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Abstract

The article studies the interplay between obligations, knowledge, and abilities. It
introduces the notion of norm-dependent abilities—something that an agent knows
how to achieve using a knowingly allowed action and assuming that the other
agents also use only knowingly allowed actions. The main technical contribution
is a sound and complete logical system that describes the interplay between the
modalities representing knowledge, obligations, and norm-dependent abilities in the
presence of information walls between the agents.
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1 Introduction

In this article, we study how knowledge and norms affect the abilities of agents. For
example, imagine a setting in which three guys, Ben (), Charles (c), and David (d),
decide to meet for a potluck party, each bringing just a single dish. Not being the
greatest chef in the world, each of them knows how to cook only three dishes. Figure
1 shows which dishes each of them can cook. For instance, Ben only learned how
to cook bruschetta, beef, and blueberry pie. Suppose that two of them, Charles and
David, are vegetarians—we show this in Fig. 1 using the letter “v”—and there are no
other dietary restrictions in the group.
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blueberry pie ] [ cranberry pie

Fig. 1 Potluck party planning

Let us assume that it is against social norms for any person to bring to a potluck
party a dish nobody, except possibly the person himself, can eat. In our setting, it
means that Ben cannot bring beef because Charles and David are vegetarians. It is
fine for Charles and David to bring chicken and duck, respectively, because Ben is
not a vegetarian.

1.1 Deontic logic models

Several ways to model the above situation and to reason about it have been suggested
in the literature. The best known of them is deontic logic (Wright, 1951; Anderson,
1956; Prior, 1963; Anderson, 1967; Kanger, 1971; Horty, 2001; Hilpinen, 2012). The
semantics of this logical system would consider all possible combinations of dishes
at the potluck party as possible worlds. In our case, there are 3 x 3 x 3 = 27 possible
worlds. In nine of these worlds, Ben violates the social norm and cooks beef for the
party. Such worlds are called unacceptable. The other 18 worlds are acceptable. The
syntax of the deontic logic contains modality O¢ (“it ought to be ¢”). Intuitively, the
formula O¢ means that the social norms imply that ¢ must be true. Formally, O¢p is
satisfied if ¢ is true in all acceptable worlds. For example, in our setting,

O (There are at most two meat dishes at the party) (1)

because each of the guys is bringing only one dish to the party, and Ben does not cook
beef in all admissible worlds.

1.2 Normative systems

Note that the deontic logic approach does not have actions in its semantics. Thus,
it cannot be ecasily used to express what different agents have an ability to achieve
under the existing social norms. One of the possible ways to model this is to endow
agents with sets of possible actions and label some of them as allowed and others as
disallowed. To model our running example, suppose that, in the initial state, each of
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the three agents (Ben, Charles, and David) has three possible actions to choose from.
For instance, Ben’s actions are “cook bruschetta”, “cook beef”, and “cook blueberry
pie”. Based on the actions taken by the three agents, the system transitions from
the initial state to one out of 27 final states, representing different combinations of
foods brought to the party. Under this approach, the actions, not states, are labelled
as allowed and disallowed. In our example, Ben’s action “cook beef” is disallowed,
and all other actions of all agents are allowed. We refer to such models as normative
transition systems or simply normative systems.

The semantics of the “ought to” modality O can be defined straightforwardly for
normative systems: O means that formula ¢ is guaranteed to be true in the next
state as long as all agents use allowed actions. Under such semantics, statement (1) is
satisfied in the initial state of our “potluck party” normative system.

Wooldridge and van der Hoek proposed a normative ability modality that states
that agent a has an allowed action that guarantees that formula ¢ will be true in the
next state (Wooldridge & Hoek, 2005). In the current article, we denote this modal-
ity by A. For instance, in our running example, David has an allowed action (“cook
duck”) that guarantees that there will be at least one meat dish at the party:

A4(There is at least one meat dishes at the party)

At the same time, Ben does not have a normative ability to guarantee the same:

—Ap(There is at least one meat dishes at the party)

because Ben is not allowed to cook beef. Note that modality A,y requires the allowed
action of agent a to guarantee ¢ even if the other agents use disallowed actions. For
example,

—A4(There is at most one meat dishes at the party)

because even if David does not cook duck, there is a chance that Ben uses the dis-
allowed action “cook beef”. In combination with Charles’ allowed action “cook
chicken”, this would bring the system to a state with two meat dishes at the party.

Logical systems for normative abilities have been widely studied in the literature
(Der Hoek et al., 2007; Agotnes et al., 2009-Herzig et al., 2011); see (Alechina et
al., 2018) for an overview of this area. Normative ability is a special case of strategic
abilities. The latter have also been studied in Coalition Logic (Pauly, 2002), ATL
(Alur et al., 2002), STIT Logic (Horty, 2001, Belnap & Perloff, 1990; Horty & Bel-
nap, 1995; Horty & Pacuit, 2017; Olkhovikov & Wansing, 2019), and Strategy Logic
(Chatterjee et al., 2010). Modality A, can also be viewed as a permission modality
because it expresses the fact that agent a is permitted to use at least one action that
guarantees . This type of permission modality is often referred to as weak permis-
sion modality because the Monotonicity inference rule:
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o=
Aa@%Aaw

is valid for this modality (Benthem, 1979). The modalities of the other, strong per-
mission type (Benthem, 1979; Asher & Bonevac, 2005), satisfy the Antimonotonicity
rule:

o =1
Oet — Do

Shi (2024) gave a sound and complete axiomatization of the interplay between
modality A and three other permission modalities.

1.3 Epistemic normative systems

In this article, we consider normative systems with imperfect information in which
the agents might not be able to distinguish some of the states. We refer to this more
general class of models as epistemic normative systems. For instance, suppose that
our three guys do not know each other well enough to know which of them is a
vegetarian and which is not. Of course, we assume each of them knows this about
himself. We model such a situation by 8 “initial” states that represent all possible
combinations of who is vegetarian and who is not.

The set of allowed actions changes from one state of an epistemic normative sys-
tem to another. For example, Ben is allowed to cook beef in any state where at least
one of the two other guys is a non-vegetarian, and he is disallowed to cook beef in
the current state where Charles and David are vegetarian. In this setting, we interpret
O, as “formula ¢ is guaranteed to be true in the next state if all agents knowingly
take an allowed action”.

First, let us assume that there is no ex ante (before the actions are taken) com-
munication between Ben, Charles, and David. In this case, David and Charles would
not be able to learn that Ben is not a vegetarian. Although both of them are allowed
by the social norms to bring meat dishes to the party, neither of them would know
this. Of course, Ben is not even allowed to bring meat to the party because Charles
and David are vegetarians. Hence, if all agents only use actions that they know are
allowed, there will be no meat dishes at the party:

O(There are no meat dishes at the party). )

1.4 Information walls

Our goal is to study how communication between agents interplays with their obli-
gations. We capture the above setting in which there is no ex-ante communication
between all three agents by the assumption that there are information walls that com-
pletely isolate Ben, Charles, and David. Formally, we model systems of information
walls by a partition of the set of agents. Informally, the agents that belong to the same
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o (meats=0) ok (meats<1) Oas(meats=0) OU“(meatss1 ) Oas(meatSSQ)
o™ (pies=1) Oaz(pieszo) Oas(piesz1 ) OU“(piesz1 ) OGE(pieszo)
DAY (pies=2) DA (pies=1) DA% (pies=2) DA’ (pies=2) DA’ (pies=1)

Fig. 2 Five partitions

set of the partition might but do not have to share their knowledge'. The partition
for the setting where there is no ex-ante communication between all three of them
is shown as partition o1 in Fig. 2. To be able to discuss the properties of different
partitions, we add the partition as the superscript of the “ought to” modality O. For
example, we will write formula (2) as

O7* (There are no meat dishes at the party).

Let us now consider the partition o2 shown in the same Fig. 2. This partition allows
communication between Ben and Charles but not between either of them and David.
By talking to Ben, Charles might learn that Ben is not a vegetarian. In this case, he
will know that he is allowed by the social norms to bring a meat dish to the party. At
the same time, due to the existing information wall that separates David from Ben and
Charles, David will never learn that Ben is not a vegetarian. Thus, although David is
allowed to bring meat according to social norms, he will never learn about this. As
a result, David will not bring a meat dish to the party. Of course, Ben is not allowed
to bring meat to the party because he is the only non-vegetarian there. Assuming that
all communication between the agents is truthful, the conversation between Ben and
Charles will not lead to Ben’s knowledge of something which is not true. As a result,
only Charles might potentially bring a meat dish to the party:

072 (There is at most one meat dish at the party).

Under partition o3, see Fig. 2, Charles and David are guaranteed not to learn that Ben
is not a vegetarian. As a result, just like in the case of the partition o1, neither of the
guys will bring a meat dish:

07%(There are no meat dishes at the party).

The case of partition o4 is similar to the case of o2. More interestingly, under parti-
tion o5 that allows full ex-ante communication between all three agents, Charles and

' A similar partition-based approach to modeling restrictions on communication between agents has been
used, for example, in (Lee et al., 2025).
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David might learn that Ben is not a vegetarian. As a result, potentially, both of them
might bring meat dishes. Of course, Ben still will not be able to bring a meat dish:

073 (There is at most two meat dishes at the party).

As an additional example, notice that

07 (There is at least one pie at the party). 3)

The last statement is true because, under partition o1, Charles never learns that Ben
is not a vegetarian. As a result, if he only uses actions that he knows are allowed,
Charles is guaranteed to bring either a cranberry or a coconut pie to the party. Figure 2
shows what ought to be true about the number of pies under the other four partitions.

1.5 Normative abilities in epistemic setting

One might potentially generalize the normative ability modality A, from normative
systems to epistemic normative systems. To do this, it will be convenient to use the
knowingly allowed action of an agent a. By such an action, we mean any action of
agent a that is known to agent a to be allowed. Then, modality A,¢ could be inter-
preted in epistemic normative systems as “agent ¢ has a knowingly allowed action
that guarantees ¢”. In such a modality, knowledge can be considered ex-ante (before
any possible communication between the agents from the same set of the partition)
or ex-post (after possible communication). For example,

Ag ex-ante(There is at least one pie at the party).

because David knows ex-ante that he is allowed to bring a date pie to the party.
By doing this, he guarantees that there is at least one pie at the party. This result is
guaranteed to take place no matter whether the other agents use knowingly allowed
actions or not. Note that the semantics of such a modality does not depend on the
information walls. As a result, it might be worth considering, but not in the context
of the current article.

If one considers ex post knowledge, then the modality A, would describe not an
actual ability but a possible ability that an agent might acquire as a result of some par-
ticular information exchange between the agent in the same set of the partition. For
example, under partition o4, David might learn from Ben that Ben is not a vegetarian.
By learning this, David would acquire the knowledge that bringing a duck is one of
his allowed actions. Hence, if such a communication between Ben and David takes
place, then, after that communication, David would have a knowingly allowed action
that guarantees that there is at least one meat dish at the party:

A%

dex-post (There is at least one meat dish at the party).
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The same is true for partition o5, where the communication between Ben and David
can also take place. At the same time, a similar statement is not true. For example,
under partition o3,

—A%?

dex-post (There is at least one meat dish at the party).

because within the information walls defined by partition o3, David would never
learn that bringing a duck to the party is an allowed action. Note that just like in the
case of ex-ante form of this modality, ex-post does not restrict the other agents to
only knowingly allowed actions. Unlike the ex-ante form, the semantics of the ex-
post version of modality A takes into account the structure of the information walls.
However, the ex-post form of the modality captures only a potential abilities that an
agent might never acquire. It captures more of wishful thinking than actual ability.

1.6 Our contribution: norm-dependent abilities
1.6.1 Main idea

In this article, we propose a new concept of norm-dependent ability. An agent has
such an ability if the agent has a knowingly allowed action that guarantees the result
as long as all other agents also use only knowingly allowed actions. Note that the
bolded part was not present in the definitions of the modalities discussed in the previ-
ous subsection. This part makes the definition of the ability consistent with how we
have defined the semantics of modality O in epistemic normative systems.

Going back to our example in Fig. 2, note that no matter what information
exchange takes place under partition o1, Charles will never learn that Ben is not a
vegetarian. Hence, Charles will never know that bringing the chicken is one of his
allowed actions. Thus, if Charles only uses knowingly allowed actions, he will have
to bring a pie to the party. This guarantees that, as we have already observed in state-
ment (3), if everyone uses only knowingly allowed actions, then there will be at least
one pie (either cranberry or coconut) at the party. Next, note that bringing a date pie
is one of David’s knowingly allowed actions. Hence, David has a norm-dependent
ability to guarantee that there will be at least two pies at the party! We write this as

DA7' (There is at least two pies at the party). @)

We refer to such an ability as “norm-dependent” because it is conditional on the fact
that all other agents only bring knowingly allowed food to the party.

At the same time, under partition oo, it might happen that Ben and Charles com-
municate. As a result of such communication, Charles might learn that Ben eats
meat. This would make bringing chicken a knowingly allowed action of Charles. As
a result, David has only a norm-dependent ability to guarantee that there will be at
least one pie at the party:

DA7?(There is at least one pie at the party). ©)
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Comparing statements (4) and (5), we can observe an interesting property of norm-
dependent strategies: addition of information walls might increase agents’ norm-
dependent abilities. This observation distinguishes norm-dependent abilities from
most other types of abilities in imperfect information (Wang, 2018; Li & Wang,
2021; Berthon et al., 2017; 2017; Naumov & Tao, 2017; Agotnes, 2006), where an
exchange of information between agents sometimes increases but never decreases an
agent’s ability. In Fig. 2, we show the equivalents of statements (4) and (5) for the
other three partitions.

1.6.2 Hold yourself to a higher standard

As discussed in Sect. 1.5, there are two possible ways to interpret the term “know-
ingly allowed action” in our setting. Under ex-ante interpretation, it refers to the
ex-ante (before communication) knowledge of the acting agent. Under ex-post inter-
pretation, it refers to hypothetical knowledge that the acting agent might acquire as a
result of the communication with the agent from the same set in the partition. Gener-
ally speaking, there are fewer “ex-ante knowingly allowed” actions than “ex-post
knowingly allowed” actions. The former actions are available to the agent upfront.
The latter might become available after communication. We believe that the ability
should not rely on luck and should guarantee success even if your opponents are
lucky. Thus, in the context of modality DA,, we assume that the actions of agent a
are “ex-ante knowingly allowed” while the actions of the other agents are “ex-post
knowingly allowed”. For example,

—DAZ*(There is at least one meat dish at the party)

in spite of the fact that, under partition o4, David might ex post learn that Ben is a
vegetarian and bring duck to the party. At the same time,

—DAZ? (There are no meat dishes at the party)

because it is not enough for David just to decide to bring date pie (or daikon salad) to
the gathering. Indeed, under o5, Charles might ex-post learn that Ben is not a vegetar-
ian and bring chicken.

1.6.3 The right to remain silent

Although we allow agents to communicate with the other agents in the same partition
set, we do not require them to do so. In particular, we allow them to decide not to
communicate certain information as a part of their strategy. For example, under any

of the five partitions o,

DAj (There are no meat dishes at the party)

because Ben can always choose not to tell anyone that he is not a vegetarian. In fact, it
is easy to see that in our setting, an agent can never achieve more by “being talkative”
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(revealing additional information to others). Revealing such information may only
make the opponents more powerful by giving them additional ex-post knowingly
allowed actions. This is the reason why lawyers usually advise their clients to remain
silent or to disclose as little information as legally necessary.

1.6.4 Contribution and outline

In this article, we propose a sound and complete logical system that describes the
interplay between norm-dependent ability modality DA and “ought to” modality
0O?. Our main technical result is the completeness of the proposed logical system.
The proof of the completeness uses two key ideas: o-harmony and distributed key
generation. While o-harmony is a variation of the technique from (Naumov & Tao,
2017, 2018a), distributed key generation is a novel technique that we propose. We are
not aware of this technique being used in completeness proofs before, although it is
well-known in cryptography (Pedersen, 1991). The preliminary version of this work,
without the full proof of the completeness, appeared as (Naumov & Zhang, 2022).

This article is organized as follows. The next section defines the syntax and the
semantics of our logical system. Then, we list and discuss its axioms and inference
rules. The soundness of these axioms is shown in Sect. 4. The next section presents
our main result, the completeness of the system. The last section concludes.

2 Syntax and semantics

In this article, we assume a fixed set of propositional variables and a set A of agents.
A partition of set A is any family of pairwise disjoint nonempty sets whose union is
equal to A. For any agent a € A and any partition o of set A, let [a], be the unique
set in partition o that contains a. In Fig. 2, for instance, [b],, = {b, c}.

By o/a, we mean a modification of partition o in which set [a], is replaced by two
sets: {a} and [a], \ {a}. If [a], = {a}, then o /a, by definition, is o. For example,

oz2/d = {{b, ¢}, {d}} = 02,
o3/d = {{b}, {c}, {d}} = o,
o5/d = {{b,c}, {d}} = oa.

Definition 1 For any two partitions o and 7 of set A, let o < 7 if [a], C [a] for each
agent a € A. If o < 7, then partition o is “finer” than partition T.

The language ® of our logical system is defined by the following grammar:
p=p|-¢|e—=¢|Kip| 07| DAZp,
where p is a propositional variable, a € A is an agent, and o is a partition of the set of

agents. We read K, as “agent a knows ¢, DA? ¢ as “agent a has a norm-dependent
ability to achieve ¢ in the presence of the information walls defined by partition o,
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and Oy as “it ought to be ¢ in the presence of the information walls defined by
partition o”’. We assume that the conjunction A and the Boolean constant true T are
defined through — and — in the standard way. For any finite set of formulae Y, by
AY we mean the conjunction of all formulae in Y. Formula A9, by definition, is T.

Definition 2 A normative system is a tuple (W, ~, A, S, €, M, ), where

1. W is a (possibly empty) set of states,
~ is an indistinguishability equivalence relation on the set of states W, for
each agent a € A,

3. AV isaset of all actions (allowed and disallowed) of agent a in state w; by an
action profile § at state w, we mean any function that maps each agent a € A
into an action §(a) € AY,

4. SY C AY is a set of allowed (or “safe”) actions for agent a € A in state
we W,

5. 0¥ € SY is adefault allowed action of agent a € A in state w € W, we as-
sume that if w ~, u, then £ = 0%,

6. mechanism M is an arbitrary set of triples (w, §, u), where w,u € W are states
and 0 is an action profile at state w,

7. w(p) C W for each propositional variable p.

In our running example from the introduction, the set W consists of 8 4+ 27 = 35
states. Intuitively, eight of them are “initial” states in which the three guys have not
made their choices yet. In the initial state, each of the guys can be either vegetarian
or non-vegetarian. In the actual state, Charles and David are vegetarians, and Ben is
not. Additionally, there are 27 “final states” that represent 27 possible outcomes of
the choices made by the three guys. To keep the state count low, we do not encode
vegetarian/non-vegetarian status into the final states. Note that in the formal setting
of Definition 2, we do not distinguish between the initial and the final states. Thus, we
potentially allow the transitions to continue. For the sake of generality, item 1 above
allows the set W to be empty.

Indistinguishibility relation ~, in item 2 above captures ex-ante knowledge
of agent a. In other words, it captures the knowledge before possible information
exchange between the agents. For example, the current state (in which Charles is
vegetarian) is in the relation ~pe, with a hypothetical possible state where Charles
eats meat. Because relation ~, captures ex-ante knowledge, the presence (or lack of)
information walls does not affect this relation.

AY isasetofactions of agent a at state w. For instance, in our introductory example,
Ben has the same set of available actions A, = {bruschetta, beef, blueberry pie}
in each of the eight “initial” states. The set S represents allowed actions of agent a
in state w. For example, if wy is the “current” initial state in which Charles and David
are vegetarians, then

Bo, = {bruschetta, blueberry pie}.

Note that the set S represents allowed actions. It does not represent knowingly
allowed actions. Thus, for example, for the same “current” initial state w,,
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Charles = Lcranberry pie, chicken, coconut pie},

SpHoia = {date pie, duck, daikon salad}.

We assume that in each state, each agent has at least one knowingly allowed action.
To model this, for each agent a and each state w, we identify a “default” allowed
action £¢. Item 5 of the above definition guarantees that the action £¥ is knowingly
allowed in state w. It achieves this by requiring £ to be the default action in all states
that agent a cannot distinguish from state w. The existence of a knowingly allowed
action is important for the soundness of the Necessitation inference rule for modality
DA. The requirement to have at least one knowingly allowed “default” action is our
adaptation to social norms of the “safe harbor” provision in law that stipulates that
there should be at least one action for an agent to take without violating the law.

Informally, (w,d,u) € M means that the system can transition from state w to
state u under action profile ¢. In general, a mechanism is a relation, not a function.
Thus, transitions might be non-deterministic. If, for some state w € W and some
action profile § at state w, there is no state u such that (w, §, u) € M, then we say that
the system terminates in state w under action profile .

Recall that, in our setting, the agents know some information ex ante (before the
communication), and they potentially might learn additional information as a result
of the communication. Thus, generally speaking, each agent starts with some ini-
tial set of knowingly allowed actions based on ex-ante knowledge and extends this
set during the communication. By KSY’, we denote the “initial” set of knowingly
allowed (“knowingly safe”) actions of agent « in state w. Note that this set does not
depend on the choice of the partition because the structure of the information walls
only plays its role at the communication stage.

Definition 3 Let KS’ be the set of all actions s € AY such that s € S;"' for each
state w' € W such that w ~, w'.

In our example, bringing vegetarian dishes are the agents’ only knowingly allowed
ex-ante actions:

KS5° = {bruschetta, blueberry pie},
KSEY. es = {cranberry pie, chicken, coconut pie},
KSE° .4 = {date pie, duck, daikon salad}.

Consider now an arbitrary partition o of the set of all agents. If agents in the same
partition communicate, then they might learn additional allowed actions. By DSY,
we denote the set of all action profiles ¢ such that, for each agent a € A, the set of
agents [a], distributively knows that action d(a) is allowed for agent a in state w.
Informally, DS is the set of all action profiles 6 about which each agent a € A might
learn that action d(a) is allowed in state w if the agent communicates with the other
agents in the set [a],.
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Definition 4 DSY consists of all action profiles ¢ at state w such that for each agent
a € Aand each state w' € W, if w ~y w' for each agent b € [a),, then 5(a) € S

In our example, the set DS® contains profile (bruschetta,chicken, date pie)
because, under partition o2, Charles might learn that Ben is not vegetarian and, thus,
he is allowed to bring chicken. At the same time, the same set DS;° does not contains
profile (bruschetta, cranberry pie, duck), because the information walls under par-
tition oo prevent David from learning that Ben is not a vegetarian.

Lemmal Ifo < 7, then DS} C DSY. O

Next is the key definition of this article. It gives formal semantics of modalities
K, O, and DA.

Definition 5 For any state w € W and any formula ¢ € @, satisfiability relation
w - @ is defined as follows

w Ik pifw € w(p),

w - @ ifw i @,

wlFp—=vifulF porwl-y,

w - Kep ifu - ¢ for each w € W such that w ~q u,

w IF O%¢p when for each action profile § € DSY and each state w € W, if
(w,d,u) € M, then u - ¢,

6. w IF DAJ @ when there is an action s € KSY such that for all states w',u € W
and each action profile § € DSY, | if6(a) = s, w ~q w', and (w',8,u) € M,

o/a’

SNk L=

then u IF .

In item 5, we write 6 € DSY because we allow agents to use ex-post knowingly
allowed actions, see Sect. 1.4.

In item 6, we require that s € KS7 to capture that action s must be ex-ante know-
ingly allowed action of agent « in state w, see Sect. 1.6.2. We use partition o/a
instead of partition o because agent a can only lose power by communicating with
others; see Sect. 1.6.3. We assume that § € DS;”//G because we allow the opponents

of a to use ex-post knowingly allowed actions, see Sect. 1.6.2.

3 Axioms

In addition to propositional tautologies in language ®, our logical system contains
the following axioms:?

1. Truth: Ko — ¢,
2. Negative Introspection: =K, p — K=K,

2Notations ¢ < 7 and o /a have been introduced at the beginning of the previous section.
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3. Distributivity: O(¢ — ¥) — (O¢ — OY) where O € {K,, 07} and

4. Monotonicity: OT¢ — O%¢ where 0 < 7, DA} ¢ — DAY ¢ where o/a < 7/a,
5. Strategic Introspection: DA ¢ — K, DA ¢,

6. Epistemic Monotonicity: K,0%/%(¢ — 1)) — (DA% — DAJ1).

The Truth, the Negative Introspection, and the Distributivity axioms are well-known
modal properties. The Monotonicity axiom for modality O captures the fact that if
something ought to be true under communication walls imposed by partition 7, then
the same is also ought to be true under any partition o that has additional information
walls. A similar property is true for modality DA except that assumption o < 7 is
replaced with a weaker assumption o /a < 7/a because formal semantics of modal-
ity DA, excludes communication between agent a and the other agents in class [a],.
The Strategic Introspection axiom states that if an agent has a norm-dependent abil-
ity, then she knows that she has such an ability. The Epistemic Monotonicity axiom
states that if agent a knows that ¢ — 1 ought to be true as long as agent a remains
silent and the agent also has a norm-dependent ability to achieve ¢, then the agent has
a norm-dependent ability to achieve . Formally, “agent a remains silent” is captured
by using partition o /a instead of partition o.

We write - ¢, and say that ¢ is a theorem of our logical system if formula ¢ is
provable from the above axioms using the Modus Ponens, the three forms of the
Necessitation, and the Monotonicity inference rules:

0,0 =Y ® ® ® o=
0 DA7 ¢ Ko O%¢p DA7 ¢ — DAZY’

In addition to unary relation I ¢, we also consider binary relation X - ¢ which is
true if a formula ¢ is provable from the theorems of our logical system and the set of
additional axioms X using only the Modus Ponens inference rule. Note that & - ¢ is
equivalent to - .

4 Soundness

In this section, we show the soundness of our logical system. The soundness of the
Truth, the Negative Introspection, and the Distributivity axioms is standard. Below,
we prove the soundness of each of the remaining axioms as a separate lemma.

Lemma2 Ifo < 7 and wlk O7 ¢, then w - O%¢.

Proof Consider any action profile § € DS¥ and any state uw € W such that
(w,d,u) € M. By item 5 of Definition 5, it suffices to show wu IF . Indeed, the
assumption 6 € DSY and the assumption o < 7 of the lemma imply § € DS¥ by
Lemma 1. Hence, u I ¢ by the assumption w IF O, item 5 of Definition 5, and the
assumption (w, 0, u) € M. O

Lemma3 [fo/a = 7/aand w - DA}, then w - DA .
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Proof By the assumption w |- DA ¢ of the lemma and item 6 of Definition 5, there

is an action s € KS? such that for all states w’,u € W and each action profile
§ € DSY, ifé(a) =s,w ~y w,and (v, 6,u) € M, then u IF .

T/a’

Consider any states w’,u € W and any action profile ¢ € DS™,  such that

0(a) =s,w ~, w',and (w', §, u) € M. By item 6 of Definition 5, it suffices to show
that u I- ¢.
Notice that the assumption d € DSZ;”//Q and the assumption o /a < 7/a of the lemma

imply 6 € D w) by Lemma 1. Therefore, u I- ¢ by the choice of action s using the

T/a

assumptions d(a) = s, w ~, w’, and (v, §,u) € M. o

Lemma4 If w IF DAYy, then w IF K DAY p.

Proof Consider any state v € W such that w ~, v. By item 4 of Definition 5, it suf-
fices to show that v I DAY .

By item 6 of Definition 5, the assumption w |- DAY ¢ of the lemma implies that
there is an action s € KSY such that for all states w’, w € W and each action profile
0 € D g’//a, ifd(a) = s, w ~, W, and (W', ,u) € M, then u IF .

Then, by the assumption w ~, v, for all states w’,u € W and each action pro-
file 0 € DS;”/a, if 6(a) =s, v ~g w', and (w',d,u) € M, then u Ik . Therefore,

v IF DA? ¢ by item 6 of Definition 5. m

Lemma5 If wlF K,07/%(p — ) and w I- DAy, then w |- DA%,

Proof By item 6 of Definition 5, the assumption w |- DAY ¢ implies that there is an
action s € KS¥ such that for all states w’, u € W and each action profile 6 € D. ;”//a,
ifd(a) =s,w ~, w',and (W', 0,u) € M, then u I .

Consider any two states w’,u € W and any action profile 6 € DS}T“//a where

0(a) =8, w~g w', and (w',d,u) € M. By item 6 of Definition 5, it suffices to
show that u IF 1). Indeed, by item 4 of Definition 5, the assumption w ~, w’ and
the assumption of the lemma w |- K,0%/%(¢ — 1) imply that w’ IF O/ (¢ — 1)).

Hence, u I ¢ — 9 by item 5 of Definition 5 and the assumptions § € DS};’//(L and

(w,0,u) € M.
Atthesametime,u |- @ bythe choice ofactionsandbecaused(a) = s,w ~, w’,and
(w',0,u) € M. Therefore, u IF ¢ by item 3 of Definition 5. |
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5 Completeness

In this section, we prove the completeness of our logical system. We start by review-
ing the main ideas of this proof. Then, we discuss the harmony construction used in
the proof, define the canonical model, and use it to prove completeness.

5.1 Key ideas behind the proof of the completeness
5.1.1 Distributed key generation

The standard proof of completeness for the multiagent version of epistemic logic S5
defines the states of the canonical model as maximal consistent sets of formulae. Two
such states are a-indistinguishable if they contain the same K,-formulae. This con-
struction does not work in our case because we allow formulae that simultaneously
use modality DA? for different partitions o. Indeed, recall the agents Ben, Charles,
and David from one of the introductory examples. Consider any maximal consistent
set of formulae w that contains exactly the same Kgep- and Kcparles-formulae. In
other words, for any formula ¢ € @,

KBen(P cw iff KCharles(p cw.

If the indistinguishability relation is defined as in the standard construction, then
the equivalence classes of state w with respect to relation ~pe, and relation ~cparies
would be the same. Thus, if the canonical model is defined in the standard way, then
agents Ben and Charles will have exactly the same knowledge in state w.

Next, suppose that set w contains formulae DAJ! . ¢ and =DAT? . ¢ for some
formula ¢ € ®, where partitions o1 and o are specified in Fig. 2. The key step in the
standard proof of completeness is the “truth” (or “induction”) lemma that states that a
formula belongs to set w if and only if it is satisfied in state w. In our case, this lemma
would imply that w I DAT), . and w |- =DAT? . .

The statements w I- DAJ! . ¢ and w IF DA ., mean that David has a norm-
dependent ability to achieve ¢ when the wall between Ben and Charles is present and
does not have such a strategy otherwise. Informally, this should happen because, in
the absence of the wall, information can freely travel between Ben and Charles, and
thus, they both have larger sets of knowingly allowed actions. If they use strategies
from these larger sets, then David’s strategy might no longer work. However, as we
have seen above, if the standard construction is used to build the canonical model,
then Ben and Charles have exactly the same knowledge, and, thus, there is absolutely
nothing new that they can learn by sharing information with each other!

To overcome this issue, we need Ben and Charles to possess some additional
knowledge that they do not have under the standard canonical model construction.
We add this knowledge to our canonical model using the distributed key generation.
This is a cryptographic technique consisting of an independent generation of random
keys by several agents (Pedersen, 1991). In our running example, each state of the
canonical model will be a quadruple (X, b, ¢, d), where X is a maximal consistent set
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of formulae and b, ¢, d are integer “keys” of Ben, Charles, and David respectively.
We assume that each agent knows his key, but not the keys of the other agents. The
complete infinite set of states consists of all quadruples (X, b, ¢, d) for all possible
maximal consistent set X and all integer values b, ¢, and d. Incorporation of the
distributed key generation into epistemic model construction is a new idea that we
introduce in this article.

5.1.2 Harmony

As mentioned earlier, the proofs of completeness usually use a “truth” or “induction”
lemma that states that ¢ € w if and only if w IF ¢ for any formula ¢ and any state w.
In our case, this is Lemma 15. It claims that ¢ € X, iff w IF ¢, where X, is the first
component of state w, as discussed in the previous section.

Consider now the case when formula ¢ has the form K. If K ¢ ¢ X, then,
by item 4 of Definition 5, the canonical model construction must guarantee that
w W Ky, As usual, we achieve this by using Lindenbaum’s lemma to construct a
new state u such that w ~, u and u ¥ .

The situation is more complicated if formula ¢ has the form DAJ ). In this case,
the canonical model must contain two different states, w’ and u, satisfying conditions
stated in item 6 of Definition 5. An important step in creating these two states is the
construction of the corresponding maximal consistent sets X, and X,,. It turns out
that these two sets cannot be created consecutively.

Naumov and Tao (2018a, 2018b) proposed a technique called harmony for a
simultaneous construction of two maximal consistent sets. Their technique cannot be
directly applied in our setting because the original harmony was not designed to deal
with information walls in the set of agents. In this article, we propose a variation of
their technique that we call o-harmony.

The technique consists of identifying a certain invariant condition on a pair of
sets of formulae, proving that an “initial” pair of sets satisfies this condition, and
showing that the sets could be expanded while preserving the invariant. We call the
invariant condition o-harmony, just like the technique itself. The expansion step is
repeated infinitely many times to achieve another condition, which we call complete
o-harmony. As a final step, Lindenbaum’s lemma is used to “top-off” the two sets in
complete o-harmony to maximal consistent sets.

5.2 o-Harmony
In this section, we define the o-harmony relation between sets of formulae and
prove several properties of this relation. We will use these results in the proof of

completeness.

Definition 6 An arbitrary pair of sets of formulae (X, Y) is in o-harmony if
X ¥ Q7= A Y’ for each finite set Y C Y.

Lemma 6 [fpair (X, Y) is in o-harmony, then sets X and Y are consistent.
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Proof Assume set X is inconsistent. Thus, X F O%— A @. Then, by Definition 6, pair
(X, Y) is not in o-harmony.

Suppose that set Y is inconsistent. Thus, there is a finite set Y’ C Y such that
F = AY’. Hence, by the Necessitation inference rule, - O?— A'Y'. Therefore, by
Definition 6, pair (X, Y') is not in o-harmony.

The next lemma shows that two specific “initial” sets are in harmony.

Lemma7 Pair of sets ({¢ | Kotp € Z}, {—p, ¢'}) is in (o/a)-harmony for any con-
sistent set of formulae Z and any formulae =DAY o, DA% ' € Z.

Proof Suppose the opposite. Thus, by Definition 6, there are formulae
Kato1, ..., Koty € Z (6)
and a finite set of formulae Y C {—¢, ¢’} such that
Uiyeoy Py OIS AY. @)

At the same time, note that the formula— A Y — —(¢’ A =) is a propositional tautol-
ogy because Y C {—, ¢'}. Thus, formula—~ AY — (¢’ — ) isalso a propositional
tautology. Hence, by the Necessitation inference rule, - O%/%(= AY — (¢’ — ¢)).
Then,

V1, F O (Y = )

by the Distributivity axiom and the Modus Ponens inference rule using statement (7).
Thus,

Kathrs -+, Kathn F KO/ (" = )
by Lemma 17. Hence,
Z K07 (" = )

because of statement (6). Then, Z = DA_ ' — DAY ¢ by the Epistemic Monotonicity
axiom and the Modus Ponens inference rule. Hence, Z F DAY ¢ by the Modus Ponens
inference rule and the assumption DAY ¢’ € Z of the lemma. Therefore, “-DAJ ¢ ¢ Z
because set Z is consistent, which contradicts the assumption —“DAJ ¢ € Z of the
lemma. o

The next lemma shows that any two sets in o-harmony could be further extended

while preserving o-harmony.

Lemma 8 For any pair (X, Y) in o-harmony, any formulae v € @, either pair
(XU {=0%¢}, Y) or pair (X, Y U{}) is in o-harmony.
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Proof Suppose that both, pair (X U {=0%¢},Y) and pair (X,Y U {¢}), arenotin o
-harmony. Thus, by Definition 6, there are finite sets Y, Y C Y such that

X,~0% F Q7= AY’ ®)
and, for some Z C {p} UY",
XFO'=AZ. ©)
Observe that Z C {¢} UY"” C {¢} UY'UY". Thus, the formula
“ANZ = (=AY UY"))
is a tautology. Hence, by the Necessitation inference rule,
FO'(=AZ = (p—= A Y UY"))).
Thus, by the Distributivity axiom and the Modus Ponens inference rule,
FO-AZ—=0%(p— A" UY")).
Then, by the Modus Ponens inference rule and assumption (9),
XEO%(e—-AXY'UY")).
Hence, by the Distributivity axiom and the Modus Ponens,
XEO% = 07=A (Y UY").
Thus, again by the Modus Ponens inference rule,
X, 0% 0= A (Y UY"). (10)

At the same time, formulae =AY’ — = A (Y UY") is also a tautology. Then, by
the Necessitation inference rule

FOT(=AY = =AY UY")).
Hence, by the Distributivity axiom and the Modus Ponens,

FO=AY = 0% A (Y UY").
Thus, using statement (8) and the Modus Ponens rule,

X,-0% F 07— A (Y UY").
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Then, X F 07— A (Y UY") by the laws of propositional reasoning using state-
ment (10). Hence, pair (X,Y") is not in o-harmony by Definition 6. |

Definition 7 Pair (X, Y) is in complete o-harmony if, for any formula ¢ € P, either
-0°%p e XorpeY.

Lemma9 For any pair (X, Y) in o-harmony, there is a pair (X', Y') in complete o
-harmony where X C X' and Y C Y.

Proof Consider any enumeration @1, @2, . .. of all formulae in language ®. For each
integer ¢ > 1 either add formula —O%¢; to the first set of the pair in o-harmony or
add formula ¢ to the second set of the pair in o-harmony. By Lemma 8, this could be
done while maintaining o-harmony of the pair. Let (X', Y”) be the pair obtained after
repeating this step for each integer ¢ > 1. o

5.3 Canonical model

In this section, we define a canonical normative system (W, ~ A S| ¢, M, ) for any
maximal consistent set of formulae X.

In our informal discussion of the canonical model, we stated that each state of the
model is a tuple containing a maximal consistent set of formulae and a set of integer
values representing “keys” of the agents. In our formal definition of the states below,
the set of all keys is represented by a function from agents into integers.

Definition 8 Ser W consists of all pairs (X, k) such that X is a maximal consistent
subset of  and k € ZA.

For any w = (X, k), let X, = X and k,, = k.

Recall from the informal discussion in the Distributed Key Generation subsection
that each agent knows her own key, but not the keys of the other agents. Thus, for two
states to be indistinguishable by an agent a, the states must have maximal consistent
sets with the same K,-formulae and the same key assigned to agent a.

Definition 9 For any states w,u € W, let w ~, u when

1. foreach formula ¢ € ®, if Koo € Xy, then p € X,

2. ky(a) = ky(a).

Item 1 of the above definition is equivalent to the statement that sets X, and X, have
the same K, -formulae. We use item 1 because it results in shorter proofs of several
auxiliary lemmas. Unfortunately, it also requires us to include the following lemma.

Lemma 10 Relation ~, is an equivalence relation on set W.

Proof Reflexivity: Consider any formula ¢ € ®. Suppose that K, € X,,. It suffices
to show that ¢ € X,,. Indeed, assumption K, € X,, implies X,, I ¢ by the Truth
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axiom and the Modus Ponens inference rule. Therefore, ¢ € X, because set X, is
maximal.

Symmetry: Consider any states w,u € W such that w ~, u and any formula
Kap € X,. Tt suffices to show ¢ € X,,. Suppose that ¢ ¢ X,,. Hence, X, ¥ ¢
because set X, is maximal. Thus, X,, ¥ K, by the contraposition of the Truth
axiom. Then, =K, p € X, because set X,, is maximal. Thus, X,, - K,—=K,¢ by
the Negative Introspection axiom and the Modus Ponens inference rule. Hence,
Ke—Kep € X, because set X,, is maximal. Then, -K,p € X,, by assumption
w ~g u and Definition 9. Therefore, K, ¢ X, because set X, is consistent, which
contradicts the assumption K, € X,,.

Transitivity: Consider any states w,u,v € W such that w ~, u and u ~, v
and any formula K, € X,,. It suffices to show ¢ € X,,. Assumption K,y € X,
implies X, F KK, by Lemma 18 and the Modus Ponens inference rule. Thus,
KeKep € X, because set X, is maximal. Hence, K,p € X,, by the assump-
tion w ~, u and Definition 9. Therefore, ¢ € X, by the assumption u ~, v and
Definition 9.

Definition 10 For any state w € W and any agent a € A, let A be the set consist-
ing of all pairs (p, C, B) such that ¢ € P is a formula, C C A, and 8 € Z.

Note that, in our canonical normative system, A does not depend on w and a.
Thus, all agents have the same set of actions in all states. Informally, each agent’s
action consists of specifying a formula ( about the outcome that the agent wants to
achieve and the parity 5 of the sum of keys of members of some group (coalition) C.
To be allowed, the action should specify the parity correctly.

Definition 11 SY is the set of all tuples (p,C,5)€ AY such that
Y acc kw(a) =B (mod 2).

Let { = (T,@,0). Then, £ € SY for each state w € W and each agent a € A by
Definition 11.

The next definition specifies the mechanism of the canonical normative system.
Informally, under action profile 4, the system might transition from state u to state v
if two conditions are satisfied. To understand these conditions, recall that § € DS
means that each agent a under action profile § has chosen an action which she might
learn is allowed in spite of the information walls defined by partition ¢. Condition
o€ DS’;”/G takes into account an additional information wall between agent a and the

rest of the agents in the set [a,.

Definition 12 For any two states w,uw € W and any action profile 6 at state w, let
(w, 9, u) € M when

1. ifO%¢p € Xy andd € DSY, then p € X
(a) =

2. ifDAJp € Xy, d € DSy, and 6 (¢,{a}, ky(a)), then p € X,,

@ Springer



Synthese (2026) 207:39 Page 21 of 32 39

Definition 13 7(p) ={we W |p € X,}.
5.4 The proof

In this section, we prove the strong completeness of our logical system using the o
-harmony construction. As discussed earlier, the key step in the proof of complete-
ness is an “induction” or a “truth” lemma. In our case, this is Lemma 15, which states
that v € X, iff w I 1. The next four lemmas prove auxiliary statements used in dif-
ferent induction cases of the proof of Lemma 15. The first of them is used in direction
(<) when formula 1) has the form K, .

Lemma 11 For any w € W and any formula K,p ¢ X, there exists w' € W such
that w ~4 w' and o ¢ Xy.

Proof Consider set X = {~¢} U {1 | Ko1b € X, }. First, we show that this set is
consistent. Assume the opposite. Then, there are formulae

Kat1, ..., Kot € Xy 11)

such that ¥1,...,¢¥, F ¢. Thus, K91, ..., Keto, F Koo by Lemma 17. Hence,
Xuw = Kap because of the assumption (11), which contradicts the assumption
Kap ¢ X, of the lemma due to the maximality of set X,,. Therefore, set X is
consistent. R

Let X' be any maximal consistent extension of set X. Such an extension exists
by Lemma 19. Also, let w’ be pair (X', k., ). Note that w ~, w’ by Definition 9, the
choice of sets X and X', and the choice of pair w’. O

The next statement is used in the induction lemma in direction (<=) when formula
1) has the form O%¢.

Lemma 12 For any w € W and any formula O° ¢ ¢ X,,, there exists an action pro-
file § € DSY and state v € W such that (w,d,uv) € M, and p ¢ X,,.

Proof Define § to be an action profile such that?

5(a) = | T.laloy Y kuw(z) (12)

z€lals

3Recall that the first component of an action is the formula that the agent wants to achieve. We set this
formula to Boolean constant | to make it easier for us to construct set «. Recall from our discussion before

Definition 11, that in order for an action ((p, C, B ) to be allowed, the value of 3 should be congruent
to the sum of keys of the coalition C' modulo 2. Thus, by defining the second component of the action of

agent @ as [a}g, we guarantee that this action is distributively known to be allowed under an arbitrary
partition 7 only if [a] s C [G]T. This observation is formally stated as Claim 2 in a slightly more general

form. We have chosen the second and the third components of 0 (@) to guarantee that the claim holds.
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for each agent a € A.

Claim1 6 € DSY.

Proof of Claim. Consider any agent a € A and any state w’ € W such that w ~,, w’

for each agent = € [a],,. By Definition 4, it suffices to show that §(a) € S¥’. By
Definition 9, &, (z) = ky () for each z € [a],. Hence,

Z w Z kw HlOd 2)

z€lals z€lals
Thus, 6(a) € S* by Definition 11 and the choice of 8. O
Claim 2 For any partition T, if § € DS¥, then o < T.

Proof of Claim. Suppose that § € DS¥. Consider any agent a € A. By Defini-
tion 1, it suffices to show [a], C [a],. Assume the opposite. Then, there is an agent
b € [a]s \ [a],. Define function k € Z* as follows:

~ « Jke(x)+1, ifx=0,
k(z) = {kw(x), otherwise.

(13)

Then, k() = k() for each = € [a], by the assumption b ¢ [a],. Define w’ to be
set (Xy, k). Then, w ~, w' for each z € [a], by Definition 9. Thus, §(a) € S*' by
Definition 4 and assumption § € DSY. Then,

S k@)= > kw(z)= D ku(z) (mod 2)

z€la)s z€la)s z€lals

by Definition 11, the choice of w’ = (Xw,E),anqu. 12. Hence, Eq. 13 and assumption
b € [a], imply 1 =0 (mod 2), which is a contradiction. O

Let set X be {~¢} U{t) | O™ € X, 6 € DS™}. First, we show that set X is
consistent. Assume the opposite. Then, there are formulae

O™y, ...,0™, € X, (14)

such that

§ € DS, (15)

forall: < nandy,...,¥, F ¢. Then, by Lemma 17,

%41, ...,0%, - 0%p.

@ Springer



Synthese (2026) 207:39 Page 23 of 32 39

Note 0 = 7; for each i < n by Claim 2 and statement (15). Thus, by the Monotonic-
ity axiom applied # times,

O™, ...,0™ 4, - O%p.

Hence, X, = O%¢ by assumption (14). Then, O%¢ € X,, since set X,, is maxi-
mal, which contradicts the assumption of the lemma O%¢ ¢ X,,. Therefore, set X
is consistent. R

Let set X’ be a maximal consistent extension of set X . Such an extension exists by
Lemma 19. Also, let u be pair (X', k), where k € Z* is an arbitrary function. Note

that - € X C X’ = X,,. Thus, ¢ ¢ X, because set X, is consistent.

Claim3 (w,d,u) € M.

Proof of Claim. We will show that conditions 1 and 2 of Definition 12 are satisfied.

1. Suppose that 0" € X, and § € DSY. It suffices to show that ) € X,,. By
Claim 2, assumption § € DSY implies that o < 7. Thus, X,, - O%% by the
Monotonicity axiom and assumption O« € X,,. Hence, O%% € X, because

set X, is maximal. Then, ¢ € X C X’ = X, by the choice of sets X and X as
well as the choice of u.

2. If §(a) = (¢, {a}, kw(a))), then, by Eq. 12, ¢ is formula T. Thus, ¢ € X,

because set X, is maximal.

Therefore, (w,d,u) € M. m
This concludes the proof of the lemma. o
The following statement is used in the induction lemma in direction (=), when

formula +) has the form DA .

Lemma 13 For any w € W and any DA p € X,,, there exists an action s € KSY
such that for all w',w € W and each profile § € DS;”,G, ifd(a) = s, wr~, W, and

(w',8,u) € M, then p € X,,.
Proof Let action® s be (¢, {a}, kw(a)).

Claim4 s € KSY.

Proof of Claim. Consider any state v € [w],. Then, v ~, w. Hence, k,(a) = ky(a)
by Definition 9. Thus, 3_, ..y kv(2) = ku(a) (mod 2). Hence, s € S; by Defini-

tion 11. Therefore, s € KSY by Definition 3. o

#We have chosen the first component of the action s to be ¢ so that agent @ can use this action to achieve

(. The second component of the action is chosen to be the singleton set {a} to guarantee that agent @
alone knows that this action is allowed.
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Claim5 Forany w’ € W, ifw ~, w’, then DA p € X,,.

Proof of Claim. By assumption of the lemma, DAJ ¢ € X,,,. Thus, X,, - K,DA{ ¢ by
the Strategic Introspection axiom and the Modus Ponens rule. Then, K,DA7 ¢ € X,
because set X, is maximal. Hence, DA ¢ € X,/ by Definition 9 and the assumption
w o~ w |

Finally, consider any states w’,u € W and any action profile 6 € D. f;“//a such
that 6(a) = s, w ~, w', and (w’, d,u) € M. Thus, DAJ ¢ € X, by Claim 5. Also,
0(a) = s = (p,{a}, ky(a)) by the assumption 6(a) = s and the choice of action
s. Therefore, ¢ € X,, by item 2 of Definition 12. This concludes the proof of the
lemma. o

The last auxiliary lemma is used in the induction lemma in direction (<), when
formula ¢ has the form DA] . As discussed earlier, its proof simultaneously con-
structs two maximal consistent sets using o-harmony technique.

Lemma 14 For any we€ W, any formula —-DAp € X,,, and any action
s € KSY, there are states w',u € W and an action profile § € DS;”/’a such that

0(a) =8 wrgw, (W,6,u) €M, and p ¢ X,,.

Proof To minimize the number of cases to be considered in this proof, we define an
auxiliary formulae

, {prl(s), if DA? (pr1(s)) € X, (16)

v = T, otherwise,
where pry(s) is the first component of triple s.
Claim6 DA%y’ € X,,.

Proof of Claim. We consider the following cases:

Case I: DAY (pr1(s)) € Xu. Then, ¢’ = pry(s) by Eq. 16. Thus, DA ¢’ € X, by
the assumption of the case.

Case II: DA (pr1(s)) ¢ X, Thus, ¢’ = T by Eq. 16. Hence, ¢’ is a tautology.
Then, - DA{ ¢’ by the Necessitation rule. Thus, DA ¢’ € X, since set X, is maxi-
mal. ]

The pair of sets ({x | Kox € X}, {—p,¢’}) is in (0/a)-harmony by Lemma 7,
the assumption =DAJ ¢ € X, of the lemma, and Claim 6. Thus, by Lemma 9, there

is a pair of sets (Y, Z) in complete (o /a)-harmony such that

{x | Kax € X} C Y and {—p,¢'} C Z.

Let Y and Z be any maximal consistent extensions of sets Y and Z , respectively.
Such extensions exist by Lemma 19. Let w’ = (Y, ky,) and u = (Z, ky,).
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Claim7 w ~, w'.

Proof of Claim. Suppose that K,x € X,,. By Definition 9, it suffices to show
that x € X,,v =Y. The latter follows from the choice of sets Y and Y.
m

Let action profile § be defined’ as follows:

s, if b= a,
6(b) {(Ta [b]n/aa Eme[b]o/akw (IIJ)), otherwise. (17)

Claim8 § € DSV,

o/a*
Proof of Claim. Consider any agent b € A, and any state w” € W such that w’ ~, w”

for each x € [b], /.. By Definition 4, it suffices to show that §(b) € S

Case I: b # a. By Definition 9, we have ki~ (x) =k, (z) for each agent
x € [b],/q- Also recall that k,, = &, by the choice of w’. Hence,

Yo kwr@) = > kw(z)= > ku(2).

Ie[b]a/a xe[b]a/a zE[b]u/a

Therefore, §(b) € Sg”u by Definition 11, Eq. 17, and assumption b#a of the case.
Case II: b = a. Recall that w’ ~, w” for each z € [b],/,. Thus, w' ~, w"
because a = b. Hence, w ~, w” by Claim 7. Then, s € S}f” by Definition 3 and
the assumption s € KS® of the lemma. Thus, §(a) € S*" by Eq. 17. Therefore,
5(b) € S because a = b. o

Claim 9 For any partition 7, if § € DS;”,, theno/a < 7.

Proof of Claim. Suppose that 6 € DS;”,. Consider any agent b € A. By Definition 1,
it suffices to show that [b],,, C [b]-. Assume the opposite. Then, there is an agent

¢ € [b]g/a \ [b]+. Consider the following two cases:
Case I: b # a. Define function k € Z* as follows:

) = {kw(x)Jrl, ife=c, (18)

kw(z), otherwise.

Then, k(z) = ky(z) for each = € [b], by the assumption ¢ ¢ [b],.. Define state w”
to be pair (Y, k).

Next, we show that w’ ~, w” for each x € [b],. Since E(x) = ky () for each

x € [b];, by Definition 9, it suffices to show that if K, ¢ € Y,,, then ¥ € Y,,» for

5The intuition for the choice of § is similar to the one described in the footnote on page 20. In the current
case, the second component of the action is chosen to guarantee that Claim 9 holds.
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each x € [b]; and each formula i) € ®. Indeed, consider any x € [b], and any ¢ € O
such that K ¢ € Y,,.. Thus, K, 1 € Y by the choice of state w’. Hence, Y - ¢ by
the Truth axiom and the Modus Ponens inference rule. Then, ¢ € Y = Y,,» by the
maximality of set Y and the choice of state w”’.

Thus, §(b) € SZ;’” by Definition 4 and the assumption that § € DS™". Then,

S k@)= Y kulz) (mod 2)

z€[b]o/a z€[blo/a

by Definition 11, Eq. 17, the assumption b # a, and the choice of w” = (Y, E)
Hence, by Eq. 18 and because c € [b],/q4,

1=0 (mod 2),

which is a contradiction.

CaseII: b = a. Then, ¢ € [a],/, and ¢ ¢ [a]; by the assumption ¢ € [b],/, \ [0].
Statement ¢ € [a],/, and the definition of the partition o/a implies that ¢ € {a}.
Therefore, ¢ = a, which contradicts the statement ¢ ¢ [a].. m

Claim 10 For any formula DA ¢ € X, if § € DS, and 6(b) = (v, {b}, kur (b)),
then ¢ € X,,.

Proof of Claim. Consider the following two cases:

Case I:b# a. Thus, ¥ =T by the assumption 0(b) = (¢, {b}, kw (b)) and
Eq. (17). Therefore, ¢y € X, because set X, is maximal.

Case II: b = a. By Claim 9, assumption § € DS;“//,) implies that o/a < 7/b. Thus,
o/a < 7/a because a = b. Hence, X,,» = DAJ 1) by the Monotonicity axiom, the
Modus Ponens inference rule, the assumption DAj ¢ € X,/ of the claim, and the
assumption b = a of the case. Then, X,,» - K,DAZ 1) by the Strategic Introspection
axiom and the Modus Ponens inference rule. Thus, K,DAJ ¢ € X, by the maximal-
ity of set X,,-. Hence, DA’ 1) € X, by Definition 9 and Claim 5. Thus,

¢’ =pri(s) = pr1(6(a)) = pr1(6(b))
= pri(¢, {0}, kur (b)) = ¢

byEq.16,Eq. 17,assumptionb = a ofthe case,andassumptiond(b) = (1, {b}, kwr (b))
of the claim. Therefore, 1) = ¢’ € Z C Z = X, by the choices of 2, Z, and u.
o

Claim 11 If O™ € X, and § € DSY', then ) € X,,.
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Proof of Claim. The assumption § € DS;“/ implies that 0 /a < 7 by Claim 9. Then,
0°/%) € X, by the assumption O"¢ € X,,» and the Monotonicity axiom. Thus,
=07/ ¢ X, since set X, is consistent. Hence, 0%/ %) ¢ Y because Y C Xy
Then, ¢ € Z by Definition 7 and the choice of (Y, Z) as a pair in complete (o/a)
-harmony. Therefore, ¥ € Z C Z C X, by the choice of set Z , set Z, and state wu.
O

Note that (w’,d,u) € M by Definition 12, Claim 10, and Claim 11. Finally,

- € A czZ=X, bythechoiceofsetz set Z andstate u. Therefore, o ¢ X, because
set X, is consistent. This concludes the proof of the lemma. i

Next is the “truth” or “induction” lemma.
Lemma15 ¢ € X, iff wlk .

Proof We prove the lemma by structural induction on formula ¢. If ¢ is a propo-
sitional variable, then the lemma follows from Definition 13 and item 1 of Defini-
tion 5. If formula ¢ is an implication or a negation, then the required follows from
the maximality and the consistency of the set X, and items 2 and 3 of Definition 5
in the standard way.

Let formula ¢ have the form O%4).

(=) : By Definition 12, assumption O € X,, implies that for each state
w € W, each action profile 6 € DS, and each state u € W, if (w, d,u) € M, then
1 € X,. Thus, by the induction hypothesis, for each state w € W, each action profile
0 € DS?, and each state u € W, if (w, §, u) € M, then u IF ¢). Therefore, w IF O
by item 5 of Definition 5.

(<) : By Lemma 12, assumption 0%t ¢ X, implies that there exists an action
profile 6 € DSY and a state uw € W such that (w,d,u) € M, and ¢ ¢ X,,. Thus, by
the induction hypothesis, u ¥ 1. Therefore, w ¥ 0% by item 5 of Definition 5.

The case when formula ¢ has the form K, 1) is similar to the case O, but it uses
Lemma 11 instead of Lemma 12. Finally, assume that formula ¢ has the form DA ).

(=) : By Lemma 13, assumption DAl € X,, implies that there is an action

s € KSY such that for all states w’,u € W and each action profile § € D woif

o/a’
0(a) = s,w ~q w',and (w', 0,u) € M,then € X,,. Thus, by the induction hypoth-
esis, for all states w’, u € W and each action profile § € DSg’//a,ich(a) =5,W ~, W,
and (w',6,u) € M, then u IF ¢. Therefore, w IF DA by item 6 of Definition 5.
(<) : Suppose that DAy ¢ X,,. Thus, -DAJ ¢ € X,, because set X,, is maxi-
mal. Then, by Lemma 14, for any action s € KSY, there are states w’, u € W and an

action profile 0 € DS;”//a such that 6(a) = s, w ~q W', (W', §,u) € M, and ¢ ¢ X,,.
Hence, by the induction hypothesis, forany action s € KS¥, therearestatesw’,u € W
and an action profile ¢ € DS;”/IG such that 6(a) = s, w ~, W', (W', 6,u) € M, and

u W . Therefore, w ¥ DAY 1) by item 6 of Definition 5. |

Finally, we are ready to state and prove a strong completeness theorem.
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Theorem 1 If' Y ¥ o, then there is a state w of a normative system such that w I+ x
for each formula x € Y and w ¥ .

Proof Suppose Y ¥ . Thus, set Y U {—p} is consistent. Let Y’ be any maximal
consistent extension of this set. Such an extension exists by Lemma 19. Also, let
function & be an arbitrary function from the set Z. Let w be the pair (Y, k), which
is a state of the canonical model by Definition 8.

Note thaty € Y C Y’ = X, for each formulay € Y. Thus, w IF  for each formula
v €Y by Lemma 15. Also, ~¢ € Y C Y’ = X,,. Hence, ¢ ¢ X, because set X, is
consistent. Therefore, w ¥ ¢ also by Lemma 15. o

6 Conclusion

In this article, we proposed the concept of norm-dependent abilities and studied it as a
modality in the setting of information walls. Perhaps the most interesting observation
about norm-dependent abilities is that partial removal of information walls (allow-
ing other agents to communicate more freely) decreases the agent’s norm-dependent
abilities. On the other hand, the addition of such walls makes the agent more power-
ful. We are not aware of any other logical systems that capture this “prevailing in the
dark” effect.

Perhaps the most natural question about this work is whether the current results
could be generalized to group knowledge and coalition norm-dependent abilities.
One of the challenges in this direction is finding an intuitively acceptable interpreta-
tion of group knowledge in the presence of information walls. Is it sensible to reason
about a coalition distributively knowing that a certain action is allowed if the coali-
tion members are on different sides of a wall and explicitly banned from communi-
cating with each other? One might consider only coalitions C located in the same set
of a partition, but this makes the syntax confusing, given that we study modalities
DAZ for different partitions 0.

We think that a more interesting direction is to study one-way information walls
that only prevent the diffusion of the information in one of two directions. In real-
world scenarios, for example, certain groups of people might be banned from spread-
ing information to outsiders, but not from listening to them.

Another possible extension of this work is to consider the interplay between public
announcements (Ditmarsch et al., 2007) and norm-dependent abilities in our setting.
Any public announcement could simultaneously empower an agent and also weaken
the agent by supplying the same information to the opponents.

One can also potentially consider a “trusted friends” setting in which each agent
only takes into account the knowledge of the adjacent agents. This would come
down to allowing “second-hand knowledge”, but not “third-hand”, “fourth-hand”,
etc knowledge. Although significantly more complicated than ours, such a setting
is also interesting — it could be used to model the abilities coming from spreading
mistrust among opponents. In addition, one can also consider directed communica-
tion channels.
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Another alternative setting is to consider walls that do not block information diffu-
sion completely but impose costs on it. In such a setting, for instance, one can study
modality DA that stands for “agent a knows an allowed action to achieve ¢ as
long as the total cost of communication by all agents is no more than m.

Finally, another interesting direction for future research is studying group actions
that require common knowledge of an action being allowed. For instance, in the
famous example with two generals, the generals are not able to start a joint attack
on a common enemy because they cannot establish common knowledge of the time
to attack. The two general settings are very similar to the setting of this article if
the notion of distributively knowingly allowed action from Definition 4 is replaced
with commonly knowingly allowed action. In this modified setting, we could, for
example, express the fact that the common enemy has a strategy to win the battle with
the two generals because they will never be able to start a coordinated counterattack.

Proofs of auxiliary lemmas

The next three lemmas state well-known properties of S5 modality that will be used
in the proof of the completeness.

Lemma 16 [Deduction] If X, = 1, then X - @ — 1.

Proof Suppose that sequence 11, . .., 1, is a proof from set X U {¢} and the theo-
rems of our logical system that uses the Modus Ponens inference rule only. In other
words, for each k < n, either

F )y, or

Y € X, or

Yy, 1s equal to ¢, or

there are ¢, j < k such that formula ; is equal to ¥, — 1.

Calb ol

It suffices to show that X ¢ — 1) for each k£ < n. We prove this by induction on
k through considering the four cases above separately.

Case I: F 1. Note that ¢, — (p — 1) is a propositional tautology, and thus, is
an axiom of our logical system. Hence, - ¢ — v, by the Modus Ponens inference
rule. Therefore, X F ¢ — .

Case II: ¢, € X. Then, X | 1, similarly to the previous case.

Case III: formula vy, is equal to . Thus, ¢ — ¥y is a propositional tautology.
Then, X F ¢ — ¢y

Case IV: formula 7); is equal to 1); — 13, for some ¢, 7 < k. Thus, by the induc-
tion hypothesis, X F ¢ — v; and X F ¢ — (; — 1). Note that formula

(o= i) = (¢ = (Vi = V) = (¢ — Yr))

is a propositional tautology. Therefore, X F ¢ — 1y, by applying the Modus Ponens
inference rule twice. o
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Lemmal17 If p;,...,pn E 1, then Opy, ..., O¢p, b O, where O € {K,, 07 }.

Proof By Lemma 16 applied # times, the assumption 1, .. ., ¢, - @ implies that
For— (02— ... (pn =) ..0).

Thus, by the Necessitation inference rule, - O(¢p1 — (2 — ... (n = ¥)...)).
Hence, by the Distributivity axiom and the Modus Ponens inference rule,

FOpr — O(p2 = ... (@n =) ...

Then, Op1 F O(p2 — ... (¢n — ¥)...), again by the Modus Ponens inference
rule. Therefore, Oy, ..., O¢, F Oy by applying the previous steps (n — 1) more
times. o

Lemma 18 Positive Introspection - K, — K K.

Proof Formula K,—K,p — =K, is an instance of the Truth axiom. Thus,
F Ko — “K,—K,p by contraposition. Hence, taking into account the following
instance of the Negative Introspection axiom: —K,—K,p — K,=K,=K,p, we have

F Koy = Ka=Kg=Kgop. (A1)

Atthesametime, =K, — K,—K,pisaninstance ofthe Negative Introspection axiom.
Thus, - =K, =K, — K, by the law of contrapositive in the propositional logic.
Hence, by the Necessitation inference rule, - K, (=K,—K,¢ — K, ). Thus, by the
Distributivity axiom and the Modus Ponensinferencerule, - K,—K,—K,o — K K p.
The latter, together with statement (A1), implies the statement of the lemma by prop-
ositional reasoning. |

Lemma 19 [Lindenbaum] Any consistent set of formulae can be extended to a maxi-
mal consistent set of formulae.

Proof The standard proof of Lindenbaum’s lemma (Mendelson, 2009) Proposition
2.14 applies here. o
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