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Abstract

Robust airline scheduling fosters operational resilience in aviation by producing plans that

remain feasible despite ensuing disruptions. This paper analyses the airline scheduling process,

including flight scheduling, fleet assignment, aircraft routing, and crew pairing. It examines how

previous studies optimise these decisions and deal with the influence of the aircraft ground han-

dling (turnaround) process, an important aspect of airport operations that is known to often create

havoc in flight timetables. The analysis of the literature focuses on how to harness turnaround

resilience to improve airline schedule robustness and applies a framework of variables (characteris-

tics) to support data collection and synthesis. The variables include levels of integration of multiple

planning stages, uncertainty modelling, turnaround consideration, type of robustness sought, and

type of optimisation method employed. Based on our review, we propose a comprehensive airline

scheduling process that incorporates turnaround planning to enhance the estimation of aircraft

turn time, crew sit time, and passenger connecting time under uncertainty. More precise esti-

mates will enable models to produce robust schedules at a lower cost (shorter buffer times). Since

third-party organisations typically operate turnarounds, this planning approach needs to involve

multiple autonomous decision-makers. Therefore, we encourage a collaborative robust scheduling

framework to be built on existing operations research theories and industry protocols.

Keywords: OR in airlines, turnaround operations, robust scheduling, collaborative scheduling

1. Introduction

Resilience in air transport systems has gained increasing attention from operational research

(OR) scholars as it is a pressing need for the industry. The global air transportation system trans-
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ported over 5.0 billion passengers on more than 32.4 million flights worldwide in 2024 alone (ICAO,

2021; IATA, 2022; ICAO, 2024). Changes in planned departure or arrival time of flights — de-

lays or cancellations— constitute irregular operations and may result in significant economic loss.

For example, in the US, the costs of delays in 2019 were estimated at 33.5 billion dollars (FAA,

2020). The causes of irregular operations are varied, from unavoidable bad weather events to the

pressure on capacity due to the industry’s almost uninterrupted, steadfast growth. Since the latter

is increasingly regarded as an important source of costly disruptions, it is imperative to factor

in resilience in operations planning. The need for industry-specific planning models to develop

profitable and resilient flight schedules has prompted relevant academic research.

Operational resilience has been defined in many contexts as the ability to withstand or rapidly

recover from disruptions (Mattsson and Jenelius, 2015). Duchek (2020) identifies two approaches

to foster resilience: active response and anticipation. The literature on airline scheduling is aligned

with these views (Figure 1) as it recognises two types of resilience: disruption management (re-

sponsiveness) and schedule robustness (Hassan et al., 2021; Clausen et al., 2010). Disruption

management leverages the responsiveness of the system by implementing reactive actions, e.g.

swapping two aircraft when one becomes unavailable. Schedule robustness consists of foreseeing

potential disruptions and proactively devising more reliable or flexible schedules. Reliable sched-

ules absorb minor disturbances with virtually no changes needed, while flexible schedules facilitate

the selection and implementation of recovery actions in the event of severe disruptions (Clausen

et al., 2010).

Figure 1: Taxonomy of airline scheduling resilience

The resilience of airline schedules and that of airport operations are mutually interdependent.

However, each is controlled by separate organisations. Every scheduled flight requires airport

facilities to land, take off, and handle aircraft (Schmidt, 2017). A significant portion of the uncer-

tainty affecting airline operations stems from activities performed at airports, such as turnaround

(De Neufville et al., 2013). Turnaround encompasses the services required by an aircraft before
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each outbound flight, e.g., cleaning, catering, and refuelling. This process significantly affects flight

departure punctuality (De Neufville et al., 2013; Schmidt, 2017). The turnaround begins shortly

after the aircraft arrives at the airport and must be completed before the scheduled departure

time of its next flight. If disruptions affect the punctuality of inbound flights, the timing and effi-

ciency of turnaround will also be affected (Wu and Caves, 2003). Similarly, delays in turnaround

may propagate throughout the airline schedule. According to Eurocontrol (2023), overall arrival

punctuality exceeded departure punctuality in 2022, which indicates the impact of airport oper-

ations, including turnaround, on delay propagation. Despite the interconnection between airline

scheduling and turnaround resilience, they have mostly been studied individually. The reason may

lie in the separation of decision makers; while airline schedules are developed by airline planners,

the execution of aircraft turnaround is typically in the hands of ground handling service providers

(GHSP), who subcontract from airlines directly.

We identified two gaps in the literature on airline schedule resilience. Firstly, to the best

of the authors’ knowledge, the way OR scholars have approached the interdependence between

resilience in airline schedules and turnaround operations has not been surveyed yet. Secondly, with

one exception (Ma et al., 2022), existing reviews have not discussed the two proactive resilience

options each in its own right.

Existing literature surveys on airline and turnaround scheduling can be classified into three

groups according to their approach to system resilience: no resilience, proactive resilience (ro-

bustness), and reactive resilience (responsiveness). Airline schedule planning involves decisions on

flight scheduling, fleet assignment, aircraft routing, and crew scheduling (Barnhart et al., 2003a).

Reviews focus on one or multiple of these decisions. Table 1 shows the scope of existing literature

reviews and facilitates the classification of each group.

The first group of reviews does not apply resilience concepts. The studies surveyed by Wandelt

et al. (2025); Kasirzadeh et al. (2017); Barnhart et al. (2003a) aim to plan schedules assuming that

disruptions do not affect airline operations. As a consequence, uncertainty is not considered, and

deterministic models are used to solve the scheduling problem. Schmidt (2017) examines studies

that model and simulate the turnaround for various purposes, such as planning the operation and

describing the impact of stochastic flight delays.

The proactive resilience group comprises reviews that examine the literature on airline schedule

robustness. The objective of the reviewed articles is to plan robust schedules, recognising that

uncertain events may disrupt the operation. Improving robustness demands modelling the inherent

stochasticity of the system. Only Ma et al. (2022) appears to appreciate the conceptual difference
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Study Literature review paper Decision Type of resilience

of resilience FS FA AR CP TA R F DM

Wandelt et al. (2025) ✓ ✓ ✓ ✓
No Kasirzadeh et al. (2017) ✓
resilience Schmidt (2017) ✓

Barnhart et al. (2003a) ✓ ✓ ✓ ✓
Wu et al. (2025) ✓
Santana et al. (2023) ✓

Reactive Hassan et al. (2021) ✓
resilience Su et al. (2021) ✓

Clausen et al. (2010) ✓
Ahmed and Poojari (2008) ✓ ✓
Filar et al. (2001) ✓
Xu et al. (2024) ✓ ✓ ✓ ✓ ∗ ∗
Ma et al. (2022) ✓ ✓ ✓ ✓
Wen et al. (2021) ✓ ∗ ∗ ✓

Proactive Zhou et al. (2020) ✓ ✓ ✓ ∗ ∗
resilience Deveci and Demirel (2018) ✓ ∗ ∗

Eltoukhy et al. (2017) ✓ ✓ ✓ ✓ ∗ ∗
This review ✓ ✓ ✓ ✓ ✓ ✓ ✓

FS: Flight schedule; FA: Fleet assignment; AR: Aircraft routing; CP: Crew pairing; TA: Turnaround
R: Reliability; F: Flexibility; DM: Disruption management; ∗: Do not differentiate between R and F

Table 1: Literature review papers grouped by scheduling decision and type of resilience

between reliability and flexibility. The authors analyse emerging technologies used to manage the

uncertainty that affects aircraft routing. They primarily focus on smart technologies, e.g. big data,

machine learning, and the internet of things. Other studies in this group do not differentiate the

types of robustness (Xu et al., 2024; Wen et al., 2021; Zhou et al., 2020; Deveci and Demirel, 2018).

Reviews in the reactive resilience group analyse proposed models to recover a disrupted schedule

in operational time rather than planning the schedule. Decisions in this case relate to the recovery

of aircraft rotations, passenger itineraries, and crew itineraries post-disruption. Unlike proactive

resilience, reactive resilience does not require uncertainty modelling because the disruption has

already occurred.

Our review complements the proactive resilience group by examining the robustness of airline

schedules considering all stages or decisions of the airline scheduling process, both types of schedule

robustness— reliability and flexibility— , and how studies on airline schedule robustness model the

influence of aircraft turnaround operations. The outcomes of our analysis will benefit the work of

OR scholars in many directions. Firstly, the analysis will reveal patterns in the OR methods used

to model uncertainty. Secondly, we discuss how the inclusion of turnaround operations may help
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researchers to identify new mechanisms to enhance the reliability and flexibility of airline schedules,

such as where it may be most cost-effective to include a time buffer in the aircraft ground time.

Cost-effectiveness depends on the trade-off between on-time performance and aircraft productivity

(Wu and Caves, 2004). Thirdly, we will discuss the role of collaborative scheduling in enhancing

robustness on turnaround.

This review complements the existing surveys on robust scheduling by examining the OR

methods applied. Traditionally, airline scheduling has relied on deterministic, exact or heuris-

tic optimisation models (Barnhart et al., 2003a). When the need for robust scheduling emerged

more strongly in the early 2000s, simulation and stochastic optimisation models were also adopted

(Barnhart et al., 2003a; Barnhart and Smith, 2012). Simulation models have been instrumental

in evaluating schedule performance under uncertainty (Rosenberger et al., 2002; Lee et al., 2003),

particularly when the schedule is planned using a deterministic optimisation model. However, the

use of simulation in this context has not been surveyed (see Table A.1).

In summary, this paper outlines an approach to robust airline schedule planning that integrates

turnaround resilience. By extending the airline scheduling process considering the turnaround

planning, we offer a holistic scheduling perspective that is essential for enhancing the robustness

of airline operations. We also propose a framework of definitions for robust airline scheduling from

an OR standpoint. The developed framework is used to conduct a literature review and assess

the current advancements in the topic. Based on a critical evaluation of the literature, we identify

potential research directions to further develop the field.

This paper is organised as follows. Section 2 outlines the airline scheduling and turnaround

planning processes, highlighting their interdependence. It also introduces our proposed framework

for review, in all details. Section 3 discusses the methodology we followed in our survey, reporting

the criteria used to identify and select the papers to be reviewed. Insights supported by descriptive

statistics of our review findings are presented in section 4. Section 5 identifies open problems and

discusses their impact on scholarship and practice. Section 6 offers guidelines for future work based

on the OR methodologies applied in the literature. Finally, section 7 summarises our concluding

remarks.

2. Evaluation framework for robustness approaches

The conceptual framework aims to describe the methodological and theoretical background that

underpins this review by identifying the variables to be evaluated in the survey (Paul et al., 2024).

The selection of the variables is based on relevant literature on airline and turnaround operations.
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Particularly, we focused on research concerning airline schedule planning, as robustness is achieved

during the planning process. The literature on airline scheduling, in turn, revealed the need to

investigate the interactions between airline schedules and aircraft ground handling, or turnaround

planning.

Section 2.1 analyses the airline planning process and its interrelation with turnaround. The

analysis shapes the set of variables of our conceptual framework, presented in section 2.2.

2.1. Airline operations planning

During the airline planning process, planners design schedules based on strategic decisions about

fleet acquisition and route coverage. Airline scheduling determines future operations, including

details such as dates, times, and the allocation of resources to each flight (De Neufville et al., 2013;

Belobaba et al., 2009). Airline schedule planning is typically formulated as an optimisation problem

aimed at maximising profitability. This problem is commonly divided into four deterministic stages:

flight scheduling, fleet assignment, aircraft routing, and crew pairing (Barnhart and Talluri, 1997;

Barnhart et al., 2003a). Due to the complexity and large scale of the optimisation stages (Klabjan,

2005), these have been traditionally solved sequentially. In the traditional approach, the solution

to one optimisation problem is an input for the subsequent stage. For instance, timetables obtained

in flight scheduling constrain fleet assignment. Figure 2 illustrates the optimisation process and

each of the stages, which are explained in the following sections.

2.1.1. Flight scheduling

During flight scheduling, airlines determine the markets to serve, the flight frequency on each

route, and the scheduled departure and arrival times for each flight leg, i.e. the timetables. The

decisions are driven by demand and seek to maximise overall profit and market share (Barnhart

et al., 2003a; Barnhart and Talluri, 1997). A notable progress in algorithms developed for timetable

planning involves the application of incremental approaches, which performs small changes to

a published flight schedule by adding and removing flight legs from a predefined set (Barnhart

et al., 2003a). These approaches solve the scheduling problem efficiently and set the foundation

for flight retiming techniques (Barnhart et al., 2003a; Belobaba et al., 2009). Retiming adjusts

flight departure times of a schedule within specified time windows after the optimisation of other

subproblems. This technique improves the solution quality of subsequent subproblems, otherwise

limited by the ”optimal” flight schedule.
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Figure 2: Airline schedule planning process

2.1.2. Fleet assignment

Fleet assignment allocates an aircraft type to each scheduled flight, aiming to meet market

demand at minimal cost. Fleet assignment models (FAM) consider the technical characteristics

and performance of the aircraft, e.g., size, range, etc. This typically results in maximising aircraft

utilisation and keeping turnaround times at a minimum to reduce costs (De Neufville et al., 2013).

The costs considered include the operating expenses of each flight leg and the passenger spill (unmet

demand) costs.

The cost and productivity of the fleet are affected by both the airborne and ground time.

Barnhart et al. (2003a) emphasise the importance of considering the stochastic nature of these

times in fleet assignment models. Factors such as weather conditions, air traffic, and ground

congestion contribute to variations in airborne and ground times. Ground time is heavily influenced

by the uncertainty of turnaround operations, which are affected by the variability in sub-processes

duration, the possible unavailability of required resources, and other factors.

2.1.3. Aircraft routing

Aircraft routing assigns specific aircraft to each flight leg in the timetable, based on the fleet

allocations determined during the fleet assignment stage. This assignment provides the route that
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each aircraft will take across the network on the day of operations. To be more specific, the set

of flights assigned to an aircraft is timed to form an ordered sequence where the destination of

one flight is the origin of the subsequent one (Barnhart et al., 2003a; Wu, 2010). These routes

must enable the aircraft to receive regular maintenance at specified airports; for that reason, this

optimisation problem is often called aircraft maintenance routing problem.

Aircraft routing may generate disruptions that affect robustness. In schedules with insufficient

time for airborne and ground operations, delays occur easily. Delays may propagate through the

routes, potentially triggering flight cancellations and breaking crew and passenger connections.

2.1.4. Crew pairing

Crew scheduling assigns crew members to all flights in the timetable. To reduce complexity,

it is broken down into two problems that are solved independently: crew pairing and crew as-

signment. Crew pairing generates multi-day work schedules for crews to cover all flights, aiming

to minimise overall cost. Pairings are usually built by concatenating multiple duty periods, i.e.

24-hour sequence of flights separated by a certain connecting time, with mandatory rest time in

between (Barnhart et al., 2003b). Each of these pairings is assigned to cockpit crew members and

service attendants during crew assignment (Barnhart et al., 2003a), to form monthly schedules. In

this paper, we analyse the crew pairing problem. Pairing considers constraints related to labour

regulation, such as maximum duty time, minimum and maximum connection times (known as sit

time), etc. (Barnhart et al., 2003a).

2.1.5. Aircraft ground handling or turnaround

The turnaround process prepares the aircraft for the next flight and takes place during its

ground time. It encompasses various services, such as boarding and disembarking, baggage loading

and unloading, refuelling, cabin cleaning, and others. Ideally, the turnaround starts at the Sched-

uled In-Block Time (SIBT) and ends at the Scheduled Off-Block Time (SOBT), corresponding to

the time printed on passenger tickets for arrival and departure, respectively. Thus, the turnaround

is aligned with the timetables produced by the flight scheduling. Additionally, there are precedence

relations between certain pairs of turnaround activities, and some pairs cannot be executed at the

same time, e.g. for most aircraft types, boarding cannot start until aircraft fuelling has finished.

Therefore, efficient turnarounds are essential to ensure on-time departures.

The management of turnaround operations is inherently complex as it involves multiple ac-

tors and shared resources. Turnaround tasks are typically performed by third-party organisations

subcontracted by airlines, the GHSP (Graham, 2018). There may be multiple GHSPs operating
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at each airport, meaning that they share physical space and equipment. An airport operator is

responsible for coordinating the use of its facilities. Additionally, each GHSP team serves various

turnarounds during the day, which implies travel times and replenishment of supplies. Hence, the

visits of each team need to be planned through synchronised routing plans.

2.2. Framework variables

To support this review, we propose a framework that defines the characteristics considered

essential in robust airline and turnaround scheduling studies, i.e. framework variables. The frame-

work makes explicit prior knowledge and assumptions by supporting variables on fundamental

topics (Tranfield et al., 2003), including non-resilient airline schedule planning and uncertainty

management in comparable transportation systems, such as train timetable rescheduling (Zhan

et al., 2024). To facilitate data extraction, synthesis, and explanation of the findings (Tranfield

et al., 2003; Denyer and Tranfield, 2009; Paul et al., 2024), the framework also defines the values

each variable can take. This enables the articles to be classified according to a predefined set of

categories and analysed. Figure 3 offers a visual representation of the framework.

Figure 3: Framework variables and values
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2.2.1. Integration of planning stages

The four airline scheduling subproblems had traditionally been addressed sequentially, taking

the solution of one problem as input for the next one. The drawback of this approach is that

the overall solution is often suboptimal because the solution of each stage constrains the feasible

solutions of subsequent stages (Wu, 2010). The integration of planning stages variable describes

the approaches that non-resilient airline scheduling literature, i.e. not concerned with robustness,

has proposed to enhance the quality of the solution by integrally considering the airline scheduling

subproblems.

Two strategies have been proposed to mitigate this adverse effect. The first widely used strategy

replaces the exact flight times from the optimal schedule (first stage) with time windows in the

formulation of the following subproblems. For example, a time window may start 10 minutes earlier

than the optimal flight departure and finish 10 minutes later. This expands the search space in

subsequent optimisation problems and enhances the quality of the overall solution. Various studies

have employed this strategy to integrate flight scheduling with other stages, such as fleet assignment

(Belanger et al., 2006; Rexing et al., 2000), aircraft routing (Desaulniers et al., 1997), and crew

pairing (Klabjan et al., 2002). The second strategy formulates and solves a single optimisation

model that addresses two or more planning problems. Barnhart et al. (1998) and Haouari et al.

(2009) are examples that simultaneously solve fleet assignment and aircraft routing. This approach

overcomes the limitation of the sequential approach, where the optimal fleet assignment may be

infeasible for maintenance. The categories used to classify the papers according to this variable

are:

Single stage planning : Papers that solve one of the airline scheduling stages individually.

Integrated airline scheduling : Articles that propose approaches to simultaneously address two

or more airline schedule optimisation problems.

2.2.2. Uncertainty modelling

Airline operation planners aiming to plan robust schedules need to incorporate operational

feedback into the decision-making process. The inherent stochasticity of airline operations often

prevents optimal schedules from being operated as planned (Belobaba et al., 2009). Typically,

the schedule planning process is completed months before the day of operations and assumes

certain system conditions, e.g. specified flight block times and aircraft turn times. On the day of

operations, however, the assumptions may not hold due to several factors and schedules derived

from deterministic optimisation models may no longer be optimal. To address this, robust airline

scheduling implements stochastic models to develop plans that remain effective despite potential
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operational disruptions.

The uncertainty modelling variable describes the OR methods that modellers can use to develop

robust and cost-effective schedules in realistic operational settings. In the following, we present

our selection of values for this variable, which is consistent with the categories that emerged from

the literature on train scheduling under uncertainty (Zhan et al., 2024).

Stochastic optimisation: Multiple methods optimise the performance of the system under un-

certain parameters, with the most typical being two-stage stochastic programming, chance con-

straints (Birge and Louveaux, 2011) and robust optimisation (Bertsimas and Sim, 2004).

Evaluate deterministic solution with simulation: This approach produces an optimal solu-

tion using deterministic optimisation and evaluates its performance under uncertainty using simu-

lation (Belobaba et al., 2009). Simulation may use different types of models such as discrete-event

simulation (DES), agent-based simulation (ABS), or a hybrid model (Brailsford et al., 2019).

Simulation optimisation: Method used to address large-scale optimisation problems, often re-

ferred to as optimisation via simulation (Petropoulos et al., 2023). It provides a framework for

stochastic optimisation that uses simulation to estimate the stochastic variables (Fu, 2014). In

particular, we refer to simulation optimisation as the approach where the random output of the

simulation is used to guide the search process (Fu, 2014).

2.2.3. Turnaround consideration

In the review, we will analyse how airline scheduling models incorporate turnaround time.

Minimum turnaround time: Studies that define the minimum turn time based on the technical

specifications of each type of aircraft and a metric reflecting the congestion level of the airport where

the turnaround is performed.

Integrated airline and turnaround scheduling : The different services involved in the turnaround

are modelled and integrated into algorithms to improve the resilience of airline schedules.

2.2.4. Types of robustness

We will review the following two types of robustness:

Absorption robustness or reliability : The studies propose methods to include slacks into the

schedule to absorb the effects of disruptions and remain feasible. These buffer times may be inserted

in aircraft rotations, crew duties, or passenger itineraries, i.e. when developing the flight schedules

according to the demand.

Recovery robustness or flexibility : The approaches facilitate recovery actions to reduce the

cost of resuming normal operations, e.g. injecting swap opportunities in aircraft rotations and
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crew pairings.

2.2.5. Optimisation methods

The values of this variable are exact optimisation and heuristic optimisation.

3. Review Methodology

We review the contributions of published papers on the use of OR models to generate robust

airline and turnaround schedules. The review evaluates relevant articles according to the variables

of the framework introduced in Section 2.2 (Paul et al., 2024). The relevant articles were identified

and screened following the procedure described in this section. The PRISMA flow diagram intro-

duced in Moher et al. (2009) is used to visualise the process. The process includes four phases (see

Figure 4). It starts with the identification phase, in which we searched the bibliographic database

Scopus for terms describing two planning processes: airline scheduling and turnaround planning.

Figure 4: PRISMA workflow for paper selection

Table 2 shows the terms used. Term A contains keywords related to the development of

robust airline schedules, considering the four stages of this process: flight scheduling and retiming,

fleet assignment, aircraft routing, and crew pairing. Term B corresponds to the keywords related
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to the turnaround. Our review surveys turnaround resilience papers, i.e. robust planning and

responsiveness, because we are interested in studying how resilient turnarounds can enhance airline

scheduling. The identification phase used advanced searches with proximity operators to ensure

the relevance of the majority of the selected documents. This step yielded 121 papers.

Code Search Term

A
airline AND ((robust* OR resilien*) w/2 (((flight OR airline*) w/1 schedul*) OR
((fleet or tail) w/1 assignment) OR (aircraft w/1 (routing OR schedul*)) OR
(crew w/1 (pairing OR schedul*)) OR (integrated w/1 (schedul* OR modeling))))

B
airport* AND ((robust* OR resilien* OR recover*) W/2 (plan*OR schedul*)) AND
((ground OR turnaround OR apron) AND operation*))

Table 2: Search terms per planning process

In the next phase, the identified papers were screened to keep only articles published in peer-

reviewed journals, i.e. excluding conference papers, reviews and book chapters. Additionally, du-

plicates were eliminated at this stage. The publication date was not a screening criterion; hence,

we considered all articles related to airline robustness and turnaround resilience. A corpus of 70

articles resulted from the screening step.

During the eligibility phase, we read the abstract of the screened papers to identify the research

objectives. The eligibility criterion was to retain only articles that propose optimisation models;

therefore, we excluded studies focused solely on modelling delay propagation. The reason is that

the methods used to solve optimisation models are not comparable to those for delay modelling,

e.g. queuing network models. The eligibility phase reduced the number of full-text reading papers

to 47.

As a second identification step, we performed manual selection and citation analysis based on

the bibliographies of the eligible papers. The backward and forward citation analyses identified 733

articles. These articles were screened using the same procedure described above, which reduced

the dataset to 373 articles. Subsequently, the eligibility criteria described previously were applied.

Together, the manual selection and citation analysis resulted in the selection of 23 new articles. In

total, 70 papers were analysed as part of the literature review, 60 on airline schedule robustness,

and 10 on turnaround resilience.

4. Descriptive statistics and insights

4.1. Emergence of robustness proxies

A classification that emerged from the review concerns the approach used to foster robustness.

Some studies identify a specific characteristic of the schedule that arguably improves robustness and
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then optimise the schedule based on that feature. We refer to this approach as proxy robustness.

An example of a proxy is penalising aircraft changes in crew pairing optimisation (Ben Ahmed

et al., 2022). This proxy assumes that pairings where the crew stays in the same aircraft for con-

secutive flights are more robust than those where the crew must disembark and board a different

aircraft because the requisite connecting time is shorter. Proxy robustness assumes that robustness

can be improved in the planning stage without the need for feedback from the operational stage.

In other words, the performance of solutions under operational uncertainty is not estimated during

the optimisation process. In contrast, feedback robustness is driven by the capacity of the schedule

to absorb or recover from disruptions, i.e. modellers estimate the future performance of the system.

Typically, a feedback algorithm minimises a probabilistic delay measure, e.g., total propagated de-

lay or the cost associated with delays. Our definition of feedback robustness differs from that of

Froyland et al. (2014) and Maher et al. (2014) in that we consider feedback may occur even if

performance assessment does not involve recovery actions. For example, Sanjeevi and Venkatacha-

lam (2021) evaluates solutions to the flight retiming problem (which minimises delay propagation)

using scenarios in the second stage of a two-stage stochastic programming formulation. In this

case, operational feedback is derived from the primary delay scenarios.

Most authors opt for feedback approaches and limited attention has been given to proxies (see

Table A.2). By analysing this under-researched approach, we identified promising opportunities to

expand the research and practice on airline scheduling. Our analysis suggests that proxy approaches

facilitate addressing complex problems with tractable formulations.

Firstly, proxies have enabled the optimisation of large networks (in terms of the number of flights).

To simplify the comparison of approaches, Table 3 shows the optimisation problems that have

been addressed using at least two approaches, with the corresponding maximum number of flights.

For example, the first row (aircraft routing) says that the largest network addressed in feedback

studies has 6,000 flights, while the figure for proxy studies is 9,036. According to the table, proxy

approaches handled more flights than feedback approaches. The table also reveals that proxy and

feedback approaches are not mutually exclusive. Their combination may produce robust schedules

for realistic-sized networks, leading to significant cost savings for airlines.

Secondly, proxies have been instrumental in integrating crew pairing with other decision stages.

Most of the crew scheduling studies (8 out of 11) apply a proxy. Integration entails challenges

because crew pairing is a highly complex optimisation problem in itself. For example, a medium-

sized fleet with 200 flights may result in billions of possible crew pairings (Klabjan, 2005). However,

approaches that succeed in injecting robustness into crew pairings can yield higher profitability,
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Optimisation problem Feedback Proxy
Proxy and
Feedback

Other

Aircraft routing 6,000 9,036 3,370 667
Aircraft routing and flight retiming 1,278 1,278 3,387
Crew scheduling 309 3,300 442 490
Aircraft routing and crew pairing 90 1,130 61

Table 3: Maximum number of flights per approach reported in the literature

as the crew is the second-largest operative cost for airlines (after fuel). Thirdly, only five articles

managed to integrate at least three optimisation problems for robust airline scheduling, with four

relying on proxies. Table 4 lists all articles that apply a proxy and indicates whether they address

single or integrated problems.

The previous analysis will hopefully motivate researchers to develop new proxies and improve

existing ones by incorporating uncertainty modelling. Table 4 shows the method used to model

uncertainty in each proxy study. Uncertainty management is crucial for proxy approaches because

the effectiveness of the proxy is not certain. For example, Dück et al. (2012) evaluates the efficacy

of the proxy that penalises crews changing aircraft using simulation. The study calculates the

correlation between the indicator used in the optimisation (non-robustness penalties) and the

robustness metric (reactionary delay) measured during the simulation. The results show a high

correlation, which indicates that the proxy is effective. The analysis suggests that the proxy is as

effective as optimising the expected reactionary delay. Dück et al. (2012) also examines the proxy

efficiency and reports that reactionary delays can be decreased by up to 6.4% without increasing

crew costs. Their analyses assume that simulation can accurately estimate schedule performance

during operations because it can capture non-linear dependencies. The importance of evaluating

robustness will be discussed further in section 4.3.

4.2. Integration of airline planning stages and type of optimisation method

The articles analysed in our review have contributed to scholarship and practice by i) innovating

models to consider uncertainty and maintain tractability, ii) developing efficient algorithms to

solve the models, iii) demonstrating how expanding the problem conceptualisation can enhance

robustness, iv) analysing the relative advantages of specific modelling approaches, e.g. comparing

robust optimisation versus chance constraints to address aircraft routing, v) proposing metrics and

methodologies to evaluate robustness, and vi) introducing robustness proxies. Tables 5 - 9 classify

the literature according to its main contributions or innovations. The tables also summarise the

characteristics of the methods applied to solve the models and the size of the network addressed.
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Problem App

Citation FS FAARCPTAP F Proxy UM
Ben Ahmed et al. (2018) x x x Short crew connecting time ES

Crew changing aircraft
Ben Ahmed et al. (2022) x x x x Short crew connecting time -

Crew changing aircraft
Cacchiani and Salazar-Gonzalez (2017) x x x x Crew changing aircraft -
Cacchiani and Salazar-Gonzalez (2020) x x x x x Short crew connecting time -

Crew changing aircraft
Dück et al. (2012) x x x x Crew changing aircraft TS
Gao et al. (2009) x x x Station purity -

Crew base purity
Ruther et al. (2017) x x x Crew changing aircraft -
Weide et al. (2010) x x x Short crew connecting time -

Crew changing aircraft
López-Ramos et al. (2025) x x x Slack between flights -
Ben Ahmed et al. (2017a) x x x x Slack between flights SB
Aloulou et al. (2013) x x x Slack between flights ES
Ehrgott and Ryan (2002) x x Short crew connecting time -

Crew changing aircraft
Schaefer et al. (2005) x x Short crew connecting time ES
Shebalov and Klabjan (2006) x x Similar crew duty per base -
Tam et al. (2011) x x x Short crew connecting time TS

Crew changing aircraft
Wei and Vaze (2018) x x Crew changing aircraft -

Crew base purity
Diepen et al. (2013) x x Idle time of boarding buses ES
Lapp and Cohn (2012) x x Maintenance misalignments -
Maher et al. (2014) x x x Maintenance misalignments TS
Zhang et al. (2024a) x x Delay risk of maintenance tasks -
Rosenberger et al. (2004) x x Hub isolation & short cycles ES
Smith and Johnson (2006) x x Station purity -

FS: Flight scheduling; FA: Fleet assignment; AR: Aircraft routing; CP: Crew pairing; TA: Turnaround
App: Robustness approach (P: Proxy; F: Feedback); UM: Uncertainty modelling (ES: Evaluate with simulation;
TS: Two-stage stochastic programming; SB: Scenario-based optimisation); - No uncertainty modelling

Table 4: Summary of studies applying proxy approaches

This aims at giving a sense of the tractability of the models and efficiency of the approaches.

To develop new knowledge, researchers can extend these methodologies while addressing the

limitations of specific approaches and modelling choices. From our analysis of these limitations, we

derived four main recommendations for future research. Firstly, since robustness always comes at a

cost, e.g. reduced aircraft utilisation or additional ground resources, these costs should be modelled

either as variables or constraints. This becomes critical for robust optimisation approaches that

may produce over-conservative and costly optimal solutions (Ball et al., 2007).

Secondly, the type of disruption addressed should be carefully considered when modelling un-
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Paper reference ToC Main contribution or innovation ToM Method Flights
Sanjeevi and Venkat-
achalam (2021)

i, ii TS model that balances rescheduling and de-
lay costs, and L-shaped algorithm

E BD 324

Novianingsih and Hadi-
anti (2016)

i Scenario-based stochastic retiming approach H - 287

Duran et al. (2015) i, iii Pioneer in modelling airport congestion and
cruise time as a controllable variable

E CPLEX 114

Chiraphadhanakul and
Barnhart (2013)

iv Compare flight retiming with aircraft rerout-
ing, optimising multiple objectives

E CPLEX 268

Sohoni et al. (2011) i, ii First CC model with block-time uncertainty
and efficient cutting algorithm

E BD 1500

Ahmadbeygi et al.
(2010)

i Simple linear model that applies time win-
dows to maintain revenue

E CPLEX 500

Lee et al. (2007) i, ii Model crewing variables to balance planned
and operational costs

H MGA 441

Wu (2006) iii Pioneer in modelling turnaround and block-
time uncertainties

H - -

Wu and Caves (2002) v Robustness metrics (expected delay and
mean delay in rotation segments)

E - 7

ToC: Type of contribution; i, ii, ii, iv, v: See main text; TS: Two-stage stochastic programming; CC: Chance
constraints; ToM: Type of method; E: Exact method; H: Heuristic; BD: Benders decomposition; -: Not specified;
CPLEX: Commercial solver

Table 5: Main contributions and innovations of flight scheduling and retiming papers

Paper reference ToC Main contribution or innovation ToM Method Flights
Smith and Johnson
(2006)

ii, vi Limit the number of fleets or crew compat-
ible families that can serve each station to
facilitate swaps

H CG-based 4182

Rosenberger et al.
(2004)

vi Creates partial rotations with many short
cycles to mitigate the impact of cancellations

E - 2558

ToC: Type of contribution; i, ii, ii, iv, v, vi: See main text; ToM: Type of Method; E: Exact method; H: Heuristic;
CG: Column generation

Table 6: Main contributions and innovations of fleet assignment papers

certainty. For example, the recoverable robust approach addresses severe disruptions, i.e. cancel-

lations and aircraft unavailability, and applies scenario-based optimisation (Glomb et al., 2024) or

two-stage stochastic programming (Froyland et al., 2014). The variability of this type of disrup-

tion is typically high, and therefore, the scenarios should be rigorously defined to ensure that the

solution is robust and close to the true optimum. Future research could expand these approaches

by applying sample average approximation (SAA) to analyse the impact of this modelling choice

in managing severe and highly variable disruptions (Birge and Louveaux, 2011).

Thirdly, while using deterministic functions to compute propagated delay (affected by schedul-

ing decisions) can reduce model complexity and computation time, they may produce inaccurate

estimations of delays and the associated costs. An interesting future stream of research is how

these functions can be based on delay propagation models, for example, using delay multipliers as
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Paper reference ToC Main contribution ToM Method Flights
Akıncılar and Güner
(2025)

v Methodology to evaluate the perfor-
mance of robust solutions

E - 229

Zhang et al. (2024a) vi Introduce proxy based on fuzzy risk as-
sesment of delays

H MH 9036

Birolini and Jacquillat
(2023)

i Scenario-based model with sample av-
erage approximation

E B&C 700

He et al. (2023) iii Pioneer to model disruptions caused by
maintenance operations

E CG 259

Eltoukhy et al. (2020) iii Pioneer to reduce turnaround duration
to improve robustness

H ACO 400

Cui et al. (2019) ii Solving algorithm that outperforms
CPLEX

H VNS 667

Marla et al. (2018) iv Compare RO and CC generic models
(solution quality and tractability)

E CPLEX 165

Yan and Kung (2018) i First RO approach that models corre-
lation between flight delays

E RG + CG 117

Liang et al. (2015) i, ii Model daily maintenance capacity and
introduce a CG-based heuristic

H CG-based 6000

Maher et al. (2014) i Detailed single-day AR and analyse
connection cost functions (quality, run-
time)

E BD + CG 3370

Froyland et al. (2014) i Pioneer to model a recoverable robust
AR based on TS

E BD + B&P 53

Lapp and Cohn (2012) i, vi Pioneer to model MLOF and mainte-
nance misalignment proxy

E CPLEX 3353

ToC: Type of contribution; i, ii, ii, iv, v, vi: See main text; MO: Multi-objective model; GP: Goal programming;
CPLEX: Commercial solver; RO: Robust optimisation; CC: Chance constraints; CG: Column generation AR:
Aircraft maintenance routing model; TS: Two-stage stochastic programming; MLOF: Maintenance line-of-flight;
ToM: Type of method; E: Exact method; H: Heuristic; -: Not specified; MH: Matheuristic; B&C: Branch and
cut; CG: Column generation; ACO: Ant colony optimisation; VNS: Variable neighbourhood search; RG: Row
generation; BD: Benders decomposition; B&P: Branch and price

Table 7: Main contributions and innovations of aircraft routing papers

introduced in Wu and Law (2019).

Fourthly, combining multiple scheduling problems does not always improve robustness or pro-

duce a useful approach to address the industry’s needs. Therefore, this type of research should

demonstrate the contributions to practice and scholarship. For example, Memarzadeh et al. (2024)

attempts to integrate aircraft routing and crew rostering by building four-week pairings. Assigning

individual crew members to aircraft rotations several months before operations may be simply

impractical, even if a tractable model could be formulated while complying with all applicable

regulations and business rules, e.g. holidays and fair workload (Barnhart et al., 2003b).
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Paper reference ToC Main contribution or innovation ToM Method Flights
Schrotenboer et al.
(2023)

i Model repairs crew assignments maintain-
ing flexibility to address future disruptions

E B&P 309

Wen et al. (2020) v Incorporate a robustness metric dependent
on the cruise variable time

E CG 98

Antunes et al.
(2019)

i RO model with crew delay propagation and
the complex crew cost structure

E CG 94

Wei and Vaze (2018) iv Estimate the extent of the crew-propagated
delays and disruptions

H CG & B&B 3300

Bayliss et al. (2017) i Schedule standby duties for reserve crews
to minimise flight delays and cancellations

E CPLEX 243

Chung et al. (2017) iii Crew pairing considering reserve crew plan-
ning

E CG 447

Lu and Gzara
(2015)

i, ii RO model solved with an efficient algo-
rithm based on LR for a larger instance

E LR 184

Muter et al. (2013) ii Solves the extra flight problem with a more
efficient algorithm for a larger network

H RG & CG 490

Tam et al. (2011) iv Compares TS (Yen and Birge, 2006) and
MO (Ehrgott and Ryan, 2002) using delay
scenarios

E DCG 442

Tekiner et al. (2009) iii Flexibility for extra flights by increasing
swap opportunities and long connections

E CG 96

Shebalov and Klab-
jan (2006)

i Maximise swap opportunities within lim-
ited additional crew cost

H LR 228

Yen and Birge
(2006)

i, ii Model relationships between crew pairings
in the non-linear recourse component

E B&B-based 79

Schaefer et al.
(2005)

v Introduces a measure for evaluating perfor-
mance based on the FTC

H LS 342

Ehrgott and Ryan
(2002)

ii, vi MO model that penalises aircraft changes,
solved with e-constraint method

E B&B -

ToC: Type of contribution; i, ii, ii, iv, v, vi: See main text; RO: Robust optimisation; LR: Lagrangian relaxation;
TS: Two-stage stochastic programming; MO: Multi-objective model; FTC: Flight time credit; ToM: Type of
method; E: Exact method; H: Heuristic; B&P: Branch and price; CG: Column generation; B&B: Branch and
bound; CPLEX: Commercial solver; RG: Row generation; DCG: Dynamic column generation; LS: Local search

Table 8: Main contributions and innovations of crew pairing papers

4.3. Uncertainty modelling

We have included two new subcategories under the stochastic optimisation group to classify

papers that consider stochasticity but do not fit within the subcategories introduced in section

2.2. The expected value subcategory includes approaches that formulate and solve a deterministic

model to optimise the expected value of a delay cost function. The scenario-based subcategory

uses disruption scenarios to assign values to specific parameters within the optimization model or

to evaluate the performance of the schedule. Scenario-based approaches either use historical data

or realise a probability distribution. For a detailed explanation of the differences between these
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Paper reference FS FA ARCPToC Main contribution or innovation ToM Method UM Flights
López-Ramos
et al. (2025)

x x ii Address the MO model with lexicographic GP
and e-constraint methods

E CPLEX - -

Glomb et al.
(2024)

x x i Embeds a recovery optimiser into a planning
model (similar recoverable robust AR)

H Gurobi SB 120

Memarzadeh
et al. (2024)

x x iii Tries to build crew parings that expand few
weeks

H RG & CG SB 90

Ben Ahmed
et al. (2022)

x x x i, ii Integrate three problems in a single model and
propose a MH to solve it

H MH - 646

Deng et al.
(2022)

x x ii Heuristic algorithm combining VNS and CG H VNS & CG - -

Simsek and Ak-
turk (2022)

x x x ii Introduces a MH to solve the integrated model H MH CC 150

Xu et al. (2021) x x x i, ii Consider demand recapture and solve the model
with an efficient al VNS algorithm

H VNS EV 1607

Cacchiani
and Salazar-
Gonzalez
(2020)

x x x x i Retime an existing schedule considering aircraft
maintenance and crewing constraints

H CG-based - 172

Ben Ahmed
et al. (2018)

x x i Integrate AR and CP problems in a model that
can be solved with a commercial solver

E CPLEX ES 336

Ben Ahmed
et al. (2017a)

x x ii Solves the two problems sequentially for a weekly
schedule and a large network

H CPLEX SB 3387

Ben Ahmed
et al. (2017b)

x x ii Introduce a heuristic that embeds simulation to
solve the integrated problem efficiently

H PSO & GA SB 1278

Cacchiani
and Salazar-
Gonzalez
(2017)

x x x i, ii Model three problems jointly and introduce an
efficient heuristic that reaches optimality

H+ B&P - 172

Jamili (2017) x x ii Efficient hybrid heuristic algorithm H PSO & SA RO -
Ruther et al.
(2017)

x x ii Model pricing problems for groups of resources
with similar availability periods and base

H B&P - 1130

Liu et al.
(2016)

x x i MO model that minimises costs and propagated
delay

E B&P EV 252

Dunbar et al.
(2014)

x x ii Iteratively solve AR and CR, considering inter-
actions across resources in propagated delay

H CG-based SB 54

Aloulou et al.
(2013)

x x vi Model based on a proxy that quantifies passen-
ger misconnections

E CPLEX ES 1278

Dück et al.
(2012)

x x i Pioneer in integrating AR and CP in a TS model E CG TS 61

Dunbar et al.
(2012)

x x i Compute the propagated delay considering the
interactions between aircraft and crew

E CPLEX EV 54

Burke et al.
(2010)

x x ii, iv Compare reliability vs flexibility approaches us-
ing MO and introduce hybridised GA with LS

H GA & LS SB 504

Weide et al.
(2010)

x x ii Improve cost and robustness progressively by it-
eratively solving AR and CP models

H - - 750

Gao et al.
(2009)

x x i Model crew connections explicitly and base ro-
bustness on FA proxy (station purity)

E B&B - 1388

Lan et al.
(2006)

x x i Seminal AR and FR (separate) models to im-
prove integrated and single-problem approaches

E B&P EV 102/1067

FS: Flight scheduling; FA: Fleet assignment; AR: Aircraft routing; CP: Crew pairing; ToC: Type of contribution; MO: Multi-
objective; MH: Matheuristic; VNS: Variable neighbourhood search; CG: Column generation; SA: Simulated annealing; TS:
Two-stage stochastic programming; GA: Genetic algorithm; ToM: Type of method; E: Exact; H: Heuristic; RG: Row generation;
PSO: Particle swarm optimisation; B&P: Branch and price; LS: Local search; B&B: Branch and bound; SB: scenario-based
optimisation; CC: Chance constraints; EV: Expected value; ES: Evaluate with simulation; RO: Robust optimisation

Table 9: Main contributions and innovations of papers addressing multiple scheduling problems
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two new subcategories and stochastic programming, refer to Birge and Louveaux (2011).

Optimisation Problem App

Citation UM Int FS FA AR CP TA P F
Dunbar et al. (2012) EV I x x x
Lan et al. (2006) EV I x x x
Liu et al. (2016) EV I x x x
Xu et al. (2021) EV I x x x x
Liang et al. (2015) EV S x x
Wu and Caves (2002) EV S x x
He et al. (2023) EV S x x
Schrotenboer et al. (2023) EV S x x
Glomb et al. (2024) SB I x x x
Memarzadeh et al. (2024) SB I x x x
Ben Ahmed et al. (2017a) SB I x x x x
Ben Ahmed et al. (2017b) SB I x x x
Burke et al. (2010) SB I x x x
Dunbar et al. (2014) SB I x x x
Evler et al. (2021a) SB I x x
Ahmadbeygi et al. (2010) SB S x x
Chiraphadhanakul and Barnhart (2013) SB S x x
Eltoukhy et al. (2020) SB S x x
Birolini and Jacquillat (2023) SB S x x
Bayliss et al. (2017) SB S x x
Lee et al. (2007) SB S x x
Novianingsih and Hadianti (2016) SB S x x
Wu (2006) SB S x x
Gök et al. (2023) Sim-opt S x x
Guimarans and Padrón (2022) Sim-opt S x x
Marla et al. (2018) CC vs RO S x x
Simsek and Akturk (2022) CC I x x x x
Duran et al. (2015) CC S x x
Sohoni et al. (2011) CC S x x
Zhu et al. (2022) CC S x x
Jamili (2017) RO I x x x
Lu and Gzara (2015) RO S x x
Yan and Kung (2018) RO S x x
Zhang et al. (2024b) RO S x x
Antunes et al. (2019) RO S x x
Dück et al. (2012) TS I x x x x
Froyland et al. (2014) TS S x x
Han et al. (2023) TS S x x
Maher et al. (2014) TS S x x x
Sanjeevi and Venkatachalam (2021) TS S x x
Tam et al. (2011) TS S x x x
Yen and Birge (2006) TS S x x

UM: Uncertainty modelling (EV: Expected value; SB: Scenario-based optimisation; Sim-opt: Simulation opti-
misation; CC: Chance constraints; RO: Robust optimisation; TS: Two-stage stochastic programming; CC vs RO:
compare CC with RO); Int: Integration (S: Single stage; I: Integrated); FS: Flight scheduling; FA: Fleet assignment;
AR: Aircraft routing; CP: Crew pairing; TA: Turnaround; App: Robustness approach (P: Proxy; F: Feedback)

Table 10: Articles applying feedback during optimisation
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Most authors (76%) recognise that modelling the inherent stochasticity of airline and turnaround

operations is essential to developing robust schedules (see Table A.2). This is especially true for

studies on turnaround resilient scheduling, as most papers (80%) use feedback from operations dur-

ing optimisation or evaluate schedule robustness using simulation. This signals a higher awareness

within the academic community of the multiple uncertainties in turnaround operations. The guide-

line for future research on airline and turnaround scheduling is to incorporate operations feedback

in the optimisation models. This can be accomplished by applying stochastic programming, ro-

bust optimisation, simulation optimisation, expected values or scenarios-based approaches. Table

10 summarises the feedback approaches proposed in the literature to solve different optimisation

problems.

As seen in Table 10, modellers prefer expected values and scenario-based optimisation to manage

the uncertainty in integrated optimisation problems. Only two studies apply stochastic program-

ming (Simsek and Akturk, 2022; Dück et al., 2012), and one uses robust optimisation (Jamili,

2017) for integrated formulations. This should not discourage research on the application of those

methodologies. Drawing on existing literature, future research may study how Benders’ decom-

position can solve a two-stage stochastic programming model to address an integrated aircraft

routing and crew pairing problem. Dück et al. (2012) decomposes and iteratively solves (using

column generation) a two-stage recourse model for the integrated aircraft routing and crew pairing

problem. Froyland et al. (2014) and Maher et al. (2014) decompose the aircraft routing problem

in two stages. In the first (deterministic) stage, they formulate aircraft planning while considering

maintenance constraints. The second stage uses stochastic recovery scenarios (aircraft rerouting,

flight cancellation and delays) to guide the search towards solutions that perform better under

uncertainty. Both studies use Benders’ decomposition to solve the problem as it is ”naturally fit”

for two-stage stochastic programming.

For articles implementing a robustness proxy with a deterministic model, it is advisable to eval-

uate schedule robustness with simulations or scenarios. Besides demonstrating the effectiveness of

the proxy, simulation can help demonstrate the value of robustness. For example, Rosenberger

et al. (2004) proposes a proxy-based fleet assignment model to reduce the cost of recovering from

disruptions. The proxy assumes that maximising the number of short cycles (sequence of flight legs

that start and end at the same hub) facilitates aircraft reroutings, reducing the need for flight can-

cellation when a flight is delayed. The effectiveness of the proxy can only be measured by evaluating

the schedule in the simulated operational setting. Rosenberger et al. (2004) uses a discrete-event

simulation (DES) model (Rosenberger et al., 2002) to prove that their schedules outperform the
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minimum-cost schedule using robustness metrics, i.e. tardiness, cancellations, reroutings and swaps.

Since DES models can represent relevant aspects of the operational environment, including

shared resources, they more accurately evaluate the future schedule performance. From Table

11, which lists all studies using simulation for schedule evaluation, we can learn that not only

proxy approaches benefit from DES simulation. Five feedback studies use a DES model or Simair

(Rosenberger et al., 2002; Lee et al., 2003) after the schedule has been optimised. Simair is a

DES model that comprehensively emulates the airline operational system (airside), including the

recovery actions implemented to mitigate disruptions. However, the turnaround duration in Simair

is modelled using a single probability distribution. Further research can be conducted to integrate a

detailed model of turnaround activities and resources in the simulation model to evaluate schedule

performance.

Citation Uncertainty Model App Int Decision problem

Simulation Feedback P F FS FA AR CP TA
Burke et al. (2010) DES SB x I x x
Ahmadbeygi et al. (2010) DES SB x S x
Novianingsih and Hadianti (2016) DES SB x S x
Diepen et al. (2013) DES x S x
Ben Ahmed et al. (2017b) MC SB x I x x
Wu (2006) MC SB x S x
Guimarans and Padrón (2022) MC Sim-opt x S x
Marla et al. (2018) MC CCvsRO x S x
Zhu et al. (2022) MC CC x S x
Ben Ahmed et al. (2018) MC x I x x
Aloulou et al. (2013) MC x I x x
Gök et al. (2023) MC+DES Sim-opt x S x
Akıncılar and Güner (2025) ∗ S x
Antunes et al. (2019) ∗ RO x S x
Evler et al. (2021b) ∗ I xb

Chung et al. (2017) ∗ S xa

Lee et al. (2007) Simair SB x S x
Rosenberger et al. (2004) Simair x S x
Schaefer et al. (2005) Simair x S x
Wei and Vaze (2018) Simair x S x
Ben Ahmed et al. (2017a) Simair SB x x I x x

DES: Discrete-event simulation; MC: Monte Carlo simulation; SB: Scenario-based optimisation; CC: Chance
constraints; RO: Robust optimisation; CCvsRO: Compare CC with RO; Sim-opt: Simulation optimisation;
App: Robustness approach (P: Proxy; F: Feedback); Int: Integration (I: Integrated, S: Single stage); FS: Flight
Scheduling; FA: Fleet Assignment; AR: Aircraft Routing; CP: Crew pairing; TA: Turnaround; * Not specified;
a Only for reserve crew; b Integrated with gate-reallocation

Table 11: Studies using simulation for schedule evaluation
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4.4. Turnaround consideration

Only three studies modelled turnaround operations to enhance the resilience of aircraft ro-

tations. Wu (2006) optimise the use of scheduled buffer times to maintain the balance between

reliability and profitability. The optimisation model reallocates and resizes buffers in the aircraft

rotations according to their vulnerability to delay propagation. The effectiveness of the allocated

buffers is evaluated using simulation models: a Monte Carlo simulation module accounts for the

uncertainty in en-route operations, and a semi-Markov chain model simulates ground operations.

Besides demonstrating that efficient turnarounds can absorb delays in the airline network, Wu

(2006) proves that considering turnaround uncertainty enables the appropriate use of costly buffer

times. In Evler et al. (2022) and Glomb et al. (2023), the potential of ground operations to mitigate

delay propagation was used to boost airline schedule recovery. These three studies demonstrate

that modelling turnaround activities potentially improves the performance of airline robust sched-

ules, revealing a gap in the literature. Existing research on turnaround scheduling provides valuable

tools to address the complexity of turnaround modelling in future research, in particular, studies

addressing the planning of multiple services simultaneously (Guimarans and Padrón, 2022; Gök

et al., 2023; Zhu et al., 2022). This will be discussed in-depth in the section 6.

4.5. Type of robustness

Relatively limited research has been dedicated to flexibility compared to reliability (see Table

A.2). To encourage further investigation of this under-researched strategy, we outline the main

characteristics of the existing literature on schedule flexibility.

Flexible schedules facilitate strategies to manage disruptions aiming to reduce the realised cost,

i.e. the cost of executing the schedule on the day of operations when disruptions occur. There exist

two major flexibility approaches in the literature. The first approach increases the opportunities

for aircraft and crew swaps (Burke et al., 2010; Maher et al., 2014), while the second reduces the

impact of delaying and cancelling flights (Rosenberger et al., 2004; Simsek and Akturk, 2022).

Similar to absorption robustness, there are costs associated with recovery robustness. Half of the

studies that foster flexible schedules optimise a surrogate for robustness. Common proxies in the

literature include: short aircraft cycles and hub isolation (Rosenberger et al., 2004), to reduce the

cost of cancellations; station and crew base purity (Smith and Johnson, 2006; Gao et al., 2009),

to facilitate aircraft and crew swaps, etc. In the case of proxies, an extra planned cost may result

from competing objectives. For instance, short cycles and hub isolation imply reduced connectivity

between hubs. Isolated hubs prevent disruptions at one hub from spreading to another. However,

this assignment may prevent the schedule from capturing ”throughs”—sequences of flights with
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demand from the first to the last flight leg that are operated by the same aircraft. There is revenue

associated with the premium paid by passengers who avoid changing aircraft in their connections.

The scope of our review includes ten articles dedicated to turnaround resilience, i.e. robustness

and responsiveness. Six articles promote reliability in turnaround operations (see Table A.2). The

mechanisms applied by these studies are similar to those used to improve absorption robustness in

airline schedules. Overall, in the six approaches, larger slacks are assigned to resources serving op-

erations more susceptible to delays (Diepen et al., 2013; Guimarans and Padrón, 2022; Gök et al.,

2023). The remaining four papers focus on the disruption management of apron operations and,

therefore, are not included in the classification of studies per type of robustness. The excluded

articles study the potential of ground operations (turnaround and gate assignment) to improve the

resilience of airline operations. To be more specific, the authors optimise the recovery of turnaround

schedules and gate assignments given airline schedule deviations considering passenger and crew

connections (Evler et al., 2021a,b). The recovery options developed in these studies are incorpo-

rated into the aircraft recovery model introduced in Evler et al. (2022). Interestingly, these ten

articles reveal growing recognition among scholars of the importance of airport processes, such as

turnaround, to robust airline scheduling.

5. Discussion and open problems

The previous section synthesises the literature on robust airline scheduling by combining and

evaluating the findings of individual studies. The insights derived from this process revealed open

problems that will be discussed in this section to shape prospective research directions.

The most prominent problem is the need for a wider perspective on the airline scheduling pro-

cess, incorporating aircraft turnaround. By considering the turnaround and its impact on airline

operational resilience, i.e. delay creation and propagation, the academic community can innovate

their approaches to robust scheduling. Optimisation models must consider that turnaround time

varies depending on the aircraft type, airport congestion and availability of ground resources, e.g.

staff, equipment, and stands. Overlooking this variability may result in under- (or over-)estimation

of optimal connection times for aircraft rotations, crew duties, and passenger itineraries. Future

research should aim to incorporate these three variability factors into robust scheduling decisions

such as aircraft routing, crew pairing and flight retiming. Modelling turnaround activities and re-

sources may be needed to capture the impact of ground-handling tasks on each specific scheduling

problem. For example, the interaction between the deboarding and boarding of crews changing

aircraft influences crew pairing decisions. Likewise, tight synchronisation between these two ac-
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tivities (deboarding and boarding) may result in broken passenger itineraries, affecting passenger

spill and recapture, which concerns fleet assignment and flight retiming models.

To address this need, we propose the comprehensive airline scheduling process, illustrated in

Figure 5. The figure expands Figure 2 by including a decision stage where the turnaround is

planned. This decision takes the partial schedule as input (green arrow) to estimate the aircraft

turn time and crew connecting time using a model of the ground handling operations in key airports

(hubs). Then, the estimations can inform the aircraft routing, crew pairing, and flight retiming

decisions (blue arrows). Partial examples of comprehensive scheduling process are in Wu and Law

(2019) who characterise stochasticity of delay propagation across airline networks considering the

turnaround activities; Evler et al. (2022) and Glomb et al. (2023) use variable minimum turn time

to update aircraft routing and recover airline operations; Eltoukhy et al. (2020) address aircraft

routing assuming that the minimum turnaround time in certain connections can be reduced with

additional resources; and Wu (2006) retime a schedule based on future airborne and ground time

estimated with simulation.

Figure 5: Comprehensive airline scheduling process

Another major open problem is the need for collaborative approaches to enhance the robust-

ness of airline schedules. Although this review demonstrated that schedule robustness can be im-

proved by leveraging turnaround resilience, most airline planners and researchers avoid modelling

turnarounds in their decision-making models, with few exceptions, e.g. Wu (2006). This is not

surprising because airlines have limited control over turnaround operations and, consequently, re-

stricted access to the data required for modelling. Since the deregulation and liberalisation of the
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airline industry, competition has led the market, including ground handling services (De Neufville

et al., 2013; Bazargan, 2010; Graham, 2018). Although the normative allows self-handling in

certain circumstances, in most airports, the turnaround of multiple airlines is operated by third-

party organisations, the GHSP (ECC, 1996). Therefore, informed planning decisions require the

collaboration of various decision-makers.

All actors involved in the airline schedules operation (airlines, airports, GHSP, etc.) are im-

pacted by disruptions and are interested in systemically improving resilience. However, individual

business objectives determine the boundaries of practicable collaboration. OR scholarship may

holistically study the robust scheduling problem and propose collaborative solutions that enhance

individual businesses and achieve common goals. Studies on the value of collaboration in supply

chain may theoretically support these efforts (Fu and Piplani, 2004; Wang et al., 2023).

Research on a collaborative robust scheduling framework may be of interest to practitioners and

researchers. It could build on airport collaborative decision-making framework (A-CDM) (Euro-

control, 2017). A-CDM is currently in place at some European airports to improve operational

responsiveness by facilitating coordination and information sharing among actors involved in pre-

departure processes. The success of A-CDM in facilitating disruption management signals the

applicability of collaboration to robust scheduling. In particular, actors (airline planners, airport

managers, and GHSP decision-makers) may be willing to cooperate to enhance the systemic re-

silience of operations from the planning stage. Policymakers may also be interested in fostering

collaboration to support robust airline scheduling. Although scheduling is currently performed by

airline planners autonomously, the resulting schedules affect the air transport industry as a whole,

and policymakers are concerned with fostering seamless air traffic management.

To illustrate how collaborative scheduling can build on A-CDM, Figure 6 shows the main A-

CDM milestones (stars in the image) in the operational plan of a busy airport (LHR, 2018). The

flight plan is activated three hours before the estimated off-block time (EOBT) from the origin air-

port. After the network manager confirms the aircraft has taken off (ATOT), the estimated in-block

time (EIBT) at the local airport is updated on the local A-CDM system. Discrepancies between

EIBT and SIBT trigger messages to the airport operator (AO), the airline, and its GHSPs. The

AO revisits the gate assignments, and the GHSPs reschedule and reroute their teams to accom-

modate the delayed flight. When the aircraft reaches its gate position (AIBT), the GHSP updates

the target off-block time (TOBT), based on which the target start-up approval time (TSAT) is

determined. The TSAT of all aircraft waiting to taxi out towards the runway is synchronised in

the pre-departure sequence, and therefore, adherence to TOBT is essential to streamline airside
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operations. The consistency of the TOBT is checked when boarding starts (ASBT) and, if the

check is successful (as depicted in Figure 6), permission to taxi out is requested (ASRT) shortly

before its approval (ASAT) at AOBT.

Figure 6: Example flight operation based on Eurocontrol CDM (source: (LHR, 2018; Eurocontrol, 2025))

Methodologies to define the earliest, yet feasible, TOBT can underpin collaborative schedul-

ing approaches. Evler et al. (2022) uses turnaround acceleration as a schedule recovery strategy

in cases where the airline manages its handling services. The methodology reallocates available

ground resources (staff and equipment) to delayed flights to minimise overall operational and recov-

ery costs across concurrent turnarounds. Reassignment opportunities are limited by the number of

resources available in each period of the turnaround daily schedule, i.e. shift design (Chew, 1991;

Chu, 2007; Wu et al., 2023). To foster schedule flexibility, self-handling airlines can jointly retime

the flight schedule and design ground shifts to facilitate turnaround acceleration. The approach

can be extended to airlines that outsource turnaround services by developing mechanisms to enable

partners (the airline and GHSPs) to share specific information to jointly solve the two planning

problems, i.e. flight retiming and shift design (Dudek and Stadtler, 2005; Pibernik et al., 2011;

Wang et al., 2023). These centralised approaches should evaluate the costs and benefits of col-

laboration and propose distribution mechanisms (Fu and Piplani, 2004; Aviv, 2007; Pérez-Perales

et al., 2024). Another approach is decentralised collaborative scheduling, where partners itera-

tively negotiate and compromise to find a ”Pareto optimal solution” for interdependent planning

problems (Homberger and Fink, 2017).

The collaborative robust scheduling framework differs from other decision-making frameworks

in many aspects. Firstly, the collaborative framework assumes that actors (an airline and GHSPs)

cooperate to achieve a shared goal (resilience) while protecting their financial feasibility and com-

petitiveness (Homberger and Fink, 2017). In contrast, Sun et al. (2025) and Eltoukhy et al. (2018)

support the interaction between an airline planner and a maintenance service provider (MSP) to
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decide competing objectives, assuming the dominance of one of them. Both frameworks (Sun et al.,

2025; Eltoukhy et al., 2018) apply a Stackelberg game approach where the follower provides feed-

back to the leader on their own planning decisions, which may strengthen dominance and make the

approach impractical. Secondly, the operation and organisational structure underpinning mainte-

nance services are different from those of turnaround. We analyse in more detail Sun et al. (2025)

and Eltoukhy et al. (2018) to understand these differences.

Sun et al. (2025) aims to invert the status quo of the negotiation between the airline and the

aircraft maintenance service providers (MSP), traditionally dominated by the airline. In Sun’s

framework, an MSP is the leading decision-maker interested in increasing its own profitability

by using resources efficiently and innovating pricing strategies. To achieve this, the approach

considers airlines’ objective of minimising operational costs while maintaining the maintenance

feasibility of most aircraft rotations. Therein, a deterministic aircraft maintenance routing model is

adapted to support the optimal allocation of MSP resources, e.g. scheduled flights can be cancelled

due to maintenance resource unavailability and the associated opportunity costs penalised. Our

collaborative framework addresses operational resilience as a shared goal (not only profitability),

affects various stages of the scheduling process (not only aircraft routing), integrates turnaround

models (multiple interdependent services), and involves multiple actors (GHSPs).

In Eltoukhy et al. (2018), the airline leads the game by building aircraft rotations that minimise

the costs of propagated delays. The MSP plans minimum-cost staff assignments to serve mainte-

nance visits on the airline schedule, and informs the airline of delays caused by staff unavailability.

The airline is supposed to adjust the rotations accordingly. However, since adjustments may re-

sult in unsatisfied demand, the airline may prefer to change its provider. Eltoukhy et al. (2018)

modelled maintenance visits as a single task performed by a single service provider, and all causes

of delay are aggregated except for staff unavailability. In contrast, the collaborative framework

accounts for the stochasticities in the airline schedule and turnaround operations that can cause

or amplify delays, including reactionary delay, availability of GHSP staff and equipment, variable

duration of multiple turnaround services, and interactions of different services and resources, e.g.

a crew disembarking late can delay various aircraft rotations and the teams servicing them. Since

recent studies split maintenance service into multiple tasks of shorter and stochastic durations

(Villafranca et al., 2025; Zhang et al., 2024a; He et al., 2023), the two processes (turnaround and

maintenance) may seem similar. However, maintenance tasks are performed by a single MSP at

the airport, which makes this operation less complex than turnaround.

Data collection may pose a major challenge for researchers aiming to develop a collaborative
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scheduling framework. Applying a case study research strategy may be difficult, as this demands

sensitive data from two separate organisations with perceived conflicting interests. However, an

experimental approach may be possible by building realistic data instances using freely available

data. Aircraft rotations of real airlines can be obtained from Flightradar24 (2024) and BTS (2025).

Crew assignments can be added using the mechanism applied in Wu and Law (2019) and the dataset

provided in Kasirzadeh et al. (2017). A realistic configuration of turnaround operations can build

on the literature. Dall’Olio and Kolisch (2023) combined the data (flight schedules, a map of the

apron, and information on the loading and unloading process) provided by a hub airport in Europe

(Munich) with the technical manuals of aircraft manufacturers (available online). The resulting

data instances and the method used to build them are available in the supplementary material. In

addition, Fricke and Schultz (2009); Oreschko et al. (2012) fitted probability distributions for the

processing times of most turnaround services. The data sources collated in Li et al. (2024) could

also provide insights for building realistic data instances.

6. Methodological background for future research

In this section, we introduce a range of OR methodologies that could form the basis for future

investigations into the open challenges discussed earlier, drawing on the models and methods

explored so far.

6.1. Integrating turnaround and airline scheduling models

Applying the comprehensive airline scheduling process, turnaround models can be incorporated

into aircraft routing, crew pairing, and flight retiming (see blue arrows in Figure 5) to obtain

more reliable aircraft rotations, crew duties, and passenger itineraries. We collate the existing

advancements in integrating turnaround planning with these three decisions to facilitate future

development.

Two approaches have been used to improve the responsiveness of airline schedules by supporting

decisions made during (or shortly before) operations (Evler et al., 2022; Glomb et al., 2023). Both

studies model turnaround activities in hub airports to decide simultaneously on aircraft rotations

(rerouting) and turnaround schedules. Extending the idea introduced in Eltoukhy et al. (2020),

they reduce the ground time of delayed aircraft to minimise the departure delay of downstream

flights at the cost of allocating additional resources to turnaround activities. They also change

some rotations if this is less costly than compensating passengers for broken itineraries. Changes

to aircraft rotations are, in practice, aircraft swaps, which may make crew pairings and aircraft
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maintenance plans infeasible unless certain conditions are met. Therefore, disruption management

models need to incorporate constraints to comply with predefined aircraft maintenance events

and crew assignments. These rerouting approaches differ from robust aircraft routing in that the

latter is concerned with satisfying the maintenance requirements during the entire planning horizon

despite uncertainties affecting operations.

Glomb et al. (2023) can be extended to address robust aircraft routing with turnaround. Al-

though it accounts for schedule deviations known one day ahead of operations, stochasticity is not

modelled. Therefore, we recommend incorporating uncertainty modelling with a feedback mech-

anism to support planning decisions made weeks in advance. In some aspects, the optimisation

model proposed by Glomb et al. (2023) is similar to those on robust aircraft routing reviewed in

this paper (see Table 12). It is based on a connection network graph and minimises the cost of

aircraft assignments along with the costs of delays and potential turnaround acceleration actions.

Future research can propose a two-stage stochastic programming model drawing on Maher et al.

(2014); Froyland et al. (2014), where planning decisions (aircraft assignments) are addressed in a

deterministic stage and the recovery opportunities are evaluated under stochastic scenarios in a

second stage. Alternatively, building on existing literature, Glomb’s model can be extended by

including constraints for maintenance requirements (Maher et al., 2018) and chance constraints to

limit the probability of each flight being delayed more than a certain parameter, e.g. 15 minutes

(Marla et al., 2018). Additionally, Marla et al. (2018); Yan and Kung (2018) can underpin robust

optimisation models where the maximum cost of delay is incorporated in the objective function.

A closer look at the methodologies of these approaches (Evler et al., 2022; Glomb et al., 2023)

provides insights for future research on integrated aircraft routing and turnaround planning. Evler

et al. (2022) defines a rolling horizon over a day of operations to address the integrated recovery

problem using multi-period optimisation (Glomb et al., 2022). Each period specifies scheduling con-

straints for turnaround activities in the next hub bank, while constraints on passenger itineraries

and aircraft rotations are considered for the entire day. The objective function minimises the costs

of aircraft assignments (planned operational cost) and recovery (accelerating turnaround activi-

ties, cancelling flights, and breaking passenger or crew connections) during the next period. The

model encompasses a vehicle routing problem with time windows (VRPTW) to support aircraft

routing and a resource-constrained project scheduling problem (RCPSP) to plan turnaround activ-

ities. Glomb et al. (2023) also combines RCPSP and VRPTW; the former calculates the costs of

the optimal turnaround schedule, while the latter determines the availability of ground resources

to accelerate critical turnarounds, i.e. it helps constrain the feasible space. Since VRPTW are
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Citation Model Obj. function (min) UM Method
Lapp and Cohn (2012) Assignment MM - E
Froyland et al. (2014) Network flow PC + RC TS E
Maher et al. (2014) Network flow PC + MM + RC TS E
Liang et al. (2015) Network flow TPDC EV H
Marla et al. (2018) Time-space network TPD CC vs RO E
Yan and Kung (2018) Integer programming MTPD RO E
Cui et al. (2019) Integer linear programming NA + DC - H
Eltoukhy et al. (2020) Multi-commodity network flow PDC SB H
He et al. (2023) Mathematical programming DRS + NA + IAP - H
Birolini and Jacquillat (2023) Set partitioning TPD SB E
Zhang et al. (2024a) Set partitioning TPD - E
Akıncılar and Güner (2025) Set partitioning NA + DC ES E
Glomb et al. (2023) Mixed-integer programming PC + DC + TAC - E

* Not specified; PC: Planned costs; MM: Maintenance misalignments; RC: Recovery costs; TPDC: Total propagated delay
costs; TPD: Total propagated delay; MTPD: Maximum total propagated delay; NA: Number of aircraft; DC: Delay cost;
PDC: Propagated delay costs; DRS: Delay risk score; IAP: Idle aircraft penalty; TAC: Turnaround acceleration costs;
UM; Uncertainty modelling; EV: Expected value; - No uncertainty modelling; TS: Two-stage stochastic programming; CC:
Chance constraints; RO: Robust optimisation; SB: Scenario-based optimisation; E: Exact, H: Heuristic ES: Evaluate with
simulation

Table 12: Models and methods per approach reported in the literature for aircraft routing

NP-hard combinatorial optimisation problems, modellers may need to develop compact formula-

tions equivalent to network flow models (Leggieri and Haouari, 2017) in order to address realistic

networks.

A study incorporating a turnaround simulation model within a flight retiming approach is in-

troduced in Wu (2006). The model estimates the duration and delay of ground-handling activities

under uncertainty, but it does not incorporate turnaround planning or recovery decisions because

ground resources are not modelled. The objective function minimises ground delay and the esti-

mated airborne delay. Wu (2006) can underpin future research to retime the airline and turnaround

schedules simultaneously, using a simulation optimisation approach to consider the stochasticity of

operations. The optimisation model can build on the reviewed studies on flight retiming shown in

Table 13. Most objective functions minimise the delay or its associated costs, while Sohoni et al.

(2011) also maximises the revenue from satisfied demand. Because schedule retiming may result in

infeasible passenger and crew itineraries, Lee et al. (2007) and Sohoni et al. (2011) minimise total

deviation from the original schedule.

The integration of turnaround planning with crew pairing has not been attempted, although the

interdependence across crew duties via aircraft rotations has been recognised (Schaefer et al., 2005;

Wei and Vaze, 2018). As Table 14 shows, crew pairing models minimise the delay costs or include

penalty costs associated with violations of robustness features, such as aircraft changes and short sit
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Citation Model Objective function UM Method
Wu and Caves (2002) * min PC EV E
Wu (2006) MP min ED SB H
Lee et al. (2007) MOO min DDT SB H
Ahmadbeygi et al. (2010) LP min EPD SB E
Sohoni et al. (2011) Stochastic IP max NR - DDT - OC CC E
Chiraphadhanakul and Barnhart (2013) LP min TEAD vs max TEES SB E
Duran et al. (2015) NLP min AIT + FC CC E
Novianingsih and Hadianti (2016) NLIP min TEPD SB H
Sanjeevi and Venkatachalam (2021) LP min TRC + EDC TS E

MP: Mathematical programming; MOO: Multi-objective optimisation; LP: Linear programming; IP: Integer pro-
gramming; NLP: Nonlinear programming; NLIP: Nonlinear integer programming; ED: Estimated delay; DDT:
Deviation from departure time; EPD: Expected propagated delay; NR: Net revenue; OC: Operational costs;
TEAD: Total expected arrival delay; TEES: Total expected effective slack; AIT: Aircraft idle time; FC: Fuel
cost; TEPD: Total expected propagated delay; TRC: Total reschedule costs; EDC: Expected delay costs; UM:
Uncertainty modelling (SB: Scenario-based optimisation; CC: Chance constraints; TS: Two-stage stochastic pro-
gramming); E: Exact, H: Heuristic

Table 13: Models and methods used in the flight retiming literature

times, i.e. connections shorter than the minimum connecting time (MCT) in the objective function.

Together, this helps address the interdependence challenges to some extent (Wei and Vaze, 2018).

However, the MCT variability and recovery potential of the turnaround have not been considered,

and this depends on the physical and operational configuration of the airport terminal. Short crew

sit times impact disembarking and boarding, which are a large proportion of turnaround. Since

ground handling operations are also interdependent, these activities significantly influence the flight

departure delay of multiple rotations (Neumann, 2019). In future research, objective functions may

optimise turnaround and crew schedule decisions simultaneously, for example, adjusting turnaround

resources to reduce boarding time. Such research would need to consider the collaboration of the

different actors involved in ground handling.

6.2. Methodologies for airline scheduling with turnaround

Our review found extensive use of most modelling methodologies to apply feedback during

optimisation, i.e. stochastic programming, robust optimisation and scenario-based approaches,

but limited use of simulation optimisation (see Table 10). While this methodology has been under-

researched in the robust airline scheduling literature, it has been applied to various problems in the

aviation industry, such as turnaround planning (Guimarans and Padrón, 2022; Gök et al., 2023),

runway scheduling (Shone et al., 2024), check-in counter allocation (Forbes et al., 2024), and airline

disruption management (Rhodes-Leader et al., 2022). Next, we will discuss the potential adoption

of these approaches in robust airline scheduling with turnaround.
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Citation Model Objective function UM Method
Ehrgott and Ryan (2002) Set partitioning min PC + PRV - E
Schaefer et al. (2005) Set partitioning min PC + PRV ES H
Yen and Birge (2006) Stochastic IP min PC + RC TS E
Shebalov and Klabjan (2006) IP max CSO ES H
Tekiner et al. (2009) Set partitioning max CSO + BT - E
Tam et al. (2011) Stochastic IP min AD TS E
Muter et al. (2013) Set covering min PC + RC - H
Lu and Gzara (2015) Multi-commodity flow min TC + MTD RO E
Chung et al. (2017) Set covering min PC + PDC + RCC ES E
Bayliss et al. (2017) MILP min ENC SB E
Wei and Vaze (2018) Set partitioning min PC + PRV ES H
Antunes et al. (2019) MILP min PC + DC RO E
Wen et al. (2020) Set partitioning min PC, PRV - E
Schrotenboer et al. (2023) Set covering min PC + RC + RCC EV E

IP: Integer programming; PC: Planned cost; PRV: Penalties for robustness violation; RC: Recovery costs;
CSO: Crew swap opportunities; BT: Buffer time; AD: Average delay; TC: Total cost; MTD: Maximum total
delay; PDC: Propagated delay cost; RCC: Reserve crew cost; ENC: Estimated number of cancellations; UM:
Uncertainty modelling (- No uncertainty modelling; ES: Evaluate with simulation; TS: Two-stage stochastic
programming; RO: Robust optimisation; SB: Scenario-based optimisation; EV: Expected value); E: Exact,
H: Heuristic

Table 14: Models and methods used in the crew pairing literature

The first approach, presented in Forbes et al. (2024), formulates the allocation problem as

a stochastic integer programming model and solves it using logic-based Benders decomposition

(LBBD). The delay is modelled as a function of the number of staff (single type) in multiple

periods and, relying on the monotonicity property, the output of a DES simulation is used as

Benders’ cuts for the master problem. By doing this, the approach avoids simulating all candidate

solutions, improving efficiency. The results report that LBBD outperforms a conventional solver

and reaches the optima or insignificant optimality gaps. This work can motivate applications of

LBBD to the network flow and set partitioning problems underlying the integration of turnaround

with aircraft routing and crew paring, respectively. This entails methodological contributions to

address various challenges, including the multivariate nature of the delay function and the existence

of VRP or RCPSP constraints.

The second approach, called simheuristics, embeds a simulation model within a metaheuristic

to search large solution spaces efficiently (Juan et al., 2015; Figueira and Almada-Lobo, 2014).

Similar to airline schedule operations, the runway scheduling problem addressed by Shone et al.

(2021) is characterised by multiple types of uncertainty (flight arrival times, sequence-dependent

aircraft separation and weather conditions), which are accounted for by the simulation. The multi-

objective model minimises schedule delays and operational delays using a complex cost function
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and is solved using a variable neighbourhood search (VNS) algorithm (Mladenovic and Hansen,

1997; Hansen et al., 2008). Simheuristics has been used to solve various NP-hard problems by

implementing a variety of metaheuristics, such as random variable neighborhood descent (RVND)

(Mecler et al., 2022) for the parallel machine scheduling problem (Abu-Marrul et al., 2023) and

genetic algorithms for the integrated facility location and vehicle routing (Rabbani et al., 2019).

The simulation models that capture the stochasticity of the turnaround system introduced in Gök

et al. (2023) can be extended to consider the influence of the delay propagated across the airline

schedule (aircraft rotations, crew duties and passenger itineraries) to address the complex cost

functions and constraints that configure the robust airline scheduling with turnaround.

The third approach is multi-fidelity modelling, which reduces the computational budget spent

in high-fidelity simulation by using a low-fidelity model, less computationally demanding, to drive

the search towards near-optimum areas (Lin et al., 2021; Xu et al., 2016). Rhodes-Leader et al.

(2022) applies multi-fidelity modelling to address the aircraft recovery problem using a determin-

istic mathematical programming model that finds initial solutions and a simulation optimisation

algorithm that improves them considering uncertainty.

7. Conclusion and avenues for research

This paper presents a framework that encompasses essential characteristics of robust scheduling

to support data extraction and synthesis (Paul et al., 2024; Tranfield et al., 2003). Each framework

variable regards a unique viewpoint on the methodologies proposed by the papers, facilitating the

analysis of their properties.

The literature confirmed that authors and airline operation planners are increasingly opting

for stochastic models to develop robust schedules (Simsek and Akturk, 2022; Marla et al., 2018;

Froyland et al., 2014). These studies have articulated stochastic optimisation approaches using the

applicable OR methodologies, including stochastic programming, robust optimisation and scenario-

based optimisation. The use of simulation optimisation has been limited, although simulation

models have proven effective in providing high-fidelity estimation of future operations to evalu-

ate the performance of planning decisions (Burke et al., 2010; Novianingsih and Hadianti, 2016;

Ben Ahmed et al., 2018; Guimarans and Padrón, 2022; Gök et al., 2023).

This paper proposes a comprehensive airline scheduling process, which incorporates turnaround

planning to improve robustness in aircraft routing, crew pairing, and flight retiming (revisits flight

scheduling decisions). This wider perspective on the scheduling process, including the need to

make decisions that involve various organisations with autonomous decision-makers, demands a

35



collaborative robust scheduling framework to be built on existing OR theories and industry protocols

(Eurocontrol, 2017; Fu and Piplani, 2004; Dudek and Stadtler, 2005).

For empirical validation, these two concepts can be progressively implemented. The com-

prehensive scheduling process can be readily adopted by a self-handling airline to streamline its

operations in a hub airport, e.g. jointly planning timetables and turnaround shifts. Expectedly,

the savings in recovery costs will be positively correlated with the airline’s dominance in the hub

(Calzada and Fageda, 2023), typically concentrated in one of the airport terminals. Learnings from

this implementation can support the construction of a collaborative platform for other terminals,

where ground handling services are provided by third parties. The airport is a natural candidate

to lead such a transition because its competitiveness is determined by the on-time performance

of all terminals. In addition, methodologies for the operational coordination of multiple GHSP

indicate the decisive role of the airport operator (Padrón et al., 2016; Gök et al., 2023). Local

initiatives, such as the airline operators committee (AOC) that operates at Heathrow, can also

catalyse cooperation (LHRAOC, 2025).

A limitation of this study is not considering other airport processes that affect the resilience of

the schedule in addition to turnaround, such as gate assignment (Dijk et al., 2019). Future research

on the collaborative framework could overcome this limitation by studying airport decisions that

affect the reliability of the schedule.

In addition to those presented in the discussion, the comprehensive process raises other interest-

ing open questions. How can schedule robustness across the network be evaluated considering the

propagation of delays through turnaround operations? What robustness proxies can improve airline

schedule flexibility? Industry practitioners and scholars will benefit from fostering advancements

in simulation and optimisation methodologies to address these questions.
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Literature Review OR Method Approach to Uncertainty

EO HO Sim Deterministic+ Stochastic
Xu et al. (2024) ✓ ✓ ✓
Ma et al. (2022) * * * ✓
Wen et al. (2021) ✓ ✓ ✓
Zhou et al. (2020) ✓ ✓ ✓
Deveci and Demirel (2018) ✓ ✓
Eltoukhy et al. (2017) ✓ ✓ ✓ ✓
This review ✓ ✓ ✓ ✓ ✓
EO: Exact optimisation; HO: Heuristic optimisation; Sim: Simulation
*The methods are only mentioned
+ Uncertainty is not considered

Table A.1: Methods analysed by previous literature reviews

Appendix A. Supplementary material

Count of papers

Robustness Approach Airline schedule Turnaround

Feedback 32 6

Proxy 17 1

Proxy and feedback 4

Neither proxy or feedback 7 3

Total 60 10

Uncertainty Management

Stochastic optimisation 36 4

Simulation optimisation 2

Evaluate solution with simulation 7 2

Evaluate solution with scenarios 3 2

No uncertainty modelling 14

Total 60 10

Type of Robustness

Reliability 41 6

Reliability and Flexibility 4

Flexibility 15

Total 60 6*

* Four articles on turnaround resilience that focus on responsiveness (disruption

management) are not included in this table.

Table A.2: Number of studies by robustness approach, uncertainty management, and type of robustness
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Glomb, L., Liers, F., Rösel, F., 2022. A rolling-horizon approach for multi-period optimization. European Journal

of Operational Research 300, 189 – 206.

Glomb, L., Liers, F., Rösel, F., 2024. Fleet & tail assignment under uncertainty. Discrete Optimization 52.

Graham, A., 2018. Managing Airports: An International Perspective. Routledge.

Guimarans, D., Padrón, S., 2022. A stochastic approach for planning airport ground support resources. International

Transactions in Operational Research 29, 3316–3345.

Gök, Y.S., Padron, S., Tomasella, M., Guimarans, D., Ozturk, C., 2023. Constraint-based robust planning and

scheduling of airport apron operations through simheuristics. Annals of Operations Research 320, 795–830.

Han, X., Zhao, P., Kong, D., 2023. Two-stage optimization of airport ferry service delay considering flight uncertainty.

European Journal of Operational Research 307, 1103–1116.

Hansen, P., Mladenovic, N., Moreno Perez, J.A., 2008. Variable neighborhood search. European Journal of Opera-

tional Research 191, 593–595.

Haouari, M., Aissaoui, N., Mansour, F.Z., 2009. Network flow-based approaches for integrated aircraft fleeting and

routing. European Journal of Operational Research 193, 591–599.

Hassan, L., Santos, B., Vink, J., 2021. Airline disruption management: A literature review and practical challenges.

Computers and Operations Research 127, 105137.

He, Y., Ma, H.L., Park, W.Y., Liu, S.Q., Chung, S.H., 2023. Maximizing robustness of aircraft routing with

heterogeneous maintenance tasks. Transportation Research Part E: Logistics and Transportation Review 177.

Homberger, J., Fink, A., 2017. Generic negotiation mechanisms with side payments – design, analysis and applica-

tion for decentralized resource-constrained multi-project scheduling problems. European Journal of Operational

41



Research 261, 1001 – 1012.

IATA, 2022. Industry fact sheet 2022. URL: https://www.iata.org/ en/iata-repository/pressroom/fact-

sheets/industry-statistics/. accessed: 5.04.2025.

ICAO, 2021. The world of air transport in 2021. URL: https://www.icao.int/annual-report-2021/Documents/

20230320 final table en.pdf. accessed: 5.04.2025.

ICAO, 2024. State of the air transport industry. URL: https://www.icao.int/MID/Documents/2024/Airports

and Air Navigation Charges Workshop/1 - State of the Air Transport Industry-ICAO.pdf. accessed:

5.04.2025.

Jamili, A., 2017. A robust mathematical model and heuristic algorithms for integrated aircraft routing and scheduling,

with consideration of fleet assignment problem. Journal of Air Transport Management 58, 21–30.

Juan, A.A., Faulin, J., Grasman, S.E., Rabe, M., Figueira, G., 2015. A review of simheuristics: Extending meta-

heuristics to deal with stochastic combinatorial optimization problems. Operations Research Perspectives 2, 62–72.

Kasirzadeh, A., Saddoune, M., Soumis, F., 2017. Airline crew scheduling: models, algorithms, and data sets. EURO

Journal on Transportation and Logistics 6, 111 – 137.

Klabjan, D., 2005. Large-scale models in the airline industry.

Klabjan, D., Johnson, E., Nemhauser, G., Gelman, E., Ramaswamy, S., 2002. Airline crew scheduling with time

windows and plane-count constraints. Transportation Science 36, 337–348.

Lan, S., Clarke, J.., Barnhart, C., 2006. Planning for robust airline operations: Optimizing aircraft routings and

flight departure times to minimize passenger disruptions. Transportation Science 40, 15–28.

Lapp, M., Cohn, A., 2012. Modifying lines-of-flight in the planning process for improved maintenance robustness.

Computers & Operations Research 39, 2051–2062.

Lee, L.H., Huang, H.C., Lee, C., Chew, E.P., Jaruphongsa, W., Yong, Y.Y., Liang, Z., Leong, C.H., Tan, Y.P.,

Namburi, K., Johnson, E., Banks, J., 2003. Simulation of airports aviation systems: discrete event simulation

model for airline operations: Simair, in: Proceedings of the 35th Conference on Winter Simulation: Driving

Innovation, Winter Simulation Conference. p. 1656–1662.

Lee, L.H., Lee, C.U., Tan, Y.P., 2007. A multi-objective genetic algorithm for robust flight scheduling using simula-

tion. European Journal of Operational Research 177, 1948–1968.

Leggieri, V., Haouari, M., 2017. Lifted polynomial size formulations for the homogeneous and heterogeneous vehicle

routing problems. European Journal of Operational Research 263, 755–767.

LHR, 2018. Airport operating plan: daily activities. URL: https://www.heathrow.com/content/dam/heathrow/web/

common/documents/company/team-heathrow/airside/aop/AOP2-daily-activities.pdf. accessed: 24.07.2025.

LHRAOC, 2025. Heathrow airline operators commitee. URL: https://www.heathrow-aoc.com. accessed: 14.08.2025.

Li, C., Mao, J., Li, L., Wu, J., Zhang, L., Zhu, J., Pan, Z., 2024. Flight delay propagation modeling: Data, methods,

and future opportunities. Transportation Research Part E: Logistics and Transportation Review 185.

Liang, Z., Feng, Y., Zhang, X., Wu, T., Chaovalitwongse, W.A., 2015. Robust weekly aircraft maintenance routing

problem and the extension to the tail assignment problem. Transportation Research Part B: Methodological 78,

238–259.

Lin, Z., Frigerio, N., Matta, A., Du, S., 2021. Multi-fidelity surrogate-based optimization for decomposed buffer

allocation problems. OR Spectrum 43, 223 – 253.

Liu, W.., Zhu, X.., Qi, Y.., 2016. Integrated fleet assignment and aircraft routing based on delay propagation.

Sadhana - Academy Proceedings in Engineering Sciences 41, 713–719.

42



Lu, D., Gzara, F., 2015. The robust crew pairing problem: model and solution methodology. Journal of Global

Optimization 62, 29–54.
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