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ABSTRACT
With the 4-meter Multi-Object Spectroscopic Telescope (4MOST) expected to provide an influx of transient spectra when it
begins observations in early 2026 we consider the potential for real-time classification of these spectra. We investigate three
extant spectroscopic transient classifiers: the Deep Automated Supernova and Host classifier (DASH), Next Generation SuperFit
(NGSF) and SuperNova IDentification (SNID), with a focus on comparing the completeness and purity of the transient samples
they produce. We manually simulate fibre losses critical for accurately determining host-contamination and use the 4MOST
Exposure Time Calculator to produce realistic, 4MOST-like, host-galaxy contaminated spectra. We investigate the three classifiers
individually and in all possible combinations. We find that a combination of DASH and NGSF can produce a SN Ia sample with
a purity of 99.9% while successfully classifying 70% of SNe Ia. However, it struggles to classify non-SN Ia transients. We
investigate photometric cuts to transient magnitude and the transient’s fraction of total fibre flux, finding that both can be used to
improve non-SN Ia transient classification completeness by 8–44% with SNe Ibc benefitting the most and superluminous (SL)
SNe the least. Finally, we present an example classification plan for live classification and the predicted purities and completeness
across five transient classes: Ia, Ibc, II, SL and non-SN transients. We find that it is possible to classify 75% of input spectra with
>70% purity in all classes except non-SN transients. Precise values can be varied using different classifiers and photometric cuts
to suit the needs of a given study.

Key words: transients: supernovae; techniques: spectroscopic; software: simulations; software: machine learning; instrumenta-
tion: spectrographs.

1 INTRODUCTION

Since the discovery of the accelerating expansion of the universe a
quarter of a century ago (Riess et al., 1998; Perlmutter et al., 1999),
significant efforts have been made to investigate the enigmatic prop-
erties of dark energy. Many probes into the nature of dark energy
exist, including weak lensing and Cosmic Microwave Background
measurements (Planck Collaboration et al., 2014; Wittman et al.,

★ E-mail:a.milligan@lancaster.ac.uk

2000). However, one of the most successful at providing strong con-
straints on cosmological models in the late-time universe is type Ia
supernova (SN) cosmology. Understood to be the detonation of white
dwarfs around the Chandrasekhar mass limit, SNe Ia detonate at pre-
dictable luminosities and as such act as standardisable candles that
let us measure the distance to objects over large swathes of cosmic
time.

The original discovery of accelerating expansion was performed
with a sample of only 42 high-redshift SNe Ia (Riess et al., 1998;
Perlmutter et al., 1999). Since then, we have seen a two order of
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magnitude increase in the number of spectroscopically confirmed
SNe Ia. For example, recently the Zwicky Transient Facility have
produced their second data release sample (ZTF DR2) (Rigault et al.,
2025) which contains 2,677 SN Ia with sufficiently high-quality light
curves for use in cosmological fitting. Similarly, the recent Dark
Energy Survey (DES) cosmology results (DES Collaboration et al.,
2024b) uses a sample of 1,635 SN Ia, derived from their full 5-year
data release.

The earliest samples of transients were separated into two classes:
SNe I and SNe II, based on the presence or absence of Hydrogen
features in their spectra (Popper, 1937; Minkowski, 1979). In the
years since, these classes have been further subdivided and many
new subclasses (Filippenko, 1997) and exotic variants have been
discovered and suggested, alongside non-supernova transients like
Tidal Disruption Events (TDEs) and Fast Blue Optical Transients
(FBOTs) (Hills, 1975; Drout et al., 2014).

Most optical transients are discovered in photometric surveys. As
the number of transients has increased, it has become unfeasible
to allocate time for spectroscopic follow-up on each transient indi-
vidually. Recent photometric classifiers can perform high accuracy
classification on transients beyond just classifying them as SN Ia or
non-SN Ia (Charnock & Moss, 2017; Muthukrishna et al., 2019a;
Boone, 2019; Möller & de Boissière, 2020; Boone, 2021; Pimentel
et al., 2023; Sheng et al., 2024; Cabrera-Vives et al., 2024; Shah
et al., 2025). Additionally, it has been shown that they are capable
of classifying transients based on incomplete light curves (Möller &
de Boissière, 2020; Qu & Sako, 2022; Gagliano et al., 2023; Gomez
et al., 2023; de Soto et al., 2024). Recent photometric analyses have
indicated that SN Ia samples obtained with photometric classifica-
tions produce contamination levels that either still allow for robust
estimations of cosmological parameters or are even negligible com-
pared to other sources of uncertainty, such as SN Ia astrophysics
and how we model the correlation between SN Ia intrinsic properties
and host-galaxy properties and how these instrinsic properties evolve
with redshift. (Jones et al., 2018, 2019; Vincenzi et al., 2024).

While photometric classification is possible, it has several dis-
tinct disadvantages. The definitions of SN subclasses are based pri-
marily by spectral features, so spectroscopic classification removes
ambiguity, although there are also photometrically defined classifica-
tions. For example, SNe IIn are defined spectroscopically by narrow
emission lines (Schlegel, 1990), while SNe IIP are defined photo-
metrically by a long ‘plateau’ phase of constant brightness in their
light-curve (Filippenko, 1997). Further, when attempting to constrain
cosmology, photometrically classified SN Ia samples often require
the addition of spectroscopic information, such as spectroscopically
determined host-galaxy redshifts. This is the case in Vincenzi et al.
(2024), where 1,635 photometrically classified SNe Ia are used for
cosmology, the largest single-survey SN Ia sample. Additionally,
Vincenzi et al. (2024) use a small sample of spectroscopically clas-
sified SNe Ia to constrain the cosmological fitting (see also DES
Collaboration et al., 2024b). Beyond this, to match the high purities
of spectroscopically classified transient samples, photometric classi-
fication is usually performed in a binary scheme (SN Ia vs non-SN
Ia) or with very broad transient classes (Fraga et al., 2024).

We will, therefore, test the performance of spectroscopic classi-
fiers. Visual classification is made difficult by the overlap of various
transient subclasses in parameter space and ambiguity in subclass
definitions. This, alongside the increasing number of transients be-
ing observed spectroscopically, means that it is increasingly required
to automate the process of spectroscopic classification. We seek to
investigate the potential to do this with regards to the upcoming
4MOST instrument.

The 4-metre Multi-Object Spectrograph Telescope (de Jong et al.,
2019, 4MOST) is a high-multiplex, fibre-fed spectrographic survey
facility in the final stages of assembly before commissioning. It is
expected that it will begin taking data in early 2026. There are many
varied surveys within the 4MOST consortium, but the survey con-
cerned with transients is the Time Domain Extragalactic Survey
(TiDES) (Swann et al., 2019; Frohmaier et al., 2025).

With the upcoming Legacy Survey of Space and Time (LSST)
being performed from the Vera C. Rubin Observatory, there will
be unprecedented numbers of transients discovered photometrically
(Ivezić et al., 2019). It is expected that any given pointing of 4MOST
will contain a number of live photometric transients and the host
galaxies of faded transients, which can then be followed-up with
TiDES’s allotted fibres. Over a period of 5 years, TiDES expects
to observe 30,000 live transients and perform follow-up on some
200,000 host galaxies (these numbers are dependent on the survey
schedules of LSST and 4MOST, both of which are still under devel-
opment). This approach has already seen success in the Australian
Dark Energy Survey (OzDES) performed using the AAOmega spec-
trograph on the Anglo-Australian Telescope (Lidman et al., 2020;
Saunders et al., 2004).

Two of TiDES science goals are to provide live classification of
transients accessible to the general scientific community and the
classification of a large, pure, cosmological SN Ia sample. As we
approach the start of the 4MOST survey in early 2026, uncertainty
remains as to how the TiDES transient spectra will be classified and
which existing spectroscopic classifiers, if any, are best suited to
these two TiDES science goals. Our hope is to provide clarity via
the simulation of transient spectra that are as close to what will be
observed as possible, including the fact that transient flux observed
by a 4MOST fibre will be blended with the flux of its host galaxy.
These realistic, blended, simulated 4MOST spectra will allow us to
compare the output of various spectroscopic classifiers to known true
classifications (see also Kim et al., 2024, which makes use of real
spectra in its analysis). Furthermore, we can assess the dependence
of classification performance on parameters such as the brightness of
the SN and the fraction of host light contaminating the spectrum, and
ultimately use this information to outline a plan for the classification
of large numbers of TiDES spectra.

There are two main types of automated, spectroscopic classifiers.
First, there are template matching programs (for example, Duan et al.,
2009; Blondin & Tonry, 2011; Goldwasser et al., 2022). These, in
essence, compare an input spectrum to a bank of transients of known
classification. However, there is significant variation in methodology.
For example, Howell et al. (2005) bin the input spectrum to match the
templates and then calculate a 𝜒2 value, accounting for contaminant
host flux. Blondin & Tonry (2011) instead cross-correlate input and
template in redshift, and quantifies the best fitting template by the
height of the cross-correlation peak.

More recent years have seen the rise of the second type: machine-
learning methods (for example, Muthukrishna et al., 2019b; Vogl
et al., 2020; Fremling et al., 2021; Sharma et al., 2024; Harutyunyan
et al., 2008). In this case, a classifier is provided a training set of tem-
plates of known classification and redshift. The classifier "learns" the
features present in various transient classifications and assigns them
weights. The presence or not of these learned features is then used to
determine a pseudo-probability of an input spectrum belonging to a
given classification, which is then used to rank output classifications.

In this paper we investigate two template-matching classifiers and
one machine-learning classifier. More information on the spectro-
scopic transient classifiers we investigate can be found in Sections
4.1.1, 4.1.2 and 4.1.3. These classifiers were chosen as they are pub-
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licly available, widely used and easily obtainable for current and
upcoming surveys. Machine-learning algorithms are far faster to per-
form classifications once the lengthy training process is complete,
but all classifiers as they are used in this work are expected to scale
to TiDES.

Hence, this paper is organized as follows. First, in Section 2, we
describe the simulations from which we draw our transient and host
properties. Also in this Section we will discuss some transient tem-
plates used in simulating our blended spectra. In Section 3, we will
discuss the construction of blended host–transient spectra and the
subsequent simulation of 4MOST observations using an Exposure
Time Calculator (ETC). Then, in Section 4, we investigate the capa-
bilities of three individual spectroscopic transient classifiers. We go
over their function and how they were tested. Their individual per-
formances are presented in Sections 4.3 and 4.5. We investigate the
combination of classifiers in Section 5. We first show the results from
a simple combination of classifiers and then potential photometric
cuts for improving classification in Section 5.1. Finally, in Section
5.2 we present a potential classification pipeline for live classification
and SN Ia cosmology. Our conclusions are presented in Section 6.

2 DATA

2.1 Survey Simulations

Our objective is to test spectroscopic transient classifiers such that
we understand under what conditions they will succeed or fail in cor-
rectly determining the transient classes of 4MOST-like spectra. We
must simulate a set of spectra that are a good approximation to the
real ones observed by the instrument. The specific procedure for the
creation of individual spectra is covered more in Section 3, but we
first discuss how we obtain a set a realistic properties for transients
and their hosts. These properties can then be used to generate each
spectrum, which in turn can be used to test each of the pre-existing
transient classifiers. The results of these classifications can then be
compared to the input spectrum’s ‘true’ properties as a means to
quantify the success of a given classifier.
We make use of two pre-existing, sequential simulations to produce
a realistic sample of blended host-transient spectra. The first is a sim-
ulation of a population of transients and hosts performed in the SU-
pernova ANAlysis package (Kessler et al., 2009, SNANA). SNANA
uses known intrinsic properties of various transient classes in com-
bination with the survey strategy of the LSST survey to generate
an LSST-specific transient population (Frohmaier et al., 2025). This
simulation produces a population of transient and host objects. From
them we obtain the intrinsic physical properties of host–transient
systems. We obtain system redshift, host–transient separation, host
𝑟-band magnitude and transient template information. Throughout
this paper magnitudes are calculated using the LSST 𝑟-band filter
and are reported in the AB magnitude system (Oke & Gunn, 1983).
The process of creating simulated spectra is discussed in more detail
in Section 3.

The second simulation is a simulation of the 4MOST survey oper-
ation of the full 5 years of observations of the southern sky. Obser-
vation targets are taken from the simulated survey input catalogs and
their exposure times are computed using the 4MOST Exposure Time
Calculator (ETC). The simulation is carried out with the 4MOST fa-
cility simulator (4FS) and makes use of the simulation code SELFIE.
More detail about the SELFIE algorithm can be found in Tempel et al.
(2020a,b).

This simulation provides further observational properties for each

transient. Most importantly, from it we receive a list of all of the
transients that were observed. Generally, any transient that is both
located within 4MOST’s field of view during a visit, and is estimated
to require less exposure time than is available during the full visit to
meet the TiDES spectral success criterion (average 𝑆𝑁𝑅 > 3 in 15
Å bins in the wavelength range of 4500-8000 Å) will be observed.
However, some are not observed due to the limited number of fibres
and the demands of other subsurveys.

As the simulations have become more sophisticated, different ver-
sions of the input catalogue have been created. Each has had many
different simulations of survey operations performed on it. We find
that while the individual objects observed may change dramatically
between simulations, the bulk properties of the observed transients
are consistent. The specific simulation used has little effect on our
final results.

The 4MOST observing schedule is currently expected to visit each
sky position a small number of times during the 5-year survey. The
survey footprint of 4MOST essentially covers the whole extragalactic
sky in the Southern hemisphere. Each visit to a given position will
consist of several exposures (most often 2 or 3) of approximately
20 minutes. The majority of transients (>93%) are observed a single
time over the course of the survey (Frohmaier et al., 2025).

The 𝑟-band magnitude, redshift and SN flux fraction distributions
from the SNANA population simulation of the transients and their
hosts from the SNANA population simulation are shown in Fig. 1.
The total number of objects in the sample is on the order of 105.
We see that the sample is heavily biased to 𝑧 < 0.6 and in fact the
more distant objects are all Superluminous Supernovae (SLSNe). We
also see that, before any correction for fibre sizes, when observing
extended objects (see Section 3.3) there is a tendency for host galaxies
to have brighter magnitudes than transients.

2.2 Simulated Spectra

In addition to realistic physical and observational properties for use in
creating simulated 4MOST-like spectra, we require a set of spectral
templates of both transients and hosts. The transient templates are
drawn from those used in the SNANA population simulations. The
included SN classes are Ia, Ib, Ic, II, IIn, IIb and SLSNe. Most SNe
Ia input templates are of the Ia-norm subclass, generated using the
SALT2 model (Guy et al., 2007), although a small fraction are SNe
Iax and SNe Ia 91bg-like (Kessler et al., 2019). Additionally there are
tidal disruption events (TDEs), and calcium-rich transient (CaRT)
objects. These templates are spectral energy distributions (SEDs)
intended to simulate realistic photometry. As a result, some of the
spectra, especially SLSNe and non-SN transient, are highly smoothed
and lacking in spectroscopic features. The full list of template sources
is provided in Table 1. Examples of SEDs used in simulated blended
spectra are shown in Appendix C.

The galaxy templates from Kinney et al. (1996) are assigned as
hosts. The subclasses of galaxy available are elliptical, S0, Sa, Sb and
Sc and a set of starburst templates with a variety of E(B-V) values (see
Kinney et al. (1996) for additional information). We scale our galaxy
templates using the 𝑟-band host magnitudes from the simulation.

For each transient we assign a host-galaxy morphology to match
the probability distribution listed in Hakobyan et al. (2012) in their
Table 5. For Sd and Irregular galaxies for which we have no templates,
we assign a random choice between Sb and Sc host spectra (the two
most common host morphologies). In cases where Hakobyan et al.
(2012) lists the host as Morphology A/Morphology B, we choose
randomly between A and B. We always assign SLSNe inputs an Sc-
type host spectrum since research suggests that SLSNe are found in
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Figure 1. a) Host galaxy redshift and corresponding transient magnitudes for observed objects in the SELFIE survey simulation. The values are obtained directly
from the SNANA population simulation and can be considered the truth values for a given object. The y-axis on the attached histograms displays the total
number of objects per bin with a logarithmic scale. b) As in (a) but with the fraction of fibre flux from the transient on the y-axis.

Table 1. The relative percentages of each transient class present in our full
sample of blended spectra alongside the sources for the spectral templates.
Templates can be found in the SNANA public data as part of PLASTICC
(Kessler et al., 2019) and ELASTICC (Narayan & ELAsTiCC Team, 2023).

Percentage Class Source
60.1% SNe Ia Guy et al. (2007), Hounsell et al. (2018)
0.9% 91bg-like Kessler et al. (2019)
1.1% SNe Iax Kessler et al. (2019)
1.9% SNe Ib Vincenzi et al. (2019)
1.4% SNe Ic Vincenzi et al. (2019)
13.5% SNe II Vincenzi et al. (2019)
6.5% SNe IIn Vincenzi et al. (2019)
4.0% SNe IIb Vincenzi et al. (2019)
9.4% SLSNe Kessler et al. (2019)
0.7% TDE Kessler et al. (2019)
0.4% CaRT Kessler et al. (2019)

faint, blue, star-forming galaxies, often with extreme emission lines
(Leloudas et al., 2015; Neill et al., 2011). TDEs and CaRTs occupy
such a small percentage of our transients, that we assign them a
host type at random. However, we note that there is evidence that
TDEs (Wang et al., 2024) and CaRTs (Dong et al., 2022) do show
trends in their host galaxy morphologies, but including these in our
simulations would have negligible impact in our results.

In order to estimate uncertainties in our results, we split the full
sample of transients into samples of 1000 transients. This subsam-
pling is performed randomly, but without resampling (i.e. no transient
appears in more than one subsample). For a given parameter, results
are obtained by reporting the mean value across all subsamples. The
uncertainty on our results are reported in the form of the standard
error of the mean.

3 CREATING BLENDED SPECTRA

3.1 The 4MOST Exposure Time Calculator

The 4MOST ETC python code package1 allows one to simulate an
observation by the 4MOST instrument. For every simulated obser-
vation we must assign a brightness within a specific filter or over
a wavelength range. A variety of pre-existing instrument filters are
provided.

The code produces a ‘raw’ or Level 0 (L0) output and a Level
1 (L1) output. Both are in the form of extracted 1D spectra (flux
and wavelength for each pixel along the spectrum). The raw output
features 4MOST’s three spectrograph arms not yet combined and
the object flux reported in ADUs. The L1 output is what we use.
L1 spectra are generated by being passed through a simulation of the
Quality Control 1 (QC1) pipeline and resemble the data products that
will be produced by the real instrument. In L1 output, the ADUs of the
raw output are converted to a flux observed at the telescope entrance
using corrections for the wavelength dependence of the instrument’s
sensitivity.

The simulation process is shown in Fig. 2. There are still telluric
absorption bands present in the L1 output which are added as part of
the ETC model. There are five main features with wavelength ranges
of 6250 – 6350, 6860 – 6940, 7150 – 7350, 7550 – 7700 and 8100
– 8400 Å. These extra features could be misinterpreted by classifiers
as being generated by the transient and lead to misclassifications.
We account for this by creating a transmission spectrum for each
observation. We do this on the assumption that real data will have
these features corrected for using 4MOST observations of featureless
calibration stars.

We consider the host and transient separately before adding them
linearly to form the final spectrum that is input into the ETC for a
simulated observation. The magnitudes of both objects are known
from the population simulation, but to account for seeing conditions
and a finite fibre size on extended galaxies we must adjust these
magnitudes. The processes for doing so for SNe and galaxies are
shown in detail in Sections 3.2 and 3.3 respectively.

1 We use V2.3.1 of the python-based ETC: See qmostetc link to documen-
tation
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Figure 2. The stages of simulating an observation with the 4MOST ETC code. In this example, a 21st magnitude SN Ia and a 21st magnitude Sc-type host spectra
are added linearly. Top panel: template SN, host and combined spectra. All spectra are deredshifted. The flux is measured in units of erg cm−2 s−1 Å−1 × 10−16.
This is the input to the ETC. Middle panel : L0 output of the ETC, showing the extracted spectra from the three spectrograph arms. Flux is presented in units of
𝑒− × 103. Lower panel: L1 output of the ETC in which the spectra from the three arms have been joined. The result is flux-calibrated and includes a realisation
of the noise. This (unbinned) L1 spectrum is what we perform classification on.

3.2 Transient Fibre Flux

We assume the transient can be approximated as a point source and
that the 4MOST fibre will be placed centrally on the transient. We
simulate the fraction of transient flux through a 4MOST fibre using a
grid of pixels with a central pixel containing the full transient flux. A
Gaussian convolution is then applied to the pixel grid. The standard
deviation, 𝜎, of the Gaussian convolution is determined from the
Full-Width Half-Maximum (FWHM) of the seeing conditions using
the expression FWHM = 2

√
2 ln 2𝜎.

The SELFIE simulations do not record seeing conditions for each
observation. For our purposes the seeing conditions are taken to
always have a value of 0.8 arcseconds, this is similar to the average
seeing conditions found at the Paranal Observatory where 4MOST
will be located2.

Once the Gaussian convolution has been applied, a fibre with
a 4MOST fibre diameter of 1.45 arcseconds is imposed onto the
pixel grid, centred on the SN location. The flux is then summed
from the pixels with centres contained within the fibre radius. We
find that using a finer pixel grid produces a more accurate value
for fibre flux by reducing uncertainty around the fibre edge. This is

2 From Paranal Observatory website, https://www.eso.org/gen-
fac/pubs/astclim/paranal/seeing/?, accessed 23-January-2024

particularly important in Section 3.3 where the scale of hosts being
modelled varies and a balance must be found between accuracy and
computation time.

We are assuming a constant value for the seeing, coupled with a
constant fibre size, so we see a constant fraction of transient flux down
each fibre. The effect is that each transient appears 0.27 magnitudes
fainter through the 4MOST fibre. This number does not require a
simulation to be determined, as it determined from the integration
of a 2D Gaussian out to some radius, but simulations are required
for simulating extended hosts of varying size as discussed in Section
3.3.

At seeing < 0.8 arcseconds the fraction of flux down the fibre from
both transient and host is increased. Tests show that the increase is
larger on average for transients (as they are point sources), so we
would expect improved classification in this case. The reverse is true
for seeing > 0.8 arcseconds and so we would expect worsened clas-
sification. Simulations indicated that increasing the seeing value to
a uniform 1.2" had a small, negative effect on transient classifica-
tion, but ultimately a realistic seeing distribution centred on 0.8" is
expected to have minimal effect on the overall rates of successful
transient classification.

MNRAS 000, 000–000 (2024)



6 Milligan et al.

3.3 Host Fibre Flux

The modelling of fibre flux from the transient’s host galaxy, an ex-
tended object, is more complex. This method involves the dimension-
less distance parameter (𝑑𝐷𝐿𝑅), first used in Sako et al. (2018), in
service of assigning hosts to transients and based on similar methods
developed in Sullivan et al. (2006). The 𝑑𝐷𝐿𝑅 is equal to the ratio
of the directional light radius (DLR) of a galaxy and its observed
separation from the transient. The DLR is the half-light radius of the
galaxy in the direction of the transient. Minimising the 𝑑𝐷𝐿𝑅 for
galaxies in a crowded field indicates likely hosts for the transient.

The population simulation we draw SNANA-produced physical
properties from reports both the 𝑑𝐷𝐿𝑅 and the host–transient sepa-
ration. Since we are only concerned with the host’s flux in the direc-
tion of the transient for the purposes of measuring the flux through a
4MOST fibre, we can consider all galaxies in the simulation to have
circular half-light radii equal in radius to their DLRs. It should be
noted that the position of the transient is entirely based on the light
profile of the galaxy, so that transients are more likely to be placed
in brighter regions of their hosts (Vincenzi et al., 2021).

We note that significant work has been performed investigating
links between transients and their locations within their host galaxies
(see Hakobyan et al., 2016; Aramyan et al., 2016; Galbany et al., 2018,
for example). However, since the population simulation preferentially
places transients in brighter regions of their host, the resulting spectra
may only be biased towards slightly higher levels of contamination
from host flux. The effect on our results is negative, and is expected
to be negligible.

We model the intensity of the galaxy to be a Sérsic profile (Sérsic,
1963) and use a Sérsic index of 0.5 based on values reported in
the simulations. While this may not be completely true to life, it
represents the case with the most host flux in a blended spectrum
and the hardest case to classify. Using a larger Sérsic index causes
the average host flux in the fibre to decrease leading to less host
contamination. The Sérsic profile is dependent on the value of the
constant 𝑏𝑛 which in turn is defined by the Sérsic index. A number of
approximations for the value exist such as 𝑏𝑛 = 1.9992𝑛−0.3271 for
0.5 <= 𝑛 <= 10 from Capaccioli (1989) and 𝑏𝑛 = 2𝑛− 1

3+0.009876𝑛
from the appendices of Prugniel & Simien (1997). We will use the
latter, although both produce very similar values for n = 0.5.

The intensity profile, in terms of the Sérsic index, 𝑛, and 𝑏𝑛, is
often expressed as:

𝐼 (𝑅) = 𝐼𝑒 exp{−𝑏𝑛 [(
𝑅

𝑅𝑒
)

1
𝑛 − 1]} (1)

where 𝑅𝑒 is the effective or half-light radius that encircles half
of the total emission of the profile. The effective intensity, 𝐼𝑒, is the
intensity at the effective radius.

To obtain the ratio of total galaxy flux to the flux transmitted
through the fibre, we need to know the value of the total flux and
the effective intensity. The total flux is obtained by integrating the
intensity profile in equation 1 which leads to the equation:

𝐹𝑇 = 2.8941𝜋𝐼𝑒𝑅2
𝑒 (2)

This gives us the total flux in terms of the effective intensity and the
effective radius which is just the DLR (for a more detailed derivation
see Graham & Driver, 2005, and references therein). We can find
the actual value of the total flux, and thus a value for the effective
intensity, from the zero point magnitude of the AB magnitude system
and the total magnitude of the galaxy, 𝑚𝐺 , using the equation:

Redshift = 0.16
 Original Mag = 18.46

 Fibre Mag = 22.37

Redshift = 0.18
 Original Mag = 20.02

 Fibre Mag = 23.1

Redshift = 0.69
 Original Mag = 23.61

 Fibre Mag = 23.8

Fibre Diameter, 1.45"

Redshift = 0.34
 Original Mag = 20.45

 Fibre Mag = 22.44

Figure 3. The variation in the host flux through 4MOST fibres. Each panel
presents the Sérsic profile of an example host galaxy in our sample simulated
on a pixel grid. Superimposed as a blue circle is the 4MOST fibre of diameter
1.45" (highlighted in red), centred on the transient location. The pixels that
contribute to the flux seen by the fibre have their flux set to zero in these
images, so that the lost flux can be seen. Redshifts, and host magnitude before
and after accounting for fibre losses are provided.

𝐹𝑇 = 𝑓0 × 10(𝑚𝐺/−2.5) (3)

Here 𝑓0 is the zero point flux of the AB magnitude system. The
total host flux, 𝐹𝑇 , that appears in our equations, only functions as
a scaling factor. We know the true value of 𝑚𝐺 from the population
simulation. By taking the ratio of total flux to flux in the 4MOST
fibre, the value of the total flux cancels out and so it need not be
calculated specifically. Once an arbitrary total flux is chosen we can
calculate the effective intensity, 𝐼𝑒, using equation 2. We can then use
equation 1 and equation 2 to calculate the ratio between the total flux,
the flux down the fibre and thus the host’s magnitude as observed by
4MOST down its fibre.

We simulate a host’s intensity profile by creating a pixel grid and
use the Sérsic profile to determine the average intensity at each pixel.
Since we only care about the host’s light profile in the direction of
the transient, we model each host as a circle with a half-light radius
equal to the DLR.

We then apply a Gaussian convolution to the pixel grid to account
for atmospheric seeing. We use a 1,200 x 1,200 pixel grid with each
pixel set to 1% of the host–transient separation, a scale where the
calculated flux fraction is invariant with small variations in pixel size.
The method is identical to that described in Section 3.2. We centre
the fibre on the transient location and calculate the fraction of flux in
the fibre. Examples of this process are shown in Fig. 3. We see much
more significant flux loss than for the SNe.

The 4MOST ETC cannot simultaneously account for both ex-
tended and point sources in a simulated observation. This is why we
account for fibre losses and seeing effects ourselves, prior to passing
the blended spectrum to the ETC. We provide the blended spectrum
as being a flat illumination source with brightness measured in mag-
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Figure 4. The distribution of transient flux fractions in the fibre. The mean
value for all transients is highlighted with the dashed black line. As this
accounts for fibre losses in the host galaxy, we see that over half of all of the
spectra have more transient flux than host flux through the 4MOST fibre.

nitudes per square arcsecond to prevent the ETC from reapplying any
observational effects like seeing.

As stated in Section 3.2, the effect on the transient magnitude is
fairly minimal. Most of the flux from the original point source still
falls within the fibre that has a diameter of roughly 2𝜎 relative to the
Gaussian convolution. For hosts, their distance, size and separation
from their hosted transient result in significantly more variation in
the fraction of the flux that is seen by the fibre (see Fig. 3). This is a
critical effect to model. By correcting the host magnitudes for fibre
effects we see an average increase in the host magnitude of about 3.1
mag.

This leads to a reduction in host-galaxy flux contamination in
the blended spectra. The distribution of transient fibre flux fractions
shown in Fig. 4 demonstrates that we now have more than half of our
spectra that are comprised of > 50% transient flux over host. This
has significance for spectroscopic classification as will be discussed
in Section 5.1.2.

The full process used to create blended spectra as described across
Sections 2 and 3 is summarised in Fig. 5.

4 INDIVIDUAL CLASSIFIERS

4.1 Classifier Overviews

4.1.1 DASH

DASH is a deep convolutional neural network. DASH is trained on a
set of templates and learns spectral features. Input spectra are bro-
ken down into individual features, compared to the features in the
training set and then assigned a softmax pseudo-probability to each
of its classification bins, named so due to the softmax regression
model in the final layer of the deep learning model. The softmax
probabilities only are only relative probabilities for one classification
bin compared to the others (Muthukrishna et al., 2019b). The high-
est pseudo-probabilities are then presented in the DASH GUI, and a
combined softmax probability is produced by summing those of the
best output bins until one is reached that either disagrees on transient
class or is not in an adjacent phase bin. We discuss our method for
converting the softmax probability for individual classification bins

into probabilities for SN Ia, Ibc etc. in Section 4.3. The softmax
probability of a classification bin is not necessarily a judgement on
the quality of the classification. If every classification bin fits very
poorly, then the best fit is not necessarily a good fit (Muthukrishna
et al., 2019b).
DASH also calculates an 𝑟𝑙𝑎𝑝 cross–correlation value for each

output classification bin as an additional flag for classification quality.
The 𝑟𝑙𝑎𝑝 parameter was originally developed for another transient
classifier that we investigate, SNID. However, we do not make use of
it for DASH.
𝑟𝑙𝑎𝑝 is the product of the correlation scale height ratio, 𝑟 , and

𝑙𝑎𝑝, an overlap parameter. 𝑟 is defined as the ratio between the
highest normalised cross-correlation peak, ℎ, and the root-mean-
square (RMS) error of the anti-symmetric component of the cross-
correlation product 𝜎𝑎:

𝑟 =
ℎ

√
2𝜎𝑎

(4)

𝑙𝑎𝑝 is the overlap in 𝑙𝑛(𝜆) space between the input and template
spectra. A larger 𝑟𝑙𝑎𝑝 value indicates more similarities between the
input spectrum being classified and the template it is being compared
to. Hence, larger 𝑟𝑙𝑎𝑝 values indicate a better quality classification.
The machine learning aspect of DASH returns the best-fitting classi-
fication bin. Then 𝑟𝑙𝑎𝑝 values are calculated for each spectrum in
DASH’s training sample in that classification bin. The highest 𝑟𝑙𝑎𝑝
produced is returned to the user, with a warning if it less than five.
Details on DASH’s template set can be found in Muthukrishna et al.
(2019b). We do not make use of 𝑟𝑙𝑎𝑝 in determining DASH’s classi-
fication results.
DASH has four modes of operation defined by its ability to fit or

not fit transient host galaxies and its ability to use or not use known
redshift values. We only make use of the known and unknown redshift
modes. In the unknown redshift mode, the redshift is estimated by
maximising 𝑟𝑙𝑎𝑝 in redshift space.

Host fitting leads to an increase in the number of output classi-
fication bins as each output now has a host class attached to each
output. This increase in output bins leads diluted softmax percent-
ages on outputs. However, we note that including a host-fitting step in
the classification could remove degeneracy between transient class
and redshift. Unfortunately, the host fitting mode doesn’t function
without redshifts provided. For this reason we do not investigate it.

There are some concerns that must be kept in mind if DASH is to be
used as a mechanism to classify transients. For example, while DASH
is user-friendly, fast-working and produces pure samples, it does so
somewhat at the cost of user power. Compared to SNID or NGSF
(Howell et al., 2005) the user’s options are fairly limited. There is no
front-end mechanism to pass an error function for weighting the fit
or removing wavelength ranges with known contaminant features.

Additionally, and very importantly, the potential SN classes avail-
able for classification are somewhat limited. DASH can classify SNe
Ia and common CC SNe like Ib/c, II, IIn and IIP. However, no other
classes are included in its training sample and so other classes in the
population simulations such as SLSNe, TDEs, and CaRT cannot be
classified. They are either ‘other’ results or contaminants. Some of
these transient classes are fairly exotic and rare, but there are many
SLSNe in the simulation and for DASH they can only act as a source
of contaminant classifications.
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Figure 5. Flowchart showing our simulation pipeline. Adapted from Figure 1 of Frohmaier et al. (2025). Initially an LSST Operation Simulation (OpSim)
is converted into a SNANA SIMLIB file. This, alongside a set of transient SEDs and a library of simulated host properties are used as inputs for a SNANA
simulation that returns host-transient metadata and light–curves. These are input into the TiDES selection function as if operating in real–time. This produces a
TiDES-specific target catalogue, for which the 4MOST facility simulator (4FS) generates fibre allocations and exposure times. This gives us a list of observed
TiDES targets and their observational properties. Host galaxy templates are assigned to observed transients. The blended spectra have magnitudes and redshifts
assigned from the SNANA metadata. Fibre losses are simulated to generate the spectrum at the 4MOST fibre entrance. This spectrum and its assigned exposure
time from 4FS are input into the 4MOST ETC which adds realistic noise to the spectrum, producing our final blended science spectrum. Red boxes indicate
templates or SEDs, yellow boxes indicate catalogue-level results and gray indicates a process or algorithm.

4.1.2 NGSF

Next-Generation SuperFit (NGSF) is a template matching SN clas-
sifier. Written in python, it is based on the Superfit classification
package written in IDL (Howell et al., 2005). NGSF requires a set of
transient and host templates to compare to the spectrum being clas-
sified. We use the updated template set recommended in the source
3. The input spectrum is sequentially compared to each of these
templates while iterating through a variety of redshifts, reddening
corrections and different levels of host contamination for a variety

3 From the WISeREP repository

of morphologies. The redshift and reddening arrays that are checked
are defined by the user. Each spectrum being fit must be compared
to every template at every possible combination of reddening and
redshift and for every host galaxy. As a result, the classification time
required varies significantly with how fine the redshift sampling is
(Goldwasser et al., 2022).

NGSF returns its classification in the form of a 𝜒2 value for each
host, template, redshift, reddening combination. Input spectra are
binned to match the templates and then a 𝜒2 value is obtained using
the equation (reproduced from Howell et al. (2005)):
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𝜒2 =
∑︁ [𝑂 (𝜆) − 𝑎𝑇 (𝜆; 𝑧)10𝑐𝐴𝜆 − 𝑏𝐺 (𝜆; 𝑧)]2

𝜎(𝜆)2
(5)

where𝑂 is the input spectrum,𝑇 is the transient template spectrum,
𝐺 is the host galaxy template spectrum at a given redshift, 𝑧, 𝜎(𝜆)
is the error on the input spectrum and 𝐴𝜆 is the reddening law.
𝑎, 𝑏 and 𝑐 are constants that are varied during the classification
process to check the template fit at varying reddening levels and at
varying levels of host contamination. NGSF uses the reddening law of
Cardelli et al. (1989). The templates with the lowest 𝜒2

𝑟𝑒𝑑
is reported

as the best template. As NGSF also iterates through different levels of
host contamination for each template it returns the estimated galaxy
fraction of the best-fitting templates. Since our spectra have known
SN and host magnitudes in the fibre, this has potential as another
method to judge classification quality.

The throughput in the simulated 4MOST spectra drops below 70%
approximately below 4000 Å and above 8000 Å. We chose to limit
the NGSF template comparisons to this wavelength range. Since the
ETC generates error spectra, we use these for calculating 𝜒2. In the
case where the input spectrum has no attached error spectrum, NGSF
has several options for generating error spectra which can be used as
weights to calculate a reasonable 𝜒2 for the input, although these are
not the intended methods. It can determine a linear error spectrum
or a Savitzky-Golay (SG) (Savitzky & Golay, 1964) error spectrum.

The SG error spectrum is generated by smoothing the input spec-
trum with a SG filter and then subtracting the smoothed spectrum
from the original to obtain residuals that are used to construct an
error spectrum. The linear error spectrum is constructed using a lin-
ear fit to the binned input spectrum. In both cases this results in the
smoothing of narrow features into noise, making both inferior to the
use of an included error spectrum.
NGSF has several distinct advantages over DASH, mainly in the form

of user control. For example: the ability to set a redshift or reddening
constant range with specified values or the capacity to exclude noisy
wavelength ranges.

The final, and perhaps most considerable advantage, is NGSF pro-
vides easy access to the set of templates it uses. This makes it very
easy to update the templates manually to include more examples
of existing subclasses or new subclasses altogether. Updates to ei-
ther require no additional training time, which would be needed to
change the templates used by DASH. NGSF’s template set contains just
over half as many transients as DASH and one third of the individual
spectra, not including galaxy templates.

4.1.3 SNID

SNID is an algorithm for determining the properties of a SN spectrum
(Blondin & Tonry, 2007). It makes use of cross-correlation tech-
niques and the 𝑟𝑙𝑎𝑝 quality parameter to find best-fitting redshifts,
phases relative to maximum light and classes for input templates.
𝑟𝑙𝑎𝑝 is discussed in more detail in Section 4.1.1.

We use templates collected from various samples by Kim et al.
(2022), where a more complete description can be found. Classifica-
tions were performed over the same 4000 - 8000 Å range as NGSF.

One advantage SNID has is the large variety of built-in transient
classes and subclasses available for classification, as well as several
morphologies of galaxy, AGN and a simple notSN classification
amongst others that allow SNID to potentially identify non-transient
spectra. DASH and NGSF have no capacity to do this. NGSF can easily
have new templates added, but DASH would require computationally
expensive retraining for the same effect.

Further, addition of more subclasses is very simple. New templates
can be added to the SNID repository provided they are in the correct
format. Then the new classifications are added to a simple parameter
file. In this paper we have 30 distinct classifications (a few SLSNe and
non-SN classes were added to those that came built-in). However,
SNID still seems to perform very poorly when classifying non-SN Ia
spectra. This will be discussed further in Section 4.5.

One issue we encounter with SNID is that it occasionally performs
a classification wherein none of its templates yield an 𝑟𝑙𝑎𝑝 value
greater than 𝑟𝑙𝑎𝑝𝑚𝑖𝑛 and no output is produced. In this case we
assign a best-fitting classification of ‘None’ which is automatically
considered an ‘other’ classification.

4.2 Classification Schema and Statistical Definitions

With simulated transient spectra realistically blended with host
galaxy flux now in hand, we can begin to test spectroscopic tran-
sient classifiers. We test the Deep Automated Supernova and Host
classifier (DASH, Muthukrishna et al., 2019b), Next Generation Super-
Fit (NGSF, Howell et al., 2005) and SuperNova IDentification (SNID,
Blondin & Tonry, 2011). These classifiers are introduced in Sections
4.1.1, 4.1.2 and 4.1.3, respectively. Our objective is to compare the
performance of each classifier on our simulated spectra.

The standards by which we will judge the performance of the
classifiers are the purity and completeness of their classifications.
Purity and completeness are, for a target transient class, defined as:

Purity =
TP

TP + FP
(6)

Completeness =
TP

TP + FN
(7)

Here TP (true positive) are the number of spectra of the target class
identified as such. FP (false positive) is the number of non-target
class spectra misclassified as the target class. FN (false negative) is
the number of target class spectra misclassified out of the target class.
TN (true negative) classifications are spectra correctly identified as
not being in the target class.

Outside of binary classifications, for a given transient class, the
completeness is the fraction of that class that are successfully identi-
fied as such. The purity is the fraction of output classifications of that
class which are correct. Thus the rate of contamination in a transient
class is 1 - purity for that class.

Throughout Sections 4 and 5 we will, alongside completeness and
purity, report the F-score (𝐹𝛽) for each classifier (Van Rĳsbergen,
1977) as our figure–of–merit. 𝐹𝛽 values range between 0 and 1
indicating a poor and a strong classifier, respectively. (𝐹𝛽) is defined
as:

F𝛽 =
(1 + 𝛽2) × Purity × Completeness
(𝛽2 × Purity) + Completeness

(8)

𝛽 is a constant used to preferentially weight the 𝐹𝛽 towards com-
pleteness or purity. The two main transient objectives of TiDES are
the real–time classification of all transients from the TiDES-Live pro-
gram and the eventual production of a SNe Ia sample for the purpose
of fitting cosmology. The number of SNe we expect to obtain from
4MOST-TiDES is orders of magnitude larger than previous surveys
such as Australian Dark Energy Survey (OzDES, Lidman et al., 2020)
or the SuperNova Legacy Survey (SNLS, Astier et al., 2006). With
the large number of spectroscopically observed transients, we believe
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Table 2. The SN Ia and non-SN Ia transient subclasses for each classifier. The non-SN Ia transients subclasses included here match the various non-SN Ia input
classes listed in Table 1. Any output classifications not included in this Table would be considered a misclassification if returned by a classifier.

Classifier Binary Class 5 Classes Corresponding Outputs
DASH SNe Ia SNe Ia Ia-norm, Ia-91T, Ia-91bg

. non-SN Ia SNe Ibc Ib-norm, Ib-pec, Ic-norm, Ic-broad

. . SNe II Ib, IIP, II-pec, IIL, IIn

. . SLSNe -

. . non-SN -

. . Other Ia-pec, Ia-csm, Ia-02cx
NGSF SNe Ia SNe Ia Ia-norm, Ia 91bg-like, Ia 91T-like, Ia 99aa-like

. non-SN Ia SNe Ibc Ibn, Ib, Ic, Ic-BL, Ic-pec, IIb

. . SNe II II, II-flash, IIn, IIb-flash

. . SLSNe SLSN-II, SLSN-IIn, SLSN-I, SLSN-Ib, SLSN-IIb

. . non-SN TDE H, TDE He, TDE H+He, FBOT, ILRT

. . Other Ia 02es-like, Ia-02cx like, Ia-CSM-(ambigious), Ia-pec, Ia-CSM
Ia-rapid, Ca-Ia, super-chandra, SN - Imposter, computed

SNID SNe Ia SNe Ia Ia, Ia-norm, Ia-91T ,Ia-91bg, Ia-99aa
. non-SN Ia SNe Ibc Ib, Ib-pec, Ib-norm, Ic, Ic-norm, Ic-pec, Ic-broad, IIb
. . SNe II II, IIL, IIP, II-pec, IIn
. . SLSNe SLSN, SLSN-I, SLSN-Ic, SLSN-IIn
. . non-SN TDE, Ca-rich, ILRT
. . Other Ia-csm, Ia-pec, Ia-02cx, NotSN, AGN, None

LBV, M-star, QSO, C-star, LRN, Gal

that purity is a more important factor than classification complete-
ness. This is especially true for the SN Ia sample for cosmology, but
even for real–time classification we choose to focus on pure samples.

With this in mind, we generally report the 𝛽 = 0.5, 𝐹0.5, score as
our Figure of Merit (FoM). This assigns greater weight to the clas-
sification purity over the 𝐹1–score that weights both metrics equally.
To account for multiple classes, each transient class has an individual
𝐹0.5 score calculated. Then the average value is obtained by taking
the mean, weighted by each class’s prevalence in the sample.

Additionally, in Section 5.2, we will make use of the classification
accuracy of our classifiers. This is particularly useful for comparison
to photometric classifiers, which often use this parameter to quantify
success. Accuracy is the fraction of classifications across all classes
that are correct. In a binary schema it is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

We do not aim for any particular purity threshold, but will add a
95% purity line to relevant plots as an arbitrary point of comparison.
This purity is similar to that found in SN Ia samples used in cosmol-
ogy in the literature. For example, Howell et al. (2005) reported an
8% non-SN Ia contamination rate (92% purity) in their final sample
of SNe Ia, while Campbell et al. (2013) reported a 3.9% predicted
contamination rate (96.1% purity) that has an insignificant effect on
their cosmological measurements. In Guy et al. (2010) purity ranges
from 100% to 90% are found in various redshift bins up to 𝑧 = 1 and
again, they report that the effect on cosmology is minimal compared
to other sources of error.

Each classifier returns a list of output classification bins in de-
scending order of the quality metric specific to that classifier. This
is Softmax Probability (and 𝑟𝑙𝑎𝑝) for DASH, 𝜒2 for NGSF and 𝑟𝑙𝑎𝑝

for SNID as mentioned in Sections 4.1.1, 4.1.2 and 4.1.3, respec-
tively. It is not clear if these quality metrics can be used in place of a
probability or to what extent they can be compared. Additionally, as
each classifier makes use of different templates either for training or
matching, it is not necessarily reasonable to compare outputs from
each classifier directly.

To determine the best output class for each classifier, we adapt the
approach used in Kisley et al. (2023). A blended spectrum is input
separately into each classifier. Then, for each classifier, the quality
metric for each output classification is used to produce a probability
that the input spectrum belongs to each of the output classes in the
5-class schema described in Section 4.2.

For DASH this is a simple process as it already returns the Softmax
pseudo-probability for each classification bin. We simply sum the
softmax probabilities for the outputs corresponding to each of the
five classes and normalise the resulting probabilities by the summed
total of all Softmax probabilities.

For NGSF we convert the returned 𝜒2 values into percentages by
evaluating the cumulative density function at that particular 𝜒2. This
is performed using the scipy python library. The resulting relative
probabilities for each output are summed by class and normalised by
dividing by the total probabilities for all outputs. When redshifts are
provided the average number of reported outputs is 9.3. This jumps
to over 50 when redshifts are not provided and often numbers of
relatively spurious SLSN classifications can overweight that class
as an output. To account for this we only look at up to the 10 best
classifications when redshifts are not provided.

For SNID we are required to make a judgement call as the 𝑟𝑙𝑎𝑝

quality metric it returns is less readily converted to a probability
than those of NGSF and DASH. In this case we obtain the value of
𝑟 = 𝑟𝑙𝑎𝑝× 𝑙𝑎𝑝 and convert it to a probability using the error function
𝑒𝑟 𝑓 (𝑟). For each class we sum the probabilities for each output in
that class and then normalise these into probabilities by dividing by
the sum of all output probabilities. We only consider such output
classifications that meet the default SNID requirement of 𝑟𝑙𝑎𝑝𝑚𝑖𝑛 =

5. Because of this, all outputs return probabilities close to unity,
meaning that we weight each output nearly equally.

Following these procedures provides us, for each spectrum for each
classifier, the probability that the input is a SN Ia, Ibc, II, a SLSN,
a non-SN transient or a non-transient (‘other’) spectrum. This stan-
dardisation of method allows for easy comparison of classification
ability between the three classifiers.

We distinguish between SNe Ia that are ‘cosmologically useful’
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and SNe Ia that are not. Ia-norm are counted as cosmologically
useful, as are 91T–like SNe Ia. The latter are over–bright, hot SN
Ia and are usually included in cosmological samples (Ginolin et al.,
2025). SNe Ia 91bg-like standardisation for cosmology is debated
(see Graur, 2024, and references therein). Here we consider them
alongside Ia-norm inputs and output classifications. Any output that
is not a SN Ia subclass is considered a non-Ia output.

To account for output classes for which we have no input spectra,
we create the ‘other’ classification bin. This is a catch-all for auto-
matic misclassifications from peculiar SN Ia subclasses (Ia-csm, Iax,
etc.) or non-transient classes like ‘Gal’, ‘m-star’, ‘None’, etc. The list
of ‘other’ classification outputs for each classifier are also included in
Table 2. For the purposes of calculating completeness, classifications
that end up in the ‘other’ class are considered FNs.

Some examples of successful and unsuccessful classifications are
shown in Appendix B.

4.3 Binary Classification Results

In this section we will be considering a binary classification. SNe will
either be classified as a SN Ia or non-SN Ia. This is far fewer classes
than each classifier has the potential to output, and we recognise that
combining multiple output classes into a single, non-Ia class is not
the same as requiring that a classifier chooses between two classes.
We will also be tracking non-SN Ia transients that are misclassified
as Ia contaminants.

Throughout this section, classification will be performed with
known redshifts, simulating the case where a transient has a spectro-
scopic redshift determined from its host galaxy or its own emission
features. In practice, this means that we provide the classifier with
the true redshift from the simulation as a known redshift. Results for
classification with unknown redshifts, or just photometric priors are
shown in Section 4.5 and throughout Section 5.

We run the classifiers in non-interactive mode to mimic an au-
tomated classification plan for very large numbers of spectra. We
note that this is not the way these classifiers were intended to run.
Classifiers occasionally maximise their output metric with an incor-
rect classification, despite correct classifications being the second–
or third–best result. For example, this can occur where two output
class are similarly favoured (say SN Ib and Ic) or where a completely
spurious output classification is found due to redshift inaccuracy (a
high–𝑧 SLSN classed as a low–𝑧 SNe Ia). By using all reported clas-
sifications from a classifier and converting to a probability for each
of our output classes, we avoid this issue.

Our method of converting classifier outputs into probabilities re-
turns the probability that a transient belongs to the SN Ia, Ibc, II,
SL or non-SN transient classes defined in Table 2. In this section we
consider only the SN Ia probability and a binary SN Ia–non SN Ia
classification schema. If the SN Ia probability exceeds an arbitrary
threshold then that classifier will report it as a SN Ia, regardless of
the probabilities of the other four classes. In Section 4.5, where we
consider the full 5-class schema, we will swap to having the clas-
sifiers report each transient as whichever of the five classes has the
greatest probability.

In Figure 6 we investigate the SN Ia completeness, purity and
non-SN Ia completeness for each classifier as a function of a SN Ia
probability threshold. We can see that it is not immediately clear if
a probability threshold should be applied for any of the classifiers.
DASH’s SN Ia completeness, purity and non-SN Ia completeness
remain almost constant for most SN Ia probability thresholds. Only
at very low thresholds do we report purities under 95% and only at
very high thresholds do we see a large loss in SN Ia completeness.

One could reasonably assign 0.5 as the required SN Ia probability to
be considered a SN Ia.

SimilarlySNID could reasonably have a SN Ia probability threshold
set anywhere between 0.5 and 0.8. Below this we see significant losses
to SN Ia purity and above this we see the same sudden loss in SN Ia
completeness as displayed by DASH.
NGSF is the only classifier to show a different trend. Here the SN Ia

purity and non-SN Ia completeness quickly rise to unity. Meanwhile
the SN Ia completeness starts at unity for no probability threshold,
before steadily dropping as the threshold is made more stringent.
A case could be made to perform NGSF classification with a SN Ia
probability threshold of anywhere from 10-25%. Above this and the
only change is a loss in SN Ia completeness.

In Fig. 7 we present purity–completeness (also known as
precision–recall) curves for all three classifiers. A theoretically per-
fect classifier is shown as a point of comparison. A perfect classifier
will return perfect purity at all levels of completeness as determined
by varying the SN Ia probability threshold used to calculate each
parameter. The only exception is the case where the threshold is set
to zero. In this case the completeness is 100% by definition, while
the purity drops to match the fraction of the total input sample that
are actually SN Ia, which is approximately 60% in this case.

We can see from Fig. 7 that NGSF performs closest to the theo-
retically perfect classifier. NGSF is followed by DASH and SNID in
that order. The uncertainty for each classifier, indicated by the trans-
parent shaded regions around each curve, indicates an uncertainty
on the order of 0.5%. This suggests that the classification results
are stable across random samples of the full transient population. In
other words, based on Figure 7, we would expect that NGSF outper-
forms DASH and SNID across all of our subsamples under this binary
classification schema. However, Figure 7 gives very little informa-
tion about the non-Ia transients. For example, NGSF could classify
all SNe Ib as SLSNe and in this schema this would constitute perfect
classification.

We do not report the numerical results for binary classification as
the SN Ia classification is unchanged and allowing any non-Ia input to
be ‘successfully’ classified as any non-Ia output significantly inflates
the non-SN Ia classification completeness and purity.

4.4 Redshift Priors

Using the SN Ia probability as a threshold gives a good indicator
of the completeness and purities we can expect for each classifier
and, also, allows use to construct purity–completeness curves that
indicate that NGSF is the best performing classifier in our binary
schema. However, in this section we will proceed assuming that the
output classification with the highest probability for each classifier
is that classifier’s output. This is partially to remove our need to
assign arbitrary and distinct probability thresholds to each classifier
and because it is the only method that is applicable for non-binary
classification schemes. This avoids the situation where the SN Ia
probability exceeds the threshold while being less than the probability
that the transient belongs to a different class.

We test each classifier both with and without redshift priors. Us-
ing redshift priors means that for each input spectrum we provide
the classifiers with the true transient redshift as found in the input
population simulation. In the case of using unknown redshifts we
give no redshift information to DASH and SNID. NGSF is instructed to
check redshifts between 0 < 𝑧 < 1.5 with a sampling of Δ𝑧 = 0.05.

Perhaps one of the most likely scenarios during the operation of
TiDES-4MOST is the case where we will not have a spectroscopic
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Figure 6. SN Ia completeness (green), SN Ia purity (orange) and non-SN Ia completeness (blue) as a function of SN Ia probability threshold for each classifier.
Input spectra are considered a SN Ia output if the returned SN Ia probability is greater than a given threshold, regardless of whether a different class is more
probable. A rate of 95% is marked by the dashed black line as an arbitrary point of comparison.
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Figure 7. Purity–completeness (precision–recall) curves for each of DASH,
NGSF and SNID in the case of binary SN Ia – non-SN Ia classification. A
theoretical, perfect, binary classifier is presented by the black dashed line.
The closer a classifier’s curve matches the perfect classifier, the better that
classifier is performing. The grey dashed line indicates the fraction of input
spectra that are SN Ia, which is the minimum possible purity obtained when
the SN Ia probability threshold is set to zero.

redshift, but will have a photometric redshift estimate. We would like
to be able to investigate classifier performance in this scenario.

The minimum science requirement for LSST-DESC as reported in
The LSST Dark Energy Science Collaboration et al. (2018) is that the
RMS scatter between photometric redshifts and true redshifts should
not exceed 0.03(1 + 𝑧). Graham et al. (2018) and Mitra et al. (2023)
investigate LSST photometric redshifts instead assuming 0.02(1+ 𝑧)
as the RMS error between photometric and spectroscopic redshifts.
We will proceed using the 2% uncertainty.

For NGSF and SNID we are able to simulate the use of photometric
redshift priors. We randomly generate a photometric redshift (𝑧𝑝ℎ𝑜𝑡 )
from a Gaussian distribution centred on the true redshift and with
width equal to 2% of 1 + 𝑧. Then we have each classifier attempt an

‘unknown’ redshift classification over the truncated redshift range
defined by a 2% uncertainty in 1 + 𝑧𝑝ℎ𝑜𝑡 .

Unfortunately, DASH does not natively have the option to attempt
classification over a custom redshift range. The only way for DASH
to simulate photometric redshift priors is to have each classifier fit
the randomly generated 𝑧𝑝ℎ𝑜𝑡 as a known redshift, which would
prohibit a direct comparison to NGSF and SNID. We found that this
fitting of a ‘known’, but slightly incorrect, redshift resulted in poorer
performance than providing no redshift at all.

Because of this, we do not report on the classification potential of
photometric redshifts throughout the paper. However, for complete-
ness, we do report the results from NGSF and SNID using them in the
unknown redshift mode over a custom redshift range as described
previously and making use of the 5-class classification schema as
used in Section 4.5. These results are found in Table 3 alongside
the known and unknown redshift classification results. Additionally,
when discussing combined classifiers in Section 5, we report the SN
Ia completeness and purity for the combined NGSF–SNID classifier
using photo-𝑧 priors.

4.5 5-Class Classification

In this section, we make use of a classification system that includes
five transient classes: SNe Ia, SNe Ibc, SNe II, SLSNe and non-SN
transients, following the work of Kim et al. (2024). The breakdown
of classifier output subclasses that correspond to each of these inputs
is indicated in Table 2.

Table 3 shows the blended spectra being classified with the non-
SN Ia transient output bin divided into SNe Ibc, SNe II, SLSNe and
non-SN transients.

The 5-class schema allows us to see finer detail about each clas-
sifier’s ability to classify CC SNe and non-SN transients. This is
particularly relevant for judging a classifier’s ability to perform live
TiDES classification across a range of different transient classes.
𝐹0.5–scores reported throughout this section are the population size–
weighted average of the 𝐹0.5–scores of the five individual classes.
The results from Table 3 are presented as confusion matrices for the
case with known redshifts in Fig. 8(a).

As mentioned in Section 4.4 we take the output classification with
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Table 3. The completeness for classifying SNe Ia, SNe Ibc, SNe II, SLSNe, non-SN transients. Also presented are the SN Ia purity and the 𝐹0.5–score for each
classifier. The highest value in each column is highlighted in bold. Classification with photometric priors for NGSF and SNID are provided alongside known and
unknown redshift classification. 𝐹0.5–score is calculated based on the average scores of all 5 transient classes reported, weighted by their population size.

Classifier Ia completeness Ibc completeness II completeness SL completeness non-SN completeness Ia Purity 𝐹0.5–Score
DASH, known z 0.760 ± 0.004 0.68 ± 0.01 0.39 ± 0.01 0.0 ± 0.0 0.0 ± 0.0 0.981 ± 0.002 0.711 ± 0.003
DASH, unknown z 0.516 ± 0.004 0.69 ± 0.02 0.32 ± 0.01 0.0 ± 0.0 0.0 ± 0.0 0.968 ± 0.003 0.639 ± 0.003
DASH, photo z – – – – – –
NGSF, known z 0.798 ± 0.005 0.52 ± 0.02 0.753 ± 0.006 0.85 ± 0.01 0.05 ± 0.02 0.971 ± 0.002 0.814 ± 0.004
NGSF, unknown z 0.560 ± 0.006 0.39 ± 0.02 0.35 ± 0.01 0.25 ± 0.01 0.02 ± 0.01 0.917 ± 0.003 0.627 ± 0.005
NGSF, photo-z 0.551 ± 0.006 0.48 ± 0.01 0.563 ± 0.008 0.85 ± 0.01 0.03 ± 0.01 0.935 ± 0.002 0.699 ± 0.003
SNID, known z 0.661 ± 0.006 0.20 ± 0.01 0.174 ± 0.007 0.0 ± 0.0 0.0 ± 0.0 0.929 ± 0.004 0.649 ± 0.003
SNID, unknown z 0.661 ± 0.006 0.15 ± 0.01 0.167 ± 0.006 0.0 ± 0.0 0.0 ± 0.0 0.835 ± 0.004 0.585 ± 0.005
SNID, photo-z 0.644 ± 0.004 0.11 ± 0.01 0.083 ± 0.005 0.0 ± 0.0 0.0 ± 0.0 0.850 ± 0.005 0.552 ± 0.007

the highest probability for each input spectrum as the output class,
or best class. We impose no additional limit on the best class’s prob-
ability beyond it being the highest probability. Across all classifiers
we see small uncertainties (1-2%) on purity and completeness, indi-
cating that the classification rates are stable.

In every case the classifier’s training sets are dominated by SNe
Ia. This may lead to DASH over-weighting features learned from SNe
Ia templates, resulting in an increased likelihood that a SN Ia clas-
sification bins will be amongst DASH’s top classification. Similarly,
SNID and NGSF, when the input does not match well with any of
their templates, and lacking a redshift to help discount templates, are
most likely to find SN Ia templates as the best matching templates as
SNe Ia are the majority of their template banks. Across all classifiers,
there is potential for SNe Ia to be the best matches in the absence of
any good matches.

More detailed discussion on how input SN Ia spectra are being
classified by DASH, SNID and NGSF can be found in the appendix, in
Fig. A1. Similarly, more detailed discussion on the origin of contam-
inant classifications for each classifier can be found in Fig. A2.

4.5.1 DASH Results

We see that our DASH results, both with and without redshift priors,
have very impressive SN Ia purities well over 95%. However, the SN
Ia completeness, while fairly good with redshift priors, falls to just
above 50% without. This is the largest drop in performance upon
the removal of redshift information, alongside NGSF’s loss of SN Ia
completeness.

It becomes apparent that DASH is reasonably successful at clas-
sifying SNe Ibc when redshift priors are provided, but is far less
successful at classifying type II SNe. Unlike what we see in its SN Ia
completeness, when redshift priors are removed, there is not much
change in performance for Type II SNe. The Ibc classification com-
pleteness actually improves slightly, while the Type II classification
completeness decreases, but by far less than that of the SNe Ia. It
cannot be stated strongly enough that DASH natively lacks all capacity
to classify SLSNe and the various non-SN transients. Indeed, in Sec-
tion 5, all combinations of classifiers that include DASH are incapable
of successfully classifying any SLSNe or non-SN input spectra.

Additionally, there is significant classification of input spectra into
peculiar-Ia subclasses, often SN Ia-csm. This is particularly prevalent
in transient spectra with Sc-type host galaxies, which make up a large
fraction of our SN Ia hosts (Hakobyan et al., 2012), likely due to
emission lines present in the host template. The narrow emission lines

from the host are misinterpreted as circum-stellar medium (CSM)
interaction, leading to a Ia-csm classification.

Strangely, onlyDASH’s outputs exhibit this trend. Where 40% of Sc-
type hosts produce a Ia-csm classification in DASH, less than 1% do in
both NGSF and SNID. Fortunately, this has no effect on classification
purities in any class as SN Ia-csm is considered peculiar and outputs
of Ia-csm are not included in final samples. However, it does have a
significant effect on completeness.

4.5.2 NGSF Results

NGSF and DASH classify SNe Ia very similarly when redshift priors
are provided. The difference in completeness for SN Ia (79.8.3% v
76.0%) is slightly in favour of NGSF, the purity of the resulting SN
Ia samples are almost identical, within 2 percentage points of each
other. When removing redshift priors we see a loss of performance
across Ia classification for both classifiers. The SN Ia classifica-
tion completeness difference is similarly sized as in the case where
redshifts are known, with NGSF reporting 5% higher completeness.
However, while DASH reports only very slightly reduced (by less than
a single percentage point) SN Ia purity, NGSF’s corresponding rate
drops by around 5 percentage points when redshift information is not
provided.

In the 5-class scheme the finer non-SN Ia output classes leads to
mixed classification results for NGSF. The Ibc completeness is fair at
just over 50% with redshift priors. The non-SN transient complete-
ness is very poor, well under 10% with and without redshift priors
(see Appendix C), although NGSF is the only classifier that gets any
of these input spectra correct. NGSF produces particularly impressive
completeness in SN II and SLSN classifications when redshift priors
are provided, but also reports drops in completeness of around 50
percentage points when redshift priors are not provided. This is still
much better than SNID, which classifies no input SLSNe correctly,
and DASH which, as mentioned previously, cannot classify them.

With redshift information, NGSF is the strongest classifier in terms
of classification completeness. Only DASH exceeds it in SNe Ibc
completeness. Without redshifts, the balance between NGSF and DASH
is far closer due to NGSF’s far larger loss of performance.

Indeed, when considering only the𝐹0.5-scores,NGSF is now clearly
the best performing classifier when redshifts are known. This is by
a large margin, at least 0.1 larger than that of DASH or SNID. With
unknown redshifts all three classifiers have 𝐹0.5 scores between 0.58
and 0.64. Here DASH’s score is heavily influenced by its superior SNe
Ia purity, which is heavily weighted in our weighted 𝐹0.5–score.

As would be expected, if a slightly incorrect photometric redshift
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(see Section 4.4) with a small range of redshift values about it to
consider is provided, performance improves compared to receiving
no redshift at all. The 𝐹0.5–score for NGSFwith photo-𝑧s fall between
that produced by known (spectroscopic) and unknown redshifts.

4.5.3 SNID Results

SNID has a much lower SN Ia completeness than DASH and NGSF
when given redshift priors, and with unknown redshifts we see a
significant drop in performance in the SN Ia purity metric. However,
without redshift priors we do see it outperform DASH and NGSF in
regards the SN Ia completeness. In fact, its SN Ia completeness is
nearly invariant under a lack of redshift information. However, while
the SN Ia completeness is maintained, this must be balanced against
the significant drop in SN Ia purity, which leads SNID to a poorer
𝐹0.5–score than DASH or NGSF without redshift information.
SNID produces poor classification completenesses in all non-SN Ia

transient subclasses in the 5-class schema. With or without redshift
information it only achieves SN Ibc and II completenesses between
10% and 20%. Like DASH it classifies no SLSN or non-SN transient
correctly, but while DASH is incapable of outputting such classifica-
tions, SNID instead fails to do so. A large number of our blended
spectra are classified as ‘Gal’ (a galaxy template) by SNID, leading
to an ‘other’ output. It appears that galaxy contamination may be a
limiting factor. Indeed, NGSF is trained to classify host and transient
simultaneously which may explain its superior performance.

When photometric classification is possible, the results are the
opposite of that seen with NGSF. For all transient classes with classi-
fication completeness greater than zero without redshift information,
the completeness is lower with photometric priors. SNID’s SN Ia
purity does improve with photometric redshifts relative to a lack of
redshift information, but the final 𝐹0.5–score is still lower. SLSNe
are well classified by NGSF, as photo-𝑧s force the classification into
the superluminous regime, yet this doesn’t appear to occur in SNID.

It should be noted that SNID was intended to have significant
human oversight in classification, so relatively poor results under
complete automation are not unexpected. Additionally, while SNID’s
𝐹0.5–score is lower than the other two classifiers, its 𝐹1 or 𝐹2 scores
are not. As SNID maintains SN Ia completeness when redshifts are
unknown, and so 𝐹𝛽–scores that are weighted to more heavily favour
completeness (𝛽 > 1) lead to SNID matching NGSF’s performance
and exceeding DASH’s when redshifts are unknown.

5 USING MULTIPLE CLASSIFIERS AT ONCE

For both live classification of transients and when creating SN Ia
samples for cosmology, it is critical to limit contamination in the
output sample. For live classification, this is important for all SN
classes. For cosmology, it only matters that the SN Ia sample is
of high purity, even to the detriment of the SN Ia completeness.
This is particularly true given the very large number of transients
that 4MOST is expected to observe. Table 3 shows that individual
classifiers struggle to limit contamination in the output SN Ia sample
and are poor classifiers of even broad non-Ia SN classes. The obvious
question is: what is the result of combining the classifications from
different classifiers for each transient?

We first investigate the effect of classifying spectra with all com-
binations of two out of the three classifiers. In these cases, if both
classifiers are not in agreement on the output classification, then
the result defaults to an ‘other’ output regardless of the quality of

either classification. Any output classifications from individual clas-
sifiers that do not match any of our potential output classes (Ia-pec,
non-transients, etc.) are also discarded as ‘other’ outputs.

Fig. 8 shows that when using known redshifts, requiring two clas-
sifiers to agree has the effect of reducing the overall completeness
for all five original output classes and a large increase in the number
of ‘other’ outputs compared to the individual classifier results. How-
ever, we also see a large increase in the purity of SNe Ia, SNe II and,
to a lesser extent, SNe Ibc. This can be seen by high concentrations
along the confusion matrix diagonals.

The extreme case for a combined classifier is to use all of DASH,
NGSF and SNID simultaneously. The results for SNe Ia are shown in
Table 4. With the combination of all three classifiers, we now classify
around 60% of all SNe Ia when redshifts priors are provided, but get
very few successful classifications for any other input class. The
sample of classified SNe Ia produced by this combined classification
is completely pure.

Without redshifts we report reduced success. While SN Ia purities
remain very high, the non-SN Ia completenesses remain around 10%
or less and the SN Ia completeness is nearly halved to 33%. This
is very low compared to other combined and individual classifiers.
It remains to be determined where exactly the optimum balance lies
between pure SN Ia samples and large SN Ia samples for the purposes
of cosmology. Regardless, combined classification has the promising
ability to improve SNe Ia, II and, to a lesser extent, SNe Ibc purity.

Using all three classifiers, 87% of SNe II are misclassified as
‘other’ or SNe Ibc. However, in this case the purity of output SN II
sample is very high. In fact, by using a combined classifier consist-
ing only of DASH and NGSF we retrieve some of the classification
completeness, classifying just under a third of SNe II successfully
to produce a sample that is 96.4% pure. Similarly, one can obtain a
77% pure sample of SNe Ibc, although this can be improved to 92%
at the cost of only one-third of the completeness (44% to just 17%)
if DASH–SNID is used instead.

Due to DASH’s presence in this combined classifier, the classifi-
cation completenesses of SLSNe and non-SN transients are zero.
Indeed this can also be seen in Fig. 8, in both double classifier com-
binations including DASH, which cannot output SLSN classifications
without retraining with a different template set that contains SLSN
spectra.

The poor classification completeness shown in Fig. 8(a) and Table
4 suggests that the use of combined classifiers alone is not particularly
appropriate for live transient classification. However, it does indicate
the potential for very pure SN Ia and SN II samples, although the
latter sample has very low classification completeness. As a result,
combined classifiers could still form an important part of a live
classification plan.

A combined classifier could be used as a first classification step
to remove this high purity SN Ia sample prior to additional, later
classification steps. Depending on the classifier used, this can also
be done for the very pure (but low completeness) SN II sample
produced. When spectroscopic redshifts are known, DASH–NGSF is
an obvious choice due to its high 𝐹0.5–score. Without redshifts it
should be noted that a DASH–SNID classifier returns the best 𝐹0.5–
score. The marginally reduced purity is compensated by the higher
completeness. However, unlike the case of known redshifts where
DASH–NGSF is clearly the best performing classifier, when redshifts
are not known all three double classifiers have similar 𝐹0.5–scores.
Both with spectroscopic redshifts and unknown redshifts, when using
all three classifiers, the reduction in completeness is more significant
than the negligible improvement in purity compared to classifying
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Figure 8. Confusion matrices showing the results for the three individual classifiers and all three combinations of two of the three classifiers working
simultaneously. Confusion matrices are normalised by a) row, indicating completeness in each class and b) column, indicating the purity of each class. The
‘other’ output classification is reserved for output classifications with no corresponding input class and, in the case of the combined classifiers, an input spectrum
that causes the two classifiers to disagree on the output class. Classification was performed with redshift priors provided in all cases. High completeness and
purity samples would be indicated by high concentration along the matrix diagonal. Horizontal scatter indicates loss of completeness, vertical scatter indicates
loss of purity.

with DASH–NGSF only. We investigate the potential for a second stage
of classification in Section 5.1.

We conclude that that the best performing classifier is DASH–NGSF.
When redshifts are known, the SN Ia and SN II completenesses is
10 percentage points higher or more than using all three classifiers.
This amounts to the addition of hundreds of transients into the final
sample at the cost of doubling an already negligible non-SN Ia con-
tamination. In the case where redshifts are not known this logic holds

true, but with a combination of DASH and SNID. As shown in Table
3, NGSF is particularly affected by a lack of redshift information.
However, without redshift priors, all three double classifiers perform
similarly with regard to 𝐹0.5–scores.
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Table 4. The SN Ia completeness and purity for all possible combinations of two or three classifiers. Successful classification requires a SN Ia output from all
involved classifiers. For the combined NGSF–SNID classifier we also report the same results assuming the presence of photometric priors. The highest value in
each column is highlighted in bold.

Classifiers Redshift Ia completeness Ia Purity 𝐹0.5-Score
DASH & NGSF Known 𝑧 0.689±0.005 0.9995±0.0003 0.757 ± 0.004
NGSF & SNID . 0.621±0.006 0.9994±0.0003 0.687 ± 0.005
DASH & SNID . 0.623±0.006 0.9984±0.0004 0.674 ± 0.006

ALL . 0.590±0.006 1.0±0.0 0.669 ± 0.005
DASH & NGSF Unknown 𝑧 0.367± 0.004 0.997±0.001 0.566 ± 0.006
NGSF & SNID . 0.424±0.006 0.976±0.004 0.566 ± 0.006
DASH & SNID . 0.456±0.006 0.991±0.001 0.589 ± 0.006

ALL . 0.324±0.005 0.998±0.001 0.510 ± 0.006
NGSF & SNID Photo-𝑧 0.427 ± 0.007 0.990 ± 0.001 0.553 ± 0.004

5.1 Potential Photometric Cuts

Individually, we see mixed results from the classifiers. Depending
on the classifier and redshift information used, completeness can
change by up to 50% and SN Ia purities by as much as 15%. From
a cosmology perspective we obtain both high-purity and reasonably
high completeness in SN Ia classification from DASH and NGSF, but
only when redshift information is known, and it is yet unclear to
what extent prior redshift information will be available for TiDES
transients.

From a live classification perspective, there appears to be no sin-
gle classifier from which we can expect a reasonable classification
completeness across the SN Ibc, II, SL and non-SN classes. More
importantly, the result of these low completenesses is that misclas-
sified transients must be contributing to lowering the purity of some
other class.

To this point we have attempted classification on every transient
that has received any exposure time in the survey simulation. We
will now investigate two obvious sources of ‘other’ classification to
see if applying cuts to the sample prior to classification will improve
results. In Section 5.1.2 we investigate making cuts on the fraction of
fibre flux deriving from the transient (as opposed to its host galaxy)
and in Section 5.1.1 we investigate cuts based on the brightness of the
transient. Both of these quantities should be reasonably obtainable
from the same LSST photometry that TiDES will use to flag potential
transient targets.

In both cases, photometric cuts are performed based on the LSST
𝑟–band magnitude at the time of simulated 4MOST observation. The
transients in the simulation are binned in phase every five days and
so there may be a discrepancy between of a few days between the
simulated observation and the date of the reported magnitude. In
reality, transients added to the 4MOST observing queue, for which
we know the triggering magnitude from LSST, will only remain in
the 4MOST observing queue for four days (Frohmaier et al., 2025)
before needing refreshed with fresh photometry. So a discrepancy of
several days between last known magnitude and 4MOST observa-
tion is realistic. We expect transient alert packets from LSST to be
sufficient to perform the following photometric cuts.

5.1.1 Apparent Transient Magnitude

The most obvious sample cut that can be introduced from photomet-
ric information is a cut on transient magnitude. In this section we
investigate the potential for applying a cut to our transient sample
based on the 𝑟-band magnitude of the transient.

Fig. 9 presents the completeness and purity of SN Ia classification
for all three classifiers as a function of transient r-band magnitude. It
also proposes two potential values for a transient magnitude cut to our
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Figure 9. The SN Ia purity (orange) and completeness (green) as report by
DASH, NGSF and SNID as a function of the true transient magnitude for the
SNe Ia in all of our subsamples. The SNe Ia are in non-linear magnitude bins
of ∼30 transients, with each plotted point at its bin’s centre. The shaded areas
indicate the standard error on the mean of completeness and purity in each
bin. 95% purity is marked by a black dashed line. Two potential transient
magnitude cuts are marked by grey dashed lines at 21.8 and 22.5 mag. We
find that these limits roughly correspond to completeness dropping below
80% and purity falling below 95%, respectively.

sample. These values, 21.8 and 22.5 mag, are derived in Frohmaier
et al. (2025) as the magnitudes that correspond to transient spectral
SNRs of 5 and 3, respectively, where spectral SNR is calculated as the
average in 15 Å bins between 3,500 and 8,000 Å. Indeed Frohmaier
et al. (2025) reports the SNR = 5 threshold as the conservative
minimum to meet TiDES’s spectral success criteria, with the SNR
= 3 limit a more optimistic estimate based on the work of Balland
et al. (2009). Here, we find that these SNR cuts of 5 and 3 correspond
roughly to the SN Ia completeness falling below 80% and the purity
falling 95%, respectively.

As NGSF produced the best individual 𝐹0.5, in Table 5 we present
classification results from NGSF, but now with the effects of cutting
transients fainter than 21.8 and 22.5 mag. This does remove nearly
half of the transients from the final sample for the stricter 21.8 mag
cut. However, we generally see significant improvements across SN
Ia completeness, SN Ia purity and 𝐹0.5–score as stricter magnitude
cuts are employed.
DASH and SNID, while not shown, also follow this trend. NGSF

outperforms SNID across all metrics both with and without redshift
priors. However, without redshifts DASH does produce 𝐹0.5–score
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Table 5. Ia classification results and 5-class weighted 𝐹0.5–score for NGSF. We report the results with 𝑟-band magnitude cuts of 21.8 and 22.5 mag, as well as
with no cuts. Completeness and 𝐹0.5–score are calculated with the sample size after the cut is applied, but we note that mean Ia sample is reduced in size to
55% and 83% by magnitude cuts at 21.8 and 22.5 mag, respectively. The highest values in each column are highlighted in bold.

Redshift Prior 𝑟-band Cut Ia Completeness Ia Purity 𝐹0.5–Score
Known z 21.8 0.882 ± 0.005 0.987 ± 0.002 0.876 ± 0.003

. 22.5 0.837 ± 0.005 0.981 ± 0.002 0.842 ± 0.003

. None 0.798 ± 0.005 0.971 ± 0.002 0.814 ± 0.004
Unknown z 21.8 0.606 ± 0.006 0.936 ± 0.005 0.668 ± 0.006

. 22.5 0.585 ± 0.006 0.933 ± 0.005 0.655 ± 0.005

. None 0.560 ± 0.006 0.917 ± 0.005 0.627 ± 0.005

about 0.01 larger than NGSF, mainly the result of DASH maintaining
a high Sn Ia purity which is very heavily weighted in the 𝐹0.5–score.
However, NGSF, with spectroscopic redshifts, produces 𝐹0.5–scores
around 0.1 larger than DASH or SNID.

Cutting on 𝑟-band magnitude results in a significant reduction in
sample size, so this would not be appropriate by itself for automatic
classification. However, it could serve as a useful step in a pipeline
for broad classification.

In Section 5 we found that, while combined classifiers are very
good at creating high purity, low completeness SN Ia samples, they
are poor classifiers of non-SN Ia classes. This makes them ineffective
for TiDES live transient classifications. We also found in Sections 4.3
and 4.5, that the individual classifiers produce mediocre complete-
ness and purity in most transient classes when operating on every
transient observed in the 4MOST survey simulation. However, for
TiDES transients brighter than 𝑟=21.8 mag, NGSF appears to be a
good choice for automated live classification.

However, this comes with several caveats. First, there will be signif-
icant performance loss when redshift information cannot be provided.
Second, this only applies with relatively broad transient classes. For
example, NGSF often classifies Ib-norm inputs as SN Ic subclasses.
Just under 50% of Ibc classification are SNe Ib classified as SNe Ic
and vice versa. Finally, and perhaps most importantly, while the SNe
Ia purity is high, the purity of the other classification bins can be far
lower. For example the SN II purity is 77%, and the Ibc purity is just
70% (see Table 6).

From the point of view of the potential cosmology sample of SNe
Ia obtained in Section 5, cutting transients from our sample based
on their apparent magnitudes has less impact on the purity than the
completeness. All three classifiers see between 0-4% improvement.
Compared to the needs of live classification, it is less clear if this
small improvement in purity compensates for the significant fraction
of the sample discarded before classification. In fact, the DASH–NGSF
combined classification produces a higher SN Ia purity and classifies
a greater number of SNe Ia in total (since the completeness of the
21.8 mag cut NGSF classification is around 50% when cut transients
are accounted for).

5.1.2 Transient Flux Fraction

After transient magnitude, the second obvious source of classification
error in our sample comes from high levels of host galaxy flux in our
spectra. In this section we discuss the effectiveness of DASH, NGSF
and SNID as a function of transient flux fraction (contrast), where the
transient flux fraction is the fraction of the flux in a 4MOST fibre
that originates from the transient. We report the potential to improve
classification results by introducing a sample cut in transient flux
fraction-redshift space. We investigate using our 5-class classification
schema as in previous sections.

Generally, the trends in classification rates against the transient
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Figure 10. The SN Ia completeness (green) and purity (orange) as a function
of the fraction of the total flux in the spectrum that originates from the
transient. The SNe Ia in each of our subsamples are in 20 linear bins between
transient fibre flux fractions (contrast) of 0 and 1. Redshift is known in all
cases. Uncertainty in indicated by the shaded regions. Shaded regions are
defined by the standard error on the mean in each bin between our random
subsamples. All three classifiers produce similar trends in SN Ia completeness
and purity. In every case the classification completeness and purity improve
as the transient flux fraction increases.

flux fraction are as one would expect. As the transient flux fraction
increases (the spectrum’s host contamination is reduced) we see
improvements in the SN Ia completeness and purity. The shape of
these plots is very similar to those produced by transient magnitude
binning in Fig. 9. The purity tends to approach 95% at transient
flux fractions of 40 - 50% if it is not already above that in the most
contaminated bin. Fig. 10 indicates that all three classifiers have
similar slopes in their purity with different initial values. Although
not shown in the figure, the same trend was found without redshift
priors, albeit with slightly smaller values for DASH and much smaller
values for NGSF and SNID.

We look at our results in flux fraction-redshift space in Fig. 11. At
high redshift only transients that have bright absolute magnitudes,
especially transients in the SLSN class, will be observed. So tran-
sient flux fraction is likely to be high as we are biased to intrinsically
brighter transients while host brightness remains constant. However,
we also expect the spectral features of our transients to be shifted
outside of 4MOST’s wavelength range, making them harder to clas-
sify. Indeed the 𝑟𝑙𝑎𝑝 classification quality parameter employed by
DASH and SNID depends directly on the wavelength overlap between
the input spectrum and matching template. We hope to find regions
of this parameter space without contaminants or fewer misclassifi-
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Figure 11. The classification results in the binary schema with known redshifts for all three classifiers in transient flux fraction-redshift space. Green and orange
points indicate good SN Ia classifications and failed SN Ia classifications, respectively. The black crosses indicate SN Ia false positives (that is, a non-SN Ia
classified as a SN Ia.) The histograms show the corresponding counts with the same colour scheme. There are regions of the parameter space for each classifier
where false positive SN Ia classifications cluster, often at high redshifts (𝑧 > 0.6). We also see similar distributions for successful and unsuccessful SN Ia
classifications.

cations, where we could assign positive results a greater degree of
certainty.

A few obvious points of interest are the trend to greater transient
flux fractions with increasing redshift and the incidence of unsuc-
cessful classifications of SNe Ia (orange histograms) beginning to
drop off as the transient flux fraction surpasses around 40%. The
SN Ia count histograms are fairly uniform for the three classifiers in
the relative distributions of the successful and unsuccessful SN Ia
classifications, but we see variation in the width of the successful
classification histogram. In particular, there are obvious differences
in the number of misclassified SNe Ia between the classifiers.

Also concerning are the clusters of SLSNe at high redshift
(𝑧 > 0.6) that are classified as SNe Ia in all three classifiers, although
most prevalently in DASH and NGSF. These SLSNe are being fit over-
whelmingly as SNe Ia-91bg. This does lead to a potential mechanism
for increasing purity. As can be seen in Fig. 11, the successful SN
Ia classifications (and indeed instances of SNe Ia in general) drop
off quite sharply after 𝑧 = 0.60. Each classifier has contaminants
beyond this redshift that could be dismissed out of hand if accurate
spectroscopic redshifts for host galaxies are known, or if photometric
redshifts indicate it is likely that 𝑧 > 0.60.

For now, with the precise extent to which TiDES will have host
redshift information, we do not implement such a cut. However, we
make note of it and strongly encourage such a cut’s usage in the cases
where redshifts are known.

An obvious location for a cut on the transient flux fraction is the

point at which the good SN Ia classifications begin to dominate over
misclassifications. This occurs at a transient flux fraction of roughly
0.2 for DASH, 0.2 for NGSF and 0.3 for SNID, we generalise this to a
cut at a flux fraction of 0.3.

A second tempting cut is on very large transient flux fractions,
greater than 0.9. In DASH and NGSF there are clusters of very bright,
high flux fraction, SLSNe being falsely classified as SN Ia. However,
we choose not to pursue this cut, simply because removing SNe in
these bins would also remove the regions with the highest density of
correct classifications.

In Table 6 we present the results of our 5-class classification
schema for NGSF as we employ a variety of different photometric cuts
to the input sample. We see that using only a cut for transient flux
fractions greater than 0.3 returns similar classification results across
most transient classes to the 21.8 transient magnitude cut employed
in Section 5.1.1. The Ia classification performance is nearly identical,
with the other classes best performances spread fairly evenly. Using
both cuts results in even better performance, indeed it produces the
largest 𝐹0.5–score, followed by the magnitude cut and then the flux
fraction cut. However, these performance benefits must be weighed
against the large fractions of the sample removed from consideration
and thus not reflected in the 𝐹0.5–score.

We conclude cautiously that the best photometric cut for live clas-
sification is likely to be transient transient magnitude 𝑟>21.8, the
middle ground between improved performance and reduction in sam-
ple size. Although arguments can be made for the flux fraction cut or
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Table 6. The completeness and purity of each of our classes in the 5-class scheme under photometric cuts. The magnitude cut requires SNe 𝑟-band magnitude
< 21.8 and reduces the sample size to 61.7%. The flux fraction cut requires that transient flux fraction > 0.3 and reduces the sample size to 80.3%. Using both
reduces the sample size to 52.2%. Completeness and 𝐹1–score are the based on the transients in the classified sample, so objects removed by the photometric
cuts do not contribute. Only NGSF is shown, having been identified as the most promising candidate for live classification.

Metric No Cut Mag. Cut Flux Frac. Cut Both
Ia Comp. 0.798 ± 0.005 0.882 ± 0.005 0.888 ± 0.004 0.952 ± 0.003
Ia Purity 0.971 ± 0.002 0.987 ± 0.002 0.973 ± 0.002 0.988 ± 0.002

Ibc Comp. 0.52 ± 0.02 0.65 ± 0.02 0.64 ± 0.02 0.75 ± 0.02
Ibc Purity 0.61 ± 0.02 0.70 ± 0.02 0.72 ± 0.02 (0.84 ± 0.02)
II Comp. 0.753 ± 0.006 0.836 ± 0.009 0.78 ± 0.01 0.88 ± 0.01
II Purity 0.748 ± 0.009 0.767 ± 0.007 0.847 ± 0.007 0.860 ± 0.007

SL Comp. 0.85 ± 0.01 0.913 ± 0.007 0.845 ± 0.006 0.913 ± 0.007
SL Purity 0.51 ± 0.01 0.75 ± 0.01 0.62 ± 0.01 0.84 ± 0.02

Non-SN Comp. 0.05 ± 0.02 0.07 ± 0.02 0.04 ± 0.02 0.04 ± 0.02
Non-SN Purity 0.04 ± 0.01 0.05 ± 0.02 0.15 ± 0.08 0.13 ± 0.08
𝐹0.5–score 0.814 ± 0.004 0.876 ± 0.003 0.866 ± 0.003 0.920 ± 0.002

both. In all three cases the non-SN transient completeness and puri-
ties are very poor. This is the result of low numbers (or a complete
absence) of templates in the template banks/training samples and,
additionally, the fact that non-SN input spectra are just smooth-blue
continua (see Appendix C).

5.2 An Example Classification Plan

In this section we propose just one possible scheme that could be
employed by TiDES for live classification of transients. The pipeline
is illustrated in Fig. 12 and assumes redshift information is provided
for all classifications. The pipeline consists of two separate classifi-
cations of the sample of transients. First, the full sample is classified
by the combined DASH-NGSF classifier recommended in Section 5.
This produces very pure samples of SNe Ia and SNe II although, par-
ticularly for the latter, the completeness is low. The SNe Ia sample
produced by this first classification step has 99.9% purity and should
be appropriate for use in cosmology.

From the sample of spectra not classified by the combined clas-
sifier, we now take only those with a transient magnitude brighter
than 21.8 mag as discussed in Section 5.1.1. These bright objects are
then reclassified with just NGSF. This produces reasonably pure and
complete samples of SNe Ibc and SLSNe. It also classifies a few ad-
ditional SNe Ia and SNe II which can be combined with the existing
samples to increase their completeness at the cost of their purities.
The only class with poor results is the non-SN transients. Here we
only classify 4% correctly and over 95% of the resulting sample is
contamination from other classes. This is an issue with NGSF’s tem-
plate bank and the absence of such spectra from DASH’s training set.
When considered in full, the classification pipeline leaves just over a
quarter of transients unclassified.

This is a reasonably successful classification. It outperforms any
individual spectroscopic classifier that we have tested in this work
in regards to purity. This classification scheme obtains a very pure
SNe Ia sample for cosmology in addition to producing classification
completeness and purities in non-SN Ia classes that are suitable for
live transient classification. See Fig. 12 for the completeness and
purity of each class after each step of the classification pipeline.

We note that this classification pipeline has a higher 𝐹0.5–score
than NGSF. However, the choice of 𝛽 in Equation 8 allows for greater
importance to be placed on completeness rather than purity. The 𝐹–
scores for several values of 𝛽 across several classification schemes
are presented in Table 7. We can see that while NGSF individually
performs best in 𝐹1 and 𝐹2–score, when the score is weighted to

Table 7. The 𝐹0.5, 𝐹1 and 𝐹2 scores of several classifiers mentioned through-
out this paper. Each choice of 𝛽 indicates a different priority in the classifier.
Smaller 𝛽 values increasingly weight the𝐹–score towards good purity results,
while increasingly large values instead weight in favour of completeness. 𝛽
values of 0.5 and 2 and used by convention. The largest value(s) in each
column are in bold.

Classifier 𝐹0.5 𝐹1 𝐹2
Pipeline:
Mag. Cut 0.830 ± 0.002 0.757 ± 0.002 0.698 ± 0.003

Pipeline:
Flux Frac. Cut 0.831 ± 0.003 0.773 ± 0.003 0.726 ± 0.003

DASH–NGSF Only 0.757 ± 0.004 0.645 ± 0.005 0.566 ± 0.004
NGSF Only 0.814 ± 0.004 0.786 ± 0.004 0.765 ± 0.004

favour completeness (𝛽 > 1, the various versions of the classification
pipeline presented in this section have the highest score when 𝛽 = 0.5
and purity is weighted more heavily. In fact, at even lower values of
𝛽 ≤ 0.1, the combined DASH–NGSF classifier would have the best
score. As a result, it is hard to objectively state the superior classifier,
it will depend on the objectives of a particular study.

Fortunately, there is significant room for fine-tuning to specific
science cases. For example, replacing the cut on transient magnitude
to the cut on transient flux fraction as discussed in Section 5.1.2, the
pipeline will produce samples with higher completeness at the cost
of purity. Additionally the percentage of unclassified objects drops
to just 18%. In this case the SLSN purity drops to around 65%, but
this is compensated by an completeness of over 80%.

Additional cuts from photometric information can be added to
either stage of the pipeline to increase purity at the cost of complete-
ness. Different cuts than those discussed here can be used, which will
affect each class differently, allowing for parties interested in specific
SNe classes to be specific in their classification.

The final advantage of such a classification model is that it is ver-
satile and easily communicated to the community. By providing only
the class from the 5-class output probabilities from each classifier,
the 𝑟-band magnitude of the transient and host near time of observa-
tion and the redshift of the system, it would be possible for members
of the community to adjust the transient sample selected to suit their
specific science requirements by varying classifiers or probability
thresholds.
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Figure 12. An example of a classification pipeline that could be employed by TiDES for the purpose of live classification of transients. The output samples of
from each step in the classification pipeline are provided with their completeness and purities labeled. The samples of SNe Ia and SNe II provided after the
second classification step represent the combination of the transients from the first classification and those from the second. Percentages of the total sample size
are listed in brackets for each classes final sample. Classifications are performed with redshift information.

5.2.1 Comparison to Photometric Classification Results

In this subsection, we compare three recent photometric classification
papers surrounding a recent photometric classifier and its use with
the Dark Energy Survey (Möller et al., 2022).

Möller & de Boissière (2020) presents the photometric transient
classifier SUPERNNOVA classifying simulated light curves with spec-
troscopic redshift information and incomplete light curve informa-
tion. Additionally, Möller et al. (2022) and Möller et al. (2024)
present SUPERNNOVA classification results on real light curves with
and without host redshifts, respectively.

Specifically, Möller et al. (2024) presents the binary classification
of DES 5-year data release SNe without any redshift information
provided as a prior. When the light curves of transients being fit
without redshifts are trimmed to only include photometry up to peak
brightness, SUPERNNOVA produces a binary accuracy, a Ia complete-
ness and a Ia purity of 90.46 %, 92.49 % and 91.93 %, respectively.
By comparison, if operated as a binary classifier without redshift,
our classification plan from Section 5.2 produces a binary accuracy,
a Ia completeness and a Ia purity of 85.6±0.4 %, 44.5±0.6% and
94.4±0.3%. Additionally, we can consider only the high-confidence
SN Ia sample produced by the combined NGSF-DASH classifier to
improve the SN Ia purity to 99.5±0.1 % at the cost of reducing
completeness to just 36.4±0.6%.

As seen in Table 3, NGSF has significant performance loss when
redshift information is not provided. As such, the binary accuracy,
SN Ia completeness and purity can be improved to 91.4±0.4%,
55.6±0.6% and 95.3±0.3% by replacing the DASH–NGSF classifi-
cation step with an equivalent DASH–SNID classification. However,
this does come at the cost of worse performance in the 5-class mode
of operation.

Möller et al. (2022) also applies SUPERNNOVA to the photometric
sample produced by the DES 5-year data release. This produces a
cosmologically useful sample of 1,484 SNe Ia with spectroscopic
redshifts. The predicted completeness and purity of the sample are
98.51% and 97.73%, respectively. Again, we consider both the high-
confidence SN Ia sample and the larger, less confident, SN Ia sample
produced by our classification pipeline. Now with redshift priors,
the less confident sample has an completeness of 76.3±0.4% and
purity of 99.0±0.1%. We can sacrifice some completeness to improve
purity and use the high confidence SN Ia sample produced by the
combined DASH-NGSF classifier. This increases purity to >99.9% with
completeness just under 70%. Our classification plan produces a SNe
Ia sample with a percentage contamination that is more than a factor
of ten lower, at the cost of lower completeness and accuracy, than
SUPERNNOVA. This is true whether redshift information is available
or not.

While most photometric classifiers function purely in a binary (SN
Ia v non-SN Ia) schema and with complete light curves, in Möller &
de Boissière (2020), SUPERNNOVA reports results using ternary and
seven-way classification schema, similar to our 5-class schema.
SUPERNNOVA reports an accuracy of 77.8% for its ternary schema

(SNe Ia, Ibc and II) and 64.2% for the seven-way classification
schema (SNe Ia, IIP, IIn, IIL1, IIL2, Ib, and Ic). In each case these
are the accuracies expected from light curves consisting, on average,
of 2.4 distinct nights of multi-colour observations up to 2 days before
peak brightness. These percentages improve to 81.5% and 69.8%
for an average of 3.1 distinct nights of multi-colour observations up
to 2 days after peak brightness. All classifications also make use of
spectroscopic redshifts.

For comparison our example pipeline, in the 5-class schema (SNe
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Ia, Ibc, II, SL and non-SNe), produces a comparable classification
accuracy of 90.1±0.2%. Additionally, if we consider only SNe Ia,
Ibc and II to mimic the ternary schema, we obtain an accuracy of
93.2±0.3%. In both cases we don’t consider unclassified spectra
in our calculation of the accuracy. In the ternary scheme, non-SN
transient and SLSN outputs are considered unclassified.

From Frohmaier et al. (2025) the requirements to flag a transient for
spectroscopic follow-up are 3 𝑔𝑟𝑖𝑧 detections in two distinct nights,
with the added requirement that at least one of these detections be
brighter than 22.5 mag. We also assume spectroscopic redshifts are
available. Our use of spectroscopy produces a roughly 15% improve-
ment on the accuracies from photometry with similarly incomplete
light curves.

6 CONCLUSIONS

In this paper we set out to determine whether the classification of
transients discovered by 4MOST-TiDES can be automated using one
or more spectroscopic transient classifiers. We want to know which
classifier(s) are the best from a live-classification and cosmological
point of view. To do this, we simulated realistic blended spectra using
pre-existing simulations and the 4MOST ETC and classified them
using DASH, NGSF and SNID. We place a focus on classification purity
due to the large sample sizes produced by TiDES, and employ the
𝐹0.5–score as our purity-weighted FoM.

The classification performances of DASH, NGSF and SNID are
weaker than those reported in their original papers. This is the result
of different quality data and fainter SNe, alongside significant host
contamination. We find that, individually, NGSF produces the best
𝐹0.5–score for known redshift classifications, although its perfor-
mance loss is across all transient classes large if redshift information
cannot be provided. None of the individual classifiers were robust
enough to recommend their use for automated classification.

We find that the purities in SNe Ia can be greatly improved by
using several classifiers at once and requiring an agreement between
them on each classification. This is costly for transient completeness,
but with the benefit of having vastly reduced contamination in the
output sample. We get good results from a combination of DASH
and NGSF, with SNe Ia completeness of 69.4 ± 0.5% and purity
of 99.94 ± 0.03. Purity can be marginally improved by including
SNID in the combined classifier, but at the cost of a much reduced
completeness.

This allows for the automation of SNe Ia classification and the
production of good cosmology samples. However, it alone does not
lead to a solution for general automated classification for TiDES. The
combined DASH-NGSF classifier struggles to classify SNe Ibc and SNe
II with a high completeness, although what it does classify is quite
pure. It is incapable of classifying SLSNe and non-SN transients, as
DASH, by default, has not been trained to classify them.

We investigated a variety of photometric cuts that could be ap-
plied to our data to improve the resulting transient classifications for
individual classifiers. We found that only classifying transients with
𝑟-band magnitudes brighter than 21.8 could significantly improve
classification purity across all transient classes, but at the cost of
classification completeness. Similar results can be obtained by only
classifying objects for which SNe flux comprises more than 30% of
the flux within the observing 4MOST fibre.

We present an example classification plan in Section 5.2. We em-
phasize that such a classification pipeline is easily fine-tuned to spe-
cific science cases and conclude it is viable for live automated classifi-
cation and these modifications require only the classifier outputs and

some photometric information to be performed. The specific classi-
fication pipeline present in this paper outperforms the 𝐹0.5–scores
of all combinations of one, two or three classifiers. In Table 7 we
indicate how one might choose a different classifier than our pipeline
depending on whether the purity of the sample or the completeness
is considered most important for particular research goals.

We have demonstrated the capacity of an example classification
pipeline to produce a very high purity SN Ia sample at the cost of
completeness, and a sample with far higher completeness with lower
purity. A future step in this work will be to optimize the classification
scheme via end-to-end cosmological simulations, in order to show
which sample best constrains the cosmology and which combina-
tion of classifiers and photometric cuts minimize the uncertainty on
derived cosmological parameters.

Importantly, it is currently unclear to what extent 4MOST-TiDES
will be able to obtain redshift information from host galaxies to
be used in transient classification. The change in completeness and
purities is significant between known and unknown redshifts and
represents perhaps the largest uncertainty in the results of this paper.
Work is currently underway investigating how consistently a red-
shift can be derived from features in blended host–transient spectra.
Even in the case that live spectroscopic redshifts cannot be obtained
from hosts, we are optimistic that it will be possible to obtain some
host-redshifts from legacy surveys such as DESI (Dey et al., 2019)
and SDSS (York et al., 2000; Almeida et al., 2023). Host photo-𝑧s
also present a promising middle-ground between spectroscopic and
unknown redshifts.

Finally, it is likely to be possible to bolster the spectroscopically
confirmed transient samples with photometrically classified tran-
sients once full light-curve data is produced by LSST.
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DATA AVAILABILITY

The set of SNID templates used throughout can be made available on
request. Additionally, the full set of blended spectra used throughout
are to be made available through a public repository on Lancaster
University’s PURE research information system.
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APPENDIX A: SNE IA FITS AND CONTAMINANT
ORIGINS

Fig. A1 shows how the SN Ia input spectra are being fit by each
classifier, based on the subclass of the best-fitting template. In each
case the green bars indicate the good SN Ia classification bins. Non-
SN Ia bars of various colours indicate all of the misclassifications. In
all three classifiers we investigate we see the same effects of moving
from using redshift priors to not.

There is a shift in successfully classified SNe Ia from the Ia-
norm class into other SN Ia and SN Ia-pec subclasses. Additionally
the number of SNe Ia incorrectly classified as non-SNe Ia can be
seen in the non-green bars universally increasing in height. Boths of
these effects serve to diminish the SN Ia classification rate without
redshifts.

Of note are the tendency of DASH to classify transients as SN Ia-
csm. This seems to be the result of narrow galaxy emission lines from
Sc host templates masquerading as the narrow lines of an ejecta-csm
interaction. The inclusion of SN Ia-csm as an acceptable SN Ia class
for DASH does improve the SN Ia classification rate, but at the cost
of contamination rates exceeding 15%. A similar effect occurs with
SNID, except that it does seem to prefer to correctly identify them as
galaxies with a ‘Gal’ output.

Fig. A2 shows the origin of the contaminant results for each clas-
sifier. We can see immediately that DASH suffers as a result of having

no ability to classify SLSNe, as they make up the largest fraction of
contaminants when redshift priors are known.

When redshift information is removed, DASH loses classification
performance for all transient classes in both completeness and pu-
rity. The fractional decrease in the number of SN Ia and contaminant
classification is almost exactly the same, and this results in the pu-
rity remaining high (see Table 3). The input template classes that
produce contaminants is entirely different when redshift priors are
removed, now being almost entirely from SNe II. For SLSNe, forcing
the classification to high redshifts by using priors resulted in many
contaminant Ia classifications. When redshift priors are removed,
SLSNe are instead misclassified as other non-SN Ia transients or as
SNe Ia-pec. This is a good change from the point of view of SN Ia
sample purity.

While we see the contaminant numbers produced by DASH main-
tained when removing redshift knowledge, NGSF and SNID both pro-
duce double or more contaminant SN Ia classifications. NGSF and
DASH both classify predominantly SNe II as contaminant SNe Ia
when redshift priors are removed, a significant change from the ratio
of classes that produce contaminants with redshift priors. SNID’s dis-
tribution of contaminants remains almost identical between regimes,
although again SNe II are the largest contributor.

Type II SNe are the largest non-SN Ia component of the sample and
as expected always dominate the contaminant distribution. In fact,
in nearly all cases, the relative number of contaminants originating
from the different input non-SN Ia classes at least vaguely mimics
their relative abundance in the full sample, slightly shifted by each
classifier’s ability to classify different classes. Only Fig. A2b bucks
this trend, producing a large overabundance of SN II contaminant
classifications.

APPENDIX B: EXAMPLE CLASSIFICATION

In this appendix we provide some individual classifications as con-
text. We focus on several of the most common types of classification
and misclassification. All presented classifications are from NGSF as
it is the most prevalent in our suggested classification plan in Section
5.2.

Fig. B1 shows 4 attempted classifications with NGSF. Fig. B1(a)
shows a successful SN Ia classification. We find that noisy spectra,
where the transient is faint, or spectra with significant host contami-
nation are often hard to classify as would be expected. This is shown
in Fig. B1(b) We also see an overabundance of misclassifications
from spectra with the Sc host template. These are often the result of
the classifier misinterpreting the strong galaxy emission as narrow
features from the transient. This leads to a classifications of SN Ia-
csm and other narrow emission transient subclasses like Ibn, IIn etc.
This is shown in Fig. B1(c). False positive SN Ia classifications can
arise from many effects. Shown in Fig. B1(d) we have a low host con-
tamination SN Ib being misinterpreted as a Ia-norm with significant
host contamination. This suggests that there is degeneracy between
SN subclass and host contamination levels.

APPENDIX C: EXAMPLE SPECTRA

Figure C1 shows an example of each of the twelve types of inputs
transient spectra used in our blended spectra simulations. The spec-
tra belong to the transient classes of: Ia-norm, Ia 91bg-like (faint,
fast-declining), Iax (faint, progenitor-preserving white dwarf ther-
monuclear detonations), Ib, Ic, IIb, Ic-BL, II, IIn (all core-collapse
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Figure A1. Graphical representation of how SN Ia input spectra are being classified by each classifier with (left column) and without (right column) redshift
priors. The subclass of the best-fitting templates is assumed as the subclass of the output. Each histogram lists only the subclasses with at least one output
classification. SN Ia subclasses are green, Ibc are blue, II are red, SLSNe are purple, non-SNe are black and ‘other’ classes (Ia-pec, non-transients) are gray. The
shift from Ia-norm to other SNe Ia subclasses when redshift priors are removed can be seen.
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Figure A2. The distribution of true classifications for objects classified as Ia above the quality threshold to qualify as contaminant results. Input classes are those
from the 5-class classification schema. The number of contaminants for each classifier-redshift prior combination are listed on each subplot. The number of FPs
increases significantly without redshift priors for NGSF and SNID. SLSNe are often over-represented as FPs.
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Figure B1. Four individual classification results from NGSF. Top left: A good classification of a bright, low contamination SN Ia. Top right: A misclassification
of a highly contaminated SN Ia. Bottom left: A misclassification of a bright SN Ia due to narrow galaxy features from its Sc host. Bottom right: An example of a
SN Ia false positive where a low contamination SN Ib is misinterpreted as a SN Ia with high contamination. In each case the input is plotted in red with relevant
information in the legend. The best-fitting template spectrum is plotted in green and the best-fitting transient class is provided in the legend. The host galaxy
fraction of NGSF’s best fitting template is included in the legend with the best fit.

SNe), SLSNe (incredibly bright transients), TDEs (star disrupted by
black hold tidal forces) and CaRTs (SN Ia-related events, rich in
Calcium).

The spectra presented here are arbitrarily scaled and flux-shifted
for presentation. No simulated fibre effects or observational noise
from the 4MOST ETC has been added. As noted in Section 3, the
primary purpose of the spectra is for simulating realistic light-curve
information for LSST rather than accurately portraying the spectra
of a given transient class. Rarely observed transient classes, such as
TDEs and CaRTs are essential featureless blue continua, combined
with a limited presence in classifier training samples/template banks,
is likely partially responsible for their incredibly poor classification
results.
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Figure C1. Example spectra for each distinct input transient class. Spectra
such as these were used as the starting point to generate the simulated spectra
in Section 3.
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