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ABSTRACT

With the 4-metre Multi-Object Spectroscopic Telescope (4MOST) expected to provide an influx of transient spectra when
it begins observations in early 2026 we consider the potential for real-time classification of these spectra. We investigate
three extant spectroscopic transient classifiers: the Deep Automated Supernova and Host classifier (DASH), Next Generation
SuperFit (NGSF), and SuperNova IDentification (SNID), with a focus on comparing the completeness and purity of the transient
samples they produce. We manually simulate fibre losses critical for accurately determining host contamination and use the
4MOST Exposure Time Calculator to produce realistic, 4MOST-like, host-galaxy contaminated spectra. We investigate the
three classifiers individually and in all possible combinations. We find that a combination of DASH and NGSF can produce a
supernova (SN) Ia sample with a purity of 99.9 percent, while successfully classifying 70 percent of SNe Ia. However, it
struggles to classify non-SN Ia transients. We investigate photometric cuts to transient magnitude and the transient’s fraction of
total fibre flux, finding that both can be used to improve non-SN Ia transient classification completeness by 8—44 per cent with
SNe Ibc benefitting the most and superluminous (SL) SNe the least. Finally, we present an example classification plan for live
classification and the predicted purities and completeness across five transient classes: Ia, Ibc, I, SL, and non-SN transients. We
find that it is possible to classify 75 per cent of input spectra with >70 per cent purity in all classes except non-SN transients.
Precise values can be varied using different classifiers and photometric cuts to suit the needs of a given study.

Key words: instrumentation: spectrographs —techniques: spectroscopic —software: machine learning — software: simulations —
transients: supernovae.

1 INTRODUCTION

Since the discovery of the accelerating expansion of the universe
a quarter of a century ago (Riess et al. 1998; Perlmutter et al.
1999), significant efforts have been made to investigate the enigmatic
properties of dark energy. Many probes into the nature of dark energy
exist, including weak lensing and cosmic microwave background
measurements (Wittman et al. 2000; Planck Collaboration 1 2014).

* E-mail: a.milligan@lancaster.ac.uk
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However, one of the most successful at providing strong constraints
on cosmological models in the late-time universe is type la supernova
(SN) cosmology. Understood to be the detonation of white dwarfs
around the Chandrasekhar mass limit, SNe Ia detonate at predictable
luminosities and as such act as standardizable candles that let us
measure the distance to objects over large swathes of cosmic time.
The original discovery of accelerating expansion was performed
with a sample of only 42 high-redshift SNe Ia (Riess et al. 1998;
Perlmutter et al. 1999). Since then, we have seen a two order of
magnitude increase in the number of spectroscopically confirmed
SNe Ia. For example, recently the Zwicky Transient Facility have
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produced their second data release sample (ZTF DR2) (Rigault et al.
2025) which contains 2677 SN Ia with sufficiently high-quality light
curves for use in cosmological fitting. Similarly, the recent Dark
Energy Survey (DES) cosmology results (DES Collaboration 2024)
use a sample of 1635 SN Ia, derived from their full 5-yr data release.

The earliest samples of transients were separated into two classes:
SNe I and SNe II, based on the presence or absence of Hydrogen
features in their spectra (Popper 1937; Minkowski 1979). In the
years since, these classes have been further subdivided and many
new subclasses (Filippenko 1997) and exotic variants have been
discovered and suggested, alongside non-SN transients like tidal
disruption events (TDEs) and fast blue optical transients (FBOTsS,
Hills 1975; Drout et al. 2014).

Most optical transients are discovered in photometric surveys. As
the number of transients has increased, it has become unfeasible
to allocate time for spectroscopic follow-up on each transient indi-
vidually. Recent photometric classifiers can perform high accuracy
classification on transients beyond just classifying them as SN
Ia or non-SN Ia (Charnock & Moss 2017; Muthukrishna et al.
2019a; Boone 2019, 2021; Moller & de Boissiere 2020; Pimentel,
Estévez & Forster 2023; Sheng et al. 2024; Cabrera-Vives et al.
2024; Shah et al. 2025). Additionally, it has been shown that they are
capable of classifying transients based on incomplete light curves
(Moller & de Boissiere 2020; Qu & Sako 2022; Gagliano et al.
2023; Gomez et al. 2023; de Soto et al. 2024). Recent photometric
analyses have indicated that SN Ia samples obtained with photometric
classifications produce contamination levels that either still allow for
robust estimations of cosmological parameters or are even negligible
compared to other sources of uncertainty, such as SN Ia astrophysics
and how we model the correlation between SN Ia intrinsic properties
and host-galaxy properties and how these intrinsic properties evolve
with redshift (Jones et al. 2018, 2019; Vincenzi et al. 2024).

While photometric classification is possible, it has several distinct
disadvantages. The definitions of SN subclasses are based primarily
by spectral features, so spectroscopic classification removes ambi-
guity, although there are also photometrically defined classifications.
For example, SNe IIn are defined spectroscopically by narrow emis-
sion lines (Schlegel 1990), while SNe IIP are defined photometrically
by a long ‘plateau’ phase of constant brightness in their light curve
(Filippenko 1997). Further, when attempting to constrain cosmology,
photometrically classified SN Ia samples often require the addition
of spectroscopic information, such as spectroscopically determined
host-galaxy redshifts. This is the case in Vincenzi et al. (2024), where
1635 photometrically classified SNe Ia are used for cosmology, the
largest single-survey SN Ia sample. Additionally, Vincenzi et al.
(2024) use a small sample of spectroscopically classified SNe Ia to
constrain the cosmological fitting (see also DES Collaboration 2024).
Beyond this, to match the high purities of spectroscopically classified
transient samples, photometric classification is usually performed in
abinary scheme (SN Ia versus non-SN Ia) or with very broad transient
classes (Fraga et al. 2024).

We will, therefore, test the performance of spectroscopic classi-
fiers. Visual classification is made difficult by the overlap of various
transient subclasses in parameter space and ambiguity in subclass
definitions. This, alongside the increasing number of transients being
observed spectroscopically, means that it is increasingly required to
automate the process of spectroscopic classification. We seek to in-
vestigate the potential to do this with regards to the upcoming 4AMOST
(4-metre Multi-Object Spectroscopic Telescope) instrument.

The 4MOST (de Jong et al. 2019) is a high-multiplex, fibre-
fed spectrographic survey facility in the final stages of assembly
before commissioning. It is expected that it will begin taking data
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in early 2026. There are many varied surveys within the 4MOST
consortium, but the survey concerned with transients is the Time
Domain Extragalactic Survey (TiDES, Swann et al. 2019; Frohmaier
et al. 2025).

With the upcoming Legacy Survey of Space and Time (LSST)
being performed from the Vera C. Rubin Observatory, there will
be unprecedented numbers of transients discovered photometrically
(Ivezi¢ et al. 2019). It is expected that any given pointing of
4MOST will contain a number of live photometric transients and
the host galaxies of faded transients, which can then be followed-up
with TiDES’s allotted fibres. Over a period of 5 yr, TiDES
expects to observe 30000 live transients and perform follow-up
on some 200000 host galaxies (these numbers are dependent on
the survey schedules of LSST and 4MOST, both of which are
still under development). This approach has already seen success
in the Australian Dark Energy Survey (OzDES) performed using
the AAOmega spectrograph on the Anglo-Australian Telescope
(Saunders et al. 2004; Lidman et al. 2020).

Two of TiDES science goals are to provide live classification of
transients accessible to the general scientific community and the
classification of a large, pure, cosmological SN Ia sample. As we
approach the start of the 4MOST survey in early 2026, uncertainty
remains as to how the TiDES transient spectra will be classified and
which existing spectroscopic classifiers, if any, are best suited to
these two TiDES science goals. Our hope is to provide clarity via
the simulation of transient spectra that are as close to what will be
observed as possible, including the fact that transient flux observed
by a 4MOST fibre will be blended with the flux of its host galaxy.
These realistic, blended, simulated 4MOST spectra will allow us
to compare the output of various spectroscopic classifiers to known
true classifications (see also Kim et al. 2024, which makes use of real
spectra in its analysis). Furthermore, we can assess the dependence
of classification performance on parameters such as the brightness of
the SN and the fraction of host light contaminating the spectrum, and
ultimately use this information to outline a plan for the classification
of large numbers of TiDES spectra.

There are two main types of automated, spectroscopic classifiers.
First, there are template matching programs (for example Duan et al.
2009; Blondin & Tonry 2011; Goldwasser et al. 2022). These, in
essence, compare an input spectrum to a bank of transients of known
classification. However, there is significant variation in methodology.
For example, Howell et al. (2005) bin the input spectrum to match the
templates and then calculate a x? value, accounting for contaminant
host flux. Blondin & Tonry (2011) instead cross-correlate input and
template in redshift, and quantifies the best-fitting template by the
height of the cross-correlation peak.

More recent years have seen the rise of the second type: machine-
learning methods (for example Harutyunyan et al. 2008; Muthukr-
ishna, Parkinson & Tucker 2019b; Vogl et al. 2020; Fremling et al.
2021; Sharma et al. 2025). In this case, a classifier is provided
a training set of templates of known classification and redshift.
The classifier ‘learns’ the features present in various transient
classifications and assigns them weights. The presence or not of
these learned features is then used to determine a pseudo-probability
of an input spectrum belonging to a given classification, which is
then used to rank output classifications.

In this paper, we investigate two template-matching classifiers
and one machine-learning classifier. More information on the
spectroscopic transient classifiers we investigate can be found in
Sections 4.1.1-4.1.3. These classifiers were chosen as they are
publicly available, widely used and easily obtainable for current
and upcoming surveys. Machine-learning algorithms are far faster to
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perform classifications once the lengthy training process is complete,
but all classifiers as they are used in this work are expected to scale
to TiDES.

Hence, this paper is organized as follows. First, in Section 2,
we describe the simulations from which we draw our transient and
host properties. Also in this section we will discuss some transient
templates used in simulating our blended spectra. In Section 3, we
will discuss the construction of blended host—transient spectra and the
subsequent simulation of 4MOST observations using an Exposure
Time Calculator (ETC). Then, in Section 4, we investigate the capa-
bilities of three individual spectroscopic transient classifiers. We go
over their function and how they were tested. Their individual perfor-
mances are presented in Sections 4.3 and 4.5. We investigate the com-
bination of classifiers in Section 5. We first show the results from a
simple combination of classifiers and then potential photometric cuts
for improving classification in Section 5.1. Finally, in Section 5.2,
we present a potential classification pipeline for live classification
and SN Ia cosmology. Our conclusions are presented in Section 6.

2 DATA

2.1 Survey simulations

Our objective is to test spectroscopic transient classifiers such that
we understand under what conditions they will succeed or fail in
correctly determining the transient classes of 4MOST-like spectra.
We must simulate a set of spectra that are a good approximation to
the real ones observed by the instrument. The specific procedure for
the creation of individual spectra is covered more in Section 3, but we
first discuss how we obtain a set of realistic properties for transients
and their hosts. These properties can then be used to generate each
spectrum, which in turn can be used to test each of the pre-existing
transient classifiers. The results of these classifications can then be
compared to the input spectrum’s ‘true’ properties as a means to
quantify the success of a given classifier.

We make use of two pre-existing, sequential simulations to
produce a realistic sample of blended host-transient spectra. The
first is a simulation of a population of transients and hosts performed
in the SUpernova ANAlysis package (SNANA, Kessler et al. 2009).
SNANA uses known intrinsic properties of various transient classes in
combination with the survey strategy of the LSST survey to generate
an LSST-specific transient population (Frohmaier et al. 2025). This
simulation produces a population of transient and host objects. From
them, we obtain the intrinsic physical properties of host-transient
systems. We obtain system redshift, host—transient separation, host
r-band magnitude, and transient template information. Throughout
this paper, magnitudes are calculated using the LSST r-band filter
and are reported in the AB magnitude system (Oke & Gunn 1983).
The process of creating simulated spectra is discussed in more detail
in Section 3.

The second simulation is a simulation of the 4MOST survey
operation of the full 5 yr of observations of the southern sky.
Observation targets are taken from the simulated survey input
catalogs and their exposure times are computed using the 4MOST
ETC. The simulation is carried out with the 4AMOST facility simulator
(4FS) and makes use of the simulation code SELFIE. More detail about
the SELFIE algorithm can be found in Tempel et al. (2020a, b).

This simulation provides further observational properties for each
transient. Most importantly, from it we receive a list of all of the
transients that were observed. Generally, any transient that is both
located within 4MOST’s field of view during a visit, and is estimated
to require less exposure time than is available during the full visit
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to meet the TiDES spectral success criterion (average SNR > 3 in
15 A bins in the wavelength range of 4500-8000 A, where SNR is
the signal-to-noise ratio) will be observed. However, some are not
observed due to the limited number of fibres and the demands of
other subsurveys.

As the simulations have become more sophisticated, different
versions of the input catalogue have been created. Each has had many
different simulations of survey operations performed on it. We find
that while the individual objects observed may change dramatically
between simulations, the bulk properties of the observed transients
are consistent. The specific simulation used has little effect on our
final results.

The 4MOST observing schedule is currently expected to visit
each sky position a small number of times during the 5-yr survey. The
survey footprint of 4AMOST essentially covers the whole extragalactic
sky in the Southern hemisphere. Each visit to a given position will
consist of several exposures (most often 2 or 3) of approximately 20
min. The majority of transients (>93 per cent) are observed a single
time over the course of the survey (Frohmaier et al. 2025).

The r-band magnitude, redshift, and SN flux fraction distributions
from the SNANA population simulation of the transients and their
hosts from the SNANA population simulation are shown in Fig. 1.
The total number of objects in the sample is on the order of 10°.
We see that the sample is heavily biased to z < 0.6 and in fact the
more distant objects are all superluminous SNe (SLSNe). We also see
that, before any correction for fibre sizes, when observing extended
objects (see Section 3.3), there is a tendency for host galaxies to have
brighter magnitudes than transients.

2.2 Simulated spectra

In addition to realistic physical and observational properties for use in
creating simulated 4MOST-like spectra, we require a set of spectral
templates of both transients and hosts. The transient templates are
drawn from those used in the SNANA population simulations. The
included SN classes are Ia, Ib, Ic, II, IIn, IIb, and SLSNe. Most SNe
Ia input templates are of the la-norm subclass, generated using the
Spectral Adaptive Light-curve Template (SALT2) model (Guy et al.
2007), although a small fraction are SNe Iax and SNe Ia 91bg-like
(Kessler et al. 2019). Additionally, there are TDEs, and calcium-
rich transient (CaRT) objects. These templates are spectral energy
distributions (SEDs) intended to simulate realistic photometry. As a
result, some of the spectra, especially SLSNe and non-SN transient,
are highly smoothed and lacking in spectroscopic features. The full
list of template sources is provided in Table 1. Examples of SEDs
used in simulated blended spectra are shown in Appendix C.

The galaxy templates from Kinney et al. (1996) are assigned as
hosts. The subclasses of galaxy available are elliptical, SO, Sa, Sb,
and Sc and a set of starburst templates with a variety of E(B —V)
values (see Kinney et al. 1996, Mannucci et al. 2001, for additional
information). We scale our galaxy templates using the r-band host
magnitudes from the simulation.

For each transient we assign a host-galaxy morphology to match
the probability distribution listed in Hakobyan et al. (2012) in their
table 5. For Sd and Irregular galaxies for which we have no templates,
we assign a random choice between Sb and Sc host spectra (the two
most common host morphologies). In cases where Hakobyan et al.
(2012) list the host as Morphology A/Morphology B, we choose
randomly between A and B. We always assign SLSNe inputs an Sc-
type host spectrum since research suggests that SLSNe are found in
faint, blue, star-forming galaxies, often with extreme emission lines
(Leloudas et al. 2015; Neill et al. 2011). TDEs and CaRTs occupy
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Figure 1. (a) Host galaxy redshift and corresponding transient magnitudes for observed objects in the SELFIE survey simulation. The values are obtained directly
from the SNANA population simulation and can be considered the truth values for a given object. The y-axis on the attached histograms displays the total number
of objects per bin with a logarithmic scale. (b) As in (a), but with the fraction of fibre flux from the transient on the y-axis.

Table 1. The relative percentages of each transient class present in our full
sample of blended spectra alongside the sources for the spectral templates.
Templates can be found in the SNANA public data as part of PLASTICC
(Kessler et al. 2019) and ELASTICC (Narayan & ELAsTiCC Team 2023).

Percentage Class Source

60.1 SNe Ia Guy et al. (2007), Hounsell et al. (2018)
0.9 91bg-like Kessler et al. (2019)
1.1 SNe Tax Kessler et al. (2019)
1.9 SNe Ib Vincenzi et al. (2019)
1.4 SNe Ic Vincenzi et al. (2019)
13.5 SNe II Vincenzi et al. (2019)
6.5 SNe IIn Vincenzi et al. (2019)
4.0 SNe IIb Vincenzi et al. (2019)
9.4 SLSNe Kessler et al. (2019)
0.7 TDE Kessler et al. (2019)
0.4 CaRT Kessler et al. (2019)

such a small percentage of our transients, that we assign them a
host type at random. However, we note that there is evidence that
TDEs (Wang et al. 2024) and CaRTs (Dong et al. 2022) do show
trends in their host galaxy morphologies, but including these in our
simulations would have negligible impact in our results.

In order to estimate uncertainties in our results, we split the
full sample of transients into samples of 1000 transients. This
subsampling is performed randomly, but without resampling (i.e.
no transient appears in more than one subsample). For a given
parameter, results are obtained by reporting the mean value across all
subsamples. The uncertainty on our results are reported in the form
of the standard error of the mean.

3 CREATING BLENDED SPECTRA

3.1 The 4MOST Exposure Time Calculator

The 4MOST ETC PYTHON code package' allows one to simulate
an observation by the 4MOST instrument. For every simulated
observation, we must assign a brightness within a specific filter or

IWe use V2.3.1 of the PYTHON-based ETC: see QMOSTETC link to
documentation.
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over a wavelength range. A variety of pre-existing instrument filters
are provided.

The code produces a ‘raw’ or Level 0 (LO) output and a Level
1 (L1) output. Both are in the form of extracted 1D spectra (flux
and wavelength for each pixel along the spectrum). The raw output
features 4MOST’s three spectrograph arms not yet combined and
the object flux reported in Analog-to-Digital Units (ADUs). The
L1 output is what we use. L1 spectra are generated by being
passed through a simulation of the Quality Control 1 (QC1) pipeline
and resemble the data products that will be produced by the real
instrument. In L1 output, the ADUs of the raw output are converted
to a flux observed at the telescope entrance using corrections for the
wavelength dependence of the instrument’s sensitivity.

The simulation process is shown in Fig. 2. There are still telluric
absorption bands present in the L1 output which are added as part of
the ETC model. There are five main features with wavelength ranges
of 6250-6350, 6860-6940, 7150-7350, 7550-7700, and 8100-8400
A. These extra features could be misinterpreted by classifiers as being
generated by the transient and lead to misclassifications. We account
for this by creating a transmission spectrum for each observation.
We do this on the assumption that real data will have these features
corrected for using 4MOST observations of featureless calibration
stars.

We consider the host and transient separately before adding them
linearly to form the final spectrum that is input into the ETC for a
simulated observation. The magnitudes of both objects are known
from the population simulation, but to account for seeing conditions
and a finite fibre size on extended galaxies we must adjust these
magnitudes. The processes for doing so for SNe and galaxies are
shown in detail in Sections 3.2 and 3.3, respectively.

3.2 Transient fibre flux

We assume the transient can be approximated as a point source and
that the 4MOST fibre will be placed centrally on the transient. We
simulate the fraction of transient flux through a 4MOST fibre using a
grid of pixels with a central pixel containing the full transient flux. A
Gaussian convolution is then applied to the pixel grid. The standard
deviation, o, of the Gaussian convolution is determined from the
full-width half-maximum (FWHM) of the seeing conditions using
the expression FWHM = 2+/21n20o.
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Figure 2. The stages of simulating an observation with the 4AMOST ETC code. In this example, a 21st magnitude SN Ia and a 21st magnitude Sc-type host spectra

are added linearly. Top panel: template SN, host, and combined spectra. All spectra are deredshifted. The flux is measured in units of erg cm™2 s~ A x 1071,
This is the input to the ETC. Middle panel: LO output of the ETC, showing the extracted spectra from the three spectrograph arms. Flux is presented in units of
e~ x 10°. Lower panel: L1 output of the ETC in which the spectra from the three arms have been joined. The result is flux-calibrated and includes a realization

of the noise. This (unbinned) L1 spectrum is what we perform classification on.

The SELFIE simulations do not record seeing conditions for each
observation. For our purposes, the seeing conditions are taken to
always have a value of 0.8 arcsec, this is similar to the average
seeing conditions found at the Paranal Observatory where 4AMOST
will be located.”

Once the Gaussian convolution has been applied, a fibre with
a 4MOST fibre diameter of 1.45 arcsec is imposed onto the pixel
grid, centred on the SN location. The flux is then summed from
the pixels with centres contained within the fibre radius. We find
that using a finer pixel grid produces a more accurate value for
fibre flux by reducing uncertainty around the fibre edge. This is
particularly important in Section 3.3 where the scale of hosts being
modelled varies and a balance must be found between accuracy and
computation time.

We are assuming a constant value for the seeing, coupled with a
constant fibre size, so we see a constant fraction of transient flux
down each fibre. The effect is that each transient appears 0.27 mag
fainter through the 4MOST fibre. This number does not require a
simulation to be determined, as it determined from the integration of
a 2D Gaussian out to some radius, but simulations are required for
simulating extended hosts of varying size as discussed in Section 3.3.

Atseeing < 0.8 arcsec, the fraction of flux down the fibre from both
transient and host is increased. Tests show that the increase is larger

2From Paranal Observatory website, https://www.eso.org/gen-fac/pubs/
astclim/paranal/seeing/?, accessed 2024 January 23.

on average for transients (as they are point sources), so we would
expect improved classification in this case. The reverse is true for
seeing > 0.8 arcsec and so we would expect worsened classification.
Simulations indicated that increasing the seeing value to a uniform
1.2 arcsec had a small, negative effect on transient classification,
but ultimately a realistic seeing distribution centred on 0.8 arcsec is
expected to have minimal effect on the overall rates of successful
transient classification.

3.3 Host fibre flux

The modelling of fibre flux from the transient’s host galaxy, an
extended object, is more complex. This method involves the dimen-
sionless distance parameter (dpy r), first used in Sako et al. (2018), in
service of assigning hosts to transients and based on similar methods
developed in Sullivan et al. (2006). The dpir is equal to the ratio
of the directional light radius (DLR) of a galaxy and its observed
separation from the transient. The DLR is the half-light radius of
the galaxy in the direction of the transient. Minimizing the dpy g for
galaxies in a crowded field indicates likely hosts for the transient.
The population simulation we draw SNANA-produced physical
properties from reports both the dp; g and the host-transient separa-
tion. Since we are only concerned with the host’s flux in the direction
of the transient for the purposes of measuring the flux through a
4MOST fibre, we can consider all galaxies in the simulation to have
circular half-light radii equal in radius to their DLRs. It should be
noted that the position of the transient is entirely based on the light
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profile of the galaxy, so that transients are more likely to be placed
in brighter regions of their hosts (Vincenzi et al. 2021).

We note that significant work has been performed investigat-
ing links between transients and their locations within their host
galaxies (see Hakobyan et al. 2016; Aramyan et al. 2016; Galbany
et al. 2018, for example). However, since the population simulation
preferentially places transients in brighter regions of their host, the
resulting spectra may only be biased towards slightly higher levels of
contamination from host flux. The effect on our results is negative,
and is expected to be negligible.

We model the intensity of the galaxy to be a Sérsic (1963)
profile and use a Sérsic index of 0.5 based on values reported in
the simulations. While this may not be completely true to life, it
represents the case with the most host flux in a blended spectrum
and the hardest case to classify. Using a larger Sérsic index causes
the average host flux in the fibre to decrease leading to less host
contamination. The Sérsic profile is dependent on the value of the
constant b, which in turn is defined by the Sérsic index. A number of
approximations for the value exist such as b, = 1.9992n — 0.3271
for 0.5 <=n <= 10 from Capaccioli (1989) and b, = 2n — % +
0.009876n from the appendices of Prugniel & Simien (1997). We
will use the latter, although both produce very similar values for
n=0.5.

The intensity profile, in terms of the Sérsic index, n, and b,, is

often expressed as:
1
=) - M
R.

where R, is the effective or half-light radius that encircles half of
the total emission of the profile. The effective intensity, /., is the
intensity at the effective radius.

To obtain the ratio of total galaxy flux to the flux transmitted
through the fibre, we need to know the value of the total flux and
the effective intensity. The total flux is obtained by integrating the
intensity profile in equation (1) which leads to the equation:

I(R) =1, exp {—bn

Fr =2.89417 I,R? ()

This gives us the total flux in terms of the effective intensity and the
effective radius which is just the DLR (for a more detailed derivation,
see Graham & Driver 2005, and references therein). We can find
the actual value of the total flux, and thus a value for the effective
intensity, from the zero-point magnitude of the AB magnitude system
and the total magnitude of the galaxy, mg, using the equation:

Fr = fy x 100ma/=29 3)

Here, fj is the zero point flux of the AB magnitude system. The
total host flux, Fr, that appears in our equations, only functions as
a scaling factor. We know the true value of ms from the population
simulation. By taking the ratio of total flux to flux in the 4MOST
fibre, the value of the total flux cancels out and so it need not be
calculated specifically. Once an arbitrary total flux is chosen we can
calculate the effective intensity, /,, using equation (2). We can then
use equations (1) and (2) to calculate the ratio between the total flux,
the flux down the fibre and thus the host’s magnitude as observed by
4MOST down its fibre.

We simulate a host’s intensity profile by creating a pixel grid and
use the Sérsic profile to determine the average intensity at each pixel.
Since we only care about the host’s light profile in the direction of
the transient, we model each host as a circle with a half-light radius
equal to the DLR.
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Figure 3. The variation in the host flux through 4MOST fibres. Each panel
presents the Sérsic profile of an example host galaxy in our sample simulated
on a pixel grid. Superimposed as a circle is the 4MOST fibre of diameter
1.45 arcsec, highlighted by the horizontal line, centred on the transient
location. The pixels that contribute to the flux seen by the fibre have their flux
set to zero in these images, so that the lost flux can be seen. Redshifts, and
host magnitude before and after accounting for fibre losses are provided.

‘We then apply a Gaussian convolution to the pixel grid to account
for atmospheric seeing. We use a 1200 x 1200 pixel grid with each
pixel set to 1 per cent of the host—transient separation, a scale where
the calculated flux fraction is invariant with small variations in pixel
size. The method is identical to that described in Section 3.2. We
centre the fibre on the transient location and calculate the fraction of
flux in the fibre. Examples of this process are shown in Fig. 3. We
see much more significant flux loss than for the SNe.

The 4MOST ETC cannot simultaneously account for both ex-
tended and point sources in a simulated observation. This is why
we account for fibre losses and seeing effects ourselves, prior to
passing the blended spectrum to the ETC. We provide the blended
spectrum as being a flat illumination source with brightness measured
in magnitudes per square arcsecond to prevent the ETC from re-
applying any observational effects like seeing.

As stated in Section 3.2, the effect on the transient magnitude is
fairly minimal. Most of the flux from the original point source still
falls within the fibre that has a diameter of roughly 2o relative to the
Gaussian convolution. For hosts, their distance, size, and separation
from their hosted transient result in significantly more variation in
the fraction of the flux that is seen by the fibre (see Fig. 3). This is a
critical effect to model. By correcting the host magnitudes for fibre
effects, we see an average increase in the host magnitude of about
3.1 mag.

This leads to a reduction in host-galaxy flux contamination in
the blended spectra. The distribution of transient fibre flux fractions
shown in Fig. 4 demonstrates that we now have more than half of
our spectra that are comprised of > 50 per cent transient flux over
host. This has significance for spectroscopic classification as will be
discussed in Section 5.1.2.

The full process used to create blended spectra as described across
Sections 2 and 3 is summarized in Fig. 5.
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Figure 4. The distribution of transient flux fractions in the fibre. The mean
value for all transients is highlighted with the dashed black line. As this
accounts for fibre losses in the host galaxy, we see that over half of all of the
spectra have more transient flux than host flux through the 4MOST fibre.

4 INDIVIDUAL CLASSIFIERS

4.1 Classifier overviews

4.1.1 DASH

DASH (Deep Automated Supernova and Host classifier) is a deep con-
volutional neural network. DASH is trained on a set of templates and
learns spectral features. Input spectra are broken down into individual
features, compared to the features in the training set and then assigned
a softmax pseudo-probability to each of its classification bins, named
so due to the softmax regression model in the final layer of the deep
learning model. The softmax probabilities only are only relative prob-
abilities for one classification bin compared to the others (Muthukr-
ishna et al. 2019b). The highest pseudo-probabilities are then pre-
sented in the DASH Generated User Interface (GUI), and a combined
softmax probability is produced by summing those of the best output
bins until one is reached that either disagrees on transient class or is
not in an adjacent phase bin. We discuss our method for converting
the softmax probability for individual classification bins into proba-
bilities for SN Ia, Ibc, etc., in Section 4.3. The softmax probability
of a classification bin is not necessarily a judgement on the quality
of the classification. If every classification bin fits very poorly, then
the best fit is not necessarily a good fit (Muthukrishna et al. 2019b).

DASH also calculates an rlap cross-correlation value for each
output classification bin as an additional flag for classification quality.
The rlap parameter was originally developed for another transient
classifier that we investigate, SNID (SuperNova [Dentification). How-
ever, we do not make use of it for DASH.

rlap is the product of the correlation scale height ratio, r, and
lap, an overlap parameter. r is defined as the ratio between the
highest normalized cross-correlation peak, /, and the root-mean-
square (RMS) error of the antisymmetric component of the cross-
correlation product o,:

! (C))

T Vs,

lap is the overlap in In(A) space between the input and template
spectra. A larger rlap value indicates more similarities between
the input spectrum being classified and the template it is being
compared to. Hence, larger rlap values indicate a better quality
classification. The machine-learning aspect of DASH returns the
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best-fitting classification bin. Then, rlap values are calculated for
each spectrum in DASH’s training sample in that classification bin.
The highest rlap produced is returned to the user, with a warning
if it less than five. Details on DASH’s template set can be found
in Muthukrishna et al. (2019b). We do not make use of rlap in
determining DASH’s classification results.

DASH has four modes of operation defined by its ability to fit or
not fit transient host galaxies and its ability to use or not use known
redshift values. We only make use of the known and unknown redshift
modes. In the unknown redshift mode, the redshift is estimated by
maximizing rlap in redshift space.

Host fitting leads to an increase in the number of output classi-
fication bins as each output now has a host class attached to each
output. This increase in output bins leads diluted softmax percentages
on outputs. However, we note that including a host-fitting step in
the classification could remove degeneracy between transient class
and redshift. Unfortunately, the host-fitting mode does not function
without redshifts provided. For this reason, we do not investigate it.

There are some concerns that must be kept in mind if DASH is to be
used as a mechanism to classify transients. For example, while DASH
is user-friendly, fast-working, and produces pure samples, it does so
somewhat at the cost of user power. Compared to SNIDor NGSF (Next
Generation SuperFit, Howell et al. 2005) the user’s options are fairly
limited. There is no front-end mechanism to pass an error function
for weighting the fit or removing wavelength ranges with known
contaminant features.

Additionally, and very importantly, the potential SN classes
available for classification are somewhat limited. DASH can classify
SNe Ia and common CC SNe like Ib/c, II, IIn, and IIP. However, no
other classes are included in its training sample and so other classes in
the population simulations such as SLSNe, TDEs, and CaRT cannot
be classified. They are either ‘other’ results or contaminants. Some
of these transient classes are fairly exotic and rare, but there are many
SLSNe in the simulation, and for DASH, they can only act as a source
of contaminant classifications.

4.1.2 NGSF

NGSF is a template matching SN classifier. Written in PYTHON, it is
based on the Superfit classification package written in IDL (Howell
et al. 2005). NGSF requires a set of transient and host templates
to compare to the spectrum being classified. We use the updated
template set recommended in the source.> The input spectrum is
sequentially compared to each of these templates while iterating
through a variety of redshifts, reddening corrections, and different
levels of host contamination for a variety of morphologies. The
redshift and reddening arrays that are checked are defined by the
user. Each spectrum being fit must be compared to every template
at every possible combination of reddening and redshift and for
every host galaxy. As a result, the classification time required varies
significantly with how fine the redshift sampling is (Goldwasser et al.
2022).

NGSF returns its classification in the form of a x? value for each
host, template, redshift, reddening combination. Input spectra are
binned to match the templates and then a x 2 value is obtained using
the equation (reproduced from Howell et al. 2005):

2 [0 —aT ;)10 —bG(; )P
=2 a(h)?

5

3From the WISeREP repository, Yaron and Gal-Yam (2012).

MNRAS 543, 247-272 (2025)

GZ0Z J8qWBA0N ] uo Jasn uojdweyinos Jo Alsianiun Aq 9€/22428//v2/1L/SS/e1onie/seluw/woo dnooiwspese//:sdiy woll papeojumoq


https://www.wiserep.org/content/wiserep-getting-started

254  A. Milligan et al.

Library of Host
Lssstw —>  SNANASIMLIB Galaxy
Parameters
SNANA
TIiDES Target
Transient-Host TIDES Target
. o im o
= .
4MOST ETC
4MOST Flbm -— 4MOST Facility
TDES Tapets Simulator
Exposure
Times

Figure 5. Flowchart showing our simulation pipeline. Adapted from fig. 1 of Frohmaier et al. (2025). Initially an LSST Operation Simulation (OpSim)
is converted into a SNANA SIMLIB file. This, alongside a set of transient SEDs and a library of simulated host properties are used as inputs for a SNANA
simulation that returns host—transient metadata and light curves. These are input into the TiDES selection function as if operating in real time. This produces
a TiDES-specific target catalogue, for which the 4FS generates fibre allocations and exposure times. This gives us a list of observed TiDES targets and their
observational properties. Host galaxy templates are assigned to observed transients. The blended spectra have magnitudes and redshifts assigned from the SNANA
metadata. Fibre losses are simulated to generate the spectrum at the 4MOST fibre entrance. This spectrum and its assigned exposure time from 4FS are input
into the 4AMOST ETC which adds realistic noise to the spectrum, producing our final blended science spectrum. Red boxes indicate templates or SEDs, yellow

boxes indicate catalogue-level results, and grey indicates a process or algorithm.

where O is the input spectrum, 7 is the transient template spectrum,
G is the host galaxy template spectrum at a given redshift, z, o(})
is the error on the input spectrum, and A, is the reddening law.
a, b, and c are constants that are varied during the classification
process to check the template fit at varying reddening levels and at
varying levels of host contamination. NGSF uses the reddening law
of Cardelli, Clayton & Mathis (1989). The templates with the lowest
%2, is reported as the best template. As NGSF also iterates through
different levels of host contamination for each template it returns
the estimated galaxy fraction of the best-fitting templates. Since our
spectra have known SN and host magnitudes in the fibre, this has
potential as another method to judge classification quality.

MNRAS 543, 247-272 (2025)

The throughput in the simulated 4MOST spectra drops below
70 per cent approximately below 4000 A and above 8000 A. We
chose to limit the NGSF template comparisons to this wavelength
range. Since the ETC generates error spectra, we use these for
calculating x2. In the case where the input spectrum has no attached
error spectrum, NGSF has several options for generating error spectra
which can be used as weights to calculate a reasonable x? for the
input, although these are not the intended methods. It can determine
a linear error spectrum or a Savitzky—Golay (SG, Savitzky & Golay
1964) error spectrum.

The SG error spectrum is generated by smoothing the input
spectrum with an SG filter and then subtracting the smoothed
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spectrum from the original to obtain residuals that are used to
construct an error spectrum. The linear error spectrum is constructed
using a linear fit to the binned input spectrum. In both cases, this
results in the smoothing of narrow features into noise, making both
inferior to the use of an included error spectrum.

NGSF has several distinct advantages over DASH, mainly in the form
of user control. For example, the ability to set a redshift or reddening
constant range with specified values or the capacity to exclude noisy
wavelength ranges.

The final, and perhaps most considerable advantage, iS NGSF
provides easy access to the set of templates it uses. This makes it very
easy to update the templates manually to include more examples of
existing subclasses or new subclasses altogether. Updates to either
require no additional training time, which would be needed to change
the templates used by DASH. NGSF’s template set contains just over
half as many transients as DASH and one-third of the individual
spectra, not including galaxy templates.

4.1.3 SNID

SNID is an algorithm for determining the properties of an SN spectrum
(Blondin & Tonry 2007). It makes use of cross-correlation techniques
and the rlap quality parameter to find best-fitting redshifts, phases
relative to maximum light, and classes for input templates. rlap is
discussed in more detail in Section 4.1.1.

We use templates collected from various samples by Kim et al.
(2022), where a more complete description can be found. Classifica-
tions were performed over the same 40008000 A range as NGSF.

One advantage SNID has is the large variety of built-in transient
classes and subclasses available for classification, as well as several
morphologies of galaxy, active galactic nucleus (AGN), and a simple
notSN classification amongst others that allow SNID to potentially
identify non-transient spectra. DASH and NGSF have no capacity to
do this. NGSF can easily have new templates added, but DASH would
require computationally expensive retraining for the same effect.

Further, addition of more subclasses is very simple. New templates
can be added to the SNID repository provided they are in the correct
format. Then, the new classifications are added to a simple parameter
file. In this paper, we have 30 distinct classifications (a few SLSNe
and non-SN classes were added to those that came built-in). However,
SNID still seems to perform very poorly when classifying non-SN Ia
spectra. This will be discussed further in Section 4.5.

One issue we encounter with SNID is that it occasionally performs
a classification wherein none of its templates yield an rlap value
greater than rlapy, and no output is produced. In this case, we
assign a best-fitting classification of ‘None’ which is automatically
considered an ‘other’ classification.

4.2 Classification schema and statistical definitions

With simulated transient spectra realistically blended with host
galaxy flux now in hand, we can begin to test spectroscopic transient
classifiers. We test the DASH (Muthukrishna et al. 2019b), NGSF (How-
ell et al. 2005), and SNID (Blondin & Tonry 2011). These classifiers
are introduced in Sections 4.1.1, 4.1.2, and 4.1.3, respectively. Our
objective is to compare the performance of each classifier on our
simulated spectra.

The standards by which we will judge the performance of the
classifiers are the purity and completeness of their classifications.
Purity and completeness are, for a target transient class, defined as:

TP

_— 6
TP + FP ©

Purity =
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TP
Completeness = ————— 7
TP +FN

Here, TP (true positive) are the number of spectra of the target
class identified as such. FP (false positive) is the number of non-target
class spectra misclassified as the target class. FN (false negative) is
the number of target class spectra misclassified out of the target class.
TN (true negative) classifications are spectra correctly identified as
not being in the target class.

Outside of binary classifications, for a given transient class,
the completeness is the fraction of that class that are successfully
identified as such. The purity is the fraction of output classifications
of that class which are correct. Thus, the rate of contamination in a
transient class is 1 — purity for that class.

Throughout Sections 4 and 5 we will, alongside completeness and
purity, report the F-score (Fg) for each classifier (Van Rijsbergen
1977) as our figure of merit (FoM). F values range between 0 and 1
indicating a poor and a strong classifier, respectively. (Fj) is defined
as:

- (1 4 B?) x Purity x Completeness
ﬁ =

2 : (®)
(B* x Purity) 4+ Completeness

B is a constant used to preferentially weight the Fjg towards
completeness or purity. The two main transient objectives of TIDES
are the real-time classification of all transients from the TiDES-Live
program and the eventual production of an SNe la sample for the
purpose of fitting cosmology. The number of SNe we expect to obtain
from 4MOST-TiDES is orders of magnitude larger than previous
surveys such as OzDES (Lidman et al. 2020) or the SuperNova
Legacy Survey (Astier et al. 2006). With the large number of
spectroscopically observed transients, we believe that purity is a more
important factor than classification completeness. This is especially
true for the SN Ia sample for cosmology, but even for real-time
classification we choose to focus on pure samples.

With this in mind, we generally report the 8 = 0.5, Fj s, score
as our FoM. This assigns greater weight to the classification purity
over the Fi-score that weights both metrics equally. To account for
multiple classes, each transient class has an individual Fjs-score
calculated. Then, the average value is obtained by taking the mean,
weighted by each class’s prevalence in the sample.

Additionally, in Section 5.2, we will make use of the classification
accuracy of our classifiers. This is particularly useful for comparison
to photometric classifiers, which often use this parameter to quantify
success. Accuracy is the fraction of classifications across all classes
that are correct. In a binary schema, it is defined as:

TP + TN
Accuracy = )
TP + TN + FP + FN

We do not aim for any particular purity threshold, but will add
a 95 per cent purity line to relevant plots as an arbitrary point of
comparison. This purity is similar to that found in SN Ia samples
used in cosmology in the literature. For example, Howell et al. (2005)
reported an 8 per cent non-SN Ia contamination rate (92 per cent
purity) in their final sample of SNe Ia, while Campbell et al. (2013)
reported a 3.9 per cent predicted contamination rate (96.1 per cent
purity) that has an insignificant effect on their cosmological mea-
surements. In Guy et al. (2010), purity ranges from 100 per cent to
90 per cent are found in various redshift bins up to z = 1 and again,
they report that the effect on cosmology is minimal compared to
other sources of error.

Each classifier returns a list of output classification bins in
descending order of the quality metric specific to that classifier. This
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Table 2. The SN Ia and non-SN Ia transient subclasses for each classifier. The non-SN Ia transients subclasses
included here match the various non-SN Ia input classes listed in Table 1. Any output classifications not included in
this table would be considered a misclassification if returned by a classifier.

Classifier Binary class 5 classes Corresponding outputs
DASH SNe Ia SNe Ia Ta-norm, Ia-91T, Ia-91bg
Non-SN Ia SNe Ibc Ib-norm, Ib-pec, Ic-norm, Ic-broad
SNe I Ib, TIP, II-pec, IIL, IIn
SLSNe —
Non-SN -
. . Other ITa-pec, Ia-csm, Ta-02cx
NGSF SNe Ia SNe Ia Ta-norm, Ia 91bg-like, Ia 91T-like, Ia 99aa-like
Non-SN Ia SNe Ibc Ibn, Ib, Ic, Ic-BL, Ic-pec, IIb
SNe II 11, II-flash, IIn, IIb-flash
SLSNe SLSN-II, SLSN-IIn, SLSN-I, SLSN-Ib, SLSN-IIb
Non-SN TDE H, TDE He, TDE H + He, FBOT, ILRT
Other Ta 02es-like, Ia-02cx like, ITa-CSM-(ambigious), Ia-pec, [a-CSM
ITa-rapid, Ca-Ia, super-chandra, SN - Imposter, computed
SNID SNe Ia SNe Ia Ia, Ia-norm, Ia-91T,la-91bg, [a-99aa
Non-SN Ia SNe Ibc Ib, Ib-pec, Ib-norm, Ic, Ic-norm, Ic-pec, Ic-broad, IIb
SNe II 1L, IIL, IIP, II-pec, IIn
SLSNe SLSN, SLSN-I, SLSN-Ic, SLSN-IIn
Non-SN TDE, Ca-rich, ILRT
Other Ta-csm, la-pec, Ia-02cx, NotSN, AGN, None

LBV, M-star, QSO, C-star, LRN, Gal

is softmax probability (and rlap) for DASH, x 2 for NGSF, and rlap for
SNID as mentioned in Sections 4.1.1, 4.1.2, and 4.1.3, respectively.
It is not clear if these quality metrics can be used in place of a
probability or to what extent they can be compared. Additionally, as
each classifier makes use of different templates either for training or
matching, it is not necessarily reasonable to compare outputs from
each classifier directly.

To determine the best output class for each classifier, we adapt the
approach used in Kisley et al. (2023). A blended spectrum is input
separately into each classifier. Then, for each classifier, the quality
metric for each output classification is used to produce a probability
that the input spectrum belongs to each of the output classes in the
5-class schema described in Section 4.2.

For DASH, this is a simple process as it already returns the softmax
pseudo-probability for each classification bin. We simply sum the
softmax probabilities for the outputs corresponding to each of the
five classes and normalize the resulting probabilities by the summed
total of all softmax probabilities.

For NGSF, we convert the returned x? values into percentages by
evaluating the cumulative density function at that particular x 2. This
is performed using the SCIPY PYTHON library. The resulting relative
probabilities for each output are summed by class and normalized
by dividing by the total probabilities for all outputs. When redshifts
are provided the average number of reported outputs is 9.3. This
jumps to over 50 when redshifts are not provided and often numbers
of relatively spurious SLSN classifications can overweight that class
as an output. To account for this, we only look at up to the 10 best
classifications when redshifts are not provided.

For SNID, we are required to make a judgement call as the rlap
quality metric it returns is less readily converted to a probability
than those of NGSF and DASH. In this case, we obtain the value
of r =rlap x lap and convert it to a probability using the error
function erf(r). For each class, we sum the probabilities for each
output in that class and then normalize these into probabilities by
dividing by the sum of all output probabilities. We only consider
such output classifications that meet the default SNID requirement of
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rlapmin = 5. Because of this, all outputs return probabilities close to
unity, meaning that we weight each output nearly equally.

Following these procedures provides us, for each spectrum for
each classifier, the probability that the input is an SN Ia, Ibc, II, an
SLSN, a non-SN transient or a non-transient (‘other’) spectrum.
This standardization of method allows for easy comparison of
classification ability between the three classifiers.

We distinguish between SNe Ia that are ‘cosmologically useful’
and SNe Ia that are not. Ia-norm are counted as cosmologically
useful, as are 91T-like SNe Ila. The latter are overbright, hot SN
Ia and are usually included in cosmological samples (Ginolin et al.
2025). SNe Ia 91bg-like standardization for cosmology is debated
(see Graur 2024, and references therein). Here, we consider them
alongside Ia-norm inputs and output classifications. Any output that
is not an SN Ia subclass is considered a non-la output.

To account for output classes for which we have no input spectra,
we create the ‘other’ classification bin. This is a catch-all for
automatic misclassifications from peculiar SN Ia subclasses (Ia-csm,
Iax, etc.) or non-transient classes like ‘Gal’, ‘m-star’, ‘None’, etc.
The list of ‘other’ classification outputs for each classifier are also
included in Table 2. For the purposes of calculating completeness,
classifications that end up in the ‘other’ class are considered FNs.

Some examples of successful and unsuccessful classifications are
shown in Appendix B.

4.3 Binary classification results

In this section, we will be considering a binary classification. SNe will
either be classified as an SN Ia or non-SN Ia. This is far fewer classes
than each classifier has the potential to output, and we recognize that
combining multiple output classes into a single, non-Ia class is not
the same as requiring that a classifier chooses between two classes.
We will also be tracking non-SN Ia transients that are misclassified
as Ia contaminants.

Throughout this section, classification will be performed with
known redshifts, simulating the case where a transient has a spectro-
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Figure 6. SN Ia completeness (green), SN Ia purity (orange), and non-SN Ia completeness (blue) as a function of SN Ia probability threshold for each classifier.
Input spectra are considered an SN Ia output if the returned SN Ia probability is greater than a given threshold, regardless of whether a different class is more
probable. A rate of 95 per cent is marked by the dashed black line as an arbitrary point of comparison.

scopic redshift determined from its host galaxy or its own emission
features. In practice, this means that we provide the classifier with
the true redshift from the simulation as a known redshift. Results for
classification with unknown redshifts, or just photometric priors are
shown in Section 4.5 and throughout Section 5.

We run the classifiers in non-interactive mode to mimic an
automated classification plan for very large numbers of spectra.
We note that this is not the way these classifiers were intended
to run. Classifiers occasionally maximize their output metric with
an incorrect classification, despite correct classifications being the
second — or third — best result. For example, this can occur where
two output class are similarly favoured (say SN Ib and Ic) or where
a completely spurious output classification is found due to redshift
inaccuracy (a high-z SLSN classed as a low-z SNe Ia). By using
all reported classifications from a classifier and converting to a
probability for each of our output classes, we avoid this issue.

Our method of converting classifier outputs into probabilities
returns the probability that a transient belongs to the SN Ia, Ibc, II,
SL, or non-SN transient classes defined in Table 2. In this section, we
consider only the SN Ia probability and a binary SN Ia—non SN Ia
classification schema. If the SN Ia probability exceeds an arbitrary
threshold then that classifier will report it as an SN Ia, regardless
of the probabilities of the other four classes. In Section 4.5, where
we consider the full 5-class schema, we will swap to having the
classifiers report each transient as whichever of the five classes has
the greatest probability.

In Fig. 6, we investigate the SN Ia completeness, purity and non-
SN Ia completeness for each classifier as a function of an SN Ia
probability threshold. We can see that it is not immediately clear if
a probability threshold should be applied for any of the classifiers.
DASH’s SN Ia completeness, purity and non-SN Ia completeness
remain almost constant for most SN Ia probability thresholds. Only
at very low thresholds do we report purities under 95 per cent and only
at very high thresholds do we see a large loss in SN Ia completeness.
One could reasonably assign 0.5 as the required SN Ia probability to
be considered an SN Ia.

Similarly SNID could reasonably have an SN Ia probability thresh-
old set anywhere between 0.5 and 0.8. Below this, we see significant
losses to SN Ia purity, and above this, we see the same sudden loss
in SN Ia completeness as displayed by DASH.

1.00| —==m=m=mmmemmmmmmeooooomoooooooo-moo oo
0.95r
0.90+
c 0.85f
° —— DASH
5 0807 NGSF
a 0.75F —— SNID
—-— True la Fraction
0-701 ___. perfect Classifier
0.65r
060l —— )
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 7. Purity—completeness (precision—recall) curves for each of DASH,
NGSF, and SNID in the case of binary SN Ia—non-SN Ia classification. A
theoretical, perfect, binary classifier is presented by the black dashed line.
The closer a classifier’s curve matches the perfect classifier, the better that
classifier is performing. The grey dashed line indicates the fraction of input
spectra that are SN Ia, which is the minimum possible purity obtained when
the SN Ia probability threshold is set to zero.

NGSF is the only classifier to show a different trend. Here, the SN Ia
purity and non-SN Ia completeness quickly rise to unity. Meanwhile
the SN Ia completeness starts at unity for no probability threshold,
before steadily dropping as the threshold is made more stringent. A
case could be made to perform NGSF classification with an SN Ia
probability threshold of anywhere from 10-25 per cent. Above this
and the only change is a loss in SN Ia completeness.

In Fig. 7, we present purity—completeness (also known as
precision—recall) curves for all three classifiers. A theoretically
perfect classifier is shown as a point of comparison. A perfect
classifier will return perfect purity at all levels of completeness
as determined by varying the SN Ia probability threshold used to
calculate each parameter. The only exception is the case where the
threshold is set to zero. In this case, the completeness is 100 per cent
by definition, while the purity drops to match the fraction of the
total input sample that are actually SN Ia, which is approximately
60 per cent in this case.
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We can see from Fig. 7 that NGSF performs closest to the theoret-
ically perfect classifier. NGSF is followed by DASH and SNID in that
order. The uncertainty for each classifier, indicated by the transparent
shaded regions around each curve, indicates an uncertainty on the
order of 0.5 per cent. This suggests that the classification results are
stable across random samples of the full transient population. In other
words, based on Fig. 7, we would expect that NGSF outperforms DASH
and SNID across all of our subsamples under this binary classification
schema. However, Fig. 7 gives very little information about the non-
Ia transients. For example, NGSF could classify all SNe Ib as SLSNe,
and in this schema, this would constitute perfect classification.

We do not report the numerical results for binary classification as
the SN Ia classification is unchanged and allowing any non-Ia input to
be ‘successfully’ classified as any non-Ia output significantly inflates
the non-SN Ia classification completeness and purity.

4.4 Redshift priors

Using the SN Ia probability as a threshold gives a good indicator
of the completeness and purities, we can expect for each classifier
and, also, allows use to construct purity—completeness curves that
indicate that NGSF is the best-performing classifier in our binary
schema. However, in this section, we will proceed assuming that the
output classification with the highest probability for each classifier
is that classifier’s output. This is partially to remove our need to
assign arbitrary and distinct probability thresholds to each classifier
and because it is the only method that is applicable for non-binary
classification schemes. This avoids the situation where the SN Ia
probability exceeds the threshold while being less than the probability
that the transient belongs to a different class.

We test each classifier both with and without redshift priors.
Using redshift priors means that for each input spectrum we provide
the classifiers with the true transient redshift as found in the input
population simulation. In the case of using unknown redshifts, we
give no redshift information to DASH and SNID. NGSF is instructed to
check redshifts between 0 < z < 1.5 with a sampling of Az = 0.05.

Perhaps one of the most likely scenarios during the operation of
TiDES-4MOST is the case where we will not have a spectroscopic
redshift, but will have a photometric redshift estimate. We would like
to be able to investigate classifier performance in this scenario.

The minimum science requirement for LSST-DESC as reported
in The LSST Dark Energy Science Collaboration (2018) is that the
RMS scatter between photometric redshifts and true redshifts should
not exceed 0.03(1 + z). Graham et al. (2018) and Mitra et al. (2023)

investigate LSST photometric redshifts instead assuming 0.02(1 + z)
as the RMS error between photometric and spectroscopic redshifts.
We will proceed using the 2 per cent uncertainty.

For NGSF and SNID, we are able to simulate the use of photometric
redshift priors. We randomly generate a photometric redshift (zpnot)
from a Gaussian distribution centred on the true redshift and with
width equal to 2 percent of 1+ z. Then, we have each classifier
attempt an ‘unknown’ redshift classification over the truncated
redshift range defined by a 2 per cent uncertainty in 1 + Zppo.

Unfortunately, DASH does not natively have the option to attempt
classification over a custom redshift range. The only way for DASH
to simulate photometric redshift priors is to have each classifier
fit the randomly generated zpp, as a known redshift, which would
prohibit a direct comparison to NGSF and SNID. We found that this
fitting of a ‘known’, but slightly incorrect, redshift resulted in poorer
performance than providing no redshift at all.

Because of this, we do not report on the classification potential of
photometric redshifts throughout the paper. However, for complete-
ness, we do report the results from NGSF and SNID using them in the
unknown redshift mode over a custom redshift range as described
previously and making use of the 5-class classification schema as
used in Section 4.5. These results are found in Table 3 alongside
the known and unknown redshift classification results. Additionally,
when discussing combined classifiers in Section 5, we report the SN
Ia completeness and purity for the combined NGSF—SNID classifier
using photo-z priors.

4.5 5-class classification

In this section, we make use of a classification system that includes
five transient classes: SNe Ia, SNe Ibc, SNe II, SLSNe, and non-SN
transients, following the work of Kim et al. (2024). The breakdown
of classifier output subclasses that correspond to each of these inputs
is indicated in Table 2.

Table 3 shows the blended spectra being classified with the non-
SN Ia transient output bin divided into SNe Ibc, SNe II, SLSNe, and
non-SN transients.

The 5-class schema allows us to see finer detail about each
classifier’s ability to classify CC SNe and non-SN transients. This
is particularly relevant for judging a classifier’s ability to perform
live TiDES classification across a range of different transient classes.
Fy s-scores reported throughout this section are the population size-
weighted average of the Fjs-scores of the five individual classes.

Table 3. The completeness for classifying SNe Ia, SNe Ibc, SNe II, SLSNe, and non-SN transients. Also presented are the SN Ia purity and the F 5-score
for each classifier. The highest value in each column is highlighted in bold. Classification with photometric priors for NGSF and SNID are provided alongside
known and unknown redshift classification. Fys-score is calculated based on the average scores of all five transient classes reported, weighted by their

population size.

Non-SN

Classifier Ia completeness  Ibc completeness  II completeness  SL completeness completeness Ia purity Fy s-score
DASH, known z 0.760 £ 0.004 0.68 £ 0.01 0.39 £+ 0.01 0.0£0.0 0.0£0.0 0.981 &+ 0.002 0.711 £ 0.003
DASH, unknown z ~ 0.516 £ 0.004 0.69 + 0.02 0.32 £ 0.01 0.0£0.0 0.0£0.0 0.968 & 0.003  0.639 £ 0.003
DASH, photo z - - - - - -

NGSF, known z 0.798 £ 0.005 0.52 £0.02 0.753 £ 0.006 0.85 £ 0.01 0.05 £ 0.02 0.971 £0.002  0.814 £ 0.004
NGSF, unknown z ~ 0.560 £ 0.006 0.39 £ 0.02 0.35 £ 0.01 0.25 £0.01 0.02 £+ 0.01 0.917 £0.003  0.627 £ 0.005
NGSF, photo-z 0.551 £ 0.006 0.48 £0.01 0.563 £ 0.008 0.85 £ 0.01 0.03 £0.01 0.935 +£0.002  0.699 £ 0.003
SNID, known z 0.661 £ 0.006 0.20 £ 0.01 0.174 & 0.007 0.0£0.0 0.0£0.0 0.929 £ 0.004  0.649 £ 0.003
SNID, unknown z 0.661 £ 0.006 0.15 £ 0.01 0.167 & 0.006 0.0£0.0 0.0£0.0 0.835 +£0.004 0.585 £ 0.005
SNID, photo-z 0.644 £ 0.004 0.11 £ 0.01 0.083 £ 0.005 0.0£0.0 0.0£0.0 0.850 £ 0.005  0.552 £ 0.007
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Figure 8. Confusion matrices showing the results for the three individual classifiers and all three combinations of two of the three classifiers working
simultaneously. Confusion matrices are normalized by (a) row, indicating completeness in each class and (b) column, indicating the purity of each class. The
‘other” output classification is reserved for output classifications with no corresponding input class and, in the case of the combined classifiers, an input spectrum
that causes the two classifiers to disagree on the output class. Classification was performed with redshift priors provided in all cases. High completeness and
purity samples would be indicated by high concentration along the matrix diagonal. Horizontal scatter indicates loss of completeness, and vertical scatter

indicates loss of purity.

The results from Table 3 are presented as confusion matrices for the
case with known redshifts in Fig. 8(a).

As mentioned in Section 4.4, we take the output classification
with the highest probability for each input spectrum as the output
class, or best class. We impose no additional limit on the best
class’s probability beyond it being the highest probability. Across
all classifiers we see small uncertainties (1-2 per cent) on purity and
completeness, indicating that the classification rates are stable.

In every case, the classifier’s training sets are dominated by SNe
Ia. This may lead to DASH overweighting features learned from
SNe Ia templates, resulting in an increased likelihood that an SN
Ia classification bins will be amongst DASH’s top classification.
Similarly, SNID and NGSF, when the input does not match well
with any of their templates, and lacking a redshift to help discount
templates, are most likely to find SN Ia templates as the best-matching
templates as SNe Ia are the majority of their template banks. Across
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all classifiers, there is potential for SNe Ia to be the best matches in
the absence of any good matches.

More detailed discussion on how input SN Ia spectra are being
classified by DASH, SNID, and NGSF can be found in Appendix A,
in Fig. Al. Similarly, more detailed discussion on the origin of
contaminant classifications for each classifier can be found in Fig. A2.

4.5.1 DASH results

We see that our DASH results, both with and without redshift priors,
have very impressive SN Ia purities well over 95 per cent. However,
the SN Ia completeness, while fairly good with redshift priors, falls to
just above 50 per cent without. This is the largest drop in performance
upon the removal of redshift information, alongside NGSF’s loss of
SN Ia completeness.

It becomes apparent that DASH is reasonably successful at clas-
sifying SNe Ibc when redshift priors are provided, but is far less
successful at classifying type II SNe. Unlike what we see in its
SN Ia completeness, when redshift priors are removed, there is not
much change in performance for Type II SNe. The Ibc classification
completeness actually improves slightly, while the Type II classifi-
cation completeness decreases, but by far less than that of the SNe
Ia. It cannot be stated strongly enough that DASH natively lacks
all capacity to classify SLSNe and the various non-SN transients.
Indeed, in Section 5, all combinations of classifiers that include DASH
are incapable of successfully classifying any SLSNe or non-SN input
spectra.

Additionally, there is significant classification of input spectra into
peculiar-Ia subclasses, often SN Ia-csm. This is particularly prevalent
in transient spectra with Sc-type host galaxies, which make up a large
fraction of our SN Ia hosts (Hakobyan et al. 2012), likely due to
emission lines present in the host template. The narrow emission lines
from the host are misinterpreted as circumstellar medium (CSM)
interaction, leading to a Ia-csm classification.

Strangely, only DASH’s outputs exhibit this trend. Where
40 per cent of Sc-type hosts produce a la-csm classification in DASH,
less than 1 percent do in both NGSF and SNID. Fortunately, this
has no effect on classification purities in any class as SN Ia-csm is
considered peculiar and outputs of la-csm are not included in final
samples. However, it does have a significant effect on completeness.

4.5.2 NGSF results

NGSF and DASH classify SNe Ia very similarly when redshift priors are
provided. The difference in completeness for SN Ia (79.8.3 per cent
versus 76.0 per cent) is slightly in favour of NGSF, the purity of the
resulting SN Ia samples are almost identical, within 2 percentage
points of each other. When removing redshift priors we see a loss of
performance across Ia classification for both classifiers. The SN Ia
classification completeness difference is similarly sized as in the
case where redshifts are known, with NGSF reporting 5 per cent
higher completeness. However, while DASH reports only very slightly
reduced (by less than a single percentage point) SN Ia purity, NGSF’s
corresponding rate drops by around 5 percentage points when redshift
information is not provided.

In the 5-class scheme, the finer non-SN Ia output classes leads
to mixed classification results for NGSF. The Ibc completeness
is fair at just over 50 percent with redshift priors. The non-SN
transient completeness is very poor, well under 10 percent with
and without redshift priors (see Appendix C), although NGSF is the
only classifier that gets any of these input spectra correct. NGSF
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produces particularly impressive completeness in SN II and SLSN
classifications when redshift priors are provided, but also reports
drops in completeness of around 50 percentage points when redshift
priors are not provided. This is still much better than SNID, which
classifies no input SLSNe correctly, and DASH which, as mentioned
previously, cannot classify them.

With redshift information, NGSF is the strongest classifier in terms
of classification completeness. Only DASH exceeds it in SNe Ibc
completeness. Without redshifts, the balance between NGSF and
DASHis far closer due to NGSF’s far larger loss of performance.

Indeed, when considering only the Fy s-scores, NGSF is now clearly
the best-performing classifier when redshifts are known. This is by
a large margin, at least 0.1 larger than that of DASH or SNID. With
unknown redshifts all three classifiers have Fj 5-scores between 0.58
and 0.64. Here, DASH’s score is heavily influenced by its superior
SNe Ia purity, which is heavily weighted in our weighted Fj s-score.

As would be expected, if a slightly incorrect photometric redshift
(see Section 4.4) with a small range of redshift values about it to
consider is provided, performance improves compared to receiving
no redshift at all. The Fj s-score for NGSF with photo-zs fall between
that produced by known (spectroscopic) and unknown redshifts.

4.5.3 SNID results

SNID has a much lower SN Ia completeness than DASH and NGSF
when given redshift priors, and with unknown redshifts we see a
significant drop in performance in the SN Ia purity metric. However,
without redshift priors we do see it outperform DASH and NGSF in
regards the SN Ia completeness. In fact, its SN Ia completeness is
nearly invariant under a lack of redshift information. However, while
the SN Ia completeness is maintained, this must be balanced against
the significant drop in SN Ia purity, which leads SNID to a poorer
Fy 5-score than DASH or NGSF without redshift information.

SNID produces poor classification completenesses in all non-
SN Ia transient subclasses in the 5-class schema. With or without
redshift information, it only achieves SN Ibc and II completenesses
between 10 percent and 20 percent. Like DASH, it classifies no
SLSN or non-SN transient correctly, but while DASH is incapable
of outputting such classifications, SNID instead fails to do so. A
large number of our blended spectra are classified as ‘Gal’ (a galaxy
template) by SNID, leading to an ‘other’ output. It appears that galaxy
contamination may be a limiting factor. Indeed, NGSF is trained to
classify host and transient simultaneously which may explain its
superior performance.

When photometric classification is possible, the results are the
opposite of that seen with NGSF. For all transient classes with classi-
fication completeness greater than zero without redshift information,
the completeness is lower with photometric priors. SNID’s SN Ia
purity does improve with photometric redshifts relative to a lack of
redshift information, but the final F; s-score is still lower. SLSNe are
well classified by NGSF, as photo-zs force the classification into the
superluminous regime, yet this does not appear to occur in SNID.

It should be noted that SNID was intended to have significant human
oversight in classification, so relatively poor results under complete
automation are not unexpected. Additionally, while SNID’s Fj s-score
is lower than the other two classifiers, its F- or F>-scores are not. As
SNID maintains SN Ia completeness when redshifts are unknown, and
so Fg-scores that are weighted to more heavily favour completeness
(B > 1) lead to SNID matching NGSF’s performance and exceeding
DASH’s when redshifts are unknown.
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Table 4. The SN Ia completeness and purity for all possible combinations of two or three classifiers. Successful classification
requires an SN Ia output from all involved classifiers. For the combined NGSF—SNID classifier, we also report the same results
assuming the presence of photometric priors. The highest value in each column is highlighted in bold.

Classifiers Redshift Ia completeness Ia purity Fy 5-score

DASH and NGSF Known z 0.689 £ 0.005 0.9995 + 0.0003 0.757 £ 0.004
NGSF and SNID 0.621 £ 0.006 0.9994 + 0.0003 0.687 £ 0.005
DASH and SNID . 0.623 £ 0.006 0.9984 + 0.0004 0.674 £ 0.006
All . 0.590 £ 0.006 1.0 £ 0.0 0.669 £ 0.005
DASH and NGSF Unknown z 0.367 £ 0.004 0.997 £ 0.001 0.566 £ 0.006
NGSF and SNID 0.424 £ 0.006 0.976 £ 0.004 0.566 £ 0.006
DASH and SNID . 0.456 + 0.006 0.991 £ 0.001 0.589 + 0.006
All . 0.324 4 0.005 0.998 £ 0.001 0.510 £ 0.006
NGSF and SNID Photo-z 0.427 £ 0.007 0.990 £ 0.001 0.553 £+ 0.004

5 USING MULTIPLE CLASSIFIERS AT ONCE

For both live classification of transients and when creating SN Ia
samples for cosmology, it is critical to limit contamination in the
output sample. For live classification, this is important for all SN
classes. For cosmology, it only matters that the SN Ia sample is
of high purity, even to the detriment of the SN Ia completeness.
This is particularly true given the very large number of transients
that 4MOST is expected to observe. Table 3 shows that individual
classifiers struggle to limit contamination in the output SN Ia sample
and are poor classifiers of even broad non-Ia SN classes. The obvious
question is: what is the result of combining the classifications from
different classifiers for each transient?

We first investigate the effect of classifying spectra with all
combinations of two out of the three classifiers. In these cases, if
both classifiers are not in agreement on the output classification,
then the result defaults to an ‘other’ output regardless of the quality
of either classification. Any output classifications from individual
classifiers that do not match any of our potential output classes (la-
pec, non-transients, etc.) are also discarded as ‘other’ outputs.

Fig. 8 shows that when using known redshifts, requiring two
classifiers to agree has the effect of reducing the overall completeness
for all five original output classes and a large increase in the number of
‘other’ outputs compared to the individual classifier results. However,
we also see a large increase in the purity of SNe Ia, SNe II and, to a
lesser extent, SNe Ibc. This can be seen by high concentrations along
the confusion matrix diagonals.

The extreme case for a combined classifier is to use all of DASH,
NGSF, and SNID simultaneously. The results for SNe Ia are shown
in Table 4. With the combination of all three classifiers, we now
classify around 60 per cent of all SNe Ia when redshifts priors
are provided, but get very few successful classifications for any
other input class. The sample of classified SNe la produced by this
combined classification is completely pure.

Without redshifts we report reduced success. While SN Ia purities
remain very high, the non-SN Ia completenesses remain around
10 percent or less and the SN Ia completeness is nearly halved
to 33 percent. This is very low compared to other combined and
individual classifiers. It remains to be determined where exactly the
optimum balance lies between pure and large SN Ia samples for the
purposes of cosmology. Regardless, combined classification has the
promising ability to improve SNe Ia, II and, to a lesser extent, SNe
Ibc purity.

Using all three classifiers, 87 per cent of SNe II are misclassified
as ‘other’” or SNe Ibc. However, in this case the purity of output SN 11
sample is very high. In fact, by using a combined classifier consisting

only of DASH and NGSF, we retrieve some of the classification
completeness, classifying just under a third of SNe II successfully to
produce a sample that is 96.4 per cent pure. Similarly, one can obtain
a 77 per cent pure sample of SNe Ibc, although this can be improved
to 92 percent at the cost of only one-third of the completeness
(44 per cent to just 17 per cent) if DASH—SNID is used instead.

Due to DASH’s presence in this combined classifier, the classifi-
cation completenesses of SLSNe and non-SN transients are zero.
Indeed this can also be seen in Fig. 8, in both double classifier com-
binations including DASH, which cannot output SLSN classifications
without retraining with a different template set that contains SLSN
spectra.

The poor classification completeness shown in Fig. 8(a) and
Table 4 suggests that the use of combined classifiers alone is not
particularly appropriate for live transient classification. However, it
does indicate the potential for very pure SN Ia and SN II samples,
although the latter sample has very low classification completeness.
As a result, combined classifiers could still form an important part
of a live classification plan.

A combined classifier could be used as a first classification step
to remove this high purity SN Ia sample prior to additional, later
classification steps. Depending on the classifier used, this can also
be done for the very pure (but low completeness) SN II sample
produced. When spectroscopic redshifts are known, DASH-NGSF is
an obvious choice due to its high Fys-score. Without redshifts it
should be noted that a DASH-SNID classifier returns the best Fj s-
score. The marginally reduced purity is compensated by the higher
completeness. However, unlike the case of known redshifts where
DASH-NGSF is clearly the best-performing classifier, when redshifts
are not known all three double classifiers have similar F s-scores.
Both with spectroscopic redshifts and unknown redshifts, when using
all three classifiers, the reduction in completeness is more significant
than the negligible improvement in purity compared to classifying
with DASH-NGSF only. We investigate the potential for a second stage
of classification in Section 5.1.

We conclude that that the best-performing classifier is DASH-NGSF.
When redshifts are known, the SN Ia and SN II completenesses is
10 percentage points higher or more than using all three classifiers.
This amounts to the addition of hundreds of transients into the final
sample at the cost of doubling an already negligible non-SN Ia
contamination. In the case where redshifts are not known this logic
holds true, but with a combination of DASH and SNID. As shown in
Table 3, NGSF s particularly affected by a lack of redshift information.
However, without redshift priors, all three double classifiers perform
similarly with regard to Fj s-scores.
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5.1 Potential photometric cuts

Individually, we see mixed results from the classifiers. Depending on
the classifier and redshift information used, completeness can change
by up to 50 per cent and SN Ia purities by as much as 15 per cent. From
a cosmology perspective, we obtain both high-purity and reasonably
high completeness in SN Ia classification from DASH and NGSF, but
only when redshift information is known, and it is yet unclear to
what extent prior redshift information will be available for TiDES
transients.

From a live classification perspective, there appears to be no
single classifier from which we can expect a reasonable classification
completeness across the SN Ibc, II, SL, and non-SN classes. More
importantly, the result of these low completenesses is that misclas-
sified transients must be contributing to lowering the purity of some
other class.

To this point, we have attempted classification on every transient
that has received any exposure time in the survey simulation. We
will now investigate two obvious sources of ‘other’ classification to
see if applying cuts to the sample prior to classification will improve
results. In Section 5.1.2, we investigate making cuts on the fraction of
fibre flux deriving from the transient (as opposed to its host galaxy),
and in Section 5.1.1, we investigate cuts based on the brightness of the
transient. Both of these quantities should be reasonably obtainable
from the same LSST photometry that TiDES will use to flag potential
transient targets.

In both cases, photometric cuts are performed based on the LSST
r-band magnitude at the time of simulated 4MOST observation. The
transients in the simulation are binned in phase every five days and
so there may be a discrepancy between of a few days between the
simulated observation and the date of the reported magnitude. In
reality, transients added to the 4MOST observing queue, for which
we know the triggering magnitude from LSST, will only remain in the
4MOST observing queue for four days (Frohmaier et al. 2025) before
needing refreshed with fresh photometry. So a discrepancy of several
days between last known magnitude and 4MOST observation is
realistic. We expect transient alert packets from LSST to be sufficient
to perform the following photometric cuts.

5.1.1 Apparent transient magnitude

The most obvious sample cut that can be introduced from photometric
information is a cut on transient magnitude. In this section, we
investigate the potential for applying a cut to our transient sample
based on the r-band magnitude of the transient.

Fig. 9 presents the completeness and purity of SN Ia classification
for all three classifiers as a function of transient r-band magnitude. It
also proposes two potential values for a transient magnitude cut to our
sample. These values, 21.8 and 22.5 mag, are derived in Frohmaier
et al. (2025) as the magnitudes that correspond to transient spectral
SNRs of 5 and 3, respectively, where spectral SNR is calculated as
the average in 15 A bins between 3500 and 8000 A. Indeed Frohmaier
et al. (2025) report the SNR = 5 threshold as the conservative
minimum to meet TIDES’s spectral success criteria, with the SNR =3
limit a more optimistic estimate based on the work of Balland et al.
(2009). Here, we find that these SNR cuts of 5 and 3 correspond
roughly to the SN Ia completeness falling below 80 per cent and the
purity falling 95 per cent, respectively.

As NGSF produced the best individual Fj s, in Table 5 we present
classification results from NGSF, but now with the effects of cutting
transients fainter than 21.8 and 22.5 mag. This does remove nearly
half of the transients from the final sample for the stricter 21.8 mag
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Figure 9. The SN Ia purity (orange, upper lines) and completeness (green,
lower lines) as report by DASH, NGSF, and SNID as a function of the true
transient magnitude for the SNe Ia in all of our subsamples. The SNe Ia are
in non-linear magnitude bins of ~30 transients, with each plotted point at
its bin’s centre. The shaded areas indicate the standard error on the mean
of completeness and purity in each bin. 95 percent purity is marked by a
black dashed line. Two potential transient magnitude cuts are marked by
grey dashed lines at 21.8 and 22.5 mag. We find that these limits roughly
correspond to completeness dropping below 80 percent and purity falling
below 95 per cent, respectively.

cut. However, we generally see significant improvements across SN
Ia completeness, SN Ia purity and Fjs-score as stricter magnitude
cuts are employed.

DASH and SNID, while not shown, also follow this trend. NGSF
outperforms SNID across all metrics both with and without redshift
priors. However, without redshifts DASH does produce Fjs-score
about 0.01 larger than NGSF, mainly the result of DASH maintaining
a high Sn la purity which is very heavily weighted in the Fj s-score.
However, NGSF, with spectroscopic redshifts, produces Fys-scores
around 0.1 larger than DASH or SNID.

Cutting on r-band magnitude results in a significant reduction in
sample size, so this would not be appropriate by itself for automatic
classification. However, it could serve as a useful step in a pipeline
for broad classification.

In Section 5 we found that, while combined classifiers are very
good at creating high purity, low completeness SN Ia samples,
they are poor classifiers of non-SN Ia classes. This makes them
ineffective for TiDES live transient classifications. We also found in
Sections 4.3 and 4.5, that the individual classifiers produce mediocre
completeness and purity in most transient classes when operating on
every transient observed in the 4MOST survey simulation. However,
for TiDES transients brighter than r = 21.8 mag, NGSF appears to be
a good choice for automated live classification.

However, this comes with several caveats. First, there will be
significant performance loss when redshift information cannot be
provided. Second, this only applies with relatively broad transient
classes. For example, NGSF often classifies Ib-norm inputs as SN
Ic subclasses. Just under 50 percent of Ibc classification are SNe
Ib classified as SNe Ic and vice versa. Finally, and perhaps most
importantly, while the SNe Ia purity is high, the purity of the other
classification bins can be far lower. For example the SN II purity is
77 per cent, and the Ibc purity is just 70 per cent (see Table 6).

From the point of view of the potential cosmology sample of
SNe Ia obtained in Section 5, cutting transients from our sample
based on their apparent magnitudes has less impact on the purity
than the completeness. All three classifiers see between 0—4 per cent
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Table 5. Ia classification results and 5-class weighted F s-score for NGSF. We report the results with #-band magnitude
cuts of 21.8 and 22.5 mag, as well as with no cuts. Completeness and Fp 5-score are calculated with the sample size
after the cut is applied, but we note that mean Ia sample is reduced in size to 55 per cent and 83 per cent by magnitude
cuts at 21.8 and 22.5 mag, respectively. The highest values in each column are highlighted in bold.

Redshift prior r-band cut Ia completeness Ta purity Fy.5-score

Known z 21.8 0.882 + 0.005 0.987 + 0.002 0.876 & 0.003
225 0.837 £ 0.005 0.981 £ 0.002 0.842 £ 0.003
None 0.798 £ 0.005 0.971 £+ 0.002 0.814 4 0.004

Unknown z 21.8 0.606 + 0.006 0.936 + 0.005 0.668 + 0.006
22.5 0.585 4 0.006 0.933 £ 0.005 0.655 4 0.005
None 0.560 =+ 0.006 0.917 £+ 0.005 0.627 £ 0.005

Table 6. The completeness and purity of each of our classes in the 5-class scheme under photometric cuts. The
magnitude cut requires SNe r-band magnitude <21.8 and reduces the sample size to 61.7 per cent. The flux fraction cut
requires that transient flux fraction >0.3 and reduces the sample size to 80.3 per cent. Using both reduces the sample
size to 52.2 per cent. Completeness and Fi-score are the based on the transients in the classified sample, so objects
removed by the photometric cuts do not contribute. Only NGSF is shown, having been identified as the most promising
candidate for live classification. Bold values indicate the highest percentage in that row.

Metric No cut Mag. cut Flux frac. cut Both

Ia comp. 0.798 £ 0.005 0.882 £ 0.005 0.888 4 0.004 0.952 4 0.003
Ia purity 0.971 £+ 0.002 0.987 £ 0.002 0.973 £ 0.002 0.988 + 0.002
Ibc comp. 0.52 +£0.02 0.65 £ 0.02 0.64 +0.02 0.75 + 0.02
Ibc purity 0.61 +0.02 0.70 £ 0.02 0.72 +£0.02 0.84 + 0.02
II comp. 0.753 £ 0.006 0.836 & 0.009 0.78 £ 0.01 0.88 + 0.01
II purity 0.748 £ 0.009 0.767 & 0.007 0.847 & 0.007 0.860 & 0.007
SL comp. 0.85 £ 0.01 0.913 £ 0.007 0.845 4 0.006 0.913 & 0.007
SL purity 0.51 +£0.01 0.75 £ 0.01 0.62 £ 0.01 0.84 £+ 0.02
Non-SN comp. 0.05 £+ 0.02 0.07 £ 0.02 0.04 4 0.02 0.04 4 0.02
Non-SN purity 0.04 £ 0.01 0.05 £ 0.02 0.15 + 0.08 0.13 +£0.08
Fy 5-score 0.814 £ 0.004 0.876 £ 0.003 0.866 £ 0.003 0.920 + 0.002

improvement. Compared to the needs of live classification, it is
less clear if this small improvement in purity compensates for the
significant fraction of the sample discarded before classification. In
fact, the DASH-NGSF combined classification produces a higher SN
Ia purity and classifies a greater number of SNe Ia in total (since
the completeness of the 21.8 mag cut NGSF classification is around
50 per cent when cut transients are accounted for).

5.1.2 Transient flux fraction

After transient magnitude, the second obvious source of classification
error in our sample comes from high levels of host galaxy flux in our
spectra. In this section, we discuss the effectiveness of DASH, NGSF,
and SNID as a function of transient flux fraction (contrast), where the
transient flux fraction is the fraction of the flux in a 4MOST fibre
that originates from the transient. We report the potential to improve
classification results by introducing a sample cut in transient flux
fraction-redshift space. We investigate using our 5-class classification
schema as in previous sections.

Generally, the trends in classification rates against the transient
flux fraction are as one would expect. As the transient flux fraction
increases (the spectrum’s host contamination is reduced), we see
improvements in the SN Ia completeness and purity. The shape of
these plots is very similar to those produced by transient magnitude
binning in Fig. 9. The purity tends to approach 95 per cent at transient
flux fractions of 40-50 per cent if it is not already above that in the

most contaminated bin. Fig. 10 indicates that all three classifiers have
similar slopes in their purity with different initial values. Although
not shown in the figure, the same trend was found without redshift
priors, albeit with slightly smaller values for DASH and much smaller
values for NGSF and SNID.

We look at our results in flux fraction-redshift space in Fig. 11. At
high redshift only, transients that have bright absolute magnitudes,
especially transients in the SLSN class, will be observed. So transient
flux fraction is likely to be high as we are biased to intrinsically
brighter transients while host brightness remains constant. However,
we also expect the spectral features of our transients to be shifted
outside of 4MOST’s wavelength range, making them harder to
classify. Indeed the rlap classification quality parameter employed
by DASH and SNID depends directly on the wavelength overlap
between the input spectrum and matching template. We hope to
find regions of this parameter space without contaminants or fewer
misclassifications, where we could assign positive results a greater
degree of certainty.

A few obvious points of interest are the trend to greater transient
flux fractions with increasing redshift and the incidence of unsuc-
cessful classifications of SNe Ia (orange histograms) beginning to
drop off as the transient flux fraction surpasses around 40 per cent.
The SN Ia count histograms are fairly uniform for the three classifiers
in the relative distributions of the successful and unsuccessful SN Ia
classifications, but we see variation in the width of the successful
classification histogram. In particular, there are obvious differences
in the number of misclassified SNe Ia between the classifiers.
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Figure 10. The SN Ia completeness (green, lower lines) and purity (orange,
upper lines) as a function of the fraction of the total flux in the spectrum that
originates from the transient. The SNe Ia in each of our subsamples are in 20
linear bins between transient fibre flux fractions (contrast) of 0 and 1. Redshift
is known in all cases. Uncertainty in indicated by the shaded regions. Shaded
regions are defined by the standard error on the mean in each bin between
our random subsamples. All three classifiers produce similar trends in SN Ia
completeness and purity. In every case, the classification completeness and
purity improve as the transient flux fraction increases.

Also concerning are the clusters of SLSNe at high redshift
(z > 0.6) that are classified as SNe Ia in all three classifiers, although
most prevalently in DASH and NGSF. These SLSNe are being fit
overwhelmingly as SNe Ia-91bg. This does lead to a potential

mechanism for increasing purity. As can be seen in Fig. 11, the
successful SN Ia classifications (and indeed instances of SNe Ia in
general) drop off quite sharply after z = 0.60. Each classifier has
contaminants beyond this redshift that could be dismissed out of
hand if accurate spectroscopic redshifts for host galaxies are known,
or if photometric redshifts indicate it is likely that z > 0.60.

For now, with the precise extent to which TiDES will have host
redshift information, we do not implement such a cut. However, we
make note of it and strongly encourage such a cut’s usage in the cases
where redshifts are known.

An obvious location for a cut on the transient flux fraction is the
point at which the good SN Ia classifications begin to dominate over
misclassifications. This occurs at a transient flux fraction of roughly
0.2 for DASH, 0.2 for NGSF, and 0.3 for SNID, we generalize this to a
cut at a flux fraction of 0.3.

A second tempting cut is on very large transient flux fractions,
greater than 0.9. In DASH and NGSF, there are clusters of very bright,
high flux fraction, SLSNe being falsely classified as SN Ia. However,
we choose not to pursue this cut, simply because removing SNe in
these bins would also remove the regions with the highest density of
correct classifications.

In Table 6, we present the results of our 5-class classification
schema for NGSF as we employ a variety of different photometric cuts
to the input sample. We see that using only a cut for transient flux
fractions greater than 0.3 returns similar classification results across
most transient classes to the 21.8 transient magnitude cut employed
in Section 5.1.1. The Ia classification performance is nearly identical,
with the other classes best performances spread fairly evenly. Using
both cuts results in even better performance, indeed it produces the
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Figure 11. The classification results in the binary schema with known redshifts for all three classifiers in transient flux fraction-redshift space. Large green
and small orange triangles indicate good SN Ia classifications and failed SN Ia classifications, respectively. The black crosses indicate SN Ia false positives
(that is a non-SN Ia classified as an SN Ia.) The histograms show the corresponding counts with the same colour scheme. There are regions of the parameter
space for each classifier where false positive SN Ia classifications cluster, often at high redshifts (z > 0.6). We also see similar distributions for successful and

unsuccessful SN Ia classifications.
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Figure 12. An example of a classification pipeline that could be employed by TiDES for the purpose of live classification of transients. The output samples
of from each step in the classification pipeline are provided with their completeness and purities labelled. The samples of SNe Ia and SNe II provided after the
second classification step represent the combination of the transients from the first classification and those from the second. Percentages of the total sample size
are listed in brackets for each classes final sample. Classifications are performed with redshift information.

largest Fys-score, followed by the magnitude cut and then the flux
fraction cut. However, these performance benefits must be weighed
against the large fractions of the sample removed from consideration
and thus not reflected in the Fj s-score.

We conclude cautiously that the best photometric cut for live
classification is likely to be transient transient magnitude r>21.8,
the middle ground between improved performance and reduction in
sample size. Although arguments can be made for the flux fraction
cut or both. In all three cases, the non-SN transient completeness and
purities are very poor. This is the result of low numbers (or a complete
absence) of templates in the template banks/training samples and,
additionally, the fact that non-SN input spectra are just smooth-blue
continua (see Appendix C).

5.2 An example classification plan

In this section, we propose just one possible scheme that could
be employed by TiDES for live classification of transients. The
pipeline is illustrated in Fig. 12 and assumes redshift information is
provided for all classifications. The pipeline consists of two separate
classifications of the sample of transients. First, the full sample is
classified by the combined DASH-NGSF classifier recommended in
Section 5. This produces very pure samples of SNe Ia and SNe II
although, particularly for the latter, the completeness is low. The SNe
Ia sample produced by this first classification step has 99.9 per cent
purity and should be appropriate for use in cosmology.

From the sample of spectra not classified by the combined
classifier, we now take only those with a transient magnitude brighter
than 21.8 mag as discussed in Section 5.1.1. These bright objects
are then reclassified with just NGSF. This produces reasonably pure
and complete samples of SNe Ibc and SLSNe. It also classifies a

few additional SNe Ia and SNe II which can be combined with the
existing samples to increase their completeness at the cost of their
purities. The only class with poor results is the non-SN transients.
Here, we only classify 4 percent correctly and over 95 per cent of
the resulting sample is contamination from other classes. This is an
issue with NGSF’s template bank and the absence of such spectra
from DASH’s training set. When considered in full, the classification
pipeline leaves just over a quarter of transients unclassified.

This is a reasonably successful classification. It outperforms any
individual spectroscopic classifier that we have tested in this work
in regards to purity. This classification scheme obtains a very pure
SNe Ia sample for cosmology in addition to producing classification
completeness and purities in non-SN Ia classes that are suitable for
live transient classification. See Fig. 12 for the completeness and
purity of each class after each step of the classification pipeline.

We note that this classification pipeline has a higher Fj s-score than
NGSF. However, the choice of 8 in equation (8) allows for greater
importance to be placed on completeness rather than purity. The F-
scores for several values of B across several classification schemes
are presented in Table 7. We can see that while NGSF individually
performs best in Fj- and F,-scores, when the score is weighted to
favour completeness (8 > 1, the various versions of the classification
pipeline presented in this section have the highest score when 8 = 0.5
and purity is weighted more heavily. In fact, at even lower values of
B < 0.1, the combined DASH-NGSF classifier would have the best
score. As aresult, it is hard to objectively state the superior classifier,
it will depend on the objectives of a particular study.

Fortunately, there is significant room for fine-tuning to specific
science cases. For example, replacing the cut on transient magnitude
to the cut on transient flux fraction as discussed in Section 5.1.2,
the pipeline will produce samples with higher completeness at the
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Table 7. The Fys5-, Fi-, and F-scores of several classifiers mentioned
throughout this paper. Each choice of g indicates a different priority in the
classifier. Smaller B-values increasingly weight the F-score towards good
purity results, while increasingly large values instead weight in favour of
completeness. B-values of 0.5 and 2 and used by convention. The largest
value(s) in each column are in bold.

Classifier Fys F F
Pipeline: 0.830 £ 0.002 0.757 £ 0.002 0.698 £ 0.003
Mag. cut

Pipeline: 0.831 £ 0.003 0.773 £ 0.003 0.726 £ 0.003
Flux frac. cut

DASH-NGSF only 0.757 £ 0.004 0.645 + 0.005 0.566 + 0.004
NGSF only 0.814 £ 0.004 0.786 + 0.004 0.765 £ 0.004

cost of purity. Additionally, the percentage of unclassified objects
drops to just 18 percent. In this case, the SLSN purity drops to
around 65 per cent, but this is compensated by an completeness of
over 80 per cent.

Additional cuts from photometric information can be added
to either stage of the pipeline to increase purity at the cost of
completeness. Different cuts than those discussed here can be used,
which will affect each class differently, allowing for parties interested
in specific SNe classes to be specific in their classification.

The final advantage of such a classification model is that it is
versatile and easily communicated to the community. By providing
only the class from the 5-class output probabilities from each
classifier, the r-band magnitude of the transient and host near time of
observation, and the redshift of the system, it would be possible for
members of the community to adjust the transient sample selected
to suit their specific science requirements by varying classifiers or
probability thresholds.

5.2.1 Comparison to photometric classification results

In this subsection, we compare three recent photometric classification
papers surrounding a recent photometric classifier and its use with
the DES (Moller et al. 2022).

Moller & de Boissiere (2020) present the photometric transient
classifier SUPERNNOVA classifying simulated light curves with spec-
troscopic redshift information and incomplete light curve informa-
tion. Additionally, Moller et al. (2022, 2024) present SUPERNNOVA
classification results on real light curves with and without host
redshifts, respectively.

Specifically, Moller et al. (2024) present the binary classification
of DES 5-yr data release SNe without any redshift information
provided as a prior. When the light curves of transients being fit
without redshifts are trimmed to only include photometry up to
peak brightness, SUPERNNOVA produces a binary accuracy, a la
completeness, and a Ia purity of 90.46 per cent, 92.49 per cent, and
91.93 per cent, respectively. By comparison, if operated as a binary
classifier without redshift, our classification plan from Section 5.2
produces a binary accuracy, a la completeness and a la purity of
85.6 £ 0.4 percent, 44.5 £ 0.6 percent, and 94.4 £ 0.3 per cent.
Additionally, we can consider only the high-confidence SN Ia sample
produced by the combined NGSF-DASH classifier to improve the SN
Ia purity to 99.5 £ 0.1 per cent at the cost of reducing completeness
to just 36.4 £ 0.6 per cent.

As seen in Table 3, NGSF has significant performance loss when
redshift information is not provided. As such, the binary accuracy, SN

MNRAS 543, 247-272 (2025)

Ia completeness and purity can be improved to 91.4 & 0.4 per cent,
55.6 £ 0.6 per cent, and 95.3 & 0.3 per cent by replacing the DASH—
NGSF classification step with an equivalent DASH—SNID classification.
However, this does come at the cost of worse performance in the
5-class mode of operation.

Moller et al. (2022) also apply SUPERNNOVA to the photometric
sample produced by the DES 5-yr data release. This produces a
cosmologically useful sample of 1484 SNe Ia with spectroscopic
redshifts. The predicted completeness and purity of the sample are
98.51 percent and 97.73 per cent, respectively. Again, we consider
both the high-confidence SN Ia sample and the larger, less confident,
SN Ia sample produced by our classification pipeline. Now with
redshift priors, the less confident sample has an completeness of 76.3
£ 0.4 percent and purity of 99.0 £ 0.1 percent. We can sacrifice
some completeness to improve purity and use the high confidence
SN Ia sample produced by the combined DASH-NGSF classifier. This
increases purity to >99.9 percent with completeness just under
70 per cent. Our classification plan produces an SNe Ia sample with
a percentage contamination that is more than a factor of 10 lower,
at the cost of lower completeness and accuracy, than SUPERNNOVA.
This is true whether redshift information is available or not.

While most photometric classifiers function purely in a binary
(SN Ia versus non-SN Ia) schema and with complete light curves,
in Moller & de Boissiere (2020), SUPERNNOVA reports results using
ternary and seven-way classification schema, similar to our 5-class
schema.

SUPERNNOVA reports an accuracy of 77.8 per cent for its ternary
schema (SNe Ia, Ibc, and II) and 64.2 percent for the seven-way
classification schema (SNe Ia, IIP, IIn, IIL1, IIL2, Ib, and Ic). In each
case, these are the accuracies expected from light curves consisting,
on average, of 2.4 distinct nights of multicolour observations up to2 d
before peak brightness. These percentages improve to 81.5 per cent
and 69.8 per cent for an average of 3.1 distinct nights of multicolour
observations up to 2 d after peak brightness. All classifications also
make use of spectroscopic redshifts.

For comparison our example pipeline, in the 5-class schema (SNe
Ia, Ibc, II, SL, and non-SNe), produces a comparable classification
accuracy of 90.1 £ 0.2 per cent. Additionally, if we consider only SNe
Ia, Ibc, and II to mimic the ternary schema, we obtain an accuracy
of 93.2 &£ 0.3 per cent. In both cases, we do not consider unclassified
spectra in our calculation of the accuracy. In the ternary scheme,
non-SN transient and SLSN outputs are considered unclassified.

From Frohmaier et al. (2025), the requirements to flag a transient
for spectroscopic follow-up are three griz detections in two distinct
nights, with the added requirement that at least one of these detections
be brighter than 22.5 mag. We also assume spectroscopic redshifts
are available. Our use of spectroscopy produces a roughly 15 per cent
improvement on the accuracies from photometry with similarly
incomplete light curves.

6 CONCLUSIONS

In this paper, we set out to determine whether the classification of
transients discovered by 4MOST-TiDES can be automated using one
or more spectroscopic transient classifiers. We want to know which
classifier(s) are the best from a live classification and cosmological
point of view. To do this, we simulated realistic blended spectra using
pre-existing simulations and the 4MOST ETC and classified them
using DASH, NGSF, and SNID. We place a focus on classification purity
due to the large sample sizes produced by TiDES, and employ the
Fy s-score as our purity-weighted FoM.
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The classification performances of DASH, NGSF, and SNID are
weaker than those reported in their original papers. This is the result
of different quality data and fainter SNe, alongside significant host
contamination. We find that, individually, NGSF produces the best
Fys-score for known redshift classifications, although its perfor-
mance loss is across all transient classes large if redshift information
cannot be provided. None of the individual classifiers were robust
enough to recommend their use for automated classification.

We find that the purities in SNe Ia can be greatly improved by
using several classifiers at once and requiring an agreement between
them on each classification. This is costly for transient completeness,
but with the benefit of having vastly reduced contamination in the
output sample. We get good results from a combination of DASH and
NGSF, with SNe Ia completeness of 69.4 &+ 0.5 percent and purity
of 99.94 + 0.03. Purity can be marginally improved by including
SNID in the combined classifier, but at the cost of a much reduced
completeness.

This allows for the automation of SNe Ia classification and the
production of good cosmology samples. However, it alone does not
lead to a solution for general automated classification for TiDES.
The combined DASH-NGSF classifier struggles to classify SNe Ibc
and SNe II with a high completeness, although what it does classify
is quite pure. It is incapable of classifying SLSNe and non-SN
transients, as DASH, by default, has not been trained to classify them.

We investigated a variety of photometric cuts that could be applied
to our data to improve the resulting transient classifications for
individual classifiers. We found that only classifying transients with
r-band magnitudes brighter than 21.8 could significantly improve
classification purity across all transient classes, but at the cost
of classification completeness. Similar results can be obtained by
only classifying objects for which SNe flux comprises more than
30 per cent of the flux within the observing 4MOST fibre.

We present an example classification plan in Section 5.2. We
emphasize that such a classification pipeline is easily fine-tuned to
specific science cases and conclude it is viable for live automated
classification and these modifications require only the classifier out-
puts and some photometric information to be performed. The specific
classification pipeline present in this paper outperforms the Fjs-
scores of all combinations of one, two, or three classifiers. In Table 7,
we indicate how one might choose a different classifier than our
pipeline depending on whether the purity of the sample or the com-
pleteness is considered most important for particular research goals.

We have demonstrated the capacity of an example classification
pipeline to produce a very high purity SN Ia sample at the cost
of completeness, and a sample with far higher completeness with
lower purity. A future step in this work will be to optimize the
classification scheme via end-to-end cosmological simulations, in
order to show which sample best constrains the cosmology and
which combination of classifiers and photometric cuts minimize the
uncertainty on derived cosmological parameters.

Importantly, it is currently unclear to what extent 4AMOST-TiDES
will be able to obtain redshift information from host galaxies to
be used in transient classification. The change in completeness
and purities is significant between known and unknown redshifts
and represents perhaps the largest uncertainty in the results of this
paper. Work is currently underway investigating how consistently
a redshift can be derived from features in blended host-transient
spectra. Even in the case that live spectroscopic redshifts cannot be
obtained from hosts, we are optimistic that it will be possible to
obtain some host redshifts from legacy surveys such as the Dark
Energy Spectroscopic Instrument (DESI) survey (Dey et al. 2019)
and Sloan Digital Sky Survey (SDSS) (York et al. 2000; Wolf et al.
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2016; Almeida et al. 2023). Host photo-zs also present a promising
middle-ground between spectroscopic and unknown redshifts.

Finally, it is likely to be possible to bolster the spectroscopically
confirmed transient samples with photometrically classified tran-
sients once full light-curve data are produced by LSST.
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APPENDIX A: SNE IA FITS AND
CONTAMINANT ORIGINS

Fig. A1l shows how the SN Ia input spectra are being fit by each
classifier, based on the subclass of the best-fitting template. In each
case, the green bars indicate the good SN Ia classification bins. Non-
SN Ia bars of various colours indicate all of the misclassifications. In
all three classifiers, we investigate we see the same effects of moving
from using redshift priors to not.

There is a shift in successfully classified SNe Ia from the la-
norm class into other SN Ia and SN Ia-pec subclasses. Additionally,
the number of SNe Ia incorrectly classified as non-SNe Ia can be
seen in the non-green bars universally increasing in height. Both of
these effects serve to diminish the SN Ia classification rate without
redshifts.

Of note are the tendency of DASH to classify transients as SN Ia-
csm. This seems to be the result of narrow galaxy emission lines from
Sc host templates masquerading as the narrow lines of an ejecta-csm
interaction. The inclusion of SN Ia-csm as an acceptable SN Ia class
for DASH does improve the SN Ia classification rate, but at the cost of
contamination rates exceeding 15 per cent. A similar effect occurs
with SNID, except that it does seem to prefer to correctly identify
them as galaxies with a ‘Gal’ output.

Fig. A2 shows the origin of the contaminant results for each
classifier. We can see immediately that DASH suffers as a result of
having no ability to classify SLSNe, as they make up the largest
fraction of contaminants when redshift priors are known.

When redshift information is removed, DASH loses classification
performance for all transient classes in both completeness and purity.
The fractional decrease in the number of SN Ia and contaminant
classification is almost exactly the same, and this results in the purity
remaining high (see Table 3). The input template classes that produce
contaminants is entirely different when redshift priors are removed,
now being almost entirely from SNe II. For SLSNe, forcing the
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Figure Al. Graphical representation of how SN Ia input spectra are being classified by each classifier with (left column) and without (right column) redshift
priors. The subclass of the best-fitting templates is assumed as the subclass of the output. Each histogram lists only the subclasses with at least one output
classification. SN Ia subclasses are green, Ibc are blue, II are red, SLSNe are purple, non-SNe are black, and ‘other’ classes (Ia-pec, non-transients) are grey

(see also the subclass names on the x-axis). The shift from Ia-norm to other SNe Ia subclasses when redshift priors are removed can be seen.
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Figure A2. The distribution of true classifications for objects classified as Ia above the quality threshold to qualify as contaminant results. Input classes are
those from the 5-class classification schema. The number of contaminants for each classifier-redshift prior combination are listed on each subplot. The number
of FPs increases significantly without redshift priors for NGSF and SNID. SLSNe are often over-represented as FPs.
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classification to high redshifts by using priors resulted in many
contaminant la classifications. When redshift priors are removed,
SLSNe are instead misclassified as other non-SN Ia transients or as
SNe Ia-pec. This is a good change from the point of view of SN Ia
sample purity.

While we see the contaminant numbers produced by DASH
maintained when removing redshift knowledge, NGSF and SNID both
produce double or more contaminant SN Ia classifications. NGSF
and DASH both classify predominantly SNe II as contaminant SNe
Ia when redshift priors are removed, a significant change from
the ratio of classes that produce contaminants with redshift priors.
SNID’s distribution of contaminants remains almost identical between
regimes, although again SNe II are the largest contributor.

Type I SNe are the largest non-SN Ia component of the sample and
as expected always dominate the contaminant distribution. In fact,
in nearly all cases, the relative number of contaminants originating
from the different input non-SN Ia classes at least vaguely mimics
their relative abundance in the full sample, slightly shifted by each
classifier’s ability to classify different classes. Only Fig. A2(b) bucks
this trend, producing a large overabundance of SN II contaminant
classifications.
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APPENDIX B: EXAMPLE CLASSIFICATION

In this appendix we provide some individual classifications as con-
text. We focus on several of the most common types of classification
and misclassification. All presented classifications are from NGSF
as it is the most prevalent in our suggested classification plan in
Section 5.2.

Fig. B1 shows four attempted classifications with NGSF. Fig. B1(a)
shows a successful SN Ia classification. We find that noisy spectra,
where the transient is faint, or spectra with significant host contami-
nation are often hard to classify as would be expected. This is shown
in Fig. B1(b). We also see an overabundance of misclassifications
from spectra with the Sc host template. These are often the result of
the classifier misinterpreting the strong galaxy emission as narrow
features from the transient. This leads to a classifications of SN Ia-
csm and other narrow emission transient subclasses like Ibn, IIn,
etc. This is shown in Fig. B1(c). False positive SN Ia classifications
can arise from many effects. Shown in Fig. B1(d), we have a low
host contamination SN Ib being misinterpreted as a la-norm with
significant host contamination. This suggests that there is degeneracy
between SN subclass and host contamination levels.
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Figure B1. Four individual classification results from NGSF. Top left: a good classification of a bright, low contamination SN Ia. Top right: a misclassification

of a highly contaminated SN Ia. Bottom left: a misclassification of a bright SN Ia due to narrow galaxy features from its Sc host. Bottom right: an example of

an SN Ia false positive where a low contamination SN Ib is misinterpreted as an SN Ia with high contamination. In each case, the input is plotted in red (noisy)
with relevant information in the legend. The best-fitting template spectrum is plotted in green and the best-fitting transient class is provided in the legend. The
host galaxy fraction of NGSF’s best-fitting template is included in the legend with the best fit.

MNRAS 543, 247-272 (2025)

GZ0Z J8qWBA0N ] uo Jasn uojdweyinos Jo Alsianiun Aq 9€/22428//v2/1L/SS/e1onie/seluw/woo dnooiwspese//:sdiy woll papeojumoq



272  A. Milligan et al.

—— la91bg

Flux (Abitrary Units)
o
AT
5
]
3

Ic-bl
B U e
—\ TDE

_4» /
/\

4000 6000 8000 10000
Wavelength (4)

Figure C1. Example spectra for each distinct input transient class. Spectra
such as these were used as the starting point to generate the simulated spectra
in Section 3.

APPENDIX C: EXAMPLE SPECTRA

Fig. C1 shows an example of each of the twelve types of inputs
transient spectra used in our blended spectra simulations. The
spectra belong to the transient classes of: Ia-norm, Ia 91bg-like
(faint, fast-declining), lax (faint, progenitor-preserving white dwarf
thermonuclear detonations), Ib, Ic, IIb, Ic-BL, II, IIn (all core-
collapse SNe), SLSNe (incredibly bright transients), TDEs (star
disrupted by black hole tidal forces), and CaRTs (SN Ia-related
events, rich in calcium).

The spectra presented here are arbitrarily scaled and flux-shifted
for presentation. No simulated fibre effects or observational noise
from the 4AMOST ETC has been added. As noted in Section 3,
the primary purpose of the spectra is for simulating realistic light-
curve information for LSST rather than accurately portraying the
spectra of a given transient class. Rarely observed transient classes,
such as TDEs and CaRTs are essential featureless blue-dominated
continua, combined with a limited presence in classifier training
samples/template banks, is likely partially responsible for their
incredibly poor classification results.

This paper has been typeset from a TEX/IATEX file prepared by the author.
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