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A B S T R A C T 

With the 4-metre Multi-Object Spectroscopic Telescope (4MOST) expected to provide an influx of transient spectra when 

it begins observations in early 2026 we consider the potential for real-time classification of these spectra. We investigate 
three extant spectroscopic transient classifiers: the Deep Automated Supernova and Host classifier ( DASH ), Next Generation 

SuperFit ( NGSF ), and SuperNova IDentification ( SNID ), with a focus on comparing the completeness and purity of the transient 
samples they produce. We manually simulate fibre losses critical for accurately determining host contamination and use the 
4MOST Exposure Time Calculator to produce realistic, 4MOST-like, host-galaxy contaminated spectra. We investigate the 
three classifiers individually and in all possible combinations. We find that a combination of DASH and NGSF can produce a 
supernova (SN) Ia sample with a purity of 99.9 per cent, while successfully classifying 70 per cent of SNe Ia. However, it 
struggles to classify non-SN Ia transients. We investigate photometric cuts to transient magnitude and the transient’s fraction of 
total fibre flux, finding that both can be used to improve non-SN Ia transient classification completeness by 8–44 per cent with 

SNe Ibc benefitting the most and superluminous (SL) SNe the least. Finally, we present an example classification plan for live 
classification and the predicted purities and completeness across five transient classes: Ia, Ibc, II, SL, and non-SN transients. We 
find that it is possible to classify 75 per cent of input spectra with > 70 per cent purity in all classes except non-SN transients. 
Precise values can be varied using different classifiers and photometric cuts to suit the needs of a given study. 

Key words: instrumentation: spectrographs – techniques: spectroscopic – software: machine learning – software: simulations –
transients: supernovae. 
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 I N T RO D U C T I O N  

ince the discovery of the accelerating expansion of the universe 
 quarter of a century ago (Riess et al. 1998 ; Perlmutter et al.
999 ), significant efforts have been made to investigate the enigmatic 
roperties of dark energy. Many probes into the nature of dark energy
xist, including weak lensing and cosmic microwave background 
easurements (Wittman et al. 2000 ; Planck Collaboration I 2014 ). 
 E-mail: a.milligan@lancaster.ac.uk 
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owever, one of the most successful at providing strong constraints 
n cosmological models in the late-time universe is type Ia supernova
SN) cosmology. Understood to be the detonation of white dwarfs 
round the Chandrasekhar mass limit, SNe Ia detonate at predictable 
uminosities and as such act as standardizable candles that let us
easure the distance to objects over large swathes of cosmic time. 
The original discovery of accelerating expansion was performed 

ith a sample of only 42 high-redshift SNe Ia (Riess et al. 1998 ;
erlmutter et al. 1999 ). Since then, we have seen a two order of
agnitude increase in the number of spectroscopically confirmed 
Ne Ia. For example, recently the Zwicky Transient Facility have 
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h permits unrestricted reuse, distribution, and reproduction in any medium,

http://orcid.org/0009-0006-6426-2431
http://orcid.org/0000-0001-9553-4723
http://orcid.org/0000-0001-9494-179X
http://orcid.org/0000-0002-1031-0796
http://orcid.org/0000-0002-9770-3508
http://orcid.org/0000-0001-8211-8608
http://orcid.org/0000-0002-2555-3192
http://orcid.org/0000-0002-8229-1731
http://orcid.org/0000-0002-8627-6096
http://orcid.org/0000-0001-9053-4820
http://orcid.org/0000-0002-5249-7018
http://orcid.org/0000-0002-3073-1512
http://orcid.org/0000-0001-5760-089X
mailto:a.milligan@lancaster.ac.uk
https://creativecommons.org/licenses/by/4.0/


248 A. Milligan et al.

M

p  

2  

c  

E  

u  

 

S  

f  

y  

n  

d  

d  

H
 

t  

t  

v  

c  

I  

2  

E  

2  

c  

(  

2  

a  

c  

r  

c  

a  

a  

w
 

d  

b  

g  

F  

s  

b  

(  

p  

o  

h  

1  

l  

(  

c  

B  

t  

a  

c
 

fi  

t  

d  

o  

a  

v  

(
 

f  

b  

i  

c  

D  

e
 

b  

b  

(  

4  

t  

w  

e  

o  

t  

s  

i  

t  

(
 

t  

c  

a  

r  

w  

t  

t  

o  

b  

T  

t  

t  

s  

o  

t  

u  

o
 

F  

2  

e  

c  

F  

t  

h  

t  

h
 

l  

i  

2  

a  

T  

c  

t  

o  

t
 

a  

s  

S  

p  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/543/1/247/8242736 by U
niversity of Southam

pton user on 14 N
ovem

ber 2025
roduced their second data release sample (ZTF DR2) (Rigault et al.
025 ) which contains 2677 SN Ia with sufficiently high-quality light
urves for use in cosmological fitting. Similarly, the recent Dark
nergy Survey (DES) cosmology results (DES Collaboration 2024 )
se a sample of 1635 SN Ia, derived from their full 5-yr data release.
The earliest samples of transients were separated into two classes:

Ne I and SNe II, based on the presence or absence of Hydrogen
eatures in their spectra (Popper 1937 ; Minkowski 1979 ). In the
ears since, these classes have been further subdivided and many
ew subclasses (Filippenko 1997 ) and exotic variants have been
iscovered and suggested, alongside non-SN transients like tidal
isruption events (TDEs) and fast blue optical transients (FBOTs,
ills 1975 ; Drout et al. 2014 ). 
Most optical transients are discovered in photometric surveys. As

he number of transients has increased, it has become unfeasible
o allocate time for spectroscopic follow-up on each transient indi-
idually. Recent photometric classifiers can perform high accuracy
lassification on transients beyond just classifying them as SN
a or non-SN Ia (Charnock & Moss 2017 ; Muthukrishna et al.
019a ; Boone 2019 , 2021 ; Möller & de Boissière 2020 ; Pimentel,
stévez & Förster 2023 ; Sheng et al. 2024 ; Cabrera-Vives et al.
024 ; Shah et al. 2025 ). Additionally, it has been shown that they are
apable of classifying transients based on incomplete light curves
Möller & de Boissière 2020 ; Qu & Sako 2022 ; Gagliano et al.
023 ; Gomez et al. 2023 ; de Soto et al. 2024 ). Recent photometric
nalyses have indicated that SN Ia samples obtained with photometric
lassifications produce contamination levels that either still allow for
obust estimations of cosmological parameters or are even negligible
ompared to other sources of uncertainty, such as SN Ia astrophysics
nd how we model the correlation between SN Ia intrinsic properties
nd host-galaxy properties and how these intrinsic properties evolve
ith redshift (Jones et al. 2018 , 2019 ; Vincenzi et al. 2024 ). 
While photometric classification is possible, it has several distinct

isadvantages. The definitions of SN subclasses are based primarily
y spectral features, so spectroscopic classification removes ambi-
uity, although there are also photometrically defined classifications.
or example, SNe IIn are defined spectroscopically by narrow emis-
ion lines (Schlegel 1990 ), while SNe IIP are defined photometrically
y a long ‘plateau’ phase of constant brightness in their light curve
Filippenko 1997 ). Further, when attempting to constrain cosmology,
hotometrically classified SN Ia samples often require the addition
f spectroscopic information, such as spectroscopically determined
ost-galaxy redshifts. This is the case in Vincenzi et al. ( 2024 ), where
635 photometrically classified SNe Ia are used for cosmology, the
argest single-survey SN Ia sample. Additionally, Vincenzi et al.
 2024 ) use a small sample of spectroscopically classified SNe Ia to
onstrain the cosmological fitting (see also DES Collaboration 2024 ).
eyond this, to match the high purities of spectroscopically classified

ransient samples, photometric classification is usually performed in
 binary scheme (SN Ia versus non-SN Ia) or with very broad transient
lasses (Fraga et al. 2024 ). 

We will, therefore, test the performance of spectroscopic classi-
ers. Visual classification is made difficult by the overlap of various

ransient subclasses in parameter space and ambiguity in subclass
efinitions. This, alongside the increasing number of transients being
bserved spectroscopically, means that it is increasingly required to
utomate the process of spectroscopic classification. We seek to in-
estigate the potential to do this with regards to the upcoming 4MOST
4-metre Multi-Object Spectroscopic Telescope) instrument. 

The 4MOST (de Jong et al. 2019 ) is a high-multiplex, fibre-
ed spectrographic survey facility in the final stages of assembly
efore commissioning. It is expected that it will begin taking data
NRAS 543, 247–272 (2025)
n early 2026. There are many varied surveys within the 4MOST
onsortium, but the survey concerned with transients is the Time
omain Extragalactic Survey (TiDES, Swann et al. 2019 ; Frohmaier

t al. 2025 ). 
With the upcoming Legacy Survey of Space and Time (LSST)

eing performed from the Vera C. Rubin Observatory, there will
e unprecedented numbers of transients discovered photometrically
Ivezić et al. 2019 ). It is expected that any given pointing of
MOST will contain a number of live photometric transients and
he host galaxies of faded transients, which can then be followed-up
ith TiDES’s allotted fibres. Over a period of 5 yr, TiDES

xpects to observe 30 000 live transients and perform follow-up
n some 200 000 host galaxies (these numbers are dependent on
he survey schedules of LSST and 4MOST, both of which are
till under development). This approach has already seen success
n the Australian Dark Energy Survey (OzDES) performed using
he AAOmega spectrograph on the Anglo-Australian Telescope
Saunders et al. 2004 ; Lidman et al. 2020 ). 

Two of TiDES science goals are to provide live classification of
ransients accessible to the general scientific community and the
lassification of a large, pure, cosmological SN Ia sample. As we
pproach the start of the 4MOST survey in early 2026, uncertainty
emains as to how the TiDES transient spectra will be classified and
hich existing spectroscopic classifiers, if any, are best suited to

hese two TiDES science goals. Our hope is to provide clarity via
he simulation of transient spectra that are as close to what will be
bserved as possible, including the fact that transient flux observed
y a 4MOST fibre will be blended with the flux of its host galaxy.
hese realistic, blended, simulated 4MOST spectra will allow us

o compare the output of various spectroscopic classifiers to known
rue classifications (see also Kim et al. 2024 , which makes use of real
pectra in its analysis). Furthermore, we can assess the dependence
f classification performance on parameters such as the brightness of
he SN and the fraction of host light contaminating the spectrum, and
ltimately use this information to outline a plan for the classification
f large numbers of TiDES spectra. 
There are two main types of automated, spectroscopic classifiers.

irst, there are template matching programs (for example Duan et al.
009 ; Blondin & Tonry 2011 ; Goldwasser et al. 2022 ). These, in
ssence, compare an input spectrum to a bank of transients of known
lassification. However, there is significant variation in methodology.
or example, Howell et al. ( 2005 ) bin the input spectrum to match the

emplates and then calculate a χ2 value, accounting for contaminant
ost flux. Blondin & Tonry ( 2011 ) instead cross-correlate input and
emplate in redshift, and quantifies the best-fitting template by the
eight of the cross-correlation peak. 
More recent years have seen the rise of the second type: machine-

earning methods (for example Harutyunyan et al. 2008 ; Muthukr-
shna, Parkinson & Tucker 2019b ; Vogl et al. 2020 ; Fremling et al.
021 ; Sharma et al. 2025 ). In this case, a classifier is provided
 training set of templates of known classification and redshift.
he classifier ‘learns’ the features present in various transient
lassifications and assigns them weights. The presence or not of
hese learned features is then used to determine a pseudo-probability
f an input spectrum belonging to a given classification, which is
hen used to rank output classifications. 

In this paper, we investigate two template-matching classifiers
nd one machine-learning classifier. More information on the
pectroscopic transient classifiers we investigate can be found in
ections 4.1.1 –4.1.3 . These classifiers were chosen as they are
ublicly available, widely used and easily obtainable for current
nd upcoming surveys. Machine-learning algorithms are far faster to
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erform classifications once the lengthy training process is complete, 
ut all classifiers as they are used in this work are expected to scale
o TiDES. 

Hence, this paper is organized as follows. First, in Section 2 ,
e describe the simulations from which we draw our transient and 
ost properties. Also in this section we will discuss some transient 
emplates used in simulating our blended spectra. In Section 3 , we
ill discuss the construction of blended host–transient spectra and the 

ubsequent simulation of 4MOST observations using an Exposure 
ime Calculator (ETC). Then, in Section 4 , we investigate the capa-
ilities of three individual spectroscopic transient classifiers. We go 
ver their function and how they were tested. Their individual perfor-
ances are presented in Sections 4.3 and 4.5 . We investigate the com-

ination of classifiers in Section 5 . We first show the results from a
imple combination of classifiers and then potential photometric cuts 
or improving classification in Section 5.1 . Finally, in Section 5.2 ,
e present a potential classification pipeline for live classification 

nd SN Ia cosmology. Our conclusions are presented in Section 6 . 

 DATA  

.1 Survey simulations 

ur objective is to test spectroscopic transient classifiers such that 
e understand under what conditions they will succeed or fail in 

orrectly determining the transient classes of 4MOST-like spectra. 
e must simulate a set of spectra that are a good approximation to

he real ones observed by the instrument. The specific procedure for
he creation of individual spectra is covered more in Section 3 , but we
rst discuss how we obtain a set of realistic properties for transients
nd their hosts. These properties can then be used to generate each
pectrum, which in turn can be used to test each of the pre-existing
ransient classifiers. The results of these classifications can then be 
ompared to the input spectrum’s ‘true’ properties as a means to 
uantify the success of a given classifier. 
We make use of two pre-existing, sequential simulations to 

roduce a realistic sample of blended host–transient spectra. The 
rst is a simulation of a population of transients and hosts performed

n the SUpernova ANAlysis package ( SNANA , Kessler et al. 2009 ).
NANA uses known intrinsic properties of various transient classes in 
ombination with the survey strategy of the LSST survey to generate 
n LSST-specific transient population (Frohmaier et al. 2025 ). This 
imulation produces a population of transient and host objects. From 

hem, we obtain the intrinsic physical properties of host–transient 
ystems. We obtain system redshift, host–transient separation, host 
-band magnitude, and transient template information. Throughout 
his paper, magnitudes are calculated using the LSST r-band filter 
nd are reported in the AB magnitude system (Oke & Gunn 1983 ).
he process of creating simulated spectra is discussed in more detail 

n Section 3 . 
The second simulation is a simulation of the 4MOST survey 

peration of the full 5 yr of observations of the southern sky.
bservation targets are taken from the simulated survey input 

atalogs and their exposure times are computed using the 4MOST 

TC. The simulation is carried out with the 4MOST facility simulator
4FS) and makes use of the simulation code SELFIE . More detail about
he SELFIE algorithm can be found in Tempel et al. ( 2020a , b ). 

This simulation provides further observational properties for each 
ransient. Most importantly, from it we receive a list of all of the
ransients that were observed. Generally, any transient that is both 
ocated within 4MOST’s field of view during a visit, and is estimated
o require less exposure time than is available during the full visit
o meet the TiDES spectral success criterion (average SNR > 3 in 
5 Å bins in the wavelength range of 4500–8000 Å, where SNR is 
he signal-to-noise ratio) will be observed. However, some are not 
bserved due to the limited number of fibres and the demands of
ther subsurveys. 
As the simulations have become more sophisticated, different 

ersions of the input catalogue have been created. Each has had many
ifferent simulations of survey operations performed on it. We find 
hat while the individual objects observed may change dramatically 
etween simulations, the bulk properties of the observed transients 
re consistent. The specific simulation used has little effect on our
nal results. 
The 4MOST observing schedule is currently expected to visit 

ach sky position a small number of times during the 5-yr survey. The
urvey footprint of 4MOST essentially covers the whole extragalactic 
ky in the Southern hemisphere. Each visit to a given position will
onsist of several exposures (most often 2 or 3) of approximately 20
in. The majority of transients ( > 93 per cent) are observed a single

ime over the course of the survey (Frohmaier et al. 2025 ). 
The r-band magnitude, redshift, and SN flux fraction distributions 

rom the SNANA population simulation of the transients and their 
osts from the SNANA population simulation are shown in Fig. 1 .
he total number of objects in the sample is on the order of 105 .
e see that the sample is heavily biased to z < 0 . 6 and in fact the
ore distant objects are all superluminous SNe (SLSNe). We also see

hat, before any correction for fibre sizes, when observing extended 
bjects (see Section 3.3 ), there is a tendency for host galaxies to have
righter magnitudes than transients. 

.2 Simulated spectra 

n addition to realistic physical and observational properties for use in
reating simulated 4MOST-like spectra, we require a set of spectral 
emplates of both transients and hosts. The transient templates are 
rawn from those used in the SNANA population simulations. The 
ncluded SN classes are Ia, Ib, Ic, II, IIn, IIb, and SLSNe. Most SNe
a input templates are of the Ia-norm subclass, generated using the
pectral Adaptive Light-curve Template (SALT2) model (Guy et al. 
007 ), although a small fraction are SNe Iax and SNe Ia 91bg-like
Kessler et al. 2019 ). Additionally, there are TDEs, and calcium-
ich transient (CaRT) objects. These templates are spectral energy 
istributions (SEDs) intended to simulate realistic photometry. As a 
esult, some of the spectra, especially SLSNe and non-SN transient, 
re highly smoothed and lacking in spectroscopic features. The full 
ist of template sources is provided in Table 1 . Examples of SEDs
sed in simulated blended spectra are shown in Appendix C . 
The galaxy templates from Kinney et al. ( 1996 ) are assigned as

osts. The subclasses of galaxy available are elliptical, S0, Sa, Sb,
nd Sc and a set of starburst templates with a variety of E ( B − V )
alues (see Kinney et al. 1996 , Mannucci et al. 2001 , for additional
nformation). We scale our galaxy templates using the r-band host 
agnitudes from the simulation. 
For each transient we assign a host-galaxy morphology to match 

he probability distribution listed in Hakobyan et al. ( 2012 ) in their
able 5. For Sd and Irregular galaxies for which we have no templates,
e assign a random choice between Sb and Sc host spectra (the two
ost common host morphologies). In cases where Hakobyan et al. 

 2012 ) list the host as Morphology A/Morphology B, we choose
andomly between A and B. We always assign SLSNe inputs an Sc-
ype host spectrum since research suggests that SLSNe are found in
aint, blue, star-forming galaxies, often with extreme emission lines 
Leloudas et al. 2015 ; Neill et al. 2011 ). TDEs and CaRTs occupy
MNRAS 543, 247–272 (2025)
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M

(a) (b)

Figure 1. (a) Host galaxy redshift and corresponding transient magnitudes for observed objects in the SELFIE survey simulation. The values are obtained directly 
from the SNANA population simulation and can be considered the truth values for a given object. The y -axis on the attached histograms displays the total number 
of objects per bin with a logarithmic scale. (b) As in (a), but with the fraction of fibre flux from the transient on the y -axis. 

Table 1. The relative percentages of each transient class present in our full 
sample of blended spectra alongside the sources for the spectral templates. 
Templates can be found in the SNANA public data as part of PLASTICC 

(Kessler et al. 2019 ) and ELASTICC (Narayan & ELAsTiCC Team 2023 ). 

Percentage Class Source 

60.1 SNe Ia Guy et al. ( 2007 ), Hounsell et al. ( 2018 ) 
0.9 91bg-like Kessler et al. ( 2019 ) 
1.1 SNe Iax Kessler et al. ( 2019 ) 
1.9 SNe Ib Vincenzi et al. ( 2019 ) 
1.4 SNe Ic Vincenzi et al. ( 2019 ) 
13.5 SNe II Vincenzi et al. ( 2019 ) 
6.5 SNe IIn Vincenzi et al. ( 2019 ) 
4.0 SNe IIb Vincenzi et al. ( 2019 ) 
9.4 SLSNe Kessler et al. ( 2019 ) 
0.7 TDE Kessler et al. ( 2019 ) 
0.4 CaRT Kessler et al. ( 2019 ) 
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uch a small percentage of our transients, that we assign them a
ost type at random. However, we note that there is evidence that
DEs (Wang et al. 2024 ) and CaRTs (Dong et al. 2022 ) do show

rends in their host galaxy morphologies, but including these in our
imulations would have negligible impact in our results. 

In order to estimate uncertainties in our results, we split the
ull sample of transients into samples of 1000 transients. This
ubsampling is performed randomly, but without resampling (i.e.
o transient appears in more than one subsample). For a given
arameter, results are obtained by reporting the mean value across all
ubsamples. The uncertainty on our results are reported in the form
f the standard error of the mean. 

 C R E AT I N G  BLENDED  SPECTRA  

.1 The 4MOST Exposure Time Calculator 

he 4MOST ETC PYTHON code package 1 allows one to simulate
n observation by the 4MOST instrument. For every simulated
bservation, we must assign a brightness within a specific filter or
NRAS 543, 247–272 (2025)

 We use V2.3.1 of the PYTHON -based ETC: see QMOSTETC link to 
ocumentation . 

G  

d  

f  

t

ver a wavelength range. A variety of pre-existing instrument filters
re provided. 

The code produces a ‘raw’ or Level 0 (L0) output and a Level
 (L1) output. Both are in the form of extracted 1D spectra (flux
nd wavelength for each pixel along the spectrum). The raw output
eatures 4MOST’s three spectrograph arms not yet combined and
he object flux reported in Analog-to-Digital Units (ADUs). The
1 output is what we use. L1 spectra are generated by being
assed through a simulation of the Quality Control 1 (QC1) pipeline
nd resemble the data products that will be produced by the real
nstrument. In L1 output, the ADUs of the raw output are converted
o a flux observed at the telescope entrance using corrections for the
avelength dependence of the instrument’s sensitivity. 
The simulation process is shown in Fig. 2 . There are still telluric

bsorption bands present in the L1 output which are added as part of
he ETC model. There are five main features with wavelength ranges
f 6250–6350, 6860–6940, 7150–7350, 7550–7700, and 8100–8400
. These extra features could be misinterpreted by classifiers as being
enerated by the transient and lead to misclassifications. We account
or this by creating a transmission spectrum for each observation.

e do this on the assumption that real data will have these features
orrected for using 4MOST observations of featureless calibration
tars. 

We consider the host and transient separately before adding them
inearly to form the final spectrum that is input into the ETC for a
imulated observation. The magnitudes of both objects are known
rom the population simulation, but to account for seeing conditions
nd a finite fibre size on extended galaxies we must adjust these
agnitudes. The processes for doing so for SNe and galaxies are

hown in detail in Sections 3.2 and 3.3 , respectively. 

.2 Transient fibre flux 

e assume the transient can be approximated as a point source and
hat the 4MOST fibre will be placed centrally on the transient. We
imulate the fraction of transient flux through a 4MOST fibre using a
rid of pixels with a central pixel containing the full transient flux. A
aussian convolution is then applied to the pixel grid. The standard
eviation, σ , of the Gaussian convolution is determined from the
ull-width half-maximum (FWHM) of the seeing conditions using
he expression FWHM = 2

√ 

2 ln 2 σ . 

https://escience.aip.de/readthedocs/OpSys/etc/master/index.html
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Figure 2. The stages of simulating an observation with the 4MOST ETC code. In this example, a 21st magnitude SN Ia and a 21st magnitude Sc-type host spectra 

are added linearly. Top panel: template SN, host, and combined spectra. All spectra are deredshifted. The flux is measured in units of erg cm 

−2 s −1 Å
−1 × 10−16 . 

This is the input to the ETC. Middle panel: L0 output of the ETC, showing the extracted spectra from the three spectrograph arms. Flux is presented in units of 
e− × 103 . Lower panel: L1 output of the ETC in which the spectra from the three arms have been joined. The result is flux-calibrated and includes a realization 
of the noise. This (unbinned) L1 spectrum is what we perform classification on. 
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The SELFIE simulations do not record seeing conditions for each 
bservation. For our purposes, the seeing conditions are taken to 
lways have a value of 0.8 arcsec, this is similar to the average
eeing conditions found at the Paranal Observatory where 4MOST 

ill be located. 2 

Once the Gaussian convolution has been applied, a fibre with 
 4MOST fibre diameter of 1.45 arcsec is imposed onto the pixel
rid, centred on the SN location. The flux is then summed from
he pixels with centres contained within the fibre radius. We find 
hat using a finer pixel grid produces a more accurate value for
bre flux by reducing uncertainty around the fibre edge. This is
articularly important in Section 3.3 where the scale of hosts being 
odelled varies and a balance must be found between accuracy and 

omputation time. 
We are assuming a constant value for the seeing, coupled with a

onstant fibre size, so we see a constant fraction of transient flux
own each fibre. The effect is that each transient appears 0.27 mag
ainter through the 4MOST fibre. This number does not require a 
imulation to be determined, as it determined from the integration of
 2D Gaussian out to some radius, but simulations are required for
imulating extended hosts of varying size as discussed in Section 3.3 .

At seeing < 0.8 arcsec, the fraction of flux down the fibre from both
ransient and host is increased. Tests show that the increase is larger
 From Paranal Observatory website, https://www.eso.org/gen-fac/pubs/ 
stclim/paranal/seeing/? , accessed 2024 January 23. 

o  

4  

c  

n  
n average for transients (as they are point sources), so we would
xpect improved classification in this case. The reverse is true for
eeing > 0.8 arcsec and so we would expect worsened classification.
imulations indicated that increasing the seeing value to a uniform 

.2 arcsec had a small, negative effect on transient classification, 
ut ultimately a realistic seeing distribution centred on 0.8 arcsec is
xpected to have minimal effect on the overall rates of successful
ransient classification. 

.3 Host fibre flux 

he modelling of fibre flux from the transient’s host galaxy, an
xtended object, is more complex. This method involves the dimen- 
ionless distance parameter ( dDLR ), first used in Sako et al. ( 2018 ), in
ervice of assigning hosts to transients and based on similar methods
eveloped in Sullivan et al. ( 2006 ). The dDLR is equal to the ratio
f the directional light radius (DLR) of a galaxy and its observed
eparation from the transient. The DLR is the half-light radius of
he galaxy in the direction of the transient. Minimizing the dDLR for
alaxies in a crowded field indicates likely hosts for the transient. 

The population simulation we draw SNANA -produced physical 
roperties from reports both the dDLR and the host–transient separa- 
ion. Since we are only concerned with the host’s flux in the direction
f the transient for the purposes of measuring the flux through a
MOST fibre, we can consider all galaxies in the simulation to have
ircular half-light radii equal in radius to their DLRs. It should be
oted that the position of the transient is entirely based on the light
MNRAS 543, 247–272 (2025)

https://www.eso.org/gen-fac/pubs/astclim/paranal/seeing/?


252 A. Milligan et al.

M

p  

i
 

i  

g  

e  

p  

r  

c  

a
 

p  

t  

r  

a  

t  

c  

c  

a  

f  

0  

w  

n
 

o

I

w  

t  

i
 

t  

t  

i

F

 

e  

s  

t  

i  

a

F

 

t  

a  

s  

fi  

c  

c  

u  

t  

4
 

u  

S  

t  

e

Figure 3. The variation in the host flux through 4MOST fibres. Each panel 
presents the Sérsic profile of an example host galaxy in our sample simulated 
on a pixel grid. Superimposed as a circle is the 4MOST fibre of diameter 
1.45 arcsec, highlighted by the horizontal line, centred on the transient 
location. The pixels that contribute to the flux seen by the fibre have their flux 
set to zero in these images, so that the lost flux can be seen. Redshifts, and 
host magnitude before and after accounting for fibre losses are provided. 
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rofile of the galaxy, so that transients are more likely to be placed
n brighter regions of their hosts (Vincenzi et al. 2021 ). 

We note that significant work has been performed investigat-
ng links between transients and their locations within their host
alaxies (see Hakobyan et al. 2016 ; Aramyan et al. 2016 ; Galbany
t al. 2018 , for example). However, since the population simulation
referentially places transients in brighter regions of their host, the
esulting spectra may only be biased towards slightly higher levels of
ontamination from host flux. The effect on our results is negative,
nd is expected to be negligible. 

We model the intensity of the galaxy to be a Sérsic ( 1963 )
rofile and use a Sérsic index of 0.5 based on values reported in
he simulations. While this may not be completely true to life, it
epresents the case with the most host flux in a blended spectrum
nd the hardest case to classify. Using a larger Sérsic index causes
he average host flux in the fibre to decrease leading to less host
ontamination. The Sérsic profile is dependent on the value of the
onstant bn which in turn is defined by the Sérsic index. A number of
pproximations for the value exist such as bn = 1 . 9992 n − 0 . 3271
or 0 . 5 < = n < = 10 from Capaccioli ( 1989 ) and bn = 2 n − 1 

3 +
 . 009876 n from the appendices of Prugniel & Simien ( 1997 ). We
ill use the latter, although both produce very similar values for
 = 0.5. 
The intensity profile, in terms of the Sérsic index, n , and bn , is

ften expressed as: 

 ( R) = Ie exp 

{ 

−bn 

[ (
R 

Re 

) 1 
n 

− 1

] } 

(1) 

here Re is the effective or half-light radius that encircles half of
he total emission of the profile. The effective intensity, Ie , is the
ntensity at the effective radius. 

To obtain the ratio of total galaxy flux to the flux transmitted
hrough the fibre, we need to know the value of the total flux and
he effective intensity. The total flux is obtained by integrating the
ntensity profile in equation ( 1) which leads to the equation: 

T = 2 . 8941 πIe R
2 
e (2) 

This gives us the total flux in terms of the effective intensity and the
ffective radius which is just the DLR (for a more detailed derivation,
ee Graham & Driver 2005 , and references therein). We can find
he actual value of the total flux, and thus a value for the effective
ntensity, from the zero-point magnitude of the AB magnitude system
nd the total magnitude of the galaxy, mG 

, using the equation: 

T = f0 × 10( mG / −2 . 5) (3) 

Here, f0 is the zero point flux of the AB magnitude system. The
otal host flux, FT , that appears in our equations, only functions as
 scaling factor. We know the true value of mG 

from the population
imulation. By taking the ratio of total flux to flux in the 4MOST
bre, the value of the total flux cancels out and so it need not be
alculated specifically. Once an arbitrary total flux is chosen we can
alculate the effective intensity, Ie , using equation ( 2 ). We can then
se equations ( 1 ) and ( 2 ) to calculate the ratio between the total flux,
he flux down the fibre and thus the host’s magnitude as observed by
MOST down its fibre. 
We simulate a host’s intensity profile by creating a pixel grid and

se the Sérsic profile to determine the average intensity at each pixel.
ince we only care about the host’s light profile in the direction of

he transient, we model each host as a circle with a half-light radius
qual to the DLR. 
NRAS 543, 247–272 (2025)
We then apply a Gaussian convolution to the pixel grid to account
or atmospheric seeing. We use a 1200 × 1200 pixel grid with each
ixel set to 1 per cent of the host–transient separation, a scale where
he calculated flux fraction is invariant with small variations in pixel
ize. The method is identical to that described in Section 3.2 . We
entre the fibre on the transient location and calculate the fraction of
ux in the fibre. Examples of this process are shown in Fig. 3 . We
ee much more significant flux loss than for the SNe. 

The 4MOST ETC cannot simultaneously account for both ex-
ended and point sources in a simulated observation. This is why
e account for fibre losses and seeing effects ourselves, prior to
assing the blended spectrum to the ETC. We provide the blended
pectrum as being a flat illumination source with brightness measured
n magnitudes per square arcsecond to prevent the ETC from re-
pplying any observational effects like seeing. 

As stated in Section 3.2 , the effect on the transient magnitude is
airly minimal. Most of the flux from the original point source still
alls within the fibre that has a diameter of roughly 2 σ relative to the
aussian convolution. For hosts, their distance, size, and separation

rom their hosted transient result in significantly more variation in
he fraction of the flux that is seen by the fibre (see Fig. 3 ). This is a
ritical effect to model. By correcting the host magnitudes for fibre
ffects, we see an average increase in the host magnitude of about
.1 mag. 
This leads to a reduction in host-galaxy flux contamination in

he blended spectra. The distribution of transient fibre flux fractions
hown in Fig. 4 demonstrates that we now have more than half of
ur spectra that are comprised of > 50 per cent transient flux over
ost. This has significance for spectroscopic classification as will be
iscussed in Section 5.1.2 . 
The full process used to create blended spectra as described across

ections 2 and 3 is summarized in Fig. 5 . 
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Figure 4. The distribution of transient flux fractions in the fibre. The mean 
value for all transients is highlighted with the dashed black line. As this 
accounts for fibre losses in the host galaxy, we see that over half of all of the 
spectra have more transient flux than host flux through the 4MOST fibre. 
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3 From the WISeREP repository, Yaron and Gal-Yam ( 2012 ). 
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 I N D I V I D UA L  CLASSIFIERS  

.1 Classifier overviews 

.1.1 DASH 

ASH (Deep Automated Supernova and Host classifier) is a deep con- 
olutional neural network. DASH is trained on a set of templates and
earns spectral features. Input spectra are broken down into individual 
eatures, compared to the features in the training set and then assigned 
 softmax pseudo-probability to each of its classification bins, named 
o due to the softmax regression model in the final layer of the deep
earning model. The softmax probabilities only are only relative prob- 
bilities for one classification bin compared to the others (Muthukr- 
shna et al. 2019b ). The highest pseudo-probabilities are then pre- 
ented in the DASH Generated User Interface (GUI), and a combined 
oftmax probability is produced by summing those of the best output 
ins until one is reached that either disagrees on transient class or is
ot in an adjacent phase bin. We discuss our method for converting
he softmax probability for individual classification bins into proba- 
ilities for SN Ia, Ibc, etc., in Section 4.3 . The softmax probability
f a classification bin is not necessarily a judgement on the quality
f the classification. If every classification bin fits very poorly, then 
he best fit is not necessarily a good fit (Muthukrishna et al. 2019b ). 

DASH also calculates an rlap cross-correlation value for each 
utput classification bin as an additional flag for classification quality. 
he rlap parameter was originally developed for another transient 
lassifier that we investigate, SNID (SuperNova IDentification). How- 
ver, we do not make use of it for DASH . 
rlap is the product of the correlation scale height ratio, r , and

ap, an overlap parameter. r is defined as the ratio between the
ighest normalized cross-correlation peak, h , and the root-mean- 
quare (RMS) error of the antisymmetric component of the cross- 
orrelation product σa : 

 = h √ 

2 σa 

(4) 

lap is the overlap in ln ( λ) space between the input and template
pectra. A larger rlap value indicates more similarities between 
he input spectrum being classified and the template it is being 
ompared to. Hence, larger rlap values indicate a better quality 
lassification. The machine-learning aspect of DASH returns the 
est-fitting classification bin. Then, rlap values are calculated for 
ach spectrum in DASH ’s training sample in that classification bin.
he highest rlap produced is returned to the user, with a warning

f it less than five. Details on DASH ’s template set can be found
n Muthukrishna et al. ( 2019b ). We do not make use of rlap in
etermining DASH ’s classification results. 

DASH has four modes of operation defined by its ability to fit or
ot fit transient host galaxies and its ability to use or not use known
edshift values. We only make use of the known and unknown redshift
odes. In the unknown redshift mode, the redshift is estimated by
aximizing rlap in redshift space. 
Host fitting leads to an increase in the number of output classi-

cation bins as each output now has a host class attached to each
utput. This increase in output bins leads diluted softmax percentages 
n outputs. However, we note that including a host-fitting step in
he classification could remove degeneracy between transient class 
nd redshift. Unfortunately, the host-fitting mode does not function 
ithout redshifts provided. For this reason, we do not investigate it. 
There are some concerns that must be kept in mind if DASH is to be

sed as a mechanism to classify transients. For example, while DASH

s user-friendly, fast-working, and produces pure samples, it does so 
omewhat at the cost of user power. Compared to SNID or NGSF (Next
eneration SuperFit, Howell et al. 2005 ) the user’s options are fairly

imited. There is no front-end mechanism to pass an error function
or weighting the fit or removing wavelength ranges with known 
ontaminant features. 

Additionally, and very importantly, the potential SN classes 
vailable for classification are somewhat limited. DASH can classify 
Ne Ia and common CC SNe like Ib/c, II, IIn, and IIP. However, no
ther classes are included in its training sample and so other classes in
he population simulations such as SLSNe, TDEs, and CaRT cannot 
e classified. They are either ‘other’ results or contaminants. Some 
f these transient classes are fairly exotic and rare, but there are many
LSNe in the simulation, and for DASH , they can only act as a source
f contaminant classifications. 

.1.2 NGSF 

GSF is a template matching SN classifier. Written in PYTHON , it is
ased on the Superfit classification package written in IDL (Howell 
t al. 2005 ). NGSF requires a set of transient and host templates
o compare to the spectrum being classified. We use the updated
emplate set recommended in the source. 3 The input spectrum is 
equentially compared to each of these templates while iterating 
hrough a variety of redshifts, reddening corrections, and different 
evels of host contamination for a variety of morphologies. The 
edshift and reddening arrays that are checked are defined by the
ser. Each spectrum being fit must be compared to every template
t every possible combination of reddening and redshift and for 
very host galaxy. As a result, the classification time required varies
ignificantly with how fine the redshift sampling is (Goldwasser et al.
022 ). 

NGSF returns its classification in the form of a χ2 value for each
ost, template, redshift, reddening combination. Input spectra are 
inned to match the templates and then a χ2 value is obtained using
he equation (reproduced from Howell et al. 2005 ): 

2 =
∑ [ O( λ) − aT ( λ; z)10cAλ − bG ( λ; z)]2 

σ ( λ)2 
(5) 
MNRAS 543, 247–272 (2025)

https://www.wiserep.org/content/wiserep-getting-started
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Figure 5. Flowchart showing our simulation pipeline. Adapted from fig. 1 of Frohmaier et al. ( 2025 ). Initially an LSST Operation Simulation (OpSim) 
is converted into a SNANA SIMLIB file. This, alongside a set of transient SEDs and a library of simulated host properties are used as inputs for a SNANA 

simulation that returns host–transient metadata and light curves. These are input into the TiDES selection function as if operating in real time. This produces 
a TiDES-specific target catalogue, for which the 4FS generates fibre allocations and exposure times. This gives us a list of observed TiDES targets and their 
observational properties. Host galaxy templates are assigned to observed transients. The blended spectra have magnitudes and redshifts assigned from the SNANA 

metadata. Fibre losses are simulated to generate the spectrum at the 4MOST fibre entrance. This spectrum and its assigned exposure time from 4FS are input 
into the 4MOST ETC which adds realistic noise to the spectrum, producing our final blended science spectrum. Red boxes indicate templates or SEDs, yellow 

boxes indicate catalogue-level results, and grey indicates a process or algorithm. 
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here O is the input spectrum, T is the transient template spectrum,
 is the host galaxy template spectrum at a given redshift, z, σ ( λ)

s the error on the input spectrum, and Aλ is the reddening law.
, b, and c are constants that are varied during the classification
rocess to check the template fit at varying reddening levels and at
arying levels of host contamination. NGSF uses the reddening law
f Cardelli, Clayton & Mathis ( 1989 ). The templates with the lowest
2 
red is reported as the best template. As NGSF also iterates through
ifferent levels of host contamination for each template it returns
he estimated galaxy fraction of the best-fitting templates. Since our
pectra have known SN and host magnitudes in the fibre, this has
otential as another method to judge classification quality. 
NRAS 543, 247–272 (2025)
The throughput in the simulated 4MOST spectra drops below
0 per cent approximately below 4000 Å and above 8000 Å. We
hose to limit the NGSF template comparisons to this wavelength
ange. Since the ETC generates error spectra, we use these for
alculating χ2 . In the case where the input spectrum has no attached
rror spectrum, NGSF has several options for generating error spectra
hich can be used as weights to calculate a reasonable χ2 for the

nput, although these are not the intended methods. It can determine
 linear error spectrum or a Savitzky–Golay (SG, Savitzky & Golay
964 ) error spectrum. 
The SG error spectrum is generated by smoothing the input

pectrum with an SG filter and then subtracting the smoothed
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pectrum from the original to obtain residuals that are used to 
onstruct an error spectrum. The linear error spectrum is constructed 
sing a linear fit to the binned input spectrum. In both cases, this
esults in the smoothing of narrow features into noise, making both 
nferior to the use of an included error spectrum. 

NGSF has several distinct advantages over DASH , mainly in the form
f user control. For example, the ability to set a redshift or reddening
onstant range with specified values or the capacity to exclude noisy
avelength ranges. 
The final, and perhaps most considerable advantage, is NGSF 

rovides easy access to the set of templates it uses. This makes it very
asy to update the templates manually to include more examples of
xisting subclasses or new subclasses altogether. Updates to either 
equire no additional training time, which would be needed to change 
he templates used by DASH . NGSF ’s template set contains just over
alf as many transients as DASH and one-third of the individual 
pectra, not including galaxy templates. 

.1.3 SNID 

NID is an algorithm for determining the properties of an SN spectrum 

Blondin & Tonry 2007 ). It makes use of cross-correlation techniques 
nd the rlap quality parameter to find best-fitting redshifts, phases 
elative to maximum light, and classes for input templates. rlap is
iscussed in more detail in Section 4.1.1 . 
We use templates collected from various samples by Kim et al. 

 2022 ), where a more complete description can be found. Classifica-
ions were performed over the same 4000–8000 Å range as NGSF . 

One advantage SNID has is the large variety of built-in transient 
lasses and subclasses available for classification, as well as several 
orphologies of galaxy, active galactic nucleus (AGN), and a simple 

otSN classification amongst others that allow SNID to potentially 
dentify non-transient spectra. DASH and NGSF have no capacity to 
o this. NGSF can easily have new templates added, but DASH would
equire computationally expensive retraining for the same effect. 

Further, addition of more subclasses is very simple. New templates 
an be added to the SNID repository provided they are in the correct
ormat. Then, the new classifications are added to a simple parameter 
le. In this paper, we have 30 distinct classifications (a few SLSNe
nd non-SN classes were added to those that came built-in). However, 
NID still seems to perform very poorly when classifying non-SN Ia 
pectra. This will be discussed further in Section 4.5 . 

One issue we encounter with SNID is that it occasionally performs
 classification wherein none of its templates yield an rlap value 
reater than rlapmin and no output is produced. In this case, we 
ssign a best-fitting classification of ‘None’ which is automatically 
onsidered an ‘other’ classification. 

.2 Classification schema and statistical definitions 

ith simulated transient spectra realistically blended with host 
alaxy flux now in hand, we can begin to test spectroscopic transient
lassifiers. We test the DASH (Muthukrishna et al. 2019b ), NGSF (How- 
ll et al. 2005 ), and SNID (Blondin & Tonry 2011 ). These classifiers
re introduced in Sections 4.1.1 , 4.1.2 , and 4.1.3 , respectively. Our
bjective is to compare the performance of each classifier on our 
imulated spectra. 

The standards by which we will judge the performance of the 
lassifiers are the purity and completeness of their classifications. 
urity and completeness are, for a target transient class, defined as: 

urity = TP 

TP + FP 

(6) 
ompleteness = TP 

TP + FN 

(7) 

Here, TP (true positive) are the number of spectra of the target
lass identified as such. FP (false positive) is the number of non-target
lass spectra misclassified as the target class. FN (false negative) is
he number of target class spectra misclassified out of the target class.
N (true negative) classifications are spectra correctly identified as 
ot being in the target class. 
Outside of binary classifications, for a given transient class, 

he completeness is the fraction of that class that are successfully
dentified as such. The purity is the fraction of output classifications
f that class which are correct. Thus, the rate of contamination in a
ransient class is 1 – purity for that class. 

Throughout Sections 4 and 5 we will, alongside completeness and 
urity, report the F-score ( Fβ ) for each classifier (Van Rijsbergen
977 ) as our figure of merit (FoM). Fβ values range between 0 and 1
ndicating a poor and a strong classifier, respectively. ( Fβ ) is defined
s: 

 β = (1 + β2 ) × Purity × Completeness 

( β2 × Purity ) + Completeness 
(8) 

β is a constant used to preferentially weight the Fβ towards 
ompleteness or purity. The two main transient objectives of TiDES 

re the real-time classification of all transients from the TiDES-Live 
rogram and the eventual production of an SNe Ia sample for the
urpose of fitting cosmology. The number of SNe we expect to obtain
rom 4MOST–TiDES is orders of magnitude larger than previous 
urveys such as OzDES (Lidman et al. 2020 ) or the SuperNova
egacy Survey (Astier et al. 2006 ). With the large number of
pectroscopically observed transients, we believe that purity is a more 
mportant factor than classification completeness. This is especially 
rue for the SN Ia sample for cosmology, but even for real-time
lassification we choose to focus on pure samples. 

With this in mind, we generally report the β = 0.5, F0 . 5 , score
s our FoM. This assigns greater weight to the classification purity
ver the F1 -score that weights both metrics equally. To account for
ultiple classes, each transient class has an individual F0 . 5 -score 

alculated. Then, the average value is obtained by taking the mean,
eighted by each class’s prevalence in the sample. 
Additionally, in Section 5.2 , we will make use of the classification

ccuracy of our classifiers. This is particularly useful for comparison 
o photometric classifiers, which often use this parameter to quantify 
uccess. Accuracy is the fraction of classifications across all classes 
hat are correct. In a binary schema, it is defined as: 

ccuracy = TP + TN 

TP + TN + FP + FN 

(9) 

We do not aim for any particular purity threshold, but will add
 95 per cent purity line to relevant plots as an arbitrary point of
omparison. This purity is similar to that found in SN Ia samples
sed in cosmology in the literature. For example, Howell et al. ( 2005 )
eported an 8 per cent non-SN Ia contamination rate (92 per cent 
urity) in their final sample of SNe Ia, while Campbell et al. ( 2013 )
eported a 3.9 per cent predicted contamination rate (96.1 per cent 
urity) that has an insignificant effect on their cosmological mea- 
urements. In Guy et al. ( 2010 ), purity ranges from 100 per cent to
0 per cent are found in various redshift bins up to z = 1 and again,
hey report that the effect on cosmology is minimal compared to
ther sources of error. 
Each classifier returns a list of output classification bins in 

escending order of the quality metric specific to that classifier. This
MNRAS 543, 247–272 (2025)
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Table 2. The SN Ia and non-SN Ia transient subclasses for each classifier. The non-SN Ia transients subclasses 
included here match the various non-SN Ia input classes listed in Table 1 . Any output classifications not included in 
this table would be considered a misclassification if returned by a classifier. 

Classifier Binary class 5 classes Corresponding outputs 

DASH SNe Ia SNe Ia Ia-norm, Ia-91T, Ia-91bg 
. Non-SN Ia SNe Ibc Ib-norm, Ib-pec, Ic-norm, Ic-broad 
. . SNe II Ib, IIP, II-pec, IIL, IIn 
. . SLSNe −
. . Non-SN −
. . Other Ia-pec, Ia-csm, Ia-02cx 
NGSF SNe Ia SNe Ia Ia-norm, Ia 91bg-like, Ia 91T-like, Ia 99aa-like 
. Non-SN Ia SNe Ibc Ibn, Ib, Ic, Ic-BL, Ic-pec, IIb 
. . SNe II II, II-flash, IIn, IIb-flash 
. . SLSNe SLSN-II, SLSN-IIn, SLSN-I, SLSN-Ib, SLSN-IIb 
. . Non-SN TDE H, TDE He, TDE H + He, FBOT, ILRT 

. . Other Ia 02es-like, Ia-02cx like, Ia-CSM-(ambigious), Ia-pec, Ia-CSM 

Ia-rapid, Ca-Ia, super-chandra, SN - Imposter, computed 
SNID SNe Ia SNe Ia Ia, Ia-norm, Ia-91T,Ia-91bg, Ia-99aa 
. Non-SN Ia SNe Ibc Ib, Ib-pec, Ib-norm, Ic, Ic-norm, Ic-pec, Ic-broad, IIb 
. . SNe II II, IIL, IIP, II-pec, IIn 
. . SLSNe SLSN, SLSN-I, SLSN-Ic, SLSN-IIn 
. . Non-SN TDE, Ca-rich, ILRT 

. . Other Ia-csm, Ia-pec, Ia-02cx, NotSN, AGN, None 
LBV, M-star, QSO, C-star, LRN, Gal 
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s softmax probability (and rlap) for DASH , χ2 for NGSF , and rlap for
NID as mentioned in Sections 4.1.1 , 4.1.2 , and 4.1.3 , respectively.
t is not clear if these quality metrics can be used in place of a
robability or to what extent they can be compared. Additionally, as
ach classifier makes use of different templates either for training or
atching, it is not necessarily reasonable to compare outputs from

ach classifier directly. 
To determine the best output class for each classifier, we adapt the

pproach used in Kisley et al. ( 2023 ). A blended spectrum is input
eparately into each classifier. Then, for each classifier, the quality
etric for each output classification is used to produce a probability

hat the input spectrum belongs to each of the output classes in the
-class schema described in Section 4.2 . 
For DASH , this is a simple process as it already returns the softmax

seudo-probability for each classification bin. We simply sum the
oftmax probabilities for the outputs corresponding to each of the
ve classes and normalize the resulting probabilities by the summed

otal of all softmax probabilities. 
For NGSF , we convert the returned χ2 values into percentages by

valuating the cumulative density function at that particular χ2 . This
s performed using the SCIPY PYTHON library. The resulting relative
robabilities for each output are summed by class and normalized
y dividing by the total probabilities for all outputs. When redshifts
re provided the average number of reported outputs is 9.3. This
umps to over 50 when redshifts are not provided and often numbers
f relatively spurious SLSN classifications can overweight that class
s an output. To account for this, we only look at up to the 10 best
lassifications when redshifts are not provided. 

For SNID , we are required to make a judgement call as the rlap
uality metric it returns is less readily converted to a probability
han those of NGSF and DASH . In this case, we obtain the value
f r = rl ap × l ap and convert it to a probability using the error
unction erf ( r). For each class, we sum the probabilities for each
utput in that class and then normalize these into probabilities by
ividing by the sum of all output probabilities. We only consider
uch output classifications that meet the default SNID requirement of
NRAS 543, 247–272 (2025)
lapmin = 5. Because of this, all outputs return probabilities close to
nity, meaning that we weight each output nearly equally. 
Following these procedures provides us, for each spectrum for

ach classifier, the probability that the input is an SN Ia, Ibc, II, an
LSN, a non-SN transient or a non-transient (‘other’) spectrum.
his standardization of method allows for easy comparison of
lassification ability between the three classifiers. 

We distinguish between SNe Ia that are ‘cosmologically useful’
nd SNe Ia that are not. Ia-norm are counted as cosmologically
seful, as are 91T-like SNe Ia. The latter are overbright, hot SN
a and are usually included in cosmological samples (Ginolin et al.
025 ). SNe Ia 91bg-like standardization for cosmology is debated
see Graur 2024 , and references therein). Here, we consider them
longside Ia-norm inputs and output classifications. Any output that
s not an SN Ia subclass is considered a non-Ia output. 

To account for output classes for which we have no input spectra,
e create the ‘other’ classification bin. This is a catch-all for

utomatic misclassifications from peculiar SN Ia subclasses (Ia-csm,
ax, etc.) or non-transient classes like ‘Gal’, ‘m-star’, ‘None’, etc.
he list of ‘other’ classification outputs for each classifier are also

ncluded in Table 2 . For the purposes of calculating completeness,
lassifications that end up in the ‘other’ class are considered FNs. 

Some examples of successful and unsuccessful classifications are
hown in Appendix B . 

.3 Binary classification results 

n this section, we will be considering a binary classification. SNe will
ither be classified as an SN Ia or non-SN Ia. This is far fewer classes
han each classifier has the potential to output, and we recognize that
ombining multiple output classes into a single, non-Ia class is not
he same as requiring that a classifier chooses between two classes.

e will also be tracking non-SN Ia transients that are misclassified
s Ia contaminants. 

Throughout this section, classification will be performed with
nown redshifts, simulating the case where a transient has a spectro-
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Figure 6. SN Ia completeness (green), SN Ia purity (orange), and non-SN Ia completeness (blue) as a function of SN Ia probability threshold for each classifier. 
Input spectra are considered an SN Ia output if the returned SN Ia probability is greater than a given threshold, regardless of whether a different class is more 
probable. A rate of 95 per cent is marked by the dashed black line as an arbitrary point of comparison. 
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Figure 7. Purity–completeness (precision–recall) curves for each of DASH , 
NGSF , and SNID in the case of binary SN Ia–non-SN Ia classification. A 

theoretical, perfect, binary classifier is presented by the black dashed line. 
The closer a classifier’s curve matches the perfect classifier, the better that 
classifier is performing. The grey dashed line indicates the fraction of input 
spectra that are SN Ia, which is the minimum possible purity obtained when 
the SN Ia probability threshold is set to zero. 
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copic redshift determined from its host galaxy or its own emission
eatures. In practice, this means that we provide the classifier with 
he true redshift from the simulation as a known redshift. Results for
lassification with unknown redshifts, or just photometric priors are 
hown in Section 4.5 and throughout Section 5 . 

We run the classifiers in non-interactive mode to mimic an 
utomated classification plan for very large numbers of spectra. 
e note that this is not the way these classifiers were intended

o run. Classifiers occasionally maximize their output metric with 
n incorrect classification, despite correct classifications being the 
econd – or third – best result. For example, this can occur where 
wo output class are similarly favoured (say SN Ib and Ic) or where
 completely spurious output classification is found due to redshift 
naccuracy (a high- z SLSN classed as a low- z SNe Ia). By using
ll reported classifications from a classifier and converting to a 
robability for each of our output classes, we avoid this issue. 
Our method of converting classifier outputs into probabilities 

eturns the probability that a transient belongs to the SN Ia, Ibc, II,
L, or non-SN transient classes defined in Table 2 . In this section, we
onsider only the SN Ia probability and a binary SN Ia–non SN Ia
lassification schema. If the SN Ia probability exceeds an arbitrary 
hreshold then that classifier will report it as an SN Ia, regardless
f the probabilities of the other four classes. In Section 4.5 , where
e consider the full 5-class schema, we will swap to having the

lassifiers report each transient as whichever of the five classes has 
he greatest probability. 

In Fig. 6 , we investigate the SN Ia completeness, purity and non-
N Ia completeness for each classifier as a function of an SN Ia
robability threshold. We can see that it is not immediately clear if
 probability threshold should be applied for any of the classifiers.
ASH ’s SN Ia completeness, purity and non-SN Ia completeness 
emain almost constant for most SN Ia probability thresholds. Only 
t very low thresholds do we report purities under 95 per cent and only
t very high thresholds do we see a large loss in SN Ia completeness.
ne could reasonably assign 0.5 as the required SN Ia probability to
e considered an SN Ia. 
Similarly SNID could reasonably have an SN Ia probability thresh- 

ld set anywhere between 0.5 and 0.8. Below this, we see significant
osses to SN Ia purity, and above this, we see the same sudden loss
n SN Ia completeness as displayed by DASH . 
6

NGSF is the only classifier to show a different trend. Here, the SN Ia
urity and non-SN Ia completeness quickly rise to unity. Meanwhile 
he SN Ia completeness starts at unity for no probability threshold,
efore steadily dropping as the threshold is made more stringent. A
ase could be made to perform NGSF classification with an SN Ia
robability threshold of anywhere from 10–25 per cent. Above this 
nd the only change is a loss in SN Ia completeness. 

In Fig. 7 , we present purity–completeness (also known as 
recision–recall) curves for all three classifiers. A theoretically 
erfect classifier is shown as a point of comparison. A perfect
lassifier will return perfect purity at all levels of completeness 
s determined by varying the SN Ia probability threshold used to
alculate each parameter. The only exception is the case where the
hreshold is set to zero. In this case, the completeness is 100 per cent
y definition, while the purity drops to match the fraction of the
otal input sample that are actually SN Ia, which is approximately
0 per cent in this case. 
MNRAS 543, 247–272 (2025)
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We can see from Fig. 7 that NGSF performs closest to the theoret-
cally perfect classifier. NGSF is followed by DASH and SNID in that
rder. The uncertainty for each classifier, indicated by the transparent
haded regions around each curve, indicates an uncertainty on the
rder of 0.5 per cent. This suggests that the classification results are
table across random samples of the full transient population. In other
ords, based on Fig. 7 , we would expect that NGSF outperforms DASH

nd SNID across all of our subsamples under this binary classification
chema. However, Fig. 7 gives very little information about the non-
a transients. For example, NGSF could classify all SNe Ib as SLSNe,
nd in this schema, this would constitute perfect classification. 

We do not report the numerical results for binary classification as
he SN Ia classification is unchanged and allowing any non-Ia input to
e ‘successfully’ classified as any non-Ia output significantly inflates
he non-SN Ia classification completeness and purity. 

.4 Redshift priors 

sing the SN Ia probability as a threshold gives a good indicator
f the completeness and purities, we can expect for each classifier
nd, also, allows use to construct purity–completeness curves that
ndicate that NGSF is the best-performing classifier in our binary
chema. However, in this section, we will proceed assuming that the
utput classification with the highest probability for each classifier
s that classifier’s output. This is partially to remove our need to
ssign arbitrary and distinct probability thresholds to each classifier
nd because it is the only method that is applicable for non-binary
lassification schemes. This avoids the situation where the SN Ia
robability exceeds the threshold while being less than the probability
hat the transient belongs to a different class. 

We test each classifier both with and without redshift priors.
sing redshift priors means that for each input spectrum we provide

he classifiers with the true transient redshift as found in the input
opulation simulation. In the case of using unknown redshifts, we
ive no redshift information to DASH and SNID . NGSF is instructed to
heck redshifts between 0 < z < 1 . 5 with a sampling of �z = 0 . 05.

Perhaps one of the most likely scenarios during the operation of
iDES–4MOST is the case where we will not have a spectroscopic
edshift, but will have a photometric redshift estimate. We would like
o be able to investigate classifier performance in this scenario. 

The minimum science requirement for LSST–DESC as reported
n The LSST Dark Energy Science Collaboration ( 2018 ) is that the
MS scatter between photometric redshifts and true redshifts should
ot exceed 0.03(1 + z). Graham et al. ( 2018 ) and Mitra et al. ( 2023 )
NRAS 543, 247–272 (2025)

Table 3. The completeness for classifying SNe Ia, SNe Ibc, SNe II, SLSNe, and
for each classifier. The highest value in each column is highlighted in bold. Class
known and unknown redshift classification. F0 . 5 -score is calculated based on th
population size. 

Classifier Ia completeness Ibc completeness II completeness SL

DASH , known z 0.760 ± 0.004 0.68 ± 0.01 0.39 ± 0.01 
DASH , unknown z 0.516 ± 0.004 0.69 ± 0.02 0.32 ± 0.01 
DASH , photo z – – –

NGSF , known z 0.798 ± 0.005 0.52 ± 0.02 0.753 ± 0.006 
NGSF , unknown z 0.560 ± 0.006 0.39 ± 0.02 0.35 ± 0.01 
NGSF , photo- z 0.551 ± 0.006 0.48 ± 0.01 0.563 ± 0.008 

SNID , known z 0.661 ± 0.006 0.20 ± 0.01 0.174 ± 0.007 
SNID , unknown z 0.661 ± 0.006 0.15 ± 0.01 0.167 ± 0.006 
SNID , photo- z 0.644 ± 0.004 0.11 ± 0.01 0.083 ± 0.005 
nvestigate LSST photometric redshifts instead assuming 0.02(1 + z)
s the RMS error between photometric and spectroscopic redshifts.
e will proceed using the 2 per cent uncertainty. 
For NGSF and SNID , we are able to simulate the use of photometric

edshift priors. We randomly generate a photometric redshift ( zphot )
rom a Gaussian distribution centred on the true redshift and with
idth equal to 2 per cent of 1 + z. Then, we have each classifier

ttempt an ‘unknown’ redshift classification over the truncated
edshift range defined by a 2 per cent uncertainty in 1 + zphot . 

Unfortunately, DASH does not natively have the option to attempt
lassification over a custom redshift range. The only way for DASH

o simulate photometric redshift priors is to have each classifier
t the randomly generated zphot as a known redshift, which would
rohibit a direct comparison to NGSF and SNID . We found that this
tting of a ‘known’, but slightly incorrect, redshift resulted in poorer
erformance than providing no redshift at all. 
Because of this, we do not report on the classification potential of

hotometric redshifts throughout the paper. However, for complete-
ess, we do report the results from NGSF and SNID using them in the
nknown redshift mode over a custom redshift range as described
reviously and making use of the 5-class classification schema as
sed in Section 4.5 . These results are found in Table 3 alongside
he known and unknown redshift classification results. Additionally,
hen discussing combined classifiers in Section 5 , we report the SN

a completeness and purity for the combined NGSF–SNID classifier
sing photo- z priors. 

.5 5-class classification 

n this section, we make use of a classification system that includes
ve transient classes: SNe Ia, SNe Ibc, SNe II, SLSNe, and non-SN

ransients, following the work of Kim et al. ( 2024 ). The breakdown
f classifier output subclasses that correspond to each of these inputs
s indicated in Table 2 . 

Table 3 shows the blended spectra being classified with the non-
N Ia transient output bin divided into SNe Ibc, SNe II, SLSNe, and
on-SN transients. 
The 5-class schema allows us to see finer detail about each

lassifier’s ability to classify CC SNe and non-SN transients. This
s particularly relevant for judging a classifier’s ability to perform
ive TiDES classification across a range of different transient classes.

0 . 5 -scores reported throughout this section are the population size-
eighted average of the F0 . 5 -scores of the five individual classes.
 non-SN transients. Also presented are the SN Ia purity and the F0 . 5 -score 
ification with photometric priors for NGSF and SNID are provided alongside 
e average scores of all five transient classes reported, weighted by their 

 completeness 
Non-SN 

completeness Ia purity F0 . 5 -score 

0.0 ± 0.0 0.0 ± 0.0 0.981 ± 0.002 0.711 ± 0.003 
0.0 ± 0.0 0.0 ± 0.0 0.968 ± 0.003 0.639 ± 0.003 

– – –

0.85 ± 0.01 0.05 ± 0.02 0.971 ± 0.002 0.814 ± 0.004 
0.25 ± 0.01 0.02 ± 0.01 0.917 ± 0.003 0.627 ± 0.005 
0.85 ± 0.01 0.03 ± 0.01 0.935 ± 0.002 0.699 ± 0.003 

0.0 ± 0.0 0.0 ± 0.0 0.929 ± 0.004 0.649 ± 0.003 
0.0 ± 0.0 0.0 ± 0.0 0.835 ± 0.004 0.585 ± 0.005 
0.0 ± 0.0 0.0 ± 0.0 0.850 ± 0.005 0.552 ± 0.007 

ser on 14 N
ovem

ber 2025
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Figure 8. Confusion matrices showing the results for the three individual classifiers and all three combinations of two of the three classifiers working 
simultaneously. Confusion matrices are normalized by (a) row, indicating completeness in each class and (b) column, indicating the purity of each class. The 
‘other’ output classification is reserved for output classifications with no corresponding input class and, in the case of the combined classifiers, an input spectrum 

that causes the two classifiers to disagree on the output class. Classification was performed with redshift priors provided in all cases. High completeness and 
purity samples would be indicated by high concentration along the matrix diagonal. Horizontal scatter indicates loss of completeness, and vertical scatter 
indicates loss of purity. 

T  

c

w
c  

c
a  

c

 

I
S  

I
S  

w  

t  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/543/1/247/8242736 by U
niversity of Southam

pton user on 14 N
ovem

ber 2025
he results from Table 3 are presented as confusion matrices for the
ase with known redshifts in Fig. 8 (a). 

As mentioned in Section 4.4 , we take the output classification 
ith the highest probability for each input spectrum as the output 

lass, or best class. We impose no additional limit on the best
lass’s probability beyond it being the highest probability. Across 
ll classifiers we see small uncertainties (1–2 per cent) on purity and
ompleteness, indicating that the classification rates are stable. 
In every case, the classifier’s training sets are dominated by SNe
a. This may lead to DASH overweighting features learned from 

Ne Ia templates, resulting in an increased likelihood that an SN
a classification bins will be amongst DASH ’s top classification. 
imilarly, SNID and NGSF , when the input does not match well
ith any of their templates, and lacking a redshift to help discount

emplates, are most likely to find SN Ia templates as the best-matching
emplates as SNe Ia are the majority of their template banks. Across
MNRAS 543, 247–272 (2025)
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ll classifiers, there is potential for SNe Ia to be the best matches in
he absence of any good matches. 

More detailed discussion on how input SN Ia spectra are being
lassified by DASH , SNID, and NGSF can be found in Appendix A,
n Fig. A1 . Similarly, more detailed discussion on the origin of
ontaminant classifications for each classifier can be found in Fig. A2 .

.5.1 DASH results 

e see that our DASH results, both with and without redshift priors,
ave very impressive SN Ia purities well over 95 per cent. However,
he SN Ia completeness, while fairly good with redshift priors, falls to
ust above 50 per cent without. This is the largest drop in performance
pon the removal of redshift information, alongside NGSF ’s loss of
N Ia completeness. 
It becomes apparent that DASH is reasonably successful at clas-

ifying SNe Ibc when redshift priors are provided, but is far less
uccessful at classifying type II SNe. Unlike what we see in its
N Ia completeness, when redshift priors are removed, there is not
uch change in performance for Type II SNe. The Ibc classification

ompleteness actually improves slightly, while the Type II classifi-
ation completeness decreases, but by far less than that of the SNe
a. It cannot be stated strongly enough that DASH natively lacks
ll capacity to classify SLSNe and the various non-SN transients.
ndeed, in Section 5 , all combinations of classifiers that include DASH

re incapable of successfully classifying any SLSNe or non-SN input
pectra. 

Additionally, there is significant classification of input spectra into
eculiar-Ia subclasses, often SN Ia-csm. This is particularly prevalent
n transient spectra with Sc-type host galaxies, which make up a large
raction of our SN Ia hosts (Hakobyan et al. 2012 ), likely due to
mission lines present in the host template. The narrow emission lines
rom the host are misinterpreted as circumstellar medium (CSM)
nteraction, leading to a Ia-csm classification. 

Strangely, only DASH ’s outputs exhibit this trend. Where
0 per cent of Sc-type hosts produce a Ia-csm classification in DASH ,
ess than 1 per cent do in both NGSF and SNID . Fortunately, this
as no effect on classification purities in any class as SN Ia-csm is
onsidered peculiar and outputs of Ia-csm are not included in final
amples. However, it does have a significant effect on completeness.

.5.2 NGSF results 

GSF and DASH classify SNe Ia very similarly when redshift priors are
rovided. The difference in completeness for SN Ia (79.8.3 per cent
ersus 76.0 per cent) is slightly in favour of NGSF , the purity of the
esulting SN Ia samples are almost identical, within 2 percentage
oints of each other. When removing redshift priors we see a loss of
erformance across Ia classification for both classifiers. The SN Ia
lassification completeness difference is similarly sized as in the
ase where redshifts are known, with NGSF reporting 5 per cent
igher completeness. However, while DASH reports only very slightly
educed (by less than a single percentage point) SN Ia purity, NGSF ’s
orresponding rate drops by around 5 percentage points when redshift
nformation is not provided. 

In the 5-class scheme, the finer non-SN Ia output classes leads
o mixed classification results for NGSF . The Ibc completeness
s fair at just over 50 per cent with redshift priors. The non-SN
ransient completeness is very poor, well under 10 per cent with
nd without redshift priors (see Appendix C ), although NGSF is the
nly classifier that gets any of these input spectra correct. NGSF
NRAS 543, 247–272 (2025)
roduces particularly impressive completeness in SN II and SLSN
lassifications when redshift priors are provided, but also reports
rops in completeness of around 50 percentage points when redshift
riors are not provided. This is still much better than SNID , which
lassifies no input SLSNe correctly, and DASH which, as mentioned
reviously, cannot classify them. 
With redshift information, NGSF is the strongest classifier in terms

f classification completeness. Only DASH exceeds it in SNe Ibc
ompleteness. Without redshifts, the balance between NGSF and
ASH is far closer due to NGSF ’s far larger loss of performance. 
Indeed, when considering only the F0 . 5 -scores, NGSF is now clearly

he best-performing classifier when redshifts are known. This is by
 large margin, at least 0.1 larger than that of DASH or SNID . With
nknown redshifts all three classifiers have F0 . 5 -scores between 0.58
nd 0.64. Here, DASH ’s score is heavily influenced by its superior
Ne Ia purity, which is heavily weighted in our weighted F0 . 5 -score.
As would be expected, if a slightly incorrect photometric redshift

see Section 4.4 ) with a small range of redshift values about it to
onsider is provided, performance improves compared to receiving
o redshift at all. The F0 . 5 -score for NGSF with photo- zs fall between
hat produced by known (spectroscopic) and unknown redshifts. 

.5.3 SNID results 

NID has a much lower SN Ia completeness than DASH and NGSF

hen given redshift priors, and with unknown redshifts we see a
ignificant drop in performance in the SN Ia purity metric. However,
ithout redshift priors we do see it outperform DASH and NGSF in

egards the SN Ia completeness. In fact, its SN Ia completeness is
early invariant under a lack of redshift information. However, while
he SN Ia completeness is maintained, this must be balanced against
he significant drop in SN Ia purity, which leads SNID to a poorer

0 . 5 -score than DASH or NGSF without redshift information. 
SNID produces poor classification completenesses in all non-

N Ia transient subclasses in the 5-class schema. With or without
edshift information, it only achieves SN Ibc and II completenesses
etween 10 per cent and 20 per cent. Like DASH , it classifies no
LSN or non-SN transient correctly, but while DASH is incapable
f outputting such classifications, SNID instead fails to do so. A
arge number of our blended spectra are classified as ‘Gal’ (a galaxy
emplate) by SNID , leading to an ‘other’ output. It appears that galaxy
ontamination may be a limiting factor. Indeed, NGSF is trained to
lassify host and transient simultaneously which may explain its
uperior performance. 

When photometric classification is possible, the results are the
pposite of that seen with NGSF . For all transient classes with classi-
cation completeness greater than zero without redshift information,

he completeness is lower with photometric priors. SNID ’s SN Ia
urity does improve with photometric redshifts relative to a lack of
edshift information, but the final F0 . 5 -score is still lower. SLSNe are
ell classified by NGSF , as photo- zs force the classification into the

uperluminous regime, yet this does not appear to occur in SNID . 
It should be noted that SNID was intended to have significant human

versight in classification, so relatively poor results under complete
utomation are not unexpected. Additionally, while SNID ’s F0 . 5 -score
s lower than the other two classifiers, its F1 - or F2 -scores are not. As
NID maintains SN Ia completeness when redshifts are unknown, and
o Fβ -scores that are weighted to more heavily favour completeness
 β > 1) lead to SNID matching NGSF ’s performance and exceeding
ASH ’s when redshifts are unknown. 
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Table 4. The SN Ia completeness and purity for all possible combinations of two or three classifiers. Successful classification 
requires an SN Ia output from all involved classifiers. For the combined NGSF–SNID classifier, we also report the same results 
assuming the presence of photometric priors. The highest value in each column is highlighted in bold. 

Classifiers Redshift Ia completeness Ia purity F0 . 5 -score 

DASH and NGSF Known z 0.689 ± 0.005 0.9995 ± 0.0003 0.757 ± 0.004 
NGSF and SNID . 0.621 ± 0.006 0.9994 ± 0.0003 0.687 ± 0.005 
DASH and SNID . 0.623 ± 0.006 0.9984 ± 0.0004 0.674 ± 0.006 
All . 0.590 ± 0.006 1.0 ± 0.0 0.669 ± 0.005 

DASH and NGSF Unknown z 0.367 ± 0.004 0.997 ± 0.001 0.566 ± 0.006 
NGSF and SNID . 0.424 ± 0.006 0.976 ± 0.004 0.566 ± 0.006 
DASH and SNID . 0.456 ± 0.006 0.991 ± 0.001 0.589 ± 0.006 
All . 0.324 ± 0.005 0.998 ± 0.001 0.510 ± 0.006 

NGSF and SNID Photo- z 0.427 ± 0.007 0.990 ± 0.001 0.553 ± 0.004 
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 USING  MULTIPLE  CLASSIFIERS  AT  O N C E  

or both live classification of transients and when creating SN Ia 
amples for cosmology, it is critical to limit contamination in the 
utput sample. For live classification, this is important for all SN 

lasses. For cosmology, it only matters that the SN Ia sample is
f high purity, even to the detriment of the SN Ia completeness.
his is particularly true given the very large number of transients

hat 4MOST is expected to observe. Table 3 shows that individual 
lassifiers struggle to limit contamination in the output SN Ia sample 
nd are poor classifiers of even broad non-Ia SN classes. The obvious
uestion is: what is the result of combining the classifications from
ifferent classifiers for each transient? 
We first investigate the effect of classifying spectra with all 

ombinations of two out of the three classifiers. In these cases, if
oth classifiers are not in agreement on the output classification, 
hen the result defaults to an ‘other’ output regardless of the quality
f either classification. Any output classifications from individual 
lassifiers that do not match any of our potential output classes (Ia-
ec, non-transients, etc.) are also discarded as ‘other’ outputs. 

Fig. 8 shows that when using known redshifts, requiring two 
lassifiers to agree has the effect of reducing the overall completeness 
or all five original output classes and a large increase in the number of
other’ outputs compared to the individual classifier results. However, 
e also see a large increase in the purity of SNe Ia, SNe II and, to a

esser extent, SNe Ibc. This can be seen by high concentrations along
he confusion matrix diagonals. 

The extreme case for a combined classifier is to use all of DASH,
GSF , and SNID simultaneously. The results for SNe Ia are shown

n Table 4 . With the combination of all three classifiers, we now
lassify around 60 per cent of all SNe Ia when redshifts priors 
re provided, but get very few successful classifications for any 
ther input class. The sample of classified SNe Ia produced by this
ombined classification is completely pure. 

Without redshifts we report reduced success. While SN Ia purities 
emain very high, the non-SN Ia completenesses remain around 
0 per cent or less and the SN Ia completeness is nearly halved
o 33 per cent. This is very low compared to other combined and
ndividual classifiers. It remains to be determined where exactly the 
ptimum balance lies between pure and large SN Ia samples for the
urposes of cosmology. Regardless, combined classification has the 
romising ability to improve SNe Ia, II and, to a lesser extent, SNe
bc purity. 

Using all three classifiers, 87 per cent of SNe II are misclassified
s ‘other’ or SNe Ibc. However, in this case the purity of output SN II
ample is very high. In fact, by using a combined classifier consisting
nly of DASH and NGSF, we retrieve some of the classification
ompleteness, classifying just under a third of SNe II successfully to
roduce a sample that is 96.4 per cent pure. Similarly, one can obtain
 77 per cent pure sample of SNe Ibc, although this can be improved
o 92 per cent at the cost of only one-third of the completeness
44 per cent to just 17 per cent) if DASH–SNID is used instead. 

Due to DASH ’s presence in this combined classifier, the classifi-
ation completenesses of SLSNe and non-SN transients are zero. 
ndeed this can also be seen in Fig. 8 , in both double classifier com-
inations including DASH , which cannot output SLSN classifications 
ithout retraining with a different template set that contains SLSN 

pectra. 
The poor classification completeness shown in Fig. 8 (a) and 

able 4 suggests that the use of combined classifiers alone is not
articularly appropriate for live transient classification. However, it 
oes indicate the potential for very pure SN Ia and SN II samples,
lthough the latter sample has very low classification completeness. 
s a result, combined classifiers could still form an important part
f a live classification plan. 
A combined classifier could be used as a first classification step

o remove this high purity SN Ia sample prior to additional, later
lassification steps. Depending on the classifier used, this can also 
e done for the very pure (but low completeness) SN II sample
roduced. When spectroscopic redshifts are known, DASH–NGSF is 
n obvious choice due to its high F0 . 5 -score. Without redshifts it
hould be noted that a DASH–SNID classifier returns the best F0 . 5 -
core. The marginally reduced purity is compensated by the higher 
ompleteness. However, unlike the case of known redshifts where 
ASH–NGSF is clearly the best-performing classifier, when redshifts 
re not known all three double classifiers have similar F0 . 5 -scores. 
oth with spectroscopic redshifts and unknown redshifts, when using 
ll three classifiers, the reduction in completeness is more significant 
han the negligible improvement in purity compared to classifying 
ith DASH–NGSF only. We investigate the potential for a second stage
f classification in Section 5.1 . 
We conclude that that the best-performing classifier is DASH–NGSF . 
hen redshifts are known, the SN Ia and SN II completenesses is

0 percentage points higher or more than using all three classifiers.
his amounts to the addition of hundreds of transients into the final
ample at the cost of doubling an already negligible non-SN Ia
ontamination. In the case where redshifts are not known this logic
olds true, but with a combination of DASH and SNID . As shown in
able 3 , NGSF is particularly affected by a lack of redshift information.
owever, without redshift priors, all three double classifiers perform 

imilarly with regard to F0 . 5 -scores. 
MNRAS 543, 247–272 (2025)
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Figure 9. The SN Ia purity (orange, upper lines) and completeness (green, 
lower lines) as report by DASH , NGSF , and SNID as a function of the true 
transient magnitude for the SNe Ia in all of our subsamples. The SNe Ia are 
in non-linear magnitude bins of ∼30 transients, with each plotted point at 
its bin’s centre. The shaded areas indicate the standard error on the mean 
of completeness and purity in each bin. 95 per cent purity is marked by a 
black dashed line. Two potential transient magnitude cuts are marked by 
grey dashed lines at 21.8 and 22.5 mag. We find that these limits roughly 
correspond to completeness dropping below 80 per cent and purity falling 
below 95 per cent, respectively. 
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.1 Potential photometric cuts 

ndividually, we see mixed results from the classifiers. Depending on
he classifier and redshift information used, completeness can change
y up to 50 per cent and SN Ia purities by as much as 15 per cent. From
 cosmology perspective, we obtain both high-purity and reasonably
igh completeness in SN Ia classification from DASH and NGSF, but
nly when redshift information is known, and it is yet unclear to
hat extent prior redshift information will be available for TiDES

ransients. 
From a live classification perspective, there appears to be no

ingle classifier from which we can expect a reasonable classification
ompleteness across the SN Ibc, II, SL, and non-SN classes. More
mportantly, the result of these low completenesses is that misclas-
ified transients must be contributing to lowering the purity of some
ther class. 
To this point, we have attempted classification on every transient

hat has received any exposure time in the survey simulation. We
ill now investigate two obvious sources of ‘other’ classification to

ee if applying cuts to the sample prior to classification will improve
esults. In Section 5.1.2 , we investigate making cuts on the fraction of
bre flux deriving from the transient (as opposed to its host galaxy),
nd in Section 5.1.1 , we investigate cuts based on the brightness of the
ransient. Both of these quantities should be reasonably obtainable
rom the same LSST photometry that TiDES will use to flag potential
ransient targets. 

In both cases, photometric cuts are performed based on the LSST
-band magnitude at the time of simulated 4MOST observation. The
ransients in the simulation are binned in phase every five days and
o there may be a discrepancy between of a few days between the
imulated observation and the date of the reported magnitude. In
eality, transients added to the 4MOST observing queue, for which
e know the triggering magnitude from LSST, will only remain in the
MOST observing queue for four days (Frohmaier et al. 2025 ) before
eeding refreshed with fresh photometry. So a discrepancy of several
ays between last known magnitude and 4MOST observation is
ealistic. We expect transient alert packets from LSST to be sufficient
o perform the following photometric cuts. 

.1.1 Apparent transient magnitude 

he most obvious sample cut that can be introduced from photometric
nformation is a cut on transient magnitude. In this section, we
nvestigate the potential for applying a cut to our transient sample
ased on the r-band magnitude of the transient. 
Fig. 9 presents the completeness and purity of SN Ia classification

or all three classifiers as a function of transient r -band magnitude. It
lso proposes two potential values for a transient magnitude cut to our
ample. These values, 21.8 and 22.5 mag, are derived in Frohmaier
t al. ( 2025 ) as the magnitudes that correspond to transient spectral
NRs of 5 and 3, respectively, where spectral SNR is calculated as

he average in 15 Å bins between 3500 and 8000 Å. Indeed Frohmaier
t al. ( 2025 ) report the SNR = 5 threshold as the conservative
inimum to meet TiDES’s spectral success criteria, with the SNR = 3

imit a more optimistic estimate based on the work of Balland et al.
 2009 ). Here, we find that these SNR cuts of 5 and 3 correspond
oughly to the SN Ia completeness falling below 80 per cent and the
urity falling 95 per cent, respectively. 
As NGSF produced the best individual F0 . 5 , in Table 5 we present

lassification results from NGSF , but now with the effects of cutting
ransients fainter than 21.8 and 22.5 mag. This does remove nearly
alf of the transients from the final sample for the stricter 21.8 mag
NRAS 543, 247–272 (2025)

t  
ut. However, we generally see significant improvements across SN
a completeness, SN Ia purity and F0 . 5 -score as stricter magnitude
uts are employed. 

DASH and SNID , while not shown, also follow this trend. NGSF

utperforms SNID across all metrics both with and without redshift
riors. However, without redshifts DASH does produce F0 . 5 -score
bout 0.01 larger than NGSF , mainly the result of DASH maintaining
 high Sn Ia purity which is very heavily weighted in the F0 . 5 -score.
owever, NGSF , with spectroscopic redshifts, produces F0 . 5 -scores

round 0.1 larger than DASH or SNID . 
Cutting on r-band magnitude results in a significant reduction in

ample size, so this would not be appropriate by itself for automatic
lassification. However, it could serve as a useful step in a pipeline
or broad classification. 

In Section 5 we found that, while combined classifiers are very
ood at creating high purity, low completeness SN Ia samples,
hey are poor classifiers of non-SN Ia classes. This makes them
neffective for TiDES live transient classifications. We also found in
ections 4.3 and 4.5 , that the individual classifiers produce mediocre
ompleteness and purity in most transient classes when operating on
very transient observed in the 4MOST survey simulation. However,
or TiDES transients brighter than r = 21.8 mag, NGSF appears to be
 good choice for automated live classification. 

However, this comes with several caveats. First, there will be
ignificant performance loss when redshift information cannot be
rovided. Second, this only applies with relatively broad transient
lasses. For example, NGSF often classifies Ib-norm inputs as SN
c subclasses. Just under 50 per cent of Ibc classification are SNe
b classified as SNe Ic and vice versa. Finally, and perhaps most
mportantly, while the SNe Ia purity is high, the purity of the other
lassification bins can be far lower. For example the SN II purity is
7 per cent, and the Ibc purity is just 70 per cent (see Table 6 ). 
From the point of view of the potential cosmology sample of

Ne Ia obtained in Section 5 , cutting transients from our sample
ased on their apparent magnitudes has less impact on the purity
han the completeness. All three classifiers see between 0–4 per cent
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Table 5. Ia classification results and 5-class weighted F0 . 5 -score for NGSF . We report the results with r-band magnitude 
cuts of 21.8 and 22.5 mag, as well as with no cuts. Completeness and F0 . 5 -score are calculated with the sample size 
after the cut is applied, but we note that mean Ia sample is reduced in size to 55 per cent and 83 per cent by magnitude 
cuts at 21.8 and 22.5 mag, respectively. The highest values in each column are highlighted in bold. 

Redshift prior r-band cut Ia completeness Ia purity F0 . 5 -score 

Known z 21.8 0.882 ± 0.005 0.987 ± 0.002 0.876 ± 0.003 
. 22.5 0.837 ± 0.005 0.981 ± 0.002 0.842 ± 0.003 
. None 0.798 ± 0.005 0.971 ± 0.002 0.814 ± 0.004 

Unknown z 21.8 0.606 ± 0.006 0.936 ± 0.005 0.668 ± 0.006 
. 22.5 0.585 ± 0.006 0.933 ± 0.005 0.655 ± 0.005 
. None 0.560 ± 0.006 0.917 ± 0.005 0.627 ± 0.005 

Table 6. The completeness and purity of each of our classes in the 5-class scheme under photometric cuts. The 
magnitude cut requires SNe r-band magnitude < 21.8 and reduces the sample size to 61.7 per cent. The flux fraction cut 
requires that transient flux fraction > 0.3 and reduces the sample size to 80.3 per cent. Using both reduces the sample 
size to 52.2 per cent. Completeness and F1 -score are the based on the transients in the classified sample, so objects 
removed by the photometric cuts do not contribute. Only NGSF is shown, having been identified as the most promising 
candidate for live classification. Bold values indicate the highest percentage in that row. 

Metric No cut Mag. cut Flux frac. cut Both 

Ia comp. 0.798 ± 0.005 0.882 ± 0.005 0.888 ± 0.004 0.952 ± 0.003 
Ia purity 0.971 ± 0.002 0.987 ± 0.002 0.973 ± 0.002 0. 988 ± 0.002 

Ibc comp. 0.52 ± 0.02 0.65 ± 0.02 0.64 ± 0.02 0.75 ± 0.02 
Ibc purity 0.61 ± 0.02 0.70 ± 0.02 0.72 ± 0.02 0.84 ± 0.02 

II comp. 0.753 ± 0.006 0.836 ± 0.009 0.78 ± 0.01 0.88 ± 0.01 
II purity 0.748 ± 0.009 0.767 ± 0.007 0.847 ± 0.007 0.860 ± 0.007 

SL comp. 0.85 ± 0.01 0.913 ± 0.007 0.845 ± 0.006 0.913 ± 0.007 
SL purity 0.51 ± 0.01 0.75 ± 0.01 0.62 ± 0.01 0.84 ± 0.02 

Non-SN comp. 0.05 ± 0.02 0.07 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 
Non-SN purity 0.04 ± 0.01 0.05 ± 0.02 0.15 ± 0.08 0.13 ± 0.08 

F0 . 5 -score 0.814 ± 0.004 0.876 ± 0.003 0.866 ± 0.003 0.920 ± 0.002 
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mprovement. Compared to the needs of live classification, it is 
ess clear if this small improvement in purity compensates for the 
ignificant fraction of the sample discarded before classification. In 
act, the DASH–NGSF combined classification produces a higher SN 

a purity and classifies a greater number of SNe Ia in total (since
he completeness of the 21.8 mag cut NGSF classification is around 
0 per cent when cut transients are accounted for). 

.1.2 Transient flux fraction 

fter transient magnitude, the second obvious source of classification 
rror in our sample comes from high levels of host galaxy flux in our
pectra. In this section, we discuss the effectiveness of DASH, NGSF, 
nd SNID as a function of transient flux fraction (contrast), where the
ransient flux fraction is the fraction of the flux in a 4MOST fibre
hat originates from the transient. We report the potential to improve 
lassification results by introducing a sample cut in transient flux 
raction-redshift space. We investigate using our 5-class classification 
chema as in previous sections. 

Generally, the trends in classification rates against the transient 
ux fraction are as one would expect. As the transient flux fraction

ncreases (the spectrum’s host contamination is reduced), we see 
mprovements in the SN Ia completeness and purity. The shape of
hese plots is very similar to those produced by transient magnitude 
inning in Fig. 9 . The purity tends to approach 95 per cent at transient
ux fractions of 40–50 per cent if it is not already above that in the
 i
ost contaminated bin. Fig. 10 indicates that all three classifiers have
imilar slopes in their purity with different initial values. Although 
ot shown in the figure, the same trend was found without redshift
riors, albeit with slightly smaller values for DASH and much smaller
alues for NGSF and SNID . 

We look at our results in flux fraction-redshift space in Fig. 11 . At
igh redshift only, transients that have bright absolute magnitudes, 
specially transients in the SLSN class, will be observed. So transient
ux fraction is likely to be high as we are biased to intrinsically
righter transients while host brightness remains constant. However, 
e also expect the spectral features of our transients to be shifted
utside of 4MOST’s wavelength range, making them harder to 
lassify. Indeed the rlap classification quality parameter employed 
y DASH and SNID depends directly on the wavelength overlap 
etween the input spectrum and matching template. We hope to 
nd regions of this parameter space without contaminants or fewer 
isclassifications, where we could assign positive results a greater 

egree of certainty. 
A few obvious points of interest are the trend to greater transient

ux fractions with increasing redshift and the incidence of unsuc- 
essful classifications of SNe Ia (orange histograms) beginning to 
rop off as the transient flux fraction surpasses around 40 per cent.
he SN Ia count histograms are fairly uniform for the three classifiers

n the relative distributions of the successful and unsuccessful SN Ia
lassifications, but we see variation in the width of the successful
lassification histogram. In particular, there are obvious differences 
MNRAS 543, 247–272 (2025)

n the number of misclassified SNe Ia between the classifiers. 
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M

Figure 10. The SN Ia completeness (green, lower lines) and purity (orange, 
upper lines) as a function of the fraction of the total flux in the spectrum that 
originates from the transient. The SNe Ia in each of our subsamples are in 20 
linear bins between transient fibre flux fractions (contrast) of 0 and 1. Redshift 
is known in all cases. Uncertainty in indicated by the shaded regions. Shaded 
regions are defined by the standard error on the mean in each bin between 
our random subsamples. All three classifiers produce similar trends in SN Ia 
completeness and purity. In every case, the classification completeness and 
purity improve as the transient flux fraction increases. 
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Also concerning are the clusters of SLSNe at high redshift
 z > 0 . 6) that are classified as SNe Ia in all three classifiers, although
ost prevalently in DASH and NGSF . These SLSNe are being fit

verwhelmingly as SNe Ia-91bg. This does lead to a potential
NRAS 543, 247–272 (2025)

igure 11. The classification results in the binary schema with known redshifts f
nd small orange triangles indicate good SN Ia classifications and failed SN Ia c
that is a non-SN Ia classified as an SN Ia.) The histograms show the correspondi
pace for each classifier where false positive SN Ia classifications cluster, often at 
nsuccessful SN Ia classifications. 
echanism for increasing purity. As can be seen in Fig. 11 , the
uccessful SN Ia classifications (and indeed instances of SNe Ia in
eneral) drop off quite sharply after z = 0 . 60. Each classifier has
ontaminants beyond this redshift that could be dismissed out of
and if accurate spectroscopic redshifts for host galaxies are known,
r if photometric redshifts indicate it is likely that z > 0 . 60. 
For now, with the precise extent to which TiDES will have host

edshift information, we do not implement such a cut. However, we
ake note of it and strongly encourage such a cut’s usage in the cases
here redshifts are known. 
An obvious location for a cut on the transient flux fraction is the

oint at which the good SN Ia classifications begin to dominate over
isclassifications. This occurs at a transient flux fraction of roughly

.2 for DASH , 0.2 for NGSF , and 0.3 for SNID , we generalize this to a
ut at a flux fraction of 0.3. 

A second tempting cut is on very large transient flux fractions,
reater than 0.9. In DASH and NGSF, there are clusters of very bright,
igh flux fraction, SLSNe being falsely classified as SN Ia. However,
e choose not to pursue this cut, simply because removing SNe in

hese bins would also remove the regions with the highest density of
orrect classifications. 

In Table 6 , we present the results of our 5-class classification
chema for NGSF as we employ a variety of different photometric cuts
o the input sample. We see that using only a cut for transient flux
ractions greater than 0.3 returns similar classification results across
ost transient classes to the 21.8 transient magnitude cut employed

n Section 5.1.1 . The Ia classification performance is nearly identical,
ith the other classes best performances spread fairly evenly. Using
oth cuts results in even better performance, indeed it produces the
or all three classifiers in transient flux fraction-redshift space. Large green 
lassifications, respectively. The black crosses indicate SN Ia false positives 
ng counts with the same colour scheme. There are regions of the parameter 
high redshifts ( z > 0 . 6). We also see similar distributions for successful and 
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Figure 12. An example of a classification pipeline that could be employed by TiDES for the purpose of live classification of transients. The output samples 
of from each step in the classification pipeline are provided with their completeness and purities labelled. The samples of SNe Ia and SNe II provided after the 
second classification step represent the combination of the transients from the first classification and those from the second. Percentages of the total sample size 
are listed in brackets for each classes final sample. Classifications are performed with redshift information. 
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argest F0 . 5 -score, followed by the magnitude cut and then the flux 
raction cut. However, these performance benefits must be weighed 
gainst the large fractions of the sample removed from consideration 
nd thus not reflected in the F0 . 5 -score. 

We conclude cautiously that the best photometric cut for live 
lassification is likely to be transient transient magnitude r> 21.8, 
he middle ground between improved performance and reduction in 
ample size. Although arguments can be made for the flux fraction 
ut or both. In all three cases, the non-SN transient completeness and
urities are very poor. This is the result of low numbers (or a complete
bsence) of templates in the template banks/training samples and, 
dditionally, the fact that non-SN input spectra are just smooth-blue 
ontinua (see Appendix C ). 

.2 An example classification plan 

n this section, we propose just one possible scheme that could 
e employed by TiDES for live classification of transients. The 
ipeline is illustrated in Fig. 12 and assumes redshift information is
rovided for all classifications. The pipeline consists of two separate 
lassifications of the sample of transients. First, the full sample is
lassified by the combined DASH–NGSF classifier recommended in 
ection 5 . This produces very pure samples of SNe Ia and SNe II
lthough, particularly for the latter, the completeness is low. The SNe 
a sample produced by this first classification step has 99.9 per cent
urity and should be appropriate for use in cosmology. 
From the sample of spectra not classified by the combined 

lassifier, we now take only those with a transient magnitude brighter 
han 21.8 mag as discussed in Section 5.1.1 . These bright objects
re then reclassified with just NGSF . This produces reasonably pure 
nd complete samples of SNe Ibc and SLSNe. It also classifies a
ew additional SNe Ia and SNe II which can be combined with the
xisting samples to increase their completeness at the cost of their
urities. The only class with poor results is the non-SN transients.
ere, we only classify 4 per cent correctly and over 95 per cent of

he resulting sample is contamination from other classes. This is an
ssue with NGSF ’s template bank and the absence of such spectra
rom DASH ’s training set. When considered in full, the classification
ipeline leaves just over a quarter of transients unclassified. 
This is a reasonably successful classification. It outperforms any 

ndividual spectroscopic classifier that we have tested in this work 
n regards to purity. This classification scheme obtains a very pure
Ne Ia sample for cosmology in addition to producing classification 
ompleteness and purities in non-SN Ia classes that are suitable for
ive transient classification. See Fig. 12 for the completeness and 
urity of each class after each step of the classification pipeline. 
We note that this classification pipeline has a higher F0 . 5 -score than

GSF . However, the choice of β in equation ( 8 ) allows for greater
mportance to be placed on completeness rather than purity. The F -
cores for several values of β across several classification schemes 
re presented in Table 7 . We can see that while NGSF individually
erforms best in F1 - and F2 -scores, when the score is weighted to
avour completeness ( β > 1, the various versions of the classification
ipeline presented in this section have the highest score when β = 0 . 5
nd purity is weighted more heavily. In fact, at even lower values of
≤ 0 . 1, the combined DASH–NGSF classifier would have the best

core. As a result, it is hard to objectively state the superior classifier,
t will depend on the objectives of a particular study. 

Fortunately, there is significant room for fine-tuning to specific 
cience cases. For example, replacing the cut on transient magnitude 
o the cut on transient flux fraction as discussed in Section 5.1.2 ,
he pipeline will produce samples with higher completeness at the 
MNRAS 543, 247–272 (2025)



266 A. Milligan et al.

M

Table 7. The F0 . 5 -, F1 -, and F2 -scores of several classifiers mentioned 
throughout this paper. Each choice of β indicates a different priority in the 
classifier. Smaller β-values increasingly weight the F -score towards good 
purity results, while increasingly large values instead weight in favour of 
completeness. β-values of 0.5 and 2 and used by convention. The largest 
value(s) in each column are in bold. 

Classifier F0 . 5 F1 F2 

Pipeline: 0.830 ± 0.002 0.757 ± 0.002 0.698 ± 0.003 
Mag. cut 

Pipeline: 0.831 ± 0.003 0.773 ± 0.003 0.726 ± 0.003 
Flux frac. cut 

DASH–NGSF only 0.757 ± 0.004 0.645 ± 0.005 0.566 ± 0.004 

NGSF only 0.814 ± 0.004 0.786 ± 0.004 0.765 ± 0.004 
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ost of purity. Additionally, the percentage of unclassified objects
rops to just 18 per cent. In this case, the SLSN purity drops to
round 65 per cent, but this is compensated by an completeness of
ver 80 per cent. 

Additional cuts from photometric information can be added
o either stage of the pipeline to increase purity at the cost of
ompleteness. Different cuts than those discussed here can be used,
hich will affect each class differently, allowing for parties interested

n specific SNe classes to be specific in their classification. 
The final advantage of such a classification model is that it is

ersatile and easily communicated to the community. By providing
nly the class from the 5-class output probabilities from each
lassifier, the r-band magnitude of the transient and host near time of
bservation, and the redshift of the system, it would be possible for
embers of the community to adjust the transient sample selected

o suit their specific science requirements by varying classifiers or
robability thresholds. 

.2.1 Comparison to photometric classification results 

n this subsection, we compare three recent photometric classification
apers surrounding a recent photometric classifier and its use with
he DES (Möller et al. 2022 ). 

Möller & de Boissière ( 2020 ) present the photometric transient
lassifier SUPERNNOVA classifying simulated light curves with spec-
roscopic redshift information and incomplete light curve informa-
ion. Additionally, Möller et al. ( 2022 , 2024 ) present SUPERNNOVA

lassification results on real light curves with and without host
edshifts, respectively. 

Specifically, Möller et al. ( 2024 ) present the binary classification
f DES 5-yr data release SNe without any redshift information
rovided as a prior. When the light curves of transients being fit
ithout redshifts are trimmed to only include photometry up to
eak brightness, SUPERNNOVA produces a binary accuracy, a Ia
ompleteness, and a Ia purity of 90.46 per cent, 92.49 per cent, and
1.93 per cent, respectively. By comparison, if operated as a binary
lassifier without redshift, our classification plan from Section 5.2
roduces a binary accuracy, a Ia completeness and a Ia purity of
5.6 ± 0.4 per cent, 44.5 ± 0.6 per cent, and 94.4 ± 0.3 per cent.
dditionally, we can consider only the high-confidence SN Ia sample
roduced by the combined NGSF–DASH classifier to improve the SN
a purity to 99.5 ± 0.1 per cent at the cost of reducing completeness
o just 36.4 ± 0.6 per cent. 

As seen in Table 3 , NGSF has significant performance loss when
edshift information is not provided. As such, the binary accuracy, SN
NRAS 543, 247–272 (2025)
a completeness and purity can be improved to 91.4 ± 0.4 per cent,
5.6 ± 0.6 per cent, and 95.3 ± 0.3 per cent by replacing the DASH–
GSF classification step with an equivalent DASH–SNID classification.
owever, this does come at the cost of worse performance in the
-class mode of operation. 
Möller et al. ( 2022 ) also apply SUPERNNOVA to the photometric

ample produced by the DES 5-yr data release. This produces a
osmologically useful sample of 1484 SNe Ia with spectroscopic
edshifts. The predicted completeness and purity of the sample are
8.51 per cent and 97.73 per cent, respectively. Again, we consider
oth the high-confidence SN Ia sample and the larger, less confident,
N Ia sample produced by our classification pipeline. Now with
edshift priors, the less confident sample has an completeness of 76.3

0.4 per cent and purity of 99.0 ± 0.1 per cent. We can sacrifice
ome completeness to improve purity and use the high confidence
N Ia sample produced by the combined DASH–NGSF classifier. This

ncreases purity to > 99.9 per cent with completeness just under
0 per cent. Our classification plan produces an SNe Ia sample with
 percentage contamination that is more than a factor of 10 lower,
t the cost of lower completeness and accuracy, than SUPERNNOVA .
his is true whether redshift information is available or not. 
While most photometric classifiers function purely in a binary

SN Ia versus non-SN Ia) schema and with complete light curves,
n Möller & de Boissière ( 2020 ), SUPERNNOVA reports results using
ernary and seven-way classification schema, similar to our 5-class
chema. 

SUPERNNOVA reports an accuracy of 77.8 per cent for its ternary
chema (SNe Ia, Ibc, and II) and 64.2 per cent for the seven-way
lassification schema (SNe Ia, IIP, IIn, IIL1, IIL2, Ib, and Ic). In each
ase, these are the accuracies expected from light curves consisting,
n average, of 2.4 distinct nights of multicolour observations up to 2 d
efore peak brightness. These percentages improve to 81.5 per cent
nd 69.8 per cent for an average of 3.1 distinct nights of multicolour
bservations up to 2 d after peak brightness. All classifications also
ake use of spectroscopic redshifts. 
For comparison our example pipeline, in the 5-class schema (SNe

a, Ibc, II, SL, and non-SNe), produces a comparable classification
ccuracy of 90.1 ± 0.2 per cent. Additionally, if we consider only SNe
a, Ibc, and II to mimic the ternary schema, we obtain an accuracy
f 93.2 ± 0.3 per cent. In both cases, we do not consider unclassified
pectra in our calculation of the accuracy. In the ternary scheme,
on-SN transient and SLSN outputs are considered unclassified. 
From Frohmaier et al. ( 2025 ), the requirements to flag a transient

or spectroscopic follow-up are three griz detections in two distinct
ights, with the added requirement that at least one of these detections
e brighter than 22.5 mag. We also assume spectroscopic redshifts
re available. Our use of spectroscopy produces a roughly 15 per cent
mprovement on the accuracies from photometry with similarly
ncomplete light curves. 

 C O N C L U S I O N S  

n this paper, we set out to determine whether the classification of
ransients discovered by 4MOST–TiDES can be automated using one
r more spectroscopic transient classifiers. We want to know which
lassifier(s) are the best from a live classification and cosmological
oint of view. To do this, we simulated realistic blended spectra using
re-existing simulations and the 4MOST ETC and classified them
sing DASH, NGSF, and SNID . We place a focus on classification purity
ue to the large sample sizes produced by TiDES, and employ the
0 . 5 -score as our purity-weighted FoM. 
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The classification performances of DASH , NGSF , and SNID are 
eaker than those reported in their original papers. This is the result
f different quality data and fainter SNe, alongside significant host 
ontamination. We find that, individually, NGSF produces the best 
0 . 5 -score for known redshift classifications, although its perfor- 
ance loss is across all transient classes large if redshift information 

annot be provided. None of the individual classifiers were robust 
nough to recommend their use for automated classification. 

We find that the purities in SNe Ia can be greatly improved by
sing several classifiers at once and requiring an agreement between 
hem on each classification. This is costly for transient completeness, 
ut with the benefit of having vastly reduced contamination in the 
utput sample. We get good results from a combination of DASH and
GSF , with SNe Ia completeness of 69 . 4 ± 0 . 5 per cent and purity
f 99 . 94 ± 0 . 03. Purity can be marginally improved by including
NID in the combined classifier, but at the cost of a much reduced
ompleteness. 

This allows for the automation of SNe Ia classification and the 
roduction of good cosmology samples. However, it alone does not 
ead to a solution for general automated classification for TiDES. 
he combined DASH–NGSF classifier struggles to classify SNe Ibc 
nd SNe II with a high completeness, although what it does classify
s quite pure. It is incapable of classifying SLSNe and non-SN 

ransients, as DASH , by default, has not been trained to classify them.
We investigated a variety of photometric cuts that could be applied 

o our data to improve the resulting transient classifications for 
ndividual classifiers. We found that only classifying transients with 
-band magnitudes brighter than 21.8 could significantly improve 
lassification purity across all transient classes, but at the cost 
f classification completeness. Similar results can be obtained by 
nly classifying objects for which SNe flux comprises more than 
0 per cent of the flux within the observing 4MOST fibre. 
We present an example classification plan in Section 5.2 . We 

mphasize that such a classification pipeline is easily fine-tuned to 
pecific science cases and conclude it is viable for live automated 
lassification and these modifications require only the classifier out- 
uts and some photometric information to be performed. The specific 
lassification pipeline present in this paper outperforms the F0 . 5 - 
cores of all combinations of one, two, or three classifiers. In Table 7 ,
e indicate how one might choose a different classifier than our 
ipeline depending on whether the purity of the sample or the com-
leteness is considered most important for particular research goals. 
We have demonstrated the capacity of an example classification 

ipeline to produce a very high purity SN Ia sample at the cost
f completeness, and a sample with far higher completeness with 
ower purity. A future step in this work will be to optimize the
lassification scheme via end-to-end cosmological simulations, in 
rder to show which sample best constrains the cosmology and 
hich combination of classifiers and photometric cuts minimize the 
ncertainty on derived cosmological parameters. 
Importantly, it is currently unclear to what extent 4MOST–TiDES 

ill be able to obtain redshift information from host galaxies to 
e used in transient classification. The change in completeness 
nd purities is significant between known and unknown redshifts 
nd represents perhaps the largest uncertainty in the results of this
aper. Work is currently underway investigating how consistently 
 redshift can be derived from features in blended host–transient 
pectra. Even in the case that live spectroscopic redshifts cannot be 
btained from hosts, we are optimistic that it will be possible to
btain some host redshifts from legacy surveys such as the Dark 
nergy Spectroscopic Instrument (DESI) survey (Dey et al. 2019 ) 
nd Sloan Digital Sky Survey (SDSS) (York et al. 200 0; Wolf et al.
016 ; Almeida et al. 2023 ). Host photo- zs also present a promising
iddle-ground between spectroscopic and unknown redshifts. 
Finally, it is likely to be possible to bolster the spectroscopically

onfirmed transient samples with photometrically classified tran- 
ients once full light-curve data are produced by LSST. 
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PPENDI X  A :  SNE  IA  FITS  A N D  

O N TA M I NA N T  O R I G I N S  

ig. A1 shows how the SN Ia input spectra are being fit by each
lassifier, based on the subclass of the best-fitting template. In each
ase, the green bars indicate the good SN Ia classification bins. Non-
N Ia bars of various colours indicate all of the misclassifications. In
ll three classifiers, we investigate we see the same effects of moving
rom using redshift priors to not. 

There is a shift in successfully classified SNe Ia from the Ia-
orm class into other SN Ia and SN Ia-pec subclasses. Additionally,
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Figure A1. Graphical representation of how SN Ia input spectra are being classified by each classifier with (left column) and without (right column) redshift 
priors. The subclass of the best-fitting templates is assumed as the subclass of the output. Each histogram lists only the subclasses with at least one output 
classification. SN Ia subclasses are green, Ibc are blue, II are red, SLSNe are purple, non-SNe are black, and ‘other’ classes (Ia-pec, non-transients) are grey 
(see also the subclass names on the x-axis). The shift from Ia-norm to other SNe Ia subclasses when redshift priors are removed can be seen. 
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M

Figure A2. The distribution of true classifications for objects classified as Ia above the quality threshold to qualify as contaminant results. Input classes are 
those from the 5-class classification schema. The number of contaminants for each classifier-redshift prior combination are listed on each subplot. The number 
of FPs increases significantly without redshift priors for NGSF and SNID . SLSNe are often over-represented as FPs. 
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ic.ou
lassification to high redshifts by using priors resulted in many 
ontaminant Ia classifications. When redshift priors are removed, 
LSNe are instead misclassified as other non-SN Ia transients or as
Ne Ia-pec. This is a good change from the point of view of SN Ia
ample purity. 

While we see the contaminant numbers produced by DASH 

aintained when removing redshift knowledge, NGSF and SNID both 
roduce double or more contaminant SN Ia classifications. NGSF 

nd DASH both classify predominantly SNe II as contaminant SNe 
a when redshift priors are removed, a significant change from 

he ratio of classes that produce contaminants with redshift priors. 
NID ’s distribution of contaminants remains almost identical between 
egimes, although again SNe II are the largest contributor. 

Type II SNe are the largest non-SN Ia component of the sample and 
s expected always dominate the contaminant distribution. In fact, 
n nearly all cases, the relative number of contaminants originating 
rom the different input non-SN Ia classes at least vaguely mimics 
heir relative abundance in the full sample, slightly shifted by each 
lassifier’s ability to classify different classes. Only Fig. A2 (b) bucks 
his trend, producing a large overabundance of SN II contaminant 

lassifications. 

igure B1. Four individual classification results from NGSF . Top left: a good class
f a highly contaminated SN Ia. Bottom left: a misclassification of a bright SN Ia 
n SN Ia false positive where a low contamination SN Ib is misinterpreted as an SN
ith relevant information in the legend. The best-fitting template spectrum is plott
ost galaxy fraction of NGSF ’s best-fitting template is included in the legend with th
PPENDI X  B:  EXAMPLE  CLASSI FI CATIO N  

n this appendix we provide some individual classifications as con- 
ext. We focus on several of the most common types of classification
nd misclassification. All presented classifications are from NGSF 

s it is the most prevalent in our suggested classification plan in
ection 5.2 . 
Fig. B1 shows four attempted classifications with NGSF . Fig. B1 (a)

hows a successful SN Ia classification. We find that noisy spectra,
here the transient is faint, or spectra with significant host contami-
ation are often hard to classify as would be expected. This is shown
n Fig. B1 (b). We also see an overabundance of misclassifications
rom spectra with the Sc host template. These are often the result of
he classifier misinterpreting the strong galaxy emission as narrow 

eatures from the transient. This leads to a classifications of SN Ia-
sm and other narrow emission transient subclasses like Ibn, IIn, 
tc. This is shown in Fig. B1 (c). False positive SN Ia classifications
an arise from many effects. Shown in Fig. B1 (d), we have a low
ost contamination SN Ib being misinterpreted as a Ia-norm with 
ignificant host contamination. This suggests that there is degeneracy 
etween SN subclass and host contamination levels. 
MNRAS 543, 247–272 (2025)

ification of a bright, low contamination SN Ia. Top right: a misclassification 
due to narrow galaxy features from its Sc host. Bottom right: an example of 
 Ia with high contamination. In each case, the input is plotted in red (noisy) 

ed in green and the best-fitting transient class is provided in the legend. The 
e best fit. 
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MNRAS 543, 247–272 (2025)

Figure C1. Example spectra for each distinct input transient class. Spectra 
such as these were used as the starting point to generate the simulated spectra 
in Section 3 . 
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PPENDI X  C :  EXAMPLE  SPECTRA  

ig. C1 shows an example of each of the twelve types of inputs
ransient spectra used in our blended spectra simulations. The
pectra belong to the transient classes of: Ia-norm, Ia 91bg-like
faint, fast-declining), Iax (faint, progenitor-preserving white dwarf
hermonuclear detonations), Ib, Ic, IIb, Ic-BL, II, IIn (all core-
ollapse SNe), SLSNe (incredibly bright transients), TDEs (star
isrupted by black hole tidal forces), and CaRTs (SN Ia-related
vents, rich in calcium). 

The spectra presented here are arbitrarily scaled and flux-shifted
or presentation. No simulated fibre effects or observational noise
rom the 4MOST ETC has been added. As noted in Section 3 ,
he primary purpose of the spectra is for simulating realistic light-
urve information for LSST rather than accurately portraying the
pectra of a given transient class. Rarely observed transient classes,
uch as TDEs and CaRTs are essential featureless blue-dominated
ontinua, combined with a limited presence in classifier training
amples/template banks, is likely partially responsible for their
ncredibly poor classification results. 
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