case, we estimate the population model non-
parametrically and the conditional sampling and response probabilities outside
the likelihood, so that we are practically only testing the response model.

Pfeffermann and Landsman (2011) and Pfeffermann and Sikov (2011)
applied several goodness-of-fit tests to test the model fitted to the observed
data for the case where the outcome is continuous, see section 8.4. Below, we
describe the application of the Hosmer and Lemeshow test statistic (1980,
hereafter HL), for the case of a binary outcome y, which performed well in our
simulation study. To construct this test, the sample is partitioned into G groups
of approximately equal size, based on the estimated probabilities of “success”
(y = 1). The test statistic is defined as,

Ok — ”kﬂk
HL = 5.1
anﬂk 1= i) e-b

where oy is the number of observed “successes” in group k, n; is the size of
the group and i, is the mean of the estimated probabilities of success therein;
ﬁk = ZieGkﬁ\i/nk’ whereﬁi = PI'(y,' = l|1, = l,R,' = l,x,»).

By (2.4), for the case of a binary y, the estimated probability of success for
uniti € R given x is,

P Pr,(y=1x)7(x,y=1)p(y=1,x) .
Pr,(y=1[x)Z(x,y = 1)p(y = 1,x) +Pr,(y = 0x)7(x,y = 0)p (y = 0,x)
(5.2)
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We estimate Pr, (y|x) by applying a smooth cubic spline to the observed values
{yi,Xi};cg» Wwith the estimated population multinomial probabilities
.. 5™ as weights, restricting the estimate to the [0, 1] interval; that is,
Pr,(yx) = min{1, max{0, pred(Pr,(y|x)}}, where pred(Pr,(ylx)) is the pre-
dicted value by the cubic spline. For estimating z; = E,,(I;|y;,X;), we use kernel
smoothing by applying kernel regression of w; on (y;,x;). Estimates of
p(vi,x;) are obtained from the estimated response model.

HL found through an empirical study under a simpler set-up that their test
statistic follows approximately a Z%G—Z) distribution under the null hypothesis
that the model fits the data. We verify this conjecture in our simulation study
in section 7.6.

6. IMPUTATION OF NONRESPONDENTS DATA

In this section, we propose methods for imputation of the nonrespondents
data, depending on whether the auxiliary variables x are known for the
nonrespondents or not. The goal is to impute an observation for each unit
in the nonrespondents set R° in such a way that the distribution of the vari-
ables in the combined sample, RUR will be as close as possible to the
distribution of the same variables in the original sample, in the case of full
response.

Let p; =Pr(R; = 1|y;,x;,I; = 1;7) and v; = (yi,x;). The PDF of v; for the
responding units is given by Pr(vi|Ri=1,i€S) =3 r, ,, pj(f) =p"(w),
i=1,...,r,r <r, where p]@ is defined in section 3.1. By Bayes’ law and fol-
lowing Pfeffermann and Sikov (2011),

Pr(R; = 0|v;,i € S)
PI'(RZ' = 0|l S S)

Pr(vi|lR; =0,i € S) = Pr(v;|i € S)

6.1)
PI'(R,' = O|Vi,i S S)Pr(vi\R,- = l,l S S)Pr(R, = 1|l S S))
PI'(R,' = O|l € S)PI'(R, = 1|Vi7i S S) ’

where the second row follows from the relationship,

Pr(Ri=1]i€S)

Pr(v,~|i€S):Pr(v,~|R,-:1,1'ES)Pr(RA_1 ics)
[ 2 1 2]

Let z = x/(1 —x) where x = Pr(R; = 1]i € §). Since the population distribution
has its support in the set of the observed values, it follows that,
> icr Pr(vilR; =0,i € S) = 1. Then, by (6.1)
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S PrvilRi = 0,i € 8) = 23,4 (1 _p"p’(w)>
=S ) = (5 1) <

I v;
:zieR”;‘)z 1/z+1=1/x

L

(6.2)

-1
= Pr(Ri = 1l €5) = ( Sica0 0)/0) -

Let p) (v;) = Pr(v;|R; = 0,i € S) and denote 5" (v;) its estimate by use of

(6.1) and (6.2). Consider the following two scenarios:

Scenario 1: The covariates x; are unknown for nonresponding units. By
(6.1) and (6.2),

50 (y. s
/ﬁ(nr) (Vi) _ <Zp ( ) _ 1) Apz /ﬁ(r) (vi)- 6.3)
i€R

pi Pi

Thus, under Scenario 1, data for R® can be imputed by drawing (n — r) independ-
ent observations Vi,...,v,_, from the Multinomial distribution with
probabilities p") (vy), . .., P (vy) and define (y1,X1),...,(Yu—r)X(a-r) as
the imputed data.

Scenario 2: The covariates x; are known for both the responding and non-
responding units. In this case, one can independently draw y; for each nonres-
ponding unit i from the estimated model Pr(y;|x;,R; = 0,i € S),

P, (yilx;) = Pr(yilx;,R; = 0,i € S)
Pr(R; = Oly;,x;,i € S)Pr(yilx;,i € 5)

= , 6.4
JPr(R; = Oy, xi,i € S)Pr(yilxi, i € S)dy; ©H
) Pr(vli € S) . .
where Pr(y;|x;,i € S) = m The numerator is defined by the equation

following (6.1) while the denominator is the sum of the numerator over
all possible y values. In particular, when y is binary, the denominator of
(6.4) equals Pr(R;=0|y;=1,x;,i € S)Pr(y; =1 |x;,i €S)+Pr(R; =0 |y; =
0,x;,i €S) Pr(y; =0|x;,i €5).

Notice that the information contained in the nonrespondents’ covariates is
not incorporated in our estimation procedures, but it can be utilized for imput-
ing the missing outcomes. Including this information into the estimation proc-
ess generally results in considerable complications of the likelihood
maximization. See, for example, Qin et al. (2002).

In our simulation study in section 7.4, we assume Scenario 1.
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7. SIMULATION STUDY

7.1 Simulation Set-up

In order to examine the performance of our proposed approach, we conducted
a simulation study as follows. A population of values x;, j = 1,...,10,000 was
generated from Gamma(2,2). For each value x;, a binary outcome y; was gen-
erated with Pr(y; = 1|x;; ) = logit ™' (- 0.8 +0.8x;). Next, values of a design
variable Z were generated as z; = max[(x;+1.1)(2y;+1)+;,0.01], where
vj ~ Uniform( -0.2,0. 2) Values of 6 calibration variables ¢ were generated
as ¢ = (1,x,, %y}, %7 jyj) +¢;, with ¢ independently drawn from
N(0g, 0'5-16) (0,, and I,,, are respectively the m-dimensional zero vector and the
m X m identity matrix). While different values of ¢? are considered in section
7.5, in the rest of this section, we use 6> =1. A sample was drawn by
Bernoulli sampling (I; ~"%P Ber(z;)), where 7 = min(3500z; '/ S0t
0.9999) and E(n) = 3500 is the expected sample size. The sampled units were
classified as respondents/nonrespondents with Pr(R; =1|y;,x;,j € S) =p; =
logit™ ' (vo+ 7% +7,5): 70 = 0.7,7,= 05,7, = = 1.5.

Remark 10. The sampling process and the response are both informative
since they depend on the outcome for given x.

The process of generating the population y-values and selecting the sample
and the respondents was repeated independently 300 times. (The population x
values were generated only once). The ranges of the sample size n and the
number of respondents r are 3395 < n < 3625, 2227 < r < 2455. For each
sample of respondents, we estimated the vector coefficients (y,f) using the
following procedure described in section 3. The response model parameters y
were estimated outside the likelihood by application of the Chang and Kott
(2008, hereafter C—K) method. Next, the probabilities estimates iim were
derived by maximizing the likelihood defined by (3.7) with y replaced by 7,
obtained at the previous step. The same calibration variables were utilized in
both steps. The estimates of the regression parameters # were derived using
the equations (4.4), with estimated probabilities p. The variance of the estima-
tors had been estimated using the bootstrap procedure described in section 4.3.

7.2 Estimation of the Conditional Expectation of the Sampling
Weights

We used kernel smoothing to obtain estimates of E;(w;|y;;x;) = Er(wilyi;xi)
(see Remark 1), by applying kernel regression of w; on (y;,x;). Here, the sub-
script R refers to the respondents distribution. Since in our case y; attains only
the values 0 or 1, the smoothing was applied to estimate Eg(w;|y; = 0;x;) and
Eg(wily; = 1;x;) separately. The kernel regression was performed using the
function npreg from the R package np at its default setting. Specifically,
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Nadaraya—Watson (Nadaraya 1964, Watson 1964) kernel smoothing was per-
formed, with a bandwidth calculated using the method of Racine and Li
(2004).

7§mpirical Results—Estimation of Model Parameters

Table 1 shows the mean estimates of the response model coefficients (y) and
their empirical standard error (S.E.) over the 300 samples. Also shown are the
square roots of the mean variance estimates, obtained by application of the
parametric bootstrap procedure described in Section 4.3. The results in table 1
illustrate good performance of the point and variance estimators under the pro-
posed estimation method.

Table 2 compares 5 estimators of the logistic population model coefficients
P, used to generate the population outcomes: (i) the unweighted standard esti-
mates based on the full sample data (observed and missing), but ignoring the
sampling process, (ii) estimates that use the full sample data but account for
the informative sampling by use of the sampling weights, (iii) estimates that use
the respondents data only, ignoring the sampling and response processes, (iv)
estimates that use the respondents data only and account for the sampling proc-
ess by use of the sampling weights, but ignore the response process, (v) estimates
obtained by our proposed C-K and REL procedure. For the application of the
REL procedure, the # coefficients were estimated by solving the estimating
equations Zir:lﬁi(yi—logit(ﬁo—i—ﬂlxi))(l,xi), =0, where py,...,p, are the
estimated population multinomial probabilities (see section 4.2).

As can be seen, the estimators derived by application of our proposed
method are virtually unbiased in estimating the population logistic model coef-
ficients although with the largest S.E., which can be explained by the complex-
ity of the procedure and in particular, the estimation of the response model.
The bootstrap variance estimators also perform well. The FR PW estimators
are also unbiased and with the smallest variance, but they use the nonrespond-
ents data, which are not available in practice. The other estimators, which

Table 1. Estimation of y. Mean Estimates, Empirical Standard Errors (s.E.), and
Square Root of Mean Variance Estimates, Based on the Parametric Bootstrap
Procedure.

Y0 Vx Yy
True values 0.700 0.500 -1.500
Mean estimates 0.723 0.490 -1.511
Empirical S.E. 0.225 0.203 0.332

Sqrt mean BS variance 0.231 0.224 0.338
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Table 2. Estimation of f: Mean Estimates, Empirical Standard Errors (s.E.) and
Square Root of Mean Bootstrap Variance Estimates. True Coefficients
Boy=-038,6,=038.

Method Mean estimates ~ Square root mean BS variance =~ Empirical s.E.
Eo p 1 ﬁo E] Eo El
FR UW -1.902 0.802 0.073 0.071 0.073  0.071
FR PW -0.798 0.799 0.075 0.072 0.073  0.072
IGR UW -2.665 0.966 0.111 0.095 0.105 0.093
IGR PW -1.559 0.962 0.113 0.097 0.106  0.093
C-Kand REL -0.802 0.800 0.186 0.110 0.177  0.104

FR, Full response, estimators obtained from all the sample data; IGR, estimators
obtained when ignoring the response mechanism; PW, Probability weighted by use of
the sampling weights; UW, Unweighted; C-K and REL, our proposed method.

ignore the informative sampling and/or the NMAR nonresponse are seen to be
highly biased, particularly in estimating /3.

7.4 Imputation of Nonrespondents Data

In a simulation study, the missing values are known, allowing us to compare
the distribution of measurements corresponding to the nonrespondents to that
of their imputed values.

We illustrate the performance of our proposed imputation procedure (sec-
tion 6) for the case where the covariate values are unknown for the nonres-
ponding units. For this, we generated 300 samples in the same manner as
described in section 7.1, with calibration variance 63 = 1. Following the impu-
tation procedure described in section 6, we find that the average percentage of
units with y =1 is 22.3 percent in the full samples and 22.4 percent in the
combined respondents and imputed data. The average percentage of units with
y =1 is 38.7 percent in the true nonrespondents data, compared with 39.1 per-
cent in the imputed data.

In figure 1, we plot the empirical cumulative distribution functions (eCDF)
of the imputed x-values given y, separately for y =0 and y = 1, and compare
them to the corresponding eCDF of the true values. Averaged over the 300
samples, the curves are practically identical. Therefore, we compare in figure 1
the averaged eCDFs over just the first 5 samples.

Averaging over the 5 samples, 0.387 of the nonrespondents have a value of
y=1, compared to 0.369 in the imputed data. Denote by eCDF;,, and
eCDF,, the cumulative distributions of the imputed data and of the true
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Figure 1. Cumulative Distributions of x given y in the Nonrespondents Sample
and of the Imputed Values, Averaged Over 5 Samples. x-values considered miss-
ing for nonrespondents.

nonrespondents data, respectively. It appears that eCDFy,,(y) =~ eCDF,,(y)
and eCDF, (x|y) = eCDF,(x|y). Thus, we conclude that the proposed impu-
tation procedure performs well.

7.5 The Role of the Constraints

An important element of our proposed method is the use of known population
means of a vector of calibration values c;. As discussed in section 3.5, ideally,
the components of ¢; should be highly correlated with the model variables. In
this section, we illustrate the effect of the choice of the variables ¢; and their
proximity to the model variables on the estimation of the model parameters.
For this, we created a 6-dimensional variable ¢ = (¢, ¢y, ¢z, ¢3,¢4,¢5) , where
c; = (l,xi,yi7xiyi,xl2,xl-2yi)/ +¢;, with the &; independently generated from a
multivariate normal distribution N (06, 5216 ). Table 3 demonstrates the depend-
ence of the accuracy of the model parameter estimates on the closeness of the
calibration variables to the model variables, by considering different subsets of
co,C1,C2,C3,C4,cs With different values of o,, along with the 7-constraint (3.3).

The results in table 3 demonstrate the importance of choosing the “right”,
sufficiently accurate constraints. In particular, using the pair ¢, and c3 alone
performs well, even with o, = 1, whereas the combination of ¢y, c; and c4 (not
shown) results in lack of convergence of the estimation algorithm when esti-
mating the parameters y. This is explained by the fact that it is the dependence
of y on x that matters and in our case, ¢, and c3 represent y and xy, respec-
tively. Thus, to estimate the population model well, calibration variables
should be chosen so that the conditional distribution of y given x is accounted
for. As the case c;,c3 shows, even when only 2 constraints are used (along
with the r-constraint (3.3)), the estimates are good (although generally less
precise than with more constraints). The use of ¢y, c; also provides acceptable
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Table 3. Effects of the Choice of the Constraints and Their Accuracy. Mean
Estimates Based on 300 Samples in Each Case

Bo B Yo Yx 7y
True coefficients -0.800 0.800 0.700 0.500 - 1.500
Constrains used
o.=0.5 Co,C1,C2, C3,C4,C5 -0.807 0.800 0.713 0.489 -1.507
o.=0.5 C1,C2,C3, C4,C5 -0.806 0.806 0.717 0.494 -1.509
o.=0.5 €2,C3 -0.807 0.805 0.716 0.500 -1.516
c.=0.5 c2,C3,C5 -0.807 0.804 0.717 0.499 -1.509
o.=0.5 c1,¢ -0.806 0.805 0.726 0.503 -1.525
o.=1.0 €0,C1,C2, C3,C4,C5 -0.803 0.800 0.723  0.490 -1.511
c.=1.0 c1,¢2,C3, C4,Cs -0.808 0.802 0.722 0.493 -1.516
o.=1.0 €2,C3 -0.812 0779 0.733 0.504 -1.526
o.=1.0 €2,C3,Cs -0.810 0.795 0.734 0.504 -1.523
o.=1.0 C1,Co -0.817 0.796 0.746  0.491 -1.552

estimates, although somewhat less accurate than with c;, c3, especially when
estimating the response model parameters. We also computed the empirical
standard errors of the estimates over the 300 samples and as expected, the
more accurate are the constraints (smaller o.), the smaller are the empirical
standard errors of the parameter estimates.

7.6 Model Testing

In order to illustrate the distribution of the Hosmer—Lemeshow test statistic (5.1)
under the population model, sampling design and response mechanism defined
in section 7.1, we show in figure 2 its empirical distribution with G = 10 nearly
equal groups. Recall that if x1, ... ,x, are independent draws from a y7 distribu-
tion, the log-likelihood of d is 43" logx; — “log2—logI"($) + H(x1, ..., x4),
where I” is the Gamma function and H(x) is a function of xi,...,x, alone.
Hosmer and Lemeshow (1980, hereafter HL.) conjectured that the distribution of
the test statistic (5.1) under Hy is y*> with G—2 =8 degrees of freedom (df). We
estimated the degrees of freedom to be 8.0991, using maximum likelihood esti-
mation based on 300 original samples. Figure 2 contains a histogram and QQ
plot, comparing the observed quantiles to the quantiles of a y3 distribution. The
2 figures show a close approximation of the empirical distribution of the test sta-
tistic to the hypothesised y3 distribution, thus validating the conjecture of HL.

Remark 11. As an alternative to using the y? distribution, one can employ
the bootstrap approach, which could provide a more accurate approximation
for the distribution of the HL statistic in the case where the respondents’ sam-
ple size is not sufficiently large for justifying the asymptotic distribution. See
also section 9 with the concluding remarks.



Inference Under Nonignorable Sampling and Nonresponse 25

O

(b)

N °
o = .
| /N —— chisq (8 df) |
g B N
©
o o
S =
0
o
o o
-
o
o
o 0 -
O_ -
o
o
Q) ~ o
| T T T T 1 T T T T T
0 5 10 15 20 25 0 5 10 15 20 25
Histogram QQ-plot

Figure 2. Empirical Distribution of the HL Test Statistic (5.1) (G = 10 Equal size
Groups), Under the Population Model, Sampling Design and Response Model of
Section 7.1. Comparison to x2 Distribution. (a) Histogram (b) QQ plot. Based on
300 simulated samples.

Remark 12. We also studied the power of the test statistic by computing the
rejection rates of the null hypothesis that the response model is of the form
p; = logit ™! (yo +7.xi + 7,Yi), when in fact the true response model was of the
form p; = logit™! (o +7.x; + vyYi+ay(xi— b)? +¢), for several combinations
of a, b and ¢, with y, = 0.7, y, = 0.5, y, = —1.5. The population model was
generated as Pr(y = 1|x) = logit ! ( — 0.8 +0.8x), same as in section 7.1. We
assumed that the form of this model is known, but not the model parameters.
We found that with significance level of o =0.05, as the dissimilarity between
the correct model and the model assumed under the null hypothesis grows, so
do in general the rejection rates, with some of them being very high.

Remark 13. We repeated the analysis with G = 20 groups. The results are
generally similar to the results obtained with 10 groups, but the empirical
rejection rates are always somewhat lower than with 10 groups.

8. APPLICATION TO HOUSEHOLD EXPENDITURE
SURVEY IN ISRAEL

8.1 Study Population and Outcome Variable

In this section, we illustrate the performance of the REL approach by using
data collected as part of the Household Expenditure Survey (HES), carried out
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by Israel’s Central Bureau of Statistics (ICBS) in 2019. (Data for later years
were still under study when analysing the 2019 data because of COVID-19.)
The survey collects information on socio-demographic characteristics of each
member of the sampled HH, as well as detailed information on the HH income
and expenditure. The HHs are generally sampled with equal probabilities. The
total sample size in the 2019 survey was n = 12,136, with r = 7,827 respond-
ing HHs and n — r = 4,309 nonresponding HHs. Our target outcome variable
in the present application is the household gross monthly income.

Remark 14. In this application, we maximized the REL using the profile
likelihood of y as described in section 3.3 (method 1). Estimating the y coeffi-
cients outside the likelihood by use of Chang and Kott (2008) method turned
out to be very sensitive to the calibration variables used, not converging with
some of the variables, or yielding unreasonable estimates for some of the
coefficients of the variables defining the response model.

Remark 15. Unlike the simulation study in section 7, where the outcome
variable was binary, in this application, the outcome variable is continuous.

8.2 Model for Response Probabilities

As in our simulation study in section 7, we assume that the HH response prob-
abilities given the outcome and the covariates can be modeled by the logistic
function,

p: = Pr(R; = 1|z,x;) = [1 +e~ a7 =1, (8.1)

where z; = logy; is the log(income) of HH i and x; is the corresponding vector
of covariates. Covariates considered are: (i) Socio-economic index (SEI) of
the statistical area (SA) to which the HH belongs; a weighted average of
socio-economic variables measured at the SA level. Israel is divided into more
than 3,000 statistical areas and with a population of about 9 million people in
2019, each statistical area contained on average about 3,000 individuals; (ii)
the size of the HH (HHsize) and (iii) characteristics of the head of the HH:
gender, (Gen, 1 for male), Religion (Rel.Jew, 1 for Jew), age (Age) and
Country of birth (Cob, 1 for native).

8.3 Calibration Constraints

For the REL application, we calibrated the observed data of the responding HH
to the following population estimates, as obtained from the ICBS Labor force
survey (LFS) in 2019. The LES is a monthly rotating survey with a total of about
33,400 responding HH in 2019. With such a big sample size, the LFS estimates
are quite accurate. See equation (3.2) for the form of the calibration constraints:
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(1) Proportion of Jewish HH out of all the HH in the country.

(2) Proportion of HH with total number of working hours per day less than 9
hours.

(3) Proportion of HH with 1 or 2 members.

The HES also collects socio-economic and demographic data for all the
individuals in the sampled HH. For pre-defined groups, we counted the num-
ber of individuals in each HH belonging to a given group and computed their
expectation using the multinomial HH probabilities. Multiplying the expecta-
tion by the number of HH in the population and dividing by the number of
individuals in the population belonging to the group defines the estimated
expected proportion of individuals in the group, which we calibrated to the
corresponding true population proportion, known from administrative regis-
ters. Specifically, we imposed the following additional calibration constrains:

(4) Proportions of individuals in 3 classes defined by “religiosity”’; Jewish
Ultra-Orthodox (UQO), Non UO Jews, Arabs (2 constraints).

(5) Proportions of individuals in 17 income classes, as defined by 10 deciles in
the Jewish population, 5 quintiles in the Arab population, and children and
persons with no income (14 constraints).

(6) Proportions of individuals residing in 7 different geographical districts
comprising the entire country (6 constraints).

(7) Proportions of children under the age of 15, and classification by gender
for individuals aged 15 and over (2 constraints).

Finally, we also imposed the following two constraints:
(8) The constraint defined by (3.3).

9) > icr (Tipy) ~! = N (number of HH in the population as obtained from the
LES).

In summary, we used a total of 29 calibration constraints.

8.4 Results

Table 4 presents the estimates of the response model coefficients and their esti-
mated standard errors, as obtained by computing the square roots of the diagonal
elements of the inverse profile information matrix. We only show the significant
estimates and the (nonsignificant) constant term, based on the standard -tests.

Remark 16. The standard errors could also be estimated by parametric
bootstrap as done in the simulation study in section 7. However, since in this
application we maximized the REL by using the profile likelihood (see
Remark 14), we preferred to estimate them by use of the inverse profile infor-
mation matrix.
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Table 4. Estimates of Response Model Coefficients and Their Standard Errors
(S.E.) (8.1)

Parameters 7 S.E.(7)
Constant 0.338 1.095

SEI 0.592 0.0544
HH size 0.053 0.0015
Rel.Jew 0.141 0.0814
log (income) -0.109 0.0297

As can be seen, the log(income) variable is highly significant, indicating
that the nonresponse is informative (NMAR), given the covariates included in
the model. The negative sign of the coefficient suggests that the higher the HH
log(gross income), the less is the response propensity. The positive signs of
the other coefficients can be reasoned as well.

Remark 17. The response model contains only a subset of the x- variables
mentioned above, included in the multinomial distribution, so that the model
is identifiable.

Having estimated the response model coefficients and the multinomial
probabilities {p;} by maximization of the REL with the calibration constraints,
there are two ways of estimating the population mean of the gross HH income,

Yy =N"' > Gy Y, = > b (8.2)

i€R i€R

The first estimator is the Horvitz—Thompson estimator with estimated sam-
pling weights, which account for the response probabilities, viewed as a
‘second stage’ of the sampling process. See equation (4.5) in section 4.2 and
the last calibration constraint in section 8.3. The second estimator is based on
the estimated population multinomial probabilities, assuming that the popula-
tion distribution has its support in the set of the observed values. Under correct
model specification, both estimators are consistent for the true population
mean and we obtained Y| = 19,886, Y, = 20,173 (in Israeli shekels), which
we consider to be sufficiently close, given the complexity of the analysis.

8.4.1 Can we test the model used?

Suppose first that the multinomial probabilities p) = (pir), p) are
known, where plm = Pr((yi,x;,¢i)|i € R). Hence, the marginal probability of y;
is Pr(yi) = 3 erymy; pjr) = pl(r *. (Recall that under the EL, the observations
are discrete). The CDF is therefore, U(y) :ZieR,yi <y pﬁ’)*. Let uy,...,u,
denote the values of Uy, ..., U, at the respondents’ values yy,...,y, and denote
by uqy,...,u() the ordered values of the u;’s. Denote by F;gyp the
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corresponding empirical CDFs. The following goodness of fit test statistics are
in common use:
Kolmogorov —Smirnov:

KS = max,-|F,-TEMp - Ll(l')|, (83)

Cramer-von Misses:

2i—1
=0t Z { } : (8.4)

Anderson-Darling:
1 r
D= —r- ;Z[(Zi— 1) In(ugy) + (2r+1-2i) In(1 - ug)). (8.5)

In practice, the multinomial probabilities p") are unknown, and we replace
them by their REL estimates. When computed with estimated probabilities,
the asymptotic distributions of the three test statistics depend in a complex
way on the true underlying CDF and possibly on the method of estimation.
Sufficiently accurate critical values can be obtained in this case by use of para-
metric bootstrap, re-estimating the unknown model parameters for each boot-
strap sample and then computing the corresponding test statistics. Babu and
Rao (2004) show that the bootstrap distributions of the test statistics approxi-
mate the true distributions under the hypothesized model with correct order of
error.

We generated 1,000 bootstrap samples with probabilities pl(r) estimated
from the original sample and obtained the following test statistics and p values,
as computed from the corresponding bootstrap distributions: KS test 0.0497 (p
value=0.17); CM Test 0.0624 (p value=0.25); AD test 0.0689 (p val-
ue =0.31). It would seem that the relative high p-values for all the three tests
support the use of the model fitted for this application.

Remark 18. The ICBS has applied the procedure developed by Sverchkov
(2008, see section 3.4) for estimating the response probabilities in the 2019
HES survey. Next, the base sampling weights have been multiplied by the
inverse of the estimated response probabilities, and the resulting weights have
been calibrated using about 400 calibration constraints, yielding a calibrated
“design-based” estimator, which accounts for NMAR nonresponse, similar in
nature to the estimator Y 1 in equation (8.2). The value of the estimate is
IA/ICBSW =19,542, quite close to our ‘“design-based” REL estimate,
Y, = 19,886. We mention in this respect that the design-based estimator
based on only the base sampling weights (no calibration, 1gnor1ng the nonres-
ponse) equals Y gw = 21,480. Thus, all the three estimators Y 1 Y » and
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171(33519, which account for the NMAR nonresponce, reduce the weighted esti-
mator, which ignores the nonresponse, quite significantly.

9. CONCLUDING REMARKS

We develop and illustrate a general approach for analysing complex survey
data, subjected to informative sampling and NMAR nonresponse, with basi-
cally minimal assumptions. The only parametric model assumed is the model
for the response probabilities but as illustrated, and contrary to common mis-
conception, this model can be tested with good power.

The proposed approach is more robust and more stable than fully parametric
alternatives. The results of the simulation study and the real application dem-
onstrate good properties of the method, but as with any new approach, we rec-
ommend more research with simulated and real data sets, considering different
sample sizes and response models, before practical implementation.

We mention in this respect two open questions, related to our article, which
need to be explored further. The first question refers to the asymptotic proper-
ties of our proposed estimators, given that we estimate the conditional sample
selection probabilities outside the likelihood by use of kernel regression. See
Remark 5. The second question regards the use of the bootstrap distribution of
the HL test (or any other test) in the case of a small or moderate number of
responding units, as an alternative to the asymptotic Chi-square distribution,
which we used in this article. See Remark 11.

In this article, we review several other approaches proposed in the literature
for analyzing complex survey data. It will be of great interest to compare the
alternative approaches empirically, using simulated and possibly also real sur-
vey data. This is a very challenging project, which we hope to undertake in the
future.

DATA AVAILABILITY

The data used in section 8 are available from the authors.
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Appendix: Proofs of Lemmas 1 and 2

Proof of Lemma 1:

(a) Assume first that /2 <p(y,x) <1—¢/2 for all (y,x). Then logit(p(y,x))
is bounded. By the multivariate generalization of Weierstrass (Picard 1891;
Weierstrass  1895), there exists a polynomial @ such that
|0y, x) —logit(p(y, ))| <e for all (y,x). It follows from the Mean Value
Theorem that |log1t "Q(y,x))) = p(y,x))| <e/4 (since Llogit ™' (s) < 1/4).
(b) If €/2<p(y,x)<1-¢/2 does not hold everywhere, define
pr(y,x) =¢€/24(1-€)p(y,x).  Then  £/2<p,(y,x)<1-¢/2  and
lp(y,x) = p,(y,x)| <e/2 for all y,x. Now, by Part (a) there exists a polynomial
Q such that [logit™"' (Q(y,x)) —p;(v,x)|<e/4 for all y,x. Applying the
Triangle Inequality, we get |logit ™' (Q(y,x)) - p(v,x)| <e.

Proof of Lemma 2:

(a) If ¢V is in the feasible region for (3.7%), C’D (=D(y)g") = 0. For any 7,
let g% =D(ynND=V(y)g'V, implying (=D(yng® =0. Define
g = (1'¢®) "¢ Then, C'D-V(y1)g? = 0 and g® € Q,_,. This proves
the first part of the Lemma.

(b) For a fixed y, the feasible region in (3.7*) [and in (3.7)] is a closed subset
of Q,_1. Thus, if it is not empty, the maximum exists and is finite.
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