
Pattaroni et al., Sci. Adv. 11, eadw1410 (2025)     17 October 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

1 of 14

M I C R O B I O L O G Y

Bacterial communities co-develop with respiratory 
immunity early in life, linking dysbiosis to systemic 
monocyte signature and wheezing
Céline Pattaroni1*, Matthew Macowan1, Roxanne Chatzis1, Giulia Iacono1, Bailey Cardwell1,  
Mindy Gore2, Adnan Custovic2, Michael D. Shields3, Ultan F. Power3, Jonathan Grigg4,  
Graham Roberts5,6,7, Peter Ghazal8, Jürgen Schwarze9, Steve Turner10,11, Andrew Bush2,12,13,  
Sejal Saglani12,13, Clare M. Lloyd13, Benjamin J. Marsland1

Early microbial colonization influences respiratory disease risk, yet mechanisms remain unclear. In a prospective 
birth cohort of 256 infants, we profiled bacterial, fungal, and viral communities in the upper airway and assessed 
local immune gene expression longitudinally and systemic gene expression at 1 year. Bacterial populations, not 
fungal or viral, correlated most strongly with immune development during the first 3 months, coinciding with 
composition shifts and immune-related gene expression changes, including interferon and adaptive immunity 
pathways. In contrast, the mycobiome and resident viruses showed no significant coevolution with host immuni-
ty. By 1 year, infants who previously wheezed displayed an upper airway microbiota enriched in Haemophilus 
influenzae and Moraxella, accompanied by a distinct local and systemic immune gene signature featuring elevated 
classical monocyte-related genes. These findings reveal a specific link between early-life bacterial dysbiosis, 
monocyte-related immunity, and wheezing onset, suggesting potential targets for early intervention in respira-
tory disease.

INTRODUCTION
Birth marks the onset of microbial colonization of mucosal surfaces, 
including the respiratory tract, with the local mucosal microenvi-
ronment being the primary driver of microbial diversification (1). 
Host factors, along with environmental factors including delivery 
mode, breastfeeding, daycare, and vaccination lead to variation in 
the respiratory bacterial (2–6) and fungal microbiota (7) across re-
spiratory niches. Multiple studies have reported substantial changes 
in the upper (8, 9) and lower (6) airways’ microbiota within the ini-
tial days to weeks of life, followed by a stabilization thereafter. In 
addition to its gatekeeping function against respiratory pathogens, 
the respiratory microbiota is thought to play an important role in 
priming and shaping the local immune system during early life. This 
includes the establishment of immune tolerance (10) and mucosal 
barrier function through the regulation of immunoglobulin A (IgA)–
mediated responses (6, 11). While the effects of the bacterial mi-
crobiota on respiratory immune maturation have been increasingly 
investigated, the roles of viral and fungal airway colonization under 
steady-state conditions remain largely unknown.

Understanding host-microbe interactions is crucial, as early-life 
perturbations of the respiratory bacterial microbiota have been as-
sociated with the development of respiratory diseases. For example, 
the colonization of the upper airways with Moraxella, Haemophilus, 
or Streptococcus has been associated with subsequent wheezing and 
the development of asthma (4, 12–14). Recurrent preschool wheezers 
frequently exhibit persistent bronchial bacterial infections involving 
the same pathogens, even during nonexacerbation periods (15–17). 
In addition, a strong connection exists between viral infections and 
bacterial dysbiosis involving these microbes, where disturbances in 
the bacterial community have been shown to either precede (13, 18) 
or follow respiratory tract infections (8).

We hypothesized that dynamic host-microbial interactions within 
the upper airways shape local and systemic immune development 
during the critical first year of life, possibly influencing wheeze patho-
genesis. To test this hypothesis, we performed multikingdom micro-
bial and host transcriptomic profiling in two groups of participants 
from the Breathing Together cohort. The first was a longitudinal group 
(Long-Group) of children sampled at four different time points over 
the first year of life to investigate the development of host-microbial 
interactions in the upper airways. The second was a cross-sectional 
group (CS-Group) of children sampled at age one to ascertain host-
microbial interactions in relation to prior wheezing during the first 
year of life. To our knowledge, this is the first observational study ex-
amining the dynamics of three microbial kingdoms, integrating both 
local (nasal) and systemic (blood) immune profiles, and exploring 
these interactions during healthy development and wheeze.

RESULTS
Characteristics of study populations
Two groups of children from the Breathing Together study, which 
aims to identify the key epithelial and immune determinants of 
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asthma in early life (19), were investigated. First, a Long-Group 
comprising 32 children with biological samples collected at four 
time points (1 week, 3 months, 6 months, and 1 year) to investi-
gate host nasal (local) gene expression and microbial profiles 
(bacteria, fungi, and viruses) (Fig. 1A). Second, a CS-Group of 
256 children at 1 year, who provided the same sample types as the 
Long-Group and in addition to blood for transcriptomic analysis 
(Fig. 1B). Of 256 children included in the cross-sectional analy-
sis, 133 had parent-reported wheezing in the first year of life. 
Biological samples were obtained when wheezing symptoms 
were absent, in adherence to the established sampling protocol. 
Nasal microbiota profiling of both groups included bacterial 16S 
[n  =  338 datasets after quality control (QC)] and fungal ITS 
(n  =  212 datasets after QC) amplicon sequencing, paired with 
viral quantitative polymerase chain reaction (qPCR) profiling 
(n = 297 datasets after QC), to characterize the multiple compo-
nents of the microbiota across the three major kingdoms. Host 
immune profiling was performed using RNA sequencing, focus-
ing on local characterization (nasal brush n = 200 datasets after 
QC) for both CS-Group and Long-Group samples, and systemic 
analysis (whole blood n  =  73 datasets after QC) for CS-Group 
samples only.

Maturation of immunological profiles aligns with the 
development of bacterial but not fungal or viral 
communities during the first 12 months of life (Long-Group)
We first aimed to examine the development of the multikingdom mi-
crobiota alongside local host responses within the Long-Group. The 
principal components analysis (PCA) of host nasal transcriptomic 
data (Fig.  2A) and principal coordinate analysis of nasal bacteria 
(Fig. 2B) and fungi (Fig. 2C) revealed that both the overall host nasal 
gene expression and nasal bacterial composition were largely deter-
mined by age [analysis of similarities (ANOSIM) coefficient of deter-
mination (R2) = 3%, P value = 0.009 for host; R2 = 52%, P value < 
0.001 for bacteria]. In contrast, fungal composition did not show 
significant age-related variation [R2 = 43%, P value = not significant 
(N.S.)]. A pronounced shift along the first axis was observed for both 
nasal host gene expression and bacterial profiles, with the most sig-
nificant transition occurring between the first (1 week) and second 
(3 months) time points, a pattern not observed in the fungal data. To 
further address individual microbial changes over time, distances 
between consecutive sample pairs from the same individuals were 
compared. Host nasal gene expression (Fig.  2D) and bacterial 
(Fig. 2E) profiles were most unstable during the first two time inter-
vals (1 week to 3 months Wilcoxon rank test W = 151, P value = 0.04 
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Fig. 1. Long-Group and CS-Group from the Breathing Together birth cohort. (A) Samples from 32 children taken at four different time points in the first year of life 
constitute the Long-Group for which three microbial datasets (nasal bacterial taxonomic profile, nasal fungal taxonomic profile, and nasal viral qPCR profile) and one host 
dataset (nasal gene expression) were generated. (B) These children represent a subset of the CS-Group for which three microbial datasets (nasal bacterial taxonomic 
profile, nasal fungal taxonomic profile, and nasal viral qPCR profile) and two host datasets (nasal gene expression and blood gene expression) were generated from 
samples taken at 1 year of age for 256 children (123 healthy children and 133 children with parent-reported wheeze) alongside detailed metadata. Integration of these 
datasets revealed a shared local and systemic immune signature associated with wheeze.
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Fig. 2. Nasal microbiota and host transcriptome show parallel development in the first year (Long-Group). (A) PCA of nasal transcriptomics across time points and 
density plots. (B) Principal Coordinate Analysis (PCoA) of bacterial and (C) fungal microbiota using UniFrac and density plots. (D) Transcriptome stability across three time 
points using maximum delta. (E) Bacterial and (F) fungal microbiota stability using UniFrac delta. (G) Bacterial and (H) fungal richness over time. (I) Respiratory viral detec-
tion per time point. (J) Virus composition in positive samples. (K) DE of nasal transcriptomics with age using limma, immune genes marked with squares. (L) KEGG pathway 
analysis of DE immune genes; top 20 pathways shown. Bar color indicates the direction of change in average gene expression with age treated as a continuous variable: 
Purple bars reflect pathways up-regulated with increasing age, and pink pathways down-regulated with age. Expression trends for selected genes and the pathway-level 
average, calculated as the mean normalized expression of all genes in each pathway at each time point; (M) JAK-STAT down with age. (N) JAK-STAT up with age. (O) B cell 
receptor signaling (P) TH1/TH2 and (Q) TH17 differentiation. (R) Differential abundance (DA) of nasal bacterial microbiota using LINDA between week 1 and year 1; top 20 
taxa shown. Sample sizes: host: 1 week (n = 20), 3 months (n = 23), 6 months (n = 23), and 1 year (n = 15); bacteria: 1 week (n = 29), 3 months (n = 31), 6 months (n = 29), 
and 1 year (n = 28); fungi: 1 week (n = 22), 3 months (n = 21), 6 months (n = 23), and 1 year (n = 18); viruses: 1 week (n = 23), 3 months (n = 25), 6 months (n = 28), and 
1 yr. (n = 22). Statistical tests: Permutational Multivariate Analysis of Variance [PERMANOVA (A to C)], Wilcoxon [(D) to (F)], linear model [(I) and (J)], limma (K), KEGG (L), and 
LINDA (R); FDR corrected for (K), (L), and (M). *P < 0.05 and **P < 0.001.
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for host and W = 510, P value = 0.03 for bacteria). In contrast, dis-
tances between these time points were not different for fungi (1 week 
to 3 months Wilcoxon rank test W = 106, P value = N.S.) (Fig. 2F), 
suggesting that age is not a major driver of nasal fungal microbial 
variation for a given individual. Nasal bacterial richness significantly 
increased with age (linear model F statistic = 18.94, P value < 0.001) 
(Fig. 2G), whereas no such trend was observed for fungi (linear mod-
el F statistic = 1.72, P value = N.S.) (Fig. 2H). Viruses were detected 
in less than 50% of nasal samples at all time points and were particu-
larly scarce in the first week of life (present in 3 of the 20 samples) 
(Fig. 2I). No age-related changes were linked to the presence of com-
mon respiratory viruses (linear model F statistic = 1.72, P value = 
0.19), suggesting that, similar to fungi, steady-state nasal viral pres-
ence is age independent. In-depth analysis of viral composition high-
lighted that rhinovirus was the predominant virus detected in these 
asymptomatic children, present in 63% (20 of 32) of the virus-positive 
nasal samples (Fig. 2J). Last, we aimed to identify age-associated fea-
tures through differential expression and abundance testing. Among 
all differentially expressed (DE) host nasal genes, 133 immune genes 
were up-regulated, while 121 immune genes were down-regulated, 
suggesting an age-associated immune switch (Fig. 2K). The pathway 
analysis of immune genes revealed several immune pathways that 
increased with age during the first year of life, with the most pro-
nounced rise occurring between the first week and 3 months, fol-
lowed by stabilization after 6 months (Fig. 2L and table S1). Further 
exploration of these gene groups revealed a shift within the Janus ki-
nase (JAK)/signal transducers and activators of transcription (STAT) 
pathway in the first year of life. Genes showing decreased expression 
with age included those encoding key pathway members JAK1, STAT1, 
STAT3, interleukin-15 and its receptor (IL15 and IL15RA), interleu-
kin receptors (IL6ST, IL7R, IL3RA, and IL5RA), and granulocyte-
macrophage colony-stimulating factor (CSF2) (Fig. 2M). Conversely, 
other components of the JAK/STAT pathway showed increased ex-
pression during the first year of life (Fig. 2N). These included JAK2 
and TYK2 along with interferons (IFNG, IFNK, IFNA6, and IFNL3) 
and type I interferon receptor genes such as IFNAR2. Within the 
same pathway, γc cytokine family receptors (IL2RA, IL21R, and IL4R), 
alongside the structurally related interferon receptor gene IL10RA 
and IL12RB1, were also up-regulated. Pathways related to antiviral 
immunity also increased with age, which coincided with the in-
creased interferon signals observed in the JAK/STAT pathway and 
also included downstream interferon regulatory element interferon 
regulatory factor 7 and nuclear factor κB inhibitor beta (NFKBIB) 
(table S1). Pathways central to adaptive immunity, particularly B cells 
and T cell responses, increased with age. This included the up-
regulation of the B cell receptor signaling pathway (Fig. 2O), such as 
both subunits of the CD79 receptor Igα (CD79A) and Igβ (CD79B), 
alongside key downstream Bruton tyrosine kinase (BTK). T cell–
related pathways [T helper 17 (TH17) cell differentiation/TH1 and 
TH2 cell differentiation] also increased, featuring key TH1 (IFNG 
and IL12RB1) (Fig. 2P), TH2 (IL2RA and IL4R), and TH17 (TGFBR2 
and IL21R) genes (Fig. 2Q). Furthermore, a pathway associated with 
natural killer (NK) cells (NK cell–mediated cytotoxicity), bridging 
innate and adaptive immunity, also showed an up-regulation in the 
first year of life, involving NK cell–specific genes such as killer cell 
lectin like receptor C1 (KLRC1) (table S1). Following the analysis 
of host gene expression, we next explored microbial features that 
exhibited differential abundance over the first year of life (Fig. 2R). 
Bacterial abundance changes included a reduction in Staphylococcus 

amplicon sequence variants (ASVs) (ASVs) and an increase in ASVs 
from common upper airway colonizers such as genera Moraxella, 
Prevotella, Streptococcus, Porphyromonas, Neisseria, and Haemophilus. 
In contrast to bacteria, neither fungal abundance nor viral presence 
showed a significant correlation with age. In summary, samples from 
the first year of life showed synchronized innate and adaptive im-
mune cell maturation and development of the bacterial microbiota 
indicating a distinct age-associated pattern in host-bacterial interac-
tions, independent of fungal or viral presence.

Daycare and antibiotics affect bacterial and respiratory 
viruses at year 1 with a minimal impact on local host gene 
expression (CS-Group)
Integrating environmental and host factors is crucial to understand 
their role in shaping early life microbial interactions, as they can al-
ter microbiota composition and potentially affect immune system 
development. To explore these interconnected factors, covariates 
collected from questionnaires at birth and 1 year were investigated 
in relation to both local (nasal) and systemic (blood) host gene ex-
pression, alongside the three sets of local microbial data at year 1 
(CS-Group). Microbial richness and diversity of the three microbial 
kingdoms in correlation with the collected covariates were investi-
gated first (Fig. 3A). Two factors had opposing impacts upon bacte-
rial and viral richness. Daycare attendance emerged as the first 
influential factor, with children in daycare showing lower bacterial 
richness (W = 7830, P value < 0.01) (Fig. 3B), but a higher preva-
lence of viruses (W = 2907, P value < 0.001) (Fig. 3C). The use of 
antibiotics during the first year also followed this trend, with a de-
crease in bacterial richness (W = 7495, P value = 0.045) (Fig. 3D) 
and a rise in virus prevalence (W = 4025, P value = 0.046) (Fig. 3E). 
None of the factors investigated influenced fungal nasal richness. To 
further examine how these factors influence individual host and mi-
crobial traits, a distance-based redundancy analysis (rd-rda) was 
used, selecting variables of significance through model selection, 
combined with differential expression and abundance testing. Host 
data analysis identified sex as a key determinant of gene expression, 
responsible for 7 and 17% of the observed variation in nasal (Fig. 3F) 
and blood (Fig. 3G) samples, respectively. Daycare attendance was 
found to affect bacterial composition, accounting for 5% of the vari-
ance in the model (Fig. 3H). Subsequent differential abundance test-
ing analysis showed increased ASV abundance of pathogenic 
bacteria such as Moraxella and Haemophilus influenzae in children 
attending daycare. Conversely, ASVs representing common healthy 
airway colonizers—such as Prevotella, Veillonella, and Rothia—were 
more abundant in children not attending daycare. The only factor 
that significantly affected fungal ASVs abundance was the season in 
which the nasal sample was taken (Fig. 3J). The majority of observed 
changes were associated with environmental fungi, with outdoor 
airborne molds such as Cladosporium herbarum (20) and members 
of the family Sporobolomyces showing higher abundance during 
summer and autumn, while Trametes versicolor was most abundant 
in winter months (Fig. 3K).

Parent-reported wheeze associates with higher H. influenzae 
abundance and local expression of immunomodulatory 
genes at year 1 (CS-Group)
We next investigated differences in host and microbial features for 
each individual omics dataset in parent-reported wheezers, children 
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who had any wheezing events occurring within the first year, using 
samples collected at year 1 when they were asymptomatic (CS-
Group). The age of onset for wheezing symptoms ranged from 3 to 
12 months, with a median age of wheezing onset of 6 months. In 
assessing clinical covariates, the wheeze group showed significantly 
higher incidences of antibiotic use both during pregnancy (χ2 = 4.28, 
P value = 0.04) and in the first year of life (χ2 = 39.61, P value < 
0.001), maternal history of asthma (χ2 = 8.11, P value = 0.004), pets 
(χ2 = 5.71, P value = 0.02), and more than one cold during the first 
year of life (χ2 = 54.96, P value <0.001) (table S2). The investigation 
of the nasal microbiota revealed a significant reduction in bacterial 
richness in wheezers (W  =  8301, P value < 0.01) (Fig.  4A), with 
fungal richness remaining unchanged (W = 2625, P value = N.S.) 
(Fig.  4B). Differential abundance analysis, both without (Fig.  4C) 
and with (Fig. 4D) daycare correction, showed differences in taxa 
abundance including a notable increase in H. influenzae abundance 
in the wheezer group after adjustment. The presence of Moraxella 
catarrhalis was associated with previous wheezing only when day-
care attendance was not factored in the model, suggesting that day-
care attendance might influence or confound this relationship. 
Given the results observed in the CS-Group at 1 year, we subse-
quently investigated the longitudinal subset (Long-Group). We did 
not observe any significant differences in bacterial or fungal taxa 
between wheezers and controls at birth, 3 months, or 6 months. 
Similarly, no DE genes were detected at these early time points. No-
tably, the majority of wheezing cases in this cohort developed after 
the 6-month time point, limiting our ability to detect early micro-
bial or immune differences. However, wheezers showed an earlier 
appearance of H. influenzae, as demonstrated by survival analysis 
(Chisq = 3.8, P value = 0.05) (Fig. 4E). Similar to fungi, there were 
no differences in the presence (Fig. 4F) or composition (Fig. 4G) of 
viruses between the two groups. Independent differential expres-
sion testing of host nasal genes unveiled 152 genes up-regulated and 
63 genes down-regulated with wheeze with no changes detected in 
blood gene expression (Fig. 4H and table S3). Further examination 
of up-regulated immune genes revealed that receptors for both in-
terleukin-18 (IL-18) and IL-27 cytokines [interleukin 18 receptor 
accessory protein (IL18RAP) and interleukin-27 receptor alpha 
genes (IL27RA), respectively] were up-regulated. Other up-regulated 
immune genes included the proinflammatory cytokine IL-32, the 
Fc fragment of IgG receptor IIIb (FCGR3B), involved in immune 
complex clearance, and CD79a (CD79A), the key component of the 
B cell receptor complex, among others. These changes in immune 
gene expression were moderate, with log fold changes (logFCs) not 
exceeding 1.15.

Increased abundance of H. influenzae and Moraxella is 
associated with a local and systemic monocyte 
signature (CS-Group)
Transitioning from independent host and microbial analyses of 
wheezers and controls, we next used a multiomics integrative ap-
proach using multiomics factor analysis (MOFA) to combine all 
data from the CS-Group in an unsupervised fashion. MOFA infers a 
low-dimensional representation of the data independently of group 
classifications, capturing key patterns of covariance across omics da-
tasets through latent factors that represent the underlying principal 
axes of heterogeneity across the samples. This approach has the 
advantage of revealing interconnected features between host and 
microbial data while bypassing the subjectivity of parent-reported 
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wheezing. The MOFA analysis of host immune nasal, host immune 
blood, bacterial, fungal, and viral data identified three latent factors, 
with factor 1 notably explaining 45% of the variance and integrat-
ing microbial (bacterial) data (7% of variance explained) with both 
nasal (31% of variance explained) and blood (6% of variance ex-
plained) host immune features (Fig.  5A). Factor 1 scores were 
higher in wheezers (W =  5904, P value < 0.001), underscoring a 
significant link between host-microbial features and wheeze despite 
the unsupervised nature of the analysis (Fig.  5B). Stratification 
based on daycare attendance within wheeze and control groups 
showed that factor 1 scores were significantly increased in wheezers 
attending daycare in comparison with other groups (Kruskal-Wallis 
χ2 = 27.54, P value < 0.001) (Fig. 5C). Inspection of factor 1’s top 20 
features in both nasal (Fig. 5D) and blood host immune (Fig. 5E) 
datasets revealed that eght of these genes were expressed both lo-
cally and systemically (local systemic genes). Other factors loadings 
are presented in fig. S1. These included genes encoding for the ac-
tivin receptor type-1C (ACVR1C, also known as ALK7), Oncostatin 
M (OSM), Aquaporin 9 (AQP9), tumor necrosis factor (TNF) su-
perfamily member 13b (TNFSF13B, also known as BAFF), interleu-
kin 36 alpha (IL36A), major histocompatibility complex class I E 
(HLA-E), Toll-like receptor 8 (TLR8), and colony stimulating factor 
2 receptor subunit alpha (CSF2RA). Factor 1 covariation was char-
acterized by increased abundance of H. influenzae and Moraxella 
genus ASVs, while ASVs such as Neisseria, Prevotella melaninogenica, 
and Veillonella were associated with lower factor 1 scores, partially 
mirroring the earlier independent differential analysis results (Fig. 5F). 
To investigate which cell types might underlie the observed local 
systemic gene signature, we mapped these genes onto single-cell 
transcriptomic data from the Human Lung Cell Atlas (HLCA) (see 
Materials and Methods) (Fig. 5G). The average expression of these 
genes was predominantly high in a small subset of myeloid cells, 
with the exception of ACVR1C and HLA-E, which showed lower 
expression levels (Fig. 5H). To further investigate the expression of 
local systemic genes in specific myeloid cell types within the nasal 
cavity under steady-state conditions, myeloid cells were then subset-
ted from the HLCA (Fig. 5I). We found that nasal monocytes pre-
dominantly expressed these local systemic genes, specifically OSM, 
AQP9, TNFSF13B, and HLA-E, while macrophages showed lower 
expression levels (Fig. 5J). Human peripheral blood monocytes are 
defined by their expression of markers including CD14, CD16, 
CD64, CCR2, and CX3CR1 (21). Classical monocytes are identi-
fied by the high expression of CD14 [lipopolysaccharide (LPS) co-
receptor] and CCR2, a key mediator of monocyte migration, with 
relatively lower levels of CX3CR1 (fractalkine receptor), while non-
classical monocytes are marked by higher expression of CD16 (Fc 
gamma RIII) and CX3CR1. We also examined corresponding che-
mokine ligands such as CCL2, CCL7, and CX3CL1, important for 
monocyte recruitment and trafficking (21–23). Local systemic genes 
significantly correlated with classical monocyte markers CD14 and 
CCR2 gene expression, along with the expression of their corre-
sponding ligands genes CCL2 and CCL7 [Spearman false discovery 
rate (FDR) < 0.05] (Fig. 5K). This pattern, along with the absence 
of positive correlations with nonclassical marker genes CD16 and 
CD64–both of which were expressed at low levels and filtered out 
during preprocessing–and a negative correlation with the ligand-
receptor pair genes CX3CR1-CX3CL1, indicates that these monocytes 
are of the classical type. In summary, the unsupervised multiomics 
integration of CS-Group samples revealed a unique local systemic 

Fig. 4. Parent-reported wheeze in the first year of life affects local nasal bacterial 
microbiota composition and host immune gene expression at steady state 
(CS-Group). (A) Observed bacterial and (B), fungal richness between parents-reported 
wheezers and controls. (C) Result of nasal bacteria LINDA testing between parent-
reported wheezers and controls unadjusted and (D) adjusted for daycare attendance. 
(E) Kaplan-Meier curves representing the cumulative incidence of H. influenzae 19 
appearance (event) with age between parent-reported wheezers (orange) and controls 
(blue green) in the (Long-Group). (F) Nasal viral detection (no virus detected, 1 virus 
detected, more than 1 virus detected) and (G) detailed viral composition of virus-
positive samples between parents-reported wheezers and controls. (H) Volcano plot 
depicting the result of limma DE testing using a sex-adjusted model comparing 
parents-reported wheezers and controls. Significantly DE genes (adjusted P value < 0.1) 
increased in wheezers (orange) or controls (blue green) with immune genes repre-
sented by a square. Sample sizes are wheezers, n = 119; controls n = 114 for bacteria, 
wheezers, n = 61; controls n = 77 for fungi, wheezers, n = 101; controls n = 98 for 
viruses, wheezers, n = 82; controls n = 40 for host nasal, wheezers, n = 46; controls 
n = 27 for host blood. Statistics represent the result of nonparametric Wilcoxon rank 
sum tests [(A) and (B)], χ2 tests [(C) and (D)], limma (E), LINDA [(F) and (G)], and log-rank 
test (H) with (multiple testing corrected for E to G) *P < 0.01.
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Fig. 5. Multiomics data integration reveals a local and systemic monocyte immune signature associated with local bacterial increase of Haemophilus and 
Moraxella (CS-Group). (A) Percentage of variance explained by each latent factor of MOFA combining microbial (bacteria, fungi, and viruses) and host (nasal and sys-
temic immune) datasets. (B) Factor1 values by parent-reported wheeze status. (C) Factor1 values by daycare attendance, stratified by wheezing. (D) Top 20 loading values 
of local (nasal) immune gene expression for factor 1. (E) Top 20 loading values of systemic (blood) immune gene expression for factor 1. (F) Top 20 loading values of local 
bacterial taxonomy for Factor1. (G) UMAP of nasal cells from the HCLA after batch correction and integration. (H) Dotplot of common local systemic genes identified by 
MOFA; dot size represents percentage of cells within a cell type, color intensity reflects average gene expression across cells (yellow = low, purple = high). (I) UMAP of the 
myeloid cell compartment from the HLCA nasal cell subset. (J) Dotplot of MOFA-identified local-systemic gene expression within the myeloid compartment. (K) Spearman 
correlation plot between local nasal expression of shared genes and monocyte markers. (L) Graphical summary of findings: nasal bacterial dysbiosis with increased 
H. influenzae and Moraxella sp. in wheezers associated with a local and systemic immune gene expression signature consistent with classical monocyte recruitment to the 
airways. Sample sizes: bacteria (n = 233), fungi (n = 153), viruses (n = 199), nasal host (n = 122), and blood host (n = 73). Statistical tests: Wilcoxon rank sum [(B) and (C)] 
and Spearman (K). *P < 0.05, and ***P < 0.001
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host immune signature, aligning with a classical monocyte pheno-
type. This pattern was associated with bacterial profiles dominated 
by H. influenzae and Moraxella, suggestive of a generalized im-
mune state that is sustained in wheezers even when nonsymptom-
atic (Fig. 5L).

DISCUSSION
We aimed to address the relationship between host-microbial interac-
tions and the development of early respiratory immunity, with a focus 
on wheezing during the first year of life. The analysis of the longitudi-
nal cohort (Long-Group) provided insights into the development of 
host-microbial interactions in infants’ healthy upper airways from 
birth to 1 year. We observed pronounced changes in the bacterial mi-
crobiota, particularly between birth and 3 months of age. This period 
marked an increase in typical upper airways colonizers (24), such as 
Prevotella, Dolosigranulum, Streptococcus, Porphyromonas, including 
pathobionts of the Moraxella and Haemophilus genera, and a decline 
in species from the Staphylococcus genus, aligning with bacterial mi-
crobiota trajectories described in other studies (4–6, 8, 18, 25). Nota-
bly, we found that these shifts in bacterial composition coincided with 
significant changes in local gene expression. Among the most dynam-
ically regulated immune pathways was JAK/STAT signaling, which 
showed a coordinated transcriptional shift in the first months of life. 
Early-expressed genes such as STAT1, STAT3, JAK1, IL15, IL15RA, 
and cytokine receptors including IL6ST, CSF2, and IL5RA declined 
with age. These were progressively replaced by increased expression of 
JAK2, TYK2, multiple interferons (IFNs) (IFNG, IFNA6, and IFNL3), 
the interferon receptor IFNAR2, and γc cytokine receptors (IL2RA, 
IL21R, IL4R, and IL10RA). This pattern aligns with findings that 
neonatal macrophages exhibit exaggerated IL-6–induced STAT3 
phosphorylation and heightened acute-phase responses due to low 
SOCS3 expression, a key negative regulator, which may explain the 
early dominance and later suppression of STAT3-related signaling 
(26). Conversely, the delayed up-regulation of interferon pathway 
genes reflects the known deficiency of type I IFN responses in neo-
nates, driven by reduced numbers and function of plasmacytoid den-
dritic cells (27–29) and align with earlier research conducted in a 
similar population, demonstrating that gene expression modules re-
lated to interferon production were not only connected to early viral 
infections in infants but also exhibited a distinct increase with age (8). 
Together, these findings indicate a developmental “switch” in airway 
cytokine signaling networks potentially orchestrated by microbial 
colonization during this immunologically formative period.

We also noted a developmental shift toward adaptive immunity, 
including B cell receptor signaling and TH1/TH2/TH17 cell differen-
tiation. While our current understanding of the development of 
adaptive immunity in the airways is limited, evidence from the gas-
trointestinal field has highlighted the essential role of the microbiota 
in its induction. For example, indications that TH17 differentiation 
might be influenced by the microbiota emerged from observations 
that intestinal TH17 cells in mice are not detectable until around 3 to 
4 weeks of age (30). In the gastrointestinal tract, TH17 cell develop-
ment is hindered without microbiota (30), with segmented filamen-
tous bacteria promoting TH17 maturation (31), B cell activation 
(32–34), and IgA production, which regulate microbial composi-
tion and immune balance (35, 36). In a murine model, a single aspi-
ration of a blend of human oral commensals (Streptococcus mitis, 

Veillonella parvula, and P. melaninogenica) was able to induce a 
TH17 response in the lower airway, which effectively reduced vul-
nerability to subsequent Streptococcus pneumoniae infection (37). 
Moreover, axenic- and antibiotic-treated mice exhibit impaired 
TH17 responses in the airways, which has been linked to the airway 
microbiota (38). The distinct bacterial-host immune coevolution we 
have observed suggests that similar mechanisms might be operational 
in the airways, particularly during the critical first three months, a 
potential “window of opportunity” (39) for the development of the 
immune system.

A distinctive aspect of this study is the investigation of the myco-
biome and respiratory viruses at steady state in a longitudinal pedi-
atric cohort. Contrary to our initial hypothesis, we observed no 
coevolution between host immunity and nonbacterial microbial 
kingdoms in the longitudinal group and, similarly, no evidence of 
interaction in the cross-sectional group at year 1. Although the air-
way mycobiome, particularly lower airways fungi such as Aspergillus, 
has been linked to several chronic diseases including asthma, cystic 
fibrosis, and chronic obstructive pulmonary diseases (40), its role 
in establishing baseline immune homeostasis remains elusive, even 
in the gut (41). On the other hand, multiple longitudinal cohort 
studies have established a connection between early respiratory mi-
crobiota development, notably the presence of Haemophilus and 
Moraxella species, and susceptibility to viral respiratory tract infec-
tions (4, 8, 18, 42). In our study, the absence of an association be-
tween the presence of respiratory viruses and host immune gene 
expression in both groups suggests that residual viruses, in the ab-
sence of symptoms, may not directly influence the immune system. 
However, we did observe a correlation between previous wheezing 
and the presence of H. influenzae and Moraxella. Given the estab-
lished link between these bacteria and acute respiratory infections, 
we cannot dismiss the possibility that acute viral infections might 
affect the bacterial microbiota or influence susceptibility to viral in-
fections, which were not examined in the current study. We also in-
vestigated how various factors affect the microbiota and immune 
system at year 1 (CS-Group). We found that host gene expression 
was unaffected by factors other than sex. Daycare attendance sig-
nificantly influenced the bacterial microbiota and viral presence; anti-
biotics showed a similar trend, consistent with findings from other 
studies (1, 4, 18, 43). Only seasonal changes affected fungal compo-
sition in the upper airways, suggesting that the steady-state mycobi-
ome in the upper airways essentially reflects the fungi present in the 
air. This is in line with reported high abundance of Sporobolomyces 
in UK residential air samples, which shows a distinct seasonal pat-
tern (44).

Building on our initial findings, we aimed to determine whether 
these early life host-microbial interactions were associated with pa-
rental reported wheezing in the first year of life. Standard differen-
tial expression and abundance analyses revealed moderate host 
local immune gene expression differences between groups and vari-
ations in bacterial abundances, also linked with daycare. However, 
the most important findings emerged from our integrative mul-
tiomics approach, which combined multikingdom microbial data 
with host immune gene expression, both nasal and systemic. We 
identified a multiomics factor capturing the covariation between 
specific bacterial features and immune genes, suggesting potential 
host-microbial interactions. This multiomics factor was significant-
ly increased in wheezers and even more so in individuals attending 
daycare. The top bacterial contributors to this factor included the 
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pathobionts H. influenzae and Moraxella, contrasting with reduced 
abundance of typical healthy airway colonizers such as Neisseria, 
Prevotella, and Veillonella. When examining the genes explaining 
this factor in both local and systemic datasets, the same key genes—
including ACVR1C, OSM, AQP9, TNFSF13B (BAFF), IL36A, HLA-
E, TLR8, and CSF2RA—emerged as top features in both sets. These 
findings suggest a shared immune transcriptional program present 
across both mucosal and systemic compartments. To understand 
the cellular origin of this immune signature, we mapped these genes 
to nasal single-cell transcriptomic data from the HCLA. This re-
vealed predominant expression in myeloid cells, particularly nasal 
monocytes, offering a plausible explanation for the presence of these 
genes in both nasal and blood compartments, consistent with the 
migratory nature of circulating monocytes. Some genes also showed 
lower-level expression in macrophages, suggesting a broader innate 
immune signature and a potential multi-pronged response. While 
HLA-E showed more specific enrichment in the lymphoid compart-
ment, it was not a major focus of our cell-type interpretation, as the 
majority of local-systemic genes were most highly expressed in 
monocytes. Correlation with canonical monocyte markers (CD14 
and CCR2) and their chemokine ligands (CCL2 and CCL7) further 
supports monocytes as the most likely contributors to this local sys-
temic immune signal. Together, our findings support a biologically 
plausible hypothesis: airway dysbiosis involving LPS-rich Gram-
negative organisms such as H. influenzae and Moraxella may lead to 
sustained recruitment and activation of monocytes.

Supporting this hypothesis, increased levels of OSM have been 
reported in asthma (45, 46), and recent findings identified OSM as 
the most significant predicted upstream regulator of the transcrip-
tional response in patients with severe asthma (47). The same study 
demonstrated in vivo that OSM is necessary and sufficient to drive 
pathophysiological features observed in severe asthma following 
exposure to LPS or Klebsiella pneumoniae (47). In addition, single-
cell RNA sequencing from human lung biopsies revealed macro-
phages as the dominant cell-type expressing OSM (47). Building 
on this, this study found that LPS strongly induces OSM in human 
monocyte-derived macrophages (MDMs) and murine bone mar-
row–derived macrophages (BMDMs), underscoring the critical role 
of bacterial triggers in OSM-mediated airway inflammation (47). 
AQP9 has been shown to be involved in immune functions such as 
longevity of memory T cells (48) and both neutrophil and macro-
phage migration (49,  50). Microbial products including LPS are 
known to activate B cells, either directly or indirectly, for example, 
through the induction of BAFF from myeloid cells (51–53). Further-
more, BAFF protein concentration was increased in nasal lavage 
samples from infants with Rous sarcoma virus (RSV)–associated 
bronchiolitis, which was directly correlated with H. influenzae 
abundance (54). The inhalation of LPS in healthy volunteers leads to 
monocytes recruitment in the lungs within 8 hours (55), and in 
mice, LPS treatment led to a significant increase in CCR2-dependent 
alveolar monocytes, whereas mice lacking CCR2 showed reduced 
monocyte recruitment (56). Together, these observations support a 
model in which airway colonization by H. influenzae and Moraxella 
promotes a low-grade, monocyte-driven inflammatory state via 
LPS-mediated immune activation. However, the temporal dynamics 
of this relationship remain unclear. It is possible that bacterial dys-
biosis precedes and contributes to wheezing or, alternatively, that 
prior viral infections or inflammatory events create a niche that fa-
vors colonization by these taxa. This ambiguity is consistent with 

previous studies showing that bacterial shifts involving H. influenzae 
and Moraxella can both precede (13,  18) and follow viral infec-
tions (8).

As with all observational cohort studies, our findings are cor-
relational and not designed to establish causality. Nonetheless, the 
integration of longitudinal microbiota data with paired local and 
systemic transcriptomics provides a framework for generating mech-
anistic hypotheses. A key insight from our analysis is the potential 
recruitment of circulating monocytes in response to airway dysbio-
sis. While direct quantification of monocyte levels was not feasible 
due to the limited blood volumes obtainable from 1-year-old chil-
dren, we inferred the most likely cellular origin of the gene signature 
using the HCLA. Although derived from adult tissue, it remains the 
best available reference for respiratory immune cells and allowed us 
to infer likely cell types in the absence of pediatric single-cell data
sets. Another limitation is that wheezing status was based on paren-
tal report, which introduces subjectivity and lacks clinical validation. 
However, the core multiomic findings identified through unsuper-
vised factor analysis were entirely independent of wheeze classifica-
tion. This data-driven, label-free strategy greatly reduces the risk of 
bias introduced by grouping misclassification. The identification of 
H. influenzae and Moraxella as key microbial features aligns with 
prior studies linking these taxa to wheeze and asthma risk (4, 12, 14), 
further supporting the biological relevance and generalizability of 
our results. In contrast, the monocyte-associated transcriptional 
signature identified in our analysis is previously unreported and 
warrants further validation. To further define the biological mean-
ing of these results, future studies should incorporate longitudinal 
sampling before, during, and after wheezing episodes and long-term 
clinical follow-up. These efforts will be essential to clarify causality 
and determine whether the microbial-immune interactions identi-
fied here represent viable targets for early intervention in wheeze-
prone children.

In conclusion, our study reveals a unique coevolution between 
bacteria and the host immune system in the first year of life, distinct 
from fungi or viruses, with a notable shift in the first three months. 
Children who wheezed in their first year showed a dysbiotic airway 
microbiota, dominated by H. influenzae and Moraxella. This dysbio-
sis was linked to a generalized immune gene expression signature in 
both blood and nasal samples, driven by circulating classical mono-
cytes. These findings shed light on the early-life interplay between 
microbiota and the immune system, highlighting how bacterial im-
balances can shape systemic and local immune landscapes and af-
fect respiratory health.

MATERIALS AND METHODS
Ethics approval and consent to participate
Informed parental consent was obtained before inclusion in the 
study, and ethical approval was obtained from the Regional Ethics 
Committee (REC reference: 16/LO/1518).

Breathing Together cohort
This study includes children from the Breathing Together birth co-
hort (19), with recruitment activities conducted across five centres 
in the United Kingdom: Aberdeen, Edinburgh, Imperial College 
London, Queen Mary University London, and Isle of Wight, span-
ning from February 2017 to April 2019. Breathing Together cohort 
inclusion criteria were a gestational age of over 37 weeks and the 
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provision of written parental consent. The exclusion criteria en-
compassed multiple pregnancy, detection of maternal group B 
Streptococcus (via vaginal swab or urine culture), the necessity for 
continuous positive airway pressure (CPAP) or ventilatory support, 
major congenital disorders (examples include congenital heart dis-
ease and cystic fibrosis), and anticipated challenges in follow-up 
(such as planned relocation). For this study, exclusions also extended 
to instances where either host or microbial samples were unavailable 
or if data on early-life wheezing were missing. The classification of 
participants into wheezers and controls was established on the basis 
of parental responses to a questionnaire given when the child reached 
1 year of age. Children were classified as wheezers if there were any 
reported instances of wheezing during their first year. The control 
group consisted of those children whose parents reported no wheez-
ing, no treatments for respiratory issues, absence of nocturnal dry 
cough, and no diagnosis of bronchiolitis within the same period.

Participants sampling
Nasal swabs were collected using eSwabs (COPAN Diagnostics) and 
interdental brushes (Dentocare 620, 2.7 mm in diameter) for micro-
biota and host cell sampling, respectively. For blood collection, 50 μl 
of whole blood was obtained via capillary puncture using the Mini-
vette POCT system (Sarstedt). Nasal brushes content was released in 
RLT lysis buffer (QIAGEN) with 2-mercaptoethanol (Sigma-Aldrich), 
and all samples were stored at −80°C with an addition of RLT lysis 
buffer (QIAGEN) with 2-mercaptoethanol (Sigma-Aldrich) for 
host cells.

Bacterial 16S and fungal ITS amplicons sequencing
ESwab media were centrifuged at 14,000g for 10 min at 4°C. To 
enhance fungal DNA retrieval, pellets were treated with 300 U of 
lyticase (Sigma-Aldrich) at 37°C for 30 min with gentle shaking 
(500 rpm). Lysates were further processed using the DNeasy Ultra-
Clean Microbial Kit (QIAGEN) according to the manufacturer’s 
protocol, and DNA was eluted in 40 μl of microbial DNA-free water 
(QIAGEN), following the manufacturer’s guidelines in a controlled 
environment (laminar flow hood decontaminated with deoxyribo-
nuclease solution and ultraviolet-treated) to avoid microbial DNA 
contamination. Negative controls included eSwab (opening and 
closing of a tube at the different sampling sites), extraction (micro-
bial DNA-free water processed through the kit), and PCR (PCR re-
action with microbial DNA-free water instead of DNA template). 
Each sample was amplified in two different reactions, the first one 
with custom barcoded primers targeting the bacterial 16S rDNA 
v1-v2 region (F-27/R-338) and the second one with custom barcoded 
primers targeting fungal internal transcribed spacer region 1 (ITS1) 
region. Primers used were 16S (forward: 5′AATGATACGGCGAC-
CACCGAGATCTACACTATGGTAATTCCAGMGTTYGATYM-
TGGCTCAG-3′; reverse: 5′-CAAGCAGAAGACGGCATACGAG-
ATACGAGACTGATTNNNNNNNNNNNNAAGCTGCCTCCC-
GTAGGAGT-3′) and ITS (forward: 5′-AATGATACGGCGACCA-
CCGAGATCTACACGGCTTGGTCATTTAGAGGAAGTAA-3′; 
reverse:5′-CAAGCAGAAGACGGCATACGAGATNNNNNNN
NNNNNCGGCTGCGTTCTTCATCGATGC-3′), where the N se-
quences represent the sample-specific 12-nucleotides Golean barcodes. 
PCR reaction consisted of microbial DNA-free water, 1 μl of each 
primer at 5 μM, 2.5 μl of Accuprime PCR buffer II (Thermo Fisher 
Scientific), 10 μl of DNA template, and 1 μl of Accuprime Taq 

polymerase (Thermo Fisher Scientific) with initial denaturation 3 min 
at 94°C, followed by 35 cycles (16S) or 40 cycles (ITS) of 30-s dena-
turation at 94°C, 30-s annealing at 56°C (16S) or 52°C (ITS), and 
60-s elongation at 68°C, with a final extension at 68°C for 10 min. 
Amplicons were quantified using a Fragment Analyzer (Agilent 
Technologies) with the High Sensitivity NGS Fragment Analysis 
kit, pooled at equimolar amounts and purified using AMPure XP 
bead cleanup system (Beckman Coulter). Denatured library pools 
were sequenced on a MiSeq platform with a MiSeq Reagent Kit v2 
(500 cycles).

Viral qPCR
Extracted RNA and DNA were processed for qPCR using the Bos-
phore SARS-CoV-2/Respiratory Pathogens Panel Kit v1 (Anatolia 
Geneworks) according to the manufacturer’s protocol on a Quant-
Studio 6 platform (Thermo Fisher Scientific). Given the lack of a 
universal viral amplicon target, multiplex qPCR offers a sensitive 
and scalable method for detecting the major wheeze-associated vi-
ruses in children (57) (RSV, human rhinovirus, human metapneu-
movirus (MPV), and influenza), all of which are covered by this 
panel. This kit allows the detection of 13 viruses [severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2, RSV A&B, influenza 
A&B, enterovirus, MPV, adenovirus, human parainfluenza 1/2/3/4, 
and rhinovirus. A Ct threshold of <40 was applied, corresponding 
to fluorescence levels above baseline noise and within the exponen-
tial phase of amplification. This threshold was consistently used 
across all samples, and negative controls showed no amplification 
below this value.

Host RNA sequencing
RNA was isolated from cell lysates using the Quick-RNA Microprep 
Kit (Zymo Research), following the instructions provided in the 
manufacturer’s guide. Library preparation was performed using the 
NEBNextUltra Directional RNA Library Prep Kit for Illumina (New 
England Biolabs), and resulting libraries were sequenced on an Il-
lumina NovaSeq platform with a Reagent kit S4 (150 cycles).

Amplicons sequencing data preprocessing
Processing of the raw sequencing data was executed through the 
microbiome-dada2 workflow, as outlined in the code availability sec-
tion, using the dada2 (58) R package (version 1.22.0). Raw FastQ files 
underwent demultiplexing via the iu-demultiplex function (version 
2.7) of the illumina-utils (59) toolkit. This was followed by the re-
moval of primers and adapters using cutadapt (60) (version 2.10), 
and the subsequent steps included filtering and trimming of reads, 
creation of sequencing error models, dereplication of sequences, in-
ference of ASVs, merging of paired-ends, and removal of chimeric 
sequences. Taxonomy assignment for bacterial 16S ASVs was per-
formed using both the SILVA database (61) train set and species 
assignment dataset (version 138.1) to ensure precise sequence match-
ing. Similarly, fungal ITS ASVs were taxonomically classified us-
ing the UNITE (62) database’s general release as of May 2021. A  
phylogenetic tree of ASV sequences was constructed through multiple 
alignment processes using the DECIPHER (63) R package (version 
2.22.0), followed by the creation of a neighbor-joining tree with 
the phangor (64) R package (version 2.8.1). This tree served as the 
basis for a maximum likelihood tree analysis using the general-
ized time-reversible model with Gamma rate variation (GTR  + 
G + I), as previously detailed in our references. The identification of 
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contaminant taxa was carried out using the decontam (65) R package 
(version 1.20.0) with a prevalence method at a threshold of 0.3 and 
contaminant features were removed prior to further filtering (fig. S2). 
All ASV tables with corresponding tree and taxonomy were import-
ed in the phyloseq (58) R package (version 1.44.0). ASVs with less 
than 5% prevalence or unclassified at the phylum level were exclud-
ed, and samples yielding fewer than 5000 ASVs were also removed. 
Closely related ASVs were agglomerated using single-linkage cluster-
ing with the tip_glom function from the phyloseq package (h = 0.05). 
The Shannon index and observed richness were calculated using the 
estimate_richness function of phyloseq. Last, ASV counts under-
went normalization using cumulative sum scaling via the calcNorm
Factors function of the MetagenomeSeq (66) R package (version 
1.42.0) with log transformation for beta diversity analysis.

Host sequencing data preprocessing
Raw FastQ files were processed using the nf-core/rnaseq pipeline 
(version 3.10.1) of the nf-core collection of workflows (67) executed 
with Nexflow (67) (version 22.10.4). Briefly, reads were aligned to 
the GRCh38 reference genome with STAR (68) (version 2.7.10a) 
and GRCh38.104 annotation file. Transcript quantification was per-
formed using Salmon (69) (version 1.9.0) and length-scaled genes 
count used for downstream analyses were generated from the tran-
script level abundances using tximport (70) R package (version 
1.12.0). Samples with less than 10 Mio mapped reads were excluded, 
and genes with low expression were removed using the filterByExpr 
function from the edgeR (71) R package (version 3.42.4) with de-
fault parameters. Sequencing batch effects for blood samples were 
removed using the removeBatchEffect function of limma R package 
(version 3.56.2). Only protein coding genes were retained for down-
stream analysis, and immune genes were determined using the In-
nateDB (72) retrieved in April 2023. Gene counts were transformed 
to logCPM using the voom function from the limma (73) R package 
(version 3.56.2).

Microbial differential abundance testing, analysis of 
similarities, and distance-based redundancy analysis
Microbial differential abundance testing was performed using LinDA 
(74), a method specifically developed for microbiome composition-
al data, implemented in the microeco (75) R package (version 
0.20.0) at the ASV level. LinDA applies log-ratio transformation to 
handle relative abundance data appropriately and supports multi-
variable linear modeling, enabling adjustment for confounding fac-
tors. Models were defined as “~Parameter1 + Parameter2” for more 
linear modeling with more than one variable. ANOSIM was per-
formed on the weighted Unifrac distance matrix using the adonis2 
function from the vegan R package (version 2.6.4). To evaluate the 
impact of covariates on microbiota beta diversity and identify the 
most relevant variables, we performed distance-based redundancy 
analysis (dbRDA) using the dbrda function of R vegan package (ver-
sion 2.6.4). dbRDA was performed on the weighted Unifrac distance 
matrix, followed by stepwise variable selection guided by R2 values 
using the ordi2step function (vegan package version 2.6.4), and re-
sulting P values were FDR-corrected using the p.adjust function 
from the stats R package (version 4.3.1).

Host differential abundance testing and pathway analysis
Voom-transformed gene counts were used for differential expres-
sion testing using the limma R package (version 3.56.2). A linear 

model was constructed as follows “~Parameter1 + Parameter2” and 
used to fit gene expression data, and empirical Bayes statistics were 
applied to determine DE genes. Benjamini-Hochberg (BH) proce-
dure was used for adjusting P values. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis of immune genes was exe-
cuted separately for up-regulated and down-regulated immune 
genes using the enrichKEGG function from the clusterProfiler (76) 
R package (version 4.8.2). The enrichment significance was assessed 
using hypergeometric testing and BH adjusted for multiple com-
parisons, and only pathways with a minimum DE gene counts ≥ 4 
were reported.

Intra-individual microbiota and gene expression stability
Intra-individual stability of microbial data was assessed by calculat-
ing the weighted Unifrac distance between two consecutive time-
points for children with a minimum of 3 complete samples set out of 
4 timepoints. For gene expression data, stability was assessed by cal-
culating the maximum distance between two consecutive time 
points for children with a minimum of three complete timepoints.

Multiomics data integration
Multiomics integration was conducted using MOFA2 (77) (version 
1.10.0) incorporating four distinct matrices. Before integration, the 
bacterial and fungal matrices underwent a 10% prevalence thresh-
old filter to the bacterial and fungal matrices, followed by centered 
log-ratio transformation with the transform function of the micro-
biome R package (version 1.22.0). Voom-normalized host nasal and 
blood gene expression datasets were refined to exclusively encom-
pass immune genes. Data and model training options were set as 
default with the number of factors set to 3.

HCLA analysis
The core integrated HLCA was downloaded and imported into a 
Seurat object using the Seurat (78) R package (version 4.3.0.1). Only 
annotated nasal cells were retained. Nasal single-cell data from the dif-
ferent studies were then split and normalized using SCTransform 
(“v2”) from the sctransform (79) R package (version 0.3.5) and vari-
able features were identified with FindVariableFeatures. Batch correc-
tion for studies was performed by selecting 2000 variable features 
using SelectIntegrationFeatures. Integration anchors were determined 
using FindIntegrationAnchors with rpca reduction (k.anchor = 50). 
The final integration—incorporating these anchors and additional 
local systemic genes TNFSF13B, AQP9, OSM, ACVR1C—was per-
formed using the IntegrateData function. UMAP (Uniform Manifold 
Approximation and Projection) was used for dimensionality reduc-
tion using 20 PCA dimensions. Myeloid cells were subset and un-
derwent neighbor finding and clustering before characterization 
using HCLA labels and manual annotation. The expression of the four 
genes of interest was assessed using the DotPlot function. Local sys-
temic positive Spearman gene expression correlations with mono-
cytes markers were performed on the voom-normalized gene counts 
using the corr.test function from the psych R package (version 2.3.6) 
with FDR correction for multiple testing using the p.adjust function 
from the stats R package (version 4.3.1).

Statistical analyses
Statistical analyses were conducted as outlined in Materials and 
Methods. For comparisons involving two or more groups, the 
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Wilcoxon rank sum exact test was employed using the wilcox.test 
function from the stats R package (version 4.3.1). To allow maximal 
reproducibility in functions requiring random pseudo-numbers, a 
global fixed random seed number was set to 2.

Supplementary Materials
This PDF file includes:
Figs. S1 and S2
Tables S1 to S3
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