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Abstract
The article studies the interplay between obligations, knowledge, and abilities. It 
introduces the notion of norm-dependent abilities–something that an agent knows 
how to achieve using a knowingly allowed action and assuming that the other 
agents also use only knowingly allowed actions. The main technical contribution 
is a sound and complete logical system that describes the interplay between the 
modalities representing knowledge, obligations, and norm-dependent abilities in the 
presence of information walls between the agents.

Keywords  Obligations · Knowledge · Norms · Transition system · Normative 
system · Actions · Strategies

1  Introduction

In this article, we study how knowledge and norms affect the abilities of agents. For 
example, imagine a setting in which three guys, Ben (b), Charles (c), and David (d), 
decide to meet for a potluck party, each bringing just a single dish. Not being the 
greatest chef in the world, each of them knows how to cook only three dishes. Figure 
1 shows which dishes each of them can cook. For instance, Ben only learned how 
to cook bruschetta, beef, and blueberry pie. Suppose that two of them, Charles and 
David, are vegetarians–we show this in Fig. 1 using the letter “v”–and there are no 
other dietary restrictions in the group.
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Let us assume that it is against social norms for any person to bring to a potluck 
party a dish nobody, except possibly the person himself, can eat. In our setting, it 
means that Ben cannot bring beef because Charles and David are vegetarians. It is 
fine for Charles and David to bring chicken and duck, respectively, because Ben is 
not a vegetarian.

1.1  Deontic logic models

Several ways to model the above situation and to reason about it have been suggested 
in the literature. The best known of them is deontic logic (Wright, 1951; Anderson, 
1956; Prior, 1963; Anderson, 1967; Kanger, 1971; Horty, 2001; Hilpinen, 2012). The 
semantics of this logical system would consider all possible combinations of dishes 
at the potluck party as possible worlds. In our case, there are 3 × 3 × 3 = 27 possible 
worlds. In nine of these worlds, Ben violates the social norm and cooks beef for the 
party. Such worlds are called unacceptable. The other 18 worlds are acceptable. The 
syntax of the deontic logic contains modality Oφ (“it ought to be φ”). Intuitively, the 
formula Oφ means that the social norms imply that φ must be true. Formally, Oφ is 
satisfied if φ is true in all acceptable worlds. For example, in our setting, 

	 O (There are at most two meat dishes at the party)� (1)

because each of the guys is bringing only one dish to the party, and Ben does not cook 
beef in all admissible worlds.

1.2  Normative systems

Note that the deontic logic approach does not have actions in its semantics. Thus, 
it cannot be easily used to express what different agents have an ability to achieve 
under the existing social norms. One of the possible ways to model this is to endow 
agents with sets of possible actions and label some of them as allowed and others as 
disallowed. To model our running example, suppose that, in the initial state, each of 

Fig. 1  Potluck party planning
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the three agents (Ben, Charles, and David) has three possible actions to choose from. 
For instance, Ben’s actions are “cook bruschetta”, “cook beef”, and “cook blueberry 
pie”. Based on the actions taken by the three agents, the system transitions from 
the initial state to one out of 27 final states, representing different combinations of 
foods brought to the party. Under this approach, the actions, not states, are labelled 
as allowed and disallowed. In our example, Ben’s action “cook beef” is disallowed, 
and all other actions of all agents are allowed. We refer to such models as normative 
transition systems or simply normative systems.

The semantics of the “ought to” modality O can be defined straightforwardly for 
normative systems: Oφ means that formula φ is guaranteed to be true in the next 
state as long as all agents use allowed actions. Under such semantics, statement (1) is 
satisfied in the initial state of our “potluck party” normative system.

Wooldridge and van der Hoek proposed a normative ability modality that states 
that agent a has an allowed action that guarantees that formula φ will be true in the 
next state (Wooldridge & Hoek, 2005). In the current article, we denote this modal-
ity by A. For instance, in our running example, David has an allowed action (“cook 
duck”) that guarantees that there will be at least one meat dish at the party: 

	 Ad(There is at least one meat dishes at the party)

At the same time, Ben does not have a normative ability to guarantee the same: 

	 ¬Ab(There is at least one meat dishes at the party)

because Ben is not allowed to cook beef. Note that modality Aaφ requires the allowed 
action of agent a to guarantee φ even if the other agents use disallowed actions. For 
example, 

	 ¬Ad(There is at most one meat dishes at the party)

because even if David does not cook duck, there is a chance that Ben uses the dis-
allowed action “cook beef”. In combination with Charles’ allowed action “cook 
chicken”, this would bring the system to a state with two meat dishes at the party.

Logical systems for normative abilities have been widely studied in the literature 
(Der Hoek et al., 2007; Ågotnes et al., 2009–Herzig et al., 2011); see (Alechina et 
al., 2018) for an overview of this area. Normative ability is a special case of strategic 
abilities. The latter have also been studied in Coalition Logic (Pauly, 2002), ATL 
(Alur et al., 2002), STIT Logic (Horty, 2001, Belnap & Perloff, 1990; Horty & Bel-
nap, 1995; Horty & Pacuit, 2017; Olkhovikov & Wansing, 2019), and Strategy Logic 
(Chatterjee et al., 2010). Modality Aaφ can also be viewed as a permission modality 
because it expresses the fact that agent a is permitted to use at least one action that 
guarantees φ. This type of permission modality is often referred to as weak permis-
sion modality because the Monotonicity inference rule: 
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φ → ψ

Aaφ → Aaψ

is valid for this modality (Benthem, 1979). The modalities of the other, strong per-
mission type (Benthem, 1979; Asher & Bonevac, 2005), satisfy the Antimonotonicity 
rule: 

	
φ → ψ

�aψ → �aφ
.

Shi (2024) gave a sound and complete axiomatization of the interplay between 
modality A and three other permission modalities.

1.3  Epistemic normative systems

In this article, we consider normative systems with imperfect information in which 
the agents might not be able to distinguish some of the states. We refer to this more 
general class of models as epistemic normative systems. For instance, suppose that 
our three guys do not know each other well enough to know which of them is a 
vegetarian and which is not. Of course, we assume each of them knows this about 
himself. We model such a situation by 8 “initial” states that represent all possible 
combinations of who is vegetarian and who is not.

The set of allowed actions changes from one state of an epistemic normative sys-
tem to another. For example, Ben is allowed to cook beef in any state where at least 
one of the two other guys is a non-vegetarian, and he is disallowed to cook beef in 
the current state where Charles and David are vegetarian. In this setting, we interpret 
Oφ, as “formula φ is guaranteed to be true in the next state if all agents  knowingly 
take an allowed action”.

First, let us assume that there is no ex ante (before the actions are taken) com-
munication between Ben, Charles, and David. In this case, David and Charles would 
not be able to learn that Ben is not a vegetarian. Although both of them are allowed 
by the social norms to bring meat dishes to the party, neither of them would know 
this. Of course, Ben is not even allowed to bring meat to the party because Charles 
and David are vegetarians. Hence, if all agents only use actions that they know are 
allowed, there will be no meat dishes at the party: 

	 O(There are no meat dishes at the party).� (2)

1.4  Information walls

Our goal is to study how communication between agents interplays with their obli-
gations. We capture the above setting in which there is no ex-ante communication 
between all three agents by the assumption that there are information walls that com-
pletely isolate Ben, Charles, and David. Formally, we model systems of information 
walls by a partition of the set of agents. Informally, the agents that belong to the same 
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set of the partition might but do not have to share their knowledge1. The partition 
for the setting where there is no ex-ante communication between all three of them 
is shown as partition σ1 in Fig. 2. To be able to discuss the properties of different 
partitions, we add the partition as the superscript of the “ought to” modality O. For 
example, we will write formula (2) as 

	 Oσ1(There are no meat dishes at the party).

Let us now consider the partition σ2 shown in the same Fig. 2. This partition allows 
communication between Ben and Charles but not between either of them and David. 
By talking to Ben, Charles might learn that Ben is not a vegetarian. In this case, he 
will know that he is allowed by the social norms to bring a meat dish to the party. At 
the same time, due to the existing information wall that separates David from Ben and 
Charles, David will never learn that Ben is not a vegetarian. Thus, although David is 
allowed to bring meat according to social norms, he will never learn about this. As 
a result, David will not bring a meat dish to the party. Of course, Ben is not allowed 
to bring meat to the party because he is the only non-vegetarian there. Assuming that 
all communication between the agents is truthful, the conversation between Ben and 
Charles will not lead to Ben’s knowledge of something which is not true. As a result, 
only Charles might potentially bring a meat dish to the party: 

	 Oσ2(There is at most one meat dish at the party).

Under partition σ3, see Fig. 2, Charles and David are guaranteed not to learn that Ben 
is not a vegetarian. As a result, just like in the case of the partition σ1, neither of the 
guys will bring a meat dish: 

	 Oσ3(There are no meat dishes at the party).

The case of partition σ4 is similar to the case of σ2. More interestingly, under parti-
tion σ5 that allows full ex-ante communication between all three agents, Charles and 

1 A similar partition-based approach to modeling restrictions on communication between agents has been 
used, for example, in (Lee et al., 2025).

Fig. 2  Five partitions
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David might learn that Ben is not a vegetarian. As a result, potentially, both of them 
might bring meat dishes. Of course, Ben still will not be able to bring a meat dish: 

	 Oσ5(There is at most two meat dishes at the party).

As an additional example, notice that 

	 Oσ1(There is at least one pie at the party).� (3)

The last statement is true because, under partition σ1, Charles never learns that Ben 
is not a vegetarian. As a result, if he only uses actions that he knows are allowed, 
Charles is guaranteed to bring either a cranberry or a coconut pie to the party. Figure 2 
shows what ought to be true about the number of pies under the other four partitions.

1.5  Normative abilities in epistemic setting

One might potentially generalize the normative ability modality Aaφ from normative 
systems to epistemic normative systems. To do this, it will be convenient to use the 
knowingly allowed action of an agent a. By such an action, we mean any action of 
agent a that is known to agent a to be allowed. Then, modality Aaφ could be inter-
preted in epistemic normative systems as “agent a has a knowingly allowed action 
that guarantees φ”. In such a modality, knowledge can be considered ex-ante (before 
any possible communication between the agents from the same set of the partition) 
or ex-post (after possible communication). For example, 

	 Ad,ex-ante(There is at least one pie at the party).

because David knows ex-ante that he is allowed to bring a date pie to the party. 
By doing this, he guarantees that there is at least one pie at the party. This result is 
guaranteed to take place no matter whether the other agents use knowingly allowed 
actions or not. Note that the semantics of such a modality does not depend on the 
information walls. As a result, it might be worth considering, but not in the context 
of the current article.

If one considers ex post knowledge, then the modality Aaφ would describe not an 
actual ability but a possible ability that an agent might acquire as a result of some par-
ticular information exchange between the agent in the same set of the partition. For 
example, under partition σ4, David might learn from Ben that Ben is not a vegetarian. 
By learning this, David would acquire the knowledge that bringing a duck is one of 
his allowed actions. Hence, if such a communication between Ben and David takes 
place, then, after that communication, David would have a knowingly allowed action 
that guarantees that there is at least one meat dish at the party: 

	 Aσ4
d,ex-post(There is at least one meat dish at the party).
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The same is true for partition σ5, where the communication between Ben and David 
can also take place. At the same time, a similar statement is not true. For example, 
under partition σ3, 

	 ¬Aσ3
d,ex-post(There is at least one meat dish at the party).

because within the information walls defined by partition σ3, David would never 
learn that bringing a duck to the party is an allowed action. Note that just like in the 
case of ex-ante form of this modality, ex-post does not restrict the other agents to 
only knowingly allowed actions. Unlike the ex-ante form, the semantics of the ex-
post version of modality A takes into account the structure of the information walls. 
However, the ex-post form of the modality captures only a potential abilities that an 
agent might never acquire. It captures more of wishful thinking than actual ability.

1.6  Our contribution: norm-dependent abilities

1.6.1  Main idea

In this article, we propose a new concept of norm-dependent ability. An agent has 
such an ability if the agent has a knowingly allowed action that guarantees the result 
as long as all other agents also use only knowingly allowed actions. Note that the 
bolded part was not present in the definitions of the modalities discussed in the previ-
ous subsection. This part makes the definition of the ability consistent with how we 
have defined the semantics of modality O in epistemic normative systems.

Going back to our example in Fig. 2, note that no matter what information 
exchange takes place under partition σ1, Charles will never learn that Ben is not a 
vegetarian. Hence, Charles will never know that bringing the chicken is one of his 
allowed actions. Thus, if Charles only uses knowingly allowed actions, he will have 
to bring a pie to the party. This guarantees that, as we have already observed in state-
ment (3), if everyone uses only knowingly allowed actions, then there will be at least 
one pie (either cranberry or coconut) at the party. Next, note that bringing a date pie 
is one of David’s knowingly allowed actions. Hence, David has a norm-dependent 
ability to guarantee that there will be at least two pies at the party! We write this as 

	 DAσ1
d (There is at least two pies at the party).� (4)

We refer to such an ability as “norm-dependent” because it is conditional on the fact 
that all other agents only bring knowingly allowed food to the party.

At the same time, under partition σ2, it might happen that Ben and Charles com-
municate. As a result of such communication, Charles might learn that Ben eats 
meat. This would make bringing chicken a knowingly allowed action of Charles. As 
a result, David has only a norm-dependent ability to guarantee that there will be at 
least one pie at the party: 

	 DAσ2
d (There is at least one pie at the party).� (5)

1 3
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Comparing statements (4) and (5), we can observe an interesting property of norm-
dependent strategies: addition of information walls might increase agents’ norm-
dependent abilities. This observation distinguishes norm-dependent abilities from 
most other types of abilities in imperfect information (Wang, 2018; Li & Wang, 
2021; Berthon et al., 2017; 2017; Naumov & Tao, 2017; Ågotnes, 2006), where an 
exchange of information between agents sometimes increases but never decreases an 
agent’s ability. In Fig. 2, we show the equivalents of statements (4) and (5) for the 
other three partitions.

1.6.2  Hold yourself to a higher standard

As discussed in Sect. 1.5, there are two possible ways to interpret the term “know-
ingly allowed action” in our setting. Under ex-ante interpretation, it refers to the 
ex-ante (before communication) knowledge of the acting agent. Under ex-post inter-
pretation, it refers to hypothetical knowledge that the acting agent might acquire as a 
result of the communication with the agent from the same set in the partition. Gener-
ally speaking, there are fewer “ex-ante knowingly allowed” actions than “ex-post 
knowingly allowed” actions. The former actions are available to the agent upfront. 
The latter might become available after communication. We believe that the ability 
should not rely on luck and should guarantee success even if your opponents are 
lucky. Thus, in the context of modality DAa, we assume that the actions of agent a 
are “ex-ante knowingly allowed” while the actions of the other agents are “ex-post 
knowingly allowed”. For example, 

	 ¬DAσ4
d (There is at least one meat dish at the party)

in spite of the fact that, under partition σ4, David might ex post learn that Ben is a 
vegetarian and bring duck to the party. At the same time, 

	 ¬DAσ2
d (There are no meat dishes at the party)

because it is not enough for David just to decide to bring date pie (or daikon salad) to 
the gathering. Indeed, under σ2, Charles might ex-post learn that Ben is not a vegetar-
ian and bring chicken.

1.6.3  The right to remain silent

Although we allow agents to communicate with the other agents in the same partition 
set, we do not require them to do so. In particular, we allow them to decide not to 
communicate certain information as a part of their strategy. For example, under any 
of the five partitions σ, 

	 DAσ
b (There are no meat dishes at the party)

because Ben can always choose not to tell anyone that he is not a vegetarian. In fact, it 
is easy to see that in our setting, an agent can never achieve more by “being talkative” 
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(revealing additional information to others). Revealing such information may only 
make the opponents more powerful by giving them additional ex-post knowingly 
allowed actions. This is the reason why lawyers usually advise their clients to remain 
silent or to disclose as little information as legally necessary.

1.6.4  Contribution and outline

In this article, we propose a sound and complete logical system that describes the 
interplay between norm-dependent ability modality DAσ

a  and “ought to” modality 
Oσ . Our main technical result is the completeness of the proposed logical system. 
The proof of the completeness uses two key ideas: σ-harmony and distributed key 
generation. While σ-harmony is a variation of the technique from (Naumov & Tao, 
2017, 2018a), distributed key generation is a novel technique that we propose. We are 
not aware of this technique being used in completeness proofs before, although it is 
well-known in cryptography (Pedersen, 1991). The preliminary version of this work, 
without the full proof of the completeness, appeared as (Naumov & Zhang, 2022).

This article is organized as follows. The next section defines the syntax and the 
semantics of our logical system. Then, we list and discuss its axioms and inference 
rules. The soundness of these axioms is shown in Sect. 4. The next section presents 
our main result, the completeness of the system. The last section concludes.

2  Syntax and semantics

In this article, we assume a fixed set of propositional variables and a set A of agents. 
A partition of set A is any family of pairwise disjoint nonempty sets whose union is 
equal to A. For any agent a ∈ A and any partition σ of set A, let [a]σ  be the unique 
set in partition σ that contains a. In Fig. 2, for instance, [b]σ2 = {b, c}.

By σ/a, we mean a modification of partition σ in which set [a]σ  is replaced by two 
sets: {a} and [a]σ \ {a}. If [a]σ = {a}, then σ/a, by definition, is σ. For example, 

	

σ2/d = {{b, c}, {d}} = σ2,

σ3/d = {{b}, {c}, {d}} = σ1,

σ5/d = {{b, c}, {d}} = σ2.

Definition 1  For any two partitions σ and τ  of set A, let σ ⪯ τ  if [a]σ ⊆ [a]τ  for each 
agent a ∈ A. If σ ⪯ τ , then partition σ is “finer” than partition τ .

The language Φ of our logical system is defined by the following grammar: 

	 φ := p | ¬φ | φ → φ | Kaφ | Oσφ | DAσ
aφ,

where p is a propositional variable, a ∈ A is an agent, and σ is a partition of the set of 
agents. We read Kaφ as “agent a knows φ”, DAσ

aφ as “agent a has a norm-dependent 
ability to achieve φ in the presence of the information walls defined by partition σ”,  

1 3

Page 9 of 32     39 



Synthese          (2026) 207:39 

and Oσφ as “it ought to be φ in the presence of the information walls defined by 
partition σ”. We assume that the conjunction ∧ and the Boolean constant true ⊤ are 
defined through → and ¬ in the standard way. For any finite set of formulae Y , by 
∧Y  we mean the conjunction of all formulae in Y . Formula ∧∅, by definition, is ⊤.

Definition 2  A normative system is a tuple (W , ∼, ∆, S , ℓ, M , π), where

1.	 W  is a (possibly empty) set of states,
2.	 ∼a is an indistinguishability equivalence relation on the set of states W , for 

each agent a ∈ A,
3.	 ∆w

a  is a set of all actions (allowed and disallowed) of agent a in state w; by an 
action profile δ at state w, we mean any function that maps each agent a ∈ A 
into an action δ(a) ∈ ∆w

a ,
4.	 Sw

a ⊆ ∆w
a  is a set of allowed (or “safe”) actions for agent a ∈ A in state 

w ∈ W ,
5.	 ℓw

a ∈ Sw
a  is a default allowed action of agent a ∈ A in state w ∈ W ; we as-

sume that if w ∼a u, then ℓw
a = ℓu

a ,
6.	 mechanism M is an arbitrary set of triples (w, δ, u), where w, u ∈ W  are states 

and δ is an action profile at state w,
7.	 π(p) ⊆ W  for each propositional variable p.
In our running example from the introduction, the set W  consists of 8 + 27 = 35 
states. Intuitively, eight of them are “initial” states in which the three guys have not 
made their choices yet. In the initial state, each of the guys can be either vegetarian 
or non-vegetarian. In the actual state, Charles and David are vegetarians, and Ben is 
not. Additionally, there are 27 “final states” that represent 27 possible outcomes of 
the choices made by the three guys. To keep the state count low, we do not encode 
vegetarian/non-vegetarian status into the final states. Note that in the formal setting 
of Definition 2, we do not distinguish between the initial and the final states. Thus, we 
potentially allow the transitions to continue. For the sake of generality, item 1 above 
allows the set W  to be empty.

Indistinguishibility relation ∼a in item  2 above captures ex-ante knowledge 
of agent a. In other words, it captures the knowledge before possible information 
exchange between the agents. For example, the current state (in which Charles is 
vegetarian) is in the relation ∼Ben with a hypothetical possible state where Charles 
eats meat. Because relation ∼a captures ex-ante knowledge, the presence (or lack of) 
information walls does not affect this relation.

∆w
a  is a set of actions of agent a at state w. For instance, in our introductory example, 

Ben has the same set of available actions ∆w
Ben = {bruschetta, beef, blueberry pie} 

in each of the eight “initial” states. The set Sw
a  represents allowed actions of agent a 

in state w. For example, if w0 is the “current” initial state in which Charles and David 
are vegetarians, then 

	 Sw0
Ben = {bruschetta, blueberry pie}.

Note that the set Sw
a  represents allowed actions. It does not represent knowingly 

allowed actions. Thus, for example, for the same “current” initial state w0, 
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Sw0
Charles = {cranberry pie, chicken, coconut pie},

Sw0
David = {date pie, duck, daikon salad}.

We assume that in each state, each agent has at least one knowingly allowed action. 
To model this, for each agent a and each state w, we identify a “default” allowed 
action ℓw

a . Item 5 of the above definition guarantees that the action ℓw
a  is knowingly 

allowed in state w. It achieves this by requiring ℓw
a  to be the default action in all states 

that agent a cannot distinguish from state w. The existence of a knowingly allowed 
action is important for the soundness of the Necessitation inference rule for modality 
DA. The requirement to have at least one knowingly allowed “default” action is our 
adaptation to social norms of the “safe harbor” provision in law that stipulates that 
there should be at least one action for an agent to take without violating the law.

Informally, (w, δ, u) ∈ M  means that the system can transition from state w to 
state u under action profile δ. In general, a mechanism is a relation, not a function. 
Thus, transitions might be non-deterministic. If, for some state w ∈ W  and some 
action profile δ at state w, there is no state u such that (w, δ, u) ∈ M , then we say that 
the system terminates in state w under action profile δ.

Recall that, in our setting, the agents know some information ex ante (before the 
communication), and they potentially might learn additional information as a result 
of the communication. Thus, generally speaking, each agent starts with some ini-
tial set of knowingly allowed actions based on ex-ante knowledge and extends this 
set during the communication. By KSw

a , we denote the “initial” set of knowingly 
allowed (“knowingly safe”) actions of agent a in state w. Note that this set does not 
depend on the choice of the partition because the structure of the information walls 
only plays its role at the communication stage.

Definition 3  Let KSw
a  be the set of all actions s ∈ ∆w

a  such that s ∈ Sw′

a  for each 
state w′ ∈ W  such that w ∼a w′.

In our example, bringing vegetarian dishes are the agents’ only knowingly allowed 
ex-ante actions: 

	

KSw0
Ben = {bruschetta, blueberry pie},

KSw0
Charles = {cranberry pie, chicken, coconut pie},

KSw0
David = {date pie, duck, daikon salad}.

Consider now an arbitrary partition σ of the set of all agents. If agents in the same 
partition communicate, then they might learn additional allowed actions. By DSw

σ , 
we denote the set of all action profiles δ such that, for each agent a ∈ A, the set of 
agents [a]σ  distributively knows that action δ(a) is allowed for agent a in state w. 
Informally, DSw

σ  is the set of all action profiles δ about which each agent a ∈ A might 
learn that action δ(a) is allowed in state w if the agent communicates with the other 
agents in the set [a]σ .

1 3
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Definition 4  DSw
σ  consists of all action profiles δ at state w such that for each agent 

a ∈ A and each state w′ ∈ W , if w ∼b w′ for each agent b ∈ [a]σ , then δ(a) ∈ Sw′

a .

In our example, the set DSw0
σ2  contains profile (bruschetta, chicken, date pie) 

because, under partition σ2, Charles might learn that Ben is not vegetarian and, thus, 
he is allowed to bring chicken. At the same time, the same set DSw0

σ2  does not contains 
profile (bruschetta, cranberry pie, duck), because the information walls under par-
tition σ2 prevent David from learning that Ben is not a vegetarian.

Lemma 1  If σ ⪯ τ , then DSw
σ ⊆ DSw

τ .         �          □

Next is the key definition of this article. It gives formal semantics of modalities 
K, O, and DA.

Definition 5  For any state w ∈ W  and any formula φ ∈ Φ, satisfiability relation 
w ⊩ φ is defined as follows

1.	 w ⊩ p if w ∈ π(p),
2.	 w ⊩ ¬φ if w ⊮ φ,
3.	 w ⊩ φ → ψ if w ⊮ φ or w ⊩ ψ,
4.	 w ⊩ Kaφ if u ⊩ φ for each u ∈ W  such that w ∼a u,
5.	 w ⊩ Oσφ when for each action profile δ ∈ DSw

σ  and each state u ∈ W , if 
(w, δ, u) ∈ M , then u ⊩ φ,

6.	 w ⊩ DAσ
aφ when there is an action s ∈ KSw

a  such that for all states w′, u ∈ W  
and each action profile δ ∈ DSw′

σ/a, if δ(a) = s , w ∼a w′, and (w′, δ, u) ∈ M , 
then u ⊩ φ.

In item  5, we write δ ∈ DSw
σ  because we allow agents to use ex-post knowingly 

allowed actions, see Sect. 1.4.
In item 6, we require that s ∈ KSw

a  to capture that action s must be ex-ante know-
ingly allowed action of agent a in state w, see Sect. 1.6.2. We use partition σ/a 
instead of partition σ because agent a can only lose power by communicating with 
others; see Sect. 1.6.3. We assume that δ ∈ DSw′

σ/a because we allow the opponents 
of a to use ex-post knowingly allowed actions, see Sect. 1.6.2.

3  Axioms

In addition to propositional tautologies in language Φ, our logical system contains 
the following axioms:2

1.	 Truth: Kaφ → φ,
2.	 Negative Introspection: ¬Kaφ → Ka¬Kaφ,

2 Notations σ ⪯ τ  and σ/a have been introduced at the beginning of the previous section.
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3.	 Distributivity: �(φ → ψ) → (�φ → �ψ) where � ∈ {Ka, Oσ} and
4.	 Monotonicity: Oτ φ → Oσφ where σ ⪯ τ , DAτ

aφ → DAσ
aφ where σ/a ⪯ τ/a,

5.	 Strategic Introspection: DAσ
aφ → KaDAσ

aφ,
6.	 Epistemic Monotonicity: KaOσ/a(φ → ψ) → (DAσ

aφ → DAσ
aψ).

The Truth, the Negative Introspection, and the Distributivity axioms are well-known 
modal properties. The Monotonicity axiom for modality O captures the fact that if 
something ought to be true under communication walls imposed by partition τ , then 
the same is also ought to be true under any partition σ that has additional information 
walls. A similar property is true for modality DA except that assumption σ ⪯ τ  is 
replaced with a weaker assumption σ/a ⪯ τ/a because formal semantics of modal-
ity DAσ

a  excludes communication between agent a and the other agents in class [a]σ . 
The Strategic Introspection axiom states that if an agent has a norm-dependent abil-
ity, then she knows that she has such an ability. The Epistemic Monotonicity axiom 
states that if agent a knows that φ → ψ ought to be true as long as agent a remains 
silent and the agent also has a norm-dependent ability to achieve φ, then the agent has 
a norm-dependent ability to achieve φ. Formally, “agent a remains silent” is captured 
by using partition σ/a instead of partition σ.

We write ⊢ φ, and say that φ is a theorem of our logical system if formula φ is 
provable from the above axioms using the Modus Ponens, the three forms of the 
Necessitation, and the Monotonicity inference rules: 

	
φ, φ → ψ

ψ

φ

DAσ
aφ

φ

Kaφ

φ

Oσφ

φ → ψ

DAσ
aφ → DAσ

aψ
.

 In addition to unary relation ⊢ φ, we also consider binary relation X ⊢ φ which is 
true if a formula φ is provable from the theorems of our logical system and the set of 
additional axioms X  using only the Modus Ponens inference rule. Note that ∅ ⊢ φ is  
equivalent to ⊢ φ.

4  Soundness

In this section, we show the soundness of our logical system. The soundness of the 
Truth, the Negative Introspection, and the Distributivity axioms is standard. Below, 
we prove the soundness of each of the remaining axioms as a separate lemma.

Lemma 2  If σ ⪯ τ  and w ⊩ Oτ φ, then w ⊩ Oσφ.

Proof  Consider any action profile δ ∈ DSw
σ  and any state u ∈ W  such that 

(w, δ, u) ∈ M . By item 5 of Definition  5, it suffices to show u ⊩ φ. Indeed, the 
assumption δ ∈ DSw

σ  and the assumption σ ⪯ τ  of the lemma imply δ ∈ DSw
τ  by 

Lemma 1. Hence, u ⊩ φ by the assumption w ⊩ Oσφ, item 5 of Definition 5, and the 
assumption (w, δ, u) ∈ M .         �          □

Lemma 3  If σ/a ⪯ τ/a and w ⊩ DAτ
aφ, then w ⊩ DAσ

aφ.
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Proof  By the assumption w ⊩ DAτ
aφ of the lemma and item 6 of Definition 5, there 

is an action s ∈ KSw
a  such that for all states w′, u ∈ W  and each action profile 

δ ∈ DSw′

τ/a, if δ(a) = s , w ∼a w′, and (w′, δ, u) ∈ M , then u ⊩ φ.

Consider any states w′, u ∈ W  and any action profile δ ∈ DSw′

σ/a such that 

δ(a) = s, w ∼a w′, and (w′, δ, u) ∈ M . By item 6 of Definition 5, it suffices to show 
that u ⊩ φ.

Notice that the assumption δ ∈ DSw′

σ/a and the assumption σ/a ⪯ τ/a of the lemma 

imply δ ∈ DSw′

τ/a by Lemma 1. Therefore, u ⊩ φ by the choice of action s using the 
assumptions δ(a) = s, w ∼a w′, and (w′, δ, u) ∈ M .         �          □

Lemma 4  If w ⊩ DAσ
aφ, then w ⊩ KaDAσ

aφ.

Proof  Consider any state v ∈ W  such that w ∼a v. By item 4 of Definition 5, it suf-
fices to show that v ⊩ DAσ

aφ.

By item 6 of Definition 5, the assumption w ⊩ DAσ
aφ of the lemma implies that 

there is an action s ∈ KSw
a  such that for all states w′, u ∈ W  and each action profile 

δ ∈ DSw′

σ/a, if δ(a) = s, w ∼a w′, and (w′, δ, u) ∈ M , then u ⊩ φ.
Then, by the assumption w ∼a v, for all states w′, u ∈ W  and each action pro-

file δ ∈ DSw′

σ/a, if δ(a) = s, v ∼a w′, and (w′, δ, u) ∈ M , then u ⊩ φ. Therefore, 
v ⊩ DAσ

aφ by item 6 of Definition 5.         �          □

Lemma 5  If w ⊩ KaOσ/a(φ → ψ) and w ⊩ DAσ
aφ, then w ⊩ DAσ

aψ.

Proof  By item 6 of Definition 5, the assumption w ⊩ DAσ
aφ implies that there is an 

action s ∈ KSw
a  such that for all states w′, u ∈ W  and each action profile δ ∈ DSw′

σ/a, 
if δ(a) = s , w ∼a w′, and (w′, δ, u) ∈ M , then u ⊩ φ.

Consider any two states w′, u ∈ W  and any action profile δ ∈ DSw′

σ/a where 

δ(a) = s, w ∼a w′, and (w′, δ, u) ∈ M . By item 6 of Definition  5, it suffices to 
show that u ⊩ ψ. Indeed, by item 4 of Definition 5, the assumption w ∼a w′ and 
the assumption of the lemma w ⊩ KaOσ/a(φ → ψ) imply that w′ ⊩ Oσ/a(φ → ψ). 
Hence, u ⊩ φ → ψ by item 5 of Definition 5 and the assumptions δ ∈ DSw′

σ/a and 

(w, δ, u) ∈ M .
At the same time, u ⊩ φ by the choice of action s and because δ(a) = s, w ∼a w′, and 

(w′, δ, u) ∈ M . Therefore, u ⊩ ψ by item 3 of Definition 5.                  □
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5  Completeness

In this section, we prove the completeness of our logical system. We start by review-
ing the main ideas of this proof. Then, we discuss the harmony construction used in 
the proof, define the canonical model, and use it to prove completeness.

5.1  Key ideas behind the proof of the completeness

5.1.1  Distributed key generation

The standard proof of completeness for the multiagent version of epistemic logic S5 
defines the states of the canonical model as maximal consistent sets of formulae. Two 
such states are a-indistinguishable if they contain the same Ka-formulae. This con-
struction does not work in our case because we allow formulae that simultaneously 
use modality DAσ

a  for different partitions σ. Indeed, recall the agents Ben, Charles, 
and David from one of the introductory examples. Consider any maximal consistent 
set of formulae w that contains exactly the same KBen- and KCharles-formulae. In 
other words, for any formula φ ∈ Φ, 

	 KBenφ ∈ w iff KCharlesφ ∈ w.

    
If the indistinguishability relation is defined as in the standard construction, then 

the equivalence classes of state w with respect to relation ∼Ben and relation ∼Charles 
would be the same. Thus, if the canonical model is defined in the standard way, then 
agents Ben and Charles will have exactly the same knowledge in state w.

Next, suppose that set w contains formulae DAσ1
Davidφ and ¬DAσ2

Davidφ for some 
formula φ ∈ Φ, where partitions σ1 and σ2 are specified in Fig. 2. The key step in the 
standard proof of completeness is the “truth” (or “induction”) lemma that states that a 
formula belongs to set w if and only if it is satisfied in state w. In our case, this lemma 
would imply that w ⊩ DAσ1

Davidφ and w ⊩ ¬DAσ2
Davidφ.    

The statements w ⊩ DAσ1
Davidφ and w ⊩ ¬DAσ2

Davidφ mean that David has a norm-
dependent ability to achieve φ when the wall between Ben and Charles is present and 
does not have such a strategy otherwise. Informally, this should happen because, in 
the absence of the wall, information can freely travel between Ben and Charles, and 
thus, they both have larger sets of knowingly allowed actions. If they use strategies 
from these larger sets, then David’s strategy might no longer work. However, as we 
have seen above, if the standard construction is used to build the canonical model, 
then Ben and Charles have exactly the same knowledge, and, thus, there is absolutely 
nothing new that they can learn by sharing information with each other!

To overcome this issue, we need Ben and Charles to possess some additional 
knowledge that they do not have under the standard canonical model construction. 
We add this knowledge to our canonical model using the distributed key generation. 
This is a cryptographic technique consisting of an independent generation of random 
keys by several agents (Pedersen, 1991). In our running example, each state of the 
canonical model will be a quadruple (X, b, c, d), where X  is a maximal consistent set 
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of formulae and b, c, d are integer “keys” of Ben, Charles, and David respectively. 
We assume that each agent knows his key, but not the keys of the other agents. The 
complete infinite set of states consists of all quadruples (X, b, c, d) for all possible 
maximal consistent set X   and all integer values b, c, and d. Incorporation of the 
distributed key generation into epistemic model construction is a new idea that we 
introduce in this article.

5.1.2  Harmony

As mentioned earlier, the proofs of completeness usually use a “truth” or “induction” 
lemma that states that φ ∈ w if and only if w ⊩ φ for any formula φ and any state w. 
In our case, this is Lemma 15. It claims that φ ∈ Xw iff w ⊩ φ, where Xw is the first 
component of state w, as discussed in the previous section.

Consider now the case when formula φ has the form Kaψ. If Kaψ /∈ Xw, then, 
by item 4 of Definition  5, the canonical model construction must guarantee that 
w ⊮ Kaψ. As usual, we achieve this by using Lindenbaum’s lemma to construct a 
new state u such that w ∼a u and u ⊮ ψ.

The situation is more complicated if formula φ has the form DAσ
aψ. In this case, 

the canonical model must contain two different states, w′ and u, satisfying conditions 
stated in item 6 of Definition 5. An important step in creating these two states is the 
construction of the corresponding maximal consistent sets Xw′  and Xu. It turns out 
that these two sets cannot be created consecutively.

Naumov and Tao (2018a, 2018b) proposed a technique called harmony for a 
simultaneous construction of two maximal consistent sets. Their technique cannot be 
directly applied in our setting because the original harmony was not designed to deal 
with information walls in the set of agents. In this article, we propose a variation of 
their technique that we call σ-harmony.

The technique consists of identifying a certain invariant condition on a pair of 
sets of formulae, proving that an “initial” pair of sets satisfies this condition, and 
showing that the sets could be expanded while preserving the invariant. We call the 
invariant condition σ-harmony, just like the technique itself. The expansion step is 
repeated infinitely many times to achieve another condition, which we call complete 
σ-harmony. As a final step, Lindenbaum’s lemma is used to “top-off” the two sets in 
complete σ-harmony to maximal consistent sets.

5.2  σ-Harmony

In this section, we define the σ-harmony relation between sets of formulae and 
prove several properties of this relation. We will use these results in the proof of 
completeness.

Definition 6  An arbitrary pair of sets of formulae (X , Y ) is in σ-harmony if 
X ⊬ Oσ¬ ∧ Y ′ for each finite set Y ′ ⊆ Y .

Lemma 6  If pair (X , Y ) is in σ-harmony, then sets X and Y  are consistent.
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Proof  Assume set X  is inconsistent. Thus, X ⊢ Oσ¬ ∧ ∅. Then, by Definition 6, pair 
(X, Y ) is not in σ-harmony.

Suppose that set Y  is inconsistent. Thus, there is a finite set Y ′ ⊆ Y  such that 
⊢ ¬ ∧ Y ′. Hence, by the Necessitation inference rule, ⊢ Oσ¬ ∧ Y ′. Therefore, by 
Definition 6, pair (X, Y ) is not in σ-harmony. 

The next lemma shows that two specific “initial” sets are in harmony.              

Lemma 7  Pair of sets ({ψ | Kaψ ∈ Z}, {¬φ, φ′}) is in (σ/a)-harmony for any con-
sistent set of formulae Z and any formulae ¬DAσ

aφ, DAσ
aφ′ ∈ Z .

Proof  Suppose the opposite. Thus, by Definition 6, there are formulae 

	 Kaψ1, . . . , Kaψn ∈ Z� (6)

and a finite set of formulae Y ⊆ {¬φ, φ′} such that 

	 ψ1, . . . , ψn ⊢ Oσ/a¬ ∧ Y.� (7)

At the same time, note that the formula ¬ ∧ Y → ¬(φ′ ∧ ¬φ) is a propositional tautol-
ogy because Y ⊆ {¬φ, φ′}. Thus, formula ¬ ∧ Y → (φ′ → φ) is also a propositional 
tautology. Hence, by the Necessitation inference rule, ⊢ Oσ/a(¬ ∧ Y → (φ′ → φ)). 
Then, 

	 ψ1, . . . , ψn ⊢ Oσ/a(φ′ → φ)

by the Distributivity axiom and the Modus Ponens inference rule using statement (7). 
Thus, 

	 Kaψ1, . . . , Kaψn ⊢ KaOσ/a(φ′ → φ)

by Lemma 17. Hence, 

	 Z ⊢ KaOσ/a(φ′ → φ)

because of statement (6). Then, Z ⊢ DAσ
aφ′ → DAσ

aφ by the Epistemic Monotonicity 
axiom and the Modus Ponens inference rule. Hence, Z ⊢ DAσ

aφ by the Modus Ponens 
inference rule and the assumption DAσ

aφ′ ∈ Z of the lemma. Therefore, ¬DAσ
aφ /∈ Z 

because set Z is consistent, which contradicts the assumption ¬DAσ
aφ ∈ Z of the 

lemma.         �          □
The next lemma shows that any two sets in σ-harmony could be further extended 

while preserving σ-harmony.

Lemma 8  For any pair (X , Y ) in σ-harmony, any formulae ψ ∈ Φ, either pair 
(X ∪ {¬Oσψ}, Y ) or pair (X , Y ∪ {ψ}) is in σ-harmony.
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Proof  Suppose that both, pair (X ∪ {¬Oσφ}, Y ) and pair (X, Y ∪ {φ}), are not in σ
-harmony. Thus, by Definition 6, there are finite sets Y ′, Y ′′ ⊆ Y  such that 

	 X, ¬Oσφ ⊢ Oσ¬ ∧ Y ′� (8)

and, for some Z ⊆ {φ} ∪ Y ′′, 

	 X ⊢ Oσ¬ ∧ Z.� (9)

Observe that Z ⊆ {φ} ∪ Y ′′ ⊆ {φ} ∪ Y ′ ∪ Y ′′. Thus, the formula 

	 ¬ ∧ Z → (φ → ¬ ∧ (Y ′ ∪ Y ′′))

is a tautology. Hence, by the Necessitation inference rule, 

	 ⊢ Oσ(¬ ∧ Z → (φ → ¬ ∧ (Y ′ ∪ Y ′′))).

Thus, by the Distributivity axiom and the Modus Ponens inference rule, 

	 ⊢ Oσ¬ ∧ Z → Oσ(φ → ¬ ∧ (Y ′ ∪ Y ′′)).

Then, by the Modus Ponens inference rule and assumption (9), 

	 X ⊢ Oσ(φ → ¬ ∧ (Y ′ ∪ Y ′′)).

Hence, by the Distributivity axiom and the Modus Ponens, 

	 X ⊢ Oσφ → Oσ¬ ∧ (Y ′ ∪ Y ′′).

Thus, again by the Modus Ponens inference rule, 

	 X, Oσφ ⊢ Oσ¬ ∧ (Y ′ ∪ Y ′′).� (10)

At the same time, formulae ¬ ∧ Y ′ → ¬ ∧ (Y ′ ∪ Y ′′) is also a tautology. Then, by 
the Necessitation inference rule 

	 ⊢ Oσ(¬ ∧ Y ′ → ¬ ∧ (Y ′ ∪ Y ′′)).

Hence, by the Distributivity axiom and the Modus Ponens, 

	 ⊢ Oσ¬ ∧ Y ′ → Oσ¬ ∧ (Y ′ ∪ Y ′′).

Thus, using statement (8) and the Modus Ponens rule, 

	 X, ¬Oσφ ⊢ Oσ¬ ∧ (Y ′ ∪ Y ′′).
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Then, X ⊢ Oσ¬ ∧ (Y ′ ∪ Y ′′) by the laws of propositional reasoning using state-
ment (10). Hence, pair (X, Y ) is not in σ-harmony by Definition 6.    �     □

Definition 7  Pair (X , Y ) is in complete σ-harmony if, for any formula φ ∈ Φ, either 
¬Oσφ ∈ X  or φ ∈ Y .

Lemma 9  For any pair (X , Y ) in σ-harmony, there is a pair (X ′, Y ′) in complete σ
-harmony where X ⊆ X ′ and Y ⊆ Y ′.  

Proof  Consider any enumeration φ1, φ2, . . .  of all formulae in language Φ. For each 
integer i ≥ 1 either add formula ¬Oσφi to the first set of the pair in σ-harmony or 
add formula φ to the second set of the pair in σ-harmony. By Lemma 8, this could be 
done while maintaining σ-harmony of the pair. Let (X ′, Y ′) be the pair obtained after 
repeating this step for each integer i ≥ 1.        �         □

5.3  Canonical model

In this section, we define a canonical normative system (W, ∼, ∆, S, ℓ, M, π) for any 
maximal consistent set of formulae X0.

In our informal discussion of the canonical model, we stated that each state of the 
model is a tuple containing a maximal consistent set of formulae and a set of integer 
values representing “keys” of the agents. In our formal definition of the states below, 
the set of all keys is represented by a function from agents into integers.

Definition 8  Set W  consists of all pairs (X , k) such that X  is a maximal consistent 
subset of Φ and k ∈ ZA.

For any w = (X, k), let Xw = X  and kw = k.
Recall from the informal discussion in the Distributed Key Generation subsection 

that each agent knows her own key, but not the keys of the other agents. Thus, for two 
states to be indistinguishable by an agent a, the states must have maximal consistent 
sets with the same Ka-formulae and the same key assigned to agent a.

Definition 9  For any states w, u ∈ W , let w ∼a u when

1.	 for each formula φ ∈ Φ, if Kaφ ∈ Xw, then φ ∈ Xu,
2.	 kw(a) = ku(a).
Item 1 of the above definition is equivalent to the statement that sets Xw and Xu have 
the same Ka-formulae. We use item 1 because it results in shorter proofs of several 
auxiliary lemmas. Unfortunately, it also requires us to include the following lemma.

Lemma 10  Relation ∼a is an equivalence relation on set W .

Proof  Reflexivity: Consider any formula φ ∈ Φ. Suppose that Kaφ ∈ Xw. It suffices 
to show that φ ∈ Xw. Indeed, assumption Kaφ ∈ Xw implies Xw ⊢ φ by the Truth 
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axiom and the Modus Ponens inference rule. Therefore, φ ∈ Xw because set Xw is 
maximal.

Symmetry: Consider any states w, u ∈ W  such that w ∼a u and any formula 
Kaφ ∈ Xu. It suffices to show φ ∈ Xw. Suppose that φ /∈ Xw. Hence, Xw ⊬ φ 
because set Xw is maximal. Thus, Xw ⊬ Kaφ by the contraposition of the Truth 
axiom. Then, ¬Kaφ ∈ Xw because set Xw is maximal. Thus, Xw ⊢ Ka¬Kaφ by 
the Negative Introspection axiom and the Modus Ponens inference rule. Hence, 
Ka¬Kaφ ∈ Xw because set Xw is maximal. Then, ¬Kaφ ∈ Xu by assumption 
w ∼a u and Definition 9. Therefore, Kaφ /∈ Xu because set Xw is consistent, which 
contradicts the assumption Kaφ ∈ Xu.

Transitivity: Consider any states w, u, v ∈ W  such that w ∼a u and u ∼a v 
and any formula Kaφ ∈ Xw. It suffices to show φ ∈ Xv . Assumption Kaφ ∈ Xw 
implies Xw ⊢ KaKaφ by Lemma 18 and the Modus Ponens inference rule. Thus, 
KaKaφ ∈ Xw because set Xw is maximal. Hence, Kaφ ∈ Xu by the assump-
tion w ∼a u and Definition  9. Therefore, φ ∈ Xv  by the assumption u ∼a v and 
Definition 9.

Definition 10  For any state w ∈ W  and any agent a ∈ A, let ∆w
a  be the set consist-

ing of all pairs (φ, C , β) such that φ ∈ Φ is a formula, C ⊆ A, and β ∈ Z.

Note that, in our canonical normative system, ∆w
a  does not depend on w and a. 

Thus, all agents have the same set of actions in all states. Informally, each agent’s 
action consists of specifying a formula φ about the outcome that the agent wants to 
achieve and the parity β of the sum of keys of members of some group (coalition) C. 
To be allowed, the action should specify the parity correctly.

Definition 11  Sw
a  is the set of all tuples (φ, C , β) ∈ ∆w

a  such that ∑
a∈C kw(a) ≡ β (mod 2 ).

Let ℓ = (⊤,∅, 0). Then, ℓ ∈ Sw
a  for each state w ∈ W  and each agent a ∈ A by 

Definition 11.
The next definition specifies the mechanism of the canonical normative system. 

Informally, under action profile δ, the system might transition from state u to state v 
if two conditions are satisfied. To understand these conditions, recall that δ ∈ DSw

σ  
means that each agent a under action profile δ has chosen an action which she might 
learn is allowed in spite of the information walls defined by partition σ. Condition 
δ ∈ DSw

σ/a takes into account an additional information wall between agent a and the 
rest of the agents in the set [a]σ .

Definition 12  For any two states w, u ∈ W  and any action profile δ at state w, let 
(w, δ, u) ∈ M  when

1.	 if Oσφ ∈ Xw and δ ∈ DSw
σ , then φ ∈ Xu.

2.	 if DAσ
aφ ∈ Xw, δ ∈ DSw

σ/a, and δ(a) = (φ, {a}, kw(a)), then φ ∈ Xu,
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Definition 13  π(p) = {w ∈ W | p ∈ Xw}.

5.4  The proof

In this section, we prove the strong completeness of our logical system using the σ
-harmony construction. As discussed earlier, the key step in the proof of complete-
ness is an “induction” or a “truth” lemma. In our case, this is Lemma 15, which states 
that ψ ∈ Xw iff w ⊩ ψ. The next four lemmas prove auxiliary statements used in dif-
ferent induction cases of the proof of Lemma 15. The first of them is used in direction 
(⇐) when formula ψ has the form Kaφ.

Lemma 11  For any w ∈ W  and any formula Kaφ /∈ Xw , there exists w′ ∈ W  such 
that w ∼a w′ and φ /∈ Xw′ .

Proof  Consider set X̂ = {¬φ} ∪ {ψ | Kaψ ∈ Xw}. First, we show that this set is 
consistent. Assume the opposite. Then, there are formulae 

	 Kaψ1, . . . , Kaψn ∈ Xw� (11)

such that ψ1, . . . , ψn ⊢ φ. Thus, Kaψ1, . . . , Kaψn ⊢ Kaφ by Lemma  17. Hence, 
Xw ⊢ Kaφ because of the assumption  (11), which contradicts the assumption 
Kaφ /∈ Xw of the lemma due to the maximality of set Xw. Therefore, set X̂  is 
consistent.

Let X ′ be any maximal consistent extension of set X̂ . Such an extension exists 
by Lemma 19. Also, let w′ be pair (X ′, kw). Note that w ∼a w′ by Definition 9, the 
choice of sets X̂  and X ′, and the choice of pair w′.      �       □

The next statement is used in the induction lemma in direction (⇐) when formula 
ψ has the form Oσφ.

Lemma 12  For any w ∈ W  and any formula Oσφ /∈ Xw , there exists an action pro-
file δ ∈ DSw

σ  and state u ∈ W  such that (w, δ, u) ∈ M , and φ /∈ Xu .

Proof  Define δ to be an action profile such that3 

	
δ(a) =


⊤, [a]σ,

∑
x∈[a]σ

kw(x)


� (12)

3 Recall that the first component of an action is the formula that the agent wants to achieve. We set this 
formula to Boolean constant ⊤ to make it easier for us to construct set u. Recall from our discussion before 
Definition 11, that in order for an action (φ, C, β) to be allowed, the value of β should be congruent 
to the sum of keys of the coalition C  modulo 2. Thus, by defining the second component of the action of 
agent a as [a]σ , we guarantee that this action is distributively known to be allowed under an arbitrary 
partition τ  only if [a]σ ⊆ [a]τ . This observation is formally stated as Claim 2 in a slightly more general 
form. We have chosen the second and the third components of δ(a) to guarantee that the claim holds.
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for each agent a ∈ A.

Claim 1  δ ∈ DSw
σ .

Proof of Claim. Consider any agent a ∈ A and any state w′ ∈ W  such that w ∼x w′ 
for each agent x ∈ [a]w. By Definition 4, it suffices to show that δ(a) ∈ Sw′

a . By 
Definition 9, kw(x) = kw′(x) for each x ∈ [a]σ . Hence, 

	

∑
x∈[a]σ

kw(x) ≡
∑

x∈[a]σ

kw′(x) (mod 2).

Thus, δ(a) ∈ Sw′

a  by Definition 11 and the choice of δ.      �       □

Claim 2  For any partition τ , if δ ∈ DSw
τ , then σ ⪯ τ .

Proof of Claim. Suppose that δ ∈ DSw
τ . Consider any agent a ∈ A. By Defini-

tion 1, it suffices to show [a]σ ⊆ [a]τ . Assume the opposite. Then, there is an agent 
b ∈ [a]σ \ [a]τ . Define function k̂ ∈ ZA as follows: 

	
k̂(x) =

{
kw(x) + 1, if x = b,
kw(x), otherwise.

� (13)

Then, kw(x) = k̂(x) for each x ∈ [a]τ  by the assumption b /∈ [a]τ . Define w′ to be 
set (Xw, k̂). Then, w ∼x w′ for each x ∈ [a]τ  by Definition 9. Thus, δ(a) ∈ Sw′

a  by 
Definition 4 and assumption δ ∈ DSw

τ . Then, 

	

∑
x∈[a]σ

k̂(x) =
∑

x∈[a]σ

kw′(x) ≡
∑

x∈[a]σ

kw(x) (mod 2)

by Definition 11, the choice of w′ = (Xw, k̂), and Eq. 12. Hence, Eq. 13 and assumption 
b ∈ [a]σ  imply 1 ≡ 0 (mod 2), which is a contradiction.         �          □

Let set X̂  be {¬φ} ∪ {ψ | Oτ ψ ∈ Xw, δ ∈ DSw
τ }. First, we show that set X̂  is 

consistent. Assume the opposite. Then, there are formulae 

	 Oτ1ψ1, . . . , Oτnψn ∈ Xw� (14)

such that 

	 δ ∈ DSw
τi

,� (15)

for all i ≤ n and ψ1, . . . , ψn ⊢ φ. Then, by Lemma 17, 

	 Oσψ1, . . . , Oσψn ⊢ Oσφ.
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Note σ ⪯ τi for each i ≤ n by Claim 2 and statement (15). Thus, by the Monotonic-
ity axiom applied n times, 

	 Oτ1ψ1, . . . , Oτnψn ⊢ Oσφ.

Hence, Xw ⊢ Oσφ by assumption  (14). Then, Oσφ ∈ Xw since set Xw is maxi-
mal, which contradicts the assumption of the lemma Oσφ /∈ Xw. Therefore, set X̂  
is consistent.

Let set X ′ be a maximal consistent extension of set X̂ . Such an extension exists by 
Lemma 19. Also, let u be pair (X ′, k), where k ∈ ZA is an arbitrary function. Note 
that ¬φ ∈ X̂ ⊆ X ′ = Xu. Thus, φ /∈ Xu because set Xu is consistent.

Claim 3  (w, δ, u) ∈ M .

Proof of Claim. We will show that conditions 1 and 2 of Definition 12 are satisfied.
1.	 Suppose that Oτ ψ ∈ Xw and δ ∈ DSw

τ . It suffices to show that ψ ∈ Xu. By 
Claim  2, assumption δ ∈ DSw

τ  implies that σ ⪯ τ . Thus, Xw ⊢ Oσψ by the 
Monotonicity axiom and assumption Oτ ψ ∈ Xw. Hence, Oσψ ∈ Xw because 
set Xw is maximal. Then, ψ ∈ X̂ ⊆ X ′ = Xu by the choice of sets X̂  and X ′ as 
well as the choice of u.

2.	 If δ(a) = (φ, {a}, kw(a))), then, by Eq.  12, φ is formula ⊤. Thus, φ ∈ Xu 
because set Xu is maximal.

Therefore, (w, δ, u) ∈ M .            �             □
This concludes the proof of the lemma.          �           □
The following statement is used in the induction lemma in direction (⇒), when 

formula ψ has the form DAσ
aφ.

Lemma 13  For any w ∈ W  and any DAσ
aφ ∈ Xw , there exists an action s ∈ KSw

a  
such that for all w′, u ∈ W  and each profile δ ∈ DSw′

σ/a, if δ(a) = s, w ∼a w′, and 

(w′, δ, u) ∈ M , then φ ∈ Xu .

Proof  Let action4 s be (φ, {a}, kw(a)).

Claim 4  s ∈ KSw
a .

Proof of Claim. Consider any state v ∈ [w]a. Then, v ∼a w. Hence, kv(a) = kw(a) 
by Definition 9. Thus, 

∑
x∈{a} kv(x) ≡ kw(a) (mod 2). Hence, s ∈ Sv

a  by Defini-
tion 11. Therefore, s ∈ KSw

a  by Definition 3.        �         □

4 We have chosen the first component of the action s to be φ so that agent a can use this action to achieve 
φ. The second component of the action is chosen to be the singleton set {a} to guarantee that agent a 
alone knows that this action is allowed.
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Claim 5  For any w′ ∈ W , if w ∼a w′, then DAσ
aφ ∈ Xw′ .

Proof of Claim. By assumption of the lemma, DAσ
aφ ∈ Xw. Thus, Xw ⊢ KaDAσ

aφ by 
the Strategic Introspection axiom and the Modus Ponens rule. Then, KaDAσ

aφ ∈ Xw 
because set Xw is maximal. Hence, DAσ

aφ ∈ Xw′  by Definition 9 and the assumption 
w ∼a w′.        �         □

Finally, consider any states w′, u ∈ W  and any action profile δ ∈ DSw′

σ/a such 
that δ(a) = s, w ∼a w′, and (w′, δ, u) ∈ M . Thus, DAσ

aφ ∈ Xw′  by Claim 5. Also, 
δ(a) = s = (φ, {a}, kw(a)) by the assumption δ(a) = s and the choice of action 
s. Therefore, φ ∈ Xu by item 2 of Definition 12. This concludes the proof of the 
lemma.       �        □

The last auxiliary lemma is used in the induction lemma in direction (⇐), when 
formula ψ has the form DAσ

aφ. As discussed earlier, its proof simultaneously con-
structs two maximal consistent sets using σ-harmony technique.

Lemma 14  For any w ∈ W , any formula ¬DAσ
aφ ∈ Xw , and any action 

s ∈ KSw
a , there are states w′, u ∈ W  and an action profile δ ∈ DSw′

σ/a such that 

δ(a) = s, w ∼a w′, (w′, δ, u) ∈ M , and φ /∈ Xu .

Proof  To minimize the number of cases to be considered in this proof, we define an 
auxiliary formulae 

	
φ′ =

{
pr1(s), if DAσ

a(pr1(s)) ∈ Xw,
⊤, otherwise,

� (16)

where pr1(s) is the first component of triple s.

Claim 6  DAσ
aφ′ ∈ Xw.

Proof of Claim. We consider the following cases:
Case I: DAσ

a(pr1(s)) ∈ Xw. Then, φ′ = pr1(s) by Eq. 16. Thus, DAσ
aφ′ ∈ Xw by 

the assumption of the case.
Case II: DAσ

a(pr1(s)) /∈ Xw. Thus, φ′ = ⊤ by Eq. 16. Hence, φ′ is a tautology. 
Then, ⊢ DAσ

aφ′ by the Necessitation rule. Thus, DAσ
aφ′ ∈ Xw since set Xw is maxi-

mal.         �          □
The pair of sets ({χ | Kaχ ∈ Xw}, {¬φ, φ′}) is in (σ/a)-harmony by Lemma 7, 

the assumption ¬DAσ
aφ ∈ Xw of the lemma, and Claim 6. Thus, by Lemma 9, there 

is a pair of sets (Ŷ , Ẑ) in complete (σ/a)-harmony such that 

	 {χ | Kaχ ∈ Xw} ⊆ Ŷ and {¬φ, φ′} ⊆ Ẑ.

Let Y  and Z be any maximal consistent extensions of sets Ŷ  and Ẑ, respectively. 
Such extensions exist by Lemma 19. Let w′ = (Y, kw) and u = (Z, kw).
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Claim 7  w ∼a w′.

Proof of Claim. Suppose that Kaχ ∈ Xw. By Definition  9, it suffices to show 
that χ ∈ Xw′ = Y . The latter follows from the choice of sets Ŷ  and Y .        
� □

Let action profile δ be defined5 as follows: 

	
δ(b) =

{
s, if b = a,
(⊤, [b]σ/a, Σx∈[b]σ/a

kw(x)), otherwise.
� (17)

Claim 8  δ ∈ DSw′

σ/a.

Proof of Claim. Consider any agent b ∈ A, and any state w′′ ∈ W  such that w′ ∼x w′′ 
for each x ∈ [b]σ/a. By Definition 4, it suffices to show that δ(b) ∈ Sw′′

b .
Case I: b ̸= a. By Definition  9, we have kw′′(x) = kw′(x) for each agent 

x ∈ [b]σ/a. Also recall that kw = kw′  by the choice of w′. Hence, 

	

∑
x∈[b]σ/a

kw′′(x) =
∑

x∈[b]σ/a

kw′(x) =
∑

x∈[b]σ/a

kw(x).

Therefore, δ(b) ∈ Sw′′

b  by Definition 11, Eq. 17, and assumption b ≠ a of the case.
Case II: b = a. Recall that w′ ∼x w′′ for each x ∈ [b]σ/a. Thus, w′ ∼a w′′ 

because a = b. Hence, w ∼a w′′ by Claim 7. Then, s ∈ Sw′′

a  by Definition 3 and 
the assumption s ∈ KSw

a  of the lemma. Thus, δ(a) ∈ Sw′′

a  by Eq.  17. Therefore, 
δ(b) ∈ Sw′′

b  because a = b.        �         □

Claim 9  For any partition τ , if δ ∈ DSw′

τ , then σ/a ⪯ τ .

Proof of Claim. Suppose that δ ∈ DSw′

τ . Consider any agent b ∈ A. By Definition 1, 
it suffices to show that [b]σ/a ⊆ [b]τ . Assume the opposite. Then, there is an agent 
c ∈ [b]σ/a \ [b]τ . Consider the following two cases:

Case I: b ̸= a. Define function k̂ ∈ ZA as follows: 

	
k̂(x) =

{
kw(x) + 1, if x = c,
kw(x), otherwise.

� (18)

 Then, k̂(x) = kw(x) for each x ∈ [b]τ  by the assumption c /∈ [b]τ . Define state w′′ 
to be pair (Y, k̂).

Next, we show that w′ ∼x w′′ for each x ∈ [b]τ . Since k̂(x) = kw(x) for each 
x ∈ [b]τ , by Definition 9, it suffices to show that if Kxψ ∈ Yw′ , then ψ ∈ Yw′′  for 

5 The intuition for the choice of δ is similar to the one described in the footnote on page 20. In the current 
case, the second component of the action is chosen to guarantee that Claim 9 holds.
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each x ∈ [b]τ  and each formula ψ ∈ Φ. Indeed, consider any x ∈ [b]τ  and any ψ ∈ Φ 
such that Kxψ ∈ Yw′ . Thus, Kxψ ∈ Y  by the choice of state w′. Hence, Y ⊢ ψ by 
the Truth axiom and the Modus Ponens inference rule. Then, ψ ∈ Y = Yw′′  by the 
maximality of set Y  and the choice of state w′′.

Thus, δ(b) ∈ Sw′′

b  by Definition 4 and the assumption that δ ∈ DSw′

τ . Then, 

	

∑
x∈[b]σ/a

k̂(x) ≡
∑

x∈[b]σ/a

kw(x) (mod 2)

by Definition  11, Eq.  17, the assumption b ̸= a, and the choice of w′′ = (Y, k̂). 
Hence, by Eq. 18 and because c ∈ [b]σ/a, 

	 1 ≡ 0 (mod 2),

which is a contradiction.
Case II: b = a. Then, c ∈ [a]σ/a and c /∈ [a]τ  by the assumption c ∈ [b]σ/a \ [b]τ . 

Statement c ∈ [a]σ/a and the definition of the partition σ/a implies that c ∈ {a}. 
Therefore, c = a, which contradicts the statement c /∈ [a]τ .         �          □

Claim 10  For any formula DAτ
b ψ ∈ Xw′ , if δ ∈ DSw′

τ/b and δ(b) = (ψ, {b}, kw′(b)), 
then ψ ∈ Xu.

Proof of Claim. Consider the following two cases: 
Case I:b ̸= a. Thus, ψ = ⊤ by the assumption δ(b) = (ψ, {b}, kw′(b)) and 

Eq. (17). Therefore, ψ ∈ Xu because set Xu is maximal.
Case II: b = a. By Claim 9, assumption δ ∈ DSw′

τ/b implies that σ/a ⪯ τ/b. Thus, 
σ/a ⪯ τ/a because a = b. Hence, Xw′ ⊢ DAσ

aψ by the Monotonicity axiom, the 
Modus Ponens inference rule, the assumption DAτ

b ψ ∈ Xw′  of the claim, and the 
assumption b = a of the case. Then, Xw′ ⊢ KaDAσ

aψ by the Strategic Introspection 
axiom and the Modus Ponens inference rule. Thus, KaDAσ

aψ ∈ Xw′  by the maximal-
ity of set Xw′ . Hence, DAσ

aψ ∈ Xw by Definition 9 and Claim 5. Thus,

 

	

φ′ = pr1(s) = pr1(δ(a)) = pr1(δ(b))
= pr1(ψ, {b}, kw′(b)) = ψ

by Eq. 16, Eq. 17, assumption b = a of the case, and assumption δ(b) = (ψ, {b}, kw′(b)) 
of the claim. Therefore, ψ = φ′ ∈ Ẑ ⊆ Z = Xu by the choices of Ẑ, Z, and u.         
� □

Claim 11  If Oτ ψ ∈ Xw′  and δ ∈ DSw′

τ , then ψ ∈ Xu.
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Proof of Claim. The assumption δ ∈ DSw′

τ  implies that σ/a ⪯ τ  by Claim 9. Then, 
Oσ/aψ ∈ Xw′  by the assumption Oτ ψ ∈ Xw′  and the Monotonicity axiom. Thus, 
¬Oσ/aψ /∈ Xw′ , since set Xw′  is consistent. Hence, ¬Oσ/aψ /∈ Ŷ  because Ŷ ⊆ Xw′ . 
Then, ψ ∈ Ẑ by Definition 7 and the choice of (Ŷ , Ẑ) as a pair in complete (σ/a)
-harmony. Therefore, ψ ∈ Ẑ ⊆ Z ⊆ Xu by the choice of set Ẑ, set Z, and state u.         
� □

Note that (w′, δ, u) ∈ M  by Definition  12, Claim  10, and Claim  11. Finally, 
¬φ ∈ Ẑ ⊆ Z = Xu by the choice of set Ẑ, set Z and state u. Therefore, φ /∈ Xu because 
set Xu is consistent. This concludes the proof of the lemma.                  □

Next is the “truth” or “induction” lemma.

Lemma 15  φ ∈ Xw  iff w ⊩ φ.

Proof  We prove the lemma by structural induction on formula φ. If φ is a propo-
sitional variable, then the lemma follows from Definition 13 and item 1 of Defini-
tion 5. If formula φ is an implication or a negation, then the required follows from 
the maximality and the consistency of the set Xw and items 2 and 3 of Definition 5 
in the standard way.

Let formula φ have the form Oσψ.
(⇒) : By Definition  12, assumption Oσψ ∈ Xw implies that for each state 

w ∈ W , each action profile δ ∈ DSw
σ , and each state u ∈ W , if (w, δ, u) ∈ M , then 

ψ ∈ Xu. Thus, by the induction hypothesis, for each state w ∈ W , each action profile 
δ ∈ DSw

σ , and each state u ∈ W , if (w, δ, u) ∈ M , then u ⊩ ψ. Therefore, w ⊩ Oσψ 
by item 5 of Definition 5.

(⇐) : By Lemma 12, assumption Oσψ /∈ Xw implies that there exists an action 
profile δ ∈ DSw

σ  and a state u ∈ W  such that (w, δ, u) ∈ M , and φ /∈ Xu. Thus, by 
the induction hypothesis, u ⊮ ψ. Therefore, w ⊮ Oσψ by item 5 of Definition 5.

The case when formula φ has the form Kaψ is similar to the case Oσψ, but it uses 
Lemma 11 instead of Lemma 12. Finally, assume that formula φ has the form DAσ

aψ.
(⇒) : By Lemma  13, assumption DAσ

aψ ∈ Xw implies that there is an action 
s ∈ KSw

a  such that for all states w′, u ∈ W  and each action profile δ ∈ DSw′

σ/a, if 

δ(a) = s, w ∼a w′, and (w′, δ, u) ∈ M , then ψ ∈ Xu. Thus, by the induction hypoth-
esis, for all states w′, u ∈ W  and each action profile δ ∈ DSw′

σ/a, if δ(a) = s , w ∼a w′, 
and (w′, δ, u) ∈ M , then u ⊩ ψ. Therefore, w ⊩ DAσ

aψ by item 6 of Definition 5.
(⇐) : Suppose that DAσ

aψ /∈ Xw. Thus, ¬DAσ
aψ ∈ Xw because set Xw is maxi-

mal. Then, by Lemma 14, for any action s ∈ KSw
a , there are states w′, u ∈ W  and an 

action profile δ ∈ DSw′

σ/a such that δ(a) = s, w ∼a w′, (w′, δ, u) ∈ M , and φ /∈ Xu. 
Hence, by the induction hypothesis, for any action s ∈ KSw

a , there are states w′, u ∈ W  
and an action profile δ ∈ DSw′

σ/a such that δ(a) = s, w ∼a w′, (w′, δ, u) ∈ M , and 

u ⊮ φ. Therefore, w ⊮ DAσ
aψ by item 6 of Definition 5.         �          □

Finally, we are ready to state and prove a strong completeness theorem.
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Theorem 1  If Y ⊬ φ, then there is a state w of a normative system such that w ⊩ χ 
for each formula χ ∈ Y  and w ⊮ φ.

Proof  Suppose Y ⊬ φ. Thus, set Y ∪ {¬φ} is consistent. Let Y ′ be any maximal 
consistent extension of this set. Such an extension exists by Lemma 19. Also, let 
function k be an arbitrary function from the set ZA. Let w be the pair (Y ′, k), which 
is a state of the canonical model by Definition 8.

Note that γ ∈ Y ⊆ Y ′ = Xw for each formula γ ∈ Y . Thus, w ⊩ χ for each formula 
γ ∈ Y  by Lemma 15. Also, ¬φ ∈ Y ⊆ Y ′ = Xw. Hence, φ /∈ Xw because set Xw is 
consistent. Therefore, w ⊮ φ also by Lemma 15.         �          □

6  Conclusion

In this article, we proposed the concept of norm-dependent abilities and studied it as a 
modality in the setting of information walls. Perhaps the most interesting observation 
about norm-dependent abilities is that partial removal of information walls (allow-
ing other agents to communicate more freely) decreases the agent’s norm-dependent 
abilities. On the other hand, the addition of such walls makes the agent more power-
ful. We are not aware of any other logical systems that capture this “prevailing in the 
dark” effect.

Perhaps the most natural question about this work is whether the current results 
could be generalized to group knowledge and coalition norm-dependent abilities. 
One of the challenges in this direction is finding an intuitively acceptable interpreta-
tion of group knowledge in the presence of information walls. Is it sensible to reason 
about a coalition distributively knowing that a certain action is allowed if the coali-
tion members are on different sides of a wall and explicitly banned from communi-
cating with each other? One might consider only coalitions C located in the same set 
of a partition, but this makes the syntax confusing, given that we study modalities 
DAσ

C  for different partitions σ1.
We think that a more interesting direction is to study one-way information walls 

that only prevent the diffusion of the information in one of two directions. In real-
world scenarios, for example, certain groups of people might be banned from spread-
ing information to outsiders, but not from listening to them.

Another possible extension of this work is to consider the interplay between public 
announcements (Ditmarsch et al., 2007) and norm-dependent abilities in our setting. 
Any public announcement could simultaneously empower an agent and also weaken 
the agent by supplying the same information to the opponents.

One can also potentially consider a “trusted friends” setting in which each agent 
only takes into account the knowledge of the adjacent agents. This would come 
down to allowing “second-hand knowledge”, but not “third-hand”, “fourth-hand”, 
etc knowledge. Although significantly more complicated than ours, such a setting 
is also interesting – it could be used to model the abilities coming from spreading 
mistrust among opponents. In addition, one can also consider directed communica-
tion channels.
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Another alternative setting is to consider walls that do not block information diffu-
sion completely but impose costs on it. In such a setting, for instance, one can study 
modality DAm

a φ that stands for “agent a knows an allowed action to achieve φ as 
long as the total cost of communication by all agents is no more than m.

Finally, another interesting direction for future research is studying group actions 
that require common knowledge of an action being allowed. For instance, in the 
famous example with two generals, the generals are not able to start a joint attack 
on a common enemy because they cannot establish common knowledge of the time 
to attack. The two general settings are very similar to the setting of this article if 
the notion of distributively knowingly allowed action from Definition 4 is replaced 
with commonly knowingly allowed action. In this modified setting, we could, for 
example, express the fact that the common enemy has a strategy to win the battle with 
the two generals because they will never be able to start a coordinated counterattack.

Proofs of auxiliary lemmas

The next three lemmas state well-known properties of S5 modality that will be used 
in the proof of the completeness.

Lemma 16  [Deduction] If X , φ ⊢ ψ, then X ⊢ φ → ψ.

Proof  Suppose that sequence ψ1, . . . , ψn is a proof from set X ∪ {φ} and the theo-
rems of our logical system that uses the Modus Ponens inference rule only. In other 
words, for each k ≤ n, either

1.	 ⊢ ψk, or
2.	 ψk ∈ X , or
3.	 ψk is equal to φ, or
4.	 there are i, j < k such that formula ψj  is equal to ψi → ψk.

It suffices to show that X ⊢ φ → ψk for each k ≤ n. We prove this by induction on 
k through considering the four cases above separately.

Case I: ⊢ ψk. Note that ψk → (φ → ψk) is a propositional tautology, and thus, is 
an axiom of our logical system. Hence, ⊢ φ → ψk by the Modus Ponens inference 
rule. Therefore, X ⊢ φ → ψk.

Case II: ψk ∈ X . Then, X ⊢ ψk, similarly to the previous case.
Case III: formula ψk is equal to φ. Thus, φ → ψk is a propositional tautology. 

Then, X ⊢ φ → ψk.
Case IV: formula ψj  is equal to ψi → ψk for some i, j < k. Thus, by the induc-

tion hypothesis, X ⊢ φ → ψi and X ⊢ φ → (ψi → ψk). Note that formula

	 (φ → ψi) → ((φ → (ψi → ψk)) → (φ → ψk))

is a propositional tautology. Therefore, X ⊢ φ → ψk by applying the Modus Ponens 
inference rule twice.         �          □
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Lemma 17  If φ1 , . . . , φn ⊢ ψ, then �φ1 , . . . ,�φn ⊢ �ψ, where � ∈ {Ka, Oσ}.

Proof  By Lemma 16 applied n times, the assumption φ1, . . . , φn ⊢ ψ implies that 

	 ⊢ φ1 → (φ2 → . . . (φn → ψ) . . . ).

Thus, by the Necessitation inference rule, ⊢ �(φ1 → (φ2 → . . . (φn → ψ) . . . )). 
Hence, by the Distributivity axiom and the Modus Ponens inference rule, 

	 ⊢ �φ1 → �(φ2 → . . . (φn → ψ) . . . ).

Then, �φ1 ⊢ �(φ2 → . . . (φn → ψ) . . . ), again by the Modus Ponens inference 
rule. Therefore, �φ1, . . . ,�φn ⊢ �ψ by applying the previous steps (n − 1) more 
times.         �          □

Lemma 18  Positive Introspection ⊢ Kaφ → KaKaφ.

Proof  Formula Ka¬Kaφ → ¬Kaφ is an instance of the Truth axiom. Thus, 
⊢ Kaφ → ¬Ka¬Kaφ by contraposition. Hence, taking into account the following 
instance of the Negative Introspection axiom: ¬Ka¬Kaφ → Ka¬Ka¬Kaφ, we have 

	 ⊢ Kaφ → Ka¬Ka¬Kaφ.� (A1)

At the same time, ¬Kaφ → Ka¬Kaφ is an instance of the Negative Introspection axiom. 
Thus, ⊢ ¬Ka¬Kaφ → Kaφ by the law of contrapositive in the propositional logic. 
Hence, by the Necessitation inference rule, ⊢ Ka(¬Ka¬Kaφ → Kaφ). Thus, by the 
Distributivity axiom and the Modus Ponens inference rule, ⊢ Ka¬Ka¬Kaφ → KaKaφ. 
The latter, together with statement (A1), implies the statement of the lemma by prop-
ositional reasoning.         �          □

Lemma 19  [Lindenbaum] Any consistent set of formulae can be extended to a maxi-
mal consistent set of formulae.

Proof  The standard proof of Lindenbaum’s lemma (Mendelson, 2009) Proposition 
2.14 applies here.         �          □
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