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Key points:

1) Ripple celerity exhibits a non-linear relationship to shear velocity under strong wind

speeds.

2) Ripple celerity and height respond more quickly to changes in wind speed than

ripple wavelength and reorientation.

3) Aerodynamic roughness is influenced by saltation and ripple height, particularly

under stronger winds transitioning to a collisional regime.

Abstract

Ripples are the most fundamental and ubiquitous of aeolian bedforms formed on sandy
surfaces, but their small size and fast response times make them inherently difficult to
measure. However, these attributes also make ripples excellent flow indicators, and they
have been used extensively in planetary locations for this purpose. Here, we use terrestrial
laser scanning to measure ripple morphometry and celerity coincidently, as well as
saltation height above rippled surfaces. We find that although ripple height and
wavelength respond linearly to increased shear velocity, under strong winds ripple celerity
exhibits a non-linear increase. This relationship at high wind speeds is also reflected in the
response of aerodynamic roughness and saltation dynamics, with a greater maximum in
saltation height present over ripple lee slopes. Importantly, when using ripple patterns as
indicators of flow conditions, celerity or height should be used in preference to wavelength
as their dynamics respond faster to changing wind speed. In planetary and stratigraphic

settings where measuring celerity is not possible, wavelength should be considered as
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indicative of consistent wind conditions, rather than the full range of sand transporting

windspeeds.
Plain Language Summary

When wind blows over a sandy surface, it typically shapes the sediment into small wave-
like patterns known as ripples, which are typically a few millimetres high and tens of
centimetres long. These ripples exist on sandy surfaces in coastal and desert areas on
Earth, as well as other planetary bodies. The height and spacing of ripples changes with
the velocity of the wind, with both the size and the speed at which the ripples move
typically increasing at greater wind speeds. If we can relate the size and speed of ripple
movement to wind conditions, then we can potentially infer the winds that formed the
ripples through measuring the ripples, rather than measuring the wind. This is particularly
usefulin environments where wind measurements are difficult orimpossible. Here, we
find that the height and movement (or migration rate) of ripples respond more quickly than
the spacing between ripples to increases in wind speed, or the orientation of the ripples
when the wind direction changes. Consideration of the differing responses of ripple
characteristics to changing wind conditions improves our ability to use their shape and

size on Earth and other planets to quantify ripple dynamics and their formative winds.
1. Introduction

Wind-ripples (also referred to as splash or impact ripples) typically form on sandy surfaces
where saltation occurs (Bagnold, 1941; Seppala and Lindé, 1978). Although ripples are the
most common and responsive of aeolian bedforms, there has been little research linking
their morphological and migratory dynamics to flow or transport drivers (Andreotti et al.,
2006; Sherman et al., 2019a). Both modelling and experimental data have elucidated the
critical role of grain-bed impacts in driving these dynamics (Anderson, 1987; 1990;
Andreotti et al., 2006; Duran et al., 2014; Lester et al., 2025; Yizhaq et al., 2004; Yizhaqg et
al., 2024), or the role of mid-air particle collisions (Huo et al., 2024) that increase in
frequency with increased wind shear velocity and shift the regime of sediment transport to

one that is collision-dominated (Pahtz and Duran, 2020; 2023; Ralaiarisoa et al., 2020).
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While it has been established that ripple celerity (or migration rate) increases with faster
flow (Andreotti et al., 2006; Duran et al., 2014; Sharp, 1963; Sherman et al., 2019a; Uphues
etal., 2022), there is disparity between field and wind tunnel measurements as to the exact

rate at which celerity increases (Sherman et al., 2019a).

Studies on the behaviour of aeolian ripple morphology typically only consider planform
ripple shape and ripple wavelength, or measure a single cross-profile transect line, rather
than the full 3D ripple form. This limitation is partly due to previous methods being more
conducive to analysis in 1 or 2 D, for example manual measurements such as the shadow
method (Werner et al., 1986; Zimbelman et al., 2012), time-lapse photography (Lorenz,
2011; Lorenz and Valdez, 2011; Yizhaq et al., 2008) and laser sheet approaches (Sherman
etal., 2019a). While model (Anderson, 1987; Duran et al., 2014) and wind tunnel (Gordon
and McKenna Neuman, 2011) results suggest asymmetry in form-flow-transport
interactions between the ripple stoss and lee slopes, with a greater concentration of
particle collisions and ejections on the ripple stoss, evidence of this behaviour in a field
contextis lacking. Yet, as these universal bedforms are inherently responsive to flow, the
ability to reconstruct wind and transport conditions remotely based solely on imagery is
enticing, and this would have applications in instances where ripples are used as flow
indicators, such as on Mars (Ewing et al., 2017; Hood et al., 2021; Lapbtre et al., 2021;
Lapotre et al., 2016; Liu and Zimbelman, 2015; Roback et al., 2022; Rubanenko et al., 2022;
Silvestro et al., 2010; Sullivan et al., 2020; Vaz et al., 2023).

Work by Owen (1964) has highlighted the role of the saltation cloud in driving changes in
aerodynamic roughness (z,), in contrast to estimates of grain-scale roughness (Nikuradse,
1933). However, ripples are roughness elements and surface roughness also influences
aerodynamic roughness (Duran et al., 2019; Field and Pelletier, 2018; Nield et al., 2013;
Pelletier and Field, 2016; Sherman and Farrell, 2008). While z, has been studied
extensively in both field (Furtak-Cole et al., 2022; Gillies et al., 2007; King et al., 2006;
Lancaster and Baas, 1998; Marticorena and Bergametti, 1995; Raupach, 1992; Raupach et
al., 1993; Shao et al., 2015; Wolfe and Nickling, 1996) and wind tunnel experiments
(Alvarez et al., 2025; Brown et al., 2008; Cheng et al., 2007; Gillies et al., 2017; King et al.,
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2008), it is typically parameterised for discrete roughness elements, such as vegetation,

rather than continuous and complex rough surfaces such as aeolian ripples.

Terrestrial Laser Scanning (TLS) has revolutionised how we can characterise surface
roughness, and several studies have examined the influence of high-resolution surface
characterisations both with (Field and Pelletier, 2018) and without saltation (Nield et al.,
2013; Pelletier and Field, 2016). These studies found that without saltation, aerodynamic
roughness is most strongly influenced by surface roughness element height, whereas with
saltation, the characteristics of the saltation cloud itself are more important in determining
Zo. Infield environments, it is difficult to determine whether the physical height of a ripple,
or the thickness of the saltation layer, has a greater impact on the aerodynamic roughness.
Experimental data concerning the multiple scales of aerodynamic roughness on Earth is
thus needed urgently (Cooke et al., 2025; Jia et al., 2023) as accurate predictions of
aerodynamic roughness are crucial for modelling shear velocity and sediment flux (Farrell

and Sherman, 2006).

Here, we employ TLS to quantify, for the first time, both ripple morphology and celerity, as
well as the concurrent saltation dynamics, above ripples under varying wind conditions.
We elucidate the role of saltation layer depth in ripple adjustment and identify important
form-flow-transport interactions close to, and at the same vertical scale as, an erodible

sandy surface.
2. Study site and methods

Four experiments were undertaken on a flat surface within the dry, sand-covered bed of
Medano Creek, Great Sand Dunes (GSD) National Park and Preserve, Colorado, USAin
2022 and 2023 (Table 1 and Figure 1) (Nield et al., 2025a; Nield et al., 2023a). Rippled
surfaces, and above surface saltation, were measured using Leica TLS Scanstations (280
scans) over an approximately 1 m? area immediately upwind of a Campbell Scientific
CSAT3 3D sonic anemometer that measured wind speed and direction at 0.24 m above the
surface. The uniform ripple-scale local surface roughness and an unperturbed upwind

fetch of 100s m, resulted in the anemometer measurements being from within the
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138  subregion of the boundary layer where shear stress is constant. Under the conditions of a
139  fully developed boundary layer, small-scale changes in roughness imposed by the active
140  saltation cloud or ripple height are assumed to not meaningfully alter the location of the
141 anemometer in relation to the constant depth shear layer. Saltation flux measurements
142  were recorded immediately downwind of each scanned square scanned area using: i) a
143  Sensit-piezoelectric counter (Van Pelt et al., 2009) that was positioned so that the sensor
144  base was flush with the surface and the sensor top extended to a height of 0.014 m above
145 the surface, and ii) Wenglor YHO3PCTS8 optical gate sensors (Hugenholtz and Barchyn,

146 2011) at heights of 0.02 m and 0.05 m (Figure 1a). Measurement duration was 3 minutes or
147 1.5 minutes for weaker and stronger winds respectively. Saltation heights were calculated
148 as mean maximum heights detected by the TLS following the methods of Nield and Wiggs
149  (2011), and differ from heights derived from exponential fits of flux curves (e.g. Ho et al.,
150 2011; Martin and Kok, 2017). Further details on data processing methods are given in the

151 Supplementary Information and are similar to those presented in Delorme et al. (2023).
152

153  Table 1: Details of the TLS measurements for each experimental set-up, Great Sand Dunes

154  National Park and Preserve, USA

Set- Date Leica Number TLS head | Distance Mean u« | Standard Initial
up Instruments | of scans height to ripple (m/s) deviation wind
atch of us direction
(m) P
from TLS
(m/s) ©)
head
(m)
1 5% April P20 62 1.86 7.7 0.38 0.078 253
2022 P50 59 1.87 79
2 30t P50 48 1.85 8.2 0.54 0.063 53
March
2023
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3 3 April P50 49 1.81 7.9 0.53 0.054 220
2023

4 4% April P50 62 2.03 7.5 0.41 0.075 245
2023

Each approximately 1 x 1 mrippled surface was divided into 0.002 m transects, parallel to
the wind direction. Ripple heights were calculated for each transect using the zero-
upcrossing method (Davis et al., 2004; Goda, 2000; Martin and Jerolmack, 2013). Ripple
wavelengths and celerities were calculated for each transect and transect pair
respectively using the Matlab cross covariance function. Checks were performed to ensure
that the distance that the ripples migrated between scans was less than one bedform
wavelength. Bulk relationships of ripple celerity, height and wavelength were calculated
using data that had a variation in wind direction of less than 15° from the initial direction of

ripple migration.

Previous studies have estimated sediment transport via ripple dynamics through ripple
celerity, ¢, and either a ripple wavelength, |, -derived transport flux, q, « ¢/, (Duran et al.,
2014) or aripple height, h, -derived transport flux, g, o ¢c/h,, (Jerolmack et al., 2006). We
compare our field measurements of sediment flux to relative ripple-derived flux to examine

which ripple metric is a better indicator of flux.

We identified ripple crests using the Matlab edge detection algorithm over the gradient of
the surface using the Canny algorithm, followed by deblurring and selection of lines that
were above a mean height over the surrounding 0.5 x 0.5 m area, similar to methods used
to identify dune crests by Daynac et al., (2024) and Hugenholtz and Barchyn (2010). Crests
were then classified as mature if their length was >90% of the measured surface width (i.e.
0.9 m). Lagsinripple responses to changes in wind conditions were calculated using

cross-covariance.
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178  Additional measurements (104 scans) were collected on flat crestal areas of barchan and
179 dome dunes in the Huab Valley, Skeleton Coast, Namibia using the same TLS methodology
180 forripple morphometry, and either 3D sonic or cup anemometers for mean wind speed

181 measurements only and z, from the literature to estimate u-, (Table 2; Supplementary

182  Methods) (Nield et al., 2023b). Celerity and height data from Oceano Dunes (Sherman et
183 al., 2019b), reported in Sherman et al. (2019a), were also used as a comparator dataset as
184  these were collected using a methodology similar to our own, including the use of a 3D

185  sonic anemometer to calculate shear velocity (u-) and a single laser to measure

186  topography. While Sherman et al. (2019b) also report wavelength data, this did not use the
187 same lasertechnique employed herein, and thus this part of their dataset is not directly
188 comparable to the present paper. Both the Huab and Oceano data supplement our main
189  GSD dataset as they were collected at lower shear velocities. Where multiple field site

190 data are used, we have normalised the data to account for grain sizes.
191

192  Table 2: Details of the TLS measurements for additional measurements in the Huab Valley, Namibia

Dune Date Leica Number | TLS Distance | Mean | Standard | Anemometer | Grain
Type Instruments | of scans | head toripple | us deviation | type size
height atch of ux m
g p (m/s) (um)
from TLS
(m) (m/s)
head
(m)
Barchan 6th P20 25 1.96 13 0.29 0.013 3D sonic (0.5 341
September m above
2014 surface)
Dome 22nd P20 61 1.78 5 0.32 0.021 Cup (0.24 m 402
September above
2016 surface)
Dome gth P20 18 1.71 7 0.26 0.011 Cup (0.24 m 402
September above
2018 surface)

193
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Field quantification of aerodynamic roughness, z,, was undertaken using the Law-of-the-
Wall from measurements of Reynolds stress derived u-, and the mean velocity measured
at a height of 0.24 m (van Boxel et al., 2004). These measurements were compared to
standard empirical relationships between z, and u- using the Bagnold roughness law (e.g.
Valance et al., 2015; Duran et al, 2011; Creyssels et al., 2009), Equation 1 (where z is the
focus height, K is the von Karman constant and uris the wind velocity at z¢), and a Charnock
type model (e.g. Sherman and Farrell, 2008), Equation 2, where C is the Charnock constant

and gis gravitational acceleration.

Z, = Zgexp (_Kuf) (1)

Uy

The relationship between z, and the surface elevation profile was also characterised in the
absence of saltation using the empirical model of Nield et al. (2013). In this case, Jiaet al.
(2023) found that ripple scale roughness in the absence of saltation should be within the
transition between a smooth (Nikuradse, 1933) and rough (Flack and Schultz, 2010)

roughness regime, while the presence of saltation moves the system to a rough regime.
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Figure 1: a) Field site set-up at Great Sand Dunes National Park and Preserve on 3 April
2023. Wind direction from left to right. b) Example of rippled surface measured on 30™"
March 2023, with black dashed lines being the identified crest orientations and the

magenta dotted line showing the location of the ripple cross sections (c).

3. Results and Discussion
3.1. Shear velocity drives ripple height, wavelength and celerity

In general, we find that ripple celerity, wavelength and height all increase with increasing
shear velocity (Figure 2). The mean ripple index (l./h;) within our time averaged datasets
remains constant (mean = 41, standard deviation = 2.4). Similar to previous studies that
measured ripple dynamics at low values of shear velocity (<2.5 u«) (Duran et al., 2014;
Sherman et al., 2019a), we find a linear relationship between u- and both ripple height and
wavelength across a wider range of u- (1<u«<3.5, Figure 2b-c). However, using this greater
range of u-, which was not accounted for in the previous studies of Duran et al. (2014) and
Sherman et al., (2019a), our data also identify a non-linear relationship between u- and
ripple celerity (Figure 2a). The reasons for this are not clear. However, the flattening of
ripples under strong winds has been noted by other researchers (Bagnold, 1941; Sharp,

1963) and it is possible that under stronger winds, the increased height of the ripple
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relative to the mean surface height enables an increased shear velocity to be experienced
onthe ripple crest, acting to increase local erosion and ripple celerity. Alternatively, under
strong winds, the system might be transitional from a saltation- to a collision-
characterised transport regime, where saltating grains collide dominantly with other grains
above, rather than on, the surface, thereby travelling higher and faster and increasing the
sediment flux (Pahtz and Duran, 2020; Ralaiarisoa et al., 2020). Itis unclear if the
threshold to a collisional regime measured in the wind tunnel is similar to a field
environment, and our shear velocity values are lower than those reported by Ralaiarisoa et
al. (2020). However, the possible transition towards the collision regime is supported by
our celerity fit (Figure 2a) that switches from linear to cubic for higher u- Thisisin
agreement with the quartic sediment flux relationship reported in Pahtz and Duran (2020)
where sediment flux is equivalent to the product of celerity and ripple height or wavelength
(Duran etal., 2014; Jerolmack et al., 2006), with our height and wavelength relationships
remaining linear (Figure 2b-c). The dynamics of mid-air collisions in saltation would act to
accelerate ripple celerity due to a greater relative flux acting on the ripple surface. More
work is required to investigate whether these, or other factors, might be responsible for the

cubic response of ripple celerity with stronger winds.

0.25 . 4000 100
¢ GsD “a @ b c
¢ Sherman et al. (2019) ,’ =, e
0.2 Huab 1 i o 80
3 | — —
© — —GSD and Huab ,’ E 3000 -7 5 _ -
=] = - e -
0.5 pil 2 i’ll’. = 60 T R )
o_F =
‘é- Yl é 2000 F + - 1 N-E:"' - ? B
> o1 1 £ et 2 40 x!’;+
b= )1 5 e~ = L~ I
3 ’ S 1000 5 $-
S 005 :IT' ] © 20(® ¢
-9 ¢ = L1
,--’f { y=4.6e-03x3+3.'fe-03x = y=622x+528 y=13.7x+18.8
0™ ‘ 0 ‘ ‘ 0 ‘
1 2 3 4 1 2 3 4 1 2 3 4

uJu,bt uJu*t u*/u*t

Figure 2: Normalised relationships between ripple a) celerity, b) wavelength and c) height
and shear velocity, with comparisons to other datasets, where g is gravity, pris fluid density

and psis sediment density. Error bars indicate standard deviation within each normalised
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shear velocity bin. The R? values for dashed line fits are 0.95, 0.96 and 0.82 for ripple

celerity, wavelength and height respectively.

3.2. Ripple dynamics, flux indicators and lagged response to changes in wind speed and

direction

When comparing the response of ripple celerity, height and wavelength to changes in
shear velocity, we find that celerity is the first geometric attribute to respond and exhibited
a mean lag of 2.3 £ 1.1 minutes (Table 3). These time scales of several minutes make
physical sense as they are typically ca. 10-20 times larger than the initial growth times
estimated by linear stability analysis in the numerical simulations of Duran et al (2014).
Ripple height is the second fastest attribute to respond with a mean lag of 5.6 £ 1.7
minutes, while ripple wavelength was the slowest to respond to changes in wind speed
(8.3 £ 1.4 minutes). In all datasets (both from GSD and the Huab), wavelength responded
more slowly than either one or both celerity and height, irrespective of the magnitude of
shear velocity or the variation in shear velocity driving the response (Table 3). This
suggests that while ripple celerity is the most responsive indicator of shear velocity, ripple
height is a better indicator of shear velocity than wavelength if wind conditions are
fluctuating. Caution is thus advised when using wavelength as an indicator of shear
velocity unless conditions have been consistent for 28 minutes, depending on the wind
strength (Table 3). Furthermore, ripple morphometry might not represent the most recent
wind conditions if the wind speed was reducing and there was insufficient time for the

ripples to adjust.

Previous research has suggested that some function of ripple celerity, and either height
(Jerolmack et al., 2006) or wavelength (Duran et al., 2014), could be used as a proxy to
measure sediment flux. We find that either modelled flux method has a good linear
relationship to measured flux (Figure 3; R? values of 0.98 and 0.93 for height and
wavelength derived relationships respectively). While these relationships both use ripple

celerity and benefit from its faster response rate, the stronger R? value for the height
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relationship also infers that ripple height is a better indicator of sediment flux than

wavelength.

The orientations of ripple crests were slower to respond to changes in wind direction than
either height or celerity. The average response time for reorientation of a mature ripple
crest to a change in wind direction was 6 minutes, depending on the magnitude of both the
change in wind direction and the wind speed (Supplementary Figure S2). Crestlines
typically began to reorientate when the wind direction changed by more than 20°, in

agreement with the observations of Sharp (1963).

These observed time lags have resonance with concepts of bedform turnover time seenin
dune-scale patterns, where defect interactions are observed to be a key driver of pattern
coarsening (e.g. Werner and Kocurek, 1999, Ewing et al., 2006; Day and Kocurek, 2018;
Marvin et al., 2023; Marvin et al., 2025). From this perspective, although ripple celerity is
driven predominantly by wind speed, the changes in wavelength and orientation generated
by adjustments in erosion and deposition, and defect interactions, mean that
wavelengths, orientation and potentially height should adjust at a slower rate than celerity.
While we recognise that in remote planetary locations and in the sedimentary record it is
not possible to measure celerity, exploration of aeolian processes in planetary
environments would benefit from high resolution temporal measurements in future

missions to account for lags in ripple wavelength adjustments.
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Figure 3: Comparison of wavelength-modelled and ripple height-modelled sediment flux

to total field-measured flux, where p is porosity. Error bars indicate standard deviation

within each measured flux bin.

Table 3 Ripple adjustment times for each dataset, identified by strongest positive cross-

covariance peak with uncertainty specified with + based on cross-covariance peak half

width.
Site U~ Adjustment time between u- and ripple attributes
(minutes)
crx hy crx e Cr h, Ar
Huab 0.290 = 0+1.2 0+1.3 0+1.3 5+25 -
barchan 0.013
2014
Huab 0.298 7+x1.7 7+1.6 7+1.8 2+0.9 6+0.3
dome 0.010
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2016 part
A
Huab 0.333 = 0+1.2 0+1.0 0+1.3 9+1.2 22 +0.3
dome 0.016
2016 part
B
Huab 0.264 = 221 1+£2.8 1£2.1 8+5.2 1055
dome 0.011
2018
GSD 30t 0.541 = - - - 4+0.3 4x0.7
March 0.06
2023
GSD 30t 0.536 = 1£0.7 1+0.8 0+0.6 7+0.9 4x£1.0
March 0.068
2023 part
B
GSD 3¢ 0.533 = 5+0.3 5+0.3 6+1.3 4x0.7 4x0.5
April 2023 | 0.067
Mean Values | 2511 | 2.3x1.2 |2.3+x1.3 |56+1.7 |83%x14

3.3. Saltation height

We find that aerodynamic roughness increases over a sandy, rippled surface with an

increase in shear velocity (Figure 4a), in agreement with previous research (Field and

Pelletier, 2018; Owen, 1964; Raupach, 1991; Sherman and Farrell, 2008). While both the

Bagnold roughness equation (Eg. 1) and Charnock equation (Eqg. 2) fit our data well (R?

values of 0.9 and 0.89 respectively). We find that the best fit for the Charnock equation

estimates a Charnock constant of 0.0155, which is closer to the wind tunnel value of 9.9 x
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102 of Sherman et al. (2019a) rather than the Sherman et al. (2019a) field value of 0.085.
This disparity may explain some of the mismatch between wind tunnel and field ripple
relationships identified by Sherman et al. (2019a). Whilst itis recognised that there is a
difference in how Law-of-the-Wall and Reynolds stress methods resolve u- (Lee and Baas,
2015), future studies of ripple dynamics should aim to undertake independent
measurements of aerodynamic roughness and shear velocity, rather than using a
modelled aerodynamic roughness value. Using our relationship between z, and shear
velocity, we can identify the value of aerodynamic roughness at which the transition to the
collision regime begins (u-/u~ = 2.5) to be approximately 0.365 mm, indicated by the green

line in Figure 4.

Our data show that there is a smallincrease in saltation height with increased shear
velocity (Figure 4c; R?=0.94). Previous research has found that saltation height is invariant
with changing shear velocity (as determined by profile measurements of sediment flux and
low to moderate winds, Martin and Kok, 2017). However, high resolution TLS
measurements of the full saltation height profile have shown smallincreases in maximum
saltation height with increased shear velocity (Delorme et al., 2023), particularly during
strong winds (Cohn et al., 2022) where saltation height is expected to increase due to

collision theory (Ralaiarisoa et al. 2020).

We find aerodynamic roughness increases with greater saltation height (Figure 4d), while
changes in ripple height have a constant relationship with aerodynamic roughness. This
confirms that saltation roughness drives the increase in aerodynamic roughness, as would
be expected in a rough regime (Field and Pelletier, 2018). However, around a ripple height
of ca. 0.0055 m, which corresponds to a z, value close to the modelled value of 0.365 mm
when u+/u~ = 2.5 (Figure 4b green line), we see a change in behaviour, with larger values of
aerodynamic roughness. Above this value of ripple height, z, appears to match the value
derived empirically for a surface of similar physical roughness in the absence of saltation
(Nield etal., 2013). However, the standard deviation of saltation height over these larger
ripples is also much greater (values greater than the green line, Figure 4d), demonstrating

that these ripples may be submerged temporarily under transient sand streamers that
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would variably increase the saltation height and collision potential. While more detailed
studies are needed, these findings could also point to the movement of the system

towards the collisional regime.

In stronger winds, it is also likely that saltation hop lengths will increase (Kok et al., 2012;
Kok and Renno, 2009) and the relationship between increased hop length and ripple
wavelength might not be in equilibrium, due to the longer lag time response of wavelength
as compared to height (Table 3). Our findings indicate that, in addition to a horizontal
length scale, the vertical length scale of ripples and its relationship to saltation cloud
height must be considered. This is needed in order to better parameterise inferred flow and
flux relationships for aeolian ripples, particularly when flow, and therefore transport
conditions, are changing temporally. The present results are the first that offer a way to
disentangle the simultaneous influence of surface roughness (i.e. ripples) and saltation

roughness (saltation height) on values of aerodynamic roughness (zo) (Figure 4a-d).
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Figure 5: Examples of instantaneous saltation height over ripple topography on 30" March
2023, Great Sand Dunes National Park and Preserve. Shaded areas indicate the ripple
crests. Peaks in saltation height occur 0.06 m downwind of crest, or 0.43 L. with ripple

height normalised by a cross covariance of 2.52 and 0.96 for a and b respectively.

We identify field evidence for a difference in saltation dynamics over the stoss and lee
slopes of ripples (Figure 5; Figure S3), in agreement with model (Anderson, 1987; Duran et
al., 2014; Lester et al., 2025) and wind tunnel (Gordon and McKenna Neuman, 2011;
Kelley, 2023; Kelley et al., 2025) results. On the stoss slope, we find generally smaller
saltation heights relative to saltation heights on lee slopes, particularly in stronger winds
(Figure S3), indicative of a greater splash density and more grain collision and ejection
events over the stoss slopes (Anderson, 1987; Lester et al., 2025; Prigozhin, 1999). Onthe
lee side, we find mean saltation heights are larger, likely because more grains bypass the
lee slope (Allen, 1968; Duran et al., 2014). In the majority of cases, the initial increase in
mean saltation height occurs at, orimmediately downwind, of the ripple crest, with the

peak in saltation height occurring approximately 0.43 |, downwind of the ripple crest (Figure
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5). This peak in saltation height over ripple troughs is more robust under stronger winds
(cross covariance of 2.52 h, and 0.96 h, for u- values of 0.58 and 0.51 m/s respectively;
Figure 5), as more grains are transported over the ripple topography and potentially lifted
into saltation (Pahtz and Tholen, 2021). We also find that the standard deviation of
saltation heights over the lee slope is greater (mean value of 5.1 x 10*mvs. 4.5x 10“ m;
Figure 4c-d), indicative of a greater variation in fall trajectories over these more sheltered
slopes. This increase in the variability of saltation height over ripples during stronger winds
(>2.5 u+/u~) may contribute to the greater variability of aerodynamic roughness over larger
ripples discussed above (Figure 4b). Our results should help to parameterise models such
as those of Lester et al. (2025) and Duran et al. (2014) where the modulation of saltation

over ripples is important to quantify.

Future research should examine the dynamics of ripples over a greater range of grain sizes
and wind regimes to extend our understanding of these self-organising patterns (Anderson,
1990; Baas, 2002; Coco and Murray, 2007; Landry and Werner, 1994). Further, whilst our
findings elucidate the key role of surface features and saltation trajectories in aeolian
processes, more studies will help quantify how form-flow-saltation dynamics change

under strong winds.
4. Conclusions

We find that ripple dynamics are good indicators of shear velocity and sediment flux, with
ripple celerity possessing a stronger relationship with flow conditions than either ripple
height or wavelength. Although ripple wavelength and height can also be used to infer flow
conditions, ripple wavelength is slower to respond to changes in wind speed, particularly
when wind speeds are decreasing, and so caution should be used when utilizing ripple
wavelength to infer instantaneous flow conditions. This is significant because wavelength
dimensions are often the only available data from contemporary planetary landscapes, or
derived from supercritically climbing aeolian ripples (sensu Hunter, 1977) within the rock
record. Inthese instances, we suggest wavelengths might not represent the full range of
fluctuating wind conditions, but rather approximate previous mean sediment transport

conditions that were sustained for a long enough period of time that the ripples had fully



414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

manuscript submitted to JGR-Earth Surface

adjusted. While ripple height and saltation height both increase with shear velocity, the
impact of shear velocity on aerodynamic roughness —imparted by grains, sediment
transport and form effects —is more nuanced. Critically, we also find a non-linear
relationship between ripple celerity and shear velocity at high wind speeds. While a
transition to a collision regime may in part help to explain both this non-linear celerity
relationship and the switch from saltation height to ripple height as the key driver of
aerodynamic roughness, more experiments are needed to test these hypotheses that
capture coincident sediment transport and surface morphology for different grain sizes

and wind conditions.
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Text S1: Supporting Information Data Processing Methods

In 2022, the surface was measured simultaneously using two adjacent Leica TLS (P20 and P50) while in
2023 a single P50 was used. Each TLS measured an approximately 1 x 1 m square area, approximately
9 m from the TLS head that was positioned at a height of around 2 m and measured parallel to the
wind, so as to reduce any distortion due to ripple migration during each scan and minimise
obscuration of the surface by saltation streamers. The horizontal scan resolution was either 0.8 or 1.6
mm at 10 m that took 3 or 1.5 minutes respectively to complete the scanned square. These settings
were varied depending on wind speed to ensure that the ripples did not migrate further than one
wavelength between scans. The TLS vertical resolution has been calculated at 5.5 x 10* m (Baddock
etal., 2018). Wind speed and direction were measured downwind of each rippled square at 10 Hz
using a Campbell Scientific CSAT3 3D sonic anemometer at 0.24 m above the surface. The Reynolds
decomposition approach was used to convert the wind speed vectors into a shear velocity and to
determine wind angle variability for each scan time period (Baddock et al., 2011; Mayaud et al., 2017;
Weaver and Wiggs, 2011). Saltation flux measurements were recorded immediately downwind of
each scanned square using i) a Sensit that was positioned so that the sensor base was flush with the
surface and the sensor top extended to a height of 0.014 m above the surface, and ii) Wenglor optical
gate sensors at heights of 0.02 m and 0.05 m. Sensit particle impact count data, n, were converted to a
saltation point flux, gs, following the methods of Delorme et al. (2023) for each time period, using a
grain volume (V), assuming spherical grains and a measured saltating grain size, dso, of 288 um, a

sediment density, ps, of 2650 kg m3, and sensor width (W) of 0.024 m,

45 ="37 3)

Wenglor particle count data (n) was converted to a saltation point flux using Equation 3, where W was
equal to 0.03 m. Shear velocity threshold (u«) was calculated by fitting sediment flux (q) to Equation 4

(Ungar and Haff, 1987), where cis a fitting parameter, u- is shear velocity,

TLS data were post-processed following similar methods to Martin and Jerolmack (2013) and Nield
(2011) by first applying a 0.1 m radial filter with an angle of 35° to separate out points above the
surface (saltons) from surface returns (Nield and Wiggs, 2011). The surface points were gridded at a
cell width of 0.002 m and further cleaned using a mean moving window filter of 0.05 x 0.05 m. This

produced a continuous rippled surface (Supplementary Figure 1b). Although the measurements were



undertaken on a flat, sandy surface, to remove any larger scale surface gradients associated with the
nearby stream channel (c. 0.01 in some instances), each dataset was detrended using the overall mean

surface slope for the total experiment duration.

Points that were classified within the above-surface subset by the radial filter were gridded at the
same 0.002 m cell width as the surface points, and the distance between the maximum non-surface
point and the surface grid was used to determine the maximum saltation height at each cell (Nield
and Wiggs, 2011). This high-resolution dataset was used to determine the maximum saltation height,
H,, over the stoss and lee sides of individual ripples. For high resolution measurements of saltation
heights over individual ripples, three consecutive transects were translated according to the measured
migration rate and the average ripple morphology and saltation heights calculated with a 0.02 m
resolution. For bulk measurements of slope-saltation relationships, grid points were classified as
either stoss or lee slopes based on the direction of the smoothed ripple topography. The saltation
heights were then grouped by which slope they were measured over and the mean of these 0.002 m
values were binned separately with changing shear velocity. To remove the local topographic effect
of the ripples themselves, more general relationships between saltation height, aerodynamic
roughness, ripple height and shear velocity were calculated over a coarser grid (0.2 x 0.2 m). This grid
size was chosen to be the same length as a typical ripple wavelength and ensured that the ripple

trough was the minimum surface point for the maximum saltation height calculation.

Surface flux was calculated as erosion and deposition rates by differencing DEMs of each scan. Total
flux was calculated by integrating the curve of the point-based flux measurements from the Sensit
and Wenglor samplers, along with the surface flux from the ripple migration measurements.
Quadratic relationships for the point-based and total flux were fitted to Equation 4 following methods
of Delorme et al. (2023) to determine u+ with a mean value from the different transport datasets of

0.19 m/s (Supplementary Figure S1).

TLS measurements in the Huab Valley followed the methods used for the main Great Sand Dunes
dataset with a single Leica P20 TLS. There were no sediment flux measurements and wind velocity
was measured by a 3D sonic at 0.5 m height or by a single cup anemometer at a height of 0.24 m
logging every 10 seconds. We converted mean velocity measured with the cup anemometer to shear
velocity assuming an aerodynamic roughness value of 1.9 x 10° m (Supplementary Table S1) and the
Law-of-the-Wall equation. The ds, grain size of the sand surface on the dome and barchan dunes were

402 pum and 341 um respectively.
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Figure S1: Shear velocity threshold for sand entrainment calculated from different flux measurements

(mean ux value of 0.19 m/s for total flux and erosion creep flux). The differences in threshold highlight

the vertical complexity of saltation and bed deformation with an increase in wind speed being

required to initiate the movement of the ripple surface vs. more sporadic saltation around the

threshold windspeed. These threshold differences are also indicative of saltation hysteresis (Martin

and Kok, 2018) along with the difficulties in defining what is meant by a threshold with respect to

transport or morphological change.
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Figure S2: Crestline orientation and wind direction for ripples on (a) 5™ April 2022 and (c) 4" April
2023. Cross covariance and lag times between these orientations in (b) 2022 and (d) 2023. The 2022

data is split into two section pre and post 100 minutes due to a gap in wind measurements.
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Figure S3: Mean saltation height for all GSD experiments over stoss and lee sides of ripples. Error bars

indicate standard deviation within each shear velocity bin.



Table S1: Aerodynamic roughness calculations for similar surfaces in the same location where
sediment transport was occurring (Skeleton Coast) Average of 1.9 x 10° m is similar to measurements

close by on a sand sheet by Weaver (2008).

Height of
CSAT sonic
anemometer

Location (m) Z, (M) Transport
Centre area of 0.12 m high
protodune 0.1 2.7E-05 constant
centre area of barchan 0.5 3.1E-05 constant
side of barchan 0.5 1.9E-05 constant
side of barchan 0.5 1.2E-05 constant
brink of barchan 0.5 7.0E-06 constant
Sand sheet (Weaver, 2008) 0.3 1.9E-05 constant




Movie S1: Ripple DEMs through time on the 30" March 2023. Wind direction left to right. Surface
topography (left) and identified crests (right). Crests used for orientation analysis in white. Central

cross section changes through time (bottom left). File name: Movie_S1_Nieldetal_2025
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