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Bacterial communities co-develop with respiratory
immunity early in life, linking dysbiosis to systemic
monocyte signature and wheezing
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Early microbial colonization influences respiratory disease risk, yet mechanisms remain unclear. In a prospective
birth cohort of 256 infants, we profiled bacterial, fungal, and viral communities in the upper airway and assessed
local immune gene expression longitudinally and systemic gene expression at 1 year. Bacterial populations, not
fungal or viral, correlated most strongly with immune development during the first 3 months, coinciding with
composition shifts and immune-related gene expression changes, including interferon and adaptive immunity
pathways. In contrast, the mycobiome and resident viruses showed no significant coevolution with host immuni-
ty. By 1 year, infants who previously wheezed displayed an upper airway microbiota enriched in Haemophilus
influenzae and Moraxella, accompanied by a distinct local and systemic immune gene signature featuring elevated
classical monocyte-related genes. These findings reveal a specific link between early-life bacterial dysbiosis,
monocyte-related immunity, and wheezing onset, suggesting potential targets for early intervention in respira-

tory disease.

INTRODUCTION

Birth marks the onset of microbial colonization of mucosal surfaces,
including the respiratory tract, with the local mucosal microenvi-
ronment being the primary driver of microbial diversification (I).
Host factors, along with environmental factors including delivery
mode, breastfeeding, daycare, and vaccination lead to variation in
the respiratory bacterial (2-6) and fungal microbiota (7) across re-
spiratory niches. Multiple studies have reported substantial changes
in the upper (8, 9) and lower (6) airways’ microbiota within the ini-
tial days to weeks of life, followed by a stabilization thereafter. In
addition to its gatekeeping function against respiratory pathogens,
the respiratory microbiota is thought to play an important role in
priming and shaping the local immune system during early life. This
includes the establishment of immune tolerance (10) and mucosal
barrier function through the regulation of immunoglobulin A (IgA)-
mediated responses (6, 11). While the effects of the bacterial mi-
crobiota on respiratory immune maturation have been increasingly
investigated, the roles of viral and fungal airway colonization under
steady-state conditions remain largely unknown.
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Understanding host-microbe interactions is crucial, as early-life
perturbations of the respiratory bacterial microbiota have been as-
sociated with the development of respiratory diseases. For example,
the colonization of the upper airways with Moraxella, Haemophilus,
or Streptococcus has been associated with subsequent wheezing and
the development of asthma (4, 12-14). Recurrent preschool wheezers
frequently exhibit persistent bronchial bacterial infections involving
the same pathogens, even during nonexacerbation periods (15-17).
In addition, a strong connection exists between viral infections and
bacterial dysbiosis involving these microbes, where disturbances in
the bacterial community have been shown to either precede (13, 18)
or follow respiratory tract infections (8).

We hypothesized that dynamic host-microbial interactions within
the upper airways shape local and systemic immune development
during the critical first year of life, possibly influencing wheeze patho-
genesis. To test this hypothesis, we performed multikingdom micro-
bial and host transcriptomic profiling in two groups of participants
from the Breathing Together cohort. The first was a longitudinal group
(Long-Group) of children sampled at four different time points over
the first year of life to investigate the development of host-microbial
interactions in the upper airways. The second was a cross-sectional
group (CS-Group) of children sampled at age one to ascertain host-
microbial interactions in relation to prior wheezing during the first
year of life. To our knowledge, this is the first observational study ex-
amining the dynamics of three microbial kingdoms, integrating both
local (nasal) and systemic (blood) immune profiles, and exploring
these interactions during healthy development and wheeze.

RESULTS

Characteristics of study populations

Two groups of children from the Breathing Together study, which
aims to identify the key epithelial and immune determinants of
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asthma in early life (19), were investigated. First, a Long-Group
comprising 32 children with biological samples collected at four
time points (1 week, 3 months, 6 months, and 1 year) to investi-
gate host nasal (local) gene expression and microbial profiles
(bacteria, fungi, and viruses) (Fig. 1A). Second, a CS-Group of
256 children at 1 year, who provided the same sample types as the
Long-Group and in addition to blood for transcriptomic analysis
(Fig. 1B). Of 256 children included in the cross-sectional analy-
sis, 133 had parent-reported wheezing in the first year of life.
Biological samples were obtained when wheezing symptoms
were absent, in adherence to the established sampling protocol.
Nasal microbiota profiling of both groups included bacterial 16S
[n = 338 datasets after quality control (QC)] and fungal ITS
(n = 212 datasets after QC) amplicon sequencing, paired with
viral quantitative polymerase chain reaction (QPCR) profiling
(n =297 datasets after QC), to characterize the multiple compo-
nents of the microbiota across the three major kingdoms. Host
immune profiling was performed using RNA sequencing, focus-
ing on local characterization (nasal brush n = 200 datasets after
QC) for both CS-Group and Long-Group samples, and systemic
analysis (whole blood n = 73 datasets after QC) for CS-Group
samples only.

Maturation of immunological profiles aligns with the
development of bacterial but not fungal or viral
communities during the first 12 months of life (Long-Group)
We first aimed to examine the development of the multikingdom mi-
crobiota alongside local host responses within the Long-Group. The
principal components analysis (PCA) of host nasal transcriptomic
data (Fig. 2A) and principal coordinate analysis of nasal bacteria
(Fig. 2B) and fungi (Fig. 2C) revealed that both the overall host nasal
gene expression and nasal bacterial composition were largely deter-
mined by age [analysis of similarities (ANOSIM) coefﬁc1ent of deter-
mination (R*) = 3%, P value = 0.009 for host; R? = 52%, P value <
0.001 for bacteria]. In contrast, fungal composition did not show
significant age-related variation [R* = 43%, P value = not significant
(N.S.)]. A pronounced shift along the first axis was observed for both
nasal host gene expression and bacterial profiles, with the most sig-
nificant transition occurring between the first (1 week) and second
(3 months) time points, a pattern not observed in the fungal data. To
further address individual microbial changes over time, distances
between consecutive sample pairs from the same individuals were
compared. Host nasal gene expression (Fig. 2D) and bacterial
(Fig. 2E) profiles were most unstable during the first two time inter-
vals (1 week to 3 months Wilcoxon rank test W = 151, P value = 0.04

breathing

A together
Long-Group (longitudinal group)
@ Nasal bacteria
. 16S rRNA sequencing
8
m S f{%’ Nasal fungi
. k] %\ ITS sequencing X .
A " s ' Host immune-bacterial
Age — coevolution
%ﬁ%@ Nasal viruses
O /’? Viral gPCR
1 week 3 months 66 months 1year » °~
n = 32 children g Host nasal brush
ac S Bulk RNA sequencing
B
CS-Group (cross-sectional group)
Parental a\lergy
&) Nasal bacteria
16S rRNA sequencing
Lifestyle 1year =
. 5 AP Nasalfungi
S %\8 ITS sequencing
B s Local and systemic immune
Environment gnq" Nasal viruses — signature associated with

Controls Wheezers

Treatments ‘ n =123 children n = 133 children

Host

o> L %
@/%g

Pregnancy/birth

Viral gPCR

wheeze
Host nasal brush
Bulk RNA sequencing

Host blood
Bulk RNA sequencing

Fig. 1. Long-Group and CS-Group from the Breathing Together birth cohort. (A) Samples from 32 children taken at four different time points in the first year of life
constitute the Long-Group for which three microbial datasets (nasal bacterial taxonomic profile, nasal fungal taxonomic profile, and nasal viral qPCR profile) and one host
dataset (nasal gene expression) were generated. (B) These children represent a subset of the CS-Group for which three microbial datasets (nasal bacterial taxonomic
profile, nasal fungal taxonomic profile, and nasal viral gPCR profile) and two host datasets (nasal gene expression and blood gene expression) were generated from
samples taken at 1 year of age for 256 children (123 healthy children and 133 children with parent-reported wheeze) alongside detailed metadata. Integration of these
datasets revealed a shared local and systemic immune signature associated with wheeze.
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Fig. 2. Nasal microbiota and host transcriptome show parallel development in the first year (Long-Group). (A) PCA of nasal transcriptomics across time points and
density plots. (B) Principal Coordinate Analysis (PCoA) of bacterial and (C) fungal microbiota using UniFrac and density plots. (D) Transcriptome stability across three time
points using maximum delta. (E) Bacterial and (F) fungal microbiota stability using UniFrac delta. (G) Bacterial and (H) fungal richness over time. (I) Respiratory viral detec-
tion per time point. (J) Virus composition in positive samples. (K) DE of nasal transcriptomics with age using limma, immune genes marked with squares. (L) KEGG pathway
analysis of DE immune genes; top 20 pathways shown. Bar color indicates the direction of change in average gene expression with age treated as a continuous variable:
Purple bars reflect pathways up-regulated with increasing age, and pink pathways down-regulated with age. Expression trends for selected genes and the pathway-level
average, calculated as the mean normalized expression of all genes in each pathway at each time point; (M) JAK-STAT down with age. (N) JAK-STAT up with age. (O) B cell
receptor signaling (P) Ty1/Tw2 and (Q) Ty17 differentiation. (R) Differential abundance (DA) of nasal bacterial microbiota using LINDA between week 1 and year 1; top 20
taxa shown. Sample sizes: host: 1 week (n = 20), 3 months (n = 23), 6 months (n = 23), and 1 year (n = 15); bacteria: 1 week (n = 29), 3 months (n = 31), 6 months (n = 29),
and 1 year (n = 28); fungi: 1 week (n = 22), 3 months (n = 21), 6 months (n = 23), and 1 year (n = 18); viruses: 1 week (n = 23), 3 months (n = 25), 6 months (n = 28), and
1yr. (n = 22). Statistical tests: Permutational Multivariate Analysis of Variance [PERMANOVA (A to C)], Wilcoxon [(D) to (F)], linear model [(I) and (J)], limma (K), KEGG (L), and
LINDA (R); FDR corrected for (K), (L), and (M). *P < 0.05 and **P < 0.001.
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for host and W = 510, P value = 0.03 for bacteria). In contrast, dis-
tances between these time points were not different for fungi (1 week
to 3 months Wilcoxon rank test W = 106, P value = N.S.) (Fig. 2F),
suggesting that age is not a major driver of nasal fungal microbial
variation for a given individual. Nasal bacterial richness significantly
increased with age (linear model F statistic = 18.94, P value < 0.001)
(Fig. 2G), whereas no such trend was observed for fungi (linear mod-
el F statistic = 1.72, P value = N.S.) (Fig. 2H). Viruses were detected
in less than 50% of nasal samples at all time points and were particu-
larly scarce in the first week of life (present in 3 of the 20 samples)
(Fig. 2I). No age-related changes were linked to the presence of com-
mon respiratory viruses (linear model F statistic = 1.72, P value =
0.19), suggesting that, similar to fungi, steady-state nasal viral pres-
ence is age independent. In-depth analysis of viral composition high-
lighted that rhinovirus was the predominant virus detected in these
asymptomatic children, present in 63% (20 of 32) of the virus-positive
nasal samples (Fig. 2]). Last, we aimed to identify age-associated fea-
tures through differential expression and abundance testing. Among
all differentially expressed (DE) host nasal genes, 133 immune genes
were up-regulated, while 121 immune genes were down-regulated,
suggesting an age-associated immune switch (Fig. 2K). The pathway
analysis of immune genes revealed several immune pathways that
increased with age during the first year of life, with the most pro-
nounced rise occurring between the first week and 3 months, fol-
lowed by stabilization after 6 months (Fig. 2L and table S1). Further
exploration of these gene groups revealed a shift within the Janus ki-
nase (JAK)/signal transducers and activators of transcription (STAT)
pathway in the first year of life. Genes showing decreased expression
with age included those encoding key pathway members JAK1, STAT1,
STAT3, interleukin-15 and its receptor (IL15 and ILI5RA), interleu-
kin receptors (IL6ST, IL7R, IL3RA, and IL5RA), and granulocyte-
macrophage colony-stimulating factor (CSF2) (Fig. 2M). Conversely,
other components of the JAK/STAT pathway showed increased ex-
pression during the first year of life (Fig. 2N). These included JAK2
and TYK?2 along with interferons (IFNG, IFNK, IFNA6, and IFNL3)
and type I interferon receptor genes such as IFNAR2. Within the
same pathway, yc cytokine family receptors (IL2RA, IL21R, and IL4R),
alongside the structurally related interferon receptor gene ILIORA
and ILI2RBI, were also up-regulated. Pathways related to antiviral
immunity also increased with age, which coincided with the in-
creased interferon signals observed in the JAK/STAT pathway and
also included downstream interferon regulatory element interferon
regulatory factor 7 and nuclear factor kB inhibitor beta (NFKBIB)
(table S1). Pathways central to adaptive immunity, particularly B cells
and T cell responses, increased with age. This included the up-
regulation of the B cell receptor signaling pathway (Fig. 20), such as
both subunits of the CD79 receptor Iga (CD79A) and Igp (CD79B),
alongside key downstream Bruton tyrosine kinase (BTK). T cell-
related pathways [T helper 17 (Ty17) cell differentiation/Ty1 and
T2 cell differentiation] also increased, featuring key Tyl (IFNG
and IL12RBI) (Fig. 2P), Ty2 (IL2RA and IL4R), and Ty17 (TGFBR2
and IL21R) genes (Fig. 2Q). Furthermore, a pathway associated with
natural killer (NK) cells (NK cell-mediated cytotoxicity), bridging
innate and adaptive immunity, also showed an up-regulation in the
first year of life, involving NK cell-specific genes such as killer cell
lectin like receptor C1 (KLRCI) (table S1). Following the analysis
of host gene expression, we next explored microbial features that
exhibited differential abundance over the first year of life (Fig. 2R).
Bacterial abundance changes included a reduction in Staphylococcus
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amplicon sequence variants (ASVs) (ASVs) and an increase in ASV's
from common upper airway colonizers such as genera Moraxella,
Prevotella, Streptococcus, Porphyromonas, Neisseria, and Haemophilus.
In contrast to bacteria, neither fungal abundance nor viral presence
showed a significant correlation with age. In summary, samples from
the first year of life showed synchronized innate and adaptive im-
mune cell maturation and development of the bacterial microbiota
indicating a distinct age-associated pattern in host-bacterial interac-
tions, independent of fungal or viral presence.

Daycare and antibiotics affect bacterial and respiratory
viruses at year 1 with a minimal impact on local host gene
expression (CS-Group)

Integrating environmental and host factors is crucial to understand
their role in shaping early life microbial interactions, as they can al-
ter microbiota composition and potentially affect immune system
development. To explore these interconnected factors, covariates
collected from questionnaires at birth and 1 year were investigated
in relation to both local (nasal) and systemic (blood) host gene ex-
pression, alongside the three sets of local microbial data at year 1
(CS-Group). Microbial richness and diversity of the three microbial
kingdoms in correlation with the collected covariates were investi-
gated first (Fig. 3A). Two factors had opposing impacts upon bacte-
rial and viral richness. Daycare attendance emerged as the first
influential factor, with children in daycare showing lower bacterial
richness (W = 7830, P value < 0.01) (Fig. 3B), but a higher preva-
lence of viruses (W = 2907, P value < 0.001) (Fig. 3C). The use of
antibiotics during the first year also followed this trend, with a de-
crease in bacterial richness (W = 7495, P value = 0.045) (Fig. 3D)
and a rise in virus prevalence (W = 4025, P value = 0.046) (Fig. 3E).
None of the factors investigated influenced fungal nasal richness. To
further examine how these factors influence individual host and mi-
crobial traits, a distance-based redundancy analysis (rd-rda) was
used, selecting variables of significance through model selection,
combined with differential expression and abundance testing. Host
data analysis identified sex as a key determinant of gene expression,
responsible for 7 and 17% of the observed variation in nasal (Fig. 3F)
and blood (Fig. 3G) samples, respectively. Daycare attendance was
found to affect bacterial composition, accounting for 5% of the vari-
ance in the model (Fig. 3H). Subsequent differential abundance test-
ing analysis showed increased ASV abundance of pathogenic
bacteria such as Moraxella and Haemophilus influenzae in children
attending daycare. Conversely, ASVs representing common healthy
airway colonizers—such as Prevotella, Veillonella, and Rothia—were
more abundant in children not attending daycare. The only factor
that significantly affected fungal ASVs abundance was the season in
which the nasal sample was taken (Fig. 3]). The majority of observed
changes were associated with environmental fungi, with outdoor
airborne molds such as Cladosporium herbarum (20) and members
of the family Sporobolomyces showing higher abundance during
summer and autumn, while Trametes versicolor was most abundant
in winter months (Fig. 3K).

Parent-reported wheeze associates with higher H. influenzae
abundance and local expression of immunomodulatory
genes at year 1 (CS-Group)

We next investigated differences in host and microbial features for
each individual omics dataset in parent-reported wheezers, children
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Fig. 3. Environmental factors such as daycare and antibiotic treatmentimpact bac-
terial and viral components of the nasal microbiota (CS-Group). (A) Spearman cor-
relations between nasal bacterial, fungal, and viral alpha diversity and covariates;
positive (purple) and negative (yellow) associations represented, with color intensity
and symbol size proportional to correlation strength. (B) Bacterial richness by daycare
attendance. (C) Viral detection by daycare attendance. (D) Bacterial richness by antibi-
otic treatment in the first year. (E) Viral detection by antibiotic treatment in the first year.
(F) DE genes in the nasal transcriptome per covariate using limma, with db-RDA for key
variable selection. (G) DE genes in the blood transcriptome by covariate with db-RDA.
(H) Differential abundance (DA) of nasal bacterial taxa by covariate using LINDA and
db-RDA. (I) DA bacterial taxa associated with daycare, colored by significance level
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intensity in DA plots proportional to statistical significance. (K) Fungal taxa associated
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(K). *P < 0.05, **P < 0.01, and ***P < 0.001.
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who had any wheezing events occurring within the first year, using
samples collected at year 1 when they were asymptomatic (CS-
Group). The age of onset for wheezing symptoms ranged from 3 to
12 months, with a median age of wheezing onset of 6 months. In
assessing clinical covariates, the wheeze group showed significantly
higher incidences of antibiotic use both during pregnancy (> =4.28,
P value = 0.04) and in the first year of life (¥~ = 39.61, P value <
0.001), maternal history of asthma (X2 =8.11, P value = 0.004), pets
(X2 = 5.71, P value = 0.02), and more than one cold during the first
year of life (X2 = 54.96, P value <0.001) (table S2). The investigation
of the nasal microbiota revealed a significant reduction in bacterial
richness in wheezers (W = 8301, P value < 0.01) (Fig. 4A), with
fungal richness remaining unchanged (W = 2625, P value = N.S.)
(Fig. 4B). Differential abundance analysis, both without (Fig. 4C)
and with (Fig. 4D) daycare correction, showed differences in taxa
abundance including a notable increase in H. influenzae abundance
in the wheezer group after adjustment. The presence of Moraxella
catarrhalis was associated with previous wheezing only when day-
care attendance was not factored in the model, suggesting that day-
care attendance might influence or confound this relationship.
Given the results observed in the CS-Group at 1 year, we subse-
quently investigated the longitudinal subset (Long-Group). We did
not observe any significant differences in bacterial or fungal taxa
between wheezers and controls at birth, 3 months, or 6 months.
Similarly, no DE genes were detected at these early time points. No-
tably, the majority of wheezing cases in this cohort developed after
the 6-month time point, limiting our ability to detect early micro-
bial or immune differences. However, wheezers showed an earlier
appearance of H. influenzae, as demonstrated by survival analysis
(Chisq = 3.8, P value = 0.05) (Fig. 4E). Similar to fungi, there were
no differences in the presence (Fig. 4F) or composition (Fig. 4G) of
viruses between the two groups. Independent differential expres-
sion testing of host nasal genes unveiled 152 genes up-regulated and
63 genes down-regulated with wheeze with no changes detected in
blood gene expression (Fig. 4H and table S3). Further examination
of up-regulated immune genes revealed that receptors for both in-
terleukin-18 (IL-18) and IL-27 cytokines [interleukin 18 receptor
accessory protein (ILIS8RAP) and interleukin-27 receptor alpha
genes (IL27RA), respectively] were up-regulated. Other up-regulated
immune genes included the proinflammatory cytokine IL-32, the
Fc fragment of IgG receptor IIIb (FCGR3B), involved in immune
complex clearance, and CD79a (CD79A), the key component of the
B cell receptor complex, among others. These changes in immune
gene expression were moderate, with log fold changes (logFCs) not
exceeding 1.15.

Increased abundance of H. influenzae and Moraxella is
associated with a local and systemic monocyte

signature (CS-Group)

Transitioning from independent host and microbial analyses of
wheezers and controls, we next used a multiomics integrative ap-
proach using multiomics factor analysis (MOFA) to combine all
data from the CS-Group in an unsupervised fashion. MOFA infers a
low-dimensional representation of the data independently of group
classifications, capturing key patterns of covariance across omics da-
tasets through latent factors that represent the underlying principal
axes of heterogeneity across the samples. This approach has the
advantage of revealing interconnected features between host and
microbial data while bypassing the subjectivity of parent-reported
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Fig. 4. Parent-reported wheeze in the first year of life affects local nasal bacterial
microbiota composition and host immune gene expression at steady state
(CS-Group). (A) Observed bacterial and (B), fungal richness between parents-reported
wheezers and controls. (C) Result of nasal bacteria LINDA testing between parent-
reported wheezers and controls unadjusted and (D) adjusted for daycare attendance.
(E) Kaplan-Meier curves representing the cumulative incidence of H. influenzae 19
appearance (event) with age between parent-reported wheezers (orange) and controls
(blue green) in the (Long-Group). (F) Nasal viral detection (no virus detected, 1 virus
detected, more than 1 virus detected) and (G) detailed viral composition of virus-
positive samples between parents-reported wheezers and controls. (H) Volcano plot
depicting the result of limma DE testing using a sex-adjusted model comparing
parents-reported wheezers and controls. Significantly DE genes (adjusted P value < 0.1)
increased in wheezers (orange) or controls (blue green) with immune genes repre-
sented by a square. Sample sizes are wheezers, n = 119; controls n = 114 for bacteria,
wheezers, n = 61; controls n = 77 for fungi, wheezers, n = 101; controls n = 98 for
viruses, wheezers, n = 82; controls n = 40 for host nasal, wheezers, n = 46; controls
n = 27 for host blood. Statistics represent the result of nonparametric Wilcoxon rank
sum tests [(A) and (B)], xz tests [(C) and (D)], limma (E), LINDA [(F) and (G)], and log-rank
test (H) with (multiple testing corrected for E to G) *P < 0.01.
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wheezing. The MOFA analysis of host immune nasal, host immune
blood, bacterial, fungal, and viral data identified three latent factors,
with factor 1 notably explaining 45% of the variance and integrat-
ing microbial (bacterial) data (7% of variance explained) with both
nasal (31% of variance explained) and blood (6% of variance ex-
plained) host immune features (Fig. 5A). Factor 1 scores were
higher in wheezers (W = 5904, P value < 0.001), underscoring a
significant link between host-microbial features and wheeze despite
the unsupervised nature of the analysis (Fig. 5B). Stratification
based on daycare attendance within wheeze and control groups
showed that factor 1 scores were significantly increased in wheezers
attending daycare in comparison with other groups (Kruskal-Wallis
x* = 27.54, P value < 0.001) (Fig. 5C). Inspection of factor 1’s top 20
features in both nasal (Fig. 5D) and blood host immune (Fig. 5E)
datasets revealed that eght of these genes were expressed both lo-
cally and systemically (local systemic genes). Other factors loadings
are presented in fig. S1. These included genes encoding for the ac-
tivin receptor type-1C (ACVRIC, also known as ALK7), Oncostatin
M (OSM), Aquaporin 9 (AQP9), tumor necrosis factor (TNF) su-
perfamily member 13b (TNFSF13B, also known as BAFF), interleu-
kin 36 alpha (IL36A), major histocompatibility complex class I E
(HLA-E), Toll-like receptor 8 (TLR8), and colony stimulating factor
2 receptor subunit alpha (CSF2RA). Factor 1 covariation was char-
acterized by increased abundance of H. influenzae and Moraxella
genus ASVs, while ASV's such as Neisseria, Prevotella melaninogenica,
and Veillonella were associated with lower factor 1 scores, partially
mirroring the earlier independent differential analysis results (Fig. 5F).
To investigate which cell types might underlie the observed local
systemic gene signature, we mapped these genes onto single-cell
transcriptomic data from the Human Lung Cell Atlas (HLCA) (see
Materials and Methods) (Fig. 5G). The average expression of these
genes was predominantly high in a small subset of myeloid cells,
with the exception of ACVRIC and HLA-E, which showed lower
expression levels (Fig. 5H). To further investigate the expression of
local systemic genes in specific myeloid cell types within the nasal
cavity under steady-state conditions, myeloid cells were then subset-
ted from the HLCA (Fig. 5I). We found that nasal monocytes pre-
dominantly expressed these local systemic genes, specifically OSM,
AQP9, TNFSF13B, and HLA-E, while macrophages showed lower
expression levels (Fig. 5]J). Human peripheral blood monocytes are
defined by their expression of markers including CD14, CD16,
CD64, CCR2, and CX3CR1 (21). Classical monocytes are identi-
fied by the high expression of CD14 [lipopolysaccharide (LPS) co-
receptor] and CCR2, a key mediator of monocyte migration, with
relatively lower levels of CX3CRI (fractalkine receptor), while non-
classical monocytes are marked by higher expression of CD16 (Fc
gamma RIII) and CX3CRI1. We also examined corresponding che-
mokine ligands such as CCL2, CCL7, and CX3CL1, important for
monocyte recruitment and trafficking (21-23). Local systemic genes
significantly correlated with classical monocyte markers CD14 and
CCR?2 gene expression, along with the expression of their corre-
sponding ligands genes CCL2 and CCL7 [Spearman false discovery
rate (FDR) < 0.05] (Fig. 5K). This pattern, along with the absence
of positive correlations with nonclassical marker genes CD16 and
CD64-both of which were expressed at low levels and filtered out
during preprocessing—and a negative correlation with the ligand-
receptor pair genes CX3CRI-CX3CL1I, indicates that these monocytes
are of the classical type. In summary, the unsupervised multiomics
integration of CS-Group samples revealed a unique local systemic
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Fig. 5. Multiomics data integration reveals a local and systemic monocyte immune signature associated with local bacterial increase of Haemophilus and
Moraxella (CS-Group). (A) Percentage of variance explained by each latent factor of MOFA combining microbial (bacteria, fungi, and viruses) and host (nasal and sys-
temic immune) datasets. (B) Factor1 values by parent-reported wheeze status. (C) Factor1 values by daycare attendance, stratified by wheezing. (D) Top 20 loading values
of local (nasal) immune gene expression for factor 1. (E) Top 20 loading values of systemic (blood) immune gene expression for factor 1. (F) Top 20 loading values of local
bacterial taxonomy for Factor1. (G) UMAP of nasal cells from the HCLA after batch correction and integration. (H) Dotplot of common local systemic genes identified by
MOFA; dot size represents percentage of cells within a cell type, color intensity reflects average gene expression across cells (yellow = low, purple = high). () UMAP of the
myeloid cell compartment from the HLCA nasal cell subset. (J) Dotplot of MOFA-identified local-systemic gene expression within the myeloid compartment. (K) Spearman
correlation plot between local nasal expression of shared genes and monocyte markers. (L) Graphical summary of findings: nasal bacterial dysbiosis with increased
H. influenzae and Moraxella sp. in wheezers associated with a local and systemic immune gene expression signature consistent with classical monocyte recruitment to the
airways. Sample sizes: bacteria (n = 233), fungi (n = 153), viruses (n = 199), nasal host (n = 122), and blood host (n = 73). Statistical tests: Wilcoxon rank sum [(B) and (C)]
and Spearman (K). *P < 0.05, and ***P < 0.001
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host immune signature, aligning with a classical monocyte pheno-
type. This pattern was associated with bacterial profiles dominated
by H. influenzae and Moraxella, suggestive of a generalized im-
mune state that is sustained in wheezers even when nonsymptom-
atic (Fig. 5L).

DISCUSSION

We aimed to address the relationship between host-microbial interac-
tions and the development of early respiratory immunity, with a focus
on wheezing during the first year of life. The analysis of the longitudi-
nal cohort (Long-Group) provided insights into the development of
host-microbial interactions in infants’ healthy upper airways from
birth to 1 year. We observed pronounced changes in the bacterial mi-
crobiota, particularly between birth and 3 months of age. This period
marked an increase in typical upper airways colonizers (24), such as
Prevotella, Dolosigranulum, Streptococcus, Porphyromonas, including
pathobionts of the Moraxella and Haemophilus genera, and a decline
in species from the Staphylococcus genus, aligning with bacterial mi-
crobiota trajectories described in other studies (4-6, 8, 18, 25). Nota-
bly, we found that these shifts in bacterial composition coincided with
significant changes in local gene expression. Among the most dynam-
ically regulated immune pathways was JAK/STAT signaling, which
showed a coordinated transcriptional shift in the first months of life.
Early-expressed genes such as STAT1, STAT3, JAK1, IL15, ILI5RA,
and cytokine receptors including IL6ST, CSF2, and IL5RA declined
with age. These were progressively replaced by increased expression of
JAK2, TYK2, multiple interferons (IFNs) (IFNG, IFNA6, and IFNL3),
the interferon receptor IFNAR2, and yc cytokine receptors (IL2RA,
IL2IR, IL4R, and IL10RA). This pattern aligns with findings that
neonatal macrophages exhibit exaggerated IL-6-induced STAT3
phosphorylation and heightened acute-phase responses due to low
SOCS3 expression, a key negative regulator, which may explain the
early dominance and later suppression of STAT3-related signaling
(26). Conversely, the delayed up-regulation of interferon pathway
genes reflects the known deficiency of type I IFN responses in neo-
nates, driven by reduced numbers and function of plasmacytoid den-
dritic cells (27-29) and align with earlier research conducted in a
similar population, demonstrating that gene expression modules re-
lated to interferon production were not only connected to early viral
infections in infants but also exhibited a distinct increase with age (8).
Together, these findings indicate a developmental “switch” in airway
cytokine signaling networks potentially orchestrated by microbial
colonization during this immunologically formative period.

We also noted a developmental shift toward adaptive immunity,
including B cell receptor signaling and Ty1/Ty2/Ty17 cell differen-
tiation. While our current understanding of the development of
adaptive immunity in the airways is limited, evidence from the gas-
trointestinal field has highlighted the essential role of the microbiota
in its induction. For example, indications that Ty17 differentiation
might be influenced by the microbiota emerged from observations
that intestinal T17 cells in mice are not detectable until around 3 to
4 weeks of age (30). In the gastrointestinal tract, Ty17 cell develop-
ment is hindered without microbiota (30), with segmented filamen-
tous bacteria promoting Tyl7 maturation (31), B cell activation
(32-34), and IgA production, which regulate microbial composi-
tion and immune balance (35, 36). In a murine model, a single aspi-
ration of a blend of human oral commensals (Streptococcus mitis,
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Veillonella parvula, and P. melaninogenica) was able to induce a
Tu17 response in the lower airway, which effectively reduced vul-
nerability to subsequent Streptococcus pneumoniae infection (37).
Moreover, axenic- and antibiotic-treated mice exhibit impaired
Ty17 responses in the airways, which has been linked to the airway
microbiota (38). The distinct bacterial-host immune coevolution we
have observed suggests that similar mechanisms might be operational
in the airways, particularly during the critical first three months, a
potential “window of opportunity” (39) for the development of the
immune system.

A distinctive aspect of this study is the investigation of the myco-
biome and respiratory viruses at steady state in a longitudinal pedi-
atric cohort. Contrary to our initial hypothesis, we observed no
coevolution between host immunity and nonbacterial microbial
kingdoms in the longitudinal group and, similarly, no evidence of
interaction in the cross-sectional group at year 1. Although the air-
way mycobiome, particularly lower airways fungi such as Aspergillus,
has been linked to several chronic diseases including asthma, cystic
fibrosis, and chronic obstructive pulmonary diseases (40), its role
in establishing baseline immune homeostasis remains elusive, even
in the gut (41). On the other hand, multiple longitudinal cohort
studies have established a connection between early respiratory mi-
crobiota development, notably the presence of Haemophilus and
Moraxella species, and susceptibility to viral respiratory tract infec-
tions (4, 8, 18, 42). In our study, the absence of an association be-
tween the presence of respiratory viruses and host immune gene
expression in both groups suggests that residual viruses, in the ab-
sence of symptoms, may not directly influence the immune system.
However, we did observe a correlation between previous wheezing
and the presence of H. influenzae and Moraxella. Given the estab-
lished link between these bacteria and acute respiratory infections,
we cannot dismiss the possibility that acute viral infections might
affect the bacterial microbiota or influence susceptibility to viral in-
fections, which were not examined in the current study. We also in-
vestigated how various factors affect the microbiota and immune
system at year 1 (CS-Group). We found that host gene expression
was unaffected by factors other than sex. Daycare attendance sig-
nificantly influenced the bacterial microbiota and viral presence; anti-
biotics showed a similar trend, consistent with findings from other
studies (1, 4, 18, 43). Only seasonal changes affected fungal compo-
sition in the upper airways, suggesting that the steady-state mycobi-
ome in the upper airways essentially reflects the fungi present in the
air. This is in line with reported high abundance of Sporobolomyces
in UK residential air samples, which shows a distinct seasonal pat-
tern (44).

Building on our initial findings, we aimed to determine whether
these early life host-microbial interactions were associated with pa-
rental reported wheezing in the first year of life. Standard differen-
tial expression and abundance analyses revealed moderate host
local immune gene expression differences between groups and vari-
ations in bacterial abundances, also linked with daycare. However,
the most important findings emerged from our integrative mul-
tiomics approach, which combined multikingdom microbial data
with host immune gene expression, both nasal and systemic. We
identified a multiomics factor capturing the covariation between
specific bacterial features and immune genes, suggesting potential
host-microbial interactions. This multiomics factor was significant-
ly increased in wheezers and even more so in individuals attending
daycare. The top bacterial contributors to this factor included the
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pathobionts H. influenzae and Moraxella, contrasting with reduced
abundance of typical healthy airway colonizers such as Neisseria,
Prevotella, and Veillonella. When examining the genes explaining
this factor in both local and systemic datasets, the same key genes—
including ACVRIC, OSM, AQP9, TNFSF13B (BAFF), IL36A, HLA-
E, TLRS, and CSF2RA—emerged as top features in both sets. These
findings suggest a shared immune transcriptional program present
across both mucosal and systemic compartments. To understand
the cellular origin of this immune signature, we mapped these genes
to nasal single-cell transcriptomic data from the HCLA. This re-
vealed predominant expression in myeloid cells, particularly nasal
monocytes, offering a plausible explanation for the presence of these
genes in both nasal and blood compartments, consistent with the
migratory nature of circulating monocytes. Some genes also showed
lower-level expression in macrophages, suggesting a broader innate
immune signature and a potential multi-pronged response. While
HLA-E showed more specific enrichment in the lymphoid compart-
ment, it was not a major focus of our cell-type interpretation, as the
majority of local-systemic genes were most highly expressed in
monocytes. Correlation with canonical monocyte markers (CD14
and CCR2) and their chemokine ligands (CCL2 and CCL7) further
supports monocytes as the most likely contributors to this local sys-
temic immune signal. Together, our findings support a biologically
plausible hypothesis: airway dysbiosis involving LPS-rich Gram-
negative organisms such as H. influenzae and Moraxella may lead to
sustained recruitment and activation of monocytes.

Supporting this hypothesis, increased levels of OSM have been
reported in asthma (45, 46), and recent findings identified OSM as
the most significant predicted upstream regulator of the transcrip-
tional response in patients with severe asthma (47). The same study
demonstrated in vivo that OSM is necessary and sufficient to drive
pathophysiological features observed in severe asthma following
exposure to LPS or Klebsiella pneumoniae (47). In addition, single-
cell RNA sequencing from human lung biopsies revealed macro-
phages as the dominant cell-type expressing OSM (47). Building
on this, this study found that LPS strongly induces OSM in human
monocyte-derived macrophages (MDMs) and murine bone mar-
row-derived macrophages (BMDMs), underscoring the critical role
of bacterial triggers in OSM-mediated airway inflammation (47).
AQP9 has been shown to be involved in immune functions such as
longevity of memory T cells (48) and both neutrophil and macro-
phage migration (49, 50). Microbial products including LPS are
known to activate B cells, either directly or indirectly, for example,
through the induction of BAFF from myeloid cells (51-53). Further-
more, BAFF protein concentration was increased in nasal lavage
samples from infants with Rous sarcoma virus (RSV)-associated
bronchiolitis, which was directly correlated with H. influenzae
abundance (54). The inhalation of LPS in healthy volunteers leads to
monocytes recruitment in the lungs within 8 hours (55), and in
mice, LPS treatment led to a significant increase in CCR2-dependent
alveolar monocytes, whereas mice lacking CCR2 showed reduced
monocyte recruitment (56). Together, these observations support a
model in which airway colonization by H. influenzae and Moraxella
promotes a low-grade, monocyte-driven inflammatory state via
LPS-mediated immune activation. However, the temporal dynamics
of this relationship remain unclear. It is possible that bacterial dys-
biosis precedes and contributes to wheezing or, alternatively, that
prior viral infections or inflammatory events create a niche that fa-
vors colonization by these taxa. This ambiguity is consistent with
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previous studies showing that bacterial shifts involving H. influenzae
and Moraxella can both precede (13, 18) and follow viral infec-
tions (8).

As with all observational cohort studies, our findings are cor-
relational and not designed to establish causality. Nonetheless, the
integration of longitudinal microbiota data with paired local and
systemic transcriptomics provides a framework for generating mech-
anistic hypotheses. A key insight from our analysis is the potential
recruitment of circulating monocytes in response to airway dysbio-
sis. While direct quantification of monocyte levels was not feasible
due to the limited blood volumes obtainable from 1-year-old chil-
dren, we inferred the most likely cellular origin of the gene signature
using the HCLA. Although derived from adult tissue, it remains the
best available reference for respiratory immune cells and allowed us
to infer likely cell types in the absence of pediatric single-cell data-
sets. Another limitation is that wheezing status was based on paren-
tal report, which introduces subjectivity and lacks clinical validation.
However, the core multiomic findings identified through unsuper-
vised factor analysis were entirely independent of wheeze classifica-
tion. This data-driven, label-free strategy greatly reduces the risk of
bias introduced by grouping misclassification. The identification of
H. influenzae and Moraxella as key microbial features aligns with
prior studies linking these taxa to wheeze and asthma risk (4, 12, 14),
further supporting the biological relevance and generalizability of
our results. In contrast, the monocyte-associated transcriptional
signature identified in our analysis is previously unreported and
warrants further validation. To further define the biological mean-
ing of these results, future studies should incorporate longitudinal
sampling before, during, and after wheezing episodes and long-term
clinical follow-up. These efforts will be essential to clarify causality
and determine whether the microbial-immune interactions identi-
fied here represent viable targets for early intervention in wheeze-
prone children.

In conclusion, our study reveals a unique coevolution between
bacteria and the host immune system in the first year of life, distinct
from fungi or viruses, with a notable shift in the first three months.
Children who wheezed in their first year showed a dysbiotic airway
microbiota, dominated by H. influenzae and Moraxella. This dysbio-
sis was linked to a generalized immune gene expression signature in
both blood and nasal samples, driven by circulating classical mono-
cytes. These findings shed light on the early-life interplay between
microbiota and the immune system, highlighting how bacterial im-
balances can shape systemic and local immune landscapes and af-
fect respiratory health.

MATERIALS AND METHODS

Ethics approval and consent to participate

Informed parental consent was obtained before inclusion in the
study, and ethical approval was obtained from the Regional Ethics
Committee (REC reference: 16/LO/1518).

Breathing Together cohort

This study includes children from the Breathing Together birth co-
hort (19), with recruitment activities conducted across five centres
in the United Kingdom: Aberdeen, Edinburgh, Imperial College
London, Queen Mary University London, and Isle of Wight, span-
ning from February 2017 to April 2019. Breathing Together cohort
inclusion criteria were a gestational age of over 37 weeks and the
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provision of written parental consent. The exclusion criteria en-
compassed multiple pregnancy, detection of maternal group B
Streptococcus (via vaginal swab or urine culture), the necessity for
continuous positive airway pressure (CPAP) or ventilatory support,
major congenital disorders (examples include congenital heart dis-
ease and cystic fibrosis), and anticipated challenges in follow-up
(such as planned relocation). For this study, exclusions also extended
to instances where either host or microbial samples were unavailable
or if data on early-life wheezing were missing. The classification of
participants into wheezers and controls was established on the basis
of parental responses to a questionnaire given when the child reached
1 year of age. Children were classified as wheezers if there were any
reported instances of wheezing during their first year. The control
group consisted of those children whose parents reported no wheez-
ing, no treatments for respiratory issues, absence of nocturnal dry
cough, and no diagnosis of bronchiolitis within the same period.

Participants sampling

Nasal swabs were collected using eSwabs (COPAN Diagnostics) and
interdental brushes (Dentocare 620, 2.7 mm in diameter) for micro-
biota and host cell sampling, respectively. For blood collection, 50 pl
of whole blood was obtained via capillary puncture using the Mini-
vette POCT system (Sarstedt). Nasal brushes content was released in
RLT lysis buffer (QIAGEN) with 2-mercaptoethanol (Sigma-Aldrich),
and all samples were stored at —80°C with an addition of RLT lysis
buffer (QIAGEN) with 2-mercaptoethanol (Sigma-Aldrich) for
host cells.

Bacterial 16S and fungal ITS amplicons sequencing

ESwab media were centrifuged at 14,000¢ for 10 min at 4°C. To
enhance fungal DNA retrieval, pellets were treated with 300 U of
lyticase (Sigma-Aldrich) at 37°C for 30 min with gentle shaking
(500 rpm). Lysates were further processed using the DNeasy Ultra-
Clean Microbial Kit (QIAGEN) according to the manufacturer’s
protocol, and DNA was eluted in 40 pl of microbial DNA-free water
(QIAGEN), following the manufacturer’s guidelines in a controlled
environment (laminar flow hood decontaminated with deoxyribo-
nuclease solution and ultraviolet-treated) to avoid microbial DNA
contamination. Negative controls included eSwab (opening and
closing of a tube at the different sampling sites), extraction (micro-
bial DNA-free water processed through the kit), and PCR (PCR re-
action with microbial DNA-free water instead of DNA template).
Each sample was amplified in two different reactions, the first one
with custom barcoded primers targeting the bacterial 16S rDNA
v1-v2 region (F-27/R-338) and the second one with custom barcoded
primers targeting fungal internal transcribed spacer region 1 (ITS1)
region. Primers used were 16S (forward: 5’ AATGATACGGCGAC-
CACCGAGATCTACACTATGGTAATTCCAGMGTTYGATYM-
TGGCTCAG-3’; reverse: 5'-CAAGCAGAAGACGGCATACGAG-
ATACGAGACTGATTNNNNNNNNNNNNAAGCTGCCTCCC-
GTAGGAGT-3') and ITS (forward: 5'-AATGATACGGCGACCA-
CCGAGATCTACACGGCTTGGTCATTTAGAGGAAGTAA-3';
reverse:5'-CAAGCAGAAGACGGCATACGAGATNNNNNNN-
NNNNNCGGCTGCGTTCTTCATCGATGC-3’), where the N se-
quences represent the sample-specific 12-nucleotides Golean barcodes.
PCR reaction consisted of microbial DNA-free water, 1 pl of each
primer at 5 pM, 2.5 pl of Accuprime PCR bufter II (Thermo Fisher
Scientific), 10 pl of DNA template, and 1 pl of Accuprime Taq

Pattaronietal., Sci. Adv. 11, eadw1410 (2025) 17 October 2025

polymerase (Thermo Fisher Scientific) with initial denaturation 3 min
at 94°C, followed by 35 cycles (16S) or 40 cycles (ITS) of 30-s dena-
turation at 94°C, 30-s annealing at 56°C (16S) or 52°C (ITS), and
60-s elongation at 68°C, with a final extension at 68°C for 10 min.
Amplicons were quantified using a Fragment Analyzer (Agilent
Technologies) with the High Sensitivity NGS Fragment Analysis
kit, pooled at equimolar amounts and purified using AMPure XP
bead cleanup system (Beckman Coulter). Denatured library pools
were sequenced on a MiSeq platform with a MiSeq Reagent Kit v2
(500 cycles).

Viral qPCR

Extracted RNA and DNA were processed for gPCR using the Bos-
phore SARS-CoV-2/Respiratory Pathogens Panel Kit vl (Anatolia
Geneworks) according to the manufacturer’s protocol on a Quant-
Studio 6 platform (Thermo Fisher Scientific). Given the lack of a
universal viral amplicon target, multiplex qPCR offers a sensitive
and scalable method for detecting the major wheeze-associated vi-
ruses in children (57) (RSV, human rhinovirus, human metapneu-
movirus (MPV), and influenza), all of which are covered by this
panel. This kit allows the detection of 13 viruses [severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2, RSV A&B, influenza
A&B, enterovirus, MPV, adenovirus, human parainfluenza 1/2/3/4,
and rhinovirus. A Ct threshold of <40 was applied, corresponding
to fluorescence levels above baseline noise and within the exponen-
tial phase of amplification. This threshold was consistently used
across all samples, and negative controls showed no amplification
below this value.

Host RNA sequencing

RNA was isolated from cell lysates using the Quick-RNA Microprep
Kit (Zymo Research), following the instructions provided in the
manufacturer’s guide. Library preparation was performed using the
NEBNextUltra Directional RNA Library Prep Kit for Illumina (New
England Biolabs), and resulting libraries were sequenced on an II-
lumina NovaSeq platform with a Reagent kit S4 (150 cycles).

Amplicons sequencing data preprocessing

Processing of the raw sequencing data was executed through the
microbiome-dada2 workflow, as outlined in the code availability sec-
tion, using the dada2 (58) R package (version 1.22.0). Raw FastQ files
underwent demultiplexing via the iu-demultiplex function (version
2.7) of the illumina-utils (59) toolkit. This was followed by the re-
moval of primers and adapters using cutadapt (60) (version 2.10),
and the subsequent steps included filtering and trimming of reads,
creation of sequencing error models, dereplication of sequences, in-
ference of ASVs, merging of paired-ends, and removal of chimeric
sequences. Taxonomy assignment for bacterial 16S ASV's was per-
formed using both the SILVA database (61) train set and species
assignment dataset (version 138.1) to ensure precise sequence match-
ing. Similarly, fungal ITS ASVs were taxonomically classified us-
ing the UNITE (62) database’s general release as of May 2021. A
phylogenetic tree of ASV sequences was constructed through multiple
alignment processes using the DECIPHER (63) R package (version
2.22.0), followed by the creation of a neighbor-joining tree with
the phangor (64) R package (version 2.8.1). This tree served as the
basis for a maximum likelihood tree analysis using the general-
ized time-reversible model with Gamma rate variation (GTR +
G + 1), as previously detailed in our references. The identification of
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contaminant taxa was carried out using the decontam (65) R package
(version 1.20.0) with a prevalence method at a threshold of 0.3 and
contaminant features were removed prior to further filtering (fig. S2).
All ASV tables with corresponding tree and taxonomy were import-
ed in the phyloseq (58) R package (version 1.44.0). ASVs with less
than 5% prevalence or unclassified at the phylum level were exclud-
ed, and samples yielding fewer than 5000 ASVs were also removed.
Closely related ASV's were agglomerated using single-linkage cluster-
ing with the tip_glom function from the phyloseq package (h = 0.05).
The Shannon index and observed richness were calculated using the
estimate_richness function of phyloseq. Last, ASV counts under-
went normalization using cumulative sum scaling via the calcNorm-
Factors function of the MetagenomeSeq (66) R package (version
1.42.0) with log transformation for beta diversity analysis.

Host sequencing data preprocessing

Raw FastQ files were processed using the nf-core/rnaseq pipeline
(version 3.10.1) of the nf-core collection of workflows (67) executed
with Nexflow (67) (version 22.10.4). Briefly, reads were aligned to
the GRCh38 reference genome with STAR (68) (version 2.7.10a)
and GRCh38.104 annotation file. Transcript quantification was per-
formed using Salmon (69) (version 1.9.0) and length-scaled genes
count used for downstream analyses were generated from the tran-
script level abundances using tximport (70) R package (version
1.12.0). Samples with less than 10 Mio mapped reads were excluded,
and genes with low expression were removed using the filterByExpr
function from the edgeR (7I) R package (version 3.42.4) with de-
fault parameters. Sequencing batch effects for blood samples were
removed using the removeBatchEffect function of limma R package
(version 3.56.2). Only protein coding genes were retained for down-
stream analysis, and immune genes were determined using the In-
nateDB (72) retrieved in April 2023. Gene counts were transformed
to logCPM using the voom function from the limma (73) R package
(version 3.56.2).

Microbial differential abundance testing, analysis of
similarities, and distance-based redundancy analysis
Microbial differential abundance testing was performed using LinDA
(74), a method specifically developed for microbiome composition-
al data, implemented in the microeco (75) R package (version
0.20.0) at the ASV level. LinDA applies log-ratio transformation to
handle relative abundance data appropriately and supports multi-
variable linear modeling, enabling adjustment for confounding fac-
tors. Models were defined as “~Parameter]l + Parameter2” for more
linear modeling with more than one variable. ANOSIM was per-
formed on the weighted Unifrac distance matrix using the adonis2
function from the vegan R package (version 2.6.4). To evaluate the
impact of covariates on microbiota beta diversity and identify the
most relevant variables, we performed distance-based redundancy
analysis ((bRDA) using the dbrda function of R vegan package (ver-
sion 2.6.4). dbRDA was performed on the weighted Unifrac distance
matrix, followed by stepwise variable selection guided by R* values
using the ordi2step function (vegan package version 2.6.4), and re-
sulting P values were FDR-corrected using the p.adjust function
from the stats R package (version 4.3.1).

Host differential abundance testing and pathway analysis
Voom-transformed gene counts were used for differential expres-
sion testing using the limma R package (version 3.56.2). A linear
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model was constructed as follows “~Parameter1 + Parameter2” and
used to fit gene expression data, and empirical Bayes statistics were
applied to determine DE genes. Benjamini-Hochberg (BH) proce-
dure was used for adjusting P values. Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis of immune genes was exe-
cuted separately for up-regulated and down-regulated immune
genes using the enrichKEGG function from the clusterProfiler (76)
R package (version 4.8.2). The enrichment significance was assessed
using hypergeometric testing and BH adjusted for multiple com-
parisons, and only pathways with a minimum DE gene counts > 4
were reported.

Intra-individual microbiota and gene expression stability
Intra-individual stability of microbial data was assessed by calculat-
ing the weighted Unifrac distance between two consecutive time-
points for children with a minimum of 3 complete samples set out of
4 timepoints. For gene expression data, stability was assessed by cal-
culating the maximum distance between two consecutive time
points for children with a minimum of three complete timepoints.

Multiomics data integration

Multiomics integration was conducted using MOFA2 (77) (version
1.10.0) incorporating four distinct matrices. Before integration, the
bacterial and fungal matrices underwent a 10% prevalence thresh-
old filter to the bacterial and fungal matrices, followed by centered
log-ratio transformation with the transform function of the micro-
biome R package (version 1.22.0). Voom-normalized host nasal and
blood gene expression datasets were refined to exclusively encom-
pass immune genes. Data and model training options were set as
default with the number of factors set to 3.

HCLA analysis

The core integrated HLCA was downloaded and imported into a
Seurat object using the Seurat (78) R package (version 4.3.0.1). Only
annotated nasal cells were retained. Nasal single-cell data from the dif-
ferent studies were then split and normalized using SCTransform
(“v2”) from the sctransform (79) R package (version 0.3.5) and vari-
able features were identified with FindVariableFeatures. Batch correc-
tion for studies was performed by selecting 2000 variable features
using SelectIntegrationFeatures. Integration anchors were determined
using FindIntegrationAnchors with rpca reduction (k.anchor = 50).
The final integration—incorporating these anchors and additional
local systemic genes TNFSF13B, AQP9, OSM, ACVR1C—was per-
formed using the IntegrateData function. UMAP (Uniform Manifold
Approximation and Projection) was used for dimensionality reduc-
tion using 20 PCA dimensions. Myeloid cells were subset and un-
derwent neighbor finding and clustering before characterization
using HCLA labels and manual annotation. The expression of the four
genes of interest was assessed using the DotPlot function. Local sys-
temic positive Spearman gene expression correlations with mono-
cytes markers were performed on the voom-normalized gene counts
using the corr.test function from the psych R package (version 2.3.6)
with FDR correction for multiple testing using the p.adjust function
from the stats R package (version 4.3.1).

Statistical analyses
Statistical analyses were conducted as outlined in Materials and
Methods. For comparisons involving two or more groups, the
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Wilcoxon rank sum exact test was employed using the wilcox.test
function from the stats R package (version 4.3.1). To allow maximal
reproducibility in functions requiring random pseudo-numbers, a
global fixed random seed number was set to 2.

Supplementary Materials
This PDF file includes:

Figs.S1and S2

Tables S1to S3
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