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Abstract: We show how a natural neutrino mass hierarchy with large lepton mixing angles may
be achieved in a theory of gauge flavour deconstruction. Hitherto it has been shown that neutrino
anarchy may result from such theories, but here we show that this need not necessarily be the case.
In particular we consider the minimal tri-hypercharge theory, and show that the decomposition of
the family hypercharges into the corresponding B − L gauge groups, together with the charged
lepton mass hierarchy, implies the sequential dominance conditions for a neutrino mass hierarchy,
where lepton mixing originates from both the neutrino and charged lepton sectors. We present novel
and model-independent sequential dominance results applicable to this case, but also useful more
generally. We also show how natural quark mass and mixing are included in such a framework.
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1 Introduction

The flavour problem remains one of the most intriguing puzzles of the Standard Model (SM), being
responsible for most of its parameters [1]. Under the SM gauge group the three fermion families are
identical, but differ greatly in mass showing a hierarchical pattern. The fact that quark mixing is
small while lepton mixing is large only adds to the mystery.

An efficient mechanism to generate a hierarchical flavour structure consists of embedding the
SM in a larger gauge symmetry that contains a separate gauge group for each fermion family, with
the light Higgs doublet(s) originating from the third family group. This general idea was originally
proposed in the early 80s [2–16] and has received different names over the years, like “tribal groups”,
although the most recent literature is denoting this framework as flavour deconstruction [17–38].

At the effective level, flavour-deconstructed models tend to generate small quark mixing, in
agreement with the observed structure of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. How-
ever, they tend to generate small lepton mixing as well. There are several ways to circumvent this
issue and generate large Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing, as required by oscil-
lation data. One can go beyond the effective field theory (EFT), as in [35], or one can also consider
particular gauge symmetries where both hierarchical neutrino Yukawa couplings and hierarchical
right-handed neutrino masses cancel the overall hierarchies in the effective neutrino mass matrix
when applying the seesaw formula [36]. Alternatively, one can introduce extra scalar fields which
only participate in the neutrino sector [28], or charge all lepton doublets under the same family
group, hence introducing gauge anomalies that need to be canceled by extra fermion content in
the UV [34, 38]. However, all these mechanisms achieve an anarchical pattern for the neutrino
masses and mixing angles: the observed neutrino flavour structure is assumed to have originated
as an accidental configuration of O(1) dimensionless coefficients. While this is a valid approach,
it is widely speculated in the literature that the flavour structure of the lepton sector might not
necessarily be of anarchic nature, but rather the simultaneous appearance of hierarchical neutrino
masses and two large mixing angles calls for further understanding, perhaps hinting at a particular
dynamical mechanism.

Going in this direction, the framework of sequential dominance (SD) was proposed (see e.g. [39–
42]). Sequential dominance is not in itself a model, but a sub-mechanism within the general frame-
work of the type-I seesaw, that may be applied to constructing different classes of neutrino models
beyond anarchy. The starting point of sequential dominance is to assume that one of the right-
handed neutrinos contributes dominantly to the heaviest neutrino mass, with the atmospheric mix-
ing angle being determined by a simple ratio of two Yukawa couplings. This is sometimes referred
to as single right-handed neutrino dominance. Sequential dominance corresponds to the further
assumption that, together with single right-handed neutrino dominance, a second right-handed
neutrino contributes dominantly to the second heaviest neutrino mass, with the large solar mixing
angle interpreted as a ratio of Yukawa couplings. The third right-handed neutrino is effectively
decoupled from the seesaw mechanism, and plays no part in determining the neutrino mass spec-
trum. If the decoupled right-handed neutrino is also the heaviest one, then sequential dominance
is effectively equivalent to having two right-handed neutrinos.

The goal of this paper is to implement sequential dominance in the context of flavour decon-
struction in order to go beyond anarchy in the neutrino sector. In particular, we will show that
tri-hypercharge [28, 35], which is arguably the simplest theory of flavour deconstruction, naturally
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delivers sequential dominance when extended to embrace the right-handed neutrino sector. We will
see how the combination of flavour deconstruction with sequential dominance delivers non-trivial
features, including the origin of PMNS mixing from both charged lepton and neutrino mixing: the
atmospheric angle θ23 originates from both the 23 mixing angles of charged leptons and neutrinos,
while the reactor angle θ13 originates mostly from a Cabibbo-like θe

12 angle in the charged lepton
sector, and the solar angle θ12 originates mostly from 12 neutrino mixing.

The paper is structured as follows. In Section 2 we discuss the minimal tri-hypercharge theory
as an example of anarchy in the neutrino sector of flavour deconstruction. In Section 3 we show how
sequential dominance naturally arises when tri-hypercharge is extended to embrace right-handed
neutrinos, leading to potential predictivity in contrast to the hypothesis of anarchy. In this frame-
work, we discuss the origin of a natural neutrino mass hierarchy, lepton mixing angles and a natural
quark sector. Section 4 outlines our main conclusions. Our conventions are shown in Appendix A.
Appendix B.1 contains a review of sequential dominance in the neutrino sector, while Appendix
B.2 contains novel model-independent results regarding charged leptons in sequential dominance.
Appendix C contains model-independent formulas for the PMNS mixing angles that consider all
potential contributions from neutrino and charged lepton mixing angles and phases. Finally, in
Appendix D we discuss the scalar potential for the considered model.

2 Tri-hypercharge with anarchic neutrinos

The tri-hypercharge (TH) proposal is one of the simplest theories of flavour deconstruction. It
involves just assigning a separate gauge hypercharge to each fermion family at high energies [28],

GTH = U(1)Y1 × U(1)Y2 × U(1)Y3 , (2.1)

which commutes with SU(3)c × SU(2)L that remains flavour universal as in the SM. The TH
symmetry is spontaneously broken down to the diagonal hypercharge U(1)Y = U(1)Y1+Y2+Y3 in two
steps by a set of scalar fields charged under different hypercharges which add to zero, denoted as
“hyperons”. This diagonal U(1)Y corresponds to the universal hypercharge of the SM. The Higgs
doublet(s) that spontaneously break electroweak symmetry are chosen to carry only third family
hypercharge, which allows to write only third family Yukawa couplings at renormalisable level, while
the Yukawa couplings of the light families originate from non-renormalisable operators that involve
the hyperons. This successfully leads to a dynamical generation of the observed charged fermion
mass hierarchies and small quark mixing. In particular, we consider two Higgs doublets Hu,d that
couple to up-quarks/neutrinos and down-quarks/charged leptons respectively1, in order to take
into account the overall different normalisation between the up sector and the down-quark/charged
lepton sectors. Minimal ultraviolet (UV) completions of the non-renormalisable operators have been
provided via the inclusion of vector-like fermions and/or heavy Higgs doublets [35].

As shown in Table 1, the minimal but complete realisation of the lepton sector [35] involves only
two hyperons, along with two right-handed neutrinos as full singlets of the TH symmetry. Going
beyond renormalisable level, this delivers the following Yukawa couplings and Majorana masses for

1This may be enforced by particular mechanisms such as a softly broken Z2 symmetry, not specified here.
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Field U(1)Y1 U(1)Y2 U(1)Y3 SU(3)c × SU(2)L

ℓ1 −1
2 0 0 (1, 2)

ℓ2 0 −1
2 0 (1, 2)

ℓ3 0 0 −1
2 (1, 2)

ec
1 1 0 0 (1, 1)

ec
2 0 1 0 (1, 1)

ec
3 0 0 1 (1, 1)

νc
1 0 0 0 (1, 1)

νc
2 0 0 0 (1, 1)

Hu 0 0 1
2 (1, 2)

Hd 0 0 −1
2 (1, 2)

ϕ12
1
2 −1

2 0 (1, 1)
ϕ23 0 1

2 −1
2 (1, 1)

Table 1: Minimal tri-hypercharge model for the lepton sector [35]. Hu,d and ϕij are scalars while the rest
are the three usual generations of chiral leptons plus two right-handed neutrinos.

the neutrino singlets,

L = aν
3iℓ3Huνc

i + aν
2i

ϕ23
Λν

23
ℓ2Huνc

i + aν
1i

ϕ12
Λν

12

ϕ23
Λν

23
ℓ1Huνc

i + Mijνc
i νc

j + h.c. , (2.2)

where i = 1, 2 and repeated indices are summed. Once the hyperons get their VEVs, we obtain the
following textures for the Dirac and Majorana mass matrices of neutrinos,

Lν =
(

ℓ1 ℓ2 ℓ3
)

mD

(
νc

1
νc

2

)
+
(

νc
1 νc

2

)
MM

(
νc

1
νc

2

)
+ h.c. (2.3)

=
(

ℓ1 ℓ2 ℓ3
) aν

11ϵν
12ϵν

23 aν
12ϵν

12ϵν
23

aν
21ϵν

23 aν
22ϵν

23
aν

31 aν
32

( νc
1

νc
2

)
Hu +

(
νc

1 νc
2

)(M22 M23
M32 M33

)(
νc

1
νc

2

)
+ h.c. , (2.4)

where we have defined ϵν
12 = ⟨ϕ12⟩/Λν

12 and ϵν
23 = ⟨ϕ23⟩/Λν

23. The effective mass matrix for active
neutrinos is obtained after applying the seesaw formula,

mν ≃ mD(MM)−1mT
D . (2.5)

In the charged lepton sector, we obtain the following Yukawa couplings,

Le =
(

ℓ1 ℓ2 ℓ3
) ae

11ϵe
12ϵe

23 ae
12ϵe

12ϵe
23 ae

13ϵe
12ϵe

23
ae

21(ϵe
12)2ϵe

23 ae
22ϵe

23 ae
23ϵe

23
ae

31(ϵe
12)2(ϵe

23)2 ae
32(ϵe

23)2 ae
33


 ec

1
ec

2
ec

3

Hd + h.c. , (2.6)

where we have defined ϵe
12 = ⟨ϕ12⟩/Λe

12 and ϵe
23 = ⟨ϕ23⟩/Λe

23. Under the validity of the EFT
introduced in Eq. (2.2), we expect ϵν,e

12,23 ≪ 1 to imprint hierarchies among the rows of the Yukawa
couplings, while Mij are naturally presumed to be of similar order since no symmetry distinguishes

– 3 –



the two singlet neutrinos. This is a general result in theories of flavour deconstruction (see e.g. the
discussion of [36]), where one naively expects a hierarchical lepton sector with small mixing angles,
similar to the observed pattern of the quark sector, unless the dimensionless coefficients aν,e are
fine-tuned. This is however in contradiction with the two large mixing angles observed in the PMNS
matrix.

So far, the four possibilities to generate large lepton mixing in theories of flavour deconstruction
consist on:

(i) Introduce extra linking scalars (e.g. hyperons) which only participate in the neutrino sector
and change the Yukawa texture above [28].

(ii) Go beyond the validity of the EFT approach of Eq. (2.2) to generate ϵν
12,23 ∼ 1 in the full UV

theory [35].

(iii) Consider particular gauge symmetries where both hierarchical neutrino Yukawa couplings and
hierarchical right-handed neutrino masses cancel the overall hierarchies in the neutrino mass
matrix when applying the seesaw formula [36]. The extended gauge theory will then distinguish
between the two right-handed neutrinos.

(iv) Charge all lepton doublets under the same site (or hypercharge). This introduces gauge
anomalies that can be canceled with extra fermionic content in the UV [34, 38].

In all these cases, one obtains an anarchic effective neutrino mass matrix: all entries are governed
by O(1) coefficients which are simply fitted to neutrino oscillation data. This is successful at the
level of reconciling the hypothesis of flavour deconstruction with neutrino data, but it does not
give any understanding about the observed neutrino flavour structure, which is assumed to have
originated as an accidental configuration of O(1) dimensionless coefficients. However, the flavour
structure of the lepton sector might not necessarily be anarchic in nature. This would be the case if
the physical neutrino masses exhibited a strong hierarchy, where one of the right-handed neutrinos
dominantly contributes to the heaviest physical neutrino mass, as in sequential dominance [39–42].
The simultaneous appearance of hierarchical neutrino masses and two large (and one small) mixing
angles may thus hint towards a dynamical mechanism beyond anarchy.

Such a dynamical mechanism requires us to go beyond tri-hypercharge. The reason why this
is necessary is that the two right-handed neutrinos are both singlets under the tri-hypercharge
gauge group, and hence are indistinguishable, which results in the two columns of the Dirac matrix
being approximately equal, and the heavy Majorana mass matrix being anarchical. In the current
framework it is therefore difficult to obtain a natural neutrino mass hierarchy, and this motivates
extending tri-hypercharge to a larger gauge group, under which the right-handed neutrinos are no
longer indistinguishable singlets.

In the following section, we will show that the conditions of sequential dominance (see Ap-
pendix B), which naturally provides a first step to understand the dynamic origin of the observed
pattern of neutrino data, are naturally realised when the tri-hypercharge setup is minimally ex-
tended such that the right-handed neutrinos are no longer indistinguishable singlets. In this way,
it is possible to go beyond anarchy in the neutrino sector of flavour deconstruction.
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Field U(1)Y1 U(1)R2 × U(1)(B−L)2/2 U(1)R3 × U(1)(B−L)3/2 SU(3)c × SU(2)L

ℓ1 −1
2 (0, 0) (0, 0) (1, 2)

ℓ2 0 (0, −1
2) (0, 0) (1, 2)

ℓ3 0 (0, 0) (0, −1
2) (1, 2)

ec
1 1 (0, 0) (0, 0) (1, 1)

ec
2 0 (1

2 , 1
2) (0, 0) (1, 1)

ec
3 0 (0, 0) (1

2 , 1
2) (1, 1)

νc
2 0 (−1

2 , 1
2) (0, 0) (1, 1)

νc
3 0 (0, 0) (−1

2 , 1
2) (1, 1)

Hu,d 0 (0, 0) (±1
2 , 0) (1, 2)

χ2 0 (1, −1) (0, 0) (1, 1)
χ3 0 (0, 0) (1, −1) (1, 1)
ϕR

12
1
2 (−1

2 , 0) (0, 0) (1, 1)
ϕL

12
1
2 (0, −1

2) (0, 0) (1, 1)
ϕR

23 0 (1
2 , 0) (−1

2 , 0) (1, 1)
ϕL

23 0 (0, 1
2) (0, −1

2) (1, 1)

Table 2: Field content relevant for the lepton sector. Hu,d, χ2,3 and ϕR,L
ij are scalars while the rest are the

three usual generations of chiral leptons plus two right-handed neutrinos.

3 Natural neutrino mass hierarchy from UV extension of tri-hypercharge

It is well known that a natural neutrino mass hierarchy can result from the sequential dominance of
three right-handed neutrinos (see e.g. [39–42]), where one of them is decoupled and may be ignored,
while the other two contribute sequentially to the seesaw mechanism. In TH theories, this may be
achieved by extending two of the hypercharge gauge groups into respective B − L gauge groups,
which prevents large Majorana masses, while one hypercharge gauge group remains intact, allowing
one heavy decoupled right-handed neutrino. That is the strategy that we follow in this section.

3.1 Gauge symmetry and symmetry breaking

In this section, we will show that the conditions of sequential dominance are naturally achieved
when tri-hypercharge is extended to a larger gauge group under which two of the νc

i neutrinos are
not singlets, thereby preventing their Majorana masses until the larger group is broken. To this end,
we consider the tri-hypercharge gauge symmetry in Eq. (2.1) to be an effective low energy theory
resulting from the ultraviolet (UV) gauge group,

GUV = U(1)Y1 × U(1)R2 × U(1)(B−L)2/2 × U(1)R3 × U(1)(B−L)3/2 , (3.7)

while SU(3)c and SU(2)L remain universal. The decomposition of hypercharge into an Abelian
symmetry for right-handed particles U(1)R and baryon-minus-lepton number U(1)B−L, is well mo-
tivated from left-right symmetric embeddings of the SM, such as the Pati-Salam [43] and SO(10)
[44, 45] theories. Here we apply this idea to the second and third family hypercharges, with the
gauge group in Eq. (3.7) broken down to the TH gauge group in Eq. (2.1) at high energy, as discussed
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below, where the hypercharge generators are given by

Y2 = R2 + 1
2(B − L)2 , (3.8)

Y3 = R3 + 1
2(B − L)3 , (3.9)

noting the 1/2 normalisation in the B − L charge definition to be consistent with our normalisation
of hypercharge.

Two right-handed neutrinos νc
2,3 are now required by anomaly cancellation, and they are charged

under U(1)R2 × U(1)(B−L)2/2 and U(1)R3 × U(1)(B−L)3/2 respectively. In general, we may also
decompose U(1)Y1 into R1 and (B − L)1, providing another right-handed neutrino νc

1 from anomaly
cancellation. However, as we will show in the following, our model will naturally generate sequential
dominance, where νc

1 provides subleading2 contributions to the seesaw mechanism. Therefore, for
simplicity we will assume that Y1 is not decomposed until higher scales so that νc

1 is effectively
decoupled from the seesaw.

In order to break the symmetry, we introduce the scalars χi ∼ (1, −1)i, with i = 2, 3 as shown
in Table 2, whose VEVs spontaneously break the UV group in Eq. (3.7) down to the TH group in
Eq. (2.1),

GUV
⟨χ2,3⟩−→ GTH (3.10)

corresponding to U(1)Ri × U(1)(B−L)i/2 → U(1)Yi thereby recovering tri-hypercharge, simultane-
ously allowing Majorana masses for the right-handed neutrinos mνc

i
∼ ⟨χi⟩. We expect these VEVs

to be large enough to provide most of the suppression for small neutrino masses, in a natural
framework.

Finally, we also introduce the scalars ϕR,L
12,23 as shown in Table 2, which play the role of the

hyperons in the TH theory. Indeed after the χi scalars get their VEVs, the scalars ϕR,L
12,23 reduce to

the hyperons ϕ12,23 of TH as shown in Table 1. They get VEVs [28, 35] which break tri-hypercharge
down to the SM, i.e. the chain of symmetry breaking is

GUV
⟨χi⟩→ GTH

⟨ϕij⟩
→ U(1)Y , (3.11)

where ⟨χi⟩ > ⟨ϕij⟩ and ⟨χi⟩ is large enough to provide the required suppression for neutrino masses,
as we shall see. We also need to consider Higgs doublet(s) to break spontaneously the electroweak
symmetry. Following the same strategy as in the original implementation of tri-hypercharge [28], we
consider two Higgs doublets Hu,d to take into account the overall different normalisation between
the up sector and the down-quark/charged lepton sectors. These are only charged under R3 to allow
for third family renormalisable Yukawa couplings only, as in tri-hypercharge. The scalar potential is
discussed in Appendix D, where we also show that all Goldstone modes may be given heavy masses.

2In particular, any contribution from νc
1 will be higher order in the sequential dominance expansion. Note that

we are assuming only mild hierarchies of dimensionless couplings and Majorana masses, which necessitates the gauge
extension discussed here, since by inspecting the mass matrix textures in Eq. (2.4) and the sequential dominance
conditions in Appendix B, it is clear that unextended tri-hypercharge does not generate sequential dominance unless
the dimensionless coefficients or the Majorana mass terms are assumed to be hierarchical.
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3.2 Leptons

We start by writing the Yukawa couplings involving charged leptons, along with the Dirac and
Majorana mass matrices in the neutrino sector3,

Le =
(

ℓ1 ℓ2 ℓ3
) ae

11ϵR
12ϵR

23 ae
12ϵL

12ϵR
23 ae

13ϵL
12ϵL

23
ae

21ϵL
12ϵR

12ϵR
23 ae

22ϵR
23 ae

23ϵL
23

ae
31ϵL

12ϵR
12ϵL

23ϵR
23 ae

32ϵL
23ϵR

23 ae
33


 ec

1
ec

2
ec

3

Hd + h.c. , (3.12)

Lν =
(

ℓ1 ℓ2 ℓ3
)

mD

(
νc

1
νc

2

)
+
(

νc
1 νc

2

)
MM

(
νc

1
νc

2

)
+ h.c. (3.13)

=
(

ℓ1 ℓ2 ℓ3
) aν

12ϵL
12ϵR

23 aν
13ϵL

12ϵL
23

aν
22ϵR

23 aν
23ϵL

23
aν

32ϵL
23ϵR

23 aν
33

( νc
1

νc
2

)
Hu +

(
νc

1 νc
2

)( χ2 ϵL
23ϵR

23χ3
ϵL
23ϵR

23χ3 χ3

)(
νc

1
νc

2

)
+ h.c.

where ϵR,L
ij = ⟨ϕR,L

ij ⟩/Λij and ae,ν
ij are dimensionless coefficients expected to be of O(1).

The charged lepton texture above delivers the following approximate scalings for the charged
leptons mass eigenvalues,

me ∼ ϵR
12ϵR

23⟨Hd⟩ , mµ ∼ ϵR
23⟨Hd⟩ , mτ ∼ ⟨Hd⟩. (3.14)

Therefore, we obtain approximate numerical values for the small parameters ϵR
12,23 in order to

reproduce the observed charged lepton mass spectrum,

ϵR
12 ∼ me

mµ
≃ 0.005 , ϵR

23 ∼ mµ

mτ
≃ 0.06 . (3.15)

The coefficients ϵL
12,23 are relevant for charged lepton and neutrino mixing, which ultimately

will contribute to the PMNS mixing angles. Therefore, we expect ϵR
ij < ϵL

ij motivated from the
observed patterns of charged lepton masses and PMNS mixing. This imprints a hierarchical column
structure into the Yukawa couplings of charged leptons and neutrinos, which suggests the presence
of sequential dominance [39–42]. In particular, in our model the conditions of sequential dominance
in the neutrino and charged lepton sectors (see Eqs. (B.65) and (B.81)) translate into

|aν
33|2, |aν

23ϵL
23|2, |aν

33aν
23ϵL

23|
⟨χ3⟩

≫ |xνyν |
⟨χ2⟩

, (3.16)

|ae
33|2, |ae

23ϵL
23|2, |ae

33ae
23ϵL

23| ≫ |xeye| ≫ |(xe)′(ye)′| , (3.17)

where
xν,e, yν,e = aν,e

32 ϵR
23ϵL

23, aν,e
22 ϵR

23, aν.e
12 ϵR

23ϵL
12 , (3.18)

(xe)′, (ye)′ = ae
11ϵR

12ϵR
23, ae

21ϵL
12ϵR

12ϵR
23, ae

31ϵL
12ϵL

23ϵR
12ϵR

23 . (3.19)

The presence of sequential dominance allows us to derive simple analytical formulas for mass eigen-
3Without loss of generality, we absorb the Yukawa couplings aνc

22 and aνc

33 into the definitions of ⟨χ2⟩ and ⟨χ3⟩ in
MM.
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values and mixing angles at leading order in the sequential dominance expansion, following the
results in Appendix B. For the neutrino sector, we obtain

tan θν
23 ≃ |aν

23|
|aν

33|
ϵL
23 , (3.20)

θν
13 ≃ |aν

13|√
|aν

33|2 + |aν
23ϵL

23|2
ϵL
12ϵL

23 , (3.21)

tan θν
12 ≃ |aν

12| ϵL
12

cν
23 |aν

22| cos(ϕ̃aν
22

) − sν
23|aν

32| cos(ϕ̃aν
32

)ϵL
23

, (3.22)

m3 ≃ |aν
33|2 + |aν

23ϵL
23|2

⟨χ3⟩
⟨Hu⟩2 (3.23)

m2 ≃

∣∣∣aν
12ϵL

12ϵR
23

∣∣∣2
⟨χ2⟩(sν

12)2 ⟨Hu⟩2 (3.24)

m1 = 0 , (3.25)

while for the charged lepton sector we obtain

tan θe
23 ≃ |ae

23|
|ae

33|
ϵL
23 , (3.26)

θe
13 ≃ |ae

13|√
|ae

33|2 + |ae
23ϵL

23|2
ϵL
12ϵL

23 , (3.27)

tan θe
12 ≃ |ae

12| ϵL
12

ce
23 |ae

22| cos(ϕ̃ae
12

) − se
23|ae

32| cos(ϕ̃ae
32

)ϵL
23

, (3.28)

mτ ≃
√

|ae
33|2 + |ae

23ϵL
23|2⟨Hd⟩ (3.29)

mµ ≃

∣∣∣ae
12ϵL

12ϵR
23

∣∣∣
se

12
⟨Hd⟩ (3.30)

me ≃
[
|ae

11|ce
12 cos(ϕ̃ae

11
) − |ae

21ϵL
12|se

12ce
23 cos(ϕ̃ae

21
) (3.31)

+|ae
31ϵL

12ϵL
23|se

12se
23 cos(ϕ̃ae

31
)
]

ϵR
12ϵR

23⟨Hd⟩ , (3.32)

where the phases ϕ̃ are defined in Appendix B.
The sequential dominance conditions in the charged lepton sector (3.17) are automatically

satisfied by the hierarchical column structure of the Yukawa textures, enforced by the smaller
ϵR
12,23 and larger ϵL

12,23, which arise as a natural consequence of explaining the charged lepton mass
hierarchies and large lepton mixing simultaneously. In the neutrino sector, the strong hierarchy by
columns also suggests sequential dominance, although the conditions (3.16) also depend on ⟨χ2⟩
and ⟨χ3⟩. Due to the ϵL

23ϵR
23 suppression of the off-diagonal entries in MM, we shall approximate

this as a diagonal matrix. By using the formulas (3.23) and (3.24) with ϵR
23 ∼ 0.06, ϵL

12,23 ≳ 0.1 and
setting the dimensionless coefficients to O(1), we find that in order to reproduce neutrino data we
have ⟨χ2⟩ ∼ 1013 GeV and ⟨χ3⟩ ∼ 1014 GeV. Departing from these values would require tuning of
dimensionless coefficients in order to be consistent with lepton data. For consistency of the EFT
we assume the cutoffs Λij to be the largest scales of the theory, i.e. Λij ≳ ⟨χi⟩ , ⟨ϕR,L

ij ⟩. This implies
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that the VEVs ⟨ϕR,L
ij ⟩ are high scale4, most likely ⟨ϕR,L

23 ⟩ ≳ 1013 GeV and ⟨ϕR,L
12 ⟩ ≳ 1012 GeV. The

very heavy scales ⟨χ2⟩ and ⟨χ3⟩ are then responsible for the smallness of active neutrino masses in
our model. The fact that both are close to each other may suggest the presence of a cyclic symmetry
relating the three families and providing gauge unification of our model in a flavour deconstructed
SO(10)3 framework, similar to tri-unification in SU(5)3 [30].

Moreover, the presence of sequential dominance in our model translates into potential predic-
tivity over the origin of the neutrino flavour pattern:

1. We obtain a natural mass hierarchy among normally ordered neutrino mass eigenvalues,

m2
3 ≫ m2

2 ≫ m2
1 . (3.33)

2. The atmospheric neutrino mass m3 and the mixing angle θν
23 are determined by the couplings

of the dominant right-handed neutrino with mass ⟨χ3⟩ . The solar neutrino mass m2 and the
mixing angle θν

12 are determined by the couplings of the subdominant right-handed neutrino
of mass ⟨χ2⟩. Moreover, these mixing angles and mass eigenvalues are described by the simple
analytical formulas given above, at leading order in the sequential dominance expansion, which
were derived from the general results in Appendix B.1.

3. In our model the lightest neutrino is massless, m1 = 0, in good agreement with the current
bounds on the neutrino scale Σmν by cosmological observations [46] and by the KATRIN
experiment [47]. However, a tiny mass will be generated if we decompose Y1 as discussed
before, connected to a heavier and effectively decoupled right-handed neutrino with mass
⟨χ1⟩. This would be necessary for the potential embedding into a grand unified scenario, such
as SO(10)3.

4. Sequential dominance in the charged lepton sector as delivered by our Yukawa texture ensures
a naturally hierarchical mass spectrum and suppressed right-handed charged lepton mixing.
Mass eigenvalues and mixing angles are described by the simple compact formulas above,
derived from the model-independent results in Appendix B.2 at leading order in the sequential
dominance expansion.

This potential predictivity can be regarded as a first step towards building a complete theory of
neutrino flavour in the framework of flavour deconstruction, and in particular a significant step
forward with respect to the hypothesis of anarchy.

3.3 Lepton mixing

The structures of the charged lepton and neutrino Yukawa couplings are similar up to O(1) coef-
ficients, therefore we expect both to contribute to the PMNS mixing angles. Taking into account
contributions from both charged leptons and neutrinos, in all generality the PMNS matrix is given
by (see our parametrisations and conventions for the unitary matrices in Appendix A)

UPMNS = UeU †
ν = U e†

12U e†
13U e†

23Uν
23Uν

13Uν
12 . (3.34)

4We note that by going beyond the EFT and specifying the degrees of freedom corresponding to Λij as in [35], a hi-
erarchy of scales ⟨χi⟩ ≫ ⟨ϕR,L

ij ⟩ would be possible without changing our conclusions, and the tri-hypercharge symmetry
breaking may be realised at the TeV scale ⟨ϕR,L

ij ⟩ ∼ O(TeV), with the associated low energy phenomenology [28, 35].
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In Appendix C we provide fully general formulas for the PMNS mixing angles which take into
account both charged lepton and neutrino contributions. In our model, given the structures of
Eqs. (3.12) and (3.13), we expect that the 13 angles are doubly suppressed as sin θν,e

13 ∼ ϵL
12ϵL

23.
As a consequence, the PMNS angle θ13 is dominated by 12 mixing in the charged lepton sector,
θ13 ∼ sinθe

12 ∼ ϵL
12 ∼ 0.1 (see Eq. (C.102)). Interestingly, this suggests that the PMNS angle θ13

originates from 12 charged lepton mixing of similar size to the Cabibbo angle in the quark sector.
All in all, due to the smallness of the PMNS angle θ13 and the parametric suppression of 13 angles
in our model, we expand the fully general formulas of Eqs. (C.101), (C.102) and (C.103) to linear
order in θν,e

13 and θe
12 to achieve simple formulas for the PMNS mixing angles in our model,

s23 e−iδ23 ≈ ce
23sν

23e−iδν
23 − cν

23se
23e−iδe

23 , (3.35)
θ13 e−iδ13 ≈ θν

13e−iδν
13 − θe

13C23e−iδe
13 − θe

12S23e−iδe
12 , (3.36)

s12 e−iδ12 ≈ sν
12e−iδν

12 + θe
13S∗

23cν
12e−iδe

13 − θe
12C∗

23cν
12e−iδe

12 , (3.37)

where cij ≡ cos θij and sij ≡ sin θij , and the complex quantities S23 and C23 are defined as

C23 ≡ ce
23cν

23 + se
23sν

23ei(δe
23−δν

23) , (3.38)

S23 ≡ ce
23sν

23e−iδν
23 − cν

23se
23e−iδe

23 . (3.39)

It is illustrative to include explicitly the expressions for these quantities. This leads to

s23 e−iδ23 ≈ ce
23sν

23e−iδν
23 − cν

23se
23e−iδe

23 , (3.40)
θ13 e−iδ13 ≈ θν

13e−iδν
13 − θe

13(ce
23cν

23 + se
23sν

23ei(δe
23−δν

23))e−iδe
13

− θe
12(ce

23sν
23e−iδν

23 − cν
23se

23e−iδe
23)e−iδe

12 , (3.41)
s12 e−iδ12 ≈ sν

12e−iδν
12 + θe

13(ce
23sν

23eiδν
23 − cν

23se
23eiδe

23)cν
12e−iδe

13

− θe
12(ce

23cν
23 + se

23sν
23e−i(δe

23−δν
23))cν

12e−iδe
12 . (3.42)

We observe that the large θ23 (atmospheric) angle is generated from both charged lepton and
neutrino contributions, which may interfere positively or negatively depending on the value of
the phases δν

23 and δe
23. The interference is maximal for δν

23 − δe
23 = (2n − 1)π and minimal for

δν
23 − δe

23 = 2nπ (with n being any integer number), which correspond to the case of real mixing
angles. Within the validity of the EFT used to define the ϵL

ij parameters, we expect some suppression
of the 23 angles sν,e

23 ∼ ϵL
23, but this suppression is mild since ϵL

23 > ϵR
23 ∼ 0.06 in order to reproduce

lepton data as discussed before. Therefore, we envisage that large PMNS θ23 is generated either via
a mild tuning (not worst than 10%), which may be distributed among the different dimensionless
parameters aν,e

23,33, or by going beyond the EFT to generate ϵL
23 ∼ O(1) as in [35].

The θ13 (reactor) angle is generated from 12 mixing in the charged lepton sector, as θ13 ∼ θe
12 ∼

ϵL
12 ∼ 0.1, and receives corrections of O(ϵL

12ϵL
23) from the 13 angles θe,ν

13 . Interestingly, θe
12 ∼ 0.1 and

the Cabibbo angle θc ∼ 0.2 that generates 12 quark mixing are of similar size.
Finally, the θ12 (solar) angle is mostly generated from 12 neutrino mixing, s12 ≈ sν

12, with
leading corrections of O(θe

12). Within the validity of the EFT used to define the ϵL
ij parameters,

we expect a mild suppression of the 12 neutrino mixing angle sν
12 ∼ ϵL

12 ∼ 0.1. We consider this
acceptable since the solar angle is s12 ∼ 0.5.
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Field U(1)Y1 U(1)R2 × U(1)(B−L)2/2 U(1)R3 × U(1)(B−L)3/2 SU(3)c × SU(2)L

q1
1
6 (0, 0) (0, 0) (3, 2)

q2 0 (0, 1
6) (0, 0) (3, 2)

q3 0 (0, 0) (0, 1
6) (3, 2)

uc
1 −2

3 (0, 0) (0, 0) (3, 1)
uc

2 0 (−1
2 , −1

6) (0, 0) (3, 1)
uc

3 0 (0, 0) (−1
2 , −1

6) (3, 1)
dc

1
1
3 (0, 0) (0, 0) (3, 1)

dc
2 0 (1

2 , −1
6) (0, 0) (3, 1)

dc
3 0 (0, 0) (1

2 , −1
6) (3, 1)

ϕq
12 −1

6 (0, 1
6) (0, 0) (1, 1)

ϕq
23 0 (0, −1

6) (0, 1
6) (1, 1)

Table 3: Field content relevant for the quark sector. ϕq
12,23 are scalars while the rest are the three usual

generations of chiral quarks.

3.4 Quarks

In the quark sector, our model generates natural mass hierarchies and small quark mixing as in
tri-hypercharge. For completeness we show the explicit results in this section. With the field content
shown in Table 3, we obtain the following Yukawa couplings for up-quarks and down-quarks5

Lu =
(

q1 q2 q3
) au

11ϵR
12ϵR

23 au
12ϵq

12ϵR
23 au

13ϵq
12ϵq

23
au

21ϵq
12ϵR

12ϵR
23 au

22ϵR
23 au

23ϵq
23

au
31ϵq

12ϵR
12ϵq

23ϵR
23 au

32ϵq
23ϵR

23 au
33


 uc

1
uc

2
uc

3

Hu + h.c. , (3.43)

Ld =
(

q1 q2 q3
) ad

11ϵR
12ϵR

23 ad
12ϵq

12ϵR
23 ad

13ϵq
12ϵq

23
ad

21ϵq
12ϵR

12ϵR
23 ad

22ϵR
23 ad

23ϵq
23

ad
31ϵq

12ϵR
12ϵq

23ϵR
23 ad

32ϵq
23ϵR

23 ad
33


 dc

1
dc

2
dc

3

Hd + h.c. , (3.44)

where we have defined ϵq
12 = ⟨ϕq

12⟩/Λ12 and ϵq
23 = ⟨ϕq

23⟩/Λ23. The quark Yukawa texture above
delivers the following approximate scalings for the quark mass eigenvalues,

mu ∼ ϵR
12ϵR

23⟨Hu⟩ , mc ∼ ϵR
23⟨Hu⟩ , mt ∼ ⟨Hu⟩ , (3.45)

md ∼ ϵR
12ϵR

23⟨Hd⟩ , ms ∼ ϵR
23⟨Hd⟩ , mb ∼ ⟨Hd⟩ . (3.46)

Just like in the charged lepton sector, the scaling with the small parameters ϵR
12,23 generates a

natural hierarchy among quark masses. Small quark mixing is naturally generated thanks to the
suppression via the ϵq

12,23 parameters. In particular, in order to explain CKM mixing we obtain

ϵq
23 ∼ Vcb ∼ 0.04 , ϵq

12 ∼ Vus ∼ 0.2 , (3.47)

while Vub ∼ ϵq
23ϵq

12.
5Notice that in the 32 and 31 entries of the down sector, the operators (ϕq

23)2q3Hddc
2 and (ϕq

12)2(ϕq
23)2q3Hddc

1 also
contribute at similar order in the EFT expansion, but have been neglected for simplicity.
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4 Conclusions

Tri-hypercharge, and more generally the hypothesis of flavour deconstruction, gives a successful and
predictive explanation of fermion mass hierarchies and small quark mixing. However, in the lepton
sector, the mechanisms presented so far generate an anarchic neutrino flavour structure: the ob-
served neutrino flavour pattern fully originates as an accidental configuration of O(1) dimensionless
coefficients. This allows little predictivity about the origin of neutrino mass eigenvalues or mixing
angles; both normal and inverted mass orderings are possible, there is no reason to have hierarchical
neutrino masses, and there is no particular understanding of why we have two large and one small
mixing angles in the PMNS matrix.

While anarchy is a valid approach, it is widely speculated in the literature that a dynamical
mechanism might be responsible for the origin of the lepton flavour structure. For example, such a
dynamical mechanism might satisfy the conditions of sequential right-handed neutrino dominance,
leading to a natural neutrino mass hierarchy, with the large lepton mixing angles arising from ratios
of Yukawa couplings involving particular right-handed neutrinos. Motivated by such considerations,
we have shown that the minimal tri-hypercharge theory, when extended to include right-handed
neutrinos with B − L gauge charges, satisfies the sequential dominance conditions, but with a new
twist: lepton mixing originates from both the neutrino and charged lepton sectors.

In order to obtain suitable analytic results, it was necessary to go beyond the standard sequential
dominance results in the literature (see Appendices B.2 and C) in order to allow contributions to
lepton mixing angles from both neutrino and charged lepton sectors. The key features of the model-
independent results are:

• We use the same parametrisation and conventions for both charged leptons and neutrinos,
and provide fully general formulas for the lepton mixing angles in Appendix C, including all
potential neutrino and charged lepton mixing angles and phases.

• Within this parametrisation and conventions, we have computed novel formulas for the charged
lepton mixing angles and masses at leading order in the sequential dominance expansion.

Armed with these tools, we have shown that, when the hypothesis of tri-hypercharge is extended
to embrace the right-handed neutrino sector, by decomposing the family hypercharges into the
corresponding B − L gauge groups, then the sequential dominance conditions for right-handed
neutrinos and charged leptons are satisfied naturally. The atmospheric neutrino mass m3 and
the mixing angle θν

23 are then determined by the couplings of a dominant right-handed neutrino.
The solar neutrino mass m2 and the mixing angle θν

12 are further determined by the couplings of
a subdominant right-handed neutrino. Moreover, these mixing angles and mass eigenvalues are
described by simple analytical formulas at leading order in the sequential dominance expansion.

In the present approach, the PMNS mixing angles generally receive contributions from both
charged leptons and neutrinos, in contrast to the usual situation where either neutrinos or charged
leptons contribute. In the considered case, the PMNS angle θ23 originates from large contributions
from charged leptons and neutrinos. Interestingly, the PMNS angle θ13 originates mostly from 12
mixing in the charged lepton sector, similar in size to the Cabibbo angle. Finally, the PMNS angle
θ12 is generated mostly from 12 mixing in the neutrino sector. The present model also explains
naturally the origin of charged fermion mass hierarchies and small quark mixing, as in standard
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tri-hypercharge. The EFT framework that we have employed points towards the scales of symmetry
breaking being high. Potential high-scale signatures of this theory remain to be explored.

In principle, the present approach leads to the prospect of predictivity in the neutrino sector, due
to the lepton mixing angles being simple ratios of Yukawa couplings, unlike theories with anarchy
where such relations are not present. However, in practice, predictivity is limited by the unknown
Yukawa couplings, which would need to be constrained by some model, as for example the Littlest
Seesaw Models6. Even without such constrained sequential dominance, we find it remarkable that
all fermion mass hierarchies, including that of neutrinos, as well as the disparate lepton and quark
mixing patterns, can be qualitatively understood without relying on family symmetry, within a
theory of gauge flavour deconstruction.

In summary, we have shown how a natural neutrino mass hierarchy with large lepton mixing
angles may be achieved in a theory of gauge flavour deconstruction. The particular framework we
considered is based on a tri-hypercharge gauge theory, extended to include B − L gauge groups,
where we found that the sequential dominance conditions arise naturally, as a consequence of the
charged lepton mass hierarchy, and lepton mixing originates from both the neutrino and charged
lepton sectors. We have presented new model-independent sequential dominance results applicable
to this case but which may also be useful more generally. Finally we showed how natural quark
mass and mixing may be included in such a framework.
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A Conventions

Note that instead of 4-component left-handed spinors eL, νL and right-handed spinors eR, νR, we
choose to work with 2-component left-handed spinors e, ν and CP-conjugate right-handed spinors
ec, νc. In this notation, all spinors are left-handed by construction, and one can drop the chiral
indexes. The same notation applies to the quark sector as well.

In the following, we exhibit the equivalence of different conventions used to parametrise the
PMNS and the respective neutrino and charged lepton mixing matrices. In all cases we follow
Appendix A in [41] for conventions and definitions. In the context of sequential dominance, the
following convention for the PMNS is widely used,7

VPMNS = VeV †
ν . (A.48)

6See [48] for a recent phenomenological discussion and references to explicit models.
7Note that our convention differs from the usual PDG convention [1] where VPMNS = V †

e Vν .
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With this convention, it is convenient to define the parametrisation of V † rather than V because
the PMNS matrix involves V †

ν and the neutrino mixing angles typically play a central role,

V † = P2R23R13P1R12P3 . (A.49)

Here Rij are a sequence of real rotations corresponding to real and positive angles θij , and Pi are
diagonal phase matrices. Note that a 3 × 3 unitary matrix may be parametrised by 3 angles and 6
phases. Our conventions are as follows

R23 =

 1 0 0
0 c23 s23
0 −s23 c23

 , R13 =

 c13 0 s13
0 1 0

−s13 0 c13

 , R12 =

 c12 s12 0
−s12 c12 0

0 0 1

 , (A.50)

P1 =

 1 0 0
0 eiχ 0
0 0 1

 , P2 =

 1 0 0
0 eiϕ2 0
0 0 eiϕ3

 , P3 =

 eiω1 0 0
0 eiω2 0
0 0 eiω3

 , (A.51)

where cij ≡ cos θij and sij ≡ sin θij . By commuting the phase matrices to the left, it can be shown
that the parametrisation in Eq. (A.49) is equivalent to

U † = P U23U13U12 , (A.52)

where P = P1P2P3 and

U23 =

 1 0 0
0 c23 s23e−iδ23

0 −s23eiδ23 c23

 , U13 =

 c13 0 s13e−iδ13

0 1 0
−s13eiδ13 0 c13

 , U12 =

 c12 s12e−iδ12 0
−s12eiδ12 c12 0

0 0 1

 ,

(A.53)
where the phases of the Uij matrices are related to the phases of the Pi matrices as follows,

δ23 = χ + ω2 − ω3 , δ13 = ω1 − ω3 , δ12 = ω1 − ω2 . (A.54)

We find the parametrisation of Eq. (A.49) convenient to diagonalise the neutrino and charged
lepton mass matrices, in order to obtain expressions for the mixing angles and mass eigenvalues
including the phases. In contrast, for the PMNS angles and phases we find more convenient the
parametrisation of Eq. (A.52), i.e.

UPMNS = P U23U13U12 (A.55)

=

 c12c13 s12c13e−iδ12 s13e−iδ13

s12c23eiδ12 − c12s23s13e−i(δ23−δ13) c12c23 − s23s23s13e−i(δ12+δ23−δ13) s23c13e−iδ23

−s12s23ei(δ12+δ23) − c12c23s13eiδ13 −c12s23eiδ23 − s12c23s13e−i(δ12−δ13) c23c13

 ,

where in the second step the matrix P on the left (and an overall minus sign) have been removed
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by charged lepton field redefinitions8 ∆V e = −P †. Finally, an alternative is given by

UPMNS = R23U13R12P0 , (A.56)

where P0 = diag(1, eiβ1 , eiβ2) and the phase δ13 in U13 is replaced by the Dirac phase δCP, while
the phases β1 and β2 are known as Majorana phases. This parametrisation is widely used in the
literature in the context of neutrino oscillations, see e.g. the PDG [1]. The parametrisation in
Eq. (A.56) can be transformed to that in Eq. (A.55) by commuting the phase matrix P0 to the left
and then removing the phases of the left-hand side via charged lepton field redefinitions. The two
parametrisations are then related by the phase relations

δ23 = β2 , δ13 = δCP + β1 , δ12 = β1 − β2 . (A.57)

When taking into account contributions from both charged leptons and neutrinos, the general
expression for the PMNS is simplest when using the parametrisation of Eq. (A.52) for the neutrino
and charged lepton mixing matrices,

UPMNS = UeU †
ν = U e†

12U e†
13U e†

23Uν
23Uν

13Uν
12 . (A.58)

This is why we prefer to describe the PMNS with the parametrisation of Eq. (A.52) rather than
with Eq. (A.49) or Eq. (A.56). Note that the expression above has 6 phases, so 3 of them will be
removed with charged lepton field redefinitions to match the expression in Eq. (A.55).

The relation between the neutrino and charged lepton phases that appear in the PMNS and
those which are relevant for the diagonalisation of the mass matrices is as follows,

δν
12 = ων

1 − ων
2 , δν

13 = ων
1 − ων

3 , δν
23 = χν + ων

2 − ων
3 . (A.59)

δe
12 = χe + ϕe

2 − ϕν
2 − χν + ων

1 − ων
2 , (A.60)

δe
13 = ϕe

3 − ϕν
3 + ων

1 − ων
3 , (A.61)

δe
23 = −ϕe

2 + ϕe
3 + ϕν

2 − ϕν
3 + χν + ων

2 − ων
3 . (A.62)

B Sequential dominance formalism

Sequential dominance was originally proposed as an elegant and natural way of accounting for a
neutrino mass hierarchy and two large mixing angles, in contrast to the less appealing idea that
these originate from an anarchic framework. The idea of sequential dominance is that one of
the right-handed neutrinos contributes dominantly to the seesaw mechanism and determines the
atmospheric neutrino mass and mixing. A second right-handed neutrino contributes subdominantly
and determines the solar neutrino mass and mixing. The third right-handed neutrino is effectively
decoupled from the seesaw mechanism. Subsequently, this concept has been extended to embrace
the charged lepton sector as well, which may contribute equally to the origin of the PMNS mixing
angles.

8Note that this is always possible since right-handed charged lepton phase rotations can always make the charged
lepton masses real.
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Ultimately, sequential dominance also delivers a simple framework to study the flavour struc-
ture of the lepton sector, where simple but accurate analytic formulas for mixing angles and mass
eigenvalues are obtained in the form of a perturbative series expansion.

B.1 Neutrinos

The mechanism of sequential dominance is most simply described by assuming three right-handed
neutrinos in the basis where the right-handed neutrino mass matrix is diagonal, although it can be
also developed in other bases [39, 40]. In this basis, we parametrise the Dirac mass matrix and the
Majorana mass matrix of right-handed neutrinos as (see e.g. [39–42])

mD =

 a′ a d

b′ b e

c′ c f

 , MM =

X ′ 0 0
0 X 0
0 0 Y

 , (B.63)

where each right-handed neutrino couples to a column in mD. By applying the seesaw formula, we
obtain the effective active neutrino mass matrix as,9

mν ≃ mD M−1
M mT

D =


a2

X + d2

Y
ab
X + de

Y
ac
X + df

Y

. b2

X + e2

Y
bc
X + ef

Y

. . c2

X + f2

Y

 , (B.64)

which is symmetric by construction. Sequential dominance occurs when the right-handed neutrinos
dominate the effective neutrino mass matrix sequentially. This translates to the following dominance
prescription over the model parameters,

|e|2, |f |2, |e f |
Y

≫ |x y|
X

≫ |x′y′|
X ′ , (B.65)

where x, y = a, b, c, and x′, y′ = a′, b′, c′. This prescription naturally delivers normal ordering for
the neutrino mass eigenvalues along with a natural neutrino mass hierarchy,

m2
3 ≫ m2

2 ≫ m2
1 . (B.66)

Without loss of generality, we have chosen the prescription such that Y is the dominant right-handed
neutrino, with X and X ′ being sequentially subdominant. The effective neutrino mass matrix mν

must be diagonalised by applying a series of unitary transformations,

Vν mν V T
ν = diag(m1, m2, m3) , (B.67)

where, by convention, we choose to parametrise Vν via three subsequent 23, 13 and 12 unitary
matrices as described in Appendix A. The prescription of sequential dominance allows to simplify
this diagonalisation process by noting that the contributions associated to Y are dominant, and those
associated to X and X ′ can be treated as small perturbations. Therefore, sequential dominance
delivers simple approximate formulas for the flavour parameters in the neutrino sector at leading

9For simplicity we neglect contributions from the decoupled neutrino X ′ when writing mν .
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order in the sequential dominance expansion [41]. In the following, we will neglect contributions
from the small θν

13 angle to show compact formulas.
For the 23 mixing angle we have

tan θν
23 ≃ e

f
e−i(ϕν

2−ϕν
3) = |e|

|f |
, (B.68)

where the phases ϕν
2,3, which originate from the unitary rotations (see Appendix A, Eq. (A.51)),

are fixed as ϕν
2 − ϕν

3 = ϕν
e − ϕν

f to make the angle real and positive.
For the 13 mixing angle we have

θν
13 ≃ Y

|e|2 + |f |2
ei(ϕν

2−2ϕν
e )
[

a(sν
23b + cν

23cei(ϕν
e −ϕν

f ))
X

+ eiϕν
e

d
√

|e|2 + |f |2
Y

]
. (B.69)

In our model of Section 3, beyond the sequential dominance conditions of Eq. (B.65), we find the
following conditions to be satisfied,

|de|
Y

,
|df |
Y

≫ |ab|
X

,
|bc|
X

. (B.70)

In this case, the second term in Eq. (B.69) dominates, and we obtain the simpler result

θν
13 ≃ d√

|e|2 + |f |2
ei(ϕν

2−ϕν
e ) = |d|√

|e|2 + |f |2
, (B.71)

where the phase ϕν
2 = ϕν

e − ϕν
d is fixed to make θν

13 real and positive. Together with the previous
condition, this fixes also ϕν

3 = ϕν
f − ϕν

d.
The 12 mixing angle is given by

tan θν
12 ≃ a

cν
23b − sν

23cei(ϕν
e −ϕν

f
) ei(ϕν

2+χν) = |a|
cν

23|b| cos ϕ̃ν
b − sν

23|c| cos ϕ̃ν
c

, (B.72)

where the phase χν originates as well from the unitary rotations (see Eq. (A.51)), and is fixed to
make θν

12 real and positive as
cν

23|b| sin(ϕ̃ν
b ) = sν

23|c| sin(ϕ̃ν
c ) , (B.73)

where we have defined
ϕ̃ν

b = ϕν
b − ϕν

a − ϕν
2 − χν , (B.74)

ϕ̃ν
c = ϕν

c + ϕν
e − ϕν

f − ϕν
a − ϕν

2 − χν . (B.75)

Finally, the mass eigenvalues are

m3 ≃ |e|2 + |f |2

Y
e2i(ϕν

e −ϕν
2−ων

3 ) = |e|2 + |f |2

Y
, (B.76)

m2 ≃
[

a2

X
+ e−2i(ϕν

2+χν) (cν
23b − sν

23cei(ϕν
e −ϕν

f ))2

X

]
e−2iων

2 (B.77)

=
[

|a|2

X
+ (cν

23|b| cos ϕ̃ν
b − sν

23|c| cos ϕ̃ν
c )2

X

]
e2i(ϕν

a−ων
2 )
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= |a|2

X(sν
12)2 ,

m1 ≃ 0 (B.78)

where in the second and third steps of Eq. (B.77) we have used Eq. (B.72). The phases ων
3 and ων

2 ,
which originate as well from the unitary rotations (see Eq. (A.51)), have been fixed to make the
mass eigenvalues real as ων

3 = ϕν
e − ϕν

2 and ων
2 = ϕν

a. With this, all the phases from the unitary
matrices in the neutrino sector have been fixed to obtain three real and positive mixing angles and
mass eigenvalues.

These results show that in sequential dominance the atmospheric neutrino mass m3 and the
mixing angle θν

23 are determined by the couplings of the dominant right-handed neutrino with mass
Y . The solar neutrino mass m2 and the mixing angle θν

12 are determined by the couplings of the
subdominant right-handed neutrino of mass X. The third right-handed neutrino of mass X ′ is
effectively decoupled from the seesaw mechanism and leads to the vanishingly small mass m1, in
good agreement with the current bounds on the neutrino scale ∑mν by cosmological observations
[46] and by the KATRIN experiment [47].

We also note that the neutrino mixing angles quoted above correspond to the unitary matrices
that diagonalise mν . They are equivalent to the physical angles of the PMNS matrix only when
charged lepton mixing is neglected. Otherwise, in full generality, one obtains the PMNS matrix as,

VPMNS = VeV †
ν , (B.79)

where the charged lepton contribution is described in the next section.

B.2 Charged leptons

Sequential dominance in the context of charged lepton mixing generating the PMNS has been
considered in the literature (see e.g. [49–51] for dedicated studies), but all these studies assume
that neutrino mixing is subleading, and work with a parametrisation different to the one used when
neutrinos dominate. Since we are interested in the case where both charged leptons and neutrinos
may contribute significantly to the PMNS, we need to extend the results to allow for this so that
we can treat neutrino and charged lepton contributions consistently. We therefore obtain new
expressions for the mixing angles with respect to what is found in the literature, in particular using
the same parametrisation of unitary matrices that is employed in the neutrino sector.

We define the charged lepton mass matrix as

me =

 a′ a d

b′ b e

c′ c f

 , (B.80)

with the SD condition
|d| , |e| , |f | ≫ |a| , |b| , |c| ≫

∣∣a′∣∣ , ∣∣b′∣∣ , ∣∣c′∣∣ . (B.81)

This predicts hierarchical charged lepton masses and subleading right-handed charged lepton mixing
with respect to left-handed charged lepton mixing. In the calculation, we include right-handed
mixing and the associated phases, although in the results presented here the right-handed mixing
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angles are neglected. Our parametrisation and conventions are shown in Appendix A, including
the definition of mixing angles and phases. The general diagonalisation of the charged lepton mass
matrix is done by following the recipe of Appendix E in [41]. In the following, we show compact
results at leading order in the sequential dominance expansion and neglecting small corrections of
order θe

13.
For the 23 mixing angle we obtain,

tan θe
23 ≃ e

f
e−i(ϕe

2−ϕe
3) = |e|

|f |
, (B.82)

where the phases ϕe
2,3, which originate from the unitary rotations (see Eq. (A.51)), are fixed as

ϕe
2 − ϕe

3 = ϕe
e − ϕe

f to make the angle real and positive.
For the 13 mixing angle we obtain, in the small angle limit

θe
13 ≈ d

ce
23fe−iϕe

3 + seL
23 ee−iϕe

2
= |d|

ce
23|f | + se

23|e|
≃ |d|√

|f |2 + |e|2
. (B.83)

where we have fixed the value of the phase ϕe
3 to make θe

13 real and positive, ϕe
3 = ϕe

f − ϕe
d, or

equivalently ϕe
2 = ϕe

e − ϕe
d from the condition ϕe

2 − ϕe
3 = ϕe

e − ϕe
f .

For the 12 mixing angle we obtain

tan θe
12 ≃ aei(ϕe

2+χe)

ce
23b − se

23cei(ϕe
2−ϕe

3) = |a|
ce

23|b| cos(ϕ̃e
b) − se

23|c| cos(ϕ̃e
c)

, (B.84)

where the phase χe originates as well from the unitary rotations (see Eq. (A.51)), and we have
defined

ϕ̃e
b = ϕe

b − ϕe
a − ϕe

2 − χe , (B.85)

ϕ̃e
c = ϕe

c + ϕe
e − ϕe

f − ϕe
a − ϕe

2 − χe , (B.86)

and fixed the phase χe to make tan θe
12 real,

ce
23|b| sin(ϕ̃e

b) = se
23|c| sin(ϕ̃e

c) . (B.87)

Finally, the mass eigenvalues are

mτ ≃
√

|e|2 + |f |2ei(ϕec

3 −ϕe
3+ϕe

f +ωec

3 −ωe
3) =

√
|e|2 + |f |2 , (B.88)

mµ ≃
[
ce

12ce
23b − ce

12se
23cei(ϕe

2−ϕe
3) + se

12aei(ϕe
2+χe)

]
ei(ϕec

2 −ϕe
2+χec −χe+ωec

2 −ωe
2) (B.89)

= |a|
se

12
ei(ϕec

2 +ϕe
a+χec +ωec

2 −ωe
2) = |a|

se
12

,

me ≃
[
a′ce

12 − b′se
12ce

23e−i(ϕe
2+χe) + c′se

12se
23e−i(ϕe

3+χe)
]

ei(ωec

1 −ωe
1) (B.90)

= |a′|ce
12 cos(ϕ̃e

a′) − |b′|se
12ce

23 cos(ϕ̃e
b′) + |c′|se

12se
23 cos(ϕ̃e

c′) ,

where we have defined

ϕ̃e
a′ = ωec

1 − ωe
1 + ϕe

a′ , (B.91)
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ϕ̃e
b′ = ωec

1 − ωe
1 − ϕe

2 − χe + ϕe
b′ , (B.92)

ϕ̃e
c′ = ωec

1 − ωe
1 − ϕe

3 − χe + ϕe
c′ , (B.93)

and we have fixed the phases ωec

i to make the mass eigenvalues real,

ωec

3 = ωe
3 − ϕec

3 + ϕe
3 − ϕe

f , (B.94)
ωec

2 = ωe
2 − ϕec

2 − ϕe
a − χec

, (B.95)
|a′|ce

12 sin(ϕ̃e
a′) = |b′|se

12ce
23 sin(ϕ̃e

b′) − |c′|se
12se

23 sin(ϕ̃e
c′) . (B.96)

The three phases ωe
i remain unfixed from the diagonalisation process and can be used to remove

three unphysical phases from the PMNS, see Eq. (A.55).

C General formulas for PMNS mixing angles

In this Appendix we provide fully general formulas for the mixing angles of the PMNS matrix,
taking into account both charged lepton and neutrino contributions. In full generality, the PMNS
matrix is given by

UPMNS = UeU †
ν = U e†

12U e†
13U e†

23Uν
23Uν

13Uν
12 , (C.97)

where we consider the conventions and parametrisation for the unitary matrices discussed in Ap-
pendix A. Note that the expression above has 6 phases, so 3 of them will be removed from charged
lepton field redefinitions to match the expression in (A.55).

Let us focus first on the U e†
23Uν

23 product,

U e†
23Uν

23 =

 1 0 0
0 C∗

23 S23
0 −S∗

23 C23

 , (C.98)

where we have defined
C23 ≡ ce

23cν
23 + se

23sν
23ei(δe

23−δν
23) , (C.99)

S23 ≡ ce
23sν

23e−iδν
23 − cν

23se
23e−iδe

23 . (C.100)

We can extract the PMNS sinθ23 parameter from the 23 element of the PMNS matrix,

(UPMNS)23 = s23c13e−iδ23 = se
12eiδe

12(ce
13sν

13e−iδν
13 − cν

13C23se
13e−iδe

13) + ce
12cν

13S23 . (C.101)

Now we extract the PMNS θ13 angle from the 13 element of the PMNS matrix,

(UPMNS)13 = s13e−iδ13 = ce
12

(
ce

13sν
13e−iδν

13 − cν
13C23se

13e−iδe
13
)

− cν
13se

12S23e−iδe
12 . (C.102)

Finally, we extract the PMNS sinθ12 parameter from the 12 element of the PMNS matrix,

(UPMNS)12 = s12c13e−iδ12 (C.103)

= cν
12

(
S∗

23ce
12se

13e−iδe
13 − C∗

23se
12e−iδe

12
)
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+ sν
12e−iδν

12

(
ce

12ce
13cν

13 + sν
13eiδν

13
(
S23se

12e−iδe
12 + C23ce

12se
13e−iδe

13
))

.

D Scalar potential

The scalar potential of our model contains the following renormalisable terms,

Vϕ =
∑

i

m2
i |ϕi|2 +

∑
i,j

λij |ϕi|2 |ϕj |2 +
(
λq3

12L12(ϕq
12)3ϕL

12 + λq3
23L23(ϕq

23)3ϕL
23 + h.c.

)
, (D.104)

VH = M2
Hu

|Hu|2 + M2
Hd

|Hd|2 +
(
M2

Hud
HuHd + h.c.

)
+ λHu |Hu|4 + λHd

|Hd|4 (D.105)

+ λHuHd
|Hu|2|Hd|2 + λ

H̃uH̃d
(HuHd)(H̃dH̃u) + (λHuHuHdHd

HuHuHdHd + h.c.) ,

VHϕ =
∑

i

λHϕ
i |Hu|2 |ϕi|2 +

∑
i

λHϕ
i |Hd|2 |ϕi|2 , (D.106)

Vχ = M2
χ3 |χ3|2 + M2

χ2 |χ2|2 + λχ3 |χ3|4 + λχ2 |χ2|4 + λχ3,2 |χ3|2 |χ2|2 , (D.107)
Vχϕ =

∑
i

λχ3ϕ |χ3|2 |ϕi|2 +
∑

i

λχ2ϕ |χ2|2 |ϕi|2 , (D.108)

VχH = λχ3H |χ3|2 |Hu,d|2 + λχ2H |χ2|2 |Hu,d|2 . (D.109)

Our model contains 5 gauge U(1)s which are spontaneously broken down to the diagonal gauge
hypercharge. This breaking is performed by 8 complex scalar degrees of freedom involving the
fields ϕR,L,q

12,23 and χ2,3. Therefore, one has 8 potential Goldstone modes, out of which 4 are eaten by
heavy Z ′s. Two of the remaining Goldstone modes acquire a heavy mass at renormalisable level,
proportional to the non-trivial couplings λq3

12L12 and λq3
23L23 . Given that we consider our model an

EFT, the two final modes may acquire mass at non-renormalisable level, e.g. via the couplings

Vd>4 ⊃ cR12
Λ (ϕR

12)2(ϕ̃L
12)2χ2 + cR23

Λ2 χ3(ϕR
23)2χ̃2(ϕ̃L

23)2 + h.c. (D.110)

From the operators above, the remaining Goldstone modes will get a mass suppressed by the factors
⟨χ2⟩/Λ and ⟨χ3⟩⟨χ2⟩/Λ2 with respect to the radial modes. Since the radial modes are heavy (around
1012 GeV or more) and the VEVs ⟨χ2,3⟩ ∼ 1014 GeV are large, then we expect the Goldstone modes
to acquire a heavy mass, since Λ is not expected to exceed the GUT or Planck scales.

In a realistic UV theory, the Goldstone modes likely get a mass at tree level or loop level. Given
that we expect all couplings (including Yukawa) of the model to be O(1), and that the radial modes
are expected to be heavy (as mentioned above), we expect any potential Goldstone mode to be very
heavy as well. The electroweak symmetry breaking then proceeds via the two Higgs doublets Hu,d,
where potential Goldstone modes may get heavy masses proportional to non-trivial couplings at
renormalisable level, such as λHuHuHdHd

.
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