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Abstract

Robust airline scheduling fosters operational resilience in aviation by producing plans that
remain feasible despite ensuing disruptions. This paper analyses the airline scheduling process,
including flight scheduling, fleet assignment, aircraft routing, and crew pairing. It examines how
previous studies optimise these decisions and deal with the influence of the aircraft ground han-
dling (turnaround) process, an important aspect of airport operations that is known to often create
havoc in flight timetables. The analysis of the literature focuses on how to harness turnaround
resilience to improve airline schedule robustness and applies a framework of variables (characteris-
tics) to support data collection and synthesis. The variables include levels of integration of multiple
planning stages, uncertainty modelling, turnaround consideration, type of robustness sought, and
type of optimisation method employed. Based on our review, we propose a comprehensive airline
scheduling process that incorporates turnaround planning to enhance the estimation of aircraft
turn time, crew sit time, and passenger connecting time under uncertainty. More precise esti-
mates will enable models to produce robust schedules at a lower cost (shorter buffer times). Since
third-party organisations typically operate turnarounds, this planning approach needs to involve
multiple autonomous decision-makers. Therefore, we encourage a collaborative robust scheduling
framework to be built on existing operations research theories and industry protocols.

Keywords: OR in airlines, turnaround operations, robust scheduling, collaborative scheduling

1. Introduction

Resilience in air transport systems has gained increasing attention from operational research

(OR) scholars as it is a pressing need for the industry. The global air transportation system trans-
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ported over 5.0 billion passengers on more than 32.4 million flights worldwide in 2024 alone (ICAO,
2021; TATA, 2022; ICAO, 2024). Changes in planned departure or arrival time of flights — de-
lays or cancellations— constitute irregular operations and may result in significant economic loss.
For example, in the US, the costs of delays in 2019 were estimated at 33.5 billion dollars (FAA,
2020). The causes of irregular operations are varied, from unavoidable bad weather events to the
pressure on capacity due to the industry’s almost uninterrupted, steadfast growth. Since the latter
is increasingly regarded as an important source of costly disruptions, it is imperative to factor
in resilience in operations planning. The need for industry-specific planning models to develop
profitable and resilient flight schedules has prompted relevant academic research.

Operational resilience has been defined in many contexts as the ability to withstand or rapidly
recover from disruptions (Mattsson and Jenelius, 2015). Duchek (2020) identifies two approaches
to foster resilience: active response and anticipation. The literature on airline scheduling is aligned
with these views (Figure 1) as it recognises two types of resilience: disruption management (re-
sponsiveness) and schedule robustness (Hassan et al., 2021; Clausen et al., 2010). Disruption
management leverages the responsiveness of the system by implementing reactive actions, e.g.
swapping two aircraft when one becomes unavailable. Schedule robustness consists of foreseeing
potential disruptions and proactively devising more reliable or flexible schedules. Reliable sched-
ules absorb minor disturbances with virtually no changes needed, while flexible schedules facilitate
the selection and implementation of recovery actions in the event of severe disruptions (Clausen

et al., 2010).

Reliability
(Absorption robustness)

Robustness
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Resilience
(Recovery robustness)
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(Disruption management)

Figure 1: Taxonomy of airline scheduling resilience

The resilience of airline schedules and that of airport operations are mutually interdependent.
However, each is controlled by separate organisations. Every scheduled flight requires airport
facilities to land, take off, and handle aircraft (Schmidt, 2017). A significant portion of the uncer-
tainty affecting airline operations stems from activities performed at airports, such as turnaround

(De Neufville et al., 2013). Turnaround encompasses the services required by an aircraft before
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each outbound flight, e.g., cleaning, catering, and refuelling. This process significantly affects flight
departure punctuality (De Neufville et al., 2013; Schmidt, 2017). The turnaround begins shortly
after the aircraft arrives at the airport and must be completed before the scheduled departure
time of its next flight. If disruptions affect the punctuality of inbound flights, the timing and effi-
ciency of turnaround will also be affected (Wu and Caves, 2003). Similarly, delays in turnaround
may propagate throughout the airline schedule. According to Eurocontrol (2023), overall arrival
punctuality exceeded departure punctuality in 2022, which indicates the impact of airport oper-
ations, including turnaround, on delay propagation. Despite the interconnection between airline
scheduling and turnaround resilience, they have mostly been studied individually. The reason may
lie in the separation of decision makers; while airline schedules are developed by airline planners,
the execution of aircraft turnaround is typically in the hands of ground handling service providers
(GHSP), who subcontract from airlines directly.

We identified two gaps in the literature on airline schedule resilience. Firstly, to the best
of the authors’ knowledge, the way OR scholars have approached the interdependence between
resilience in airline schedules and turnaround operations has not been surveyed yet. Secondly, with
one exception (Ma et al., 2022), existing reviews have not discussed the two proactive resilience
options each in its own right.

Existing literature surveys on airline and turnaround scheduling can be classified into three
groups according to their approach to system resilience: no resilience, proactive resilience (ro-
bustness), and reactive resilience (responsiveness). Airline schedule planning involves decisions on
flight scheduling, fleet assignment, aircraft routing, and crew scheduling (Barnhart et al., 2003a).
Reviews focus on one or multiple of these decisions. Table 1 shows the scope of existing literature
reviews and facilitates the classification of each group.

The first group of reviews does not apply resilience concepts. The studies surveyed by Wandelt
et al. (2025); Kasirzadeh et al. (2017); Barnhart et al. (2003a) aim to plan schedules assuming that
disruptions do not affect airline operations. As a consequence, uncertainty is not considered, and
deterministic models are used to solve the scheduling problem. Schmidt (2017) examines studies
that model and simulate the turnaround for various purposes, such as planning the operation and
describing the impact of stochastic flight delays.

The proactive resilience group comprises reviews that examine the literature on airline schedule
robustness. The objective of the reviewed articles is to plan robust schedules, recognising that
uncertain events may disrupt the operation. Improving robustness demands modelling the inherent

stochasticity of the system. Only Ma et al. (2022) appears to appreciate the conceptual difference



Study Literature review paper Decision Type of resilience

of resilience FS FA AR CP TA R F DM
Wandelt et al. (2025) v v v v
No Kasirzadeh et al. (2017) v
resilience Schmidt (2017) v
Barnhart et al. (2003a) v vV Y
Wu et al. (2025)
Santana et al. (2023)
Reactive Hassan et al. (2021)
resilience Su et al. (2021)
Clausen et al. (2010)
Ahmed and Poojari (2008) v
Filar et al. (2001)
Xu et al. (2024) v v Y
Ma et al. (2022) v
Wen et al. (2021)
Proactive Zhou et al. (2020) v oV
resilience Deveci and Demirel (2018)
Eltoukhy et al. (2017) VA,
This review v vV v

FS: Flight schedule; FA: Fleet assignment; AR: Aircraft routing; CP: Crew pairing; TA: Turnaround
R: Reliability; F: Flexibility; DM: Disruption management; *: Do not differentiate between R and F
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Table 1: Literature review papers grouped by scheduling decision and type of resilience

between reliability and flexibility. The authors analyse emerging technologies used to manage the
uncertainty that affects aircraft routing. They primarily focus on smart technologies, e.g. big data,
machine learning, and the internet of things. Other studies in this group do not differentiate the
types of robustness (Xu et al., 2024; Wen et al., 2021; Zhou et al., 2020; Deveci and Demirel, 2018).

Reviews in the reactive resilience group analyse proposed models to recover a disrupted schedule
in operational time rather than planning the schedule. Decisions in this case relate to the recovery
of aircraft rotations, passenger itineraries, and crew itineraries post-disruption. Unlike proactive
resilience, reactive resilience does not require uncertainty modelling because the disruption has
already occurred.

Our review complements the proactive resilience group by examining the robustness of airline
schedules considering all stages or decisions of the airline scheduling process, both types of schedule
robustness— reliability and flexibility— , and how studies on airline schedule robustness model the
influence of aircraft turnaround operations. The outcomes of our analysis will benefit the work of
OR scholars in many directions. Firstly, the analysis will reveal patterns in the OR methods used

to model uncertainty. Secondly, we discuss how the inclusion of turnaround operations may help
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researchers to identify new mechanisms to enhance the reliability and flexibility of airline schedules,
such as where it may be most cost-effective to include a time buffer in the aircraft ground time.
Cost-effectiveness depends on the trade-off between on-time performance and aircraft productivity
(Wu and Caves, 2004). Thirdly, we will discuss the role of collaborative scheduling in enhancing
robustness on turnaround.

This review complements the existing surveys on robust scheduling by examining the OR
methods applied. Traditionally, airline scheduling has relied on deterministic, exact or heuris-
tic optimisation models (Barnhart et al., 2003a). When the need for robust scheduling emerged
more strongly in the early 2000s, simulation and stochastic optimisation models were also adopted
(Barnhart et al., 2003a; Barnhart and Smith, 2012). Simulation models have been instrumental
in evaluating schedule performance under uncertainty (Rosenberger et al., 2002; Lee et al., 2003),
particularly when the schedule is planned using a deterministic optimisation model. However, the
use of simulation in this context has not been surveyed (see Table A.1).

In summary, this paper outlines an approach to robust airline schedule planning that integrates
turnaround resilience. By extending the airline scheduling process considering the turnaround
planning, we offer a holistic scheduling perspective that is essential for enhancing the robustness
of airline operations. We also propose a framework of definitions for robust airline scheduling from
an OR standpoint. The developed framework is used to conduct a literature review and assess
the current advancements in the topic. Based on a critical evaluation of the literature, we identify
potential research directions to further develop the field.

This paper is organised as follows. Section 2 outlines the airline scheduling and turnaround
planning processes, highlighting their interdependence. It also introduces our proposed framework
for review, in all details. Section 3 discusses the methodology we followed in our survey, reporting
the criteria used to identify and select the papers to be reviewed. Insights supported by descriptive
statistics of our review findings are presented in section 4. Section 5 identifies open problems and
discusses their impact on scholarship and practice. Section 6 offers guidelines for future work based
on the OR methodologies applied in the literature. Finally, section 7 summarises our concluding

remarks.

2. Evaluation framework for robustness approaches

The conceptual framework aims to describe the methodological and theoretical background that
underpins this review by identifying the variables to be evaluated in the survey (Paul et al., 2024).

The selection of the variables is based on relevant literature on airline and turnaround operations.
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Particularly, we focused on research concerning airline schedule planning, as robustness is achieved
during the planning process. The literature on airline scheduling, in turn, revealed the need to
investigate the interactions between airline schedules and aircraft ground handling, or turnaround
planning.

Section 2.1 analyses the airline planning process and its interrelation with turnaround. The

analysis shapes the set of variables of our conceptual framework, presented in section 2.2.

2.1. Airline operations planning

During the airline planning process, planners design schedules based on strategic decisions about
fleet acquisition and route coverage. Airline scheduling determines future operations, including
details such as dates, times, and the allocation of resources to each flight (De Neufville et al., 2013;
Belobaba et al., 2009). Airline schedule planning is typically formulated as an optimisation problem
aimed at maximising profitability. This problem is commonly divided into four deterministic stages:
flight scheduling, fleet assignment, aircraft routing, and crew pairing (Barnhart and Talluri, 1997;
Barnhart et al., 2003a). Due to the complexity and large scale of the optimisation stages (Klabjan,
2005), these have been traditionally solved sequentially. In the traditional approach, the solution
to one optimisation problem is an input for the subsequent stage. For instance, timetables obtained
in flight scheduling constrain fleet assignment. Figure 2 illustrates the optimisation process and

each of the stages, which are explained in the following sections.

2.1.1. Flight scheduling

During flight scheduling, airlines determine the markets to serve, the flight frequency on each
route, and the scheduled departure and arrival times for each flight leg, i.e. the timetables. The
decisions are driven by demand and seek to maximise overall profit and market share (Barnhart
et al., 2003a; Barnhart and Talluri, 1997). A notable progress in algorithms developed for timetable
planning involves the application of incremental approaches, which performs small changes to
a published flight schedule by adding and removing flight legs from a predefined set (Barnhart
et al., 2003a). These approaches solve the scheduling problem efficiently and set the foundation
for flight retiming techniques (Barnhart et al., 2003a; Belobaba et al., 2009). Retiming adjusts
flight departure times of a schedule within specified time windows after the optimisation of other
subproblems. This technique improves the solution quality of subsequent subproblems, otherwise

limited by the ”optimal” flight schedule.
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Figure 2: Airline schedule planning process

2.1.2. Fleet assignment

Fleet assignment allocates an aircraft type to each scheduled flight, aiming to meet market
demand at minimal cost. Fleet assignment models (FAM) consider the technical characteristics
and performance of the aircraft, e.g., size, range, etc. This typically results in maximising aircraft
utilisation and keeping turnaround times at a minimum to reduce costs (De Neufville et al., 2013).
The costs considered include the operating expenses of each flight leg and the passenger spill (unmet
demand) costs.

The cost and productivity of the fleet are affected by both the airborne and ground time.
Barnhart et al. (2003a) emphasise the importance of considering the stochastic nature of these
times in fleet assignment models. Factors such as weather conditions, air traffic, and ground
congestion contribute to variations in airborne and ground times. Ground time is heavily influenced
by the uncertainty of turnaround operations, which are affected by the variability in sub-processes

duration, the possible unavailability of required resources, and other factors.

2.1.8. Atrcraft routing
Aircraft routing assigns specific aircraft to each flight leg in the timetable, based on the fleet

allocations determined during the fleet assignment stage. This assignment provides the route that
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each aircraft will take across the network on the day of operations. To be more specific, the set
of flights assigned to an aircraft is timed to form an ordered sequence where the destination of
one flight is the origin of the subsequent one (Barnhart et al., 2003a; Wu, 2010). These routes
must enable the aircraft to receive regular maintenance at specified airports; for that reason, this
optimisation problem is often called aircraft maintenance routing problem.

Aircraft routing may generate disruptions that affect robustness. In schedules with insufficient
time for airborne and ground operations, delays occur easily. Delays may propagate through the

routes, potentially triggering flight cancellations and breaking crew and passenger connections.

2.1.4. Crew pairing

Crew scheduling assigns crew members to all flights in the timetable. To reduce complexity,
it is broken down into two problems that are solved independently: crew pairing and crew as-
signment. Crew pairing generates multi-day work schedules for crews to cover all flights, aiming
to minimise overall cost. Pairings are usually built by concatenating multiple duty periods, i.e.
24-hour sequence of flights separated by a certain connecting time, with mandatory rest time in
between (Barnhart et al., 2003b). Each of these pairings is assigned to cockpit crew members and
service attendants during crew assignment (Barnhart et al., 2003a), to form monthly schedules. In
this paper, we analyse the crew pairing problem. Pairing considers constraints related to labour
regulation, such as maximum duty time, minimum and maximum connection times (known as sit

time), etc. (Barnhart et al., 2003a).

2.1.5. Aircraft ground handling or turnaround

The turnaround process prepares the aircraft for the next flight and takes place during its
ground time. It encompasses various services, such as boarding and disembarking, baggage loading
and unloading, refuelling, cabin cleaning, and others. Ideally, the turnaround starts at the Sched-
uled In-Block Time (SIBT) and ends at the Scheduled Off-Block Time (SOBT), corresponding to
the time printed on passenger tickets for arrival and departure, respectively. Thus, the turnaround
is aligned with the timetables produced by the flight scheduling. Additionally, there are precedence
relations between certain pairs of turnaround activities, and some pairs cannot be executed at the
same time, e.g. for most aircraft types, boarding cannot start until aircraft fuelling has finished.
Therefore, efficient turnarounds are essential to ensure on-time departures.

The management of turnaround operations is inherently complex as it involves multiple ac-
tors and shared resources. Turnaround tasks are typically performed by third-party organisations

subcontracted by airlines, the GHSP (Graham, 2018). There may be multiple GHSPs operating
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at each airport, meaning that they share physical space and equipment. An airport operator is
responsible for coordinating the use of its facilities. Additionally, each GHSP team serves various
turnarounds during the day, which implies travel times and replenishment of supplies. Hence, the

visits of each team need to be planned through synchronised routing plans.

2.2. Framework variables

To support this review, we propose a framework that defines the characteristics considered
essential in robust airline and turnaround scheduling studies, i.e. framework variables. The frame-
work makes explicit prior knowledge and assumptions by supporting variables on fundamental
topics (Tranfield et al., 2003), including non-resilient airline schedule planning and uncertainty
management in comparable transportation systems, such as train timetable rescheduling (Zhan
et al., 2024). To facilitate data extraction, synthesis, and explanation of the findings (Tranfield
et al., 2003; Denyer and Tranfield, 2009; Paul et al., 2024), the framework also defines the values
each variable can take. This enables the articles to be classified according to a predefined set of

categories and analysed. Figure 3 offers a visual representation of the framework.
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Figure 3: Framework variables and values



2.2.1. Integration of planning stages

The four airline scheduling subproblems had traditionally been addressed sequentially, taking
the solution of one problem as input for the next one. The drawback of this approach is that
the overall solution is often suboptimal because the solution of each stage constrains the feasible
solutions of subsequent stages (Wu, 2010). The integration of planning stages variable describes
the approaches that non-resilient airline scheduling literature, i.e. not concerned with robustness,
has proposed to enhance the quality of the solution by integrally considering the airline scheduling
subproblems.

Two strategies have been proposed to mitigate this adverse effect. The first widely used strategy
replaces the exact flight times from the optimal schedule (first stage) with time windows in the
formulation of the following subproblems. For example, a time window may start 10 minutes earlier
than the optimal flight departure and finish 10 minutes later. This expands the search space in
subsequent optimisation problems and enhances the quality of the overall solution. Various studies
have employed this strategy to integrate flight scheduling with other stages, such as fleet assignment
(Belanger et al., 2006; Rexing et al., 2000), aircraft routing (Desaulniers et al., 1997), and crew
pairing (Klabjan et al., 2002). The second strategy formulates and solves a single optimisation
model that addresses two or more planning problems. Barnhart et al. (1998) and Haouari et al.
(2009) are examples that simultaneously solve fleet assignment and aircraft routing. This approach
overcomes the limitation of the sequential approach, where the optimal fleet assignment may be
infeasible for maintenance. The categories used to classify the papers according to this variable
are:

Single stage planning: Papers that solve one of the airline scheduling stages individually.
Integrated airline scheduling: Articles that propose approaches to simultaneously address two

or more airline schedule optimisation problems.

2.2.2. Uncertainty modelling

Airline operation planners aiming to plan robust schedules need to incorporate operational
feedback into the decision-making process. The inherent stochasticity of airline operations often
prevents optimal schedules from being operated as planned (Belobaba et al., 2009). Typically,
the schedule planning process is completed months before the day of operations and assumes
certain system conditions, e.g. specified flight block times and aircraft turn times. On the day of
operations, however, the assumptions may not hold due to several factors and schedules derived
from deterministic optimisation models may no longer be optimal. To address this, robust airline

scheduling implements stochastic models to develop plans that remain effective despite potential
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operational disruptions.

The uncertainty modelling variable describes the OR methods that modellers can use to develop
robust and cost-effective schedules in realistic operational settings. In the following, we present
our selection of values for this variable, which is consistent with the categories that emerged from

the literature on train scheduling under uncertainty (Zhan et al., 2024).

Stochastic optimisation: Multiple methods optimise the performance of the system under un-
certain parameters, with the most typical being two-stage stochastic programming, chance con-
straints (Birge and Louveaux, 2011) and robust optimisation (Bertsimas and Sim, 2004).
FEvaluate deterministic solution with simulation: This approach produces an optimal solu-
tion using deterministic optimisation and evaluates its performance under uncertainty using simu-
lation (Belobaba et al., 2009). Simulation may use different types of models such as discrete-event
simulation (DES), agent-based simulation (ABS), or a hybrid model (Brailsford et al., 2019).
Simulation optimisation: Method used to address large-scale optimisation problems, often re-
ferred to as optimisation via simulation (Petropoulos et al., 2023). It provides a framework for
stochastic optimisation that uses simulation to estimate the stochastic variables (Fu, 2014). In
particular, we refer to simulation optimisation as the approach where the random output of the

simulation is used to guide the search process (Fu, 2014).

2.2.8. Turnaround consideration

In the review, we will analyse how airline scheduling models incorporate turnaround time.

Minimum turnaround time: Studies that define the minimum turn time based on the technical
specifications of each type of aircraft and a metric reflecting the congestion level of the airport where
the turnaround is performed.

Integrated airline and turnaround scheduling: The different services involved in the turnaround

are modelled and integrated into algorithms to improve the resilience of airline schedules.

2.2.4. Types of robustness

We will review the following two types of robustness:
Absorption robustness or reliability: The studies propose methods to include slacks into the
schedule to absorb the effects of disruptions and remain feasible. These buffer times may be inserted
in aircraft rotations, crew duties, or passenger itineraries, i.e. when developing the flight schedules
according to the demand.
Recovery robustness or flexibility: The approaches facilitate recovery actions to reduce the

cost of resuming normal operations, e.g. injecting swap opportunities in aircraft rotations and
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crew pairings.

2.2.5. Optimisation methods

The values of this variable are exact optimisation and heuristic optimisation.

3. Review Methodology

We review the contributions of published papers on the use of OR models to generate robust

airline and turnaround schedules. The review evaluates relevant articles according to the variables

of the framework introduced in Section 2.2 (Paul et al., 2024). The relevant articles were identified

and screened following the procedure described in this section. The PRISMA flow diagram intro-

duced in Moher et al. (2009) is used to visualise the process. The process includes four phases (see

Figure 4). It starts with the identification phase, in which we searched the bibliographic database

Scopus for terms describing two planning processes: airline scheduling and turnaround planning.
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Figure 4: PRISMA workflow for paper selection

Table 2 shows the terms used. Term A contains keywords related to the development of

robust airline schedules, considering the four stages of this process: flight scheduling and retiming,

fleet assignment, aircraft routing, and crew pairing. Term B corresponds to the keywords related
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to the turnaround. Owur review surveys turnaround resilience papers, i.e. robust planning and
responsiveness, because we are interested in studying how resilient turnarounds can enhance airline
scheduling. The identification phase used advanced searches with proximity operators to ensure

the relevance of the majority of the selected documents. This step yielded 121 papers.

Code Search Term

airline AND ((robust® OR resilien*) w/2 (((flight OR airline*) w/1 schedul*) OR
A ((fleet or tail) w/1 assignment) OR (aircraft w/1 (routing OR schedul*)) OR
(crew w/1 (pairing OR schedul*)) OR (integrated w/1 (schedul®* OR modeling))))
airport® AND ((robust®* OR resilien* OR recover®) W/2 (plan*OR schedul*)) AND
((ground OR turnaround OR apron) AND operation*))

B

Table 2: Search terms per planning process

In the next phase, the identified papers were screened to keep only articles published in peer-
reviewed journals, i.e. excluding conference papers, reviews and book chapters. Additionally, du-
plicates were eliminated at this stage. The publication date was not a screening criterion; hence,
we considered all articles related to airline robustness and turnaround resilience. A corpus of 70
articles resulted from the screening step.

During the eligibility phase, we read the abstract of the screened papers to identify the research
objectives. The eligibility criterion was to retain only articles that propose optimisation models;
therefore, we excluded studies focused solely on modelling delay propagation. The reason is that
the methods used to solve optimisation models are not comparable to those for delay modelling,
e.g. queuing network models. The eligibility phase reduced the number of full-text reading papers
to 47.

As a second identification step, we performed manual selection and citation analysis based on
the bibliographies of the eligible papers. The backward and forward citation analyses identified 733
articles. These articles were screened using the same procedure described above, which reduced
the dataset to 373 articles. Subsequently, the eligibility criteria described previously were applied.
Together, the manual selection and citation analysis resulted in the selection of 23 new articles. In
total, 70 papers were analysed as part of the literature review, 60 on airline schedule robustness,

and 10 on turnaround resilience.

4. Descriptive statistics and insights

4.1. Emergence of robustness proxies
A classification that emerged from the review concerns the approach used to foster robustness.

Some studies identify a specific characteristic of the schedule that arguably improves robustness and
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then optimise the schedule based on that feature. We refer to this approach as prozy robustness.
An example of a proxy is penalising aircraft changes in crew pairing optimisation (Ben Ahmed
et al., 2022). This proxy assumes that pairings where the crew stays in the same aircraft for con-
secutive flights are more robust than those where the crew must disembark and board a different
aircraft because the requisite connecting time is shorter. Proxy robustness assumes that robustness
can be improved in the planning stage without the need for feedback from the operational stage.
In other words, the performance of solutions under operational uncertainty is not estimated during
the optimisation process. In contrast, feedback robustness is driven by the capacity of the schedule
to absorb or recover from disruptions, i.e. modellers estimate the future performance of the system.
Typically, a feedback algorithm minimises a probabilistic delay measure, e.g., total propagated de-
lay or the cost associated with delays. Our definition of feedback robustness differs from that of
Froyland et al. (2014) and Maher et al. (2014) in that we consider feedback may occur even if
performance assessment does not involve recovery actions. For example, Sanjeevi and Venkatacha-
lam (2021) evaluates solutions to the flight retiming problem (which minimises delay propagation)
using scenarios in the second stage of a two-stage stochastic programming formulation. In this
case, operational feedback is derived from the primary delay scenarios.

Most authors opt for feedback approaches and limited attention has been given to proxies (see

Table A.2). By analysing this under-researched approach, we identified promising opportunities to
expand the research and practice on airline scheduling. Our analysis suggests that proxy approaches
facilitate addressing complex problems with tractable formulations.
Firstly, proxies have enabled the optimisation of large networks (in terms of the number of flights).
To simplify the comparison of approaches, Table 3 shows the optimisation problems that have
been addressed using at least two approaches, with the corresponding maximum number of flights.
For example, the first row (aircraft routing) says that the largest network addressed in feedback
studies has 6,000 flights, while the figure for proxy studies is 9,036. According to the table, proxy
approaches handled more flights than feedback approaches. The table also reveals that proxy and
feedback approaches are not mutually exclusive. Their combination may produce robust schedules
for realistic-sized networks, leading to significant cost savings for airlines.

Secondly, proxies have been instrumental in integrating crew pairing with other decision stages.
Most of the crew scheduling studies (8 out of 11) apply a proxy. Integration entails challenges
because crew pairing is a highly complex optimisation problem in itself. For example, a medium-
sized fleet with 200 flights may result in billions of possible crew pairings (Klabjan, 2005). However,

approaches that succeed in injecting robustness into crew pairings can yield higher profitability,
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Proxy and

Optimisation problem Feedback Proxy Feedback Other
Aircraft routing 6,000 9,036 3,370 667
Aircraft routing and flight retiming 1,278 1,278 3,387

Crew scheduling 309 3,300 442 490
Aircraft routing and crew pairing 90 1,130 61

Table 3: Maximum number of flights per approach reported in the literature

as the crew is the second-largest operative cost for airlines (after fuel). Thirdly, only five articles
managed to integrate at least three optimisation problems for robust airline scheduling, with four
relying on proxies. Table 4 lists all articles that apply a proxy and indicates whether they address
single or integrated problems.

The previous analysis will hopefully motivate researchers to develop new proxies and improve
existing ones by incorporating uncertainty modelling. Table 4 shows the method used to model
uncertainty in each proxy study. Uncertainty management is crucial for proxy approaches because
the effectiveness of the proxy is not certain. For example, Diick et al. (2012) evaluates the efficacy
of the proxy that penalises crews changing aircraft using simulation. The study calculates the
correlation between the indicator used in the optimisation (non-robustness penalties) and the
robustness metric (reactionary delay) measured during the simulation. The results show a high
correlation, which indicates that the proxy is effective. The analysis suggests that the proxy is as
effective as optimising the expected reactionary delay. Diick et al. (2012) also examines the proxy
efficiency and reports that reactionary delays can be decreased by up to 6.4% without increasing
crew costs. Their analyses assume that simulation can accurately estimate schedule performance
during operations because it can capture non-linear dependencies. The importance of evaluating

robustness will be discussed further in section 4.3.

4.2. Integration of airline planning stages and type of optimisation method

The articles analysed in our review have contributed to scholarship and practice by i) innovating
models to consider uncertainty and maintain tractability, ii) developing efficient algorithms to
solve the models, iii) demonstrating how expanding the problem conceptualisation can enhance
robustness, iv) analysing the relative advantages of specific modelling approaches, e.g. comparing
robust optimisation versus chance constraints to address aircraft routing, v) proposing metrics and
methodologies to evaluate robustness, and vi) introducing robustness proxies. Tables 5 - 9 classify
the literature according to its main contributions or innovations. The tables also summarise the

characteristics of the methods applied to solve the models and the size of the network addressed.
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Problem App

Citation FSFAARCPTAP F Proxy UM

Ben Ahmed et al. (2018) X X x  Short crew connecting time ES
Crew changing aircraft

Ben Ahmed et al. (2022) X X X x  Short crew connecting time -
Crew changing aircraft

Cacchiani and Salazar-Gonzalez (2017) X X X x  Crew changing aircraft -

Cacchiani and Salazar-Gonzalez (2020) x x x X x  Short crew connecting time -
Crew changing aircraft

Diick et al. (2012) X X x x Crew changing aircraft TS

Gao et al. (2009) X X x  Station purity -
Crew base purity

Ruther et al. (2017) X X x  Crew changing aircraft -

Weide et al. (2010) X X x  Short crew connecting time -
Crew changing aircraft

Lépez-Ramos et al. (2025) X X x  Slack between flights -

Ben Ahmed et al. (2017a) X X x x Slack between flights SB

Aloulou et al. (2013) X X x  Slack between flights ES

Ehrgott and Ryan (2002) X x  Short crew connecting time -
Crew changing aircraft

Schaefer et al. (2005) X x  Short crew connecting time ES

Shebalov and Klabjan (2006) X x  Similar crew duty per base -

Tam et al. (2011) X x x Short crew connecting time TS
Crew changing aircraft

Wei and Vaze (2018) X x  Crew changing aircraft -
Crew base purity

Diepen et al. (2013) x x Idle time of boarding buses ES

Lapp and Cohn (2012) X x  Maintenance misalignments -

Maher et al. (2014) X x x Maintenance misalignments TS

Zhang et al. (2024a) X x  Delay risk of maintenance tasks -

Rosenberger et al. (2004) X x  Hub isolation & short cycles ES

Smith and Johnson (2006) X x  Station purity -

FS: Flight scheduling; FA: Fleet assignment; AR: Aircraft routing; CP: Crew pairing; TA: Turnaround

App: Robustness approach (P: Proxy; F: Feedback); UM: Uncertainty modelling (ES: Evaluate with simulation;

TS: Two-stage stochastic programming; SB: Scenario-based optimisation); - No uncertainty modelling

Table 4: Summary of studies applying proxy approaches

This aims at giving a sense of the tractability of the models and efficiency of the approaches.

To develop new knowledge, researchers can extend these methodologies while addressing the

limitations of specific approaches and modelling choices. From our analysis of these limitations, we

derived four main recommendations for future research. Firstly, since robustness always comes at a

cost, e.g. reduced aircraft utilisation or additional ground resources, these costs should be modelled

either as variables or constraints. This becomes critical for robust optimisation approaches that

may produce over-conservative and costly optimal solutions (Ball et al., 2007).

Secondly, the type of disruption addressed should be carefully considered when modelling un-
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Paper reference ToC Main contribution or innovation ToM Method Flights

Sanjeevi and Venkat- i,ii TS model that balances rescheduling and de- E BD 324
achalam (2021) lay costs, and L-shaped algorithm

Novianingsih and Hadi- i Scenario-based stochastic retiming approach H - 287
anti (2016)

Duran et al. (2015) i, iii Pioneer in modelling airport congestion and E CPLEX 114

cruise time as a controllable variable
Chiraphadhanakul and iv Compare flight retiming with aircraft rerout- E CPLEX 268

Barnhart (2013) ing, optimising multiple objectives

Sohoni et al. (2011) i,ii  First CC model with block-time uncertainty E BD 1500
and efficient cutting algorithm

Ahmadbeygi et al. i Simple linear model that applies time win- E CPLEX 500

(2010) dows to maintain revenue

Lee et al. (2007) i, ii ~ Model crewing variables to balance planned H MGA 441
and operational costs

Wu (2006) iii Pioneer in modelling turnaround and block- H - -
time uncertainties

Wu and Caves (2002) v Robustness metrics (expected delay and E - 7

mean delay in rotation segments)

ToC: Type of contribution; i, ii, ii, iv, v: See main text; TS: Two-stage stochastic programming; CC: Chance
constraints; ToM: Type of method; E: Exact method; H: Heuristic; BD: Benders decomposition; -: Not specified;
CPLEX: Commercial solver

Table 5: Main contributions and innovations of flight scheduling and retiming papers

Paper reference ToC Main contribution or innovation ToM Method  Flights
Smith and Johnson ii, vi Limit the number of fleets or crew compat- H =~ CG-based 4182
(2006) ible families that can serve each station to

facilitate swaps
Rosenberger et al. vi Creates partial rotations with many short E = - 2558
(2004) cycles to mitigate the impact of cancellations

ToC: Type of contribution; i, ii, ii, iv, v, vi: See main text; ToM: Type of Method; E: Exact method; H: Heuristic;
CG: Column generation

Table 6: Main contributions and innovations of fleet assignment papers

certainty. For example, the recoverable robust approach addresses severe disruptions, i.e. cancel-
lations and aircraft unavailability, and applies scenario-based optimisation (Glomb et al., 2024) or
two-stage stochastic programming (Froyland et al., 2014). The variability of this type of disrup-
tion is typically high, and therefore, the scenarios should be rigorously defined to ensure that the
solution is robust and close to the true optimum. Future research could expand these approaches
by applying sample average approximation (SAA) to analyse the impact of this modelling choice
in managing severe and highly variable disruptions (Birge and Louveaux, 2011).

Thirdly, while using deterministic functions to compute propagated delay (affected by schedul-
ing decisions) can reduce model complexity and computation time, they may produce inaccurate
estimations of delays and the associated costs. An interesting future stream of research is how
these functions can be based on delay propagation models, for example, using delay multipliers as
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Paper reference ToC Main contribution ToM Method Flights

Akincilar and Giliner v Methodology to evaluate the perfor- E - 229

(2025) mance of robust solutions

Zhang et al. (2024a)  vi Introduce proxy based on fuzzy risk as- H ~ MH 9036
sesment of delays

Birolini and Jacquillat i Scenario-based model with sample av- E =~ B&C 700

(2023) erage approximation

He et al. (2023) iii =~ Pioneer to model disruptions caused by E ~ CG 259
maintenance operations

Eltoukhy et al. (2020) iii =~ Pioneer to reduce turnaround duration H ~ ACO 400
to improve robustness

Cui et al. (2019) ii Solving algorithm that outperforms H VNS 667
CPLEX

Marla et al. (2018) iv. Compare RO and CC generic models E =~ CPLEX 165
(solution quality and tractability)

Yan and Kung (2018) i First RO approach that models corre- E~ RG + CG 117
lation between flight delays

Liang et al. (2015) i, i Model daily maintenance capacity and H = CG-based 6000
introduce a CG-based heuristic

Mabher et al. (2014) i Detailed single-day AR and analyse E =~ BD 4+ CG 3370
connection cost functions (quality, run-
time)

Froyland et al. (2014) i Pioneer to model a recoverable robust E =~ BD + B&P 53
AR based on TS

Lapp and Cohn (2012) i, vi Pioneer to model MLOF and mainte- E =~ CPLEX 3353

nance misalignment proxy

ToC: Type of contribution; i, ii, ii, iv, v, vi: See main text; MO: Multi-objective model; GP: Goal programming;
CPLEX: Commercial solver; RO: Robust optimisation; CC: Chance constraints; CG: Column generation AR:
Aircraft maintenance routing model; T'S: Two-stage stochastic programming; MLOF: Maintenance line-of-flight;
ToM: Type of method; E: Exact method; H: Heuristic; -: Not specified; MH: Matheuristic; B&C: Branch and
cut; CG: Column generation; ACO: Ant colony optimisation; VNS: Variable neighbourhood search; RG: Row
generation; BD: Benders decomposition; B&P: Branch and price

Table 7: Main contributions and innovations of aircraft routing papers

introduced in Wu and Law (2019).

Fourthly, combining multiple scheduling problems does not always improve robustness or pro-
duce a useful approach to address the industry’s needs. Therefore, this type of research should
demonstrate the contributions to practice and scholarship. For example, Memarzadeh et al. (2024)
attempts to integrate aircraft routing and crew rostering by building four-week pairings. Assigning
individual crew members to aircraft rotations several months before operations may be simply
impractical, even if a tractable model could be formulated while complying with all applicable

regulations and business rules, e.g. holidays and fair workload (Barnhart et al., 2003b).
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Paper reference ToC Main contribution or innovation ToM Method Flights

Schrotenboer et al. i Model repairs crew assignments maintain- E B&P 309

(2023) ing flexibility to address future disruptions

Wen et al. (2020) v Incorporate a robustness metric dependent E =~ CG 98
on the cruise variable time

Antunes et al. i RO model with crew delay propagation and E =~ CG 94

(2019) the complex crew cost structure

Wei and Vaze (2018) iv  Estimate the extent of the crew-propagated H =~ CG & B&B 3300
delays and disruptions

Bayliss et al. (2017) i Schedule standby duties for reserve crews E =~ CPLEX 243
to minimise flight delays and cancellations

Chung et al. (2017) iii ~ Crew pairing considering reserve crew plan- E CG 447
nin

Lu and  Gzarai,ii ROgmodel solved with an efficient algo- E = LR 184

(2015) rithm based on LR for a larger instance

Muter et al. (2013) ii Solves the extra flight problem with amore H  RG & CG 490
efficient algorithm for a larger network

Tam et al. (2011) iv ~ Compares TS (Yen and Birge, 2006) and E =~ DCG 442
MO (Ehrgott and Ryan, 2002) using delay
scenarios

Tekiner et al. (2009) iii ~ Flexibility for extra flights by increasing E =~ CG 96
swap opportunities and long connections

Shebalov and Klab- i Maximise swap opportunities within lim- H LR 228

jan (2006) ited additional crew cost

Yen and  Birge i, ii Model relationships between crew pairings E B&B-based 79

(2006) in the non-linear recourse component

Schaefer et al. v Introduces a measure for evaluating perfor- H LS 342

(2005) mance based on the FTC

Ehrgott and Ryan ii, vi MO model that penalises aircraft changes, E =~ B&B -

(2002)

solved with e-constraint method

ToC: Type of contribution; i, ii, ii, iv, v, vi: See main text; RO: Robust optimisation; LR: Lagrangian relaxation;
TS: Two-stage stochastic programming; MO: Multi-objective model; FTC: Flight time credit; ToM: Type of
method; E: Exact method; H: Heuristic; B&P: Branch and price; CG: Column generation; B&B: Branch and
bound; CPLEX: Commercial solver; RG: Row generation; DCG: Dynamic column generation; LS: Local search

Table 8: Main contributions and innovations of crew pairing papers

4.8. Uncertainty modelling

We have included two new subcategories under the stochastic optimisation group to classify

papers that consider stochasticity but do not fit within the subcategories introduced in section

2.2. The expected value subcategory includes approaches that formulate and solve a deterministic

model to optimise the expected value of a delay cost function. The scenario-based subcategory

uses disruption scenarios to assign values to specific parameters within the optimization model or

to evaluate the performance of the schedule. Scenario-based approaches either use historical data

or realise a probability distribution. For a detailed explanation of the differences between these
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Paper reference FS FA AR CP ToC Main contribution or innovation

ToM Method

Loépez-Ramos  x
et al. (2025)
Glomb et al
(2024)
Memarzadeh

et al. (2024)

Ben Ahmed
et al. (2022)
Deng et al
(2022)

Simsek and Ak- x
turk (2022)

Xu et al. (2021) x

Cacchiani e
and Salazar-
Gonzalez

(2020)

Ben Ahmed
et al. (2018)

Ben Ahmed x
et al. (2017a)
Ben Ahmed x
et al. (2017Db)
Cacchiani

and Salazar-
Gonzalez

(2017)

Jamili (2017) x
Ruther et al.

(2017)
Liu et al.
(2016)
Dunbar et al.
(2014)
Aloulou et al.x
(2013)
Diick et al
(2012)
Dunbar et al.
(2012)
Burke et al.x
(2010)
Weide et al.
(2010)
Gao et al.
(2009)
Lan et al. x
(2006)

11

iii

ii

ii

ii

ii

ii
ii

ii

vi

ii, iv

ii

Address the MO model with lexicographic GP E
and e-constraint methods

Embeds a recovery optimiser into a planning H
model (similar recoverable robust AR)

Tries to build crew parings that expand few H
weeks

Integrate three problems in a single model and H
propose a MH to solve it

Heuristic algorithm combining VNS and CG  H

Introduces a MH to solve the integrated model H

Consider demand recapture and solve the model H
with an efficient al VNS algorithm

Retime an existing schedule considering aircraft H
maintenance and crewing constraints

Integrate AR and CP problems in a model that E
can be solved with a commercial solver

Solves the two problems sequentially for a weekly H
schedule and a large network

Introduce a heuristic that embeds simulation to H
solve the integrated problem efficiently

Model three problems jointly and introduce an H+

efficient heuristic that reaches optimality

Efficient hybrid heuristic algorithm H
Model pricing problems for groups of resources H
with similar availability periods and base

MO model that minimises costs and propagated E
delay

Iteratively solve AR and CR, considering inter- H
actions across resources in propagated delay
Model based on a proxy that quantifies passen- E

ger misconnections
Pioneer in integrating AR and CP in a T'S model E

Compute the propagated delay considering the E
interactions between aircraft and crew

Compare reliability vs flexibility approaches us- H
ing MO and introduce hybridised GA with LS
Improve cost and robustness progressively by it- H
eratively solving AR and CP models

Model crew connections explicitly and base ro- E
bustness on FA proxy (station purity)

Seminal AR and FR (separate) models to im- E
prove integrated and single-problem approaches

UM Flights
CPLEX - -
Gurobi SB 120
RG & CG SB 90
MH - 646
VNS & CG - -
MH CC 150
VNS EV 1607
CG-based - 172
CPLEX ES 336
CPLEX SB 3387
PSO & GA SB 1278
B&P - 172
PSO & SA RO -
B&P - 1130
B&P EV 252
CG-based SB 54
CPLEX ES 1278
CG TS 61
CPLEX EV 54
GA & LS SB 504
- - 750
B&B - 1388
B&P EV 102/1067

FS: Flight scheduling; FA: Fleet assignment; AR: Aircraft routing; CP: Crew pairing; ToC: Type of contribution; MO: Multi-
objective; MH: Matheuristic; VNS: Variable neighbourhood search; CG: Column generation; SA: Simulated annealing; T'S:
Two-stage stochastic programming; GA: Genetic algorithm; ToM: Type of method; E: Exact; H: Heuristic; RG: Row generation;
PSO: Particle swarm optimisation; B&P: Branch and price; LS: Local search; B&B: Branch and bound; SB: scenario-based
optimisation; CC: Chance constraints; EV: Expected value; ES: Evaluate with simulation; RO: Robust optimisation

Table 9: Main contributions and innovations of papers addressing multiple scheduling problems
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two new subcategories and stochastic programming, refer to Birge and Louveaux (2011).

Optimisation Problem App

Citation UM Int. FS FA AR CP TA P F
Dunbar et al. (2012) EV I X X X
Lan et al. (2006) EV I X X X
Liu et al. (2016) EV I X X b'e
Xu et al. (2021) EV I X X X X
Liang et al. (2015) EV S X X
Wu and Caves (2002) EV S X X
He et al. (2023) EV S b'e b'e
Schrotenboer et al. (2023) EV S X X
Glomb et al. (2024) SB I X X X
Memarzadeh et al. (2024) SB I X X X
Ben Ahmed et al. (2017a) SB I X X X X
Ben Ahmed et al. (2017D) SB I X X X
Burke et al. (2010) SB I X X X
Dunbar et al. (2014) SB I X X b'e
Evler et al. (2021a) SB I X X
Ahmadbeygi et al. (2010) SB S X b'e
Chiraphadhanakul and Barnhart (2013) SB S X X
Eltoukhy et al. (2020) SB S X X
Birolini and Jacquillat (2023) SB S X X
Bayliss et al. (2017) SB S b'e X
Lee et al. (2007) SB S X X
Novianingsih and Hadianti (2016) SB S X X
Wu (2006) SB S X X
Gok et al. (2023) Sim-opt S X X
Guimarans and Padrén (2022) Sim-opt S X X
Marla et al. (2018) CCvs RO S X X
Simsek and Akturk (2022) CC I X X X X
Duran et al. (2015) CcC S X X
Sohoni et al. (2011) CC S X X
Zhu et al. (2022) cC S X X
Jamili (2017) RO I X X X
Lu and Gzara (2015) RO S b'e b'e
Yan and Kung (2018) RO S X X
Zhang et al. (2024D) RO S X X
Antunes et al. (2019) RO S X X
Diick et al. (2012) TS I X X X X
Froyland et al. (2014) TS S X X
Han et al. (2023) TS S b'e b'e
Mabher et al. (2014) TS S X X X
Sanjeevi and Venkatachalam (2021) TS S X X
Tam et al. (2011) TS S X X X
Yen and Birge (2006) TS S X X

UM: Uncertainty modelling (EV: Expected value; SB: Scenario-based optimisation; Sim-opt: Simulation opti-
misation; CC: Chance constraints; RO: Robust optimisation; TS: Two-stage stochastic programming; CC vs RO:
compare CC with RO); Int: Integration (S: Single stage; I: Integrated); FS: Flight scheduling; FA: Fleet assignment;
AR: Aircraft routing; CP: Crew pairing; TA: Turnaround; App: Robustness approach (P: Proxy; F: Feedback)

Table 10: Articles applying feedback during optimisation
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Most authors (76%) recognise that modelling the inherent stochasticity of airline and turnaround
operations is essential to developing robust schedules (see Table A.2). This is especially true for
studies on turnaround resilient scheduling, as most papers (80%) use feedback from operations dur-
ing optimisation or evaluate schedule robustness using simulation. This signals a higher awareness
within the academic community of the multiple uncertainties in turnaround operations. The guide-
line for future research on airline and turnaround scheduling is to incorporate operations feedback
in the optimisation models. This can be accomplished by applying stochastic programming, ro-
bust optimisation, simulation optimisation, expected values or scenarios-based approaches. Table
10 summarises the feedback approaches proposed in the literature to solve different optimisation
problems.

As seen in Table 10, modellers prefer expected values and scenario-based optimisation to manage
the uncertainty in integrated optimisation problems. Only two studies apply stochastic program-
ming (Simsek and Akturk, 2022; Diick et al., 2012), and one uses robust optimisation (Jamili,
2017) for integrated formulations. This should not discourage research on the application of those
methodologies. Drawing on existing literature, future research may study how Benders’ decom-
position can solve a two-stage stochastic programming model to address an integrated aircraft
routing and crew pairing problem. Diick et al. (2012) decomposes and iteratively solves (using
column generation) a two-stage recourse model for the integrated aircraft routing and crew pairing
problem. Froyland et al. (2014) and Maher et al. (2014) decompose the aircraft routing problem
in two stages. In the first (deterministic) stage, they formulate aircraft planning while considering
maintenance constraints. The second stage uses stochastic recovery scenarios (aircraft rerouting,
flight cancellation and delays) to guide the search towards solutions that perform better under
uncertainty. Both studies use Benders’ decomposition to solve the problem as it is "naturally fit”
for two-stage stochastic programming.

For articles implementing a robustness proxy with a deterministic model, it is advisable to eval-
uate schedule robustness with simulations or scenarios. Besides demonstrating the effectiveness of
the proxy, simulation can help demonstrate the value of robustness. For example, Rosenberger
et al. (2004) proposes a proxy-based fleet assignment model to reduce the cost of recovering from
disruptions. The proxy assumes that maximising the number of short cycles (sequence of flight legs
that start and end at the same hub) facilitates aircraft reroutings, reducing the need for flight can-
cellation when a flight is delayed. The effectiveness of the proxy can only be measured by evaluating
the schedule in the simulated operational setting. Rosenberger et al. (2004) uses a discrete-event

simulation (DES) model (Rosenberger et al., 2002) to prove that their schedules outperform the
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minimum-cost schedule using robustness metrics, i.e. tardiness, cancellations, reroutings and swaps.

Since DES models can represent relevant aspects of the operational environment, including
shared resources, they more accurately evaluate the future schedule performance. From Table
11, which lists all studies using simulation for schedule evaluation, we can learn that not only
proxy approaches benefit from DES simulation. Five feedback studies use a DES model or Simair
(Rosenberger et al., 2002; Lee et al., 2003) after the schedule has been optimised. Simair is a
DES model that comprehensively emulates the airline operational system (airside), including the
recovery actions implemented to mitigate disruptions. However, the turnaround duration in Simair
is modelled using a single probability distribution. Further research can be conducted to integrate a

detailed model of turnaround activities and resources in the simulation model to evaluate schedule

performance.

Citation Uncertainty Model ~ App Int Decision problem
Simulation Feedback P F FS FA AR CP TA

Burke et al. (2010) DES SB x I x X

Ahmadbeygi et al. (2010) DES SB x S x

Novianingsih and Hadianti (2016) DES SB x S x

Diepen et al. (2013) DES X S X

Ben Ahmed et al. (2017b) MC SB x I x X

Wu (2006) MC SB x S x

Guimarans and Padrén (2022) MC Sim-opt x S X

Marla et al. (2018) MC CCvsRO x S X

Zhu et al. (2022) MC CC x S X

Ben Ahmed et al. (2018) MC X I X X

Aloulou et al. (2013) MC b'e I x X

Gok et al. (2023) MC+DES Sim-opt x S X

Akmncilar and Giiner (2025) * S X

Antunes et al. (2019) * RO x S X

Evler et al. (2021b) * I xP

Chung et al. (2017) * S x?

Lee et al. (2007) Simair SB x S x

Rosenberger et al. (2004) Simair X S X

Schaefer et al. (2005) Simair X S X

Wei and Vaze (2018) Simair X S X

Ben Ahmed et al. (2017a) Simair SB x x I x X

DES: Discrete-event simulation; MC: Monte Carlo simulation; SB: Scenario-based optimisation; CC: Chance
constraints; RO: Robust optimisation; CCvsRO: Compare CC with RO; Sim-opt: Simulation optimisation;
App: Robustness approach (P: Proxy; F: Feedback); Int: Integration (I: Integrated, S: Single stage); F'S: Flight
Scheduling; FA: Fleet Assignment; AR: Aircraft Routing; CP: Crew pairing; TA: Turnaround; * Not specified;
2 Only for reserve crew; P Integrated with gate-reallocation

Table 11: Studies using simulation for schedule evaluation
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4.4. Turnaround consideration

Only three studies modelled turnaround operations to enhance the resilience of aircraft ro-
tations. Wu (2006) optimise the use of scheduled buffer times to maintain the balance between
reliability and profitability. The optimisation model reallocates and resizes buffers in the aircraft
rotations according to their vulnerability to delay propagation. The effectiveness of the allocated
buffers is evaluated using simulation models: a Monte Carlo simulation module accounts for the
uncertainty in en-route operations, and a semi-Markov chain model simulates ground operations.
Besides demonstrating that efficient turnarounds can absorb delays in the airline network, Wu
(2006) proves that considering turnaround uncertainty enables the appropriate use of costly buffer
times. In Evler et al. (2022) and Glomb et al. (2023), the potential of ground operations to mitigate
delay propagation was used to boost airline schedule recovery. These three studies demonstrate
that modelling turnaround activities potentially improves the performance of airline robust sched-
ules, revealing a gap in the literature. Existing research on turnaround scheduling provides valuable
tools to address the complexity of turnaround modelling in future research, in particular, studies
addressing the planning of multiple services simultaneously (Guimarans and Padrén, 2022; Gok

et al., 2023; Zhu et al., 2022). This will be discussed in-depth in the section 6.

4.5. Type of robustness

Relatively limited research has been dedicated to flexibility compared to reliability (see Table
A.2). To encourage further investigation of this under-researched strategy, we outline the main
characteristics of the existing literature on schedule flexibility.

Flexible schedules facilitate strategies to manage disruptions aiming to reduce the realised cost,
i.e. the cost of executing the schedule on the day of operations when disruptions occur. There exist
two major flexibility approaches in the literature. The first approach increases the opportunities
for aircraft and crew swaps (Burke et al., 2010; Maher et al., 2014), while the second reduces the
impact of delaying and cancelling flights (Rosenberger et al., 2004; Simsek and Akturk, 2022).
Similar to absorption robustness, there are costs associated with recovery robustness. Half of the
studies that foster flexible schedules optimise a surrogate for robustness. Common proxies in the
literature include: short aircraft cycles and hub isolation (Rosenberger et al., 2004), to reduce the
cost of cancellations; station and crew base purity (Smith and Johnson, 2006; Gao et al., 2009),
to facilitate aircraft and crew swaps, etc. In the case of proxies, an extra planned cost may result
from competing objectives. For instance, short cycles and hub isolation imply reduced connectivity
between hubs. Isolated hubs prevent disruptions at one hub from spreading to another. However,

this assignment may prevent the schedule from capturing ”throughs”—sequences of flights with
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demand from the first to the last flight leg that are operated by the same aircraft. There is revenue
associated with the premium paid by passengers who avoid changing aircraft in their connections.

The scope of our review includes ten articles dedicated to turnaround resilience, i.e. robustness
and responsiveness. Six articles promote reliability in turnaround operations (see Table A.2). The
mechanisms applied by these studies are similar to those used to improve absorption robustness in
airline schedules. Overall, in the six approaches, larger slacks are assigned to resources serving op-
erations more susceptible to delays (Diepen et al., 2013; Guimarans and Padrén, 2022; Gok et al.,
2023). The remaining four papers focus on the disruption management of apron operations and,
therefore, are not included in the classification of studies per type of robustness. The excluded
articles study the potential of ground operations (turnaround and gate assignment) to improve the
resilience of airline operations. To be more specific, the authors optimise the recovery of turnaround
schedules and gate assignments given airline schedule deviations considering passenger and crew
connections (Evler et al., 2021a,b). The recovery options developed in these studies are incorpo-
rated into the aircraft recovery model introduced in Evler et al. (2022). Interestingly, these ten
articles reveal growing recognition among scholars of the importance of airport processes, such as

turnaround, to robust airline scheduling.

5. Discussion and open problems

The previous section synthesises the literature on robust airline scheduling by combining and
evaluating the findings of individual studies. The insights derived from this process revealed open
problems that will be discussed in this section to shape prospective research directions.

The most prominent problem is the need for a wider perspective on the airline scheduling pro-
cess, incorporating aircraft turnaround. By considering the turnaround and its impact on airline
operational resilience, i.e. delay creation and propagation, the academic community can innovate
their approaches to robust scheduling. Optimisation models must consider that turnaround time
varies depending on the aircraft type, airport congestion and availability of ground resources, e.g.
staff, equipment, and stands. Overlooking this variability may result in under- (or over-)estimation
of optimal connection times for aircraft rotations, crew duties, and passenger itineraries. Future
research should aim to incorporate these three variability factors into robust scheduling decisions
such as aircraft routing, crew pairing and flight retiming. Modelling turnaround activities and re-
sources may be needed to capture the impact of ground-handling tasks on each specific scheduling
problem. For example, the interaction between the deboarding and boarding of crews changing

aircraft influences crew pairing decisions. Likewise, tight synchronisation between these two ac-
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tivities (deboarding and boarding) may result in broken passenger itineraries, affecting passenger
spill and recapture, which concerns fleet assignment and flight retiming models.

To address this need, we propose the comprehensive airline scheduling process, illustrated in
Figure 5. The figure expands Figure 2 by including a decision stage where the turnaround is
planned. This decision takes the partial schedule as input (green arrow) to estimate the aircraft
turn time and crew connecting time using a model of the ground handling operations in key airports
(hubs). Then, the estimations can inform the aircraft routing, crew pairing, and flight retiming
decisions (blue arrows). Partial examples of comprehensive scheduling process are in Wu and Law
(2019) who characterise stochasticity of delay propagation across airline networks considering the
turnaround activities; Evler et al. (2022) and Glomb et al. (2023) use variable minimum turn time
to update aircraft routing and recover airline operations; Eltoukhy et al. (2020) address aircraft
routing assuming that the minimum turnaround time in certain connections can be reduced with
additional resources; and Wu (2006) retime a schedule based on future airborne and ground time

estimated with simulation.
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Figure 5: Comprehensive airline scheduling process

Another major open problem is the need for collaborative approaches to enhance the robust-
ness of airline schedules. Although this review demonstrated that schedule robustness can be im-
proved by leveraging turnaround resilience, most airline planners and researchers avoid modelling
turnarounds in their decision-making models, with few exceptions, e.g. Wu (2006). This is not
surprising because airlines have limited control over turnaround operations and, consequently, re-

stricted access to the data required for modelling. Since the deregulation and liberalisation of the
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airline industry, competition has led the market, including ground handling services (De Neufville
et al., 2013; Bazargan, 2010; Graham, 2018). Although the normative allows self-handling in
certain circumstances, in most airports, the turnaround of multiple airlines is operated by third-
party organisations, the GHSP (ECC, 1996). Therefore, informed planning decisions require the
collaboration of various decision-makers.

All actors involved in the airline schedules operation (airlines, airports, GHSP, etc.) are im-
pacted by disruptions and are interested in systemically improving resilience. However, individual
business objectives determine the boundaries of practicable collaboration. OR. scholarship may
holistically study the robust scheduling problem and propose collaborative solutions that enhance
individual businesses and achieve common goals. Studies on the value of collaboration in supply
chain may theoretically support these efforts (Fu and Piplani, 2004; Wang et al., 2023).

Research on a collaborative robust scheduling framework may be of interest to practitioners and
researchers. It could build on airport collaborative decision-making framework (A-CDM) (Euro-
control, 2017). A-CDM is currently in place at some European airports to improve operational
responsiveness by facilitating coordination and information sharing among actors involved in pre-
departure processes. The success of A-CDM in facilitating disruption management signals the
applicability of collaboration to robust scheduling. In particular, actors (airline planners, airport
managers, and GHSP decision-makers) may be willing to cooperate to enhance the systemic re-
silience of operations from the planning stage. Policymakers may also be interested in fostering
collaboration to support robust airline scheduling. Although scheduling is currently performed by
airline planners autonomously, the resulting schedules affect the air transport industry as a whole,
and policymakers are concerned with fostering seamless air traffic management.

To illustrate how collaborative scheduling can build on A-CDM, Figure 6 shows the main A-
CDM milestones (stars in the image) in the operational plan of a busy airport (LHR, 2018). The
flight plan is activated three hours before the estimated off-block time (EOBT) from the origin air-
port. After the network manager confirms the aircraft has taken off (ATOT), the estimated in-block
time (EIBT) at the local airport is updated on the local A-CDM system. Discrepancies between
EIBT and SIBT trigger messages to the airport operator (AQO), the airline, and its GHSPs. The
AO revisits the gate assignments, and the GHSPs reschedule and reroute their teams to accom-
modate the delayed flight. When the aircraft reaches its gate position (AIBT), the GHSP updates
the target off-block time (TOBT), based on which the target start-up approval time (TSAT) is
determined. The TSAT of all aircraft waiting to taxi out towards the runway is synchronised in

the pre-departure sequence, and therefore, adherence to TOBT is essential to streamline airside
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operations. The consistency of the TOBT is checked when boarding starts (ASBT) and, if the
check is successful (as depicted in Figure 6), permission to taxi out is requested (ASRT) shortly

before its approval (ASAT) at AOBT.

Inbound
Code Description
L EIBT/EOBT Estimated in-block/off-block time
Local ATC  Taxiin Turnaround / ) - /
: ATOT Actiual take-off time
D ¢ Y % % By Outbound ALDT Actual landing time
EOBT-3hrs ATOT . ALDT b GHSUF? ate Boarding AIBT Actual in-block time
System *y * K * * *AOBT MTTT Minimum turnaround time
estimates AIBT R ASBT ASRT Tl TOBT/AOBT Target/actual off-block time
EIBT - axiou TSAT/ASAT Target/actual start-up approval time
Last update  ATC updates * Y ASBT Actual start of boarding time
of TOBT TSAT ASAT ATOT  ASRT Actual start-up request time

Figure 6: Example flight operation based on Eurocontrol CDM (source: (LHR, 2018; Eurocontrol, 2025))

Methodologies to define the earliest, yet feasible, TOBT can underpin collaborative schedul-
ing approaches. Evler et al. (2022) uses turnaround acceleration as a schedule recovery strategy
in cases where the airline manages its handling services. The methodology reallocates available
ground resources (staff and equipment) to delayed flights to minimise overall operational and recov-
ery costs across concurrent turnarounds. Reassignment opportunities are limited by the number of
resources available in each period of the turnaround daily schedule, i.e. shift design (Chew, 1991;
Chu, 2007; Wu et al., 2023). To foster schedule flexibility, self-handling airlines can jointly retime
the flight schedule and design ground shifts to facilitate turnaround acceleration. The approach
can be extended to airlines that outsource turnaround services by developing mechanisms to enable
partners (the airline and GHSPs) to share specific information to jointly solve the two planning
problems, i.e. flight retiming and shift design (Dudek and Stadtler, 2005; Pibernik et al., 2011;
Wang et al., 2023). These centralised approaches should evaluate the costs and benefits of col-
laboration and propose distribution mechanisms (Fu and Piplani, 2004; Aviv, 2007; Pérez-Perales
et al., 2024). Another approach is decentralised collaborative scheduling, where partners itera-
tively negotiate and compromise to find a ”Pareto optimal solution” for interdependent planning
problems (Homberger and Fink, 2017).

The collaborative robust scheduling framework differs from other decision-making frameworks
in many aspects. Firstly, the collaborative framework assumes that actors (an airline and GHSPs)
cooperate to achieve a shared goal (resilience) while protecting their financial feasibility and com-
petitiveness (Homberger and Fink, 2017). In contrast, Sun et al. (2025) and Eltoukhy et al. (2018)

support the interaction between an airline planner and a maintenance service provider (MSP) to
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decide competing objectives, assuming the dominance of one of them. Both frameworks (Sun et al.,
2025; Eltoukhy et al., 2018) apply a Stackelberg game approach where the follower provides feed-
back to the leader on their own planning decisions, which may strengthen dominance and make the
approach impractical. Secondly, the operation and organisational structure underpinning mainte-
nance services are different from those of turnaround. We analyse in more detail Sun et al. (2025)
and Eltoukhy et al. (2018) to understand these differences.

Sun et al. (2025) aims to invert the status quo of the negotiation between the airline and the
aircraft maintenance service providers (MSP), traditionally dominated by the airline. In Sun’s
framework, an MSP is the leading decision-maker interested in increasing its own profitability
by using resources efficiently and innovating pricing strategies. To achieve this, the approach
considers airlines’ objective of minimising operational costs while maintaining the maintenance
feasibility of most aircraft rotations. Therein, a deterministic aircraft maintenance routing model is
adapted to support the optimal allocation of MSP resources, e.g. scheduled flights can be cancelled
due to maintenance resource unavailability and the associated opportunity costs penalised. Our
collaborative framework addresses operational resilience as a shared goal (not only profitability),
affects various stages of the scheduling process (not only aircraft routing), integrates turnaround
models (multiple interdependent services), and involves multiple actors (GHSPs).

In Eltoukhy et al. (2018), the airline leads the game by building aircraft rotations that minimise
the costs of propagated delays. The MSP plans minimum-cost staff assignments to serve mainte-
nance visits on the airline schedule, and informs the airline of delays caused by staff unavailability.
The airline is supposed to adjust the rotations accordingly. However, since adjustments may re-
sult in unsatisfied demand, the airline may prefer to change its provider. Eltoukhy et al. (2018)
modelled maintenance visits as a single task performed by a single service provider, and all causes
of delay are aggregated except for staff unavailability. In contrast, the collaborative framework
accounts for the stochasticities in the airline schedule and turnaround operations that can cause
or amplify delays, including reactionary delay, availability of GHSP staff and equipment, variable
duration of multiple turnaround services, and interactions of different services and resources, e.g.
a crew disembarking late can delay various aircraft rotations and the teams servicing them. Since
recent studies split maintenance service into multiple tasks of shorter and stochastic durations
(Villafranca et al., 2025; Zhang et al., 2024a; He et al., 2023), the two processes (turnaround and
maintenance) may seem similar. However, maintenance tasks are performed by a single MSP at
the airport, which makes this operation less complex than turnaround.

Data collection may pose a major challenge for researchers aiming to develop a collaborative

29



scheduling framework. Applying a case study research strategy may be difficult, as this demands
sensitive data from two separate organisations with perceived conflicting interests. However, an
experimental approach may be possible by building realistic data instances using freely available
data. Aircraft rotations of real airlines can be obtained from Flightradar24 (2024) and BTS (2025).
Crew assignments can be added using the mechanism applied in Wu and Law (2019) and the dataset
provided in Kasirzadeh et al. (2017). A realistic configuration of turnaround operations can build
on the literature. Dall’Olio and Kolisch (2023) combined the data (flight schedules, a map of the
apron, and information on the loading and unloading process) provided by a hub airport in Europe
(Munich) with the technical manuals of aircraft manufacturers (available online). The resulting
data instances and the method used to build them are available in the supplementary material. In
addition, Fricke and Schultz (2009); Oreschko et al. (2012) fitted probability distributions for the
processing times of most turnaround services. The data sources collated in Li et al. (2024) could

also provide insights for building realistic data instances.

6. Methodological background for future research

In this section, we introduce a range of OR methodologies that could form the basis for future
investigations into the open challenges discussed earlier, drawing on the models and methods

explored so far.

6.1. Integrating turnaround and airline scheduling models

Applying the comprehensive airline scheduling process, turnaround models can be incorporated
into aircraft routing, crew pairing, and flight retiming (see blue arrows in Figure 5) to obtain
more reliable aircraft rotations, crew duties, and passenger itineraries. We collate the existing
advancements in integrating turnaround planning with these three decisions to facilitate future
development.

Two approaches have been used to improve the responsiveness of airline schedules by supporting
decisions made during (or shortly before) operations (Evler et al., 2022; Glomb et al., 2023). Both
studies model turnaround activities in hub airports to decide simultaneously on aircraft rotations
(rerouting) and turnaround schedules. Extending the idea introduced in Eltoukhy et al. (2020),
they reduce the ground time of delayed aircraft to minimise the departure delay of downstream
flights at the cost of allocating additional resources to turnaround activities. They also change
some rotations if this is less costly than compensating passengers for broken itineraries. Changes

to aircraft rotations are, in practice, aircraft swaps, which may make crew pairings and aircraft
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maintenance plans infeasible unless certain conditions are met. Therefore, disruption management
models need to incorporate constraints to comply with predefined aircraft maintenance events
and crew assignments. These rerouting approaches differ from robust aircraft routing in that the
latter is concerned with satisfying the maintenance requirements during the entire planning horizon
despite uncertainties affecting operations.

Glomb et al. (2023) can be extended to address robust aircraft routing with turnaround. Al-
though it accounts for schedule deviations known one day ahead of operations, stochasticity is not
modelled. Therefore, we recommend incorporating uncertainty modelling with a feedback mech-
anism to support planning decisions made weeks in advance. In some aspects, the optimisation
model proposed by Glomb et al. (2023) is similar to those on robust aircraft routing reviewed in
this paper (see Table 12). It is based on a connection network graph and minimises the cost of
aircraft assignments along with the costs of delays and potential turnaround acceleration actions.
Future research can propose a two-stage stochastic programming model drawing on Maher et al.
(2014); Froyland et al. (2014), where planning decisions (aircraft assignments) are addressed in a
deterministic stage and the recovery opportunities are evaluated under stochastic scenarios in a
second stage. Alternatively, building on existing literature, Glomb’s model can be extended by
including constraints for maintenance requirements (Maher et al., 2018) and chance constraints to
limit the probability of each flight being delayed more than a certain parameter, e.g. 15 minutes
(Marla et al., 2018). Additionally, Marla et al. (2018); Yan and Kung (2018) can underpin robust
optimisation models where the maximum cost of delay is incorporated in the objective function.

A closer look at the methodologies of these approaches (Evler et al., 2022; Glomb et al., 2023)
provides insights for future research on integrated aircraft routing and turnaround planning. Evler
et al. (2022) defines a rolling horizon over a day of operations to address the integrated recovery
problem using multi-period optimisation (Glomb et al., 2022). Each period specifies scheduling con-
straints for turnaround activities in the next hub bank, while constraints on passenger itineraries
and aircraft rotations are considered for the entire day. The objective function minimises the costs
of aircraft assignments (planned operational cost) and recovery (accelerating turnaround activi-
ties, cancelling flights, and breaking passenger or crew connections) during the next period. The
model encompasses a vehicle routing problem with time windows (VRPTW) to support aircraft
routing and a resource-constrained project scheduling problem (RCPSP) to plan turnaround activ-
ities. Glomb et al. (2023) also combines RCPSP and VRPTW; the former calculates the costs of
the optimal turnaround schedule, while the latter determines the availability of ground resources

to accelerate critical turnarounds, i.e. it helps constrain the feasible space. Since VRPTW are
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Citation Model Obj. function (min) UM Method

Lapp and Cohn (2012) Assignment MM - E
Froyland et al. (2014) Network flow PC + RC TS E
Mabher et al. (2014) Network flow PC + MM + RC TS E
Liang et al. (2015) Network flow TPDC EV H
Marla et al. (2018) Time-space network TPD CCvs RO E
Yan and Kung (2018) Integer programming MTPD RO E
Cui et al. (2019) Integer linear programming NA + DC - H
Eltoukhy et al. (2020) Multi-commodity network flow PDC SB H
He et al. (2023) Mathematical programming  DRS + NA + IAP - H
Birolini and Jacquillat (2023) Set partitioning TPD SB E
Zhang et al. (2024a) Set partitioning TPD - E
Akincilar and Giiner (2025) Set partitioning NA + DC ES E
‘Glomb et al. (2023) Mixed-integer programming ~ PC + DC + TAC - 1 E

* Not specified; PC: Planned costs; MM: Maintenance misalignments; RC: Recovery costs; TPDC: Total propagated delay
costs; TPD: Total propagated delay; MTPD: Maximum total propagated delay; NA: Number of aircraft; DC: Delay cost;
PDC: Propagated delay costs; DRS: Delay risk score; TAP: Idle aircraft penalty; TAC: Turnaround acceleration costs;
UM; Uncertainty modelling; EV: Expected value; - No uncertainty modelling; T'S: Two-stage stochastic programming; CC:
Chance constraints; RO: Robust optimisation; SB: Scenario-based optimisation; E: Exact, H: Heuristic ES: Evaluate with
simulation

Table 12: Models and methods per approach reported in the literature for aircraft routing

NP-hard combinatorial optimisation problems, modellers may need to develop compact formula-
tions equivalent to network flow models (Leggieri and Haouari, 2017) in order to address realistic
networks.

A study incorporating a turnaround simulation model within a flight retiming approach is in-
troduced in Wu (2006). The model estimates the duration and delay of ground-handling activities
under uncertainty, but it does not incorporate turnaround planning or recovery decisions because
ground resources are not modelled. The objective function minimises ground delay and the esti-
mated airborne delay. Wu (2006) can underpin future research to retime the airline and turnaround
schedules simultaneously, using a simulation optimisation approach to consider the stochasticity of
operations. The optimisation model can build on the reviewed studies on flight retiming shown in
Table 13. Most objective functions minimise the delay or its associated costs, while Sohoni et al.
(2011) also maximises the revenue from satisfied demand. Because schedule retiming may result in
infeasible passenger and crew itineraries, Lee et al. (2007) and Sohoni et al. (2011) minimise total
deviation from the original schedule.

The integration of turnaround planning with crew pairing has not been attempted, although the
interdependence across crew duties via aircraft rotations has been recognised (Schaefer et al., 2005;
Wei and Vaze, 2018). As Table 14 shows, crew pairing models minimise the delay costs or include

penalty costs associated with violations of robustness features, such as aircraft changes and short sit
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Citation Model Objective function UM Method

Wu and Caves (2002) * min PC EV E
Wu (2006) MP min ED SBH
Lee et al. (2007) MOO min DDT SB H
Ahmadbeygi et al. (2010) LP min EPD SB E
Sohoni et al. (2011) Stochastic IP max NR - DDT - OC CC E
Chiraphadhanakul and Barnhart (2013) LP min TEAD vs max TEES SB E
Duran et al. (2015) NLP min AIT + FC CC E
Novianingsih and Hadianti (2016) NLIP min TEPD SB H
Sanjeevi and Venkatachalam (2021) LP min TRC + EDC TS E

MP: Mathematical programming; MOOQO: Multi-objective optimisation; LP: Linear programming; IP: Integer pro-
gramming; NLP: Nonlinear programming; NLIP: Nonlinear integer programming; ED: Estimated delay; DDT:
Deviation from departure time; EPD: Expected propagated delay; NR: Net revenue; OC: Operational costs;
TEAD: Total expected arrival delay; TEES: Total expected effective slack; AIT: Aircraft idle time; FC: Fuel
cost; TEPD: Total expected propagated delay; TRC: Total reschedule costs; EDC: Expected delay costs; UM:
Uncertainty modelling (SB: Scenario-based optimisation; CC: Chance constraints; T'S: Two-stage stochastic pro-
gramming); E: Exact, H: Heuristic

Table 13: Models and methods used in the flight retiming literature

times, i.e. connections shorter than the minimum connecting time (MCT) in the objective function.
Together, this helps address the interdependence challenges to some extent (Wei and Vaze, 2018).
However, the MCT variability and recovery potential of the turnaround have not been considered,
and this depends on the physical and operational configuration of the airport terminal. Short crew
sit times impact disembarking and boarding, which are a large proportion of turnaround. Since
ground handling operations are also interdependent, these activities significantly influence the flight
departure delay of multiple rotations (Neumann, 2019). In future research, objective functions may
optimise turnaround and crew schedule decisions simultaneously, for example, adjusting turnaround
resources to reduce boarding time. Such research would need to consider the collaboration of the

different actors involved in ground handling.

6.2. Methodologies for airline scheduling with turnaround

Our review found extensive use of most modelling methodologies to apply feedback during
optimisation, i.e. stochastic programming, robust optimisation and scenario-based approaches,
but limited use of simulation optimisation (see Table 10). While this methodology has been under-
researched in the robust airline scheduling literature, it has been applied to various problems in the
aviation industry, such as turnaround planning (Guimarans and Padrén, 2022; Gok et al., 2023),
runway scheduling (Shone et al., 2024), check-in counter allocation (Forbes et al., 2024), and airline
disruption management (Rhodes-Leader et al., 2022). Next, we will discuss the potential adoption

of these approaches in robust airline scheduling with turnaround.
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Citation Model Objective function UM Method

Ehrgott and Ryan (2002) Set partitioning min PC 4+ PRV - E
Schaefer et al. (2005) Set partitioning min PC + PRV ES H
Yen and Birge (2006) Stochastic IP min PC + RC TS E
Shebalov and Klabjan (2006) IP max CSO ES H
Tekiner et al. (2009) Set partitioning max CSO + BT - E
Tam et al. (2011) Stochastic IP min AD TS E
Muter et al. (2013) Set covering min PC + RC - H
Lu and Gzara (2015) Multi-commodity flow min TC + MTD RO E
Chung et al. (2017) Set covering min PC + PDC + RCC ES E
Bayliss et al. (2017) MILP min ENC SB E
Wei and Vaze (2018) Set partitioning min PC + PRV ES H
Antunes et al. (2019) MILP min PC + DC RO E
Wen et al. (2020) Set partitioning min PC, PRV - E
Schrotenboer et al. (2023)  Set covering min PC + RC + RCC EV  E

IP: Integer programming; PC: Planned cost; PRV: Penalties for robustness violation; RC: Recovery costs;
CSO: Crew swap opportunities; BT: Buffer time; AD: Average delay; TC: Total cost; MTD: Maximum total
delay; PDC: Propagated delay cost; RCC: Reserve crew cost; ENC: Estimated number of cancellations; UM:
Uncertainty modelling (- No uncertainty modelling; ES: Evaluate with simulation; T'S: T'wo-stage stochastic
programming; RO: Robust optimisation; SB: Scenario-based optimisation; EV: Expected value); E: Exact,
H: Heuristic

Table 14: Models and methods used in the crew pairing literature

The first approach, presented in Forbes et al. (2024), formulates the allocation problem as
a stochastic integer programming model and solves it using logic-based Benders decomposition
(LBBD). The delay is modelled as a function of the number of staff (single type) in multiple
periods and, relying on the monotonicity property, the output of a DES simulation is used as
Benders’ cuts for the master problem. By doing this, the approach avoids simulating all candidate
solutions, improving efficiency. The results report that LBBD outperforms a conventional solver
and reaches the optima or insignificant optimality gaps. This work can motivate applications of
LBBD to the network flow and set partitioning problems underlying the integration of turnaround
with aircraft routing and crew paring, respectively. This entails methodological contributions to
address various challenges, including the multivariate nature of the delay function and the existence
of VRP or RCPSP constraints.

The second approach, called simheuristics, embeds a simulation model within a metaheuristic
to search large solution spaces efficiently (Juan et al., 2015; Figueira and Almada-Lobo, 2014).
Similar to airline schedule operations, the runway scheduling problem addressed by Shone et al.
(2021) is characterised by multiple types of uncertainty (flight arrival times, sequence-dependent
aircraft separation and weather conditions), which are accounted for by the simulation. The multi-

objective model minimises schedule delays and operational delays using a complex cost function

34



and is solved using a variable neighbourhood search (VNS) algorithm (Mladenovic and Hansen,
1997; Hansen et al., 2008). Simheuristics has been used to solve various NP-hard problems by
implementing a variety of metaheuristics, such as random variable neighborhood descent (RVND)
(Mecler et al., 2022) for the parallel machine scheduling problem (Abu-Marrul et al., 2023) and
genetic algorithms for the integrated facility location and vehicle routing (Rabbani et al., 2019).
The simulation models that capture the stochasticity of the turnaround system introduced in Gok
et al. (2023) can be extended to consider the influence of the delay propagated across the airline
schedule (aircraft rotations, crew duties and passenger itineraries) to address the complex cost
functions and constraints that configure the robust airline scheduling with turnaround.

The third approach is multi-fidelity modelling, which reduces the computational budget spent
in high-fidelity simulation by using a low-fidelity model, less computationally demanding, to drive
the search towards near-optimum areas (Lin et al., 2021; Xu et al., 2016). Rhodes-Leader et al.
(2022) applies multi-fidelity modelling to address the aircraft recovery problem using a determin-
istic mathematical programming model that finds initial solutions and a simulation optimisation

algorithm that improves them considering uncertainty.

7. Conclusion and avenues for research

This paper presents a framework that encompasses essential characteristics of robust scheduling
to support data extraction and synthesis (Paul et al., 2024; Tranfield et al., 2003). Each framework
variable regards a unique viewpoint on the methodologies proposed by the papers, facilitating the
analysis of their properties.

The literature confirmed that authors and airline operation planners are increasingly opting
for stochastic models to develop robust schedules (Simsek and Akturk, 2022; Marla et al., 2018;
Froyland et al., 2014). These studies have articulated stochastic optimisation approaches using the
applicable OR methodologies, including stochastic programming, robust optimisation and scenario-
based optimisation. The use of simulation optimisation has been limited, although simulation
models have proven effective in providing high-fidelity estimation of future operations to evalu-
ate the performance of planning decisions (Burke et al., 2010; Novianingsih and Hadianti, 2016;
Ben Ahmed et al., 2018; Guimarans and Padrén, 2022; Gok et al., 2023).

This paper proposes a comprehensive airline scheduling process, which incorporates turnaround
planning to improve robustness in aircraft routing, crew pairing, and flight retiming (revisits flight
scheduling decisions). This wider perspective on the scheduling process, including the need to

make decisions that involve various organisations with autonomous decision-makers, demands a

35



collaborative robust scheduling framework to be built on existing OR theories and industry protocols
(Eurocontrol, 2017; Fu and Piplani, 2004; Dudek and Stadtler, 2005).

For empirical validation, these two concepts can be progressively implemented. The com-
prehensive scheduling process can be readily adopted by a self-handling airline to streamline its
operations in a hub airport, e.g. jointly planning timetables and turnaround shifts. Expectedly,
the savings in recovery costs will be positively correlated with the airline’s dominance in the hub
(Calzada and Fageda, 2023), typically concentrated in one of the airport terminals. Learnings from
this implementation can support the construction of a collaborative platform for other terminals,
where ground handling services are provided by third parties. The airport is a natural candidate
to lead such a transition because its competitiveness is determined by the on-time performance
of all terminals. In addition, methodologies for the operational coordination of multiple GHSP
indicate the decisive role of the airport operator (Padrén et al., 2016; Gok et al., 2023). Local
initiatives, such as the airline operators committee (AOC) that operates at Heathrow, can also
catalyse cooperation (LHRAOC, 2025).

A limitation of this study is not considering other airport processes that affect the resilience of
the schedule in addition to turnaround, such as gate assignment (Dijk et al., 2019). Future research
on the collaborative framework could overcome this limitation by studying airport decisions that
affect the reliability of the schedule.

In addition to those presented in the discussion, the comprehensive process raises other interest-
ing open questions. How can schedule robustness across the network be evaluated considering the
propagation of delays through turnaround operations? What robustness proxies can improve airline
schedule flexibility? Industry practitioners and scholars will benefit from fostering advancements

in simulation and optimisation methodologies to address these questions.

36



Literature Review OR Method Approach to Uncertainty
EO HO Sim Deterministict Stochastic

Xu et al. (2024) v V v
Ma et al. (2022) * * * v
Wen et al. (2021) v v v
Zhou et al. (2020) v o7 v
Deveci and Demirel (2018) v v
Eltoukhy et al. (2017) v oV v v
This review v v v v v
EO: Exact optimisation; HO: Heuristic optimisation; Sim: Simulation
*The methods are only mentioned
T Uncertainty is not considered
Table A.1: Methods analysed by previous literature reviews
Appendix A. Supplementary material
Count of papers
Robustness Approach Airline schedule  Turnaround
Feedback 32 6
Proxy 17 1
Proxy and feedback
Neither proxy or feedback 7 3
Total 60 10
Uncertainty Management
Stochastic optimisation 36 4
Simulation optimisation 2
Evaluate solution with simulation 2
Evaluate solution with scenarios 3 2
No uncertainty modelling 14
Total 60 10
Type of Robustness
Reliability 41 6
Reliability and Flexibility 4
Flexibility 15
Total 60 6"

* . o1 . . .
Four articles on turnaround resilience that focus on responsiveness (disruption

management) are not included in this table.

Table A.2: Number of studies by robustness approach, uncertainty management, and type of robustness
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